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1 Introduction 

1.1 Anatomy of the retina 

 

The retina is the most inner layer of the eye and represents the light sensing part. It lies 

above the choroid layer and spans the back part of the eye. Vertebrates characteristically 

possess an inverse retina, that is, the light detecting cell layer is averted from the light. The 

light sensing cells are referred to as photoreceptors. Photoreceptors are subdivided into rods 

and cones. As shown in Figure 1.1.1, atop lies the pigment epithelium in which the 

photoreceptor outer segments (OS) are embedded. The subjacent rod and cone cell bodies 

form the outer nuclear layer (ONL). The synapses of photoreceptors as well as the upper 

synapses of bipolar and horizontal cells build up the outer plexiform layer (OPL). Next is the 

inner nuclear layer (INL) harboring the cell bodies of bipolar, horizontal, and amacrine cells. 

The bipolar cell terminals form synapses with ganglion cells in the inner plexiform layer (IPL). 

The ganglion cell bodies shape the ganglion cell layer (GCL). The axons of ganglion cells 

converge to the optic nerve and transmit the signal output to the visual centers of the brain. 

 

 
Figure 1.1.1. Illustration of the retinal structure. Adapted from Benjamin Cummings, an imprint of 

Addison Wesley Longman, Inc. 
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1.2 Anatomy of photoreceptors 

 

Rod and cone photoreceptors are the primary light sensing cells of the retina. Rods are 

specialized in dim light and night vision (scotopic system), whereas cones mediate daylight 

vision and color discrimination (photopic system). Rods and cones share many common 

morphological features which are summarized in Figure 1.2.1. Photoreceptors contain four 

principal compartments: the outer segment, the inner segment, the soma, and the synaptic 

terminal. Outer segment and inner segment are connected via a cilium, which is the traffic 

bottleneck through which the components from the cell body are transported to the outer 

segment. The structure of outer segments differs between rods and cones. Rod outer 

segments are long and cylindrical comprising approximately a thousand membrane stacks 

referred to as discs. The disc membrane is physically separated from the plasma membrane 

(Cohen, 1960; Nickell et al., 2007; Sung and Chuang, 2010). By contrast, cone outer 

segments are generally shorter and conical in shape. The cone membrane structures 

corresponding to the discs in rods are designated as lamellae. The membrane of lamellae is 

at least partly fused with the plasma membrane resulting in an intradiscal space that is 

continuous with the extracellular environment (Carter-Dawson and LaVail, 1979; Carter-

Dawson and LaVail, 1979; Eckmiller, 1987; Mustafi et al., 2009).  

 

 
Figure 1.2.1. Schematic representation of rod and cone photoreceptors. Both cell types contain 

an outer segment, a connecting cilium, an inner segment, a soma (cell body), and the synaptic 
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terminal. Rod outer segments consist of stacks of discs that are separated from the plasma 

membrane. By contrast, cone outer segments have lamellae that are partially fused with the plasma 

membrane. 

 

1.3 Signaling transduction in photoreceptors 

 

Light-induced signaling transduction takes place in the outer segments. In the dark, the 

constitutively active guanylyl cyclases E and F (GC-E/F) generate high levels of cyclic 

guanosine monophosphate (cGMP), which binds to the cyclic nucleotide-gated (CNG) 

channel to preserve its open state. Open CNG channels maintain the influx of Na+ and Ca2+ 

cations into the photoreceptor resulting in the "dark current". This dark current depolarizes 

the plasma membrane up to -40 mV. The change in the membrane potential ensures 

opening of the voltage-gated calcium channel (Cav1.4) at the synaptic terminal. The 

resulting influx of Ca2+ cations through the Cav1.4 channel gives rise to a continuous 

transmitter release from the synaptic vesicles. 

When photons are absorbed by the chromophore retinal, which is covalently bound to 

rhodopsin in rods or the cone opsins in cones (see chapter 1.4), retinal isomerizes from its 

11-cis state to the all-trans state resulting in conformational changes of the opsin apoprotein. 

This causes transducin to activate the cGMP phosphodiesterase 6 (PDE6), which in turn 

hydrolyzes cGMP to GMP. Decrease in cGMP evokes closure of the CNG channel thus 

leading to hyperpolarization of the photoreceptor plasma membrane to -70 mV (Barnes, 

1994). The subsequent termination of transmitter release evokes the transmission of the 

light signal information to the visual centers of the brain. Rods possess a higher light 

sensitivity than cones and can detect single photons, which is only possible due to 

pronounced signal amplification in the phototransduction cascade (Baylor et al., 1979; 

Gunkel et al., 2015).  

The dark current is restored by re-increasing the cGMP concentration to dark level. 

Responsible for this regulation is the intracellular Ca2+ level that mediates GC-E/F activity. 

GC-E/Fs are regulated by guanylyl cyclase-activating proteins (GCAPs) that are inactive 

when bound to Ca2+. Under light condition, the CNG channel is closed which leads to low 

Ca2+ levels (Fain et al., 2001). This in turn induces GCAPs, which increase the cGMP 

production by activating the GC-E/Fs. The high cGMP concentration re-opens CNG 

channels restoring the dark current (Figure 1.3.1A). 

The termination of the signaling transduction cascade and the photoresponse kinetics are 

controlled by further processes including inactivation of the meta II intermediate of opsin 

apoproteins by phosphorylation. In case of rods, metarhodopsin II (Rh*) is inactivated by the 
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rhodopsin kinase 1 (GRK1) (Chen et al., 1999). Furthermore, a protein referred to as arrestin 

binds to phosphorylated rhodopsin to prevent it from activating transducin (Xu et al., 1997). 

Finally, to restore the GPCR back to its inactive and excitable state, all-trans retinal is 

replaced by its 11-cis form and rhodopsin is dephosphorylated (Figure 1.3.1B).  

 

 
Figure 1.3.1. Signaling transduction cascade in rod photoreceptors. A) Components and 

molecular mechanisms that play a role during light-induced rhodopsin activation. B) Prevention of 

sustained transducin activation via phosphorylation of Rh* by rhodopsin kinase (GRK1) and 

subsequent binding of arrestin. For details, see text. GC-E/F, guanylyl cyclase E/F; GCAP, guanylyl 

cyclase-activating protein; PDE6, phosphodiesterase 6; Gt, transducin; CaM, calcium-calmodulin; 

NCKX, Na+/Ca2+/K+ exchanger. 
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1.4 Topology and function of retinal opsins 

 

Retinal opsins are the light sensors of the phototransduction cascade. Rod photoreceptors 

exclusively express rhodopsin, which is mainly localized to the disc membrane and 

possesses an absorption maximum at 495 nm. Cone photoreceptors are further divided into 

subtypes each expressing one or more cone-specific opsins. Trichromats like catarrhines 

and humans have three different cone types and consequently three different cone opsins to 

cover their visual spectrum. Accordingly, the short wavelength-sensitive cone opsin (S-

opsin) has an absorption maximum at 420 nm, the medium wavelength-sensitive cone opsin 

(M-opsin) at 535 nm, and the long wavelength-sensitive cone opsin (L-opsin) at 565 nm. The 

majority of mammals are dichromats and possess only S- and M-opsin. As prototypical 

members of the GPCR superfamily, rod and cone opsins consist of seven transmembrane 

domains, which are alternately connected via three cytoplasmatic and three extracellular 

(intradiscal in case of rhodopsin) loops. The N-terminus is extracellular (intradiscal) and the 

C-terminus is located to the cytoplasmatic side (Figure 1.4.1A). A recent study unveiled the 

crystal structure of bovine rhodopsin with bound chromophore as illustrated in Figure 1.4.1B 

(Choe et al., 2011). The sequence homology differs between the single opsins (Figure 

1.4.2). For human opsins, the highest homology exists between M-opsin and L-opsin (95.9 

%). Rhodopsin and M-opsin share a 40.9 % homology, whereas that of rhodopsin and S-

opsin is 43.9 %. Finally, S-opsin and M-opsin share a 40.6 % homology (Nathans et al., 

1986). According to studies, rhodopsin is considered to have evolved from cone opsins 

during photoreceptor evolution (Okano et al., 1992), while M-opsin and L-opsin derived from 

gene duplication of a common ancestral gene, which explains their high homology (Hunt et 

al., 1998). 

Mouse models revealed that rod photoreceptors fail to from outer segments in absence of 

rhodopsin (Lem et al., 1999). Mutations in the gene encoding rhodopsin account for 

approximately 25 % of autosomal-dominant retinitis pigmentosa (adRP). The genes coding 

for M- and L-opsin are located on the X-chromosome (Xq28 in humans). Mutations in these 

genes cause X-linked retinal diseases affecting M- and L-cones and thus leading to various 

forms of red-green visual impairment. However, progressive cone dystrophies are also 

associated with mutations in the M-/L-opsin gene (Gardner et al., 2010; Neitz and Neitz, 

2011). In humans, the gene coding for S-opsin is located on chromosome 7 (7q32) and 

mutations in this gene affect males and females to an equal extent (Nathans et al., 1986). 
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Figure 1.4.1. Schematic topology of rod and cone opsins. A) Opsins consist of an extracellular 

(for cone opsins) or intradiscal (for rhodopsin) N-terminus, an intracellular C-terminus, and seven 

transmembrane domains (T1-T7) that are connected by six loop regions. B) Crystal structure of 

inactive bovine rhodopsin consisting of the apoprotein opsin in its inactive conformation and the 

chromophore 11-cis-retinal (shown as red spheres), which is covalently bound to lysine 296 (shown 

as black spheres) via a Schiff base. Transmembrane helices (numbered 1-7) are followed by an 

intracellular helix H8. The C-terminus of rhodopsin is not shown. The β-strands in the intradiscal 

domain are depicted as cyan arrows. Image from Choe et. al, 2011. 
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Figure 1.4.2. Sequence homology between human rhodopsin, S-opsin, M-opsin, and L-opsin. 

Using the Clustal Omega (1.2.1) program to align amino acid sequences of human retinal opsins, the 

results show an overall sequence identity of 28.0 % with a total number of 104 conserved amino acids 

(asterisks) and 111 similar positions (periods and colons). Approximate sequence homology between 

the following opsins is: M-opsin and L-opsin, 95.9 %; rhodopsin and M-opsin, 40.9 %; rhodopsin and 

S-opsin, 43.9 %; M-opsin and S-opsin, 40.6 %.  
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1.5 Peripherin-2 

1.5.1 Topology and function of peripherin-2 

 

Peripherin-2 is a glyco-membrane protein and belongs to the tetraspanin family. 

Tetraspanins are transmembrane proteins found in multicellular eukaryotes. In humans, 33 

different tetraspanins have been identified so far. They act as scaffolding proteins anchoring 

many other proteins to the cell membrane and are involved in multiple cellular processes 

including cell signaling, adhesion, and motility (Hemler, 2005; Goschnick et al., 2006; Andreu 

and Yanez-Mo, 2014).  

Rod and cone photoreceptors express two tetraspanins, peripherin-2 and its non-

glycosylated homologue rom-1. Characteristically for a tetraspanin, peripherin-2 is 

composed of four transmembrane α-helical domains and both the N- and the C-terminus are 

located to the intracellular side. Peripherin-2 comprises a large extracellular (intradiscal in 

rods) D2 loop region between the third and the fourth transmembrane domain. (Connell and 

Molday, 1990; Vos et al., 2010). As depicted in Figure 1.5.1.1, peripherin-2 is located in the 

rim region of the disc membrane in rod outer segments (Molday et al., 1987; Arikawa et al., 

1992). In cone outer segments, peripherin-2 is proposed to exclusively localize to the region 

of the lamellae adjacent to the axoneme and surrounded by the plasma membrane (Arikawa 

et al., 1992; Han et al., 2012). Together with its interaction partners, peripherin-2 is essential 

for the morphogenesis and structural integrity of photoreceptor outer segments (Stuck et al., 

2016). The hitherto known outer segment binding partners of peripherin-2 are the B-subunit 

of the rod CNG channel (CNGB1a), the glutamic acid-rich protein (GARP) that is exclusively 

expressed in rods, the retinal outer segment membrane protein rom-1, melanoregulin, and 

calmodulin (Goldberg et al., 1995; Poetsch et al., 2001; Boesze-Battaglia et al., 2007; 

Edrington et al., 2007; Michalakis et al., 2011). Peripherin-2 can also form homodimers and 

homotetramers as well as higher order oligomers (Goldberg et al., 1995; Goldberg and 

Molday, 1996; Loewen and Molday, 2000). Tetramerization is mediated via disulfide bridges 

between the cysteine residues within the large D2 loop region. The domain essential for 

dimerization is so far unknown, however, it is suggested also to be localized within the D2 

loop (Loewen et al., 2001). In addition, it was demonstrated that peripherin-2 and rom-1 can 

associate to heteromeric oligomers (Goldberg et al., 1995; Goldberg and Molday, 1996).  

Mouse models showed that absence of peripherin-2 causes impairment of outer segment 

formation indicating that peripherin-2 is crucial for outer segment biogenesis (Sanyal and 

Jansen, 1981). Peripherin-2 has also been shown to induce membrane curvature, a process 

suggested to be essential for generation of discs. (Kevany et al., 2013; Khattree et al., 

2013). Another important function of peripherin-2 is its involvement in membrane fusion 
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processes (Boesze-Battaglia et al., 1997; Boesze-Battaglia et al., 1998; Stefano et al., 

2002). The disc-stabilizing function of peripherin-2 is proposed to be mediated via interaction 

with other outer segment proteins. This hypothesis is supported by studies showing that 

peripherin-2 binds to CNGB1a as well as the other two soluble isoforms, GARP1 and 

GARP2 (Poetsch et al., 2001; Ritter et al., 2011). Corroborating this idea, further work 

revealed that deletion of GARP in rods results in disorganized and disoriented discs (Zhang 

et al., 2009). Although the precise mechanisms are still elusive, peripherin-2 seems to play a 

differential role in rods and cones. Rods lacking peripherin-2 are incapable of forming outer 

segments (Sanyal and Zeilmaker, 1984). However, the relatively low number of cones in the 

murine retina hampered the investigation of cone outer segment formation in absence of 

peripherin-2. This issue was solved when crossing the peripherin-2 knockout mouse (rds-/-) 

with a cone-dominant mouse model (nrl-/-). Cones of rds-/-/nrl-/- mice displayed two important 

differences from rods: significant visual function was preserved and the cone outer segments 

still developed albeit balloon-shaped and lacking lamellae (Farjo et al., 2006). These findings 

proposed that, in contrast to rods, the outer segment and lamellae morphogenesis in cones 

does not primarily require peripherin-2, but peripherin-2 is rather needed in second place for 

rim formation. 
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Figure 1.5.1.1. Schematic topology and localization of peripherin-2 in rod and cone outer 

segments. A-B) Peripherin-2 encompasses four transmembrane domains (T1-T4). The N-, C-

terminus, and second loop region are intracellular. The first and the large third loop region are located 

on the intradiscal side in rods (A) and on the intradiscal/extracellular side in cones (B). Peripherin-2 is 

localized to the rim region of the disc membrane in rods (A) and the rim region of the lamella 

membrane adjacent to the axoneme (yellow lines) and surrounded by the plasma membrane in cones 

(B), respectively.  
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1.5.2 Mutations in the PRPH2 gene 

 

Mutations in the PRPH2 gene coding for peripherin-2 are responsible for a large variety of 

degenerative retinal disorders characterized by defects of rod or cone photoreceptors. So 

far, approximately 100 different mutations have been identified in PRPH2 (Boon et al., 

2008). The vast majority are point mutations. Many of these mutations are localized in exon 

2 which encodes for the distal half of the D2 loop domain and the proximal part of the fourth 

transmembrane domain (TM4) as depicted in Figure 1.5.2.1. Notably, some PRPH2 point 

mutations lead to adRP that primarily affects rod photoreceptors, whereas others account for 

different types of cone defects (Wells et al., 1993; Gruning et al., 1994; Boon et al., 2008). 

For example, there are two point mutations localized within the proximal part of the fourth 

transmembrane domain: the G266D mutation that is linked to adRP (Sohocki et al., 2001), 

and only two positions downstream, the V268I mutation, which is associated with adult 

vitelliform macular dystrophy in human patients (Felbor et al., 1997).  
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Figure 1.5.2.1. Exon 2-specific disease-associated point mutations in PRPH2. Left, the region of 

peripherin-2 encoded by exon 2 is marked with a dashed rectangle. Right, schematic magnification of 

the exon 2-encoded part with currently known positions of point mutations highlighted in red. 

 

1.6 Degenerative retinal dystrophies 

 

Degenerative retinal dystrophies can be subdivided into diseases that primarily lead to loss 

of rod photoreceptors designated as different forms of retinitis pigmentosa, and diseases 

that cause degeneration of cone photoreceptors, such as adult vitelliform macular dystrophy.  

 

1.6.1 Retinitis pigmentosa 

 

The prevalence of retinitis pigmentosa (RP) is worldwide 1:4,000, which makes it the most 

common form of inheritable dystrophies (Ammann et al., 1965; Boughman et al., 1980; Jay, 

1982; Puech et al., 1991; Berson et al., 1993). The most prevalent subtype of RP is rod-cone 

dystrophy that characteristically primarily leads to degeneration of rod photoreceptors. As a 

secondary effect, this also causes loss of cones and thus, a premature loss of 

photoreceptors. Primary symptoms of patients suffering from this disease are night blindness 

followed by a progressive loss of peripheral vision at daylight (referred to as tunnel vision). 

When cones start to degenerate, dysfunctions in contrast perception and color discrimination 

emerge, while visual acuity diminishes. In the final state, most patients suffer from complete 

blindness. Furthermore, RP leads to degeneration of the retinal pigment epithelium that 

subsequently causes pigment deposits in the retina (Hamel, 2006). This attribute is 

eponymous for the disease. The different hereditary forms of RP can vary from autosomal-

dominant (adRP), autosomal-recessive, X-chromosomal, to digenic (Boughman and 

Fishman, 1983; Ferrari et al., 2011). After autosomal-recessive RP, the second most 

prevalent form is adRP that covers 30-40 % of RP cases (Bunker et al., 1984; Ayuso et al., 

1995; Hartong et al., 2006). Mutations in the PRPH2 gene account for approximately 10 % of 

adRP (Ferrari et al., 2011; Manes et al., 2015). 

 

1.6.2 Adult vitelliform macular dystrophy 

 

Adult vitelliform macular dystrophy (AVMD) belongs to a heterogeneous group of macular 

dystrophies that are designated as pattern dystrophy and affect the retinal pigment 
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epithelium. This group of disorders is autosomal-dominantly inherited and the course of 

disease is very variable. Generally, the phenotype encompasses mild defects in visual acuity 

and color discrimination that can affect one or both eyes. Patients suffering from AVMD 

display cone degeneration in the area of the macula (Epstein and Rabb, 1980). Typically, the 

loss of cones is accompanied by yellow-brown, egg yolk-like (vitelliform) pigment deposits in 

the foveal or parafoveal region of the retina (Epstein and Rabb, 1980; Renner et al., 2004). 

The disease occurs only in adult individuals (Renner et al., 2004). Mutations in the PRPH2 

gene account for 18 % of AVMD (Felbor et al., 1997).   
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1.7 Aims of this study 

 

This study deals with the analysis of rod and cone opsins as hitherto unidentified interaction 

partners of peripherin-2 in rod and cone photoreceptors.  

Studies have suggested a differential role of peripherin-2 in the two photoreceptor cell types. 

Corroborating this hypothesis, mutations in the PRPH2 gene are either associated with rod 

diseases or linked to cone defects. However, the underlying mechanisms causing this 

differential function of peripherin-2 in rods and cones have not been elucidated. A possibility 

to illuminate this issue would be to analyze the interaction partners of peripherin-2 in the 

native environment. One known peripherin-2-binding protein in rods is CNGB1a, a 

component of the phototransduction cascade. However, it is conceivable that peripherin-2 

also interacts with other proteins of the phototransduction cascade such as retinal opsins, 

phosphodiesterase 6, and guanylyl cyclase E/F in the respective photoreceptor type. 

Importantly, based on the mass spectrometry analysis conducted in preliminary unpublished 

work to identify putative binding partners of CNGB1a, it was postulated that rhodopsin, the 

rod CNG channel, and peripherin-2 are part of the same complex. In this context, the 

following questions should be addressed: 

 

1) Is the protein complex comprising rhodopsin, peripherin-2, and the rod CNG channel 

present in the rod outer segment? To investigate this question, a set of different 

methodical approaches in vitro and in vivo was applied. 

 

2) Does a similar protein complex also exist in the outer segment of cone photoreceptors? 

 

3) If there is an interaction between peripherin-2 and rod/cone opsins, do some disease-

linked point mutations in the PRPH2 gene interfere with this binding? 
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2 Materials and methods 

2.1 Chemicals, solutions and buffers 

 

All used chemicals had the quality "pro analysi" or "for molecular biological use" and were 

obtained by the companies VWR, Sigma-Aldrich, Merck, Biorad or Roth if not stated 

otherwise. For all solutions, high pure and deionized water from the Milli-Q Plus System 

(Millipore) was used. All solutions and buffers used in experiments that required high purity 

were autoclaved (Sterilisator, Münchner Medizin Mechanik).  

 

2.2 Molecular biology 

2.2.1 Plasmids 

 

pcDNA3.1 

The pcDNA3.1 plasmid (Invitrogen) is a commonly used mammalian expression vector 

containing a cytomegalovirus (CMV) promoter which enables heterologous gene expression 

in mammalian cell lines, a simian virus origin of replication (SV40 ori) for replication in 

mammalian cells, a colicinogenic factor (ColE1) ori for replication in prokaryotes, a 

filamentous phage (f1) ori for recovery of single-stranded plasmids in prokaryotes, a multiple 

cloning site (MCS) for insertion of a gene or gene fragment of interest into the vector, a 

polyadenylation signal of the bovine growth hormone (pA BGH), a neomycin resistance gene 

(NeoR) under the control of the SV40 promoter for selection of stable mammalian cells, and 

an ampicillin resistance gene (AmpR) for selection of transformed bacterial cells. 

 

pAAV2.1  

The pAAV2.1 cis plasmid is used for expression of genes delivered by recombinant adeno-

associated viruses (rAAV). In this work, human rhodopsin promoter (hRHO) and murine 

short-wavelength opsin promoter (mSWS) were used for specific gene expression in mouse 

rod and cone photoreceptors, respectively. The vector further contains two inverted terminal 

repeats (ITR) encoding all cis-acting elements for efficient replication (rep) and packaging 

(cap) of rAAVs in the presence of helper plasmids. Between the two flanking ITRs, the 

packaging capacity is approximately 5.2 kilobase pairs (kb). The plasmid also contains a 

MCS for introduction of a gene or gene fragment of interest between the ITRs, a woodchuck 

hepatitis virus posttranscriptional regulatory element (WPRE) to enhance gene expression, a 
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pA BGH, and AmpR for selection of recombinant prokaryotes. The two helper plasmids used 

in combination with pAAV2.1 vectors for the generation rAAVs were pAD Helper plasmid and 

pAAV2/8-YF rep/cap plasmid which contains rep gene of serotype AAV2 and cap gene of 

serotype AAV8 for enhanced specific transduction of photoreceptors (Allocca et al., 2007; 

Vandenberghe and Auricchio, 2012). The serotypes contain mutations (YF) substituting 

tyrosine (Y) with phenylalanine (F) residues at exposed sites of the capsid surface to allow 

for a high transduction efficiency in host retinal cells (Petrs-Silva et al., 2009; Petrs-Silva et 

al., 2011). 

 

2.2.2 Polymerase chain reaction (PCR) 

 

The PCR pipetting schemes and reaction conditions for the different polymerases used in 

this study were adjusted according to the manual of the respective manufacturer and 

application. An overview of the standard PCR condition for each polymerase is shown in 

Table 2.2.2.1. All used primers were purchased by Eurofins MWG Operon. 

 

Table 2.2.2.1. Standard PCR conditions for polymerases used in this study. 

Polymerase Taq (in-lab 

production) 

Herculase II 

(Agilent) 

Kapa Hifi  

(Peqlab) 

Initial denaturation 95 °C 2 min 95 °C 2 min 95 °C 3 min 

*Denaturation 95 °C 30 sec 95 °C 20 sec 98 °C 20 sec 

*Annealing X °C 30 sec X °C 15 sec X °C 15 sec 

*Elongation 72 °C 30-60 

sec/kb 

72 °C 30 

sec/kb 

72 °C 30 

sec/kb 

Final elongation 72 °C 5 min 72 °C 3 min 72 °C 1 min/kb 

Storage 10 °C ∞ 10 °C ∞ 10 °C ∞ 

The optimal annealing temperatures (X) were applied according to the respective 

manufacturer's manual and melting temperatures of the used primers. *These steps were 

repeated in 35 cycles. 

 

2.2.3 Precipitation of DNA fragments 

 

For further applications after amplification, the PCR products were precipitated and 

reconstituted in H2O to remove PCR buffer and reaction contents. First, H2O was added to 
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the PCR product to a final volume of 100 µl. 10 µl of 3 M sodium acetate buffer pH 5.2 and 

275 µl of chilled ethanol were added before cooling the mixture at -80 °C for 10 min. The 

mixture was then centrifuged at 16.000x g, 4 °C for 15 min and the supernatant was 

subsequently removed. The DNA pellet was washed with 70 % (v/v) ethanol and was 

centrifuged at 16,000x g, 4 °C for another 5 min. The pellet was air-dried prior to 

reconstitution in a suitable amount of H2O (10-30 µl). 

 

2.2.4 Restriction analysis 

 

Restriction enzymes used in this study were purchased form the companies New England 

Biolabs (NEB) and Thermo Fisher Scientific (formerly Fermentas). The reaction conditions 

were conducted according to the respective manufacturer's protocols. The amount of DNA 

used for cloning was 3-5 µg, whereas 0.5 µg of DNA or 2 µl of minipreparation of plasmid 

DNA (see 2.2.8) were used for restriction analysis. 

 

2.2.5 Agarose gel electrophoresis and DNA fragment isolation 

 

After restriction digest, DNA fragments were mixed with 6x loading dye and loaded on 

agarose gels depending on the desired fragment size (0.7 % for fragments higher than 500 

bp and 2 % for fragments of 500 bp or smaller). Agarose gels were made by boiling the 

respective amount of agarose (peqGOLD Universal-Agarose, peqlab) in 1x TBE buffer. After 

cooling down to approximately 50 °C, peqGREEN dye (peqlab) was added to the agarose 

solution (5 µl/100 ml) before pouring it into the tray for hardening. The dye enables detection 

of DNA fragments under UV light. GeneRuler 1 kb plus DNA ladder (Thermo Fisher 

Scientific) was also loaded to determine the fragment sizes. Gels were run at 150 V in a gel 

apparatus (peqlab) until sharp bands could be cut off the gel under UV light using Geldoc 

2000 imager (BioRad). The DNA fragment within the cut gel slice was extracted by using the 

QIAquick Gel Extraction Kit (Qiagen) according to the manufactuer's protocol. The DNA 

bound to the extraction column was eluted by adding 30 µl of elution buffer (provided in the 

kit). To check for proper purification, 2 µl of the eluted DNA were loaded on an agarose gel.  

 

10x TBE  

0.5 M EDTA pH 8.0 200 ml 

boric acid 275 g 
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tris 540 g 

H2O ad 5 l 

 

1x TBE  

10x TBE 1 l 

H2O ad 10 l 

 

6x loading dye  

0.5 M EDTA pH 8.0 24 ml 

10x TBE 60 ml 

xylene cyanol 50 mg/ml 3 ml 

bromophenol blue 50 mg/ml 3 ml 

ficoll type 400 18 g 

H2O ad 100 ml 

 

2.2.6 Dephosphorylation and ligation 

 

Dephosphorylation of the vector was done to avoid re-closing before introduction of the 

insert, which mainly occurs when the used enzymes for restriction digest generate blunt 

ends or identical sticky end overhangs. The Rapid DNA Dephosphorylation Kit (Roche) was 

used for this purpose and the dephosphorylation conditions were applied according to the 

manufacturer's manual.  

Ligation was performed using T4 DNA ligase (NEB). The vector to insert ratio should be 1:3 

to 1:5. Therefore, the amount of the vector and insert DNA fragments was calculated for 

each ligation reaction. Pipetting scheme and reaction conditions were applied according to 

the manufacturer's manual. The reaction was incubated overnight at 16 °C. 

 

2.2.7 Transformation of bacterial cells 

 

Chemically treated, competent β10 Escherichia coli (E. coli) strain was used for 

transformation with either isolated DNA plasmids or ligation reactions. 100 µl aliquots of 

competent cells stored at -80 °C were thawed on ice prior to addition of 5 µl of ligation 

reaction or 10 ng of plasmid DNA. The cell suspension was then gently mixed by tapping at 

the tube wall and was incubated on ice for 10 min. A subsequent heat shock at 42 °C for 45 
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sec was performed in a heat block and cells were re-incubated on ice for 2 min. The cell 

suspension was plated on the LB(+) selection agar plate containing 100 µg/ml ampicillin 

(resistance provided by the used plasmids) and was incubated overnight at 37 °C. 

 

LB(+) medium  

peptone 10 g 

NaCl 5 g 

yeast extract 5 g 

glucose 1 

H2O ad 1 l 

adjust pH to 7.2-7.5 and autoclave 

 

LB(+) agar  

agar 15 g 

LB(+) medium ad 1 l 

ampicillin 100 mg 

 

2.2.8 Inoculation of bacterial cells and isolation of plasmid DNA 

 

Single bacterial clones were picked from the plate and were transferred into tubes with 5 ml 

LB(+) medium plus ampicillin (100 µg/ml). The suspension was incubated over night at 37 °C 

with shaking at 225 rpm. On the next day, the suspension was centrifuged at 3500 rpm and 

room temperature (RT) for 10 min and the supernatant was removed. The pellet was 

resuspended in 250 μl resuspension buffer before transferring into 2 ml Eppendorf tubes. 

After adding 250 μl lysis buffer, the cell suspension was inverted 5 times and was incubated 

for 5 min at RT. Afterwards, 250 μl neutralization buffer was added and the mixture was 

inverted 5 times before incubation for 5 min at RT. The suspension was then centrifuged at 

13,000 rpm and 4 °C for 15 min. The supernatant containing the plasmid DNA was 

transferred into a fresh 1.5 ml Eppendorf tube. To precipitate the DNA, 525 μl isopropanol 

was added to the mix. After vortexing, the mixture was centrifuged at 13,000 rpm and 4 °C 

for 15 min. Subsequently, the pellet was washed with 70 % (v/v) ethanol by centrifugation at 

13,000 rpm and 4 °C for 5 min. The supernatant was discarded and the pellet was air-dried 

before resuspension in 30 μl of H2O. 

For large scale and high purity plasmid isolation, PureLink® HiPure Plasmid Midiprep or 

Megaprep Kit (Invitrogen) was used, following the instructions from the manufacturer’s 

manual. 
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Resuspension buffer 

tris 6.06 g 

EDTA 3.72 g 

RNAse A 100 mg 

H2O ad 1 l 

adjust pH to 8.0 with 37 % HCl 

 

Lysis buffer 

NaOH 8 g 

10 % (w/v) SDS solution 100 ml 

H2O ad 1 l 

 

Neutralization buffer 

3 M potassium acetate pH 5.5 500 ml 

H2O ad 1 l 

 

2.2.9 DNA quantification and sequencing 

 

Quality and relative quantity of the isolated DNA was determined by agarose gel 

electrophoresis (see 2.2.5). In addition, the NanodropTM 2000c spectrophotometer with inbuilt 

instrument settings and software (Thermo Scientific) was used to determine the absolute 

amount of DNA via measuring its absorption at 260 nm. The 260 nm/280 nm ratio provided 

information about protein contamination and should be higher than 1.8, whereas phenol 

contamination was given by the 260 nm/230 nm ratio which should be at 2-2.3. 

All DNA sequencing services were done by Eurofins MWG Operon and the sent samples 

and corresponding primers were diluted to concentrations proposed by the company. 

 

2.2.10 Introduction of mutations into DNA constructs 

 

Mutations were introduced via site-directed mutagenesis. The PCR was done using the 

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent) according to the manufacturer's 

manual. The specific primers for this purpose were ordered from Eurofins MWG Operon. 

After the PCR, the DNA template was digested with DpnI restriction enzyme at 37 °C for 1 h. 
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The amplified plasmids carrying the mutation were purified via precipitation (see 2.2.3) and 

2-3 µl were used for transformation of competent cells (see 2.2.7). 

 

2.2.11 Cloning of peripherin-2 constructs 

 

Murine Prph2 was PCR amplified from retinal cDNA and sub-cloned into pcDNA3.1 vector. It 

was C-terminally tagged with myc-tag for co-immunoprecipitation (co-IP) experiments (see 

2.5.3) or cerulean and citrine for FRET analysis, respectively (see 2.5.11). Murine Prph2 C-

terminally fused with cerulean or citrine was also sub-cloned into pAAV2.1 vector containing 

either the human rhodopsin (hRHO) or mouse S-opsin (mSWS) promoter (Michalakis et al., 

2010; Koch et al., 2012) for rAAV production and transduction of mouse rod or cone 

photoreceptors, respectively (see chapters 2.6. and 2.7).  

 

2.3 Cell culture 

2.3.1 Cultivation of mammalian cell lines 

 

HEK293 cells were used for in vitro transfections and were cultivated in DMEM + 

GlutaMAXTM-I medium (+1 g/l glucose, +pyruvate, +10 % fetal bovine serum (FBS), +1 % 

penicillin/streptomycin (Life technologies)). For generation of rAAVs, HEK293T cell line was 

used and cultivated in DMEM + GlutaMAXTM-I medium (+4.5 g/l glucose, -pyruvate, +10 % 

fetal bovine serum (FBS), +1 % penicillin/streptomycin (Life technologies)). Cells were kept 

at 37 °C and 10 % CO2. 

 

2.3.2 Transfection 

 

HEK293 and HEK293T cells were transiently transfected using the calcium phosphate 

technique (Graham and van der Eb, 1973). For transfection of 10 cm dishes, the following 

reagents were added to a 15 ml Falcon tube: 

 

DNA 15 µg 

2.5 M calcium chloride 50 µl 

H2O ad 500 µl 
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While vortexing the mixture, 500 µl of 2x BBS solution was added dropwise, followed by 

incubation for 5 min at RT to allow homogenous formation of DNA complexes. The 

transfection mixture was then added dropwise to the cells (40-70 % confluence). Transfected 

cells were incubated at 37 °C and 5 % CO2 for 8-16 h before replacing the medium with 

fresh medium and transferring the cells back to 37 °C and 10 % CO2. Cells were harvested 

48 h post-transfection. The amounts of the reagents given above were scaled up to the 

following, if 15 cm dishes were used: 

 

DNA 30 µg 

2.5 M calcium chloride 100 µl 

H2O ad 1 ml 

2x BBS 1 ml 

 

2x BBS 

BES 10.65 g 

NaCl 16.35 g 

Na2HPO4 x 2H2O 210 mg 

H2O ad 1 l 

adjust pH to 6.95 with NaOH, 

sterile filtrate 

 

2.4 Animals 

 

All mice used in this study possessed the C57BL/6 genetic background. All procedures 

involving animals were performed with permission of the local authority (Regierung von 

Oberbayern). All mice had ad libitum access to food (Ssniff; regular feed: R/M-H, breeding 

feed: M-Z Extrudat) and water. Mice were maintained on a 12 h light/dark cycle. 

 

2.5 Protein biochemistry 

2.5.1 Isolation and quantification of proteins 

 

Isolation of proteins from transfected mammalian cells was performed in the following 

procedure: 
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Cells were harvested 48 h post-transfection by removing the medium and transferring the 

cells to a 2 ml Eppendorf tube. The suspension was centrifuged at 1000x g and 4 °C for 10 

min. Afterwards, the supernatant was removed and the cell pellet was resuspended in an 

appropriate volume of lysis buffer (300 µl for cells cultivated in 10 cm dishes, 600 µl for cells 

cultivated in 15 cm dishes). Cell suspensions were tumbled at 4 °C for 30 min before 

centrifugation at 4 °C and maximum rpm for 10 min. The supernatant was collected into a 

fresh 1.5 ml Eppendorf tube and could be stored at -20 °C until further use. 

Bradford assay (Bradford, 1976) was used to determine protein concentration of the isolated 

proteins by transferring 5 µl of the protein lysate into 1 ml poly(methyl methacrylate) (PMMA) 

cuvettes and addition of 95 µl 0.15 M NaCl solution (5 µl of lysis buffer served as blank 

control). 1 ml of coomassie blue solution was added and incubated for 2 min at RT. Protein 

concentration was measured using the BioPhotometer (Eppendorf). 

 

Lysis buffer  

Triton X-100 2.5 ml 

5 M NaCl 15 ml 

2.5 M CaCl2 400 µl 

H2O ad 500 ml 

 

Coomassie blue solution 

coomassie brilliant blue G250 50 mg 

95 % (v/v) ethanol 25 ml 

85 % (v/v) phosphoric acid 50 ml 

 

2.5.2 Membrane preparations 

 

Membrane Preparations were performed for enrichment of membrane proteins from 

transfected mammalian cells or transduced murine retina. Therefore, 1 ml of 1x membrane 

preparation buffer with complete EDTA-free protease inhibitor cocktail (Roche) was added to 

the cell pellet or the retina tissue prior to the breakup using the Potter S homogenizer (B. 

Braun). The homogenized cells were centrifuged at 5,000x g, 4 °C for 10 min and the 

supernatant was collected in to a 6.5 ml clean thick wall polycarbonate tube (16 x 64 mm, 

Beckman Coulter). 1x membrane preparation buffer was added to a total volume of 4 ml 

before ultracentrifugation was performed at 30,000 rpm and 4 °C for 45 min in a Sorvall 

Discovery90 ultra centrifuge with a 45Ti rotor (Beckman). The pellet was then resuspended 
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in 50-100 µl of 1x membrane preparation buffer depending on the pellet size and 5 µl were 

used for protein quantification (see 2.5.1). 

 

3x membrane preparation buffer 

MOPS 3.15 g 

sucrose 77 g 

0.5 M EDTA (pH 7.4) 6 ml 

H2O ad 250 ml 

 

2.5.3 Co-immunoprecipitation 

 

Co-IP experiments were performed to analyze protein-protein interactions. For this, 5 µg of 

antibody was added to 30 µl of protein G dynabeads (novex by Life Technologies) per 

sample and PBS was added to a total volume of 500 µl. The solution was tumbled at 4 °C for 

30 min. Optionally, antibodies could be cross-linked to the beads by adding BS3 (Thermo 

Scientific) to a final concentration of 5 mM and tumbling for another 30 min at RT. The cross-

linker was inactivated by adding 25 µl of 1 M tris-HCl buffer pH 7.5 to a final concentration of 

50 mM and tumbling for 30 min at RT. The suspension was then washed twice with 200 µl 

PBS by shortly spinning and retaining the beads with a magnetic separator. Afterwards, the 

beads were resuspended in 200 µl PBS and the suspension was split into equal volumes to 

all samples. The samples were tumbled at 4 ˚C for 1-2 h before being washed five times with 

200 µl PBS. In the final step, the bound proteins were separated from the bead-antibody 

complexes by resuspending in 10 µl PBS, 6x Lämmli buffer with dithiothreitol (DTT) and 

heating at 75 °C for 10 min before retaining the beads with the magnetic separator. The 

sample solutions were then ready to be analyzed via SDS-PAGE (see 2.5.4). 

An additional de-glycosylation step was done for glycoproteins as they often appear as a 

smear in the Western blot analysis (see 2.5.5). To obtain sharp protein bands, the samples 

were resuspended in 10 µl of PBS without addition of 6x Lämmli buffer in the final step. 

Denaturation and deglycosylation with PNGase F (NEB) were performed as described in the 

manufacturer’s manual. 

 

6x Lämmli 

tris-HCl pH 6.8 7 ml 

glycerol 3 ml 

SDS 1 g 
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bromophenol blue 1.2 mg 

H2O ad 10 ml 

 

6x Lämmli + DTT 

6x Lämmli 10 ml 

DTT 930 mg 

 

2.5.4 SDS-polyacrylamide gel electrophoresis 

 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate isolated 

proteins according to their molecular weight. Therefore, a gradient polyacrylamide gel 

consisting of a stacking gel and a 6-12 % separation gel was prepared using the Mini 

Protean 3 gel system (BioRad). PageRuler Prestained Protein Ladder (Thermo Scientific) 

was loaded to determine the protein sizes. Electrophoresis was run at 140 V and until the 

protein ladder bands were clearly separated. 

 

10x electrophoresis buffer 

tris 30 g 

glycin 144 g 

SDS 10 g 

H2O ad 1 l 

 

4x tris-HCl/SDS pH 6.8 buffer 

tris-HCl 0.5 M 

SDS 0.4 % 

adjust pH to 6.8  

 

4x tris-HCl/SDS pH 8.8 buffer 

tris-HCl 1.5 M 

SDS 0.4 % 

adjust pH to 8.8  

 

Stacking gel (for 2 gels) 

30 % acrylamide/bis-acrylamide 1 ml 

4x tris-HCl/SDS pH 6.8 buffer 1.9 ml 
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H2O 4.6 ml 

APS 37.5 µl 

TEMED 7.5 µl 

 

gradient separation gel (for 2 gels) 

 6 % 12 % 

30 % acrylamide/bis-acrylamide 2.3 ml 4.6 ml 

4x tris-HCl/SDS pH 8.8 buffer 2.8 ml 2.8 ml 

H2O 6.2 ml 3.9 ml 

APS 22.5 µl 22.5 µl 

TEMED 7.5 µl 7.5 µl 

use a 10 ml pipette to aspire 4.25 ml 6 % gel solution 

followed by 4.25 ml 12 % gel solution. Gently mix by 

aspiring one air bubble before pouring the gradient gel 

solution into the gel system. 

 

2.5.5 Western blotting and immunodetection 

 

Western blotting procedure was performed at 100 V for 90 min using the Mini Trans-Blot Cell 

(BioRad), polyvinylidene fluoride (PVDF) membrane and transfer buffer. The setup of the 

blotting device was done according to the manufacturer's manual. After protein transfer, the 

membrane was incubated in a blocking solution at RT for 1 h before incubation in primary 

antibody solution at RT for another 1 h or at 4 °C over night, depending on the sensitivity of 

the primary antibody. The membrane was then washed thrice for five min with TBST by 

slight agitation prior to incubation in secondary antibody solution at RT for 1 h. After 

incubation, the membrane was washed thrice for five min with TBST and once in H2O. For 

chemiluminescence detection, the membrane was incubated with Western Blotting Luminol 

Reagent (Santa Cruz) prepared after manufacturer’s protocol. The signal of the protein 

bands was detected using the Chemidoc MP Imaging system (BioRad) and ImageLab 

software.  

 

Transfer buffer 

tris 3 g 

glycin 14.4 g 

H2O ad 1 l 
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10x TBS 

tris 12.1 g 

NaCl 80.2 g 

H2O ad 1 l 

 

TBST 

10x TBS 100 ml 

Tween 20 1 ml 

H2O ad 1 l 

 

Blocking solution 

TBST 15 ml 

non-fat dried milk powder 0.75 g 

H2O ad 1 l 

 

primary/secondary antibody solution 

TBST 5 ml 

non-fat dried milk powder 0.05 g 

antibody stock solution X 

X is the used dilution according to Table 

2.5.5.1. 

 

Table 2.5.5.1. Antibodies and respective dilutions used for Western blotting. 

Antibody  Source  Dilution  

rb anti-CNGB1a in-lab production 1:5000 

ms anti-GFP JL-8 Clontech 1:2000 

ms anti-myc 9B11 Cell Signaling 1:2000 

ms anti-peripherin-2 2B7 Gift from Dr. Muna Naash, Department of 

Cell Biology, University of Oklahoma 

Health Sciences Center 

1:2000 

ms anti-rhodopsin 1D4 Thermo Scientific 1:2000 

gt anti-mouse HRP Santa Cruz 1:2000 

gt anti-rabbit HRP Santa Cruz 1:2000 
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2.6 Production and purification of rAAVs 

2.6.1 Transfection and harvest 

 

HEK293T cell line was used for transfection of the pAAV2.1 vector plus the helper plasmids 

pAD Helper and pAAV 2/8 (YF) via calcium phosphate transfection method as described in 

chapter 2.3.2. In addition to the regular components of the transfection reagent, dextran 500 

and polybrene were added to achieve higher transfection efficiencies (Wu and Lu, 2007). 24 

h before transfection, confluent 15 cm dishes of HEK293T cells were split 1:6 into 15x 15 cm 

dishes for each construct. The following two equations were used to calculate the necessary 

amount of pAD Helper and pAAV2/8 (YF) for the transfection solution: 

 

*amount of pAD Helper 
molXg

molgµg

vectorpAAVtransgeneMM

pADHelperMMµg

/

/9509270

)_1.2_(

)(270 



  

 

**amount of AAV 2/8 (YF) 
molXg

molgµg

vectorpAAVtransgeneMM

YFpAAVMMµg

/

/4523270

)_1.2_(

))(8/2(270 



  

 

MM = molar mass of double stranded plasmid 

 

Transfection solution 

pAAV2.1 vector 270 µg 

pAD Helper * µg 

pAAV 2/8 (YF) ** µg 

2.5 M CaCl2 1.75 ml 

8 mg/ml polybrene 17.5 µl 

10 mg/ml dextran 1.75 ml 

H2O ad 17.5 ml 

 

 

The transfection solution was vortexed while adding 17.5 ml 2x BBS dropwise before adding 

to all 15 dishes with each 70-80 % cell confluence. Medium replacement was done 24 h 

post-transfection. After another 24 h, cells where harvested by scraping them with a cell 

scraper from each 15 cm dish and collecting cell suspensions from all dishes in a 500 ml 

centrifuge tube. The cell suspension was centrifuged at 2000x g and 4 °C for 15 min (4000 

rpm in a J2-MC Beckman centrifuge using a JA-10 rotor). The medium was decanted from 
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the cell pellet before resuspending in 7.5 ml lysis buffer and subsequent transferring into a 

50 ml polystyrene tube.  

 

Lysis buffer for AAVs 

NaCl 150 mM 

tris-HCl pH 8.5 50 mM 

sterile filtrate  

 

2.6.2 Purification of rAAVs via iodixanol gradient centrifugation 

 

The cell suspension was shock-freezed in liquid nitrogen and thawed at 37 °C in a water 

bath for three times. Benzonase was added to the thawed cell suspension to a final 

concentration of 50 U/ml and the suspension was incubated at 37 °C for 30 min. The cells 

were pelleted via centrifugation at 2000x g and 4 °C for 25 min and the virus-containing 

supernatant was transferred into a Beckman Quick-Seal polypropylene tube (Beckman). The 

virus-containing phase was underlain with 7 ml 15 % iodixanol, followed by 5 ml 25 %, 5 ml 

40 %, and at last by 6 ml 60 % iodixanol. Using a sterile, long glass pipette and a Gilson 

MINIPULS3 pump the iodixanol underlayers were made without mixing of the layers. The 

polypropylene tubes were balanced with PBS-MK before sealing them with the Beckman 

Tube Topper. Gradient centrifugation was carried out at 361,000x g and 18 °C for 1 h 45 min 

(70,000 rpm in an Optima LE-80K Beckman ultracentrifuge using a 70 Ti rotor). In the 

following step, the tube was pierced multiple times at the top near the seal for pressurization. 

To collect the 40 % phase containing the virus, a 21-gauge needle with a 5 ml syringe was 

used to pierce the tube through the side at the lower end of the 40-60 % interface. 

Approximately 5 ml of the 40 % phase were collected until the interface was close below the 

25 % phase.  

 

Tween/PBS-MK 

10x PBS 50 ml 

1 M MgCl2 500 µl 

2.5 M KCl 500 µl 

Tween 20 0.014 % (v/v) 

H2O ad 500 ml 

sterile filtrate  
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15 % iodixanol 

10x PBS 5 ml 

1 M MgCl2 50 µl 

2.5 M KCl 50 µl 

5 M NaCl 10 ml 

Optiprep 12.5 ml 

1 %(v/v) phenol red 37.5 µl 

H2O ad 50 ml 

sterile filtrate  

 

25 % iodixanol 

10x PBS 5 ml 

1 M MgCl2 50 µl 

2.5 M KCl 50 µl 

Optiprep 20.9 ml 

1 %(v/v) phenol red 50 µl 

H2O ad 50 ml 

sterile filtrate  

 

40 % iodixanol 

10x PBS 5 ml 

1 M MgCl2 50 µl 

2.5 M KCl 50 µl 

5 M NaCl 10 ml 

Optiprep 33.3 ml 

H2O ad 50 ml 

sterile filtrate  

 

60 % iodixanol 

1 M MgCl2 50 µl 

2.5 M KCl 50 µl 

Optiprep 50 ml 

1 %(v/v) phenol red 37.5 µl 

sterile filtrate  
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2.6.3 Purification of rAAVs via anion exchange chromatography 

 

For further virus purification, the ÄKTAprime plus chromatography system (GE Healthcare 

Life Sciences), HiTrap Q FF sepharose column (GE Healthcare Life Sciences), and 

PrimeView software (GE Healthcare Life Sciences) were used according to manufacturer's 

manual. The column was equilibrated with 25 ml of buffer A at 10 ml/min flow rate. The 

following manual run was selected with 1.0 ml/min flow rate and 1 ml fraction size. The virus 

phase was diluted 1:1 with buffer A prior to injection with a 10 ml syringe to the superloop. 

Injection of the virus dilution from the superloop into the system was started and 1 ml 

fractions were collected in 1.5 ml Eppendorf tubes. UV- and conductance curves were 

observed via the PrimeView software. When the conductance curve returned to base value, 

a switch to 100 % buffer B was performed at 10 ml/min flow rate and 0 ml fraction size to 

purge the sepharose column from remaining virus. It was then switched to sterile H2O to 

wash remaining salt from the column and system at 10 ml/min flow rate. When the 

conductance curve reached zero, washing was continued for 20 min. All 1 ml fractions within 

the plateau phase of the conductance curve were combined and stored at -20 °C until virus 

concentration as described in chapter 2.6.4.  

 

Buffer A 

tris 20 mM 

NaCl 15 mM 

H2O ad 1 l 

adjust pH to 8.5 and sterile filtrate 

 

Buffer B 

NaCl 2.5 M 

H2O ad 1 l 

adjust pH to 8.5 and sterile filtrate 

 

2.6.4 Concentration of rAAVs 

4 ml of the purified virus fraction was applied to an Amicon centrifugal filter unit (Millipore) 

and centrifugation was done at 2000x g and 20 °C for 20 min (4000 rpm in a Beckman 

centrifuge using a JA-10 rotor). The flow-through was discarded and the residual virus 

fraction was applied to the Amicon filter. Centrifugation was continued until 500 µl remained 

in the filter unit. Washing was done with 1 ml 0.014 % Tween/PBS-MK by pipetting up and 
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down five times. Centrifugation in 10 min steps was continued until 100 µl of concentrated 

virus suspension remained in the filter unit. It was then split into 10 µl aliquots and stored in 

1.5 ml tubes with screw cap. Virus suspensions were stored at -80 °C until determination of 

virus titer and subretinal injection. 

 

2.6.5 rAAV titer determination via quantitative real-time PCR 

 

To determine the genomic titer of the virus preparation by quantitative real-time PCR, a 

standard curve was generated using a serial dilution of the WPRE fragment which was 

amplified from the pAAV2.1 vector with the following primers: 

 

WPREq_F: AGTTCCGCCGTGGCAATAGG 

WPREq_R: CAAGGAGGAGAAAATGAAAGCC 

 

After amplification, the fragment was purified as described in chapter 2.2.5. Its concentration 

was determined as described in chapter 2.2.9. The concentration of the standard for 1010 

genomic copies per 5 µl was calculated with the following equation: 

 

c(pg/µl)=
µlmol

sizefragmentWPREmolpg

5/10022.6

__/1066010
23

1210




 

 

c = concentration of the standard for 1010 copies per 5 µl 

660 x 1012 pg/mol = mean molar mass of a base pair (deoxyribosyladenosine with 

deoxyribosylthymidine or deoxyribosylcytidine with deoxyribosylguanosine) 

6.022 x 1023 /mol = Avogadro constant 

 

Afterwards, a tenfold serial dilution was generated in which the first dilution contained 1x 

1010 copies/5 µl and the last dilution contained 1x 10 copies/5 µl. 5 µl of H2O was used for 

blank. Each dilution was amplified in two samples by qPCR using the Light Cycler LC480 

(Roche). The SYBR green I (Roche) fluorescence intensity was analyzed for each cycle. The 

LightCycler software LC-Run (version 5.32, Roche) was used to generate a fluorescence 

curve and subsequently to calculate the crossing points (Cp) value which points out the cycle 

in which the fluorescence rises significantly above the background signal. The standard 

curve could then be formed from the logarithmized dilutions plotted against the Cp value. 

The purified and concentrated rAAV preparations were diluted 1:500 in H2O before two of 

each sample were amplified via qPCR. Fluorescence was measured as described above 
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and a fluorescence curve was generated. The software then calculated the genomic titers by 

correlating the Cp values of the rAAV samples to the standard curve. 

  

Pipetting scheme for qPCR 

WPRE_F (10 µM) 1 µl 

WPRE_R (10 µM) 1 µl 

SYBR green I master mix 10 µl 

template 5 µl 

H2O ad 20 µl 

 

qPCR conditions 

Initial denaturation 95 °C 10 min 

*Denaturation 95 °C 10 sec 

*Annealing 60 °C 5 sec 

*Elongation 72 °C 20 sec 

Final elongation 72 °C 5 min 

*These steps were repeated in 40 cycles. 

 

2.7 Subretinal injection 

 

Subretinal injections were performed to transduce murine rod or cone photoreceptors with 

the rAAV transgene. First, a NanoFil 34-gauge beveled needle (World Precision 

Instruments) was sterilized and the 10 µl glass syringe was preloaded with the virus 

preparation without any bubble formation. The 2 weeks old mouse (P14) was anaesthetized 

by intraperitoneal injection of xylazine (20 mg/kg) and ketamine (40 mg/kg). 5 % 

dexpanthenol eye salve was applied to the uninjected eye and the mouse was placed on a 

37 ˚C heat plate. The eye chosen for injection was dilated with 1 % atropine and 0.5 % 

tropicamide eye drops for 5 min. Using a stereomicroscope the eye fundus was focused until 

blood vessels were clearly visible. The outer layers of the eye were penetrated by the needle 

at a 60 ° angle until it was visible beneath the retina. After slow injection of 1 µl of virus 

suspension containing titer-matched rAAV copies (109), the formation of a clear subretinal 

bleb confirmed the correct application into the subretinal space. The needle was carefully 

withdrawn and the injected eye was treated with gentamicin 5 mg/g and dexamethasone 0.3 

mg/g eye salve. The anaesthetized mouse was placed under a heat lamp and was kept 

under supervision until it awakened from the narcosis. Minimum 10 days were required for 

sufficient protein expression in the retina. Three weeks post injection, all injected retinas 
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were analyzed for the fluorescence using scanning laser ophthalmoscopy (Spectralis, 

Heidelberg Eye Instruments). 

 

2.8 Retina preparation and immunohistochemistry 

 

The subretinally injected mouse was euthanized and the eyeball was collected. Under a 

stereomicroscope (Stemi 2000, Zeiss), the eyeball was perforated with a 0.8 mm needle at 

the ora serrata and subsequently pre-fixed for 5 min in 4 % paraformaldehyde (PFA) on ice. 

The eyeball was then cut with a micro-scissor (Mini Vanas, 3 mm, Frohnhäuser) along the 

ora serrata into two parts and the half containing cornea, lens and vitreous body was 

removed. The retina-containing cup was incubated in 4 % PFA for 45 min followed by 3 

washing steps by incubation for 5 min in 0.1 M PB. The eye cup was then incubated in 30 % 

sucrose, under slight agitation overnight at 4 ˚C. The eye cup was embedded using Tissue 

Freezing Medium (Electron Microscopy Sciences) which was then frozen on dry ice.  A 

cryostat (Leica CM3050 S, Leica) was used to make transversal sections from the 

embedded tissue with a section size of 10 µm. The retinal cryosections were mounted 

carefully onto glass slides and were stored at -80 ˚C until further use. 

For Immunohistochemistry, glass slides with retinal cryosections were surrounded by a 

hydrophobic barrier using PAP pen Liquid blocker (Science Services). Each was re-hydrated 

with 0.1 M PB for 5 min followed by fixing in 4 % PFA in 0.1 M PB for 10 min. The 

cryosections were then washed thrice with 0.1 M PB for 5 min. Subsequently, incubation in 

primary antibody diluted in 0.1 M PB with 5 % ChemiBlocker (Millipore) and 0.3 % Triton X-

100 was performed overnight at 4 °C. Afterwards, retinal cryosections were washed thrice 

with 0.1 M PB for 5 min followed by incubation in secondary antibody diluted in 0.1 M PB  

with 3 % ChemiBlocker for 1.5 h at RT. Afterwards, the cryosections were washed once with 

0.1 M PB for 5 min prior to nuclear staining with Hoechst 33342 solution (5 µg/µl) for 5 min. 

After the final washing with 0.1 M PB for 5 min,  one drop of Fluoromount-G™ Slide 

Mounting Medium (Thermo Scientific) was added on top of each cryosection before 

mounting a cover slip on the glass slide. Dried slides were stored at 4 ˚C in the dark until 

further analysis. 

 

0.1 M PB 

Na2HPO4 x 2H2O 28.48 g 

NaH2PO4 x H2O 5.52 g 

H2O ad 2 l 
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adjust pH to 7.4  

 

4 % PFA 

PFA 6 g 

0.1 M PB ad 150 ml 

dissolve at 60 °C, sterile filtrate, store at -20 °C 

 

Table 2.8.1. List of primary and secondary antibodies used for immunohisto-

chemistry. 

Antibody  Source  Dilution  

ms anti-rhodopsin Pierce 1:1000 

rb anti-CNGB1a in-lab production 1:5000 

rb anti-M-opsin Millipore 1:400 

rb anti-S-opsin Millipore 1:300 

gt Cy-3 anti-mouse Jackson Laboratories 1:400 

dk Cy-3 anti-rabbit Jackson Laboratories 1:400 

 

2.9 Confocal microscopy 

 

The Leica TCS SP8 confocal microscope (Leica) equipped with 4 solid state lasers (448 nm, 

488 nm, 514 nm, 552 nm) was used for in vitro imaging of transfected HEK293 cells as well 

as for immunohistochemically stained retinal cryosections. The LAS-AF software modules 

(Leica) were used for capturing and processing the images. The Zeiss LSM 510 Meta 

(Zeiss) confocal microscope was especially used for immunohistochemically stained retinal 

cryosections to additionally visualize nuclear staining. It was equipped with 4 lasers (UV (251 

nm), Argon2 (488 nm), HeNe/1 (543 nm), HeNe/2 (633 nm)). The images were captured and 

processed with the Zeiss LSM software. All images made with both microscopes consisted 

of an overlay of 3 scans (Z-stack). 

 

Table 2.9.1. Excitation and emission maxima of the used fluorescent proteins and 

dyes provided by Thermo Fisher Scientific. 

Visual color range Fluorescent 

protein/dye 

Excitation 

(nm) 

Emission 

(nm) 

yellow citrine 516 529 

cyan cerulean 433 475 



Materials and methods    

 36 

red cy3 550 570 

ultraviolet  Hoechst 

33342 

460 490 

Source: https://www.thermofisher.com/de/de/home/life-science/cell-analysis/ 

labeling-chemistry/fluorescence-spectraviewer.html 

 

2.10 Isolation of rod and cone photoreceptor outer segments 

 

An in-house developed quick protocol was used for isolation of transduced murine rod and 

cone photoreceptor outer segments as depicted in Figure 2.10.1. For this, mice were 

euthanized and the eyeball was proptosed by placing a Winkler forceps around the optic 

nerve and closing it behind its exit from the eye. The globe was transected along the equator 

using a sharp razor blade or scalpel and the vitreous body was removed by carefully pushing 

it out of the incision with a thin needle. The Winkler forceps was then gradually pressed 

upwards to sever the attachment of the optic nerve to the retina. The upward movement was 

continued until the retina lay free on the forceps. Afterwards, the retina was transferred into a 

petri dish filled with PBS and remaining pigment epithelium and ciliary body were removed 

using a stereomicroscope (Stemi 2000, Zeiss) and two fine forceps. The retina was placed 

into a 1.5 ml Eppendorf tube with 50-100 µl PBS before vortexing for 15-30 sec and 

subsequent centrifugation at 500x g for 30 sec. The supernatant containing the rod and cone 

outer segments could be analyzed under the fluorescence microscope by adding 5 µl on a 

glass slide with a cover slip. If the amount of transduced outer segments was sufficient, the 

supernatant was used for FRET measurements (see 2.11). 
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Figure 2.10.1. Schematic overview of the quick protocol for isolation of photoreceptor outer 

segments. OS, outer segments. 

 

2.11 Fluorescence resonance energy transfer (FRET) 

 

FRET analysis enables detection of protein-protein interactions and investigation of 

interaction dynamics. For this purpose, the putative interaction partners need to be fused to 

fluorophores with one being coupled to the donor-fluorophore and the other coupled to the 

acceptor-fluorophore with an excitation spectrum that should overlap with the emission 

spectrum of the donor-fluorophore (Figure 2.11.1). If the two proteins fulfill this requirement 

and if there is an interaction, FRET occurs via donor excitation and subsequent radiation-

less energy transfer to the acceptor. As a requirement, the interaction partners need to be 

ideally within the Förster distance in which the transfer efficiency is at 50 %. The Förster 

distance is averagely 5 nm for most of the fluorophore pairs. To obtain comparable data, 

donor and acceptor emission intensities are measured to calculate the intensity ratios.  

 

 
Figure 2.11.1. Scheme of FRET principle. Protein A is fused to cerulean (donor fluorophore) and 

protein B is fused to citrine (acceptor fluorophore). The interaction between A and B and excitation of 

cerulean at 436 nm lead to radiation-free transfer of energy to citrine, which in turn emits fluorescence 

at 542 nm. 

 

For FRET measurements, HEK293 cells were grown in µ-dishes for FRET (35 mm, low, 

ibidi) and were transiently transfected using the calcium phosphate method (see 2.3.2). After 

24-48 h, the cells were washed and maintained in 37 °C pre-warmed FRET bath solution. In 

case of isolated rod and cone outer segments (see 2.10), the outer segment suspension was 
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transferred to a µ-dish containing the pre-warmed FRET bath solution and was incubated at 

RT for 15-20 min to let the outer segments attach to the dish surface. Cells or outer 

segments were imaged using a Leica DMI6000B inverted fluorescent microscope with a 40x 

oil objective. Fluorescence intensity was detected by a photometric system (FEI Company) 

consisting of a photodiode detector head and a control unit for signal integration. The 

excitation source was a Polychrome V monochromator with a 150 W xenon high stability 

lamp which allowed for intensity and bandwidth control. The microscope was further 

equipped with a motorized filter wheel enabling cube switches within 300 msec as well as a 

donor filter cube (CFP excitation filter, T455LP dichroic mirror, and CFP emission filter), an 

acceptor filter cube (YFP excitation filter, T515LP dichroic mirror, and YFP emission filter), 

and a FRET filter cube (CFP excitation filter, T455LP dichroic mirror, and YFP emission 

filter). The excitation source and excitation parameters (e.g. wavelength, bandwidth, 

intensity) were controlled by the PolyCon 3.2 and the AxoScope 10.3 softwares and the filter 

switch was done manually. The fluorescence intensity signals were digitized via an analog 

digitizer (MiniDigi 2b) and were acquired with clampfit 10.3, part of pClamp 10.3 software. 

The image-plane pinhole was set to an appropriate size for capturing one single cell or outer 

segment which was placed in the center of the axial beam path for measurement. 

Fluorescence intensities of at least 10-15 individual cells or outer segments were measured 

with each cube (CFP, FRET, YFP). This was done for cells transfected/outer segments 

transduced with donor and acceptor fusion proteins (FRET sample) as well as for cells 

transfected/outer segments transduced with either donor or acceptor only which was 

necessary for later correction of donor bleed through, acceptor cross excitation, and donor 

cross talk. In addition, at least 5 cells/outer segments were analyzed which do not express 

any fluorescence protein to subtract auto-fluorescence from the intensities. After transfer of 

the data to MathLab and Microsoft Excel softwares, FRET ratios (FR) were calculated 

according to the three-cube-FRET equation:  

 

FR =
)( ,2,1

,1,

DACFPDDAYFPA

DACFPDDAFRET

A

DA

SRSR

SRS

F

F




  

 

FDA =total citrine emission 

FA = citrine emission corrected by acceptor cross excitation and donor cross talk 

SFRET = FRET filter 

SCFP = cerulean filter 

SYFP =citrine filter 

D = cell expressing only donor for calibration 
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A = cell expressing only acceptor for calibration 

DA = cell expressing donor and acceptor for FRET 

RD1 = SFRET, D / SCFP, D (absolute term for correction of donor bleed through) 

RA1 = SFRET, A / SYFP, A (absolute term for correction of acceptor cross excitation) 

RD2 = SYFP, D / SCFP, D (absolute term for correction of donor cross talk)  

 

The overall FRET ratio is the mean value of FRs calculated with the equation shown above. 

For all measurements, cerulean (FRET-optimized CFP derivative) or citrine (FRET-optimized 

YFP derivative) were N- or C-terminally fused to the proteins of interest (Griesbeck et al., 

2001; Zacharias et al., 2002; Rizzo et al., 2004). 

 

FRET bath solution 

NaCl 140 mM 

KCl 5 mM 

MgCl2 1 mM 

CaCl2 2 mM 

glucose 10 mM 

Na-HEPES 10 mM 

H2O ad 50 ml 

adjust pH to 7.4  

 

2.12 Statistics 

 

For the results in section 3.1, all values were calculated as mean ± standard error of the 

mean (SEM) and n is the number of animals or trials. For comparison between two groups, 

unpaired Student's t-test was used. Statistical significance is given as follows: *, p < 0.05; **, 

p < 0.01; ***, p < 0.001. 

Statistical analyses in chapter 3.2 were conducted using one-way ANOVA followed by 

Tukey's multiple comparison test to compare FRET ratios (FRs) between wild-type and 

mutant peripherin-2 with S-opsin and M-opsin. To compare between wild-type and mutant 

peripherin-2 with rod opsin, unpaired two-tailed t-test was used. All values were calculated 

as mean ± standard error of the mean (SEM). *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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3 Results 

3.1 Analysis of the peripherin-2 and rhodopsin interaction in outer segments 

of rod photoreceptors 

 

In preliminary work, to identify novel CNG channel-interacting proteins, immunoprecipitation 

from murine WT retinal lysates using a CNG channel B-subunit (CNGB1a)-specific antibody 

was performed in combination with a subsequent quantitative LC-MS/MS mass spectrometry 

analysis. Lysates of age-matched CNGB1-deficient mice served as negative control. Among 

the list of outer segment-specific putative CNGB1a-interacting proteins, rhodopsin and 

peripherin-2 were identified (see list in chapter 7.2). This finding implies that in rod 

photoreceptors, rhodopsin, the rod CNG channel subunit CNGB1a, and peripherin-2 

assemble to one complex. To investigate this hypothesis in detail, in vitro and in vivo protein 

biochemical, imaging, and FRET experiments were conducted. 

 

3.1.1 Confirmation of the CNGB1a-interacting proteins in the mouse retina 

 

 

 
Figure 3.1.1.1. CNGB1a, peripherin-2, and rhodopsin form a complex in the retina. A) Retinal 

lysates of wild-type (WT) mice were immunoprecipitated (IP) with an anti-rhodopsin antibody (α-Rho) 

or a non-specific control antibody (α-IgG). The samples were analyzed in immunoblots (IB) using α-

Rho and antibodies directed against CNGB1a (α-B1a) and peripherin-2 (α-Prph2). B) Left, retinal 

lysates of WT and CNGB1 knockout mice (B1-/-) were immunoprecipitated with α-B1a and probed 
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with α-Rho, α-B1a, and α-Prph2. Right, loading control which contains 10 % of the retinal lysate used 

for the IP in the left panel. 

 

Reciprocal co-immunoprecipitations (co-IP) from retinal lysates using either an anti-

rhodopsin antibody (Figure 3.1.1.1A) or an anti-CNGB1a antibody (Figure 3.1.1.1B) revealed 

that rhodopsin, peripherin-2, and CNGB1a are present in the same channel complex. 

Importantly, no specific bands were observed when performing the co-IPs with retinal lysates 

from CNGB1 knockout mice (Figure 3.1.1.1B, lane 2) or when a control IgG was used 

instead of the anti-CNGB1a antibody (Figure 3.1.1.1A, lane 2). In addition to monomeric 

rhodopsin, the anti-rhodopsin antibody detected bands corresponding to rhodopsin 

oligomers (i.e. dimers, trimers, and tetramers) pointing to a tight interaction between 

rhodopsin molecules, which persisted under SDS-PAGE conditions. 

 

3.1.2 Analysis of the rod opsin/peripherin-2/CNGB1a complex in HEK293 

cells 

 

In previous studies, it was shown that peripherin-2 binds to the N-terminal GARP domain of 

CNGB1a (Poetsch et al., 2001; Ritter et al., 2011). However, an interaction between 

peripherin-2 and rhodopsin or between rhodopsin and CNGB1a has not been reported so 

far. To address this issue, I performed co-IPs in HEK293 cells expressing different 

combinations of the chromophore-free rod apo-opsin (herein referred to as rod opsin), 

peripherin-2, and the rod CNG channel subunits (Figure 3.1.2.1A, B). 

 

 
Figure 3.1.2.1. Peripherin-2 binds to both, rod opsin and CNGB1a. A) Lysates from HEK293 cells 

were co-transfected with rod opsin (rOps), CNGB1a (B1a), and GFP-tagged CNGA1 (A1_GFP) as 
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indicated, prior to co-immunoprecipitation (IP) with α-Rho. The immunoblot (IB) was probed with α-

Rho, α-B1a, and an antibody directed against GFP (α-GFP). The input contains 10 % of the cell lysate 

used for the IP. B) Lysates from HEK293 cells were co-transfected with rOps, B1a, and myc-tagged 

peripherin-2 (Prph2_myc) as indicated, prior to IP with α-Rho. The IB was analyzed with an antibody 

recognizing myc-tag (α-myc), α-Rho, and α-B1a. The input contains 10 % of the cell lysate used for 

the IP. Single transfection of Prph2_myc served as a negative control for non-specific binding to the 

beads used for the IP (third lane from the right). 

 

In the absence of peripherin-2, rod opsin did not assemble with CNGB1a nor did it interact 

with this subunit when both subunits of the native CNG channel (CNGB1a + CNGA1) were 

present (Figure 3.1.2.1A). By contrast, when peripherin-2 was co-expressed together with 

rod opsin and CNGB1a, the CNGB1a subunit could be co-immunoprecipitated with the anti-

rhodopsin antibody (Figure 3.1.2.1B, lane 6). Moreover, peripherin-2 was binding to rod 

opsin in the absence of CNGB1a (Figure 3.1.2.1B, lane 5). Taken together, the co-IP 

experiments indicate that rod opsin requires peripherin-2 to interact with CNGB1a. A model 

explaining this is that peripherin-2 physically links rod opsin and CNGB1a by simultaneously 

binding to both proteins.  

 

3.1.3 FRET analysis of the rod opsin/peripherin-2/CNGB1a interaction in 

HEK293 cells 

 

To confirm the interaction described in chapter 3.1.2 with another method, FRET 

experiments were applied that allow detection and quantification of protein-protein 

interactions. For this purpose, the proteins were C-terminally tagged with either cerulean or 

citrine. The respective fusion protein pairs were transiently co-transfected in HEK293 cells 

that were subsequently used for FRET measurements. 

 



Results    

 43 

 
Figure 3.1.3.1. The peripherin-2/rod opsin and peripherin-2/CNGB1a interaction is confirmed by 

FRET. HEK293 cells were co-transfected with different fusion protein pairs. Subsequent FRET 

measurements were performed to detect and quantify homomeric and heteromeric protein-protein 

interactions. Rod opsin (rOps), peripherin-2 (Prph2), CNGB1a (B1a), and soluble GARP were C-

terminally tagged with either cerulean (donor fluorophore of the pair) or citrine (acceptor fluorophore 

of the pair), as indicated. The calculated FRET ratios (FR) for the single FRET pairs are as follows: 

rOps/rOps, FR = 3.03 ± 0.14; Prph2/Prph2, FR = 2.84 ± 0.17; rOps/Prph2, FR = 2.45 ± 0.13; 

Prph2/B1a, FR = 2.30 ± 0.33; Prph2/GARP, FR = 2.03 ± 0.17; rOps/B1a, FR = 1.29 ± 0.13. Numbers 

of independent measurements (n) are given in brackets. 

 

In agreement with the immunoprecipitation data, robust FRET signals were obtained for rod 

opsin/peripherin-2 and as well as for peripherin-2/CNGB1a. Quantitatively, FRET ratios of 

these pairs were in a similar range. However, these FRET ratios were somewhat lower than 

those obtained for rod opsin or peripherin-2 homodimers. In agreement with previous 

findings (Poetsch et al., 2001; Ritter et al., 2011), the FRET data also revealed a robust 

interaction between peripherin-2 and the soluble GARP2, which corresponds to the N-

terminal portion of CNGB1a. Importantly, the FRET ratio obtained for the rhodopsin/CNGB1a 

FRET pair was only slightly above background confirming that there is no specific interaction 

between these two proteins. 

 

3.1.4 Identification of the rod opsin-binding region in peripherin-2 

 

To narrow down the region in peripherin-2 which is essential for the interaction with rod 

opsin, citrine-tagged peripherin-2 constructs with different C-terminal truncations (Figure 

3.1.4.1A) were generated and co-expressed with cerulean-tagged rod opsin in HEK293 

cells. The results from the FRET measurements are illustrated in Figure 3.1.4.1B. 
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Figure 3.1.4.1. The fourth transmembrane domain of peripherin-2 is required for interaction 

with rod opsin. A) Illustration of peripherin-2 constructs used for determination of FRs in B. Citrine 

(citr) was fused to either the N- or C-terminus of perpherin-2. The numbered black boxes (1-4) depict 

the transmembrane domains of peripherin-2. B) FRs of the peripherin-2 constructs co-expressed with 

rod opsin-cerulean (rOps). Full-length peripherin-2 (Prph2-citr, citr-Prph2), truncated C-terminus 

(Prph2_C1-citr), and truncated fourth transmembrane domain and C-terminus (citr-Prph2_C2). FRs 

for the single FRET pairs are as follows: rOps/Prph2-citr, FR = 2.45 ± 0.13; rOps/Prph2_C1-citr, FR = 

2.19 ± 0.23; rOps/citr-Prph2_C2, FR = 1.29 ± 0.11; rOps/citr-Prph2, FR = 2.73 ± 0.15. Numbers of 

independent measurements (n) are given in brackets. 

 

Truncation of the C-terminus downstream of the fourth transmembrane domain (Prph2_C1-

citr) did not interfere with the binding to rod opsin. By contrast, additional deletion of TM4 

(citr-Prph2_C2) disrupted the interaction with rod opsin. To ensure that citrine is located to 

the cytoplasmatic side of the cell (like in the C-terminally tagged peripherin-2 constructs 

containing all four transmembrane domains), it was fused to the N-terminus of the truncation 

mutant containing only three transmembrane domains. Importantly, the position of citrine did 

not affect the principal peripherin-2/rod opsin interaction as the FRs of the FRET pairs were 

in a similar range for N- or C-terminally tagged peripherin-2 (citr-Prph2 and Prph2-citr, Figure 

3.1.4.1B). 

 

3.1.5 Analysis of rod opsin and peripherin-2 binding characteristics 

 

For specific examination of protein interactions in the plasma membrane and determination 

of binding properties for the rod opsin/peripherin-2 interaction, confocal FRET experiments 

were carried out in HEK293 cells (Figure 3.1.5.1). 
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Figure 3.1.5.1. FRET-based determination of the binding characteristics of the rod 

opsin/peripherin-2 interaction. A) Representative confocal images of FRET channels (Donor, 

FRET, Acceptor, and Merge) of single HEK293 cells co-transfected with FRET pairs for determination 

of FRs shown in B. Scale bar represents 3 µm. B) Data obtained from confocal FRET measurements 

of plasma membrane-restricted regions of single cells (black squares). The analyzed FRET pairs were 

rod opsin-cerulean and rod opsin-citrine (rOps/rOps) or rod opsin-cerulean and peripherin-2-citrine 

(rOps/Prph2). FR was plotted against the cerulean/citrine molar ratio (cer/citr MR) to calculate 

maximal FR values (FRmax) and binding curves (red). 

 

The respective maximal FR values (FRmax) were determined for rod opsin/rod opsin and rod 

opsin/peripherin-2 pairs and were in compliance with the FRs obtained from standard (non-

confocal) FRET experiments described in chapter 3.1.3. Based on FRmax and the binding 

curves, the relative binding affinity of the rod opsin/peripherin-2 interaction was calculated to 

be approximately 80 % of the homomeric rod opsin interaction. 

 

3.1.6 FRET analysis of the peripherin-2/rhodopsin interaction in isolated rod 

outer segments 

 

In order to verify that rhodopsin binds to peripherin-2 in native rod photoreceptors, the 

respective FRET constructs were cloned into rAAV vectors that contain a human rhodopsin 

promoter for specific expression in rod outer segments (Figure 3.1.6.1A).  
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Figure 3.1.6.1. Expression of rAAV constructs in the outer segments of transduced murine 

retinas. A) Schematic presentation of the constructs used for rAAV-mediated transduction of retinas 

from two week-old C57BL/6N WT mice. hRHO, human rhodopsin promoter. B) Representative 

confocal images of retinal sections from mice three to four weeks after subretinal delivery of the 

generated viral vectors. Rhodopsin-cerulean (Rho-cer) is expressed in the left image and citrine-

peripherin-2 (citr-Prph2) expression is shown in the right image. OS, outer segment; IS, inner 

segment; ONL, outer nuclear layer. 

 

The representative images in Figure 3.1.6.1B show robust expression of individual cerulean- 

or citrine-tagged constructs in retinal sections three to four weeks after subretinal delivery of 

the viral vectors. The expressed fusion proteins were correctly localized to the rod outer 

segments indicating that the fluorophores did not affect the ciliary transport.  

 

Rod outer segments were isolated using a self-designed quick protocol that allowed for 

preservation of outer segment structure and shape (Figure 3.1.6.2A). Figure 3.1.6.2B shows 

co-expression of a representative FRET pair (rhodopsin-cerulean and peripherin-2-citrine) in 

an isolated rod outer segment. 

 

 
Figure 3.1.6.2. FRET in isolated rod outer segments from WT mice injected with various rAAV 

construct pairs. A) Bright-field of outer segments isolated from mouse retina. Scale bar represents 3 
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µm. B) Representative confocal image of a single rod outer segment used for FRET measurements. It 

co-expresses rhodopsin-cerulean (Donor) and peripherin-2-citrine (Acceptor). Scale bar represents 2 

µm. C) FRs determined from the FRET measurements for each FRET pair are as follows: rhodopsin-

cerulean/rhodopsin-citrine (Rho/Rho), FR = 2.14 ± 0.09; rhodopsin-cerulean/citrine-peripherin-2 

(Rho/citr-Prph2), FR = 1.49 ± 0.09; rhodopsin-cerulean/peripherin-2-citrine (Rho/Prph2-citr), FR = 

1.30 ± 0.07; rhodopsin-cerulean/GARP2 (Rho/GARP2), FR = 0.97 ± 0.07. Numbers of independent 

measurements (n) are given in brackets. 

 

As expected for the native system, FRs were consistently lower than those determined from 

heterologous expression in HEK293 cells. This can be most probably attributed to the 

presence of unlabeled endogenous WT proteins that interfere in vivo with the FRET 

constructs thus causing a decrease in the absolute FRET signal. Nevertheless, qualitatively, 

the results in rod outer segments were comparable with the results obtained from HEK293 

cells (Figure 3.1.6.2C). Consistent with the data from HEK293 cells, the FR for N-terminally 

tagged peripherin-2 was slightly higher than for the C-terminally tagged protein, and the 

highest FR was observed for the rhodopsin homodimer. Additionally, no FRET was 

detectable for rhodopsin and rod-specific soluble GARP2 protein, which is in good 

agreement with previous studies (Korschen et al., 1999; Ritter et al., 2011). 

 

3.1.7 Effects of the adRP-linked G266D mutation on the peripherin-2/rod 

opsin interaction 

 

As described in chapter 1.6.2, a certain number of peripherin-2 mutations have been 

associated with adRP. This raises the question whether some of these mutations may cause 

an impairment in the rhodopsin binding. To address this issue, I analyzed if some adRP-

linked mutations are localized in the fourth transmembrane domain (TM4) of peripherin-2, 

which was demonstrated to be crucial for the interaction with rhodopsin (chapter 3.1.4). One 

adRP-associated mutation (G266D) was found in the part of TM4 that was most proximal to 

the intradiscal loop of peripherin-2, as depicted in Figure 3.1.7.1A. The interaction of this 

PRPH2 mutant and rod opsin was analyzed in transfected HEK293 cells using FRET and 

co-IP experiments. 
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Figure 3.1.7.1. The G266D mutation in TM4 of peripherin-2 abolishes binding to rod opsin. A) 

Schematic illustration of the positions of mutations within TM4 of peripherin-2 that were analyzed in B 

(black arrows). Transmembrane domains are numbered (1-4). The dashed rectangle on the left 

depicts the magnified image of the proximal part of TM4 on the right. B) FRET experiments in 

HEK293 cells co-transfected with rod opsin (rOps) and WT or mutant peripherin-2 constructs, as 

indicated. FRs for the single FRET pairs are as follows: rOps/G266D, FR = 1.58 ± 0.05; rOps/G266A, 

FR = 1.98 ± 0.09; rOps/E276A, FR = 2.14 ± 0.14; rOps/WT, FR = 2.26 ± 0.08. Numbers of 

independent measurements (n) are given in brackets. 

 

The results from the FRET measurements in HEK293 cells illustrated in Figure 3.1.7.1B 

indicated that the G266D mutation disrupted the binding to rod opsin. To further demonstrate 

the specificity of this finding, the effects of two additional mutations in TM4 on the interaction 

with rod opsin were analyzed. One of the mutated residues was the conserved glutamate at 

position 276, which was shown in a preceding study to be crucial for the photoreceptor disc 

morphogenesis (Goldberg et al., 2007). Importantly, changing the glycine residue at position 

266 and the glutamate residue at position 276 to the neutral amino acid alanine (G266A and 

E276A, respectively) did not disrupt the binding to rod opsin. 

 

To confirm the results obtained from FRET measurements in HEK293 cells, co-IP 

experiments were performed in HEK293 cells co-transfected with rod opsin and WT or 

mutant peripherin-2 constructs. 
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Figure 3.1.7.2. Co-IP experiments in HEK293 cells confirm the FRET results. A) Lysates of 

HEK293 cells co-transfected with rod opsin and GFP-tagged WT or mutant peripherin-2 constructs 

were immunoprecipitated (IP) with α-Rho. Immunoblots (IB) were analyzed with α-GFP and α-Rho 

antibodies. B) Lysates of HEK293 cells co-transfected with CNGB1a and GFP-tagged WT or mutant 

peripherin-2 constructs were immunoprecipitated (IP) with α-CNGB1a. Immunoblots (IB) were 

analyzed with α-GFP and α-CNGB1a antibodies. The inputs in A and B contain 10 % of the cell lysate 

used for the IP. 

 

The co-IP experiments presented in Figure 3.1.7.2A also demonstrated that the G266D 

mutant abolishes the interaction of peripherin-2 with rod opsin. Furthermore, the additional 

mutants, G266A and E276A showed no effect on the rod opsin binding. A second control co-

IP experiment revealed that the interaction of the single peripherin-2 mutations with CNGB1a 

was not affected (Figure 3.1.7.2B). This indicates that the disrupted binding of the G266D 

mutant to rod opsin is most likely not due to overall folding efficiency. Importantly, the input 

controls from the membrane preparations used for the respective co-IPs showed no 

differences in the membrane expression levels of the mutants compared to WT peripherin-2. 

This argues against any reduced membrane expression or transport deficits for any of the 

analyzed peripherin-2 mutants. 
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3.2 Analysis of the peripherin-2 and cone opsin interaction in outer segments 

of cone photoreceptors 

 

So far, this study demonstrated that peripherin-2 interacts with rhodopsin in rod outer 

segments. Based on the relatively low homology between rhodopsin and M-opsin (40.9 %) 

or rhodopsin and S-opsin (43.9 %, see chapter 1.4), it is unclear if peripherin-2 also binds to 

cone opsins. If there is an interaction between peripherin-2 and cone opsins, it is 

conceivable that this binding is also mediated by TM4 of peripherin-2. Interestingly, another 

mutation in TM4 of peripherin-2 (V268I) has been associated with cone defects (Figure 

3.2.1.1A). As depicted in Figure 3.2.1.1B, the valine residue at position 268 is highly 

conserved in mammalians as well as in birds. Consequently, using different in vitro and in 

vivo approaches, I analyzed if peripherin-2 binds to cone opsins and if the V268I mutation 

interferes with this interaction. To address these two questions in vitro, co-IP and FRET 

experiments were conducted in HEK293 cells transiently transfected with various 

combinations of WT and mutant peripherin-2 with S-opsin, M-opsin, and rod opsin. 

 

3.2.1 Interaction analysis of WT and V268I peripherin-2 with cone opsins in 

HEK293 cells 
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Figure 3.2.1.1. Localization and conservation of the V268 position in peripherin-2. A) Schematic 

illustration of the mutation position within TM4 of peripherin-2 (black arrow). The dashed rectangle on 

the left depicts the magnified image of the proximal part of TM4 on the right. B) The non-polar amino 

acid valine is conserved in mammalians and birds (grey box). In the African clawed frog, the position 

is occupied by methionine and in the zebrafish, by leucine. Isoleucine was not found in any of the 

species at this position. 

 

 
Figure 3.2.1.2. Peripherin-2 interacts with cone opsins and the V268I mutation selectively 

impedes the binding to M-opsin. Co-IPs from HEK293 cells co-expressing either myc-tagged wild-

type (WT_myc) or mutant (V268I_myc) peripherin-2 with citrine-tagged S-opsin (S-ops_citr), M-opsin 

(M-ops_citr) and tag-free rod opsin (rOps) as indicated. Immunoprecipitation (IP) was performed with 

anti-GFP antibody (α-GFP) that recognizes the citrine tag and anti-rod opsin antibody (α-Rho), 

respectively. Input controls contain 10 % of total protein lysate used for co-IPs. IB, immunoblotting. 

 

The Western blot analysis in Figure 3.2.1.2 indicates that WT peripherin-2 binds to both 

cone opsins, albeit their interactions appear to be less strong compared to that of the 

peripherin-2/rod opsin interaction. Of note, there was also a difference in binding to S-opsin 

and M-opsin as more peripherin-2 could be co-immunoprecipitated with the latter. 

Interestingly, the V268I mutant showed a decreased interaction with M-opsin, whereas 

binding to S-opsin and rod opsin remained unaffected. 

 

To confirm the results from the co-IP experiments and to quantify the protein-protein 

interactions, FRET measurements were carried out in HEK293 cells transiently co-

transfected with WT or mutant peripherin-2 and rod or cone opsins. All FRET partners were 

C-terminally fused to the FRET fluorophores as indicated in Figure 3.2.1.3A. 
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Figure 3.2.1.3. FRET experiments in HEK293 cells confirm the reduced binding of the V268I 

peripherin-2 mutant to M-opsin. A) Schematic representation of wild-type (WT) and mutant (V268I) 

peripherin-2, S-opsin, M-opsin and rod opsin constructs used for determination of FRET ratios (FR) 

shown in C. Cerulean (cer) or citrine (citr) was fused to the C-terminus of all transgenes. B) 

Representative confocal images showing Donor, FRET, Acceptor, and Merge channel of a single 

HEK293 cell used for the calculation of the FR shown in C. Scale bar represents 3 µm. C) FRs of WT 

and V268I peripherin-2 constructs co-expressed with S-opsin-, M-opsin-, and rod opsin as indicated. 

Calculated FR of the respective FRET pairs is as follows: WT/S-opsin, FR = 1.53 ± 0.04; V268I/S-

opsin, FR = 1.13 ± 0.10; WT/M-opsin, FR = 2.00 ± 0.11; V268I/M-opsin, FR = 1.34 ± 0.14; WT/rod 

opsin, FR = 2.57 ± 0.15; V268I/rod opsin, FR = 2.54 ± 0.18. P value of the compared respective FRs 

is as follows: WT + S-opsin vs. V268I + S-opsin, p = 0.0626; WT + M-opsin vs. V268I + M-opsin, p = 

0.0002; WT + rod opsin vs. V268I + rod opsin, p = 0.8786; WT + S-opsin vs. WT + M-opsin, p = 

0.0106. Numbers of independent measurements (n) are given in brackets.       

 

Consistent with the immunoprecipitation data, FRET signals were detected for WT 

peripherin-2 in combination with all three opsins (Figure 3.2.1.3B, C). Quantitatively, the 

strongest FRs were obtained for the peripherin-2/rod opsin interaction followed by the 

peripherin-2/M-opsin combination. The weakest FRs were measured for the peripherin-2/S-

opsin interaction. Importantly, the statistical analysis disclosed that the V268I mutation 

selectively reduces binding of peripherin-2 to M-opsin (Figure 3.2.1.3C). By contrast, no 

significant changes between WT and mutant peripherin-2 could be detected for the 

peripherin-2/S-opsin or the peripherin-2/rod opsin interaction. Overall, the FRET-based 

measurements are consistent with the results obtained from the co-IPs shown in Figure 

3.2.1.2. 

 



Results    

 53 

3.2.2 Analysis of the peripherin-2/cone opsin interaction in WT murine retinas 

 

To confirm the results from HEK293 cells of the peripherin-2/cone opsin interaction in vivo, 

co-IP was performed from membrane preparations of WT mouse retinas (Figure 3.2.2.1). 

 

 

 

Figure 3.2.2.1. Peripherin-2 interacts with cone opsins in the murine retina. Immunoprecipitation 

(IP) from membrane preparations of WT mouse retinas was performed with anti-peripherin-2 antibody 

(α-Prph2) or control antibody (α-IgG). Immunoblotting (IB) was conducted using antibodies directed 

against S-opsin (α-S-ops), M-opsin (α-M-ops), and α-Prph2. Input controls contain 10 % of total 

protein lysate used for co-IPs. 

 

In agreement with the data conducted in HEK293 cells, binding of peripherin-2 to M-opsin 

appears tighter than that to S-opsin as the intensity of the input band was increased for M-

opsin but not for S-opsin after immunoprecipitation using a peripherin-2-specific antibody 

(Figure 3.2.2.1). Of note, no specific band was detected when a control antibody was used 

for immunoprecipitation.  

 

To obtain a detailed view on the localization of peripherin-2, S-opsin, and M-opsin in the 

outer segment of cone photoreceptors, transmission electron microscopy was applied to 

longitudinal sections of WT mouse retinas (Figure 3.2.2.2). Immunogold particles of different 

diameters were co-labeled with anti-peripherin-2, anti-S-opsin, and anti-M-opsin antibodies, 

respectively. 
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Figure 3.2.2.2. Peripherin-2 co-localizes with S-opsin and M-opsin in cone outer segments. 

Immunoelectron microscopy images of longitudinal sections of mouse cone outer segments co-

stained with small-diameter immunogold beads coupled to anti-S-opsin antibody (left) or anti-M-opsin 

antibody (right) and large-diameter beads coupled to anti-peripherin-2 (anti-Prph2) antibody. Co-

localization of small and large beads is marked by white arrows. Scale bar represents 100 nm. 

 

The transmission electron microscopy images revealed that peripherin-2 partially co-

localized with S-opsin and largely co-localized with M-opsin. (Figure 3.2.2.2, left and right 

panel). This is in line with a more stringent interaction of peripherin-2 and M-opsin, as 

suggested from the data in Figures 3.2.1.2, 3.2.1.3, and 3.2.2.1. 

 

3.2.3 rAAV-mediated expression of the V268I mutant in cones 

 

Despite the fact that no mislocalization of the V268I mutant was observed in HEK293 cells, it 

is conceivable that this mutant might not be properly transported to the cone outer segment. 

To exclude this possibility, C-terminally cerulean-tagged V268I mutant was expressed in 

cones using the murine S-opsin promoter (mSWS) (Figure 3.2.3.1, upper panel). The rAAV 
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particles were subretinally administered in two week-old (P14) wild-type mice and the retinas 

were prepared three weeks post injection.  

 

 
Figure 3.2.3.1. The V268I mutant is correctly localized in cone outer segments. Upper panel, the 

rAAV construct used for transduction of murine cone photoreceptors contains a murine S-opsin 

promoter (mSWS) for cone-specific expression, the PRPH2 transgene carrying the V268I mutation, 

and C-terminal cerulean (cer) as a reporter. Lower panel, immunohistological staining of murine retina 

transduced with V268I-cerulean fusion construct (V268I_cer). V268I_cer expression is depicted in 

cyan. The antibody directed against S-opsin was used as a marker for cone outer segments (red) and 

Hoechst was used as a nuclear marker (blue). Scale bar represents 20 µm. The schematic illustration 

of a cone photoreceptor on the right bottom marks the respective layers in the merged image. OS, 

outer segment; IS, inner segment; ONL, outer nuclear layer.  

 

As shown in Figure 3.2.3.1, the immunohistological images of injected retinas unveiled full 

co-localization of the V268I mutant and S-opsin. No detectable signal was observed for the 

mutant outside of the cone outer segments indicating proper localization of the V268I 

mutant. 
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3.2.4 FRET analysis of the WT and V268I peripherin-2/cone opsin interaction 

in cone outer segments 

 

The correct localization of the V268I mutant in vivo allows for FRET measurement of the 

constructs shown in Figure 3.2.1.3A in cone outer segments. For this purpose, WT and 

mutant peripherin-2, S-opsin, and M-opsin were subcloned into an rAAV-vector that contains 

the mSWS promoter. Three weeks post injection, cone and rod outer segments were 

isolated using the self-designed quick protocol that was described in chapter 3.1. 

 

 
Figure 3.2.4.1. FRET in isolated cone outer segments from WT mice. A) Representative confocal 

image of Donor, FRET, Acceptor, and Merge channel of a single cone outer segment used for FRET 

measurements in B. Scale bar represents 2 µm. B) FRs of WT and V268I peripherin-2-cerulean 

constructs co-expressed with S-opsin-, M-opsin-, and rhodopsin-citrine as indicated. FRs were 

determined from the FRET measurements in isolated cone outer segments (for FRET pairs containing 

S-opsin or M-opsin) and rod outer segments (for FRET pairs containing rhodopsin), respectively. For 

each FRET pair, the calculated FR is as follows: WT/S-opsin, FR = 2.17 ± 0.15; V268I/S-opsin, FR = 

1.59 ± 0.10; WT/M-opsin, FR = 3.31 ± 0.36; V268I/M-opsin, FR = 1.74 ± 0.16; WT/rhodopsin, FR = 

1.46 ± 0.16; V268I/rhodopsin, FR = 1.48 ± 0.18. P value of the compared respective FRs is as 

follows: WT + S-opsin vs. V268I + S-opsin, p = 0.4263; WT + M-opsin vs. V268I + M-opsin, p < 

0.0001; WT + rhodopsin vs. V268I + rhodopsin, p = 0.9323; WT + S-opsin vs. WT + M-opsin, p = 

0.0126. Numbers of independent measurements (n) are given in brackets.  

 

Overall, the FRET results obtained from rod and cone outer segments are in very good 

agreement with the findings from HEK293 cells (see Figures 3.2.1.2 and 3.2.1.3). First, for 

WT peripherin-2, a robust FRET signal could be obtained with both M-opsin and S-opsin 
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indicating that these proteins indeed interact in vivo. Quantitatively, however, the FR of M-

opsin/peripherin-2 was significantly higher than that of the S-opsin/peripherin-2 FRET pair. 

Second, the FR of the M-opsin/V268I peripherin-2 was significantly attenuated compared to 

the FR of M-opsin/WT peripherin-2. By trend, but not significantly, such an attenuation was 

also observed for the S-opsin/V268I peripherin-2 FRET pair. 

Third, in rod outer segments, neither tendency nor significant differences could be measured 

when comparing the FRs between the rhodopsin/WT peripherin-2 and the rhodopsin/V268I 

peripherin-2 FRET pairs. 

Notably, compared to the FRET results from HEK293 cells, the FRs were constantly higher 

for cone opsin/peripherin-2 interaction, whereas they were lower for the 

rhodopsin/peripherin-2 FRET pair. The latter finding was already described in chapter 3.1.6. 

The constantly higher FRs for the cone opsin/peripherin-2 FRET pairs lay further emphasis 

on the potential importance of the cone opsin/peripherin-2 interaction in cone 

photoreceptors. 
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4 Discussion 

4.1 Analysis of the peripherin-2 and rhodopsin interaction in outer segments 

of rod photoreceptors 

 

The first part of this study shows that peripherin-2 forms a stable protein complex with both 

rhodopsin and the rod CNG channel in rod outer segments. Several lines of evidence 

support this conclusion. First, antibodies specific for the rod CNGB1a subunit 

immunoprecipitated rhodopsin from murine retinal lysates. Similarly, immunoprecipitation 

with rhodopsin-specific antibodies pulled down CNGB1a. In both sets of experiments, 

peripherin-2 was identified in the immunoprecipitated complex. Experiments in HEK293 cells 

revealed that rhodopsin does not directly bind to the CNG channel, but rather requires 

peripherin-2 as a molecular linker to form a complex with the channel. FRET experiments 

strongly supported this “bridging” function of peripherin-2. Based on the confocal FRET 

measurements, the relative binding affinity for the peripherin-2/rhodopsin interaction was in 

the similar range as for the rhodopsin/rhodopsin homomer. So far, the absolute binding 

affinity of rhodopsin homomers has not been determined. However, in the co-IP 

experiments, rhodopsin dimers and oligomers could be detected even under stringent SDS-

PAGE and reducing conditions. Based on this, the absolute binding affinity of rhodopsin 

homomers are expected to be rather high. These results indicate that rhodopsin binds to 

peripherin-2 with a high affinity that is comparable to that of the rhodopsin homomer. The 

biochemical and FRET experiments in isolated outer segments strongly support the 

presence of rhodopsin dimers and oligomers in the native tissue. This is in line with recent 

studies providing strong evidence for the existence of rhodopsin dimers and oligomers in the 

native environment (Fotiadis et al., 2003; Suda et al., 2004; Knepp et al., 2012; Koch and 

Dell'Orco, 2015). In this study, the molecular determinants required for the 

rhodopsin/peripherin-2 interaction were also identified. Since the major portion of both 

proteins is residing in the disc membrane of rod outer segments, it seems reasonable to 

assume that the interaction occurs via the transmembrane helices. In support of such a 

model, deletion of transmembrane domain 4 (TM4) in peripherin-2 abolished binding to 

rhodopsin. Moreover, a single glycine to aspartate exchange at the position 266 in the TM4 

of peripherin-2 that was previously reported in patients suffering from adRP (Sohocki et al., 

2001) resulted in loss of binding to rhodopsin. Importantly, binding to CNGB1a was 

unaffected in the G266D mutant suggesting that the pathophysiological impact of this 

mutation relies on the impairment of the interaction with rhodopsin. The functional role of 

intradiscal and intracellular domains of peripherin-2 was examined in studies (Goldberg, 
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2006; Stuck et al., 2016). However, only one study addressed the role of a transmembrane 

domain of this protein showing that the glutamate residue at position 276 in TM4 was crucial 

for disc morphogenesis (Goldberg et al., 2007). Interestingly, the exchange of this charged 

amino acid to alanine (E276A) did not affect the interaction with rhodopsin. Similarly, the 

G266A mutation also had no effects on the peripherin-2/rhodopsin complex formation. These 

results suggest that introduction of charged residues on position 266 disrupts the binding of 

peripherin-2 to rhodopsin, whereas neutral amino acids at the same position do not affect 

this interaction. Taken together, the data point to a key role of TM4 for the peripherin-

2/rhodopsin interaction and suggest that impaired binding to rhodopsin may contribute to the 

pathophysiology of peripherin-2 mutations.  

As is evident in Figure 3.1.7.2, two bands for wild-type peripherin-2 are detected in the 

inputs and co-IP experiments. As the protein samples were deglycosylated prior to SDS-

PAGE, the occurring upper band of peripherin-2 is most likely not a result of glycosylation. 

Intriguingly, the relative intensities of the two bands correlate with the number of negative 

charges in TM4. In the G266D mutant that contains two negative charges (E276, D266), the 

upper band possesses a higher signal intensity than the lower band. By contrast, in G266A 

and wild-type containing one negative charge in TM4 (E276), the signal of the lower band is 

more intense than that of the upper band. Finally, in the E276A mutant containing no 

negative charge, only the lower band is visible. A potential effect of charges on the 

conformation and relative mobility of peripherin-2 would be in agreement with previous 

findings showing that single mutants can lead to a differential electrophoretic mobility of the 

corresponding protein (Shi et al., 2012). 

Finally, FRET and immunoelectron microscopy were used to directly demonstrate that 

rhodopsin and CNGB1a are located in close proximity in rod outer segments. Overall, the 

results are consistent with the model shown in Figure 4.1.1. The novel aspect of this model 

is that peripherin-2, by binding to both, rhodopsin and the CNG channel, physically couples 

the most proximal protein of the light transduction cascade (rhodopsin) with the most distal 

protein (the CNG channel) in a narrow spatial microcompartment encompassing the disc 

rims and the neighboring plasma membrane. One could imagine two principal scenarios 

where the supramolecular organization of these proteins might be relevant. First, the 

complex could play a structural role in the formation and maintenance of rod outer segment 

structure. Mutations in peripherin-2 as well as in rhodopsin are associated with impaired disc 

morphogenesis and stability resulting in shortened and deteriorated rod outer segments 

(Sanyal and Jansen, 1981; Travis et al., 1991; Humphries et al., 1997; Lem et al., 1999). 

Structural impairments of outer segments are also seen upon mutation of rom-1, another 

photoreceptor specific protein that binds to peripherin-2 (Clarke et al., 2000), and in 

CNGB1a knockout mice lacking the peripherin-2-binding GARP domain (Zhang et al., 2009). 
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Taken together, these findings imply that the integrity of the rhodopsin/peripherin-2/rom-

1/CNG channel complex is crucial for morphogenesis and long-term stability of rod outer 

segments. Loss or functional impairment of any of the constituents of the complex will thus 

lead to more or less severe structural defects. In support to a structural role of the 

rhodopsin/peripherin-2 interaction, the addition of rhodopsin to the reconstituted peripherin-

2/rom-1 complex in lipid vesicles was recently reported to induce the formation of disc rim-

like structures in vitro (Kevany et al., 2013). 

The second scenario refers to a functional role of the complex in visual transduction. By 

binding to both, rhodopsin and the CNG channel, peripherin-2 helps to generate a 

microcompartment in the rim disc region that could have evolved to optimize the sensitivity 

and precision of light transduction. Recently, it was reported that a substantial portion of the 

rod phosphodiesterase (PDE6) is located at the disc rims of rod outer segments (Chen et al., 

2008). GARP2 that was shown to bind PDE6, peripherin-2, and the CNG channel subunits 

(Poetsch et al., 2001; Pentia et al., 2006; Michalakis et al., 2011), could serve as an adaptor 

protein that anchors PDE6 to the disc rim. Another study also reported a physical interaction 

of PDE6 and the rod CNG channel (Bennett et al., 1989). The proposed complex would be 

exquisitely efficient because the distance between the light-harvesting rhodopsin, the cGMP-

hydrolyzing PDE6, and the channel that translates changes in cGMP in changes of the 

Na+/Ca2+ flux would be extremely short. In contrast to rhodopsin, the CNG channel and 

peripherin-2 were reported to be absent in the central disc region (Molday et al., 1987; Cook 

et al., 1989; Molday et al., 1991). Consequently, in this region, rhodopsin is physically 

uncoupled from the CNG channel. At the moment, one can only speculate about the exact 

functional role of the differential microcompartmentalization of rhodopsin in the central and 

peripheral part of the discs. Due to the shorter diffusion distance for cGMP, however, the 

disc rim-associated complex is expected to operate at lower light intensities and faster 

kinetics. Such an optimization could be important in rods which are tailored to detect 

extremely low light levels. By contrast, in the less light-sensitive cones, coupling of the light 

sensor to the channel seems less important. In agreement with this hypothesis, the cone 

CNG channel subunits lack the GARP domain that is required for the interaction with 

peripherin-2 (Molday and Molday, 1998; Poetsch et al., 2001; Conley et al., 2010). 
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Figure 4.1.1. Peripherin-2 couples the CNG channel to the phototransduction cascade in rod 

outer segments. A) Simplified paradigm of protein-protein interactions in the disc rim region of outer 

segments. Peripherin-2 simultaneously binds to its homologue rom-1, to CNGB1a, and to rhodopsin. 

The soluble GARP2 undergoes multiple protein-protein interactions with CNGB1a, CNGA1, PDE6, 

and peripherin-2 as indicated by the dashed lines. Gt, transducin. B) Tentative model of the 

CNGB1a/peripherin-2/rhodopsin complex. Note that the exact portion of rhodopsin that binds to TM4 

of peripherin-2 is not known and is only tentatively assigned in this cartoon. 

 

4.2 Analysis of the peripherin-2 and cone opsin interaction in outer segments 

of cone photoreceptors 

 

The second part of this study demonstrates that peripherin-2 interacts with both, S-opsin and 

M-opsin in cone outer segments. This finding is supported by several methodical 

approaches including co-IPs, transmission electron microscopy, and quantitative FRET 

analyses. Both, in transfected HEK293 cells as well as in cone outer segments, the M-

opsin/peripherin-2 interaction was shown to be stronger compared to the S-opsin/peripherin-

2 interaction. The physiological importance of this differential interaction of peripherin-2 with 

cone opsins remains unclear. In a recent study, it was shown that M-opsin is severely 

mislocalized throughout the cone photoreceptor membrane when expressing a peripherin-2 

variant that exhibits localization deficits (C150S) in a cone-dominant mouse model 

(Chakraborty et al., 2010). Similar effects on protein localization were not reported for 

rhodopsin or S-opsin. One possible explanation for these observations is that the M-

opsin/peripherin-2 interaction is specifically required for the concurrent transport of these two 

proteins to the cone outer segments.  
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Comparative analysis of FRs from HEK293 cells and rod or cone outer segments revealed 

an inverse correlation between the rhodopsin/peripherin-2 and cone opsin/peripherin-2 

interaction. Whereas the rhodopsin/peripherin-2 FRs were lower in rod outer segments 

compared to HEK293 cells, the opposite case was observed for the cone opsin/peripherin-2 

FRET pairs. One plausible explanation for this finding is that due to the relative 

rhodopsin/peripherin-2 abundance of approximately 9:1 (Becirovic et al., 2016), most of the 

labeled rhodopsin molecules are not bound to peripherin-2, quenching the overall FRs. 

Second, in contrast to rhodopsin, which is reported to be expressed more or less uniformly 

throughout the discs, peripherin-2 is exclusively found in the disc rim region, where it 

interacts with CNGB1a (Molday et al., 1987; Poetsch et al., 2001). Thus, only a small portion 

of rhodopsin is physically able to undergo interactions with peripherin-2. Both restrictions 

(lower peripherin-2 expression and its physical separation from most part of rhodopsin) are 

not expected to occur in transfected HEK293 cells, which might explain the higher FRs for 

the rhodopsin/peripherin-2 interaction obtained in these cells. As described in chapter 1.2, 

the structure of cone outer segments differs significantly from that of rod outer segments. 

Moreover, in contrast to rods, no interaction between peripherin-2 and the cone-specific B-

subunit of the CNG channel (CNGB3) could be observed as only the rod-specific CNGB1a 

subunit possesses the GARP domain, which is crucial for the interaction with peripherin-2 

(Conley et al., 2010). However, another study showed that, similar to its localization in rod 

outer segments, peripherin-2 is also mainly expressed in the rim regions of cone outer 

segments (Arikawa et al., 1992). This result could be confirmed in this study by transmission 

electron microscopy. Nevertheless, due to the aforementioned facts, the portion of 

interacting peripherin-2 and cone opsin molecules is expected to be higher than that of 

interacting peripherin-2 and rhodopsin molecules. Moreover, the mRNA expression levels for 

peripherin-2 and cone opsins are very similar (Siegert et al., 2012; Becirovic et al., 2016). 

These findings might explain the relatively high FRs for the peripherin-2/cone opsin 

interaction in isolated cone outer segments.  

The potential physiological relevance of the peripherin-2/M-opsin interaction is further 

illustrated by the fact that the V268I AVMD-linked mutant in TM4 of peripherin-2 selectively 

attenuates the binding of peripherin-2 to M-opsin without affecting protein localization. 

Interestingly, this mutant did not significantly alter the binding to rhodopsin or S-opsin. Given 

the sequence similarity of the photoreceptor opsins, it is not surprising that their binding to 

peripherin-2 is mediated by the same domain. However, even though the V268I mutant is in 

very close proximity to the G266D mutation, only the latter interferes with the peripherin-

2/rhodopsin interaction. This finding implies that different molecular determinants within the 

same domain have evolved to ensure for the specificity of the peripherin-2 binding to 

rhodopsin and cone opsins. These results provide novel mechanisms which could contribute 
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to explain the differential penetrance of single peripherin-2 point mutations in rods and 

cones. Finally, this study also provides a proof-of-principle for FRET measurements in a 

subcellular compartment in photoreceptors. This approach should be transferrable to other 

tissues and might help investigating the role of protein-protein interactions under 

physiological and pathophysiological conditions.  

 

 

 
Figure 4.2.1. Peripherin-2 interacts differentially with S-opsin and M-opsin in the respective 

cone photoreceptor. A-B) Simplified illustration of protein-protein interactions in the outer segment 

plasma membrane of S-cones (A) and M-cones (B). Peripherin-2 simultaneously binds to its 

homologue rom-1 and to the respective cone opsin. However, interaction between peripherin-2 and 

M-opsin occurs more frequently than that between peripherin-2 and S-opsin.   
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5 Summary 

 

The tetraspanin peripherin-2 is a glyco-membrane protein exclusively expressed in the outer 

segments of rod and cone photoreceptors. Mutations in peripherin-2 are associated with 

retinal disorders characterized by degeneration of rod or cone cells. Previous unpublished 

work identified peripherin-2 as a potential novel part of the protein complex comprising the 

B-subunit of the cyclic nucleotide-gated channel (CNGB1a) and the light detector rhodopsin. 

In the first part of this study, using a combination of protein biochemical and FRET 

approaches in transfected HEK293 cells and in virally transduced murine rod outer 

segments, it could be demonstrated that peripherin-2 simultaneously binds to both, CNGB1a 

and rhodopsin. The interaction between peripherin-2 and rhodopsin was not described in 

previous studies. The binding domain mediating the peripherin-2/rhodopsin interaction could 

be narrowed down to the fourth transmembrane domain (TM4) of peripherin-2. Finally, the 

data revealed that the G266D point mutation in TM4 of peripherin-2 that is linked to a rod 

degenerative disease selectively disrupts the peripherin-2/rhodopsin interaction. 

To analyze if peripherin-2 also binds to cone opsins in the second part of this study, a similar 

experimental approach was conducted as used for the investigation of the peripherin-

2/rhodopsin interaction. In this context, it was unveiled that peripherin-2 binds to both, short 

wavelength- and medium wavelength-sensitive cone opsin (S-opsin and M-opsin, 

respectively) in transfected HEK293 cells and in outer segments of transduced murine 

cones. Co-immunoprecipitation and quantitative FRET analysis revealed that binding of 

peripherin-2 to M-opsin was stronger than the peripherin-2/S-opsin interaction. This result 

was supported by transmission electron microscopy studies using gold particles coupled to 

opsin- and peripherin-2-specific antibodies. Finally, quantitative FRET analysis in transfected 

HEK293 cells and in transduced cone outer segments demonstrated that the V268I point 

mutation in TM4 of peripherin-2 associated with a degenerative cone disease significantly 

attenuates the peripherin-2/M-opsin interaction. 

Taken together, this study provides a proof-of-principle for FRET-based analysis of protein-

protein interactions in the outer segments of rod and cone photoreceptors. This approach led 

to the identification of hitherto unknown protein complexes between peripherin-2 and opsins 

suggesting a novel physiological role of peripherin-2 in rods and cones. Finally, analysis of 

disease-linked point mutations unveiled the molecular determinants of the peripherin-2/opsin 

interaction. These results might contribute to understanding the differential penetrance of 

certain point mutations in rods and cones.  
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Zusammenfassung 

 

Das Tetraspanin Peripherin-2 ist ein Glykomembran-Protein, das ausschließlich in den 

Außensegmenten von Stäbchen- und Zapfen-Fotorezeptoren exprimiert wird. Mutationen in 

Peripherin-2 sind mit Netzhauterkrankungen assoziiert, die zur Degeneration von Stäbchen 

oder Zapfen führen. In Vorarbeiten wurde Peripherin-2 als potenzieller neuer Bestandteil des 

Proteinkomplexes identifiziert, der aus der B-Untereinheit des Zyklonukleotid-gesteuerten 

Kanals (CNGB1a) und dem Lichtdetektor Rhodopsin besteht. 

Im ersten Teil dieser Studie konnte mittels einer Kombination aus proteinbiochemischen und 

FRET-basierten Untersuchungen in transfizierten HEK293 Zellen sowie in mit viralen 

Vektoren transduzierten murinen Stäbchen-Außensegmenten gezeigt werden, dass 

Peripherin-2 gleichzeitig sowohl an CNGB1a als auch an Rhodopsin bindet. Die Interaktion 

zwischen Peripherin-2 und Rhodopsin wurde bisher in keiner Studie beschrieben. Die 

Bindungsdomäne, die die Peripherin-2/Rhodopsin Interaktion vermittelt, konnte auf das 

vierte Transmembransegment (TM4) von Peripherin-2 eingegrenzt werden. Schließlich 

wurde gezeigt, dass die G266D Punktmutation in TM4 von Peripherin-2, die mit einer 

degenerativen Stäbchenerkrankung einhergeht, selektiv die Peripherin-2/Rhodopsin 

Interaktion unterbindet. 

Um zu untersuchen, ob Peripherin-2 auch an Zapfenopsine bindet, wurde im zweiten Teil 

dieser Studie ein ähnlicher experimenteller Ansatz, der bereits für die Analyse der 

Peripherin-2/Rhodopsin Interaktion verwendet wurde, durchgeführt. In diesem 

Zusammenhang konnte nachgewiesen werden, dass Peripherin-2 an beide Opsine, das 

kurzwellige und das mittelwellige Opsin (S-Opsin bzw. M-Opsin) in transfizierten HEK293 

Zellen und in Außensegmenten von transduzierten murinen Zapfen bindet. Ko-

Immunpräzipitation und quantitative FRET Analyse zeigten ferner, dass die Bindung von 

Peripherin-2 zu M-Opsin stärker als die zu S-Opsin ist. Dieses Ergebnis wurde durch 

transmissionselektronenmikroskopische Untersuchungen unter Verwendung von Goldparti-

keln, die an Opsin- und Peripherin-2-spezifische Antikörper gekoppelt waren, unterstützt. 

Zuletzt zeigte die quantitative FRET-Analyse in transfizierten HEK293 Zellen und in 

transduzierten murinen Zapfen-Außensegmenten, dass die V268I Punktmutation in TM4 von 

Peripherin-2, die mit einer degenerativen Zapfenerkrankung assoziiert ist, signifikant die 

Peripherin-2/M-Opsin Interaktion vermindert. 

Zusammenfassend konnte im Rahmen dieser Studie die FRET-basierte Analyse zur 

Untersuchung von Protein-Protein Interaktionen in Außensegmenten von Stäbchen- und 

Zapfen-Fotorezeptoren etabliert werden. Des Weiteren führte dieser Ansatz zur 

Identifizierung von bisher unbekannten Proteinkomplexen bestehend aus Peripherin-2 und 
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den Opsinen, was auf eine neue physiologische Rolle von Peripherin-2 in Stäbchen und 

Zapfen schließen lässt. Schließlich konnten mittels Analyse von krankheitsassoziierten 

Punktmutationen die molekularen Determinanten der Peripherin-2/Opsin Interaktion erfasst 

werden. Die Ergebnisse dieser Studie tragen schließlich auch zum besseren Verständnis 

der molekularen Mechanismen bei, die der unterschiedlichen Penetranz bestimmter 

Punktmutationen in Stäbchen- und Zapfen-Fotorezeptoren zu Grunde liegen.  
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7 Appendix 

7.1 List of primers used for cloning and sequencing 

Primers for cloning of truncated Prph2 constructs 

Prph2_CT_NotI_R GATCGCGGCCGCGAGTCCGGCAGTGATGCTCAC 

Prph2_toTM4_F CAGCAGCCTCATGAATTCCTAGGGCGTCGTCACACTTCTCG 

Prph2_toTM4_R CGAGAAGTGTGACGACGCCCTAGGAATTCATGAGGCTGCTG 

Primers for introduction of mPrph2 or hPRPH2 mutations 

mPrph2_G266D_F CTCATGAATTCCATGGACGTCGTCACACTTCTC 

mPrph2_G266D_R GAGAAGTGTGACGACGTCCATGGAATTCATGAG 

mPrph2_G266A_F CTCATGAATTCCATGGCCGTCGTCACACTTCTC 

mPrph2_G266A_R GAGAAGTGTGACGACGGCCATGGAATTCATGAG 

mPrph2_E276A_F CTCGTCTGGCTCTTTGCGGTGAGCATCACTGCC 

mPrph2_E276A_R GGCAGTGATGCTCACCGCAAAGAGCCAGACGAG 

mPrph2_V268I_F GAATTCCATGGGCGTCATCACACTTCTCGTCTG 

mPrph2_V268I_R CAGACGAGAAGTGTGATGACGCCCATGGAATTC 

Introduced point mutations are marked in red. 
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7.2 List of CNGB1a-binding proteins identified via LC-MS/MS 

 

Protein/peptide name 

Hbb-b2|MGI (curated)|Hemoglobin subunit beta-1 

Cnga1|MGI (curated)|cGMP-gated cation channel alpha-1 

Cngb1|MGI (curated)|Cngb1 protein Fragment  

Rho|MGI (automatic)|Rhodopsin 

AC164613.3|Clone-based 

Rpl10a|MGI (curated)|60S ribosomal protein L10a 

Rpl7|MGI (curated)|60S ribosomal protein L7 

Rps11|MGI (automatic)|40S ribosomal protein S11 

Rpl6|MGI (curated)|60S ribosomal protein L6 

GARP BC016201|MGI (automatic)|hypothetical protein LOC234586 

Rpl37a|MGI (automatic)|60S ribosomal protein L37a 

Rps8|MGI (curated)|40S ribosomal protein S8 

Rpl35a|MGI (curated)|60S ribosomal protein L35a 

Purb|MGI (curated)|Transcriptional activator protein Pur-beta 

Rpl8|MGI (automatic)|60S ribosomal protein L8 

Glul|MGI (curated)|Glutamine synthetase 

Rpl13|MGI (curated)|60S ribosomal protein L13 

Rps18|MGI (automatic)|40S ribosomal protein S18 

AC147018.4|Clone-based 

Rps23|MGI (automatic)|40S ribosomal protein S23 

Rpl27a|MGI (curated)|ribosomal protein L27a 

Rpl36al|MGI (curated)|60S ribosomal protein L36a 

Rpl10|MGI (curated)|60S ribosomal protein L10 

Rpl38|MGI (curated)|60S ribosomal protein L38 

Vdac1|MGI (curated)|Voltage-dependent anion-selective channel protein 1 

Atp1a3|MGI (curated)|Sodium/potassium-transporting ATPase subunit alpha-3 

Prph2|MGI (automatic)|Peripherin-2 (Retinal degeneration slow protein) 

Syt1|MGI (curated)|Synaptotagmin-1 

Rpl22|MGI (curated)|60S ribosomal protein L22 

AC155934.2-1|Clone-based 

Shown are the first 30 hits from the analysis. Proteins used for subsequent analyses are 

marked in red. 
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7.3 Abbreviations 

 

α anti- 

adRP autosomal-dominant retinitis pigmentosa 

ALAS aminolevulinic acid synthase 

AmpR ampicillin resistance gene 

APS ammonium persulfate 

B1-/- CNGB1 knockout 

B1a CNGB1a channel subunit 

2x BBS 2x BES buffered saline 

BES N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid 

BGH bovine growth hormone 

bp base pairs 

CaCl2 calcium chloride 

cAMP cyclic adenosine monophosphate 

cap packaging gene 

cGMP cyclic guanosine monophosphate 

cm centimeter 

CMV cytomegalovirus 

CNBD cyclic nucleotide-binding domain 

CNG cyclic nucleotide-gated 

CO2 carbon dioxide 

ColE1 colicinogenic factor 

co-IP co-immunoprecipitation 

Cp crossing points value 

cP-mg cone-specific promoter minigene 

dk donkey 

DS splice donor site 

DTT dithiothreitol 

EDTA ethylenediaminetetraacetic acid 

ESE exonic splice enhancer 

ESS exonic splice silencer 

F phenylalanine 

f1 filamentous phage 

FACS fluorescence-activated cell sorting 
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FBS fetal bovine serum 

FRET Förster/fluorescence resonance energy transfer 

g gram 

g gravity 

GCAPs guanylate cyclase-activating proteins 

GCL ganglion cell layer 

GARP glutamic acid-rich protein 

gt goat 

GC-E guanylyl cyclase E 

GC-F guanylyl cyclase F 

GPCR G protein-coupled receptor 

h hour 

H2O water 

HCl hydrochloric acid 

hRHO human rhodopsin promoter 

INL inner nuclear layer 

IPL inner plexiform layer 

ITR inverted terminal repeat 

kb kilobase pairs 

KCl potassium chloride 

KO knockout 

l liter 

L-opsin long wavelength-sensitive cone opsin 

MCS multiple cloning site 

µg microgram 

MgCl2 magnesium chloride 

min minute 

ml milliliter 

µl microliter  

µm micrometer 

M-opsin medium wavelength-sensitive cone opsin 

ms mouse 

msec millisecond 

mSWS murine short-wavelength opsin promoter 

mV millivolt 

MW molecular weight 
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NeoR neomycin resistance gene 

ng nanogram 

nm nanometer 

NMD nonsense-mediated mRNA decay 

ONL outer nuclear layer 

OPL outer plexiform layer 

ori origin of replication 

OS outer segments 

pA polyadenylation signal 

PAGE polyacryamide gel electrophoresis 

PB phosphate buffer 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDE6 cGMP phosphodiesterase 6 

PFA paraformaldehyde 

PMMA Poly(methyl methacrylate) 

Prph2/PRPH2 peripherin-2 

PVDF polyvinylidene fluoride 

qRT-PCR quantitative real-time PCR 

rAAV recombinant adeno-associated virus 

rb rabbit 

rep replication gene 

Rh* metarhodopsin II 

Rho rhodopsin 

rpm rounds per minute 

rP-mg rod-specific promoter minigene 

RT room temperature 

SDS sodium dodecylsulfate 

SE standard error 

sec second 

S-opsin short wavelength-sensitive cone opsin 

SV40 simian virus 

TBE tris buffered EDTA 

TEMED tetramethylethylenediamine 

TM4 fourth transmembrane domain 

UV ultraviolet 
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V volt 

v/v volume concentration 

W watt 

WPRE woodchuck hepatitis virus posttranscriptional regulatory element 

WT wild-type 

w/v mass concentration 

Y tyrosine 

YF mutation substituting tyrosine with phenylalanine 
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