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Abstract 

i 

Abstract 

 

Sleep characteristics are candidates for predictive biological markers in patients 

with severe psychiatric diseases, in particular affective disorder and schizophrenia. 

The genetic components of sleep determination in humans remain, to a large 

degree, unelucidated. In particular, the heritability of rapid eye movement (REM) 

sleep and EEG bursts of oscillatory brain activity in Non-REM sleep, i.e. sleep 

spindles, are of interest. In addition, recent findings suggest a strong role of 

distinct sleep spindle types in memory consolidation, making it important to identify 

sleep spindles in slow wave sleep (SWS) and to separate slow and fast spindle 

localization in the frequency range. However, predictive sleep biomarker research 

requires large sample sizes of healthy and affected human individuals. Therefore, 

the present work addressed two questions. The first aim was to optimize data 

analysis by developing algorithms that allow an efficient and reliable identification 

of rapid eye movements (REMs) and sleep EEG spindles. In the second part, 

developed methods were applied to sleep EEG data from a classical twin study to 

identify genetic effects on tonic and phasic REM sleep parameters, sleep spindles, 

and their trait-like characteristics. 

 

The algorithm for REM detection was developed for standard clinical two channel 

electrooculographic montage. The goal was to detect REMs visible above the 

background noise, and in the case of REM saccades to classify each movement 

separately. In order to achieve a high level of sensitivity, detection was based on a 

first derivative of electrooculogram (EOG) potentials and two detection thresholds. 

The developed REM detector was then validated in n=12 polysomnographic 

recordings from n=7 healthy subjects who had been previously scored visually by 

two human experts according to standard guidelines. Comparison of automatic 

REM detection with human scorers revealed mean correlations of 0.94 and 0.90, 

respectively (mean correlation between experts was 0.91). 

 

The developed automatic sleep spindle detector assessed individualized signal 

amplitude for each channel as well as slow and fast spindle frequency peaks 

based on the spectral analysis of the EEG signal. The spindle detection was 

based on Continuous Wavelet Transform (CWT); it localized the exact length of 
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sleep spindles and was sensitive also for detection of sleep spindles intermingled 

in high amplitude slow wave EEG activity. The automatic spindle detector was 

validated in n=18 naps from n=10 subjects, where EEG data were scored both 

visually and by a commercial automatic algorithm (SIESTA). Comparison of our 

own spindle detector with results from the SIESTA algorithm and visual scoring 

revealed the correlations of 0.97 and 0.92, respectively (correlation between 

SIESTA algorithm and visual scoring was 0.90). 

 

In the second part of the work, the similarity of given sleep EEG parameters in 

n=32 healthy monozygotic (MZ) twins was compared with the similarity in n=14 

healthy same-gender dizygotic (DZ) twins. The author of the current work did not 

participate in acquisition of twin study sample. EEG sleep recordings used for the 

heritability study were collected and already described by Ambrosius et al. (2008). 

Investigation of REM sleep included the absolute EEG spectral power, the shape 

of REM power spectrum, the amount and the structural organization of REMs; 

parameters of Non-REM sleep included slow and fast sleep spindle characteristics 

as well as the shape of the Non-REM power spectrum in general. In addition to 

estimating genetic effects, differences in within-pair similarity and night-to-night 

stability of given parameters were illustrated by intraclass correlation coefficients 

(ICC) and cluster analysis. A substantial genetic influence on both spectral 

composition and phasic parameters of REM sleep was observed. A significant 

genetic variance in spectral power affected delta to high sigma and high beta to 

gamma EEG frequency bands, as well as all phasic REM parameters with the 

exception of the REMs occurring outside REM bursts. Furthermore, MZ and DZ 

twins differed significantly in their within-pair similarity of non-REM and REM EEG 

spectra morphology. Regarding sleep spindles, statistical analysis revealed a 

significant genetic influence on localization in frequency range as well as on basic 

spindle characteristics (amplitude, length, quantity), except in the quantity of fast 

spindles in stage 2 and whole Non-REM sleep. Basic spindle parameters showed 

trait-like characteristics and significant differences in within-pair similarity between 

the twin groups. 

 

In summary, the developed algorithms for automatic REM and sleep spindle 

detection provide several advantages: the elimination of human scorer biases and 
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intra-rater variability, investigation of structural organization of REMs, exact 

determination of fast and slow spindle frequency for each individual. Algorithms 

are fully automated and therefore well suited to score REM density and sleep 

spindles in large patient samples. In the second part of the study, sleep EEG 

analysis in MZ and DZ twins revealed a substantial genetic determination of both 

tonic and phasic REM sleep parameters. This complements previous findings of a 

high genetic determination of the Non-REM sleep power spectrum. Interestingly, 

smaller genetic effects and lower night-to-night stability were observed for fast 

spindles, especially in SWS. This is in line with recent hypotheses on the 

differential function of sleep spindle types for memory consolidation. 

 

The results from the presented studies strongly support the application of sleep 

EEG to identify clinically relevant biomarkers for psychiatric disorders. 
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Sleep is a highly complex global state of reduced activity and responsiveness, 

regulated by a circadian clock and characterized by its rapid reversibility. It is 

manifested at every level of biological organization: from the genetic and cellular 

levels to networks of cell populations and central neuronal systems (Pace-Schott and 

Hobson, 2002). An average human spends one-third of his life sleeping, with sleep 

time in mammals varying between 3 to 20 hours per day (Siegel, 2005). In mammals 

and birds, sleep can be divided into rapid eye movement (REM) sleep and non-REM 

(NREM) sleep. Functions of neuronal systems during sleep are monitored with 

electrophysiological techniques collectively termed polysomnography (PSG). A 

polysomnographic recording consists of electroencephalography (EEG), which 

records synchronized excitatory and inhibitory postsynaptic potentials in cortical 

neurons, electrooculography (EOG), which records eye movements and 

electromyography (EMG) which measures muscle activity. 

 

1.1 The physiology of human sleep 

The amount and architecture of sleep are age dependent. Neonates sleep around 18 

hours per day and 50% of their sleeping time is REM sleep. REM sleep 

preponderance decreases progressively as waking time increases until around 1.5 

hour during adulthood (see Figure 1.1). 
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Figure 1.1: The pattern of human vigilance states in a life span (Reprinted by permission from 

Macmillan Publishers Ltd: Nature. Hobson, Nat Rev Neurosci; 10:803–862, copyright 2009). 

 

1.1.1 Sleep regulation 

The sleep-wake cycle is modulated by two independent processes, the sleep 

homeostasis and the circadian rhythm. The characteristic aspect of the homeostatic 

process is its sleep/wake dependence. Homeostatic mechanisms counteract 

deviations from an average "reference level of sleep" (Borbély, 1981). Sleep pressure 

is at minimum after waking, increases during the wake period, reaches its maximum 

at bedtime and declines during sleep. The EEG correlate of sleep homeostasis is 

slow wave activity (SWA), which is defined as a signal power in the frequency range 

of 0.5 to 4.5 Hz. (Borbély, 1980). The second process, the circadian rhythm 

controlled by the endogenous circadian pacemaker, is located in the suprachiasmatic 

nuclei and is influenced by daylight. The intrinsic period of the human circadian 

pacemaker averages 24.2 hours (Czeisler et al., 1999).  

It has been shown that sleep homeostasis does not dependent on circadian rhythm. 

Shifting the circadian rhythm with bright morning light did not affect the time course of 

SWA (Dijk et al., 1989). It has also been shown that circadian rhythm does not 

dependent on sleep homeostasis. Subjective alertness of sleep deprived subjects 

showed a prominent circadian rhythm (Åkerstedt and Fröberg, 1977). 

http://www.nature.com/nrn
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The circadian rhythm and sleep homeostasis interact, thus forming the pattern of 

daily activity. The two-process model of sleep regulation which simulates the 

interaction between circadian rhythm and sleep homeostasis was first proposed by 

Borbély (1982) and later extended, forming also the basis for other models 

addressing the regulation of fatigue and performance (for example Åkerstedt et al., 

2004). In this model the homeostatic process (Process S) rises during waking and 

declines during sleep, whereas the circadian process (Process C) modulates two 

thresholds determining sleep onset (threshold H) and sleep termination (threshold L). 

A schematic representation of this model is illustrated in Figure 1.2. 

 

Figure 1.2: The two-process model of sleep regulation. Process S) rises during waking and declines 

during sleep. Process C modulates two thresholds determining sleep onset (threshold H) and sleep 

termination (threshold L). Interaction of S, H and L determines sleep onset and sleep termination 

(Statement of Use: These materials are included under the fair use exemption and are restricted from 

further use. Achermann, Aviat Space Environ Med; 75(3):A37–43 copyright 2004). 

 

1.1.2 Wake-sleep transition 

NREM sleep is regulated by the hypothalamus (as detailed in Szymusiak and 

McGinnty, 2008). Brain lesions in the anterior regions of the hypothalamus cause 

insomnia, whereas lesions in the posterior hypothalamus cause sleepiness (Von 

Economo, 1930). Furthermore, the anterior thalamus, the median preoptic nucleus 

(MnPN) and the ventrolateral preoptic (VLPO) region seem to play an important role 

http://www.asma.org/publications/asem-journal
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in promoting sleep. It has been shown that cells in these regions are mainly active 

during sleep (Sherin et al., 1996; Gong et al., 2000). Neurons in the VLPO are 

inactive during waking, whereas neurons in the MnPN are active in sleep-deprived 

animals. Therefore has been suggested that the VLPO is important for maintaining 

sleep stability and the MnPN controls the transition from wake to NREM sleep and 

mediates sleepiness (Szymusiak et al., 2007). Neurons in these regions contain the 

inhibitory neurotransmitter gamma-aminobutyric acid (GABA) (Gvilia et al., 2006). 

The preoptic area inhibits multiple arousal systems located in the brainstem and 

posterior hypothalamus (Sherin et al., 1996; Zardetto-Smith and Johnson, 1995) and 

conversely, the VLPO is inhibited by monoaminergic arousal systems (Chou et al., 

2002). This circuit contains mutually inhibitory elements which set up a self-

reinforcing loop, where the activity in one of the competing sites shuts down the other 

side. It is called the "flip-flop switch" (Figure 1.3) and can be compared to flip-flop 

circuits in engineering, since it creates fast changes, avoiding transitional states 

between sleep and wake (Saper et al., 2005). 

 

Figure 1.3: The flip-flop switch model of sleep / wake transitions. During sleep (A), the ventrolateral 

preoptic nucleus (VLPO) inhibits monoaminergic arousal systems, thereby relieving its own inhibition. 

This also allows it to inhibit the orexin (ORX) neurons, to further prevent monoaminergic activation. 

During waking (B) monoaminergic arousal systems inhibit VLPO. Orexin neurons stabilize the switch. 

eVLPO: extended ventrolateral preoptic nucleus, LC: locus coeruleus, TMN: tuberomammillary 

nucleus (Adapted by permission from Macmillan Publishers Ltd: Nature. Saper et al., Nature; 

437(7063):1257–1264, copyright 2005). 

http://www.nature.com/
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1.1.3 Sleep spindles generation 

In EEG recordings, sleep onset is identified by a first localized sleep spindle. Sleep 

spindles are bursts of rhythmical activity in the 10–16 Hz frequency range, with 

waxing and waning shapes lasting from 0.5 to 2.5 sec (Figure 1.4). 

 

Figure 1.4: Sleep spindle in human EEG (upper signal), the same signal in 0–1, 1–4 and 12–15 Hz 

frequency, respectively. Spindle is located at the point where increased activity in the 12–15 Hz 

frequency is visible (Steriade, 2000, Neuroscience by International Brain Research Organization 

reproduced with permission of Elsevier BV in the format reuse in a thesis/dissertation via Copyright 

Clearance Center). 

The mechanism of spindle generation was described by Steriade and colleagues 

based on observations in cats (as detailed in Steriade, 2000). The inhibition of 

brainstem neurons (glutamatergic, cholinergic and monoaminergic) with sleep onset 

starts a sequence of events leading to sleep spindles. Brainstem cholinergic neurons, 

when active, depolarize thalamocortical (TC) neurons and hyperpolarize thalamic 

reticular (RE) neurons (Curró Dossi et al., 1991; Hu et al., 1989). The decreased 

activity of brainstem neurons leads to hyperpolarization of TC and depolarization of 

http://www.journals.elsevier.com/neuroscience
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RE neurons. As a result, RE GABAergic cells fire and inhibit TC neurons. Inhibitory 

postsynaptic potentials in TC neurons result in rebound depolarizations. This process 

creates a loop and produces synchronized oscillations distributed to cortical areas, 

which are recorded as sleep spindles. The mechanism of spindle oscillations 

generation is illustrated in Figure 1.5. A similar process, but with higher levels of 

hyperpolarization, leads to slow oscillations (delta waves: 0.5–4 Hz) (Steriade et al., 

1991). 

 

Figure 1.5: The electrophysiological scheme of sleep spindle and delta waves creation (Steriade, 

2000, Neuroscience by International Brain Research Organization reproduced with permission of 

Elsevier BV in the format reuse in a thesis/dissertation via Copyright Clearance Center). 

http://www.journals.elsevier.com/neuroscience
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According to EEG studies there are two types of sleep spindles. The so-called fast 

spindles are mainly present in parietal regions, whereas slow spindles predominate 

in frontal brain areas. The average spindle peak in frontal areas is 11.5 Hz and in 

parietal areas 13 Hz (Werth et al., 1997). Interestingly, previous studies suggest that 

sleep spindles observed in animals correspond to fast spindles in humans (Contreras 

et al., 1997). There is growing evidence that the two types of spindles in humans 

have their sources in different regions of the brain. Low-resolution electromagnetic 

tomography (LORETA) demonstrated a distributed slow spindle source in the 

prefrontal cortex and a fast spindle source in the precuneus (Anderer et al., 2001), as 

illustrated in Figure 1.6. The localized cortical brain regions are directly connected 

with adjacent parts of the dorsal thalamus (Talairach and Tournoux, 1988), where 

sleep spindles are generated. 

 

Figure 1.6: LORETA images of spindle power at discrete frequencies for spindles with different scalp 

topography. FLOCAL: spindle visible only on frontal areas, PLOCAL: spindle visible only in parietal areas, 

F>C>P: spindle most visible in frontal and least visible in parietal area, F<C<P: spindle most visible in 

parietal area, F≈C≈P: equal distribution over the scalp (Anderer et al., 2001, Neuroscience by 

International Brain Research Organization reproduced with permission of Elsevier BV in the format 

reuse in a thesis/dissertation via Copyright Clearance Center). 

http://www.journals.elsevier.com/neuroscience
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High resolution EEG studies revealed that slow spindles show a dynamic topography 

primarily over the frontal cortex as well as variability between and within spindles. In 

contrast, fast spindles are topographically limited to the superior central and parietal 

cortex as well as consistent in amplitude and voltage propagation. Therefore, it has 

been proposed that slow spindles result from cortico-cortical activation following 

spindle initiation, while fast spindles reflect only cortico-thalamic activation (Doran, 

2003). In slow wave sleep, fast spindles are synchronized to the depolarizing slow 

oscillations up-state, whereas slow spindles occur mostly at the transition to the slow 

oscillations down-state and reveal a higher probability to follow fast spindles, rather 

than precede them (Mölle et al., 2011). Zygierewicz et al. (1999) also observed a 

fixed time delay between fast and slow spindles, with slow spindles following fast 

ones, and suggested that there might be some weak coupling between them, where 

the fast spindle "generator" occasionally drives the slow spindle "generator". 

1.1.4 REM sleep 

REM sleep (as detailed in Siegel, 2009a) is regulated by the pontine brainstem and is 

characterized by tonic and phasic parameters. Tonic parameters include high brain 

activation comparable to the wake state, theta waves produced in the hippocampus 

(John et al., 2004), and muscle atonia together with impaired thermo-regulation 

(Parmeggiani, 2003). Phasic REM parameters include ponto-geniculo-occipital 

(PGO) waves and rapid eye movements (REMs).  

Large parts of the brain, which are active during wake and inactive during NREM 

sleep, are again activated during REM sleep. It has been proposed that the 

difference between sleep and wake comes from a reciprocal discharge by two 

brainstem neuronal groups called REM-on and REM-off cells (Hobson et al., 1975). 
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REM-on cells are active during REM sleep and inactive during wake, whereas REM-

off cells are active during wake and inactive during REM sleep. REM-on cells are 

cholinergic neurons located in the pedunculopontine tegmental, and REM-off cells 

are serotonergic neurons of the dorsal raphe nucleus and noradrenergic neurons of 

the locus coeruleus (Datta et al., 2009). Therefore it is accepted that REM sleep is 

potentiated by a cholinergic mechanism and suppressed by an aminergic mechanism 

(Hobson, 2009). Presumably REM-on cells activate the pontine reticular formation 

(PFR), since it has been shown that microinjection of cholinergic compounds into 

PFR produces a state that resembles REM sleep (Greene et al., 1989). 

PGO waves are isolated electrical potentials with large amplitude. They originate in 

the pons, and it has been shown that the pons itself is sufficient to produce them 

(Matsuzaki, 1969). PGO waves propagate from the pons to the lateral geniculate 

nucleus and afterwards to the primary visual cortex located in the occipital lobe 

(Jouvet, 1962). PGO waves in the visual system trigger rapid eye movements 

(Nelson et al., 1983), but can also lead or follow the contraction of any muscle 

(Siegel and Tomaszewski, 1983), briefly disrupting muscle atonia. Events correlated 

with PGO waves are episodical and are therefore called phasic REM parameters. 

It seems that muscle atonia during REM sleep is achieved by activation of inhibitory 

regions in pons and medulla, which inhibit the locus coeruleus and the midbrain 

locomotor region (Mileykovskiy et al., 2000). 
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1.2 Sleep in the EEG 

 

Figure 1.7: Examples of various EEG states recorded from C4A1 derivation placed in the central brain 

area (Adapted by permission from Dr. Elisabeth Friess (Max Planck Institute of Psychiatry) copyright 

2007). 

 

1.2.1 Characteristics of EEG states 

The wake EEG (as detailed in Niedermeyer and DaSilva, 1999 and The American 

Academy of Sleep Medicine Manual, 2007) is characterized by desynchronized, high 

frequency and low amplitude (voltage) signal (Figure 1.7). The EEG is dominated by 

the beta rhythm (18–30 Hz), and high to medium levels of muscle tone are present in 

the electromyogram (EMG). When the eyes are closed, the subject is relatively 

inactive and relaxed (sleepy), synchronized alpha rhythm (8–13 Hz) occurs mostly in 

the posterior brain regions and muscle tone is moderate to low. Alpha waves show 

waxing and waning shapes (similar to sleep spindles), sinusoidal waveforms and 

amplitudes in a medium range of around 10 to 50 μV (Simonova et al., 1967). 
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Stage 1 is a state of transition between sleep and wake (Figure 1.7). Alpha rhythm 

disappears and theta activity (4 to 7 Hz) emerges. The background signal has low 

amplitude and mixed frequencies. Vertex waves may occur in central brain areas. 

They are characterized by a sharp 'V' shape, last for around 0.5 sec and have 

amplitudes above 100 μV. Slow-rolling eye movements are the next characteristic 

feature of stage 1. They are visible in the electrooculogram (EOG) as sinus waves 

with a period of around 2 sec. 

When the first sleep spindle is visible in EEG, it is interpreted as sleep onset and 

scored as stage 2. Muscle tone and overall EEG frequency are further decreased. 

Stage 2 is characterized by transient "graphoelements": sleep spindles (sleep 

spindles are described in section 1.1.3) and K-complexes (Cash et al., 2009). The K-

complex has the highest amplitude in frontal EEG derivations and is characterized by 

a short high amplitude (above 100 μV) positive peak followed by a slower, larger 

surface-negative complex with a peak around 350–550 msec with sleep spindles 

sometimes intermingled. Examples of K-complexes are illustrated in Figure 1.7 

(Stage 2). 

As EEG synchronization increases, the subject enters slow wave sleep (SWS) (also 

called "deep sleep") (Figure 1.7). In order to score a sleep epoch (usually defined as 

20 or 30 sec) as SWS, more than 20% of EEG must be occupied by delta waves 

(0.5–2 Hz). Delta waves have an amplitude of minimum 75 μV and predominate in 

frontal derivations. Sleep spindles are still present, however, due to massive 

occurrence of delta waves, it is harder to identify them in the EEG. SWS is still 

divided into stage 3 and stage 4 of NREM sleep; in stage 4 delta waves have to be 

present in more than 50% of the epoch. However, the AASM guidelines from 2007 

have suggested collapsing stage 3 and 4 into SWS. 
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Figure 1.8: The electrooculogram (EOG) trace with rapid eye movements during REM sleep. Rapid 

eye movements are marked with a dark grey lines. 

 

REM sleep is also called "paradoxical sleep", since it resembles the wake state in the 

EEG signal (Figure 1.7). The EEG signal is desynchronized and low-voltage with 

beta (18–30 Hz) rhythm, as during the wake state. Alpha waves (8–12 Hz) may occur 

and so-called 'sawtooth waves' are sometimes visible. Sawtooth waves are best 

visible in central derivations and have a frequency between 2 and 6 Hz. Muscle tone 

is absent during REM sleep, sometimes muscle twitches are visible in the EMG, but 

they are transient and last below 0.25 sec. Electrooculogram (EOG) traces show 

rapid eye movements, which have a rapid time course and appear simultaneously in 

both EOG channels (Figure 1.8). 

1.2.2 Sleep architecture 

 

Figure 1.9: An example of sleep architecture in a young healthy adult. 
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According to the European Sleep Research Society, during normal sleep, around 45–

55% of total sleep time consists of NREM sleep stage 2, 20–25% of REM sleep, 

around 20% of SWS and 5% of stage 1. Figure 1.9 shows a hypnogram exemplifying 

the typical sleep architecture of a young healthy person. Due to the repetitive 

occurrence of longer periods of NREM sleep followed by shorter periods of REM 

sleep we distinguish subsequent sleep cycles with an average length of 

approximately 90 min. Usually 4 to 5 cycles occur during the night (Billiard, 2003). 

The first part of the night consists mostly of NREM stage 2 and SWS with short REM 

sleep episodes. In the second part of the night REM sleep episodes are much longer 

and SWS is usually not present. 

 

1.3 Possible functions of sleep 

One of the obvious benefits of sleep in animals is energy conservation. Sleep 

increases the efficiency of behavior by reducing energy use and activity when it is not 

beneficial and as a result can be seen as an “adaptive state of inactivity” (Siegel, 

2009b). 

Sleep deprivation experiments in rats performed by Alan Rechtschaffen and 

colleagues (Rechtschaffen et al., 1989; 1995) emphasized the importance of sleep in 

mammals. Chronic sleep deprivation led to temperature changes, heat seeking 

behavior, increased food intake, weight loss and an increased metabolic rate. All 

animals died with a syndrome of caloric and thermal dyscontrol. These findings show 

that, at least in rats, sleep is necessary for maintaining body weight and body 

temperature. 

Sleep loss alters the immune function and sleep is disturbed during infectious 

diseases as well. Humans with rhinovirus infection (common cold) exhibit decreased 

total nocturnal sleep time and reduced sleep efficiency (Drake et al., 2000). On the 
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other hand, 64 hours of sleep deprivation in humans resulted in leukocytosis, i.e. 

increased natural killer cell activity and increased counts of white blood cells (Dinges 

et al., 1994). It has been proposed that the alterations in sleep architecture during 

infection facilitate the generation of fever, which promotes recovery (Imeri and Opp, 

2009). 

Very high levels of REM sleep until the first year of human life (see Figure 1.1) 

together with intense brain activation suggest that REM sleep strongly contributes to 

early brain-mind development. REM sleep may permit neuronal development 

according to the genetic program (Jouvet, 1978). It has been proposed (Hobson, 

2009) that the fundamental role of REM sleep is to provide a virtual reality model that 

is of functional use to the development and maintenance of waking consciousness. 

Sleep deprivation in humans influences a number of cognitive processes. 

Neuroimaging studies showed reduced metabolic activity after sleep loss in the 

prefrontal cortex, the anterior cingulate, the thalamus, the basal ganglia and the 

cerebellum. These brain regions are important for attention, information processing 

and executive control (Killgore, 2010). It is well documented that insufficient sleep 

leads to a decline in general vigilance and attention (Lim and Dinges, 2010) as well 

as to altered emotional processing, such as emotional perception, control, 

comprehension and expression (Walker and Van der Helm, 2009). 

There is good evidence from animal and human sleep studies that one function of 

sleep is to optimize memory consolidation (as detailed in Diekelmann and Born, 

2010). Significant benefits of sleep on memory are observed after night sleep as well 

as after shorter (60–90 min) naps (Mednick et al., 2003). In this context slow wave 

sleep (SWS) seems to consolidate primarily declarative memory processes (system 

consolidation), whereas REM sleep mainly supports procedural memory contents 

(synaptic consolidation) (Plihal and Born, 1997; Diekelmann and Born, 2010). It was 
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first found in rats that the spatio-temporal patterns of neuronal firing in the 

hippocampus during exploratory behavior or spatial tasks were reactivated in the 

same order during SWS (Wilson and McNaughton, 1994). Human brain imaging 

studies suggest that these sleep dependent reactivations lead to redistribution of 

hippocampal memory traces to the neocortex for long term storage (Gais et al., 

2007). It seems that the transfer of re-activated information between hippocampus 

and neocortex is supported by slow oscillations (SO), which synchronize thalamo-

cortical spindles and hippocampal sharp wave-ripples (SWR) (Diekelmann and Born, 

2010). 

A reactivation of hippocampal neural patterns occurs mostly during SWR (O’Neill et 

al., 2010). It was observed in rats that the suppression of SWR by electrical 

stimulation during the post-learning rest impaired formation of long-lasting spatial 

memories (Girardeau et al., 2009), suggesting a promoting role of hippocampal SWR 

in the memory 'replay'. Studies in human epilepsy patients show that, during sleep, 

that SWR activity is tightly (within msec) phase-locked to the troughs of parietal and 

parahippocampal spindles. On a timescale of seconds, ripple activity showed a 

continuous increase before the peak of these spindles and decreased thereafter, 

whereas slow spindles showed a less close relationship to SWR, following parietal 

and parahippocampal spindles at a variable delay of up to 0.5 sec (Clemens et al., 

2011). 

Increased spindle density and activity has been observed in humans during NREM 

sleep and SWS after both declarative and procedural learning (Gais et al., 2002; 

Morin et al., 2008). In some studies these increases were positively correlated with 

retention (Nishida and Walker, 2007), especially concerning sleep spindles in SWS 

(Cox et al., 2012). Thalamo-cortical spindles were shown to be relevant for 
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information transfer to the neocortex. They induce long-term potentiation (Rosanova 

and Ulrich, 2005), which is important for synaptic plastic processes (this relates to 

fast spindles occurring during the depolarizing SO up-state as a phase of neuronal 

excitability). Interestingly, Mölle et al. (2009) observed that spindle activity occurs 

more in the depolarizing SO up-state after a learning episode. These spindles were 

later recognized as fast spindles (Mölle et al., 2011). Taken together, fast spindles 

together with sharp wave-ripples might facilitate the memory-related information 

transfer from the hippocampus to the neocortex, while slow spindles might be related 

to a cortico-cortical cross-linking of transferred information with the prefrontal circuitry 

(Mölle et al., 2011). 

It is assumed that after integration of newly encoded memories into the existing 

networks in NREM sleep, REM sleep promotes strengthening and stabilization of 

memory traces, supporting synaptic consolidation (Diekelmann and Born, 2010). 

Local processes of synaptic consolidation in REM sleep might be facilitated due to 

disengagement of memory systems (Robertson, 2009) and overall 

desynchronization, reduction of coherence between different brain regions and 

increase of noise. In addition, plasticity-related immediate early gene activity (IEG) is 

upregulated in REM (Ribeiro et al., 2002). Putatively, the high cholinergic activity 

during REM sleep (Teber et al., 2004) also supports the maintenance of long-term 

potentiation in the hippocampus-medial prefrontal cortex pathway (Lopes Aguiar et 

al., 2008), a main route for memory transfer between hippocampus and neocortex in 

SWS (Gais et al., 2007). 
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1.4 Fingerprint characteristics of the sleep EEG 

1.4.1 Sleep structure 

A trait can be established by demonstrating that the inter-individual differences are 

significant, stable over time and robust when manipulated experimentally (Van 

Dongen et al., 2005). It has been shown that many features of human EEG sleep 

recordings have trait-like characteristics. Tucker et al. (2007) investigated inter-

individual variability and stability of standard sleep structure parameters, including 

multiple baseline and recovery nights after sleep deprivation. The variables included 

sleep latency, efficiency, total sleep time, SWS and REM latency, durations of all 

sleep states and number of sleep cycles. Inter-individual differences quantified by 

means of intraclass correlation coefficients (ICC) were considerable for all variables 

except SWS latency. 

 

1.4.2 EEG spectral power topography 

Finelli et al. (2001) compared baseline night to recovery night after sleep deprivation 

and showed that topographical distribution maps of EEG power over scalp have 

“fingerprint” characteristics. NREM sleep power distributions were derived from 27 

EEG derivations and five distinct frequency bands in the range from 2 to 25 Hz. For 

each band, a power map was represented by a vector with 27 power values and was 

normalized by its mean. The authors observed the response to sleep deprivation in 

enhanced low frequency EEG power (up to 11 Hz) and decreased power in higher 

frequencies with the strongest drop in 11–16 Hz sigma activity. However, the 

comparison of individual maps for baseline and recovery sleep revealed very similar 

patterns within each frequency band. Differences between the subjects were much 

higher than intra-individual differences due to sleep deprivation. The authors 
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suggested that highly individual topographic patterns may be related to anatomical 

differences in the human cerebral cortex. 

 

1.4.3 EEG spectral pattern 

In addition to the EEG spectral power topography, the frequency spectrum also has 

individual patterns. First, De Gennaro et al. (2005) focused on a range of 8.0–15.5 

Hz (sigma range) EEG frequencies in NREM sleep, which includes sleep spindles. 

Participants spent 6 nights in the sleep laboratory under diverse experimental 

conditions, including awakenings, nights with SWS deprivation and, at the end, a 

recovery night. It was found that each individual is characterized by an individual 

shape of the sleep EEG power spectra in the sigma range and that this shape 

remains robust across nights under varying experimental conditions. This finding was 

further extended by Buckelmüller et al. (2006) who investigated two pairs of baseline 

nights separated by 1 month. 8 subjects participated in the experiment and the 

analyzed EEG signal was recorded in the central area of the brain. The hierarchical 

cluster analysis performed on the EEG power spectrum within 0.75–20 Hz range 

grouped the nights of each subject into a distinct cluster when analyzing REM as well 

as NREM sleep. Though a stronger separation between the subjects was observed 

for NREM sleep, the EEG power spectrum of both sleep phases showed strong trait-

like individual differences. 

A similar experiment was performed in order to investigate the EEG changes during 

adolescent development (Tarokh et al., 2011). EEG was recorded during two 

consecutive nights in 9–10 year-old children as well as in 15–16 year-old teens. EEG 

recordings were repeated in the same subjects 1.5–3 years later. EEG frequencies in 

0.6–16 Hz range were investigated and the stability of the EEG across development 

was assessed. Both children and teens showed high stability when considering 
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absolute EEG power in separate frequency bins. However, the hierarchical cluster 

analysis failed to separate properly recordings that were several years apart. Only 

53% to 77% subjects clustered depending on the sleep state (NREM or REM sleep) 

and the cohort (children and teens). The authors suggested multiple explanations for 

this observation. First, the number of participants was increased (19 children, 26 

teens) when compared to Buckelmüller et al. (2006), making clustering more difficult. 

Second, REM sleep spectra may be more difficult to cluster since the REM sleep 

spectral pattern is less characteristic. Finally, REM sleep lasts for a shorter period of 

time than NREM, providing less signal for spectral analysis and consequently a less 

stable measure. In NREM sleep the peak frequency in the sigma band (10–16 Hz 

frequency range in which sleep spindles are visible) was found to be increased 

between assessments in a majority of participants in both groups. 

 

1.5 EEG in twin studies 

1.5.1 Sleep structure 

Twin studies compare the differences in the phenotypic resemblance in monozygotic 

(MZ) and dizygotic (DZ) twins and help to provide an estimate on the heritability of a 

certain phenotype. Already Geyer (1937) observed that a number of sleep 

parameters in MZ twins is more similar than in DZ twins. A possible genetic trait of 

sleep structure was suggested by Hori (1986), who studied adolescent twin pairs and 

found that measures related to the REM sleep correlated in MZ twins. However, the 

study sample was very small (4 MZ, 3 DZ pairs). Further evidence of possible genetic 

influence on sleep was shown by Webb and Campbell (1983) in young adult twins, 

where awakening measures, stage changes, and REM sleep duration were 

significantly correlated in MZ twins, but not in DZ twins. Linkowski performed two 

studies on the heritability of sleep EEG in adult male twins (Linkowski et al., 1989; 
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1991). In the first study cohabitation was found to be a confounding factor that may 

have a synchronizing effect on sleep architecture, therefore the second study 

focused on twins living apart. In addition to standard sleep architecture parameters, 

rapid eye movement (REM) density (the average number of rapid eye movements 

per REM sleep epoch) was investigated. Both studies found a significant genetic 

effect on the duration of stage 2, slow wave sleep (SWS) as well as on REM density. 

Interestingly, the authors were not able to confirm the genetic effect on REM sleep 

suggested in the previously mentioned studies (the effect was positive in the first 

study but confounded by cohabitation). The sleep parameters showing the best night-

to-night stability (in this case SWS duration) were reported to have the strongest 

genetic component. 

 

1.5.2 Spectral composition in wake EEG 

Spectral composition of the background wake EEG has been shown to be one of the 

most heritable human traits. Heritability of absolute power in the traditional frequency 

bands (from delta to beta) ranges from 55% to 90% in young twins (Van Baal et al., 

1996; 209 investigated twin pairs) and from 70% to 90% in adolescent twins (Van 

Beijsterveldt et al., 1996; 213 investigated pairs). Smit et al. (2005) performed large 

studies (n=142 MZ, n=167 DZ pairs) in adult twins which confirmed this finding and 

suggested an additive genetic effect in all analyzed EEG frequencies (1–25 Hz). The 

results of genetic correlations performed between the EEG frequency bands 

suggested that a significant proportion of the heritable variance in all frequency 

bands may be attributed to a common genetic source. 
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1.5.3 Spectral composition in NREM sleep EEG 

The twin study of our own laboratory on heritability of NREM sleep EEG (Ambrosius 

et al., 2008, n=35 MZ and n=14 DZ twin pairs) showed significant genetic effects in 2 

to 13 Hz frequency and up to 18 Hz when DZ twins were compared only to a 

subgroup of 14 MZ twin pairs matched for age and gender. Regarding sleep 

architecture, the study identified significant genetic influences on the duration of 

stage 3 and REM sleep. In addition, marginal genetic effects were observed for the 

duration of stage 4. The authors suggested that the significant genetic effect on the 

common EEG frequency range during both wakefulness and NREM sleep could be 

the consequence of a common genetically driven neuronal mechanism which 

generates these EEG oscillations irrespective of the vigilance state. In another twin 

study performed on young adults, De Gennaro et al. (2008) compared n=10 MZ and 

n=10 DZ twins. The authors focused on background NREM EEG in the 8–15.75 Hz 

frequency range and analyzed baseline and recovery night after sleep deprivation. 

No genetic effects were observed in any of the sleep architecture parameters, since 

sleep architecture was strongly affected by sleep deprivation during the recovery 

night. However, sleep deprivation did not affect the overall very strong genetic effect 

on the investigated EEG frequency spectrum, resulting in 96% heritability estimation 

of NREM sleep background EEG power. 

 

1.6 Genetic effects on sleep and EEG 

In summary, results of twin studies show significant genetic effects on only some 

parameters describing sleep organization and very strong heritability estimates on 

wake and NREM sleep background EEG. The genetic components of sleep EEG 

patterns is further supported by the identification of genes which influence sleep and 

EEG. Certain gene polymorphisms and genomic loci have been suggested to 
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influence circadian rhythm and a number of sleep disorders, e.g. narcolepsy, sleep 

apnea, insomnia and restless legs syndrome (as detailed in Taheri and Mignot, 2001; 

Dauvilliers et al., 2005). An interesting finding concerning the genetics of sleep EEG 

was reported by Tafti et al. (2003) who found that, in mice, only one gene, Acads 

(coding for short-chain acylcoenzyme-A dehydrogenase), controls the peak 

frequency of theta oscillations (5–9 Hz) during REM sleep. Deficiency in short-chain 

acylcoenzyme-A dehydrogenase in mice caused slowing in theta frequency. Acads 

was highly expressed in the hippocampus and slow-theta mice showed poor memory 

performance. In humans, Vogel and colleagues (Anokhin et al., 1992; Steinlein et al., 

1992) studied a rare variant (around 5% of population) of wake EEG, so called low 

voltage EEG. In addition to low voltage, the EEG of these subjects is characterized 

by a lack of synchronized alpha activity in occipital regions during wakefulness with 

closed eyes. After focusing on family studies the authors localized the putative 

genomic region determining this phenotype to the human chromosome 20q. 

 

1.7 Sleep EEG and psychiatric diseases 

Associations between sleep alterations and psychiatric diseases are frequently 

observed phenomena, as already suggested by Emil Kraepelin (1883). 80% of 

patients suffering from depression or schizophrenia report sleep problems. This is not 

surprising, since these disorders commonly affect neurotransmitter systems 

regulating sleep and circadian rhythm (as detailed in Wulff et al., 2010). 

 

1.7.1 Schizophrenia 

Sleep abnormalities in schizophrenia include shorter REM latency (minutes after 

sleep onset until onset of REM sleep), reduced REM density and decrease in SWS 
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(Cohrs, 2008). Regarding quantitative EEG analysis, Keshavan et al. (1998) have 

shown reduced delta (1–4 Hz) and theta (4–8 Hz) activity. 

Regarding sleep spindle analysis, findings are inconsistent. Hiatt et al. (1985) 

reported increased spindle counts in five unmedicated schizophrenia patients. On the 

other hand, Van Cauter et al. (1991) as well as Poulin et al. (2003) found no 

differences in spindle parameters in studies of n=9 and n=11 schizophrenia patients, 

respectively. However, data provided by Ferrarelli et al. (2007) based initially on n=15 

medicated schizophrenia patients and then further extended to n=49 patients 

(Ferrarelli et al., 2010) show a strong decrease in all spindle parameters (amplitude, 

duration, number and integrated activity) in schizophrenia patients in both slow and 

fast spindles. The authors explained the differences between their own findings and 

previous studies by the differences in sample size, EEG assessment and spindle 

detection methods. Recently, Wamsley et al. (2012) reproduced these findings, 

reporting reduced spindle numbers, density and coherence in schizophrenia patients. 

 

1.7.2 Affective disorders 

A number of sleep EEG abnormalities have been reported in patients with depression 

as well as in animal models of depression (as detailed in Steiger and Kimura, 2010). 

The converging evidence is that elevated REM sleep is a characteristic sleep 

alteration in depression. Various approaches using rat and mice models for 

depression consistently showed increased amounts of REM sleep in the animals 

(Dugovic et al., 1999; Touma et al., 2008). Humans with depression show a reduced 

amount of SWS, shortened REM latency (minutes after sleep onset until onset of 

REM sleep) and elevated REM density (measure for the amount of REMs in REM 

sleep) (Armitage, 2007). REM density seems to be an especially sensitive parameter. 

Studies in human subjects between 18 and 65 years demonstrated that REM density 
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measures did not vary with age and were continuously increased in depressed 

patients (Lauer et al., 1991). Elevated REM density was also found in healthy 

subjects with a high risk for affective disorders due to the positive family history for 

the disease. Therefore, REM density has been proposed as a vulnerability marker for 

affective disorders (Lauer et al., 1995). The Munich Vulnerability Study on Affective 

Disorders in high risk subjects (HRP) showed that REM density was stable over time 

and significantly increased in HRPs when compared to healthy control subjects 

during the first examination as well as after 3.5 years (Modell et al., 2002). During the 

follow-up period, 20 HRPs developed an affective disorder and their sleep EEG 

showed an increased REM density compared to the control group (Modell et al., 

2005). The authors concluded that REM density is predictive for the onset of an 

affective disorder and recommended this parameter as the endophenotype of these 

diseases. Interestingly, the observed variability in EEG sleep measures in depressed 

patients may be partly confounded by latent bipolar illness. Rao et al. (2002) reported 

a potential difference between sleep EEG measure between depressed patients with 

unipolar disease course and patients who converted bipolar disorder. In this study, 

original data from subjects who met the criteria for unipolar major depression were 

re-investigated after 7 years. Depressed subjects with a unipolar course showed 

reduced REM latency, higher REM density, and more REM sleep compared to 

depressed subjects who converted to bipolar disorder and controls. 

Regarding the differences in sleep spindle activity between depressed patients and 

control subjects, the current findings are not consistent. De Maertelaer et al. (1987) 

reported significantly lower spindle activity in depressed patients than in control 

subjects, Lopez et al. (2010) also reported lower spindle activity in both young 

subjects with a high-risk for depression and already depressed young subjects. 

Conversely, Ferrarelli et al. (2007) found no differences in spindle parameters 
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between depressed and control participants. Plante et al. (2012) reported increased 

spindle density, amplitude and duration in depressed females for both frontal (slow) 

and parietal (fast) spindles, in contrast to a decrease or no differences in spindle 

parameters of depressed males. 

 

1.8 Aim of this study 

In view of findings reporting the importance of REM sleep abnormalities in affective 

disorders, growing evidence for sleep spindle reduction in schizophrenia as well as 

inconsistent findings regarding spindle activity in depression, the first goal of the 

present work was the optimization of current EEG data analysis by developing the 

automatic algorithms, which would robustly detect rapid eye movements and sleep 

spindles. In the second part of the project, the developed methods were applied to 

sleep EEG data from a classical twin study in order to identify genetic effects on 

phasic REM sleep parameters, background REM sleep EEG, sleep spindles and 

their trait-like characteristics. The overall aim of the present work was to significantly 

improve the current methods of identifying clinically relevant biomarkers in psychiatric 

disorders. 
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2.1 Signal processing tools 

2.1.1 Discrete Fourier transform 

Spectral analysis was applied to analyze background sleep EEG in twin data (results 

section 3.2). The discrete Fourier transform (DFT) converts the time series x  of 

length N  into the frequency domain (as detailed in Oppenheim, 2006) using the set 

of complex sinusoids:  iei  sincos . DFT is defined as: 







1

0

/2)(
N

n

Nkni

nexkX    (1) 

In this equation, )(kX  is a complex number with information on amplitude and phase 

of frequency, k , in the time series, x , where n  is the time point in this series. The 

great advantage of DFT is the existence of algorithms called fast Fourier transform 

(FFT) for very fast DFT computation. In the current work, all analyzed EEG power 

spectra were computed using the FFT. In order to compute power frequency 

spectrum for a chosen EEG fragment, FFT was performed using a 4 sec sliding 

window (0.25 Hz frequency resolution) with a 1 sec shift. The resulting power 

spectrum was the mean power spectra over all windows. 

 

2.1.2 Continuous wavelet transform 

Wavelet transform was applied in the sleep spindle detector (results section 3.3.1). 

Discrete Fourier transform (DFT) computed over long fragments of EEG signal 

provides a good estimate of the frequency power spectrum. Sleep spindles (see 

section 1.1.3) have certain frequencies (10 to 16 Hz) and their activity is visible as a 

peak in the NREM sleep power spectrum. Using DFT with a short time window, it is 
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possible to detect such events and indeed some algorithms for sleep spindle 

detection using FFT already been published (Huupponen et al., 2007). However, 

DFT contains certain shortcomings, which prevent it from being successfully applied 

for the detection of short, specific elements in the EEG, such as sleep spindles 

whose length may vary between 0.5 and 2.5 sec. The shortcomings are threefold. 

Firstly, when computing DFT, the window of predefined length makes it difficult to 

localize the event exactly in time. The second drawback is the fact that DFT returns 

the exact estimation of frequencies distribution only when the analyzed signal 

consists of perfect sinusoids. However, the EEG signal is nonlinear and non-

stationary. In this case the frequency spectrum obtained from DFT includes 

additional frequencies, which do not exist in the real signal. This is especially 

significant in cases of large non-stationarities in the EEG signal such as K-complexes 

(see section 1.2.1), where sleep spindles could be left undetected due to strong 

activities in other frequencies. The last important drawback is the fact that although 

the shape of sleep spindles is known, it is not possible to take advantage of it while 

using the DFT. Therefore, in order to detect sleep spindles the continuous wavelet 

transform (CWT) was applied (Addison, 2002). CWT is the integral of the product of 

the signal, )(tx , with a predefined function chosen from the family of wavelets called 

the “mother wavelet” )(t . The mother wavelet can be dilated according to the 

frequency of interest using the scale parameter a  and shifted across the signal using 

the location parameter b . CWT is defined as: 
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Where a/1  is a normalization parameter which assures that each wavelet at each 

scale has the same energy. The wavelet is then shifted across the signal using the 
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parameter b in order to compare it with all signal fragments. As a result, CWT 

localizes in time and frequency the signal components, which have a structure and 

frequency similar to the mother-wavelet, with a scale a  used in the analysis. The 

CWT method is more expensive computationally than the FFT. However, CWT offers 

high temporal and frequency resolution, and furthermore provides a number of 

wavelets which capture the sleep spindle characteristics. Therefore wavelet 

transform has been widely used in spindle detection algorithms (Latka et al., 2005; 

Wamsley et al., 2011) as well as in methods for very detailed analysis of within-

spindle components (Zygierewicz et al., 1999). In the current work, the Morlet 

wavelet showed in Figure 2.1 was chosen for spindle detection. Morlet wavelet used 

in CWT follows the equation: 
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0f  is the central frequency of the sinusoid inside the Morlet wavelet and for the sake 

of spindle detection its value has been set at 2, since this wavelet greatly resembles 

the form of expected sleep spindles. 
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Figure 2.1: Morlet wavelet with central frequency 20 f  used in the analysis. Presented wavelet 

corresponds to 10 Hz frequency. 

 

2.2 Twin study 

The author of the current work did not participate in acquisition of study sample. EEG 

sleep recordings used for the current study were collected and already described by 

Ambrosius et al. (2008). Authors of the previous study analyzed the heritability of 

sleep architecture and background EEG in NREM sleep. The details of the 

participants, study parameters, and technical details of EEG recordings have all been 

previously described by Ambrosius et al. (2008). These details are cited in 

parenthesis and marked in italics font. 

 

2.2.1 Study sample 

From Ambrosius et al., 2008: “We recruited 35 pairs of MZ (mean ± SD: 24.4 ± 5.5 

years; 17–43 years, 17 male pairs, 18 female pairs) and 14 pairs of DZ twins (mean 

± SD: 22.5 ± 2.7 years; 18–26 years, 7 male pairs, 7 female pairs). All twin pairs were 

raised together; 16 of the MZ and 10 of the DZ twin pairs lived together at the time of 
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the examination (cohabitation). The twins underwent extensive physical, psychiatric, 

and laboratory examinations including hematological, virological, clinical chemical, 

endocrinological, electroencephalographic, and electrocardiographic tests, to exclude 

acute and chronic disease. We also excluded subjects who had received any medical 

treatment in the 3-month period before the study and who had either a personal or a 

family history of psychiatric disorders, including alcohol and drug abuse, current or 

recent stressful life events, sleep disturbances, shift work, or a recent transmeridian 

flight. The subjects were asked to adhere to a regular sleep-wake schedule at least 1 

week before the investigation and were not allowed to drink alcohol or caffeine 

containing beverages the night before and on the days of the sleep recordings. Twin 

zygosity was determined by using five highly polymorphic short tandem repeat loci as 

described by Becker et al. (1997) plus three additional markers of the Combined 

DNA Index System (CODIS) profiling set (D16S539, D18S51, D7S820). Genotype 

concordance in these markers is associated with a 99% probability that the twin pair 

is monozygotic.” 

 

The current analysis was performed on the second and third recording night. The first 

night was excluded due to a possible confounding effect of adaptation to recording 

conditions in the sleep laboratory. When recordings of each subject were compared 

night-wise, high differences in signal amplitude over whole frequency spectrum 

between two nights were observed in three subjects. Since this was a technical 

artifact (difference in EEG amplitude could result from wrong electrode placement), 3 

MZ twin pairs had to be excluded. All presented results have been obtained from the 

remaining 32 pairs of MZ twins (23.8 ± 4.8 years (mean ± SD); range: 17–43 years, 

16 males, 16 females) and 14 pairs of DZ twins (22.1 ± 2.7 years; range: 18–26 
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years, 7 males, 7 females). 15 of 32 MZ and 10 of 14 DZ twin pairs lived together at 

the time of the examination. 

 

2.2.2 Experimental design 

From Ambrosius et al., 2008: “Psychiatry in Munich. The experimental protocol was 

approved by the Ethics Committee for Human Experiments of the Bayerische 

Landesärztekammer (Munich, Germany). Written informed consent was obtained 

from all participants, after the procedures had been fully explained. The subjects 

spent 3 consecutive nights in our sleep laboratory, where the first night served for 

adaptation and exclusion of sleep disturbances. In almost all cases, the twin partners 

were recorded at the same time.” 

 

2.2.3 EEG recording 

From Ambrosius et al., 2008: “Polysomnographic recordings (Schwarzer, Munich, 

Germany) were performed according to the international 10-20 electrode system 

(FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, all referenced against the contralateral 

ear lobe), with an electrooculogram, a chin electromyogram, and a three-lead 

electrocardiogram. The sampling rate was 250 Hz, amplification 70 μV, and time 

constant .3 sec, filtering at .53 Hz (3dB/octave) and 70 Hz (12dB, octave), 

respectively. Polysomnographic recordings were visually scored in 30-sec epochs 

according to the guidelines of Rechtschaffen and Kales (1968) by experienced raters 

unaware of the study protocol. Recordings of the twin partners were scored by the 

same rater.” 
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Figure 2.2: The setup used for twins EEG sleep recordings. The EEG electrodes used for the 

recording (FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2) are marked with a yellow color. The EEG 

electrodes on the left side of the scalp were referenced to right ear lobe (A2) and on the right side to 

the left ear lobe (A1). The EOG electrodes (T1 and T2) are marked with a red color. F7, F8 and T3 are 

chin electromyogram electrodes used for muscle monitoring (Adapted by permission from Luise Vogel 

(Max Planck Institute of Psychiatry) copyright 2007). 

 

2.2.4 EOG recording 

These data were acquired in the course of the study performed by Ambrosius et al., 

2008 but were not part of the publication. Electrooculographic (EOG) montage was 

performed according to Rechtschaffen and Kales (1968) and is illustrated in Figure 

2.2. In this two channel montage, one electrode is placed 1 cm above and slightly 

lateral to the outer canthus of one eye. The second is placed 1 cm below and slightly 

lateral to the outer canthus of the other eye. Both electrodes were referenced to the 

left mastoid electrode. The sampling rate for the EOG was 250 Hz and it was low- 

and high-pass filtered at 30 Hz and 0.095 Hz (time constant 16.75 sec, 12 

dB/octave), respectively. 
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2.2.5 EEG spectral composition 

From Ambrosius et al., 2008: “For the present analysis we selected the EEG data 

from the central derivation C3/A2 of the third recording night (second night in two 

pairs). The EEG of non-REM sleep (stages 2, 3, 4) was submitted to Fourier 

transformation with an in-house software. Power spectra were derived from a 4-sec 

window, shifted for 1 sec, resulting in a resolution of .25 Hz. The resulting 30 spectra 

were averaged per epoch of 30 sec. The lowest bins (.25, .5 Hz) were excluded, 

owing to the filtering procedures. For analysis of frequency bands, the power was 

cumulated across the δ (0.75–4.5 Hz), θ (4.75–7.75 Hz), α (8.0–11.75 Hz), σ (12.0–

15.75 Hz), β1 (16.0–25.0 Hz), β2 (25.25–35.0 Hz), φ (35.25–45.0 Hz), including a 

subdivision of the σ range into α/σ (10.0–11.75 Hz), low σ (12.0–13.75 Hz) and high 

σ (14.0–15.75 Hz).” 

 

The data from spectral analysis performed by Ambrosius et al. (2008) were not 

reused. However, the Fast Fourier Transform was performed using a sliding window 

of the same size and a shift resulting in the same frequency resolution. Spectral 

analysis for the current work was performed for both, REM and NREM sleep for the 

second and third recording night. Fragments with artifacts were excluded prior to 

spectral analysis using an automatic procedure (based on high EEG signal 

amplitudes as well as high activity in 0.75–3 Hz and 25–45 Hz) followed by visual 

inspection. 

Genetic variance analysis and intraclass correlation coefficient results from the left 

hemisphere (derivation C3A2) are presented in the results section, whereas results 

from the right hemisphere (derivation C4A1) are presented in the supplementary 

material. 
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2.2.6 Sleep spindle parameters 

The group of sleep spindle parameters chosen for heritability analysis consisted of  

length, amplitude and frequency, which describes basic spindle characteristics, and 

temporal parameters of spindle occurrence. The number of spindles in a fragment of 

interest was the first parameter under analysis. Thereafter the spindle density, 

defined as the average number of spindles in one sleep epoch, was assessed. It has 

been shown that spindle density increases after both, declarative and procedural 

learning (Gais et al., 2002 and Morin et al., 2008) and that overnight verbal memory 

retention is highly correlated with the number of sleep spindles (Clemens et al., 

2005). Furthermore, a possible sleep spindle abnormality has been reported  in 

depressed females by Plante et al. (2012), who observed increased spindle density 

in comparison to healthy subjects. 

The last examined spindle parameter was integrated spindle activity. It is defined as 

the average sum of all detected spindle amplitudes in one sleep epoch. Integrated 

spindle activity was of interest since it was found that in schizophrenic patients 

spindle number, amplitude and length were all significantly reduced, but the strongest 

decrease was observed for the integrated spindle activity (Ferrarelli et al., 2007). 

 

The source of slow spindles is localized in the prefrontal cortex and that of fast 

spindles in the precuneus (Anderer et al., 2001). As a consequence, slow spindles 

are the most prominent in frontal EEG derivations and it is the best place to measure 

them precisely, while the parietal EEG derivations are the most suited to measure 

fast spindles. The additional advantage of EEG channels distinction, when separating 

slow and fast spindles, is the fact that fast spindles are suppressed in the signal 

received by frontal derivations and slow spindles are suppressed in parietal 

derivations. As a result the probability of spindle misclassification is highly 
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decreased. Therefore slow sleep spindles were analyzed in signal from frontal EEG 

derivations (F3A2, F4A1) and fast spindles in parietal EEG derivations (P3A2, P4A1). 

In central EEG derivations both fast and slow sleep spindles are present. Therefore 

central EEG derivations (C3A2, C4A1) were used to analyze general spindle activity, 

i.e. all spindles detected in spindle frequency range (localization of individual spindle 

frequency range is described in section 3.3.1.4) without distinction between slow and 

fast ones. Separate analysis was done for whole NREM sleep as well as stage 2 and 

slow wave sleep (SWS) separately. 

 

Two-way repeated measures analysis of variance (rANOVA) for factors night and 

hemisphere revealed no effect of night as well as no night:hemisphere interaction. 

However, significantly higher amounts of spindles (number of spindles: F(1, 

91)=21.880, p<.001, spindle density: F(1, 91)=22.242, p<.001) as well as significantly 

longer spindles in the left hemisphere were found (average spindle length: F(1, 

91)=24.591, p<.001). Slow spindle amplitude was significantly higher in the right 

hemisphere (F(1, 91)=19.998, p<.001) and fast spindle amplitude was significantly 

higher in the left hemisphere (F(1, 91)=7.388, p<.008). Therefore, the mean of two 

nights were used for heritability estimations, but each hemisphere was analyzed 

separately. Genetic Variance Analysis and Intraclass Correlation Coefficient results 

from left hemisphere are presented in the results section, whereas results from right 

hemisphere are presented in the supplementary material. 

 

2.2.7 Phasic REM sleep parameters 

REM sleep parameters designated “phasic parameters” were chosen for heritability 

analysis, and include all parameters connected with rapid eye movement activity 

during REM sleep. Rapid eye movements (REM) were of special interest because 
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increased REM density was proposed as an endophenotype (Lauer et al., 1995) and 

was shown to be a vulnerability marker for affective disorders (Modell et al., 2005). 

To-date, assessment of REM activity at the Max Planck Institute of Psychiatry has 

been based on visual scoring. This is a very tedious task, time-consuming task. 

Therefore, instead of counting all observed REMs, REM activity was always 

assessed by visual scorers as the number of 3-sec mini-epochs containing at least 

one REM. Visual scoring using with this method is faster and it was sufficient to 

observe elevated REM density in depressed patients. However, with the new REM 

detector presented here it is possible to add REM activity measures with all detected 

REMs considered. Counting each REM separately could provide more information 

about REM activity and could influence the estimations of heritability. Therefore, in 

order to compare the REM activity assessed using the “standard” REM assessment 

method to the REM activity assessed using each REM count, the estimates of 

genetic regulation were computed for both REMs quantification methods. In the 

results section, ‘3sRA’ refers to the REM activity computed as the total number of 3-

sec mini-epochs containing at least one REM, whereas ‘allRA’ refers to the total 

number of all detected REMs. REM density, the parameter of special interest, was 

calculated as the average REM activity per one epoch of REM sleep. REM density 

obtained from 3sRA is designated ‘3sRD’, and that from allRA as ‘allRD’. 

Generally elevated REM density is not the only abnormality of REM sleep in 

depressed patients. In healthy subjects, REM sleep pressure rises during the course 

of the night and manifests as a lengthening of REM sleep episodes within successive 

sleep cycles. Patients with depression show increased REM sleep pressure from the 

beginning of the night, which results in a decreased time between sleep onset and 

the first REM sleep episode (REM latency) as well as increased REM density in the 

first sleep cycle (Lauer et al., 1991). Therefore, the time course of REM density 
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during the night was also of interest and the heritability estimations of REM density 

were performed for the whole night, for each of the first three sleep cycles as well as 

for each third of the night. 

 

Lastly we were interested in the organization of rapid eye movements. It has been 

observed that REM organization develops during the early stage of human 

development. Clusters of REMs were demonstrated to increase in infants across the 

first 4 months of life, reaching a stable level thereafter. The amount of REMs with 

respect to REM density was shown, however, to further increase (Ktonas et al., 

1990). Becker and Thoman (1981) reported that number of intense rapid eye 

movement periods (so called REM storms) measured at 6 months of age correlated 

negatively with mental development at 1 year. When comparing healthy young 

subjects to elderly subjects, there is no difference in REM density, however, 

clustering properties of REMs decrease with aging (Ficca et al., 1999). In order to 

investigate the grouping of REMs into clusters, REM burst was defined as a 

sequence consisting of a minimum of three REMs, with a maximum time frame 

between consecutive REMs of two seconds. The organization of REMs into bursts 

was evaluated with 3 parameters: the number of all detected REMs inside REM 

bursts (RinB), all detected REMs outside REM bursts (RoutB) as well as the 

percentage REMs in burst state (RinB%). 

 

2.2.8 Genetic variance analysis 

Genetic variance analysis was applied to estimate genetic effects in twin sample 

(results sections 3.1, 3.2, 3,3.2, 3.4.2). The study sample of 32 MZ twin pairs and 14 

DZ twin pairs was large in comparison to other EEG sleep studies. However, this size 

was insufficient to reliably decompose the observed inter-individual variation amongst 
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the studied twins into additive genetic variation, nonshared environmental variation 

and dominant genetic or shared environmental variation using Structural Equation 

Models. Therefore, we rather focused on estimating whether the observed 

differences in phenotypic variation between MZ and DZ twins, which in the applied 

classical twin model should be the result of higher genetic differences amongst DZ 

twins, is significant. In order to estimate genetic variance from the twin data, a 

method proposed by Christian et al. (1974; 1987) was applied. This method is based 

on the general model for genetic variance estimation from twin data (Haseman and 

Elston, 1970). In this model, assuming that there is no evidence for inequality of the 

total phenotype variance of MZ and DZ twins, the expected mean squares should 

follow the equalities: 

222 5.075.05.0)()( idawmzwdzadzamz fMMEMME     (4) 

2222 2222)()( eidawdzadzwmzamz MMEMME     (5) 

Where M  is a mean square, amz : among MZ pairs, wmz : within MZ pairs, adz : 

among DZ pairs, wdz : within DZ pairs, 2

a : variance component due to additive 

genetic effects, 2

d : variance component due to dominant genetic effects, 2

i : 

variance component due to epistatic genetic effects, 2

e : variance component due to 

nonshared environmental effects. f : epistatic variance in DZ twins. 

The first step of a genetic variance estimate, is to test, whether the assumption (5) of 

the model is valid by performing a two-tailed F' test comparing wmzamz MM   with 

wdzadz MM  . The degrees of freedom for each sum of mean squares should be 

computed according to Smith (1936) using the following equation: 
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Where in  are degrees of freedom computed for iM . In this formula, the obtained 

degrees of freedom are weighted according to the difference in magnitude between 

iM  as well as according to the difference in magnitude between in . Obtained 

degrees of freedom will be the same as the sum of in  when all iM  and all in  are the 

same. In the worst case scenario, the magnitude of one of the iM  is much larger 

than the others, and consequently the resulting degrees of freedom will be very close 

to in . 

 

If the sums of mean squares are significantly unequal, the environmental variance 

component 2

e  could be unequal for MZ and DZ twins. If there is a substantial 

genetic or environmental variance, it may be difficult to detect differences in 2

e . 

Therefore the F' test is performed at an increased level of significance, set at 20% 

(as suggested by Christian et al. (1974)). If the variances of MZ and DZ twins are not 

significantly different, the general model is appropriate and the genetic variance from 

equation (4) can be estimated using the within-twin-pair estimate wmzwdz MMGWT   

as well as the among-twin-pair estimate adzamz MMGAT  . The one-tailed F test is 

performed to test whether the genetic variance is significant using the ratio of within-

twin-pair mean squares wmzwdz MM / . Within-twin-pair mean squares are used, 

because typically their values are lower than among-twin-pair mean squares, and 

thus testing within-twin-pair mean squares ratio results in a more sensitive test. 

 

If the variances of MZ and DZ twins are significantly unequal, the general model (4) 

has to be extended with the unique environmental effects in MZ 2

emz  and DZ 2

edz  

twin set: 
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)(]5.075.05.0[)( 22222

edzemzidaadzamz fMME    (7) 

)(]5.075.05.0[)( 22222

emzedzidawmzwdz fMME    (8) 

In this case, GWT as well as GAT estimation of genetic variance would be biased in 

the opposite directions. Therefore, in order to obtain the unaffected genetic variance 

estimation, the mean of GWT and GAT estimates is used. This combined estimator is 

called by the authors (Christian et al., 1974) GCT: 
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The one-tailed F test is performed to test, whether the genetic variance is significant 

using the ratio )/()( wmzadzwdzamz MMMM   where the degrees of freedom are 

computed as in equation (6). 

 

The GCT estimate is always appropriate, however it is much less powerful due to 

high possible values of among-twin-pair mean squares. Therefore the significance of 

GCT estimate is tested when there is evidence for unequal sums of mean squares in 

MZ and DZ twins, otherwise the significance of GWT estimate is tested. 

 

As a prerequisite for the analysis, each studied variable had to fulfill the assumptions 

of normal distribution (measured by a non-significant goodness-of-fit by the 

Kolmogorov-Smirnov test) in both twin samples and equal means between the twin 

samples (T-test). If the data did not fulfill the normal distribution criterion, they were 

log transformed prior to any analysis. The significantly unequal means between MZ 

and DZ twin samples indicate that the investigated variable could be associated with 

the type of twins being studied. In this case the estimation of genetic variance would 

be biased. Therefore, if there was an evidence for significantly unequal means 
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between MZ and DZ twin samples, the genetic variance analysis was not performed. 

Influence of covariates was tested by multivariate analysis of covariance 

(MANCOVA). EEG power spectrum at different frequencies, phasic REM parameters 

and sleep spindle parameters were tested in separated blocks. Three covariates 

were considered:  

1. Cohabitation (twins living together), since in former twin studies it was found to 

have a possible effect on REM sleep duration (Linkowski et al., 1989). 

2. Age, since age has an effect on duration of REM sleep (Hobson, 2009; REM 

sleep duration decreases with age) and EEG power (Dijk et al., 1989b; Tarokh 

et al., 2011; EEG power decreases with age). 

3. Sex, since sex has an effect on EEG power (Dijk et al., 1989c; higher EEG 

power in females). 

Prerequisites were considered to be violated, if the appropriate test showed a 

significant result at the 5% level. Genetic variance analysis was performed on mean 

results of 2 recording nights. In order to minimize the effects of possible covariates, a 

subgroup of MZ twins closely matched for age, gender and cohabitation to DZ twins 

was selected. All genetic variance estimations as well as intraclass correlation 

coefficients recomputed for matched MZ and DZ samples can be found in 

supplementary material. 

 

2.2.9 Intraclass correlation coefficient analysis  

To further illustrate differences of within-pair resemblance between MZ and DZ twins, 

intraclass correlation coefficients (ICCs) were computed for all parameters analyzed 

by genetic variance analysis (results sections 3.1, 3.2, 3,3.2, 3.4.2). ICC is the ratio 

of between-group variance to the sum of between and within-group variances. ICC 

was computed according to the formula described by Shrout and Fleiss (1979) for 
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one-way random single measures analysis of variance, named by the authors as 

ICC(1, 1). In this design, the estimate of within-group variance 2

w  is obtained from 

the within-group mean square (WMS) and the estimate of between-group 2

b  

variance is computed by subtracting WMS from the between-group mean square 

(BMS) and dividing the result by the size of groups (in our case 2). As an outcome, 

the ICC was computed according to the following formula: 
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The ICC outcome varies from +1, in the case of present 2

b  and no 2

w , to -1, in the 

case of present 2

w  and no 2

b . 

 

ICCs were used to illustrate both similarity of the given parameter in MZ and DZ 

twins (each pair of twins was a separate group) and stability for consecutive nights 

(two nights of each individual was a separate group). To obtain levels of statistical 

significance for ICC results the bootstrapping analysis was performed (similar 

strategy was described by Tarokh et al. (2011) when analyzing EEG frequency bins). 

Each sample was recreated 1000 times. To recreate the sample, subjects were 

chosen randomly with repetitions up to the same number as in the original set. ICCs 

were computed for all bootstrapped samples. When a negative ICC resulted from a 

bootstrapped sample, an absolute value was used, because negative ICCs would 

make no biological sense. For each investigated parameter ICC results from original 

samples together with upper percentiles (responding to p=0.01) and median values 

of bootstrapped data are presented. According to Landis and Koch (1977) ICC 

values from 0 to 0.2 have been termed slight, 0.21 to 0.40 fair, 0.41 to 0.60 
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moderate, 0.61 to 0.80 substantial, and 0.81 to 1 as almost perfect agreement. ICCs 

estimating within-twin-pair resemblance were performed on mean results of 2 

recording nights. 

 

2.2.10 EEG ‘fingerprint’ characteristics in twins: the cluster analysis 

Buckelmuller et al. (2006) showed that EEG frequency power spectrum in humans 

has 'fingerprint' characteristics, i.e. having EEG frequency spectrum of an individual 

from a night recording, it should be possible to identify this individuals other night 

recording from the set of recordings just by comparing the frequency spectra. The 

hierarchical cluster analysis was performed to analyze how the 'fingerprint'-like 

characteristics of EEG frequency power spectra with respect to their morphology 

were preserved in twins (results sections 3.2.1.2 and 3.2.2.1). In addition, the 

clustering properties of sleep spindles with respect to their basic characteristics 

(density, amplitude, length and frequency) were also investigated (results section 

3.3.2.2). 

In cluster analysis, each entity is represented as a vector of chosen features. 

Distance between a pair of vectors is computed according to the predefined metric. 

In this study, in order to measure distances between clusters, the shortest distance 

method was applied. It takes the minimal distance of every combination of vectors 

from both clusters and sets it as a distance between them.  

 

For the similarity analysis of EEG frequency power spectra morphology, vectors 

consisted of log transformed EEG power spectra, where each feature was a 

frequency bin. REM sleep EEG power spectra were represented as 178 feature 

vectors (0.75 to 45 Hz, 0.25 Hz bins). In NREM sleep, due to the presence of muscle 

tone in the EEG signals influencing high frequencies, power spectra were restricted 
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to 20 Hz resulting in 78 feature vectors (0.75 to 20 Hz). The distance metric used in 

the analysis was one minus Pearson's correlation coefficient between vectors. 

Pearson's correlation assesses the linear association between two sequences and 

systematic shifts between the two sequences do not influence the correlation results. 

When performing cluster analysis the shape similarities between EEG spectra was 

the main focus. Correlation metric seemed to be the appropriate choice since the 

correlation outcome when two vectors with power spectra are compared is 

independent of absolute power in frequency bins. This was the goal, since the 

heritability of absolute EEG spectral power was analyzed using intraclass correlation 

coefficients and genetic variance analysis. 

 

When investigating sleep spindles similarity, each subject was represented by a 

vector of 22 spindle parameters: slow spindles detected in frontal derivations, fast 

spindles in parietal derivations and all spindles detected in central derivations were 

represented with mean amplitude, length and density during both, stage 2 and slow 

wave sleep. The remaining four parameters were precomputed from the NREM sleep 

power spectrum (localization of individual spindle frequency range is described in 

section 3.3.1.4) and consisted of: begin of spindle frequency range, slow spindle 

frequency peak, fast spindle frequency peak and the end of spindle frequency range. 

The distance metric used in the analysis of sleep spindle parameters was the 

standardized euclidean distance. In this measure, distance computation between 

vectors is the same as in euclidean distance, but each coordinate (parameter) in the 

sum of squares is inversely weighted by the sample variance of that coordinate. 

Standardized euclidean distance was used, because there were high differences in 

values between different spindle parameters. Therefore, performing euclidean 

distance measure would result in highly unequal influence of parameters on 
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computed distance. The normalization of each parameter according to its variance 

assures similar importance of each parameter on the outcome. 

 

2.3 REM detection algorithm 

2.3.1 Visual scoring of rapid eye movements 

Figure 1.8 shows a sleep epoch with rapid eye movements visible in EOG derivations 

mounted according to Rechtschaffen and Kales (1968). Rapid eye movements are 

visible in this montage as simultaneous out-of-phase rapid amplitude change in both 

EOG derivations. Rapid eye movement should be visible above the background 

noise and should be counted regardless of the amplitude of the eye movement 

(Aserinsky, 1971). The stepwise saccades are all counted as separate eye 

movements. 

 

Rapid eye movement activity, reported by a visual scorer in our institute, is defined 

as the total number of 3 sec-miniepochs containing at least one rapid eye movement 

for each 30 sec sleep epoch. Consequently, for each sleep epoch the information 

available from visual scoring is a number from 0 to 10 describing rapid eye 

movement activity in this epoch. 

The experts scoring REM density were trained sleep scorers who had extensive 

experience scoring sleep EEG data. The scorers were trained at regular intervals. 

Inter- and intra-rater variability was assessed for sleep recordings with varying 

degrees of sleep disturbance. Inter-rater reliability was above 80%. 

 

2.3.2 Study sample 

The data set consisted of a development and a validation sample. The development 

sample was drawn from the twin study described in section 2.2. Within this sample 
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rapid eye movement density was visually scored in n=59 subjects (23.1 ± 5.0 years 

(mean ± SD); range: 17–43 years, 25 females, 34 males) during the second 

recording night. The validation sample consisted of seven healthy subjects (23.7 ± 

2.3 years; 21–27 years, 3 females, 4 males) possessing good sleep quality 

participating in a different ongoing study. The setup of EEG and EOG derivations 

was the same for all recordings used for development and validation of the algorithm 

(see section 2.2.3 and 2.2.4). 

 

For the development of the REM detection algorithm, the development sample, 

scored by one of the expert scorers (scorer 1) was used. After the development of 

the basic algorithm two further nights were used from the validation sample which 

were scored by two experts (scorer 1 and scorer 2) to obtain adequate thresholds for 

the parameters of the algorithm (training set). These two nights were excluded from 

further analysis of inter-scorer and scorer vs. algorithm agreement. The algorithm 

was then used to analyze the validation set (12 recordings from 7 healthy subjects), 

which was scored by the two scorers. Epoch-wise Pearson’s correlation and Cohen's 

kappa coefficient was used in order to assess inter-scorer (scorer 1 vs. scorer 2) and 

scorer vs. automatic algorithm agreement. 

 

2.3.3 Inter-rater agreement: the kappa coefficient 

Cohen's kappa coefficient (Cohen, 1960) was applied to obtain the agreement 

between presented REM detector and visually scored REM density (results section 

3.4.1.3). It is a statistical measure of inter-rater agreement for qualitative (categorical) 

items. Kappa takes into account chance agreement between scorers, and is 

therefore thought to be better measure than simple percent agreement. Kappa 

coefficient is defined as:  
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Where 0p  is the observed agreement and ep  is the expected agreement obtained by 

chance. As an example let us assume that we want to compare two raters who 

evaluate n=100 features and put them into 3 different categories X, Y and Z. 

 

 

 

 

 

The observed agreement in the example is 74.0100/)432110(0 p  whereas the 

expected agreement is: 
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Kappa coefficient returns the difference between the observed and chance 

agreement, which is normalized to <-1,1> range. -1 is obtained with no agreement, 

and +1 with a perfect agreement, between raters. Values below 0 are obtained when 

the observed agreement is lower than agreement expected by chance. Putting 0p  

and ep  into formula (11) results in kappa coefficient of 0.57. 

 

There are several benchmarks characterizing agreement based on Cohen’s kappa 

values. According to Landis and Koch (1977), kappa values from 0.41 to 0.60 have 

been termed moderate, between 0.61 and 0.80 substantial, and between 0.81 to 1 as 

almost perfect agreement. According to Fleiss (1981), kappa values of 0.75 and 

higher are excellent. 

 

   Rater 1  

  X Y Z 

 X 10 2 10 

Rater 2 Y 2 21 8 

 Z 3 1 43 
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According to the REM density scoring that was performed in the laboratory, absolute 

values of REM density ranged between 0 and 10 for each epoch of REM sleep 

(visual scoring of rapid eye movements is described in section 2.3.1). Because the 

kappa coefficient treats scoring results as mutually exclusive categories, comparing 

epoch-wise REM densities would lead to an underestimation of the agreement 

among raters. For example, if the first rater gave a score of 5 for REM density in one 

epoch of REM sleep, and the second rater gave a score of 6 for the same epoch, 

computation of the kappa coefficient yields an agreement of 0, even though both 

raters agreed in five 3 sec-segments and disagreed in only one 3 sec-segment of the 

epoch. Therefore, each 3 sec-segment was treated as one item and the epoch-wise 

REM density was transformed into the number of consecutive segments with REMs 

starting from the first 3 sec-segment. Thus, a REM density score of 5 would yield a 

vector with five consecutive scores 1 and five scores 0, and a REM density score of 6 

would yield a vector of six consecutive scores 1 and four scores 0. The computation 

of Cohen’s kappa across these vectors would take the agreement in nine segments 

(5 with, 4 without REMs) into account. 
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3.1 Twins sleep architecture 

Sample means of averaged over-pairs measures revealed no significant night effects 

as well as no significant differences between the twin samples (see Table 3.1). 

 

Table 3.1: Sleep architecture parameters averaged over pairs. Group mean ± SEM of sleep 

characteristics in minutes. TST: Total sleep time, SPT: Sleep period time, SEI: sleep efficiency index, 

SOL: sleep onset latency, REM: rapid eye movement sleep duration, NREM: Non-REM sleep 

duration, RSL: REM sleep latency, DZ: dizygotic twins, MZ: monozygotic twins. 

 DZ n=14 MZ n=32 

Night 2 Night 3 2 nights mean Night 2 Night 3 2 nights mean 

TST 419.33±6.27 423.64±5.65 421.49±5.73 420.89±4.01 417.51±3.94 419.20±3.39 

SPT 462.75±4.31 466.57±3.23 464.66±3.55 469.26±2.23 469.85±1.72 469.56±1.62 

SEI 0.94±0.01 0.95±0.01 0.95±0.01 0.94±0.01 0.94±0.01 0.94±0.01 

SOL 30.05±4.66 27.23±3.55 28.64±3.94 23.41±2.27 23.14±1.56 23.27±1.61 

NREM 324.21±6.17 324.89±4.50 324.55±5.09 321.54±3.16 318.48±3.64 320.01±2.98 

REM 95.12±4.09 98.75±5.07 96.93±4.24 99.34±3.22 99.03±2.55 99.18±2.58 

RSL 99.42±9.37 99.08±9.19 99.25±8.81 104.13±5.21 99.72±4.40 101.92±4.28 

 

3.2 Heritability of spectral composition of EEG in REM and NREM sleep 

3.2.1 Rapid eye movement sleep 

3.2.1.1 Genetic variance analysis and intraclass correlation coefficients 

The criterion of normal distribution was not fulfilled for many of the EEG frequency 

bins. Therefore all spectral data were log-transformed prior to analysis. Genetic 

variance analysis (GVA) was not applicable for 7 frequency bins (1 Hz, 16–21 Hz) 

nor for β1 frequency band since sample means of averaged over-pairs 

measurements revealed significant differences between the twin samples. 

 

The results of GVA and intraclass correlation coefficients (ICC) with respect to EEG 

frequency bands are shown in Table 3.2. GVA results with respect to EEG frequency 
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bins are presented in Table 3.3 and ICC results are illustrated in Figure 3.1. The 

genetic influence was identified for all remaining frequency bins (2–15 Hz, 22–45 Hz) 

and bands (δ band to high σ band, β2 band to φ band). MANCOVA analysis showed 

that sex, as a covariate, had a significant effect on spectral power values. Female 

subjects had significantly higher EEG power in δ, θ, β2 and φ bands (1–7 Hz and 27–

45 Hz bins). 

 

Table 3.2: Genetic variance analysis and intraclass correlation coefficients on frequency bands in 

REM sleep. Results of genetic variance analysis, type of estimate applied (GCT: combined among- 

and within-twin pair component estimate, GWT: within-pair estimate) and intraclass correlation 

coefficients (ICCs). REM: rapid eye movement, ICC MZ: ICCs of monozygotic (MZ) twins, ICC DZ: 

ICCs of dizygotic (DZ) twins, ICC MZ cn: ICCs of consecutive nights for each subject in MZ group, ICC 

DZ cn: ICCs of consecutive nights for each subject in DZ group. ICC results include: original sample 

ICC (upper percentile of bootstrapped data, median of bootstrapped data). 

* Analysis of variance not applicable (significant differences between the means in DZ and MZ twin 

set). 

Variable p GWT vs. GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

δ .0008 GCT 0.92(0.44, 0.13) 0.27(0.67, 0.19) 0.89(0.31, 0.08) 0.87(0.45, 0.12) 

θ .0001 GWT 0.93(0.41, 0.12) 0.51(0.63, 0.18) 0.92(0.31, 0.08) 0.90(0.46, 0.12) 

α <.0001 GWT 0.91(0.46, 0.12) 0.40(0.68, 0.19) 0.95(0.33, 0.07) 0.95(0.43, 0.12) 

σ .0001 GWT 0.89(0.43, 0.12) 0.45(0.64, 0.18) 0.91(0.32, 0.08) 0.92(0.46, 0.11) 

α/σ .0002 GWT 0.90(0.45, 0.12) 0.52(0.66, 0.18) 0.94(0.34, 0.08) 0.95(0.42, 0.12) 

low σ <.0001 GWT 0.89(0.47, 0.12) 0.41(0.63, 0.19) 0.92(0.32, 0.08) 0.93(0.45, 0.11) 

high σ .0004 GWT 0.89(0.43, 0.11) 0.53(0.63, 0.18) 0.90(0.31, 0.08) 0.92(0.46, 0.11) 

β1* - - 0.89(0.42, 0.11) 0.41(0.65, 0.16) 0.95(0.31, 0.08) 0.97(0.58, 0.08) 

β2 .0008 GWT 0.92(0.43, 0.12) 0.62(0.68, 0.18) 0.97(0.30, 0.08) 0.96(0.56, 0.11) 

φ <.0001 GWT 0.92(0.43, 0.13) 0.40(0.62, 0.19) 0.94(0.32, 0.08) 0.87(0.49, 0.12) 
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Table 3.3: Genetic variance analysis on 1-Hz frequency bins in REM sleep. Results of genetic 

variance analysis and type of estimate applied (GCT: combined among- and within-twin pair 

component estimate, GWT: within-pair estimate). REM: rapid eye movement. 

* Analysis of variance not applicable (significant differences between the means in monozygotic and 

dizygotic twins). 

Variable p GWT vs. GCT 

1 Hz* - - 

2 Hz .0012 GCT 

3 Hz .0012 GCT 

4 Hz .0013 GCT 

5 Hz .0006 GWT 

6 Hz .0009 GWT 

7 Hz .0055 GCT 

8 Hz .0015 GCT 

9 Hz <.0001 GWT 

10 Hz <.0001 GWT 

11 Hz .0002 GWT 

12 Hz .0001 GWT 

13 Hz <.0001 GWT 

14 Hz .0002 GWT 

15 Hz .0007 GWT 

16 Hz* - - 

17 Hz* - - 

18 Hz* - - 

19 Hz* - - 

20 Hz* - - 

21 Hz* - - 

22 Hz <.0001 GWT 

23 Hz <.0001 GWT 

24 Hz .0001 GWT 

25 Hz .0003 GWT 

26 Hz .0004 GWT 

27 Hz .0004 GWT 

28 Hz .0007 GWT 

29 Hz .0008 GWT 

30 Hz .0018 GWT 

31 Hz .0015 GWT 

32 Hz .0008 GWT 

33 Hz <.0001 GWT 

34 Hz <.0001 GWT 

35 Hz <.0001 GWT 

36 Hz <.0001 GWT 

37 Hz .0003 GWT 

38 Hz .0045 GCT 

39 Hz .0039 GCT 

40 Hz <.0001 GWT 

41 Hz <.0001 GWT 

42 Hz .0002 GWT 

43 Hz <.0001 GWT 

44 Hz .0001 GWT 

45 Hz .0002 GWT 
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The mean ICC for all EEG frequency bins was 0.91 in the MZ twins and 0.45 in the 

DZ twins. However, the mean ICCs for night-to-night stability were comparable (0.94 

in the MZ group and 0.92 in the DZ group). ICC values classified according to Landis 

and Koch (1977) for each bin throughout the whole spectrum for MZ twins as well as 

night-to-night stability in both MZ and DZ groups were almost perfect. ICC results for 

DZ twins similarity (Figure 3.1D) were irregular throughout frequency spectrum, 

which was influenced by the smaller sample size. Within-pair similarity was, 

according to Landis and Koch (1977), at most substantial (β2 band and four bins: 31–

34 Hz) and the significance threshold (p=0.01) was crossed for the two bins (31–32 

Hz). In contrast, consecutive night stability within DZ set was almost perfect for all 

frequency bins. Therefore, it is unlikely that low similarity in DZ twins was caused by 

poor quality sleep recordings. 
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Figure 3.1: Intraclass correlation coefficients (ICCs) of rapid eye movement (REM) sleep frequency 

bins. On each plot solid line represents the observed real data, dotted line represents the upper 

percentile of bootstrapped values and dashed line represents the median of bootstrapped values. (A) 

consecutive nights of each subject in monozygotic (MZ) set (n=64); (B) consecutive nights of each 

subject in dizygotic (DZ) set (n=28); (C) pairs of MZ twins (each subject represented by a two nights 

mean, n=32); (D) pairs of DZ twins (each subject represented by a two nights mean, n=14). On the 

average, the upper percentile and the median of bootstrapped values differ between groups, which is 

the outcome of different sample sizes. 

 

3.2.1.2 Cluster analysis 

Figure 3.2 illustrates the distribution of Fisher‘s z transformed correlation values 

between power spectra within different groups. The mean of Fisher z transformed 

correlation values was 4.09 ± 0.29 (mean ± SD) between consecutive nights, 3.94 ± 

0.35 between MZ twins, 3.10 ± 0.42 between DZ twins and 2.77 ± 0.39 between 

unrelated subjects. Pairwise comparisons of similarity distributions between these 

groups revealed only marginal differences between intra-individual and MZ twins 

similarity (p=.0821, Wilcoxon rank-sum test). The means of all other groups were 

significantly different when compared pairwise (p=.0015 when comparing DZ twins 

with inter-individual similarity and p<.0001 for all other comparisons). 
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Figure 3.2: Distribution of Fisher's z transformed (z) Pearson's correlations for power spectra in rapid 

eye movement (REM) sleep. Each power spectrum was a 178 feature vector (0.75–45 Hz, 0.25 Hz 

bins). (A) Consecutive nights of each subject (n=92); (B) pairs of monozygotic (MZ) twins (each 

subject represented by two nights mean, n=32); (C) pairs of dizygotic (DZ) twins (each subject 

represented by a two nights mean, n=14); (D) unrelated subjects (n=16560). If there is no similarity 

z=0; if there is perfect similarity z=infinity. 

 

Hierarchical clustering analysis was performed on mean EEG spectra measured from 

2 recording nights as well as on each night represented separately. In the case when 

each night was treated separately, it was assumed that the two nights for the same 

subject clustered, if the distance between them was closer than to any unrelated 

subject. It was assumed that a twin pair clustered, if the distance between twins for 

any combination of their nights was closer than to any unrelated subject. Analysis of 

the mean spectra of two nights revealed that 27 of 32 twin pairs clustered within MZ 

set (Figure 3.3), whereas 4 of 14 twin pairs clustered within DZ set. Figure 3.4 

illustrates the power spectra of the 2 most dissimilar twin pairs (highest correlation 

distance) in the MZ set (Figure 3.4 A and C) and the 2 most dissimilar twin pairs in 
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the DZ set (Figure 3.4B and D). Clustering performed on separated nights showed 

similar results. The same pairs clustered within the MZ set and one additional pair 

clustered within DZ set (Figure 3.5). With respect to consecutive nights, 60 of 64 

subjects clustered within MZ set and 27 of 28 within DZ set. 

 

Figure 3.3: Dendrogram of cluster analysis based on distances between power spectra for rapid eye 

movement (REM) sleep in monozygotic (MZ) twins. Each subject is represented by a two night mean 

power spectrum. Each power spectrum was a 178 feature vector (0.75–45 Hz). Distance metric was 

one minus Pearson's correlation between vectors. Subjects with the same number represent the same 

MZ pair on x axis, distance between clusters is on y axis. Green clusters depict MZ pairs which 

clustered together. 

 

In order to investigate whether spectrum at higher frequencies yields any additional 

information, the clustering experiment was repeated with separation between low and 

high frequencies. The increase of data size makes the clustering procedure more 

demanding (there is a higher probability to have a similar spectrum of unrelated 

subjects by chance). Therefore the analysis was performed on all 184 nights from 

combined MZ and DZ set. Cluster analysis performed on 0.75–45 Hz frequencies, 

revealed that 89.1% of consecutive nights, 81.3% of MZ pairs and 14.3% of DZ pairs 

clustered. When frequencies were limited to 20 Hz only 73.9% of consecutive nights 
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clustered. The percentage of MZ and DZ pairs which clustered did not change, 

although groups of MZ pairs which failed to cluster were not the same. 

 

 

Figure 3.4: Logarithm transformed and normalized power spectra for rapid eye movement (REM) 

sleep of the 2 most dissimilar (according to Pearson's correlation between power spectra) 

monozygotic (MZ) twin pairs (A, C) and the 2 most dissimilar dizygotic (DZ) twin pairs (B, D). 

Consecutive nights of all presented twins clustered correctly. Each plot consists of 4 power spectra 

from one twin pair. 2 nights in one color from the first twin and 2 nights in different color from the 

second twin. 
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Figure 3.5: Dendrogram of cluster analysis based on distances between power spectra for rapid eye 

movement (REM) sleep in dizygotic (DZ) twins. Each subject is represented by two separate nights. 

Each power spectrum was a 178 feature vector (0.75–45 Hz). Distance metric was one minus 

Pearson's correlation between vectors. The subjects IDs consist of a number (defines DZ pair) and a 

character (defines a twin within the pair). The subjects IDs are on x axis, the distance between 

clusters is on the y axis. Blue clusters depict those subjects whose consecutive nights clustered 

together but not with related DZ twin. Green clusters depict DZ pairs which clustered together. 

 

3.2.2 Non-rapid eye movement sleep 

3.2.2.1 Cluster analysis 

The investigated range of power spectrum in NREM sleep was restricted to a range 

of 0.75–20 Hz due to the presence of muscle activity in some of the EEG recordings, 

which influenced EEG spectral power at high frequencies.  

 

Figure 3.6 illustrates the distribution of Fisher‘s z transformed correlation values 

between power spectra within different groups. Mean of Fisher z transformed 

correlation values was 3.87 ± 0.42 (mean ± SD) between consecutive nights, 3.62 ± 

0.41 between MZ twins, 2.83 ± 0.34 between DZ twins and 2.31 ± 0.34 between 

unrelated subjects. Means of all groups were significantly different when compared 
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pairwise (p=.0133 when comparing MZ twins with intra-individual similarity and 

p<.0001 for all other comparisons, Wilcoxon rank-sum test). 

 

Figure 3.6: Distribution of Fisher's z transformed (z) Pearson's correlations for power spectra in non-

rapid eye movement (NREM) sleep. Each power spectrum was a 78 feature vector (0.75–20 Hz, 0.25 

Hz bins). (A) consecutive nights of each subject (n=92); (B) pairs of monozygotic (MZ) twins (each 

subject represented by two nights mean, n=32); (C) pairs of dizygotic (DZ) twins (each subject 

represented by a two nights mean, n=14); (D) unrelated subjects (n=16560). If there is no similarity 

z=0; if there is perfect similarity z=infinity. 

 

Analysis of mean spectra of two nights revealed that 30 of 32 twin pairs clustered 

within the MZ set (Figure 3.7), whereas 1 of 14 twin pairs clustered within the DZ set. 

Figures 3.9F and 3.10B illustrate NREM power spectra of the 2 most dissimilar twin 

pairs (highest distance according to correlation metric) in MZ set, whereas NREM 

power spectra of 2 MZ twin pairs which failed to cluster are illustrated on Figure 

3.10D and F. The results from the clustering experiment performed on the DZ set 

with separated nights are depicted in Figure 3.8. There was no difference in 
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clustering when it was performed on separated nights, the same pairs of twins 

clustered in the MZ as well as the DZ set. With respect to consecutive nights, 61 of 

64 subjects clustered within the MZ set and 26 of 28 within the DZ set. The analysis 

performed on all 184 nights from combined MZ and DZ sets for separated nights 

revealed, that 90.2% of consecutive nights, 93.7% of MZ pairs and 14.3% of DZ pairs 

clustered. 

Figure 3.7: Dendrogram of cluster analysis based on distances between power spectra for non-rapid 

eye movement (NREM) sleep in monozygotic (MZ) twins. Each subject is represented by the two night 

mean power spectrum. Each power spectrum was a 78 feature vector (0.75–20 Hz). Distance metric 

was one minus Pearson's correlation between vectors. Subjects with the same number represent the 

same MZ pair on x axis, distance between clusters is on y axis. Green clusters depict MZ pairs which 

clustered together. 
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Figure 3.8: Dendrogram of cluster analysis based on distances between power spectra for non-rapid 

eye movement (NREM) sleep in dizygotic (DZ) twins. Each subject is represented by two separate 

nights. Each power spectrum was a 78 feature vector (0.75–20 Hz). Distance metric was one minus 

Pearson's correlation between vectors. The subject ID consists of a number (defines DZ pair) and a 

character (defines a twin within the pair). Subjects IDs are on the x axis; distance between clusters is 

on the y axis. Blue clusters depict those subjects whose consecutive nights clustered together but not 

with related DZ twin. Green clusters depict DZ pairs which clustered together. 

 

3.2.3 REM and NREM sleep: how spectral composition differences translate between 

sleep phases? 

Figures 3.9 and 3.10 illustrate power spectra of the 2 twin pairs which were the most 

dissimilar according to the Pearson’s correlation metric in REM sleep (Figure 3.9A 

and C), the 2 most dissimilar twin pairs in NREM sleep (Figure 3.9F and 3.10B) as 

well as the only two pairs which did not cluster in NREM sleep (Figure 3.10D and F). 

In order to compare whether differences in spectral composition between MZ twins 

are conserved in both NREM and REM sleep, the power spectra for each twin pair 

are illustrated for both REM and NREM sleep. All these pairs present good night-to-

night stability and constant, apparent differences in power spectrum between the 

twins. Twins which were classified as the most dissimilar in REM sleep (Figure 3.9A 



Results 

 61 

and C) have the most prominent spectral differences in high sigma and beta range 

(13 to 30 Hz) background EEG activity, whereas differences within the most 

dissimilar twin pairs in NREM sleep power spectra are mostly due to variability in the 

frequency range where sleep spindles are active (10 to 16 Hz). Differences between 

power spectra at 10 to 16 Hz frequency during NREM sleep, suggest that the 

characteristics of sleep spindles could differ between the twins. Indeed, when 

comparing NREM power spectra within the most dissimilar twin pairs (Figure 3.9F 

and 3.10B, D, F) it is visible that peaks in the spindle activity range (10 to 16 Hz) 

differ between the twins, so the sleep spindle peak frequencies within twin pairs may 

be different. 

 

All differences between the twin pairs in the background activity (occurs in all twin 

pairs presented in Figure 3.9, marked with a green color) seem to be preserved for 

both, REM as well as NREM sleep. However, differences in peak frequency and 

strength (twin pairs classified as dissimilar in NREM sleep, all these peaks exist in 

spindle activity) were preserved in both sleep phases only if an increased activity in a 

given frequency existed in both, REM and NREM sleep. Power spectra of twin pair 

14, illustrated in Figure 3.10C and D, are an example where the faster peak in 

spindle range during NREM sleep in twin 14b was also visible and also faster during 

REM sleep. 
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Figure 3.9: Log-10 transformed power spectra for rapid eye movement (REM) sleep and non-rapid 

eye movement (NREM) sleep. Two most dissimilar (according to Pearson's correlation between power 

spectra) monozygotic (MZ) twin pairs considering REM sleep power spectra (A, C) as well as their 

NREM sleep power spectra (B, D) and the most dissimilar monozygotic (MZ) twin pair considering 

NREM sleep power spectrum (F) together with REM sleep power spectrum of this pair (E). 

Consecutive nights of all presented twins clustered correctly. Each plot consists of 4 power spectra 

from one twin pair. 2 nights in one color from the first twin and 2 nights in different color from the 

second twin. Orange color background marks differences between the twins visible only in one sleep 

phase. Green color background marks differences between the twins visible in both, REM and NREM 

sleep. 
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Figure 3.10: Log-10 transformed power spectra for rapid eye movement (REM) sleep and non-rapid 

eye movement (NREM) sleep. Second most dissimilar (according to Pearson's correlation between 

power spectra) monozygotic (MZ) twin pair considering NREM sleep power spectrum (B) together with 

REM sleep power spectrum of this pair (A) and two MZ twin pairs, which failed to cluster in NREM 

sleep (D, F) as well as their REM sleep power spectra (C, E). Consecutive nights of all presented 

twins clustered correctly. Each plot consists of 4 power spectra from one twin pair. 2 nights in one 

color from the first twin and 2 nights in different color from the second twin. Orange color background 

marks differences between the twins visible only in one sleep phase. Green color background marks 

differences between the twins visible in both, REM and NREM sleep. 



Results 

 64 

3.2.4 Summary of background EEG analysis 

A substantial genetic influence on the spectral composition of REM sleep was 

observed. Significant genetic variance in spectral power was observed in δ to high σ, 

and β2 to φ frequencies. All estimates of genetic variance in spectral power for 

derivation C3A2 were similar when the analysis was repeated for derivation C4A1 

(see Supplement). The comparison of REM EEG spectral power between matched 

MZ and DZ twins confirmed the findings in the whole twin sample (see Supplement). 

In addition, significant genetic influence was found for the remaining 7 frequency bins 

(1 Hz, 16–21 Hz) and the β1 frequency band of the REM sleep EEG. ICC results 

revealed high night-to-night stability of REM spectral composition as well as within-

pair similarities for MZ twins (mean ICCs for frequency bins night-to-night stability: 

0.94 whereas 0.91 for MZ twins). 

Significant differences between the twin groups were also observed in within-pair 

similarity of REM and NREM EEG spectra morphology. Slightly better clustering 

results were observed in NREM sleep, although performed in a narrower frequency 

band (REM: 0.75–45 Hz, NREM: 0.75–20 Hz). MZ twins were very close in similarity 

to consecutive night results in both REM and NREM sleep. MZ pairs who did not 

cluster in REM and NREM sleep do not overlap. In REM sleep, the mean difference 

between MZ twins did not differ significantly from the mean difference between 

consecutive nights. If prominent differences in spectral power were visible in MZ 

twins background EEG activity, they were preserved in REM as well as in NREM 

sleep. 
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3.3 Sleep spindle analysis 

3.3.1 Automatic detection of sleep spindles: description of algorithm 

3.3.1.1 Preprocessing before spindle detection 

The algorithm analyzes the properties of the raw signal and rejects periods of signal 

with very high muscle contamination as well as segments dominated by alpha 

activity. Alpha activity is present in the EEG signal mostly during wake when the eyes 

are closed, but can also be present in EEG during shallow sleep, after arousals and 

during REM sleep. The shape of alpha waves is very similar to sleep spindles. They 

consist of waxing and waning bursts of activity in the range of 8–12 Hz (Figure 3.11) 

and can lead to false spindle detection. The problem of separating alpha waves is 

important especially when analyzing EEG recordings from naps, where long periods 

of shallow sleep are present. 

 

Figure 3.11: Alpha activity in derivation C3A2. Alpha activity is present in the gray area of the figure. 

Waxing and waning shape and overlapping frequency range makes it difficult to distinguish them from 

sleep spindles. 
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Artifact rejection: In order to identify fragments with high frequency muscle artifacts, 

the EEG signal was band-pass filtered (-3 dB at 19.8 and 45.5 Hz). The standard 

deviation of the signal was computed over a 1 sec sliding window (step: 0.5 sec) 

and if it exceeded 5.75 μV, a window of 6 sec (fragment in which the threshold 

was exceeded ± 2.5 sec) was excluded from spindle detection. 

 

Rejection of segments with strong alpha frequency: In order to identify signal with 

dominant alpha frequencies, Fourier spectrum over a 5 sec sliding window (step: 

1 sec) was analyzed. Mean signal power (MSP) was compared in an alpha 

frequency band (8–12 Hz), low frequency band (2–7 Hz) and sigma band (12–16 

Hz). The low frequency band was chosen because the power in this range 

should be higher during deeper sleep, decreasing the chances of signal 

rejection, and the sigma band is the range where spindle activity is expected. 

The 5 sec window was excluded if the alpha activity was dominant: 

 

MSP(alpha) / max[MSP(low band) MSP(sigma)] > 1.5 

 

3.3.1.2 Detection of sleep spindles 

A. Threshold setup: EEG signal amplitude can vary between subjects and channels. 

Reasons for this phenomenon can be of technical nature (movements during the 

measurement period influencing electrode placement, differences in electrode 

impedances and as a result in signal amplitudes) as well as physiological nature 

(with age, signal amplitude, including spindles, tends to decrease). Therefore 

the threshold for spindle detection is defined individually for each channel. In 

order to compute the threshold, only sleep epochs scored as stage 2 of sleep 

are considered. Only one stage of sleep is included in order to obtain signal 
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amplitude information from homogeneous source. Stage 2 was chosen as the 

best candidate since there are high amounts of it during each night. 

        EEG signal was band-pass filtered (-3 dB at 3.3 and 20.2 Hz). For every 0.25 

sec of filtered signal, the root mean square (RMS) was computed. Two 

thresholds were defined for spindle detection: sigma activity (SA) and sigma 

peak (SP). SA was set as 3 times the median of all RMS values, while SP was 

set as 4.5 times the median of all RMS values. 

B. Detection method: Spindle detection was performed using the continuous wavelet 

transform (CWT) with Morlet wavelet as a mother wavelet. The description of 

CWT as well as Morlet wavelet used in the analysis can be found in section 

2.1.2. The scale of the wavelet used to analyze the sigma activity corresponded 

to the 12–16 Hz frequency range. A sleep spindle was identified, if the outcome 

of CWT exceeded SA by a period of, at least, half a second and SP at least 

once. The scheme of spindle detection is illustrated in Figure 3.12. 
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Figure 3.12: The scheme of spindle detection. (A) EEG signal with “typical” stage 2 activity (0 to 12 

sec) as well as slow wave activity (12 to 27 sec). (B) The result of continuous wavelet transform in 

time and frequency domain. (C) Maximum values of wavelet transform in 12–16 Hz frequency range, 

which is compared with peak and activity thresholds computed before the detection for each EEG 

derivation separately. Gray areas are the areas where sleep spindles were detected. In this 30 sec 

epoch it is visible that algorithm detects spindles appropriately not only in the signal where spindle 

activity is dominant (0 to 12 sec), but also in fragments with strong slow wave activity (12 to 27 sec).  

 

3.3.1.3 Sleep spindle detector validation 

The wavelet algorithm was validated with data from an earlier study (Genzel et al., in 

press). 18 naps from 10 subjects were randomly selected and the algorithm was 

compared with the SIESTA algorithm of Anderer et al. (2005) and with a human 

visual scorer. Figure 3.13 illustrates the number of sleep spindles detected in sleep 

stage 2 by each scorer. Considering the amount of detected sleep spindles, SIESTA 

algorithm and visual scorer comparisons revealed a Pearson’s correlation of r=0.90. 

The comparison of detected spindle number between the wavelet detector and 
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SIESTA algorithm, revealed a correlation of r=0.97. Similarly, a comparison between 

wavelet detector and visual scorer revealed a correlation of r=0.92. 

 

Figure 3.13: Numbers of sleep spindles in 18 nap EEG recordings detected by the new automatic 

algorithm called CWT detector, human visual scorer and SIESTA automatic spindle detector. Subject 

id and number of nap recording are presented on x axis. Number of detected spindles is presented on 

y axis. 

 

In order to evaluate the agreement between the scorers in regards to the quantity of 

signal marked as a spindle event, the concordance measure was used. Concordance 

between two scorers is defined as the amount of overlapping signal recognized by 

both scorers as sleep spindles, multiplied by 2 and divided by the sum of all signal 

marked by each scorer as sleep spindles. Concordance differs between 0 (no 

agreement) and 1 (perfect agreement). Figure 3.14 illustrates the agreement 

between scorers regarding the concordance of detected sleep spindles in sleep 
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stage 2. The comparison of SIESTA algorithm to visual scorer revealed a mean 

concordance of 0.47. The comparison of wavelet detector to SIESTA algorithm 

revealed a mean concordance of 0.67. Similarly, the comparison between wavelet 

detector and visual scorer revealed a mean concordance of 0.55. Although the 

concordance results seem to be low, it should be noted that the validation set based 

on nap EEG recordings is a demanding one, since the sleep is shallower compared 

to regular night sleep, alpha activity is higher and sleep spindle activity is lower. A 

low number of spindles in the signal increase the significance of false positive 

discoveries in the outcome of concordance, even if there are only a few of them. A 

positive correlation is observed when comparing amounts of detected spindles in 

Figure 3.13 to concordance results in Figure 3.14. The more sleep spindles that were 

present during a nap, the higher the expected concordance was between the 

scorers. The most prominent example was the nap number 1 of subject number 9, 

where almost no spindles were found by any of the scorers and the outcome of 

concordance did not exceed 0.4 agreement for any combination of scorers. 
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Figure 3.14: Agreement in sleep spindle detection between the new automatic algorithm called CWT 

detector, human visual scorer and SIESTA automatic spindle detector. Subject id and number of nap 

recording are presented on x axis. Concordance results are presented on y axis. Concordance 

between two scorers is defined as the amount of overlapping signal recognized by both scorers as 

sleep spindles, multiplied by 2 and divided by the sum of all signal marked by each scorer as sleep 

spindles. Concordance differs between 0 (no agreement) and 1 (perfect agreement). 
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3.3.1.4 Algorithm extension: individual spindle frequency peak adjustment 

The frequency of sleep spindles varies between 10 and 16 Hz. When the separation 

between fast and slow spindles is of interest, it is done conventionally with a 

frequency threshold set around 13 Hz, which separates fast spindles from the slow 

ones. However, real frequency ranges of slow and fast spindles differ between 

individuals. Figure 3.15 illustrates NREM sleep power spectra of multiple subjects, 

which were computed using signal from frontal, central as well as parietal EEG 

derivations. Sleep spindle activity is visible in NREM sleep power spectra as power 

increases in the 10–16 Hz frequency range. Figures 3.15A and B show the power 

spectra with two distinct peaks in the band, which provide a clear distinction between 

slow and fast spindle frequency, which in this case were 11 Hz and 13 Hz, 

respectively. However, Figure 3.15D shows the power spectrum where the frequency 

of both slow and fast spindles was around 1 Hz faster. If there would be a constant 

threshold which separates slow spindles from fast ones at 13 Hz, slow spindle 

activity in subjects from Figures 3.15A and B would be overestimated and fast 

spindle activity would be underestimated. Therefore, more careful separation 

between slow and fast spindles for each EEG recording may lead to more precise 

evaluation of slow and fast spindle activity. To separate fast and slow spindles 

precisely, individual slow and fast spindle frequency peaks and ranges were localized 

for each subject prior to spindle detection. Slow and fast spindle frequencies were 

localized using the frequency amplitude spectrum computed for NREM sleep. The 

idea to use the amplitude spectrum for localization of slow and fast spindle frequency 

ranges was proposed by Bódizs et al. (2009) and will be described in greater detail in 

subsequent sections. For each EEG channel the authors computed the second 

derivative of NREM sleep amplitude spectrum in the 9–16 Hz range. Subsequently, 

second derivatives of all investigated EEG channels were averaged. In the resulting 
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vector, the two largest negative peaks were identified, which corresponded to two 

positive frequency peaks with the strongest curvatures in the amplitude spectrum. 

Zero-crossing points, encompassing the slower peak in the second derivative, were 

taken as the slow spindle range, whereas zero-crossing points, encompassing the 

faster peak, were taken as the fast spindle range. In the present work, this method 

was extended. In all subjects the fast spindle frequency peak is visible in parietal 

EEG channels, and in most subjects, the slow spindle peak is visible in frontal EEG 

channels. However, there are also problematic cases, such as presented in Figure 

3.15C, in which the subject does not exhibit slow spindle frequency peak in any EEG 

derivation. In cases when unequivocal decision cannot be reached, slow and fast 

spindle ranges in Bódizs et al. (2009) were selected visually. The algorithm 

presented here took advantage of the fact that slow spindle activity is stronger in 

frontal EEG and fast spindle activity is stronger in parietal EEG. The parietal 

amplitude spectrum was compared with the frontal amplitude spectrum to localize the 

slow spindle frequency peak. The developed method was fully automated, and 

besides the information about slow and fast spindle frequency ranges, it returned the 

exact spindle frequency peaks. 
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Figure 3.15: Log-10 transformed power spectra of multiple subjects showing diversity of possible slow 

and fast spindle frequency ranges as well as their distribution over the scalp. Each plot consists of six 

power spectra from one subject: two nights from the mean of frontal derivations are shown in black, 

two nights from the mean of central derivations are shown in magenta and two nights from the mean 

of parietal derivations are shown in green. EEG recordings from twin study were used, therefore 

subject id consists of a number (defines twin pair) and a character (defines a twin within the pair). Red 

dashed vertical lines in 11 and 13 Hz are placed to easier distinguish differences in spindle peaks 

between the subjects. (A, B) subjects with slow spindle frequency peak at 11 Hz and fast spindle 

frequency peak at 13 Hz; (C) subject with only one spindle frequency peak visible at 12 Hz; (D) 

subject with slow spindle frequency peak at 12 Hz and fast spindle frequency peak at 14 Hz. 
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3.3.1.4.1 NREM sleep amplitude spectrum 

Amplitude spectrum in NREM sleep was computed for both frontal derivations (F3A2 

and F4A1) and both parietal derivations (P3A2 and P4A1). EEG signal from each 

derivation was high-pass filtered (-3dB at 1.5 Hz) and Fast Fourier Transform was 

applied using a 4 seconds sliding window (1 sec shift). Fragments with artifacts were 

excluded prior to spectral analysis. Artifact detection was performed as described in 

section 3.3.1.1. Resulting amplitude spectra were used to investigate the 10–16 Hz 

frequency range. 10–16 Hz frequency range in the amplitude spectrum will be 

referred to as σR. For each channel (F3A2, F4A1, P3A2 and P4A1) σR was 

normalized (dividing σR values by the sum over σR) and the linear trend from σR 

was removed. In order to localize spindle activity, mean σR of both frontal amplitude 

spectra (σRF) as well as mean σR of both parietal amplitude spectra (σRP) were 

investigated. 

 

3.3.1.4.2 Spindle activity localization in amplitude spectrum 

Spindle activity localization was performed for σRF and σRP separately, but in the 

same manner. To localize spindle activity, the 2nd derivative of σR was computed 

(Dr2σR). The second derivative of the function measures its curvature. The stronger 

the curve, the higher is absolute 2nd derivative value. The sign of the 2nd derivative 

corresponds to the direction of the curve, in which a positive sign reflects an upward 

curve and a negative sign reflects a downward curve. Since the most prominent 

positive peaks in σR were of interest (local maxima of the σR with the strongest 

downwards curve), the algorithm focused on minima of Dr2σR. 

The curve of a positive peak in σR must be prominent to avoid misclassification. 

Therefore, two thresholds were defined in order to control for sufficient curvature of 

peak candidates in σR. The curve of a positive peak in σR was considered to be 
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prominent if Dr2σR was lower than the threshold pC=-0.0005, and was considered 

sufficient if Dr2σR was lower than the threshold sC=pC*0.65. Threshold criteria were 

established on the basis of visual inspection of σR from multiple subjects. Following 

rules were applied to find a first spindle frequency peak in σR: 
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Abbreviations  

σR 10–16 Hz frequency range in the amplitude spectrum 

Dr2σR 2
nd

 derivative of σR 

pC the threshold defining prominent peak candidate 

sC the threshold defining sufficient peak candidate 

 

Localization of activity peaks in σR 

(Step 1) Select the frequency bin  with the most negative value  

  in Dr2σR. It is a peak candidate frequency bin called pkCn. 

   IF Dr2σR(pkCn) < pC 

 (Step 2)  Investigate the left and right pkCn neighbor values in σR. 

    IF σR(pkCn) < σR(pkCn + 0.25 Hz)  

        OR σR(pkCn) < σR(pkCn - 0.25 Hz) 

     NEWpkCn = the neighbor with higher value in σR. 

 (Step 3)   IF Dr2σR(NEWpkCn) < sC 

      pkCn = NEWpkCn 

      Go to (2) 

     ELSE 

 This pkCn is not valid, go to (1) and take the 

     next minimal place in the Dr2σR, which was 

     not analyzed yet, as pkCn. 

     END 

    ELSE 

     pkCn is accepted as an activity peak in σR. 

    END 

   ELSE 

    No valid peaks. 

   END 
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In the first step (1), the algorithm selected the candidate frequency bin (pkCn) in σR 

with the strongest downwards curve. The curvature in this place must be stronger 

than the threshold (pC) in order to be further analyzed. If there were no places with 

prominent downward curvatures available in σR, the procedure was over without 

localization of the spindle frequency peak. 

If pkCn was selected, the region of this place was further analyzed (2) in order to 

localize the local maximum in σR. If the σR value on the left or right side of pkCn was 

higher than the σR value in pkCn, the place with a higher σR value was marked as a 

new pkCn. The curvature in the new pkCn must be stronger than the sufficient 

threshold (sC) in order to be further analyzed (3). The curvature threshold criterion 

for the new pkCn was lower since pC has been already fulfilled for this local 

maximum. Step (2) was repeated as long as pkCn was not a local maximum in σR. 

(Please refer to Figure 3.16 illustrating this stepwise selection process of the pkCn) 

 

Step (2) assured that the spindle frequency peak was localized in the local maximum 

of the amplitude spectrum. Step (3) was introduced to avoid any case when a strong 

downwards curve localized in (1) existed on a side of the continuous slope rather 

than on a peak. 

 

The above procedure, with two modifications, was applied to find a second spindle 

frequency peak in σR. First, all the places in σR investigated during the localization of 

the first spindle frequency peak were excluded from the pkCn selection in step (1). 

Second, between the first and second localized peak, there had to be positive values 

in Dr2σR. The second condition assured that localized spindle frequency peaks were 

distinct to each other. Peak detection in amplitude spectra is illustrated in Figure 

3.16. 
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Figure 3.16: The scheme of spindle frequency peak detection in NREM sleep amplitude spectra 

computed for (A) frontal and (B) parietal derivations. 10–16 Hz frequency range for each amplitude 

spectrum was normalized, linear trend was removed and the mean of two frontal (C) and two parietal 

(D) derivations was investigated (in C and D black color represents amplitude spectrum of each 

derivation and red color the mean of them). In order to identify slow spindle frequency peak in (C), the 

2
nd

 derivative was computed (E) and two peaks crossing the threshold (red line) were identified (all 

additional requirements described in section: 3.3.1.4.2 and 3.3.1.4.3). After localizing a slower 

negative peak in (E), slow spindle frequency peak was set as local maximum for this place in (C). In 

order to identify fast spindle frequency peak in (D), the 2
nd

 derivative was computed (F). This time only 

one peak in (F) exceeded the threshold. However, in parietal amplitude spectrum one localized peak 

was assumed to be sufficient to find fast spindle frequency peak. After the peak localization in (F), fast 

spindle frequency peak was set as local maximum for this place in (D). Vertical gray lines present 

localized spindle peaks. 
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3.3.1.4.3 Spindle activity localization: merging information from frontal and parietal 

brain areas 

With spindle frequency peaks localized in both, amplitude spectrum (σR) from frontal 

channels (σRF) and amplitude spectrum from parietal channels (σRP), algorithm 

combined this information to obtain fast and slow spindle frequency peak. The 

outcome of spindle activity localization in the amplitude spectrum depended on the 

individual EEG spectral composition. Two, one or zero spindle frequency peaks could 

be identified in σR. Fast spindle activity is always strong in amplitude spectrum from 

parietal derivations (σRP) during NREM sleep, and as a result this activity was 

always localized in the parietal amplitude spectrum. Therefore, there was always at 

least one frequency peak localized in parietal σR. If only one frequency peak was 

detected in parietal σR, it was accepted as a fast spindle frequency peak (fsP). If two 

spindle frequency peaks were localized in parietal σR, the faster of the two frequency 

peaks was accepted as fsP. 

Localization of the slow spindle frequency peak (ssP) in amplitude spectrum from 

frontal derivations (σRF) must be evaluated with more caution. Therefore, σRP was 

subtracted from σRF, which resulted in continuous information about amplitude 

spectrum differences (σDf). σDf is illustrated in Figure 3.17G. The σDf values were 

assigned a positive value in frequencies where the activity was stronger in frontal 

EEG, and negative in frequencies where the activity was stronger in parietal EEG. 

The σDf was expected to be negative in fsP and positive in ssP with a continuous 

shift between slow and fast spindle activity. 

If two frequency peaks were localized in σRF, a slower frequency peak was 

considered as a possible ssP and an additional test was applied in order to accept it: 
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Abbreviations  

σR 10–16 Hz frequency range in the amplitude spectrum 

σRF σR from frontal derivations 

σRP σR from parietal derivations 

σDf σRP subtracted from σRF 

fsP fast spindle frequency peak 

ssP slow spindle frequency peak 

 

Localization of slow spindle peak in σDf 

 (Step 1) Investigate σDf with starting point in fsP: move towards slower 

frequencies and find the first local maximum (localMx) in σDf with a 

positive value. 

 (Step 2) IF ssP >= localMx – 0.25 Hz  

 (Step 3)  AND fsP – ssP >= 1 Hz 

    ssP is a valid slow spindle peak 

  ELSE 

   ssP must be re-examined 

  END 

 

localMx identified in step (1) does not have to be in the same place as a slow spindle 

frequency peak. However, in most cases a slow spindle peak and localMx should 

overlap. If the frequency of localized ssP is much lower than LocalMx (2), there is a 

high probability that the alpha frequency peak was wrongly classified as ssP. In this 

scenario, ssP had to be re-examined. Furthermore, the ssP had to  be re-examined 

(3) when it was identified very close to fsP, since this is a very unlikely situation.  

 

When fewer than two frequency peaks were identified in the σRF or when ssP had to 

be re-examined, σDf was used to localize ssP. ssP was chosen as the first local 

maximum in σDf on the left side of fsP (search started at a frequency 0.75 Hz slower 
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than fsP). Localization of slow spindle frequency peak in σDf is illustrated in Figure 

3.17. Spindle frequency localization in σDf was less exact than using frontal σR, but it 

was more robust, so it was used in case of any uncertainty with ssP localization in 

frontal σR. 

 

3.3.1.4.4 Individual spindle range 

Besides the spindle frequency peaks the algorithm has to localize a)the start of the 

spindle frequency range, b)the separation place between slow and fast spindle 

ranges and c) the end of the spindle range. For this purpose the amplitude spectra 

were used.. The start of the spindle frequency range was the closest place in 

amplitude spectrum to the slow spindle frequency peak, which was in a slower 

frequency and had a positive value found in second derivative of σRF corresponding 

to the curve going upwards in σRF. The separation frequency bin between the slow 

and fast spindle ranges was a zero crossing point in σDf between the slow spindle 

frequency peak and the fast spindle frequency peak. The end of the spindle 

frequency range was the closest frequency bin in the amplitude spectrum to the fast 

spindle frequency peak, which was in a faster frequency and had a positive value 

found in second derivative of σRP. 
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Figure 3.17: The scheme of spindle frequency peak detection in NREM sleep amplitude spectra. First 

steps (A, B, C, D, E, F) have been described in Figure 3.16. In the illustrated case slow spindle peak 

in frontal derivations is not visible and algorithm failed to find there two peaks (E). In this situation 

algorithm subtracted parietal sigma range (D) from frontal sigma range (C) resulting in (G). Slow 

spindles are more prominent in frontal derivations and fast spindles are more prominent in parietal 

derivations, therefore (G) was negative in fast spindle range and positive in slow spindle range with 

continuous transition between the peaks. In order to find slow spindle peak a first derivative from (G) 

was investigated (H) starting at the frequency 0.75 Hz slower (dashed red line) than the localized fast 

spindle frequency peak. A shift in investigation (dashed red line) was introduced because of possible 
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small instabilities in fast spindle frequency peaks between the derivations (possible slower fast spindle 

peak in frontal derivations). Slow spindle peak was localized in a bin, where 1
st
 derivative (H) first time 

crossed zero (red line), which responded to the first local maximum in (G). Vertical gray lines present 

localized spindle peaks. 

 

3.3.1.4.5 Spindle detection with localized slow and fast spindle peaks 

Spindle detection was performed in the same way as described in section 3.3.1.2. 

However, for this purpose the examined frequency range depended on a) the 

localized start and end of the spindle frequency range, b)the slow and fast spindle 

frequency peaks, as well as c) the separation place between slow and fast spindle 

ranges. 

In a first scenario when the detection of all sleep spindles was of interest without the 

separation between the slow and fast ones, the frequency range of the wavelet used 

for spindle detection started at a frequency 1 Hz higher than the localized start of the 

spindle range and stopped at a frequency 1 Hz lower than the end of the spindle 

range. 

Secondly, when  the detection of slow spindles was of interest, the frequency range 

of the wavelet used for spindle detection started at a frequency 1 Hz higher than the 

localized start of the spindle range and stopped at a frequency 1 Hz lower than the 

separation place between the slow and fast spindle ranges. To assure a proper 

separation between slow and fast spindles, a wavelet with frequency corresponding 

exactly to fast spindle frequency peak (fast spindle wavelet: fsW) was constructed. 

Spindle activity detected with the slow spindle detection wavelets was considered 

only if it was higher than the spindle activity detected using fsW. Similar logic was 

applied for fast spindle detection. 
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3.3.2 Heritability of sleep spindles 

3.3.2.1 Genetic variance analysis and intraclass correlation coefficients 

MANCOVA analysis (covariates: sex, age, cohabitation) showed that none of the 

covariates significantly affected the investigated sleep spindle parameters. However, 

genetic variance analysis (GVA) was not applicable for all slow spindle parameters 

computed for NREM sleep besides slow spindle amplitude (all values were 

significantly higher for DZ twins). GVA was also not applicable for slow spindle length 

in stage 2 as well as for slow spindle number and length in slow wave sleep (SWS), 

since sample means of averaged over-pairs measures revealed significant 

differences between the twin samples (in all cases mean values were significantly 

higher in DZ twins). 

 

Table 3.4: Genetic variance analysis, type of estimate applied (GCT: combined among- and within-

twin pair component estimate, GWT: within-pair estimate) and intraclass correlation coefficients (ICCs) 

for sleep spindle localization in frequency range. ICC MZ: ICCs of monozygotic (MZ) twins, ICC DZ: 

ICCs of dizygotic (DZ) twins, ICC MZ cn: ICCs of consecutive nights for each subject in MZ group, ICC 

DZ cn: ICCs of consecutive nights for each subject in DZ group. ICC results include: original sample 

ICC (upper percentile of bootstrapped data, median of bootstrapped data). 

Variable p GWT vs. GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

Begin of spindle range .0324 GWT 0.77(0.41, 0.12) 0.63(0.63, 0.19) 0.88(0.32, 0.08) 0.82(0.47, 0.14) 

Slow spindle peak .0016 GWT 0.80(0.43, 0.12) 0.57(0.64, 0.18) 0.91(0.34, 0.09) 0.94(0.48, 0.13) 

Fast spindle peak <.0001 GWT 0.93(0.44, 0.12) 0.63(0.60, 0.18) 0.94(0.34, 0.09) 0.96(0.49, 0.13) 

End of spindle range <.0001 GWT 0.92(0.41, 0.12) 0.65(0.64, 0.19) 0.95(0.31, 0.08) 0.96(0.49, 0.13) 

 

The results of GVA and ICC with respect to spindle localization in frequency range 

are shown in Table 3.4. Significant genetic control was found for all parameters 

defining localization of spindles in the frequency range. According to Landis and 

Koch (1977) benchmark, ICCs for consecutive nights were always almost perfect. 

Slightly higher within-twin pair similarity and night stability ICC estimations were 

found for parameters based on fast spindles localization. 
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Table 3.5: Genetic variance analysis, type of estimate applied (GCT: combined among- and within-

twin pair component estimate, GWT: within-pair estimate) and intraclass correlation coefficients (ICCs) 

for NREM sleep spindle parameters. 

Variables abbreviations as in Table 3.4. 

* Analysis of variance not applicable (significant differences between the means in DZ and MZ twin 

set). 

Variable type p GWT vs. GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

 
Number of 
spindles 

 

slow* - - 0.96(0.43, 0.12) 0.62(0.64, 0.18) 0.96(0.32, 0.09) 0.89(0.48, 0.14) 

fast .0759 GWT 0.67(0.45, 0.12) 0.49(0.64, 0.19) 0.88(0.33, 0.09) 0.88(0.44, 0.14) 

all .0125 GWT 0.88(0.40, 0.12) 0.54(0.66, 0.18) 0.95(0.33, 0.08) 0.86(0.44, 0.12) 

 
Spindle 
length 

slow* - - 0.97(0.41, 0.11) 0.79(0.66, 0.19) 0.96(0.31, 0.09) 0.95(0.48, 0.14) 

fast .0062 GWT 0.69(0.44, 0.12) 0.44(0.64, 0.17) 0.91(0.32, 0.08) 0.94(0.47, 0.12) 

all .0010 GWT 0.86(0.44, 0.12) 0.47(0.66, 0.18) 0.94(0.30, 0.08) 0.96(0.48, 0.13) 

 
Spindle 

amplitude 

slow .0011 GCT 0.85(0.46, 0.12) 0.19(0.64, 0.18) 0.88(0.31, 0.09) 0.84(0.46, 0.13) 

fast .0354 GWT 0.82(0.46, 0.12) 0.53(0.61, 0.18) 0.86(0.30, 0.08) 0.64(0.47, 0.13) 

all .0007 GCT 0.89(0.44, 0.12) 0.30(0.64, 0.19) 0.90(0.34, 0.09) 0.87(0.47, 0.13) 

 
Spindle 
density 

slow* - - 0.96(0.44, 0.12) 0.64(0.64, 0.20) 0.96(0.31, 0.08) 0.93(0.48, 0.14) 

fast .1203 GWT 0.68(0.44, 0.12) 0.50(0.63, 0.18) 0.87(0.31, 0.08) 0.90(0.46, 0.13) 

all .0068 GWT 0.90(0.43, 0.12) 0.57(0.65, 0.18) 0.96(0.32, 0.09) 0.90(0.46, 0.13) 

 
Integrated 

spindle activity 

slow* - - 0.95(0.44, 0.12) 0.68(0.67, 0.19) 0.96(0.34, 0.08) 0.94(0.48, 0.12) 

fast .0325 GWT 0.72(0.45, 0.13) 0.51(0.65, 0.19) 0.84(0.31, 0.09) 0.82(0.46, 0.13) 

all .0269 GWT 0.88(0.44, 0.11) 0.64(0.63, 0.18) 0.94(0.31, 0.09) 0.90(0.47, 0.14) 

 

GVA and ICC estimates of spindle parameters in NREM sleep are shown in Table 

3.5. A significant genetic effect was identified in all investigated spindle parameters 

besides fast spindle quantity (marginal effect for number of spindles and just a trend 

in spindle density). Lower night stability was observed for fast spindle amplitude in 

DZ twins compared to MZ twins, therefore GVA estimation in these cases should be 

treated with caution. Mean ICCs for spindle parameters were 0.84 and 0.52 in the MZ 

twins and DZ twins, respectively. Mean ICCs for night-to-night stability were 0.91 in 

the MZ group and 0.88 in the DZ group. 
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Table 3.6: Genetic variance analysis, type of estimate applied (GCT: combined among- and within-

twin pair component estimate, GWT: within-pair estimate) and intraclass correlation coefficients (ICCs) 

for stage 2 sleep spindle parameters. 

Variables abbreviations as in Table 3.4. 

* Analysis of variance not applicable (significant differences between the means in DZ and MZ twin 

set). 

Variable type p GWT vs. GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

 
Number of 
spindles 

 

slow .0048 GWT 0.91(0.42, 0.12) 0.71(0.68, 0.18) 0.94(0.31, 0.09) 0.91(0.49, 0.13) 

fast .1898 GWT 0.71(0.42, 0.12) 0.59(0.63, 0.18) 0.86(0.33, 0.09) 0.90(0.48, 0.13) 

all .1747 GWT 0.85(0.45, 0.12) 0.66(0.63, 0.18) 0.93(0.30, 0.09) 0.90(0.47, 0.13) 

 
Spindle 
length 

slow* - - 0.96(0.42, 0.12) 0.83(0.62, 0.19) 0.95(0.33, 0.09) 0.95(0.45, 0.13) 

fast .0073 GWT 0.68(0.41, 0.11) 0.40(0.63, 0.18) 0.91(0.32, 0.09) 0.92(0.48, 0.13) 

all .0006 GWT 0.86(0.45, 0.11) 0.45(0.66, 0.18) 0.95(0.31, 0.08) 0.97(0.49, 0.12) 

 
Spindle 

amplitude 

slow .0030 GCT 0.85(0.43, 0.12) 0.21(0.69, 0.17) 0.88(0.31, 0.08) 0.85(0.45, 0.12) 

fast .0411 GWT 0.82(0.43, 0.12) 0.54(0.62, 0.18) 0.87(0.33, 0.09) 0.63(0.46, 0.12) 

all .0009 GCT 0.89(0.45, 0.12) 0.31(0.60, 0.17) 0.90(0.33, 0.08) 0.86(0.47, 0.12) 

 
Spindle 
density 

slow <.0001 GWT 0.96(0.44, 0.13) 0.74(0.61, 0.19) 0.96(0.34, 0.09) 0.93(0.49, 0.13) 

fast .1725 GWT 0.70(0.47, 0.12) 0.56(0.66, 0.18) 0.88(0.30, 0.09) 0.91(0.45, 0.13) 

all .0247 GWT 0.91(0.47, 0.12) 0.67(0.65, 0.18) 0.96(0.31, 0.08) 0.91(0.49, 0.13) 

 
Integrated 

spindle activity 

slow <.0001 GWT 0.94(0.43, 0.12) 0.71(0.63, 0.19) 0.96(0.33, 0.09) 0.94(0.45, 0.12) 

fast .0390 GWT 0.74(0.43, 0.13) 0.55(0.65, 0.18) 0.85(0.32, 0.08) 0.84(0.48, 0.13) 

all .0200 GWT 0.89(0.44, 0.12) 0.67(0.64, 0.18) 0.94(0.33, 0.08) 0.92(0.43, 0.13) 

 

The results of GVA and ICC with respect to sleep stage 2 are shown in Table 3.6. 

Significant genetic control was identified for all parameters besides fast spindle 

number and density as well as all spindle number. ICC results showed that, in the 

case of fast spindles, the reason for the lack of a significant genetic control effect was 

on account of the relatively low within-pair similarity in MZ set, whereas in the case of 

all spindles, the reason was due to a higher than usual within-pair similarity within the 

DZ set. According to Landis and Koch (1977) benchmark, ICCs for night stability 

were almost perfect for all parameters except for fast spindle amplitude in the DZ set. 

Therefore the GVA result for fast spindle amplitude should be treated with caution. 

Mean ICCs for spindle parameters in stage 2 were 0.84 in the MZ twins and 0.57 in 

the DZ twins. Mean ICCs for night-to-night stability were 0.91 in the MZ group and 

0.88 in the DZ group. 
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Table 3.7: Genetic variance analysis, type of estimate applied (GCT: combined among- and within-

twin pair component estimate, GWT: within-pair estimate) and intraclass correlation coefficients (ICCs) 

for slow wave sleep spindle parameters. 

Variables abbreviations as in Table 3.4. 

* Analysis of variance not applicable (significant differences between the means in DZ and MZ twin 

set). 

Variable type p GWT vs. GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

 
Number of 
spindles 

 

slow* - - 0.91(0.45, 0.12) 0.55(0.63, 0.19) 0.92(0.33, 0.08) 0.77(0.44, 0.12) 

fast .0166 GWT 0.44(0.50, 0.11) 0.14(0.62, 0.19) 0.88(0.33, 0.08) 0.82(0.47, 0.13) 

all .0007 GWT 0.83(0.44, 0.11) 0.46(0.64, 0.19) 0.90(0.30, 0.09) 0.75(0.44, 0.14) 

 
Spindle 
length 

slow* - - 0.95(0.42, 0.12) 0.62(0.62, 0.19) 0.91(0.35, 0.09) 0.94(0.46, 0.13) 

fast .0099 GWT 0.71(0.45, 0.12) 0.45(0.64, 0.19) 0.74(0.31, 0.08) 0.85(0.45, 0.13) 

all .0020 GWT 0.84(0.46, 0.12) 0.48(0.68, 0.18) 0.87(0.31, 0.09) 0.89(0.49, 0.13) 

 
Spindle 

amplitude 

slow .0002 GCT 0.86(0.42, 0.12) 0.19(0.64, 0.19) 0.88(0.33, 0.09) 0.81(0.47, 0.13) 

fast .0051 GCT 0.81(0.42, 0.12) 0.32(0.60, 0.17) 0.86(0.33, 0.08) 0.63(0.47, 0.14) 

all <.0001 GCT 0.87(0.46, 0.13) 0.14(0.65, 0.19) 0.88(0.32, 0.09) 0.79(0.47, 0.13) 

 
Spindle 
Density 

slow <.0001 GWT 0.95(0.44, 0.12) 0.38(0.63, 0.18) 0.94(0.29, 0.08) 0.92(0.48, 0.13) 

fast .0220 GWT 0.55(0.44, 0.12) 0.13(0.66, 0.18) 0.85(0.31, 0.09) 0.81(0.47, 0.13) 

all .0024 GCT 0.88(0.45, 0.12) 0.27(0.69, 0.19) 0.95(0.32, 0.09) 0.85(0.49, 0.13) 

 
Integrated 

spindle activity 

slow <.0001 GWT 0.96(0.48, 0.11) 0.44(0.63, 0.18) 0.92(0.34, 0.08) 0.92(0.48, 0.13) 

fast .0073 GWT 0.58(0.46, 0.12) 0.14(0.66, 0.18) 0.84(0.33, 0.09) 0.71(0.50, 0.13) 

all .0071 GCT 0.86(0.44, 0.12) 0.39(0.63, 0.19) 0.93(0.33, 0.08) 0.83(0.48, 0.13) 

 

The results of GVA and ICC with respect to SWS are shown in Table 3.7. Genetic 

control of all investigated parameters was found, although relatively low ICC results 

for within-pair similarity in the MZ set were observed. The mean ICC value computed 

for all spindle parameters in SWS was 0.80 in the MZ twins and 0.34 in the DZ twins. 

Mean ICCs for night-to-night stability were 0.88 in the MZ group and 0.81 in the DZ 

group. 

 

Considering all periods of sleep combined, the mean value of ICCs computed for 

slow spindle parameters (excluding frequency parameters: onset of the spindle 

frequency range and the slow spindle frequency peak) was 0.92 in the MZ twins and 

0.55 in the DZ twins, whereas night stability was 0.93 in the MZ group and 0.89 in the 

DZ group. The mean value of ICCs computed for fast spindle parameters (excluding 

frequency parameters: the fast spindle frequency peak and the end of the spindle 

frequency range) was 0.68 in the MZ twins and 0.41 in the DZ twins, whereas night 
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stability was 0.86 in the MZ group and 0.81 in the DZ group. The mean value of ICCs 

computed for parameters of all spindles detected in the central derivation, was 0.87 

in the MZ twins and 0.46 in the DZ twins, whereas night stability was 0.92 in the MZ 

group and 0.87 in the DZ group. 

 

3.3.2.2 Cluster analysis 

Figure 3.18 illustrates the distribution of standardized Euclidean (seuclidean) 

distance values between sleep spindle parameters computed for each night EEG 

recording within different groups. Spindle parameters consisted of: the onset of the 

spindle frequency range, the slow spindle frequency peak, the fast spindle frequency 

peak and the end of the spindle frequency range as well as parameters of detected 

spindles: amplitude, length and density in stage 2 as well as in SWS for slow, fast 

and all spindles. The mean of seuclidean distance values was 1.80 ± 0.82 (mean ± 

SD) between consecutive nights, 2.21 ± 1.18 between MZ twins, 4.64 ± 1.72 between 

DZ twins and 6.32 ± 2.13 between unrelated subjects. Pairwise comparisons of 

similarity distributions between these groups revealed only a marginal difference 

between intra-individual similarity and MZ twins similarity (p=.0781, Wilcoxon rank-

sum test). Means of all other groups were significantly different when compared 

pairwise (p=.0083 when comparing DZ twins with inter-individual similarity and 

p<.0001 for all other comparisons). 
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Figure 3.18: Distribution of standardized Euclidean distances. Each subject was represented by a 

vector of 22 spindle parameters: amplitudes, lengths and densities during stage 2 and slow wave 

sleep for slow, fast and all spindles, plus begin of spindle range, slow spindle peak, fast spindle peak 

and end of spindle range. (A) consecutive nights of each subject (n=92); (B) pairs of monozygotic 

(MZ) twins (each subject represented by two nights mean, n=32); (C) pairs of dizygotic (DZ) twins 

(each subject represented by a two nights mean, n=14); (D) unrelated subjects (n=16560). If there is 

no similarity z=0; if there is perfect similarity z=infinity. 

 

Cluster analysis was performed on mean spindle parameters of 2 recording nights as 

well as on each night represented separately. In the case when each night was 

treated separately, it was assumed that the two nights for the same subject clustered, 

if the distance between them was closer than to any unrelated subject. It was 

assumed that a twin pair clustered if the distance between twins for any combination 

of their nights was closer than to any unrelated subject. Analysis of mean spindle 

parameters of two nights revealed that 23 of 32 twin pairs clustered within MZ set 

(Figure 3.19), whereas 2 of 14 twin pairs clustered within DZ set. 
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Figure 3.19: Dendrogram of cluster analysis in monozygotic (MZ) twins based on distances between 

vectors of 22 spindle parameters: amplitudes, lengths and densities during stage 2 and slow wave 

sleep for slow, fast and all spindles, plus begin of spindle range, slow spindle peak, fast spindle peak 

and end of spindle range. Each subject is represented by two nights spindle parameters mean. Metric 

was standardized Euclidean distance between vectors. Subjects with the same number represent the 

same MZ pair on x axis, distance between clusters is on y axis. Red clusters depict MZ pairs which 

clustered together. 

 

When clustering was performed on separated nights, 3 more pairs clustered within 

the MZ set and the same pairs clustered within DZ set (Figure 3.20). With respect to 

consecutive nights, 55 of 64 subjects clustered within the MZ set and 22 of 28 within 

the DZ set. When cluster analysis was repeated on all 184 nights from the combined 

MZ and DZ sets, 83.7% of consecutive nights, 75.0% of MZ pairs and 14.3% of DZ 

pairs clustered. 
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Figure 3.20: Dendrogram of cluster analysis in dizygotic (DZ) twins based on distances between 

vectors of 22 spindle parameters: amplitudes, lengths and densities during stage 2 and slow wave 

sleep for slow, fast and all spindles, plus begin of spindle range, slow spindle peak, fast spindle peak 

and end of spindle range. Metric was standardized Euclidean distance between vectors. Subject id 

consists of a number (defines DZ pair) and a character (defines a twin within the pair). Subjects id's 

are on x axis, distance between clusters is on y axis. Blue clusters depict those subjects whose 

consecutive nights clustered together but not with related DZ twin. Red clusters depict DZ pairs which 

clustered together. 

 

3.3.3 Summary of sleep spindle analysis  

The new spindle detector based on Continuous Wavelet Transform was in 

satisfactory agreement with visual scoring and the automatic SIESTA algorithm. It 

offers an individualized detection threshold for each EEG derivation as well as 

localization of slow and fast spindle frequency peaks and ranges. 

The analysis of sleep spindle parameters revealed a significant genetic influence on 

their localization within a frequency range as well as on their amplitude, length, 

quantity and integrated activity, with the exception of fast spindle quantity in stage 2 

and whole NREM sleep as well as all spindle number in stage 2. GVA could not be 

performed on multiple slow spindle parameters, since their values were significantly 

different when comparing the DZ set with the MZ set. However, when analysis was 

repeated in a subgroup of MZ twins closely matched to DZ twins for age, gender and 
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cohabitation, significant differences between MZ and DZ twins were not observed, 

and in all cases a significant genetic effect was identified (see Supplement). 

ICC computed for slow sleep spindle parameters revealed a better night-to-night 

stability as well as a higher similarity within twin pairs when compared to fast 

spindles. 

Clustering experiments performed on basic spindle features revealed their individual 

profile, with similarity between MZ twins in the range of night-to-night stability and 

similarity between DZ twins close to unrelated subjects (Figure 3.18). 
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3.4 Rapid eye movement analysis 

3.4.1 Automatic detection of REMs: description of algorithm 

3.4.1.1 Preprocessing before REMs detection 

The first part of the algorithm checks the properties of the signal and rejects periods 

of signal with EMG, EEG or other artifacts or segments without rapid eye 

movements. 

Artifact rejection: There are different types of artifacts in an EOG signal, which can 

lead to false REM detection. Amplitude and frequency thresholds were used to 

exclude fragments with movement, high muscle and EEG contamination. 

Amplitude: If the signal in the EOG channels exceeds 850 μV, a 15 sec fragment is 

eliminated from REM detection. Such a high amplitude is usually caused by 

voluntary subject movement. A 5 sec fragment is rejected before detection of a 

high amplitude, because signal changes usually start a few seconds before it 

reaches high amplitude. A 10 sec fragment is eliminated after high amplitude 

detection, which was found to be a reasonable amount of time for the signal to 

return back to baseline, and for the subject to calm down. 

Frequencies: In order to identify high frequency muscle artifacts, EOG data are 

filtered using a digital high-pass finite input response (FIR) filter (-3 dB at 19.8 

Hz, < -80 dB at 19 Hz) and a low-pass FIR filter (-3 dB at 45.5 Hz, < -80 dB at 48 

Hz). The standard deviation of the signal is computed in a 1 sec sliding window 

(step: 0.5 sec); if it exceeds 6 μV, a window of 3 sec is excluded from REM 

detection. 

Rejection of segments without eye movements: Horizontal and vertical eye 

movements in EOG channels produce coincident, out-of-phase waveforms. 

During REMs, the correlation of EOG channels is highly negative; in the absence 

of eye movements, pearson correlation is expected to be low; in the case of 



Results 

 95 

technical or physiological artifacts (e.g. delta waves), the correlation should be 

highly positive. A positive correlation is used to exclude fragments, where REMs 

are not probable. Considering sweating artifacts lead to slow oscillatory baseline 

drifts, they may produce a high positive correlation but should not affect REMs 

detection. Therefore, in order to avoid false rejection of these fragments, EOG 

data are first filtered using a digital high-pass FIR filter (-3 dB at 0.47 Hz, < -80 

dB at 0.3 Hz). Pearson correlation coefficients are computed for 5 sec sliding 

windows (step: 0.5 sec), and a segment is excluded if the correlation coefficient 

between EOG signals is above a threshold p. Since correlation coefficients are 

influenced by the amplitude of REMs, two different thresholds were used 

depending on the variance in the signal. If the standard deviation of the signal 

exceeds 15 μV in both EOG channels, the threshold was set at p=0.15 and 

otherwise at p=0.6. 

 

3.4.1.2 Detection of REMs 

A. Data preprocessing 

1) Signal filtering: The duration of most REMs have been described to range from 1 

Hz to 5 Hz (Boukadoum and Ktonas, 1986). Therefore, in order to minimize 

higher frequency noise and artifacts, the signal is filtered using a digital low-pass 

FIR filter (-3 dB at 5.2 Hz, < -80 dB at 6 Hz). Furthermore, to exclude slow eye 

movements, the signal would have to be high-pass filtered. The algorithm, 

however, is based on amplitude changes of EOG. Thus, high-pass filtering 

would attenuate slow waves but may produce additional fast amplitude changes 

in the signal, which would lead to false detections. In order to establish slow eye 

movement exclusion without high-pass filtering and to avoid false detections in 

the high-pass filtered EOG, the algorithm analyses two versions of the signal in 
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order to determine the number of REMs. One version is low-pass filtered (EOG) 

and the second is additionally filtered using a digital high-pass FIR filter (-3 dB at 

0.47 Hz, < -80 dB at 0.3 Hz) (EOGfilt).  

2) Computation of the first derivative: REM detection is based on the first derivative 

of the EOG signal which shows deflections in the signal. The derivative (DR) 

was computed for the low-pass filtered EOG (DRleft and DRright) as well as for 

the EOG with an additional high-pass filtering (filtDRleft and filtDRright). 

 

B. Detection method 

1) Identification of REM candidate points: REM candidate points were identified in 

both EOG channels. Two thresholds were used: a) a basic threshold (bT), where 

the derivative exceeds 261μV/sec and b) a relaxed threshold (rT), where the 

derivative exceeds 165 μV/sec. The threshold criteria were established on the 

basis of visual inspection of the EOG in the training set. Two thresholds were 

used in order to account for the observed differences in the amplitude of 

detected REMs between the two EOG channels. The relaxed threshold (rT), 

ensures detection of REMs that are clearly visible in one EOG channel but 

attenuated in the other. In the particular case when signal  in the left EOG 

exceeds the threshold in the upward direction, the following rules were applied: 
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(1) If DRleft(i) > bT and filtDRleft(i) > bT and DRright(i) < bT – rT 

      EOGleft(i) valid candidate point 

(2) Elseif DRleft(i) > rT and filtDRleft(i) > rT and DRright(i) < 0 and 

    DRleft(i) > 0 for >= 100 msec and EOGleft(i) > -100 μV 

      EOGleft(i) valid candidate point 

(3) Else 

      the point is not valid; reject detection 

 End 

      The first part (1) demands that the basic threshold is always crossed by both 

EOG signals (EOG and EOGfilt) in order to avoid scoring slow eye movements. 

If the basic threshold is crossed, a third condition is examined to verify that there 

is no strong deflection of the other EOG signal in the same direction as the first. 

Although no absolute synchronicity between the two EOG channels is 

demanded, it is also requested that a deflection in the same direction as the first 

channel is low (< bT-rT). The second part (2) of the rules states that if the 

increase in the EOG signal is lower but still above the relaxed threshold, the 

deflection in the other channel must be in the opposite direction (DRright(i) < 0). 

Additionally, the duration of the increase has to be equal to or longer than 100 

msec and the value of the EOG signal should have the same sign as the 

derivative value or be close to the baseline (EOGleft(i) > -100 μV). The first 

additional criterion for the relaxed threshold was introduced to mark REM 

candidate points only in time points where movement is clear although it is 

attenuated. The second criterion was introduced to minimize marking REM 

candidate points in time points, where a signal with high amplitude comes back 

to baseline. Similar rules were applied when the signal decreased and when the 

other EOG channel (i.e.in this case, EOG of the right eye) is analyzed. 
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2) Identification of binocular conjugate synchrony: After identifying all possible REM 

candidate points in each EOG channel, the algorithm evaluates whether there is 

a binocular conjugate synchrony between the marked REM candidate points in 

both channels. As stated above, the algorithm does not request absolute 

synchronicity. This is in line with previously published REM detection algorithms 

where binocular conjugate synchrony between 20 and 100 msec is usually 

required (Boukadoum and Ktonas, 1986). A cut-off value of 70 msec was used 

to identify synchronous REM. For each REM candidate point in one channel, a 

corresponding REM candidate point in the other channel within ±70 msec and a 

deflection in the opposite direction is sought. Additionally, the deflection of at 

least one of the candidate points must be above the basic threshold (261 

μV/sec). Pairs of candidate points that satisfy all criteria are taken as candidate 

pairs. An additional condition ensured that only REMs clearly visible in 

comparison to the noise of the EOG channels were considered (noise is defined 

here as everything affecting the signal which is not caused by rapid eye 

movements). It also prevented false classification of pairs within the peaks of in-

phase deflections, which could happen due to the non-synchronicity which was 

allowed (<= 70 msec). For each pair of candidate points, a signal fragment is 

evaluated which starts 100 msec before the first candidate point and ends 100 

msec after second candidate point (= pair neighborhood). For both candidate 

points, the deflections had to be prominent when compared to signal within pair 

neighborhood range, which means the maximum/minimum value of the local 

neighborhood (candidate point ± 20 msec) should be 1.35-fold higher than the 

absolute of the minimum/maximum value of the pair neighborhood. The 

empirical threshold of T = 1.35 was derived from the training set, and was found 

to be sufficient to provide a good signal to noise ratio. Each pair of candidate 
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points that satisfied all criteria listed above was accepted as a candidate pair 

and it was marked at the midway time point between the left and right EOG 

candidate point ([left candidate point + right candidate point] / 2). 

3) REMs scoring: REMs were scored when the string of consecutive candidate pairs 

exceeded 30ms. Additionally, if it was shorter than 70ms, REMs were classified 

as short. Short REMs should be clearly visible in both EOG channels in order to 

minimize false detections. Therefore, it was required that the median values for 

short REMs in the two derivative functions (left and right) should be above the 

basic threshold. There had to be a minimum interval of 110 msec between two 

detected REMs (see Figure 3.21 for illustration of the algorithm). 
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Figure 3.21: Scheme of REM detection. (a) Right and left EOG signals with detected REMs (grey 

vertical lines). (b) Filtered signals from (a) used for REM detection. (c) Derivatives of filtered signals in 

(b). (d) and (e) REM candidate points identified in right and left EOG. (f) Candidate pairs created from 

REM candidate points. (g) REMs created from strings of candidate pairs which fulfill all the criteria 

described in methods part. 

 
 

3.4.1.3 REM detector validation 

The agreement between all scorings of the validation data set (expert scorers, 

automated algorithm) is illustrated in Figure 3.22. The epoch-wise correlation of REM 

density across the night between the conditions (two experts and algorithm) showed 

an overall high similarity disregarding systematic shifts in the scoring. The correlation 

values are given in the upper panel of Figure 3.22. For the two experts, correlation 
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ranged between 0.83 and 0.97 with an average correlation of 0.91. The correlation 

between expert 1 and the algorithm ranged between 0.87 and 0.97 with an average 

correlation of 0.94. Similarly, the average correlation between expert 2 and the 

algorithm was 0.90 (0.79 to 0.97). 

 

Figure 3.22: Validation set. (a) The epoch-wise correlation of REM density across the night. (b) The 

kappa coefficient of REM density for each night. (c) Average REM density result for each night. 
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Since some differences were observed between the experts scorings, the correlation 

between the algorithm and the expert scorings was additionally computed for those 

epochs where both experts scored equally for REM density (consensus scoring). 

This constitutes a third evaluation set derived from the consensus subset where both 

scorers agree and the algorithm could be tested against. The correlation between the 

algorithm and the consensus scoring ranged from 0.89 to 0.99 with an average 

correlation of 0.96.   

The kappa coefficient for each night of the validation set is given in the middle panel 

of Figure 3.22. Kappa for the agreement between the two expert scorers was lower 

than the correlation coefficients and ranged from 0.56 to 0.89 with an average kappa 

of 0.77. Agreement between scorer 1 and the algorithm was 0.86 (0.79 to 0.90), 

between scorer 2 and the algorithm 0.76 (0.64 to 0.89), and between the consensus 

scoring and the algorithm 0.90 (0.83 to 0.98). Upon classifying kappa values per 

night according to published benchmarks (Landis and Koch, 1977), the agreement 

between the two expert scorers was only moderate for one night, but substantial for 

five nights and almost perfect for six nights. The agreement between expert 1 and 

the algorithm was substantial for one night and almost perfect for 11 nights, whereas 

the agreement with scorer 2 was substantial for seven nights and almost perfect for 

five nights. The agreement between the consensus scoring and the algorithm was 

almost perfect, as defined by Landis and Koch benchmark, for all nights. 

 

With respect to the development data set of 59 recordings (scored by scorer 1), the 

correlation between expert scorer and the algorithm ranged between 0.89 and 0.97, 

with an average correlation of 0.94 (see Figure 3.23). The kappa coefficient ranged 

from 0.72 to 0.91 with average kappa of 0.85. The agreement between the expert 

scorer and the algorithm was substantial for nine nights and almost perfect for 50 
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nights. As described in the methods section, the development data set was used to 

establish the basic features of the algorithm. The specific thresholds however, 

derived from two different nights, were not included in this sample. The present 

analysis of similarities between expert and the algorithm in the development data set 

shows that results from the algorithm are in the range of visual scoring for any night 

(Figure 3.23 lower panel). 

 

Figure 3.23: Development set. (a) The epoch-wise correlation of REM density across the night. (b) 

The kappa coefficient of REM density for each night. (c) Average REM density result for each night. 
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3.4.2 Heritability of phasic REM sleep parameters 

3.4.2.1 Genetic variance analysis and intraclass correlation coefficients 

The criterion of normal distribution was not fulfilled for the number of all detected 

REMs inside REM bursts (RinB), and therefore it was log transformed prior to any 

analysis. Sample means of averaged over-pairs measures revealed no significant 

night effects as well as no significant differences between the twin samples. None of 

the covariates significantly affected the results. The results of GVA and ICC with 

respect to phasic REM sleep parameters are shown in Table 3.8. 

 

Table 3.8: Genetic variance analysis and intraclass correlation coefficients for phasic REM 

parameters. Results of genetic variance analysis, type of estimate applied (GCT: combined among- 

and within-twin pair component estimate, GWT: within-pair estimate) and intraclass correlation 

coefficients (ICCs). REM: rapid eye movement, ICC MZ: ICCs of monozygotic (MZ) twins, ICC DZ: 

ICCs of dizygotic (DZ) twins, ICC MZ cn: ICCs of consecutive nights for each subject in MZ group, ICC 

DZ cn: ICCs of consecutive nights for each subject in DZ group. RA: REM activity, RD: REM density, 

allRA: the number of all detected REMs, 3sRA: the number of 3-sec mini-epochs containing at least 

one REM, allRD: allRA / number of REM sleep epochs, 3sRD: 3sRA / number of REM sleep epochs, 

RinB: the number of all detected REMs inside REM bursts, RoutB: the number of all detected REMs 

outside REM bursts, RinB%: percentage of REMs in burst state. ICC results include: original sample 

ICC (upper percentile of bootstrapped data, median of bootstrapped data). 

* Logarithm transformed data. 

Variable p GWT vs. GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

allRD all night .0051 GWT 0.84(0.49, 0.11) 0.33(0.63, 0.19) 0.89(0.37, 0.08) 0.66(0.45, 0.13) 

3sRD all night .0027 GWT 0.83(0.45, 0.11) 0.31(0.60, 0.19) 0.85(0.33, 0.08) 0.74(0.50, 0.12) 

3sRD 1st cycle .0036 GCT 0.58(0.44, 0.11) -0.16(0.64, 0.18) 0.49(0.31, 0.08) 0.07(0.44, 0.12) 

3sRD 2nd cycle .0096 GWT 0.70(0.44, 0.12) 0.04(0.66, 0.19) 0.41(0.28, 0.08) 0.59(0.47, 0.12) 

3sRD 3rd cycle .0774 GWT 0.68(0.41, 0.12) 0.22(0.64, 0.17) 0.70(0.35, 0.08) 0.38(0.45, 0.12) 

3sRD 1st third .0965 GWT 0.60(0.42, 0.11) 0.21(0.67, 0.18) 0.46(0.33, 0.08) 0.32(0.50, 0.13) 

3sRD 2nd third .0041 GCT 0.80(0.43, 0.11) 0.19(0.64, 0.18) 0.73(0.31, 0.08) 0.68(0.46, 0.13) 

3sRD 3rd third .0762 GWT 0.70(0.42, 0.11) 0.31(0.61, 0.19) 0.67(0.31, 0.08) 0.43(0.44, 0.13) 

allRA all night .0020 GWT 0.88(0.47, 0.10) 0.44(0.61, 0.18) 0.90(0.33, 0.08) 0.71(0.50, 0.13) 

3sRA all night .0054 GWT 0.85(0.46, 0.10) 0.49(0.64, 0.18) 0.88(0.31, 0.07) 0.78(0.47, 0.12) 

RinB all night* .0002 GWT 0.74(0.42, 0.11) 0.25(0.64, 0.17) 0.79(0.29, 0.08) 0.87(0.43, 0.12) 

RoutB all night .2467 GWT 0.70(0.43, 0.13) 0.66(0.68, 0.19) 0.80(0.34, 0.08) 0.69(0.47, 0.13) 

RinB% all night .0002 GWT 0.70(0.42, 0.12) 0.13(0.62, 0.18) 0.64(0.32, 0.08) 0.80(0.46, 0.13) 
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Significant genetic control was found for mean REM density throughout whole night 

sleep (both allRD and 3sRD), the 1st and 2nd sleep cycle as well as the second third 

of the night. Genetic effects on REM density for the 3rd sleep cycle and the other two 

thirds of the night sleep (1st and 3rd) were marginally significant. Furthermore, the 

analysis identified a significant genetic influence on whole night REM activity (both 

allRA and 3sRA), RinB and RinB% but not for RoutB. 

 

According to Landis and Koch (1977), benchmark ICCs for consecutive nights of all 

phasic REM parameters considered over whole night sleep were at least substantial. 

However, when analyzing REM density in smaller fragments of night sleep, night-to-

night stability was low in general (substantial stability only for the 2nd third of the 

night in the DZ set and for 3 fragments of night in MZ set) and showed considerable 

variation between MZ and DZ sets. Stability of REM density for the 1st and 3rd cycle 

as well as for the 3rd third of the night in the DZ set was strongly lower compared to 

the MZ set, and therefore GVA estimations, in such cases, should be treated with 

caution. 

 

RoutB was the only phasic parameter measured over the whole night, where no 

genetic effects were observed. ICC results show, that the reason was a substantial 

within-pair similarity in DZ twins rather than a similarity drop in MZ twins compared to 

other phasic REM parameters. 
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3.4.3 Summary of rapid eye movement analysis 

The agreement between the new automatic REM detection and human scorers was 

within or above the range of agreement between the two human scorers for the 

validation data set. Highest rates of agreement (almost perfect agreement for all 

nights) were obtained when the automatic detection was compared to human scoring 

for those epochs where both human scorers agreed on REM density values 

(consensus scoring). Because automatic REM detection marks each event in time, 

the analysis of additional phasic REM parameters, besides basic REM density, was 

possible (based on REMs clustering or so called REM bursts). Significant genetic 

variance was observed in all phasic REM parameters throughout the whole night with 

the exception of the REMs occurring outside REM bursts (RoutB). 
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The first aim of the present work was to develop a robust automated detection 

procedure of sleep spindles and rapid eye movements (REMs), since previous 

research identified these EEG components as putative biomarkers in psychiatric 

diseases, and further research in this field will require large study samples, which can 

be analyzed more quickly and reliably with an automatic system. 

 

A large data set was used for the development of the REM detection algorithm, which 

was then validated in a second independent data set against two experts. The 

agreement between the automated detection and human scorers was within or above 

the range of agreement between the two human scorers for the validation data set. 

Highest rates of agreement (almost perfect agreement for all nights) were obtained 

when the automated detection was compared to human scoring for those epochs 

where both human scorers agreed on REM density values (consensus scoring). 

Therefore, the developed automated detection algorithm seems well suited for 

application in large clinical and epidemiological studies. (Please refer to section 4.1 

for a more detailed discussion) 

 

In developing automatic sleep spindle detection we took into consideration the 

existence of two types of spindles, the inter-individual differences in slow and fast 

spindle frequency ranges, and inter-individual as well as inter-channel differences in 

the amplitude of EEG signal. Sleep spindles are of interest because of their possible 

role in memory consolidation as well as existing evidence for an abnormal spindle 
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activity in patients with schizophrenia. The algorithm was validated on EEG 

recordings obtained during naps against two scorers, a human scorer and the 

SIESTA algorithm, an already established commercial automatic spindle detector. 

The pairwise comparisons between the scorers revealed a high correlation regarding 

the amounts of spindles, and satisfactory agreement regarding the amount of 

overlapping signal marked by both scorers. The highest congruence was observed 

when the two automatic algorithms were compared. Concerning precise distinction 

between slow and fast spindles as well as flexible detection thresholds based on 

signal amplitude in each channel, the developed spindle detector of the present work 

may offer more detailed and more exact spindle information than previous solutions. 

(Please refer to section 4.2 for a more detailed discussion) 

 

In the twin study, prior knowledge about the heritability of background EEG in NREM 

sleep was complemented with the comparison of tonic and phasic REM parameters. 

This includes absolute EEG spectral power, amount and structural organization of 

REMs as well as NREM sleep spindle characteristics and NREM / REM sleep power 

spectra morphology. EEG data were compared between a group of n=32 healthy 

monozygotic (MZ) and n=14 dizygotic (DZ) same-gender twins. EEG data of two 

recording nights were analyzed; in addition to estimating the genetic effects, the 

differences were illustrated in within-pair similarity and night-to-night stability of given 

parameters by intraclass correlation coefficients (ICC) and cluster analysis. A 

substantial genetic influence was observed on both the spectral composition and 

phasic REM sleep parameters. Regarding sleep spindles, a substantial genetic 

influence was observed on slow as well as fast spindles in both stage 2 and slow 

wave sleep (SWS). “Fingerprint” properties of REM and NREM EEG spectra 

morphology were confirmed. In addition, cluster analysis performed on vectors of 
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basic sleep spindle characteristics showed a highly individual character of spindle 

activity, although the results of clustering were less impressive than those of EEG 

spectra. Significant differences were observed in within-pair similarity between the 

twin groups in each clustering experiment. (Please refer to section 4.3 for a more 

detailed discussion) 

 

4.1 Rapid eye movements detection 

To provide an overview of previously published REM detection methods, the major 

studies including the results of their validation are summarized in Table 4.1. Early 

studies on REM detection algorithms were based mainly on the EOG signal 

amplitude of filtered signals. More recent papers combined the amplitude and signal 

velocity criteria by analyzing half-waves or peak angles. Other methods included 

matched filtering, wavelet transform and analyses of the spectral content of EOG 

signals. Minard and Krausman (1971) developed a similar REM detection procedure 

as the one presented here. The validation results of their algorithm against human 

scorers have not been reported. The authors defined REMs as an abrupt out-of-

phase signal change and allowed a 50 msec lag between the EOG channels. Their 

detection method was designed for analog electronic circuits. The algorithm 

presented here shares this approach to the automatic detection of REMs. However, 

due to the technical evolution it was now possible to introduce signal processing 

features in order to identify and reject both physiological (e.g. muscle artifacts or slow 

eye movements) and technical (coming from high-pass filtering) artifacts. In addition, 

two deflection thresholds allowed for the detection of REMs with differing amplitudes 

in both EOG channels. Furthermore, procedures to distinguish REMs from the noise 

of the EOG channels were included. 
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Table 4.1: Overview of previous studies on REM detection algorithms that include validation result. ↔: 

referenced to, AA: automatic algorithm, cC: correct classifications, D: depressed subjects, LC: left 

canthus, M1: left mastoid, M2: right mastoid, n.a.: information not available, RC: right canthus, Sens: 

sensitivity, Spec: specificity. 
 

Study EOG montage Algorithm main features Validation set Comparison Accuracy results 

Smith et al., 1971 LC, RC ↔ 
supernasion 

Filter, amplitude threshold, 
synchrony 

3 nights  
 

1 scorer vs. AA Sens: 99-100% 
% cC: 98-100% 

Ktonas and Smith, 
1978 

LC, RC ↔ 
supernasion 

modified Smith et al., 1971 plus 
high-frequency artifact detector 

6 nights 1 scorer vs. AA Sens: 100% 

  random sample 
with 97 REMs 

1 scorer vs. AA Sens: 94% 
% cC: 88% 

McPartland et al., 
1978 

LC ↔ M1; RC ↔ M2 amplitude threshold, synchrony 
evaluation 

245 nights (D) REM activity 
rating (9 point 
scale) vs. AA 

correlation of whole night 
REM activity rating vs. 
automated REM counts: 
0.91 

Kupfer et al., 1984 see McPartland et al., 1978 23 nights   0.90 

  41 nights (D)  0.83 

Kupfer et al., 1986 see McPartland et al., 1978 26 nights (D)  0.88 

Othmer et al., 1979 n.a. Amplitude/duration/slope 
thresholds, synchrony 

? 1 scorer vs. AA Agreement: 97.7% 

Martinerie et al., 1980 n.a. Amplitude/duration thresholds for 
half-waves 

4 nights with 1000 
REMs 

1 scorer vs. AA Sens: 80% 
% cC: 71% 

Gopal and Haddad 
1981 

LC, RC ↔ forehead Filter, smoothing, amplitude/slope 
thresholds for half-waves 

3x5 min REM 
sleep (3 infants) 

average of 2 
scorers vs. AA 

Epoch-wise (10 sec) 
correlation of REM 
count: 0.91 

Hatzilabrou et al., 
1994 

LC, RC ↔ n.a. Matched filtering 
with REM templates 

18x10 min REM 
(9 infants) 

1 scorer vs. AA Concordance: 
73-90% 

Doman et al., 1995 LC, RC ↔ (M1+M2)/2 Filter, slope/angle thresholds, 
synchrony 
 

240 min REM (12 
healthy, 12 D) 
 

consensus 
count of 4 
scorers vs. AA 

Epoch-wise correlation of 
visual and automatic 
REM count:  
0.96 

   10 min REM  Sens: 90% 
Spec: 93% 

Takahashi and 
Atsumi, 1997 

LC, RC ↔ n.a. Signal smoothing, 2nd derivative, 
amplitude/ slope/duration 
thresholds 

93 min REM (3 
subjects) 

2 independent 
scorers (A and 
B) vs. AA 

Concordance: 
A and AA:87.0% 
B and AA: 84.2% 
epoch-wise correlation: 
A and AA: 0.942 
B and AA: 0.955 

Tsuji et al., 2000 n.a. (horizontal EOG) Discrete wavelet transform 30 min REM 1 scorer vs. AA Sens: 96% 
% cC: 78% 

Tan et al., 2001 LC ↔ forehead Integrated amplitude from period-
amplitude analysis 

16 subjects, 2 
nights each 
(baseline and 
temazepan 
administration) 

1 scorer vs. AA Correlation of whole 
night of REM density vs 
AA: 
baseline night: 0.90 
drug night: 0.97 

Agarwal et al.,  2005 LC↔M1, RC↔M2 Filter, amplitude, correlation, 
synchrony, angle thresholds 

5x30 min of REM 
(5 subjects) 

1 scorer vs. AA Sens: 67.2% 
Spec: 77.5% 
 

 

The results of the presented algorithm, however, may be limited by the fact that sleep 

EOG montage was done according to Rechtschaffen and Kales (1968). In this two-

channel montage, all eye movements produce coincidental out-of-phase waveforms. 

As a result, it is easy to distinguish eye movements from artifacts, but it is impossible 

to determine the direction of eye movement. EOG montages described by Padovan 
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and Pansini (1972) and Schneider (1978) included more channels and offer the 

advantage of determining the direction of eye movements. The present work, 

however, focused on the practical usability of the algorithm in clinical studies using 

the standard recommended EOG montage (Iber et al., 2007).  

In addition, it is open to discussion whether REM density is the parameter best suited 

to reflect phasic components of REM sleep. In order to evaluate a REM detector, the 

comparison of exclusively marked single REMs could be a more precise alternative. 

However, since REM density assessment was the main focus of previous studies in 

psychiatric patients and healthy human subjects, the present work chose REM 

density as a comparison parameter. This decision was based also on the availability 

of a large development and validation data set where REM density was already 

scored. 

 

The algorithm was validated in n=12 polysomnographic recordings from n=7 healthy 

young subjects which is a relatively large validation set compared to previous studies 

(see Table 4.1). There are two studies on REM algorithms that have been validated 

in even larger data sets (McPartland et al., 1978; Tan et al., 2001). These papers, 

however, reported only night-wise comparison results. Future studies are required to 

test the robustness of the presented detection method in data sets with subjects from 

different age groups and with different disorders of sleep regulation or psychiatric 

disorders. 

 

It is important to take into account that relevant differences in REM density scoring 

might develop between human scorers, even if they have been trained in the same 

laboratory and have scored REMs according to the same criteria. Interestingly, all 

differences observed in REM density scoring between the experts and the algorithm 
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were stable on both nights for any given subject (see Figure 3.22). This may result 

from different sensitivity thresholds combined with individual REM features of the 

subjects. Thus, small differences in applying the scoring rules may add up to large 

overall differences in REM density scorings for some individuals. The average 

correlation coefficient between human experts (0.91) was within the range reported 

by other groups where correlations of 0.90, 0.85–0.90 and 0.983 were reported 

between visual scorers by Minard and Krausman (1971), Gopal and Haddad (1981) 

and Takahashi and Atsumi (1997), respectively. However, prior studies did not report 

whether a disagreement between expert scorers influenced the absolute values of 

REM density. In order to obtain a more reliable set of data, the algorithm was 

compared to a subset of epochs where both experts agreed on the same REM 

density score (consensus scoring), which resulted in increased agreement. Next to 

inter-scorer variability the aspect of intra-scorer variability may also be of relevance. 

Agarwal et al. (2005) reported significant changes in the identification of individual 

REM events when the recordings were re-scored after one year. This phenomenon 

was also observed in present studies. When comparing the results of automatic 

detector and scorer 1 between validation and development set (see Figure 3.22 

lower panel and Figure 3.23 lower panel), the observed differences in absolute REM 

density values were not of the same pattern: absolute REM density values scored by 

scorer 1 in the development set exceeded values scored by the algorithm in most 

cases. This was not observed in the validation set and may be due to the time lag of 

more than two years between the REM density scoring done by scorer 1 in the two 

data sets. This observation clearly underscores the need for an automatic detection 

of REMs. 
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In summary, this part of the present work presents a robust automatic REM detection 

algorithm that is easily applicable in larger sleep EEG studies with electrode 

montages according to standard guidelines. Establishing automatic REM detection 

ensures complete reproducibility, excludes method drifts across time, and allows 

reliable long term evaluation of REM density as a putative biomarker in patients with 

affective disorders. Thus, a reliable automatic REM detection is a crucial prerequisite 

for translating results from biomarker research to the clinical context. 

 

4.2 Sleep spindle detection 

Previously published sleep spindle detection methods proposed a number of 

approaches. Proposed solutions to detect spindle activity were based on fast Fourier 

transform (Huuponen et al., 2007), band-pass filtering (Schimicek et al., 1994; 

Ferrarelli et al., 2007; Bódizs et al., 2009; Mölle et al., 2011), wavelet transform 

(Latka et al., 2005; Wamsley et al., 2012) and its generalization, a matching pursuit 

algorithm which deconstructs signal into waveforms (Zygierewicz et al., 1999). 

Continuous wavelet transform (CWT) offers a good time and frequency resolution 

and provides a number of wavelets which capture well the sleep spindle 

characteristics. CWT was chosen for the presented detection algorithm, because its 

outcome depends not only on the power in a given frequency, but also on the shape 

of graphoelements in the signal (Addison, 2002) and therefore may be more specific 

than a band-pass filtering. 

 

Thresholds for spindle detection based on the amplitude of the analyzed EEG signal 

are widely applied in recent algorithms (Latka et al., 2005; Huuponen et al., 2007; 

Ferrarelli et al., 2007; Bódizs et al., 2009; Mölle et al., 2011 and Wamsley et al., 

2012). A first reason may be age-related changes in EEG power spectrum. It has 
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been reported that the EEG power in delta (1–4 Hz), theta (1–8 Hz) as well as sigma 

(10–16 Hz) frequency is lower in middle aged males in comparison to young males 

(Dijk et al., 1989b). Second, it has been reported that the EEG power in females is 

higher than in males (Dijk et al., 1989c), which could be due to differences in skull 

thickness. In addition, even during the same recording, the measured EEG amplitude 

may vary across channels due to electrode placement. In recordings performed using 

high-density EEG caps, the differences in signal amplitude between the electrodes 

are clearly visible (Ferrarelli et al., 2007) and probably higher than in standard EEG 

recordings, since it is much more difficult to fix the high numbers of electrodes 

properly. 

 

Studies on the EEG power spectrum in 8–16 Hz frequency range during NREM sleep 

showed high inter-individual variability and intra-individual stability (de Gennaro et al., 

2005). Since slow as well as fast sleep spindle activity is present in this frequency 

range, the differences in slow and fast spindle frequencies strongly account for the 

observed inter-individual variability in EEG power spectrum. This aspect becomes 

important when a separation between slow and fast sleep spindles is of interest. 

Assuming that there is an inter-individual variability in spindle peak frequencies, a 

separation between slow and fast spindles based on the predefined threshold, which 

is the same for all subjects, would lead to a number of misclassifications in some of 

them. Interestingly, there is no agreement up to now on the value of such a 

predefined threshold. The average spindle frequency peak was reported at 11.5 Hz 

in frontal brain areas and at 13 Hz in parietal brain areas by Werth et al. (1997). 

However, Ferrarelli et al. (2010) set the division threshold between fast and slow 

spindles at 14 Hz (slow spindle 12–14 Hz, fast spindle 14–16 Hz), whereas 

Schonwald et al. (2012) set it at 13 Hz. Therefore, it is interesting that until now only 
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the spindle detection solutions described by Bódizs et al. (2009) and Mölle et al. 

(2011) have considered variabilities in spindle frequencies between the subjects. The 

spindle detection proposed by Bódizs et al. (2009) was the first method where the 

localization of slow and fast spindle frequencies was based on the frequency spectra 

in NREM sleep, and the band-pass filters for spindle detection were constructed 

accordingly to detected spindle activities. 

 

The presented algorithm searches for slow and fast spindles activity according to the 

idea proposed by Bódizs. In addition, the presented procedure is fully automated and 

localizes the exact spindle frequency peaks. Instead of band-pass filters, wavelets 

are constructed in order to detect slow and fast spindles according to detected 

activities. The detection threshold setup presented here has not been proposed in 

previous algorithms. It is based on the median of band-pass filtered stage 2 signal 

activity in the 3.5–20 Hz range with each condition thought to provide a maximum 

robustness across subjects. Only stage 2 from NREM sleep was considered for 

threshold setup, since the EEG spectral characteristics during slow wave sleep 

(SWS) are significantly different than during stage 2 sleep and the amount of SWS 

varies between nights. Band-pass filtering in 3.5–20 Hz range should minimize the 

influence of high amplitude vertex waves and K-complexes. The median of signal 

root mean square should provide higher robustness than the mean against 

temporary events. Both detection methods which localize slow and fast spindle 

frequency prior to detection (Bódizs et al., 2009 and Mölle et al., 2011) use the 

spindle detection thresholds based on signal properties exactly in spindle frequency 

ranges. Therefore, there is the risk that a strong spindle activity could significantly 

affect these thresholds, resulting in decreased detection sensitivity. 
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The presented method uses two thresholds, a higher one for spindle detection and a 

lower one for spindle length estimation. A similar solution was proposed by Ferrarelli 

et al. (2007). The lower threshold helps to estimate the spindle length properly, 

including waning spindle parts. 

 

The algorithm was validated in n=18 polysomnographic nap recordings from n=10 

healthy subjects. The size of a validation set seems to be sufficient when compared 

to the previous studies. For example, in the study of Wamsley et al. (2012) a spindle 

detector was validated on n=20 visually scored EEG recordings, while Huuponen et 

al. (2007) reported n=12 visually scored recordings, and Bódizs et al. (2009) used up 

to 20 min of visually scored NREM sleep from n=12 subjects. Ferrarelli et al. (2007) 

did not report the size of the validation set. Only the development of the SIESTA 

spindle detector (Anderer et al., 2005) was based on a large dataset of almost 

11,000 visually marked episodes with sleep spindles used for thresholds setup, 

training and method validation. 

 

The presented spindle detector was compared to one visual scorer as well as to the 

SIESTA spindle detector (Anderer et al., 2005). The correlations of detected spindles 

between scorers were satisfactory, however, the pairwise comparisons of signals, 

marked as sleep spindle episodes revealed ratios of concordance below 0.7. 

Automatic algorithms had better concordance with each other than each of them with 

the visual scorer. The reason for the lower agreement between visual scoring and 

either algorithms was the lower sensitivity of visual scoring in comparison to 

automatic detectors. This is not surprising since visual scorers may have difficulties 

to identify spindles intermingled with other dominating EEG oscillations, i.e. theta or 

delta waves. When comparing two algorithms it seemed that the SIESTA algorithm 
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marked longer signal fragments than the presented detector, in case the same sleep 

spindle was found by both. This difference could result from the construction of the 

SIESTA algorithm. In this solution, spindle candidates are identified with the 

algorithm proposed by Schimicek et al. (1994). This detector uses the band-pass 

filter in order to remove all the activity in EEG besides the sigma frequency band, 

where sleep spindles are present. A constant predefined amplitude threshold is then 

applied in order to detect sleep spindles. In the SESTA algorithm this fixed threshold 

was lowered in order to maximize the detection sensitivity. In order to increase the 

specificity, the marked signal is then evaluated by a trained classifier, where the 

classification is based on spindle duration and the mean amplitudes in four frequency 

bands: spindle, theta, alpha, and fast beta. As a result the accepted spindle ranges 

are either long, due to detection with very low activity thresholds, or the whole 

fragment is rejected since it did not pass the classification criteria. In this respect, it 

seems that the presented algorithm has an advantage, since the threshold criteria 

were established to detect bursts of spindle activity and not to detect each slight 

increase in sigma power. 

 

Regarding the agreement between scorers, an interesting suggestion was made by 

Bódizs et al. (2009). He proposed that in view of the growing knowledge about sleep 

spindles and available signal processing tools, the algorithms should be constructed 

to follow the scientific findings instead of visual detection. The relevance of the 

differences between the visual and the automatic spindle detection clearly arises 

from contradictory findings on spindle abnormalities in psychiatric disorders. The 

studies in schizophrenia patients, where sleep spindles were detected visually, 

showed either no differences in spindle activity between patients and controls (Van 

Cauter et al., 1991; Poulin et al., 2003), or increased spindle activity in patients (Hiatt 
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et al., 1985). In contrast, recent studies which were based on automatic spindle 

detection reported a significantly decreased spindle activity in patients with 

schizophrenia (Ferrarelli et al., 2007 and 2010; Wamsley et al., 2012). Also, studies 

in patients with depression reported inconsistent results. As an example, Lopez et al. 

(2010) found a decrease in frontal spindle activity, especially in females, whereas 

Plante et al. (2012) reported an increase in frontal and parietal spindle parameters in 

females and no differences or decreases in males. In these studies different 

automatic spindle detectors were used. It is an open question how differences in 

spindle detection methods could affect these contrary results. 

 

In summary, this part of study presented an automatic sleep spindle detection 

algorithm which carefully localizes fast and slow spindles frequency for each 

individual and estimates the signal amplitude for each investigated channel. In view 

of inconsistent findings on spindle activity in depression as well as in schizophrenia, it 

seems that reproducing these studies in a large study sample would be worth 

following up, using a more exact detection method and considering differences in 

gender as well as medication. 

 

4.3 Heritability of sleep EEG 

4.3.1 Genetic variance analysis 

A substantial genetic influence was observed on both the spectral composition and 

the phasic REM sleep parameters. A significant genetic variance in spectral power 

was observed in delta to sigma, and high beta to gamma frequencies as well as in all 

phasic REM parameters throughout the whole night, except for the REMs occurring 

outside REM bursts (RoutB). All estimates of genetic variance in spectral power for 

the derivation C3A2 were similar when the analysis was repeated for the derivation 
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C4A1 (see Supplement). In order to minimize the effects of possible covariates, the 

analysis was repeated in a subgroup of MZ twins closely matched for age, 

cohabitation and gender to the group of DZ twins (see Supplement). The comparison 

of REM EEG parameters between matched MZ and DZ twins confirmed the findings 

in the whole twin sample. In addition, a significant genetic influence was found for the 

remaining 7 frequency bins (1 Hz, 16–21 Hz) and low beta frequency band of REM 

sleep EEG. The current findings complement previous studies of Ambrosious et al. 

(2008), which were performed on the same data set and reported the heritability of 

background NREM EEG in the range of 2–18 Hz and in some sleep architecture 

parameters: the duration of stage 3 and REM sleep as well as marginal effects were 

observed for the duration of stage 4. 

 

The present study demonstrates a strong genetic determination of both the absolute 

and the relative amount as well as structural organization of REMs. This finding 

clearly promotes the relevance of these sleep characteristics for psychiatric research, 

since Lauer et al. (1995) identified REM density as a promising endophenotype for 

affective disorders. Genetic effects on REM density and REM activity were stable 

and independent of the definition of the given parameters (expected improvement in 

sensitivity when counting single REMs did not influence estimations of genetic 

regulation), lending further support to a study by Linkowski, who first reported a 

genetic influence on REM density (1989 and 1991). In addition, when considering 

sleep cycles and night thirds, a high night-to-night variance was found in REM 

density results, especially in the DZ set. Therefore, genetic variance assessed for 

parts of the night should be treated with caution. However, analyzing the mean of two 

consecutive nights of each parameter should provide some control of intra-subject 

variability. 
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Regarding sleep spindles in NREM sleep, a substantial genetic influence was 

observed on slow as well as fast spindles in both, stage 2 and slow wave sleep 

(SWS). A significant genetic effect was observed on all parameters focused on 

spindle frequency. Slow spindles detected in frontal derivations showed significant 

genetic variance in all parameters, which could be analyzed. Unfortunately, genetic 

variance analysis (GVA) could not be performed for a number of slow spindle 

parameters due to significantly higher values in DZ twins. However, when DZ twins 

were compared to a subgroup of closely matched MZ twins, a significant genetic 

influence was found for all remaining parameters and, moreover, all findings in the 

whole twin sample were confirmed. Fast spindles detected in the parietal derivation 

showed a significant genetic variance in length, amplitude, as well as in integrated 

activity during sleep stage 2, and a significant genetic effect on all parameters during 

SWS. However, GVA repeated on MZ twins matched to DZ twins did not confirm the 

results for spindle amplitude in stage 2 and showed only marginal effects on the 

integrated spindle activity in stage 2 and SWS. 

 

4.3.2 Intraclass correlation coefficients 

In REM sleep, high overall differences were observed in within-pair resemblance 

between MZ and DZ twins. When comparing intraclass correlation coefficients (ICCs) 

of intra-individual stability and within-pair similarity between both twin groups it 

became apparent that data from MZ twins closely resembled their intra-individual 

stability, sometimes exceeding it. In contrast, DZ twins showed a clearly lower within-

pair similarity when compared to their night-to-night stability of REM sleep 

characteristics. When focusing on all REM sleep parameters with good night-to-night 

stability (corresponding ICCs crossed significance threshold and were at least 

substantial according to Landis and Koch (1977) benchmark), the observed within-
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pair resemblance in the MZ group was always significant. In contrast, significant 

within-pair similarity in DZ twins was only observed for two frequency bins (31–32 

Hz). Thus, similarity differences between MZ and DZ twins were highest for 

parameters with good night-to-night stability, leading to the estimation of strong 

genetic effects. A previous twin study in a smaller sample by Linkowski et al. (1989 

and 1991) already reported that sleep parameters showing best night-to-night 

stability have the strongest genetic component. This phenomenon was observed in 

all investigated tonic and phasic REM sleep parameters. 

 

The clear dependence of night-to-night stability and within-pair resemblance in the 

MZ group was not always observed in NREM sleep spindle parameters. Intra-

individual stability translated into similar results in the MZ group for slow spindle 

parameters, but not for fast spindles. A drop in the MZ twins within-pair similarity was 

already observed in stage 2 sleep, which was even more pronounced in SWS. 

Almost perfect ICC estimates (according to Landis and Koch, 1977) for intra-

individual stability considering fast spindle quantities (spindle count as well as spindle 

density) for the MZ as well as the DZ group were only moderate when comparing MZ 

twins. A significant genetic effect on fast spindle quantities in SWS was obtained 

because there was almost no similarity between DZ twins (slight according to 

benchmark). Conversely, almost perfect ICC estimates for slow spindle quantities 

were observed in MZ twin set for both night-to-night stability and within-pair 

resemblance during stage 2 as well as SWS. Cox et al. (2012) found that spindle 

density in SWS, but not in light sleep, significantly correlated with declarative memory 

retention without distinguishing between fast and slow spindles. Mölle et al. (2009) 

observed that spindles focus into the depolarizing slow oscillations up-state after a 

learning episode. These spindles were later recognized as fast spindles by Mölle et 
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al. (2011). The present work shows that, although there is a genetic influence, the 

environmental influence on the occurrence of fast spindles is higher, especially in 

SWS. This observation suggests that fast spindles could be involved in the 

consolidation of new memories in SWS and that the mentioned result by Cox 

(association of sleep spindles in SWS with declarative memory) was probably due to 

increased density in fast spindles. 

 

Intra-individual stability and within-MZ-pair similarity ICC estimates for the localization 

of spindle oscillations in their respective frequency range were higher for fast (always 

almost perfect) than for slow ones, and conversely, the mean of ICC estimates for all 

other spindle parameters were higher for slow spindles (almost perfect mean stability 

in MZ and DZ group and almost perfect within-MZ-pair similarity). These results point 

to relevant issues in the localization of slow spindles in the frequency range as 

already reported by De Gennaro et al. (2005), Bódizs et al. (2009) and Mölle et al. 

(2011). Furthermore, the presented results also show that these issues do not affect 

the detection of slow spindles, and conversely, that fast spindles show less 

consistency in activity, although it is easier to point them in the frequency range. 

 

4.3.3 Cluster analysis 

The human sleep EEG frequency spectrum is characterized by high inter-individual 

differences, as well as high night-to-night stability resulting in good clustering results 

for multiple recording nights of the same subject in both NREM and REM sleep 

(Buckelmüller et al., 2006). Cluster analysis performed in children and across 

adolescent development also shows trait-like characteristics of sleep EEG power 

spectra (Tarokh et al., 2011). In the present study, strong differences were 

demonstrated for both NREM and REM sleep EEG spectra clustering properties 



Discussion 

 123 

between MZ and DZ twins. In addition, a first attempt was made to separate 

individuals and twin pairs in a clustering experiment, where basic spindle 

characteristics were used (amplitude, length and density of slow, fast and all spindles 

in stage 2 and SWS plus their localization in the frequency range). Again, significant 

differences were observed between the twin groups. The similarity distribution of MZ 

twins was only marginally lower when compared to intra-individual similarity. 

 

The clustering results in the NREM sleep frequency spectrum up to 20 Hz were 

comparable to the clustering results of REM sleep frequency spectrum up to 45 Hz. 

This is an improvement in REM sleep clustering results on previous findings. Tarokh 

et al. (2011) reported lower clustering properties of REM sleep EEG. As a possible 

reason, the authors suggested a decreased individual character of REM sleep in 

some subjects (lack of characteristic frequency peaks, which in NREM sleep are 

always present at least in the range of spindle activity) and lower amounts of REM 

sleep periods, which result in less reliable measures. The present analyses revealed 

high genetic influence and night-to-night stability of REM power spectrum also in high 

EEG frequency bands. When restricting the frequency range to 20 Hz, there was an 

evident drop in clustering results for consecutive nights, however, the overall high 

rate of clustering between MZ twins was not affected by this phenomenon. The 

results show that high frequencies provide additional information about the REM 

power spectrum morphology. 

 

The clustering results of the REM power spectrum restricted to 20 Hz were 

comparable to the clustering results of sleep spindle parameters. Lower clustering 

properties of sleep spindles are not surprising given the described lower stability of 

fast spindles (see section 4.3.2). However, removing fast spindle parameters from 
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the analysis further decreased the clustering results, showing their considerable 

inter-subject variations. 

 

Figures 3.2, 3.6 and 3.18 illustrate that the distribution of similarities between MZ 

twins is close to intra-individual stability in NREM and REM sleep, as well as in sleep 

spindles. In DZ twins, on the other hand, the distribution of similarities is always close 

to unrelated subjects. Figure 3.4 illustrates that differences in the morphology of REM 

sleep EEG spectra for the most dissimilar MZ twins who failed to cluster are small, 

whereas the most dissimilar DZ twins show high variance in the distribution of 

spectrum power peaks across the whole investigated frequency range. 

 

4.3.4 Summary 

Steriade (2000) proposed common neuronal mechanisms generating EEG 

oscillations independent of vigilance state. Ambrosious et al. (2008) suggested that 

heritability findings in wake and NREM sleep background EEG indicate that there 

might be a common genetically driven neuronal mechanism generating these 

oscillations. Furthermore, Smit et al. (2005) reported that a significant proportion of 

the heritable variance in all wake EEG frequency bands might be attributed to a 

common genetic source. Figures 3.9 and 3.10 illustrate EEG spectra in REM and 

NREM sleep of the most dissimilar MZ twins detected by cluster analysis either in 

REM or NREM sleep. Comparison between these two sleep phases suggests that 

differences between the twins are preserved in both NREM and REM sleep as long 

as they do not arise from spindle activity in NREM sleep, which is not present in REM 

sleep. This finding further supports the idea that oscillations in different vigilance 

stages derive from common neuronal mechanisms. 

 



Discussion 

 125 

All estimations of genetic effects considered absolute EEG power. Smit et al. (2005) 

analyzed the heritability of background wake EEG in detail and suggested that part of 

the observed genetic variance could be an outcome of skull and scalp thickness. 

Both variables influence EEG power and are most likely heritable. This is indeed a 

possible shortcoming of investigating genetic variance in the absolute EEG power. 

However, cluster analysis based on EEG morphology that is independent of absolute 

signal amplitude confirmed strong heritability of EEG in REM sleep. 

 

In summary, the present results support a substantial genetic determination of tonic 

and phasic REM sleep, as well as spindle parameters, and complement previous 

findings of the high genetic determination of NREM power spectrum (Ambrosius et 

al., 2008; De Gennaro et al., 2008). 

The present analysis on the two types of EEG sleep spindles revealed a strong 

genetic determination of slow spindles in particular, and weaker effects in fast ones, 

especially considering their quantities expressed in overall number or density. These 

results support the previous hypothesis of different sleep spindle generators (Anderer 

et al., 2001) and distinct roles of low and fast spindles in memory consolidation 

(Mölle et al., 2011). 

Strong genetic effects were demonstrated on REM EEG frequencies up to 45 Hz. 

The observed genetic variance in higher REM EEG frequencies is of interest since 

Knott et al. (2001) reported differences in the absolute and relative power of wake 

EEG in the range of 12.5–25 Hz between patients with depression and healthy 

controls. In view of the given interference of muscle artifacts with EEG analysis, 

investigating REM sleep, which is characterized by muscle atonia, may offer a better 

opportunity to identify disease specific differences in higher EEG frequencies. The 

results support the exploitation of REM sleep abnormalities with respect to clinically 
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relevant biomarkers in patients with affective disorders (Lauer, 1991 and 1995). 

Specifically, basic and clinical studies support the notion that REM EEG measures 

help to identify patients that respond to certain antidepressant treatment (Griebel and 

Holsboer, 2012). 

 

4.4 Perspectives 

Up to now, the striking difference between investigations on human wake and sleep 

EEG lies in the size of the investigated samples. Twin studies on heritability of wake 

EEG included around ten times more MZ and DZ twin pairs (Van Baal et al., 1996; 

Van Beijsterveldt et al., 1996; Smit et al., 2005) in comparison to studies on sleep 

EEG (Linkowski et al., 1989; 1991; Ambrosius et al., 2008; De Gennaro et al., 2008). 

The study presented in this work is unfortunately not an exception. The sample size 

of n=35 MZ twin pairs and only n=14 DZ twin pairs made it challenging to analyze 

precise heritability estimates. De Gennaro et al. (2008) reported heritability estimates 

on NREM sleep EEG, although the investigations were performed on even smaller 

sample sizes. In the case of the current study, jackknife as well as bootstrapping 

simulations showed instability of within-pair similarities in the DZ sample. Although a 

substantial genetic determination of reported parameters was clear, more precise 

heritability reports might include large errors. “Fingerprint” characteristics of 

topographical power distributions reported by Finelli et al. (2001) could also not be 

investigated in this twin sample since the limited number of electrodes resulted in 

insufficient spatial distributions. Further studies including a higher number of 

participants, more electrodes and EEG recordings from wake, as well as sleep are 

needed to answer questions concerning the hypothesized common genetic source of 

neuronal mechanisms generating EEG oscillations (Steriade 2000). 
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The detectors for rapid eye movements and for sleep spindles were developed to 

facilitate future biomarker research on these parameters in psychiatric disorders. 

Biomarkers could provide a possibility to decrease the complexity of the phenotype in 

complex psychiatric disorders, providing a better chance to detect genes and 

discover the mechanism of the disease. Moreover, clinically relevant biomarkers 

could improve the therapy by providing a predictive value of the outcome. For future 

studies of predictive biomarkers in sleep EEG, large sample sizes including patients 

of different age, gender and medication type will be crucial. Strong evidence for the 

importance of medication type arises from the investigated possible predictive 

biomarker in quantitative wake EEG, the so called Antidepressant Treatment 

Response (ATR) index (Leuchter et al., 2009). These studies included almost 400 

participants and reported that ATR showed a predictive value in patients treated with 

escitalopram, but not with bupropion, two antidepressants with different function. The 

inconsistent findings regarding spindle activity in schizophrenia (Poulin et al., 2003; 

Ferrarelli et al., 2010) and depression (Lopez et al., 2010; Plante et al., 2012) as well 

as the mentioned results of Leuchter show that EEG related biomarkers may have a 

clinically relevant predictive value only under standardized conditions (detection 

method, drugs, age, gender of patients). 
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Heritability of REM Sleep EEG: Supplementary Material 

MZmatch: a subgroup of n=14 MZ twin pairs who were closely matched for age, 

gender and cohabitation to the group of DZ twins (mean ± SD: MZmatch: 

22.2±2.8yr, 18–27yr, 7m:7f, 10 pairs lived together; DZ: 22.1±2.7yr, 18–26yr, 

7m:7f, 10 pairs lived together). 

 

Matched MZ set, derivation C3A2: 

 

Supplementary Figure S1: Matched MZ sample. Derivation C3A2. Intraclass correlation 

coefficients (ICCs) of rapid eye movement (REM) sleep frequency bins. On each plot solid line 

represents the observed real data, dotted line represents the upper percentile of bootstrapped 

values and dashed line represents the median of bootstrapped values. (A) consecutive nights of 

each subject in matched monozygotic (MZmatch) set (n=28); (B) consecutive nights of each 

subject in dizygotic (DZ) set (n=28); (C) pairs of MZmatch twins (each subject represented by a 

two nights mean, n=14); (D) pairs of DZ twins (each subject represented by a two nights mean, 

n=14). On the average, the upper percentile and the median of bootstrapped values differ 

between groups, which is the outcome of different sample sizes. 
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Supplementary Table S2: EEG frequency bands in REM sleep. Matched MZ sample. 

Derivation C3A2. Results of genetic variance analysis, type of estimate applied (GCT: combined 

among- and within-twin pair component estimate, GWT: within-pair estimate) and intraclass 

correlation coefficients (ICCs). REM: rapid eye movement, ICC MZ: ICCs of matched 

monozygotic (MZmatch) twins, ICC DZ: ICCs of dizygotic (DZ) twins, ICC MZmatch cn: ICCs of 

consecutive nights for each subject in MZmatch group, ICC DZ cn: ICCs of consecutive nights for 

each subject in DZ group. ICC results include: original sample ICC (upper percentile of 

bootstrapped data, median of bootstrapped data). 

Variable p GWT vs GCT ICC MZmatch ICC DZ ICC MZmatch cn ICC DZ cn 

δ .0072 GCT 0.92(0.67, 0.19) 0.27(0.63, 0.18) 0.93(0.47, 0.13) 0.87(0.45, 0.12) 

θ .0059 GCT 0.94(0.64, 0.19) 0.51(0.64, 0.19) 0.96(0.46, 0.13) 0.90(0.46, 0.12) 

α .0019 GWT 0.88(0.67, 0.19) 0.40(0.71, 0.18) 0.95(0.48, 0.12) 0.95(0.43, 0.12) 

σ .0186 GWT 0.86(0.68, 0.18) 0.45(0.61, 0.18) 0.94(0.49, 0.13) 0.92(0.46, 0.11) 

α/σ .0052 GWT 0.88(0.65, 0.18) 0.52(0.67, 0.19) 0.94(0.48, 0.13) 0.95(0.42, 0.12) 

low σ .0097 GWT 0.87(0.62, 0.19) 0.41(0.64, 0.18) 0.94(0.49, 0.12) 0.93(0.45, 0.11) 

high σ .0409 GWT 0.84(0.64, 0.19) 0.53(0.64, 0.19) 0.94(0.47, 0.13) 0.92(0.46, 0.11) 

β1 .0016 GWT 0.88(0.64, 0.18) 0.41(0.66, 0.16) 0.97(0.48, 0.12) 0.97(0.58, 0.08) 

β2 .0307 GWT 0.92(0.64, 0.18) 0.62(0.65, 0.17) 0.98(0.47, 0.13) 0.96(0.56, 0.11) 

φ .0067 GCT 0.93(0.62, 0.19) 0.40(0.64, 0.19) 0.96(0.47, 0.12) 0.87(0.49, 0.12) 
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Supplementary Table S3: EEG 1-Hz frequency bins in REM sleep. Matched MZ sample. 

Derivation C3A2. Results of genetic variance analysis and type of estimate applied (GCT: 

combined among- and within-twin pair component estimate, GWT: within-pair estimate). REM: 

rapid eye movement. 

Variable p GWT vs GCT 

1 Hz <.0001 GWT 

2 Hz .0063 GCT 

3 Hz .0114 GCT 

4 Hz .0066 GCT 

5 Hz .0109 GCT 

6 Hz .0101 GCT 

7 Hz .0042 GCT 

8 Hz .0017 GWT 

9 Hz .0004 GWT 

10 Hz .0023 GWT 

11 Hz .0060 GWT 

12 Hz .0030 GWT 

13 Hz .0079 GWT 

14 Hz .0323 GWT 

15 Hz .0563 GWT 

16 Hz .0152 GWT 

17 Hz .0044 GWT 

18 Hz .0019 GWT 

19 Hz .0006 GWT 

20 Hz .0003 GWT 

21 Hz .0004 GWT 

22 Hz .0019 GWT 

23 Hz .0062 GWT 

24 Hz .0137 GWT 

25 Hz .0194 GWT 

26 Hz .0206 GCT 

27 Hz .0123 GCT 

28 Hz .0083 GCT 

29 Hz .0098 GCT 

30 Hz .0096 GCT 

31 Hz .0123 GCT 

32 Hz .0285 GWT 

33 Hz .0049 GWT 

34 Hz .0013 GWT 

35 Hz .0020 GWT 

36 Hz .0079 GCT 

37 Hz .0058 GCT 

38 Hz .0053 GCT 

39 Hz .0050 GCT 

40 Hz .0064 GCT 

41 Hz .0071 GCT 

42 Hz .0096 GCT 

43 Hz .0109 GCT 

44 Hz .0141 GCT 

45 Hz .0139 GCT 
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Supplementary Table S4: EEG log transformed frequency bands (given in μV²) in REM sleep 

averaged over pairs. Matched MZ sample. Derivation C3A2. Group mean ± SEM. EEG: 

electroencephalogram, REM: rapid eye movement, DZ: dizygotic twins, MZmatch: matched 

monozygotic twins. 

 DZ n=14 MZmatch n=14 

Night 2 Night 3 2 nights mean Night 2 Night 3 2 nights mean 

δ 17.27±0.06 17.25±0.06 17.26±0.06 17.11±0.09 17.14±0.09 17.13±0.09 

θ 15.84±0.09 15.81±0.08 15.83±0.08 15.83±0.13 15.83±0.13 15.83±0.13 

α 15.24±0.09 15.21±0.09 15.22±0.09 15.10±0.10 15.10±0.11 15.10±0.11 

σ 14.25±0.07 14.19±0.08 14.22±0.08 14.11±0.09 14.08±0.10 14.09±0.09 

α/σ 14.20±0.09 14.16±0.10 14.18±0.10 14.11±0.11 14.10±0.10 14.11±0.10 

low σ 13.67±0.07 13.62±0.08 13.65±0.08 13.58±0.10 13.54±0.10 13.56±0.10 

high σ 13.42±0.08 13.36±0.08 13.39±0.08 13.22±0.10 13.19±0.09 13.20±0.09 

β1 14.30±0.09 14.25±0.10 14.27±0.10 14.02±0.11 14.01±0.11 14.02±0.11 

β2 12.96±0.08 12.93±0.09 12.95±0.09 12.84±0.13 12.84±0.12 12.84±0.12 

φ 11.86±0.06 11.83±0.06 11.85±0.06 11.77±0.09 11.78±0.09 11.78±0.09 
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Supplementary Table S5: Phasic REM parameters averaged over pairs. Matched MZ sample. 

Group mean ± SEM. REM: rapid eye movement, RA: REM activity, RD: REM density, allRA: the 

number of all detected REMs, 3sRA: the number of 3-sec mini-epochs containing at least one 

REM, allRD: allRA / number of REM sleep epochs, 3sRD: 3sRA / number of REM sleep 

epochs, RinB: the number of all detected REMs inside REM bursts, RoutB: the number of all 

detected REMs outside REM bursts, RinB%: percentage of REMs in burst state, DZ: dizygotic 

twins, MZmatch: matched monozygotic twins. 

* Logarithm transformed data. 

 DZ n=14 MZmatch n=14 

Night 2 Night 3 2 nights mean Night 2 Night 3 2 nights mean 

allRD all night* 1.55±0.10 1.59±0.08 1.58±0.08 1.45±0.11 1.49±0.11 1.48±0.11 

3sRD all night 2.06±0.19 2.11±0.15 2.08±0.16 1.87±0.23 1.97±0.26 1.92±0.24 

3sRD 1st cycle 1.07±0.14 1.20±0.15 1.13±0.10 1.21±0.25 1.10±0.18 1.16±0.20 

3sRD 2nd cycle 1.85±0.19 1.73±0.17 1.79±0.16 1.45±0.17 1.80±0.35 1.62±0.23 

3sRD 3rd cycle 1.92±0.19 2.11±0.22 2.01±0.19 1.80±0.28 1.79± 0.31 1.79±0.28 

3sRD 1st third 1.12± 0.20 1.11±0.15 1.11±0.15 1.11±0.23 1.23±0.22 1.17±0.22 

3sRD 2nd third 1.90±0.18 2.03±0.19 1.97±0.17 1.77±0.32 1.92±0.32 1.84±0.30 

3sRD 3rd third 2.39±0.22 2.34±0.16 2.37±0.17 2.10±0.22 2.23±0.25 2.16±0.22 

allRA all night 831.85±118.58 860.03±93.90 845.94±100.30 767.14±192.80 763.78±166.21 765.46±178.34 

3sRA all night 402.14±47.36 425.00±39.38 413.57±40.95 370.60±63.69 375.92±55.91 373.26±59.28 

RinB all night* 6.06±0.21 6.19±0.17 6.15±0.18 5.97±0.19 6.00±0.18 6.00±0.18 

RoutB all night 214.71±18.38 234.67±18.62 224.69±17.44 203.21±18.03 214.67±14.47 208.94±15.95 

RinB% all night 0.66±0.02 0.67±0.02 0.67±0.03 0.66±0.02 0.65±0.02 0.65±0.02 
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Supplementary Table S6: Sleep architecture and phasic REM parameters. Matched MZ 

sample. Results of genetic variance analysis, type of estimate applied (GCT: combined among- 

and within-twin pair component estimate, GWT: within-pair estimate) and intraclass correlation 

coefficients (ICCs). REM: rapid eye movement, ICC MZ: ICCs of matched monozygotic 

(MZmatch) twins, ICC DZ: ICCs of dizygotic (DZ) twins, ICC MZmatch cn: ICCs of consecutive 

nights for each subject in MZmatch group, ICC DZ cn: ICCs of consecutive nights for each subject 

in DZ group. ICC results include: original sample ICC (upper percentile of bootstrapped data, 

median of bootstrapped data). 

Variables abbreviations as in Table S5. 

* Logarithm transformed data 

Variable p GWT vs GCT ICC MZmatch ICC DZ ICC MZmatch cn ICC DZ cn 

REM sleep duration .2848 GWT 0.45(0.63, 0.19) 0.55(0.63, 0.19) 0.44(0.47, 0.13) 0.56(0.50, 0.12) 

REM sleep latency .5568 GWT 0.54(0.63, 0.18) 0.50(0.69, 0.14) 0.26(0.49, 0.13) 0.57(0.50, 0.11) 

allRD all night* .0021 GWT 0.85(0.67, 0.16) 0.22(0.64, 0.19) 0.83(0.46, 0.12) 0.81(0.42, 0.12) 

3sRD all night .0145 GCT 0.88(0.73, 0.14) 0.31(0.60, 0.19) 0.88(0.49, 0.12) 0.74(0.50, 0.12) 

3sRD 1st cycle .0022 GCT 0.70(0.67, 0.18) -0.16(0.64, 0.18) 0.63(0.44, 0.14) 0.07(0.44, 0.12) 

3sRD 2nd cycle .0101 GCT 0.81(0.66, 0.19) 0.04(0.66, 0.19) 0.32(0.49, 0.13) 0.59(0.47, 0.12) 

3sRD 3rd cycle .0201 GCT 0.76(0.68, 0.17) 0.22(0.64, 0.17) 0.79(0.46, 0.12) 0.38(0.45, 0.12) 

3sRD 1st third .2366 GWT 0.65(0.67, 0.17) 0.21(0.67, 0.18) 0.55(0.49, 0.12) 0.32(0.50, 0.13) 

3sRD 2nd third .0021 GCT 0.90(0.68, 0.15) 0.19(0.64, 0.18) 0.73(0.46, 0.13) 0.68(0.46, 0.13) 

3sRD 3rd third .1585 GWT 0.67(0.68, 0.17) 0.31(0.61, 0.19) 0.61(0.50, 0.12) 0.43(0.44, 0.13) 

allRA all night .0016 GCT 0.94(0.71, 0.12) 0.44(0.61, 0.18) 0.94(0.61, 0.11) 0.71(0.50, 0.13) 

3sRA all night .0217 GCT 0.91(0.75, 0.13) 0.49(0.64, 0.18) 0.93(0.52, 0.12) 0.78(0.47, 0.12) 

RinB all night* .0010 GWT 0.81(0.65, 0.18) 0.25(0.64, 0.17) 0.82(0.43, 0.13) 0.87(0.43, 0.12) 

RoutB all night .2724 GWT 0.70(0.64, 0.19) 0.66(0.68, 0.19) 0.82(0.49, 0.13) 0.69(0.47, 0.13) 

RinB% all night .0009 GWT 0.75(0.62, 0.18) 0.13(0.62, 0.18) 0.67(0.46, 0.13) 0.80(0.46, 0.13) 

 



Supplementary Data 

 147 

Supplementary Table S7: Sleep architecture parameters averaged over pairs. Matched MZ 

sample. Group mean ± SEM of sleep characteristics in minutes. TST: Total sleep time, SPT: 

Sleep period time, SEI: sleep efficiency index, SOL: sleep onset latency, REM: rapid eye 

movement, non-REM: non-REM sleep duration, REM: REM sleep duration, RSL: REM sleep 

latency, DZ: dizygotic twins, MZmatch: matched monozygotic twins. 

 DZ n=14 MZmatch n=14 

Night 2 Night 3 2 nights mean Night 2 Night 3 2 nights mean 

TST 419.33±6.27 423.64±5.65 421.49±5.73 419.73±6.57 415.57±5.67 417.65±5.51 

SPT 462.75±4.31 466.57±3.23 464.66±3.55 469.14±1.47 469.94±2.69 469.54±1.66 

SEI 0.94±0.01 0.95±0.01 0.95±0.01 0.94±0.01 0.94±0.01 0.94±0.01 

SOL 30.05±4.66 27.23±3.55 28.64±3.94 23.32±2.00 21.85±1.76 22.58±1.57 

non-REM 324.21±6.17 324.89±4.50 324.55±5.09 323.91±5.64 320.92±4.94 322.41±5.01 

REM 95.12±4.09 98.75±5.07 96.93±4.24 95.82±4.36 94.64±2.57 95.23±3.19 

RSL 99.42±9.37 99.08±9.19 99.25±8.81 108.03±9.24 100.14±6.95 104.08±7.35 
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Whole MZ set, derivation C4A1: 

 

Supplementary Figure S8: Derivation C4A1. Intraclass correlation coefficients (ICCs) of rapid 

eye movement (REM) sleep frequency bins. On each plot solid line represents the observed 

real data, dotted line represents the upper percentile of bootstrapped values and dashed line 

represents the median of bootstrapped values. (A) consecutive nights of each subject in 

monozygotic (MZ) set (n=64); (B) consecutive nights of each subject in dizygotic (DZ) set 

(n=28); (C) pairs of MZ twins (each subject represented by a two nights mean, n=32); (D) pairs 

of DZ twins (each subject represented by a two nights mean, n=14). On the average, the upper 

percentile and the median of bootstrapped values differ between groups, which is the outcome 

of different sample sizes. 
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Supplementary Table S9: EEG frequency bands in REM Sleep. Derivation C4A1. Results of 

genetic variance analysis, type of estimate applied (GCT: combined among- and within-twin pair 

component estimate, GWT: within-pair estimate) and intraclass correlation coefficients (ICCs). 

REM: rapid eye movement, ICC MZ: ICCs of monozygotic (MZ) twins, ICC DZ: ICCs of 

dizygotic (DZ) twins, ICC MZ cn: ICCs of consecutive nights for each subject in MZ group, ICC 

DZ cn: ICCs of consecutive nights for each subject in DZ group. ICC results include: original 

sample ICC (upper percentile of bootstrapped data, median of bootstrapped data). 

* Analysis of variance not applicable (significant differences between the means in DZ and MZ 

twin set). 

Variable p GWT vs GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

δ .0005 GCT 0.89(0.45, 0.12) 0.26(0.65, 0.18) 0.87(0.30, 0.08) 0.87(0.46, 0.13) 

θ .0107 GWT 0.91(0.48, 0.13) 0.61(0.67, 0.19) 0.90(0.32, 0.08) 0.88(0.47, 0.13) 

α <.0001 GWT 0.92(0.43, 0.11) 0.42(0.64, 0.18) 0.94(0.32, 0.09) 0.95(0.50, 0.12) 

σ .0005 GWT 0.85(0.44, 0.12) 0.41(0.62, 0.18) 0.88(0.33, 0.08) 0.93(0.48, 0.12) 

α/σ <.0001 GWT 0.91(0.44, 0.12) 0.45(0.64, 0.19) 0.94(0.32, 0.09) 0.95(0.50, 0.13) 

low σ .0002 GWT 0.87(0.44, 0.13) 0.36(0.63, 0.19) 0.90(0.34, 0.08) 0.93(0.49, 0.12) 

high σ .0028 GWT 0.82(0.41, 0.13) 0.49(0.58, 0.20) 0.86(0.30, 0.08) 0.93(0.48, 0.12) 

β1 .0001 GWT 0.84(0.47, 0.11) 0.46(0.61, 0.17) 0.90(0.32, 0.09) 0.96(0.52, 0.12) 

β2 .0003 GWT 0.90(0.46, 0.12) 0.57(0.64, 0.18) 0.93(0.31, 0.08) 0.96(0.48, 0.13) 

φ <.0001 GWT 0.92(0.42, 0.12) 0.32(0.62, 0.18) 0.90(0.30, 0.09) 0.94(0.48, 0.13) 
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Supplementary Table S10: EEG 1-Hz frequency bins in REM sleep. Derivation C4A1. Results 

of genetic variance analysis and type of estimate applied (GCT GCT: combined among- and 

within-twin pair component estimate, GWT: within-pair estimate). REM: rapid eye movement. 

* Analysis of variance not applicable (significant differences between the means in monozygotic 

and dizygotic twins). 

Variable p GWT vs GCT 

1 Hz .0014 GCT 

2 Hz .0008 GCT 

3 Hz .0007 GCT 

4 Hz .0005 GCT 

5 Hz .0036 GCT 

6 Hz .0193 GWT 

7 Hz .0033 GWT 

8 Hz .0050 GCT 

9 Hz <.0001 GWT 

10 Hz <.0001 GWT 

11 Hz <.0001 GWT 

12 Hz <.0001 GWT 

13 Hz <.0001 GWT 

14 Hz .0013 GWT 

15 Hz .0049 GWT 

16 Hz .0011 GWT 

17 Hz* - - 

18 Hz* - - 

19 Hz* - - 

20 Hz* - - 

21 Hz* - - 

22 Hz .0001 GWT 

23 Hz .0004 GWT 

24 Hz .0006 GWT 

25 Hz .0007 GWT 

26 Hz .0005 GWT 

27 Hz .0005 GWT 

28 Hz .0006 GWT 

29 Hz .0007 GWT 

30 Hz .0006 GWT 

31 Hz .0002 GWT 

32 Hz <.0001 GWT 

33 Hz <.0001 GWT 

34 Hz <.0001 GWT 

35 Hz <.0001 GWT 

36 Hz <.0001 GWT 

37 Hz <.0001 GWT 

38 Hz <.0001 GWT 

39 Hz <.0001 GWT 

40 Hz <.0001 GWT 

41 Hz <.0001 GWT 

42 Hz <.0001 GWT 

43 Hz <.0001 GWT 

44 Hz <.0001 GWT 

45 Hz <.0001 GWT 
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Matched MZ set, derivation C3A2, sleep spindles: 

 

Supplementary Table S11: Matched MZ sample. Results of genetic variance analysis, type of 

estimate applied (GCT: combined among- and within-twin pair component estimate, GWT: 

within-pair estimate) and intraclass correlation coefficients (ICCs) for sleep spindle localization 

in non-rapid eye movement sleep. ICC MZ: ICCs of matched monozygotic (MZmatch) twins, ICC 

DZ: ICCs of dizygotic (DZ) twins, ICC MZmatch cn: ICCs of consecutive nights for each subject in 

MZmatch group, ICC DZ cn: ICCs of consecutive nights for each subject in DZ group. ICC results 

include: original sample ICC (upper percentile of bootstrapped data, median of bootstrapped 

data). 

Variable p GWT vs GCT ICC MZmatch ICC DZ ICC MZmatch cn ICC DZ cn 

Begin of spindle range .0153 GWT 0.89(0.66, 0.19) 0.63(0.66, 0.19) 0.90(0.48, 0.13) 0.82(0.49, 0.13) 

Slow spindle peak .0006 GWT 0.89(0.66, 0.18) 0.57(0.60, 0.20) 0.93(0.49, 0.13) 0.94(0.48, 0.13) 

Fast spindle peak <.0001 GWT 0.96(0.60, 0.18) 0.63(0.66, 0.19) 0.91(0.48, 0.12) 0.96(0.49, 0.12) 

End of spindle range <.0001 GWT 0.93(0.63, 0.18) 0.65(0.63, 0.19) 0.91(0.47, 0.13) 0.96(0.48, 0.13) 
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Supplementary Table S12: Matched MZ sample. Derivation C3A2. Genetic variance analysis, 

type of estimate applied (GCT: combined among- and within-twin pair component estimate, 

GWT: within-pair estimate) and intraclass correlation coefficients (ICCs) for sleep spindle 

parameters in non-rapid eye movement sleep. 

Variables abbreviations as in Table S11. 

Variable type p GWT vs GCT ICC MZmatch ICC DZ ICC MZmatch cn ICC DZ cn 

 
Number of 
spindles 

 

slow .0186 GCT 0.98(0.64, 0.20) 0.62(0.64, 0.20) 0.98(0.47, 0.13) 0.89(0.48, 0.13) 

fast .0389 GWT 0.77(0.64, 0.19) 0.49(0.62, 0.18) 0.94(0.51, 0.13) 0.88(0.45, 0.12) 

all .0187 GCT 0.92(0.65, 0.19) 0.54(0.63, 0.18) 0.96(0.48, 0.13) 0.86(0.48, 0.13) 

 
Spindle 
length 

slow .0017 GWT 0.97(0.68, 0.18) 0.79(0.63, 0.20) 0.98(0.47, 0.14) 0.95(0.44, 0.14) 

fast .0024 GWT 0.86(0.64, 0.18) 0.44(0.66, 0.19) 0.95(0.46, 0.13) 0.94(0.49, 0.13) 

all .0026 GWT 0.89(0.61, 0.19) 0.47(0.62, 0.18) 0.93(0.49, 0.14) 0.96(0.46, 0.13) 

 
Spindle 

amplitude 

slow .0027 GCT 0.89(0.63, 0.19) 0.19(0.63, 0.19) 0.88(0.45, 0.13) 0.84(0.45, 0.13) 

fast .1688 GWT 0.79(0.64, 0.18) 0.53(0.63, 0.18) 0.90(0.46, 0.13) 0.64(0.47, 0.12) 

all .0031 GCT 0.92(0.67, 0.19) 0.30(0.63, 0.19) 0.95(0.48, 0.14) 0.87(0.47, 0.12) 

 
Spindle 
density 

slow <.0001 GWT 0.98(0.62, 0.18) 0.64(0.65, 0.19) 0.98(0.46, 0.13) 0.93(0.50, 0.14) 

fast .0527 GWT 0.76(0.64, 0.20) 0.50(0.62, 0.18) 0.94(0.47, 0.12) 0.90(0.46, 0.13) 

all .0154 GWT 0.92(0.66, 0.19) 0.57(0.64, 0.19) 0.96(0.46, 0.14) 0.90(0.51, 0.13) 

 
Integrated 

spindle activity 

slow .0001 GWT 0.97(0.60, 0.18) 0.68(0.60, 0.19) 0.98(0.46, 0.13) 0.94(0.47, 0.13) 

fast .0316 GWT 0.91(0.62, 0.19) 0.64(0.62, 0.19) 0.96(0.48, 0.12) 0.90(0.49, 0.13) 

all .0625 GWT 0.73(0.62, 0.19) 0.51(0.70, 0.19) 0.92(0.47, 0.13) 0.82(0.44, 0.13) 
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Supplementary Table S13: Matched MZ sample. Derivation C3A2. Genetic variance analysis, 

type of estimate applied (GCT: combined among- and within-twin pair component estimate, 

GWT: within-pair estimate) and intraclass correlation coefficients (ICCs) for sleep spindle 

parameters in stage 2 sleep. 

Variables abbreviations as in Table S11. 

Variable type p GWT vs GCT ICC MZmatch ICC DZ ICC MZmatch cn ICC DZ cn 

 
Number of 
spindles 

 

slow .0043 GWT 0.96(0.66, 0.20) 0.71(0.64, 0.19) 0.96(0.49, 0.13) 0.91(0.45, 0.13) 

fast .0427 GWT 0.80(0.68, 0.18) 0.59(0.66, 0.18) 0.92(0.49, 0.12) 0.90(0.43, 0.12) 

all .1421 GWT 0.87(0.68, 0.18) 0.66(0.63, 0.18) 0.92(0.47, 0.13) 0.90(0.47, 0.13) 

 
Spindle 
length 

slow .0032 GWT 0.97(0.64, 0.19) 0.83(0.63, 0.19) 0.98(0.49, 0.13) 0.95(0.48, 0.13) 

fast .0041 GWT 0.85(0.61, 0.18) 0.40(0.66, 0.20) 0.95(0.46, 0.13) 0.92(0.47, 0.13) 

all .0021 GWT 0.90(0.66, 0.18) 0.45(0.63, 0.18) 0.95(0.49, 0.13) 0.97(0.46, 0.14) 

 
Spindle 

amplitude 

slow .0058 GCT 0.90(0.67, 0.18) 0.21(0.65, 0.19) 0.87(0.50, 0.13) 0.85(0.47, 0.13) 

fast .1816 GWT 0.78(0.63, 0.18) 0.54(0.65, 0.18) 0.90(0.48, 0.13) 0.63(0.45, 0.12) 

all .0044 GCT 0.92(0.66, 0.18) 0.31(0.65, 0.17) 0.95(0.47, 0.13) 0.86(0.47, 0.12) 

 
Spindle 
density 

slow .0001 GWT 0.98(0.65, 0.20) 0.74(0.67, 0.20) 0.98(0.49, 0.13) 0.93(0.44, 0.13) 

fast .0551 GWT 0.80(0.68, 0.19) 0.56(0.64, 0.20) 0.95(0.49, 0.13) 0.91(0.46, 0.13) 

all .0606 GWT 0.92(0.68, 0.19) 0.67(0.67, 0.18) 0.96(0.48, 0.13) 0.91(0.48, 0.13) 

 
Integrated 

spindle activity 

slow <.0001 GWT 0.97(0.63, 0.19) 0.71(0.66, 0.19) 0.97(0.48, 0.12) 0.94(0.48, 0.13) 

fast .0590 GWT 0.76(0.62, 0.19) 0.55(0.69, 0.19) 0.94(0.48, 0.13) 0.84(0.45, 0.14) 

all .0381 GWT 0.91(0.68, 0.18) 0.67(0.63, 0.19) 0.95(0.45, 0.13) 0.92(0.53, 0.13) 
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Supplementary Table S14: Matched MZ sample. Derivation C3A2. Genetic variance analysis, 

type of estimate applied (GCT: combined among- and within-twin pair component estimate, 

GWT: within-pair estimate) and intraclass correlation coefficients (ICCs) for sleep spindle 

parameters in slow wave sleep. 

Variables abbreviations as in Table S11. 

Variable type p GWT vs GCT ICC MZmatch ICC DZ ICC MZmatch cn ICC DZ cn 

 
Number of 
spindles 

 

slow .0012 GWT 0.95(0.66, 0.17) 0.55(0.61, 0.19) 0.97(0.47, 0.14) 0.77(0.47, 0.12) 

fast .1411 GWT 0.50(0.62, 0.17) 0.14(0.65, 0.18) 0.92(0.44, 0.13) 0.82(0.46, 0.14) 

all .0085 GWT 0.89(0.66, 0.19) 0.46(0.67, 0.19) 0.95(0.49, 0.12) 0.75(0.49, 0.13) 

 
Spindle 
length 

slow .0001 GWT 0.97(0.63, 0.20) 0.62(0.65, 0.19) 0.93(0.49, 0.12) 0.94(0.49, 0.12) 

fast .0202 GWT 0.84(0.65, 0.18) 0.45(0.64, 0.18) 0.84(0.47, 0.14) 0.85(0.48, 0.13) 

all .0022 GWT 0.91(0.63, 0.19) 0.48(0.65, 0.19) 0.90(0.45, 0.13) 0.89(0.48, 0.13) 

 
Spindle 

amplitude 

slow .0007 GCT 0.89(0.64, 0.19) 0.19(0.66, 0.20) 0.91(0.43, 0.12) 0.81(0.50, 0.13) 

fast .0148 GCT 0.80(0.66, 0.19) 0.32(0.67, 0.19) 0.92(0.47, 0.13) 0.63(0.45, 0.12) 

all .0001 GCT 0.92(0.64, 0.19) 0.14(0.62, 0.18) 0.96(0.49, 0.14) 0.79(0.45, 0.13) 

 
Spindle 
density 

slow <.0001 GWT 0.96(0.69, 0.20) 0.38(0.63, 0.18) 0.98(0.47, 0.13) 0.92(0.45, 0.13) 

fast .0346 GWT 0.61(0.62, 0.19) 0.13(0.61, 0.18) 0.91(0.46, 0.12) 0.81(0.46, 0.13) 

all .0005 GWT 0.92(0.62, 0.18) 0.27(0.66, 0.18) 0.97(0.51, 0.13) 0.85(0.47, 0.13) 

 
Integrated 

spindle activity 

slow <.0001 GWT 0.98(0.64, 0.18) 0.44(0.63, 0.18) 0.98(0.51, 0.13) 0.92(0.46, 0.13) 

fast .0528 GWT 0.58(0.61, 0.18) 0.14(0.66, 0.17) 0.88(0.47, 0.12) 0.71(0.50, 0.13) 

all .0032 GWT 0.91(0.63, 0.19) 0.39(0.66, 0.19) 0.96(0.46, 0.13) 0.83(0.45, 0.14) 
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Whole MZ set, derivation C4A1, sleep spindles: 

 

Supplementary Table S15: Derivation C4A1. Genetic variance analysis, type of estimate 

applied (GCT: combined among- and within-twin pair component estimate, GWT: within-pair 

estimate) and intraclass correlation coefficients (ICCs) for sleep spindle parameters in non-rapid 

eye movement sleep. ICC MZ: ICCs of monozygotic (MZ) twins, ICC DZ: ICCs of dizygotic (DZ) 

twins, ICC MZ cn: ICCs of consecutive nights for each subject in MZ group, ICC DZ cn: ICCs of 

consecutive nights for each subject in DZ group. ICC results include: original sample ICC (upper 

percentile of bootstrapped data, median of bootstrapped data). 

* Analysis of variance not applicable (significant differences between the means in DZ and MZ 

twin set). 

Variable type p GWT vs GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

 
Number of 
spindles 

 

slow - - 0.93(0.45, 0.12) 0.49(0.64, 0.18) 0.90(0.29, 0.09) 0.91(0.47, 0.13) 

fast .0350 GWT 0.71(0.45, 0.12) 0.38(0.67, 0.19) 0.86(0.31, 0.09) 0.90(0.47, 0.12) 

all .0039 GCT 0.92(0.45, 0.13) 0.53(0.64, 0.18) 0.95(0.32, 0.08) 0.91(0.47, 0.13) 

 
Spindle 
length 

slow - - 0.91(0.46, 0.12) 0.74(0.63, 0.18) 0.92(0.34, 0.08) 0.94(0.45, 0.14) 

fast .0187 GWT 0.69(0.42, 0.12) 0.45(0.62, 0.19) 0.89(0.32, 0.09) 0.90(0.44, 0.13) 

all .0011 GWT 0.88(0.42, 0.12) 0.52(0.62, 0.19) 0.94(0.33, 0.09) 0.95(0.47, 0.13) 

 
Spindle 

amplitude 

slow .0003 GCT 0.91(0.44, 0.12) 0.18(0.63, 0.18) 0.93(0.33, 0.08) 0.84(0.47, 0.14) 

fast .0165 GWT 0.82(0.42, 0.12) 0.46(0.59, 0.18) 0.84(0.32, 0.08) 0.76(0.48, 0.12) 

all .0009 GCT 0.90(0.45, 0.12) 0.30(0.64, 0.18) 0.91(0.31, 0.09) 0.83(0.51, 0.12) 

 
Spindle 
density 

slow - - 0.93(0.44, 0.12) 0.52(0.67, 0.18) 0.91(0.32, 0.09) 0.94(0.47, 0.13) 

fast .0527 GWT 0.72(0.45, 0.12) 0.41(0.64, 0.20) 0.87(0.32, 0.09) 0.92(0.43, 0.13) 

all .0036 GCT 0.93(0.46, 0.12) 0.56(0.63, 0.17) 0.96(0.32, 0.08) 0.93(0.48, 0.12) 

 
Integrated 

spindle activity 

slow <.0001 GWT 0.95(0.42, 0.12) 0.61(0.65, 0.18) 0.94(0.33, 0.09) 0.94(0.46, 0.13) 

fast .0265 GWT 0.74(0.44, 0.12) 0.48(0.67, 0.20) 0.82(0.34, 0.08) 0.88(0.48, 0.13) 

all .0478 GWT 0.92(0.44, 0.12) 0.75(0.67, 0.17) 0.95(0.32, 0.09) 0.91(0.47, 0.13) 
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Supplementary Table S16: Derivation C4A1. Genetic variance analysis, type of estimate 

applied (GCT: combined among- and within-twin pair component estimate, GWT: within-pair 

estimate) and intraclass correlation coefficients (ICCs) for stage 2 sleep spindle parameters. 

Variables abbreviations as in Table S15. 

* Analysis of variance not applicable (significant differences between the means in DZ and MZ 

twin set). 

Variable type p GWT vs GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

 
Number of 
spindles 

 

slow .0168 GWT 0.87(0.44, 0.12) 0.55(0.66, 0.19) 0.89(0.34, 0.09) 0.87(0.47, 0.13) 

fast .1243 GWT 0.72(0.44, 0.13) 0.47(0.66, 0.19) 0.87(0.31, 0.08) 0.91(0.46, 0.13) 

all .0148 GCT 0.88(0.49, 0.12) 0.65(0.65, 0.18) 0.94(0.31, 0.08) 0.93(0.45, 0.13) 

 
Spindle 
length 

slow - - 0.91(0.48, 0.11) 0.74(0.68, 0.18) 0.92(0.33, 0.08) 0.96(0.45, 0.13) 

fast .0125 GWT 0.69(0.43, 0.13) 0.40(0.64, 0.19) 0.90(0.33, 0.09) 0.90(0.50, 0.14) 

all .0007 GWT 0.88(0.43, 0.12) 0.49(0.66, 0.18) 0.94(0.36, 0.08) 0.95(0.44, 0.13) 

 
Spindle 

amplitude 

slow .0006 GCT 0.91(0.45, 0.12) 0.19(0.63, 0.19) 0.93(0.32, 0.09) 0.85(0.49, 0.14) 

fast .0183 GWT 0.82(0.43, 0.12) 0.46(0.63, 0.18) 0.84(0.30, 0.09) 0.75(0.47, 0.13) 

all .0012 GCT 0.91(0.44, 0.13) 0.32(0.64, 0.19) 0.91(0.30, 0.08) 0.82(0.46, 0.12) 

 
Spindle 
density 

slow .0002 GWT 0.93(0.43, 0.12) 0.58(0.60, 0.18) 0.91(0.31, 0.09) 0.93(0.46, 0.13) 

fast .0844 GWT 0.72(0.46, 0.13) 0.46(0.64, 0.19) 0.87(0.32, 0.08) 0.91(0.45, 0.13) 

all .0045 GWT 0.93(0.44, 0.12) 0.65(0.66, 0.19) 0.97(0.32, 0.09) 0.94(0.46, 0.14) 

 
Integrated 

spindle activity 

slow <.0001 GWT 0.95(0.45, 0.12) 0.57(0.62, 0.19) 0.93(0.30, 0.08) 0.96(0.46, 0.13) 

fast .0366 GWT 0.75(0.44, 0.12) 0.52(0.64, 0.17) 0.83(0.30, 0.08) 0.87(0.49, 0.13) 

all .0083 GWT 0.93(0.47, 0.12) 0.73(0.63, 0.18) 0.95(0.32, 0.09) 0.93(0.44, 0.13) 
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Supplementary Table S17: Derivation C4A1. Genetic variance analysis, type of estimate 

applied (GCT: combined among- and within-twin pair component estimate, GWT: within-pair 

estimate) and intraclass correlation coefficients (ICCs) for slow wave sleep spindle parameters. 

Variables abbreviations as in Table S15. 

* Analysis of variance not applicable (significant differences between the means in DZ and MZ 

twin set). 

Variable type p GWT vs GCT ICC MZ ICC DZ ICC MZ cn ICC DZ cn 

 
Number of 
spindles 

 

slow - - 0.93(0.51, 0.11) 0.56(0.65, 0.20) 0.88(0.35, 0.08) 0.86(0.44, 0.13) 

fast .0012 GWT 0.57(0.45, 0.12) 0.05(0.63, 0.17) 0.81(0.33, 0.08) 0.87(0.45, 0.12) 

all .0031 GWT 0.81(0.41, 0.12) 0.37(0.59, 0.19) 0.87(0.31, 0.09) 0.81(0.48, 0.13) 

 
Spindle 
length 

slow .0013 GWT 0.89(0.44, 0.11) 0.66(0.63, 0.19) 0.83(0.32, 0.08) 0.93(0.47, 0.12) 

fast .0467 GWT 0.69(0.44, 0.11) 0.41(0.63, 0.19) 0.75(0.32, 0.08) 0.83(0.46, 0.12) 

all .0005 GWT 0.89(0.46, 0.12) 0.50(0.64, 0.19) 0.87(0.30, 0.08) 0.88(0.49, 0.13) 

 
Spindle 

amplitude 

slow .0001 GCT 0.91(0.45, 0.12) 0.22(0.68, 0.19) 0.93(0.32, 0.09) 0.79(0.48, 0.13) 

fast .0061 GCT 0.78(0.44, 0.12) 0.26(0.64, 0.18) 0.73(0.30, 0.08) 0.77(0.47, 0.13) 

all <.0001 GCT 0.87(0.45, 0.12) 0.16(0.66, 0.18) 0.87(0.30, 0.08) 0.77(0.46, 0.13) 

 
Spindle 
density 

slow <.0001 GWT 0.94(0.45, 0.11) 0.30(0.63, 0.19) 0.90(0.32, 0.08) 0.95(0.48, 0.13) 

fast .0025 GWT 0.64(0.43, 0.12) 0.01(0.65, 0.19) 0.83(0.31, 0.09) 0.90(0.47, 0.13) 

all .0002 GCT 0.92(0.42, 0.12) 0.22(0.62, 0.19) 0.92(0.29, 0.08) 0.89(0.48, 0.13) 

 
Integrated 

spindle activity 

slow .0011 GCT 0.96(0.47, 0.10) 0.44(0.70, 0.18) 0.91(0.34, 0.08) 0.92(0.48, 0.13) 

fast .0010 GWT 0.65(0.41, 0.12) 0.08(0.64, 0.18) 0.80(0.31, 0.08) 0.86(0.46, 0.13) 

all .0005 GCT 0.90(0.44, 0.12) 0.42(0.66, 0.18) 0.90(0.30, 0.09) 0.84(0.47, 0.14) 

 

 


