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1 INTRODUCTION 

1.1 Neovascularisation 

Vasculogenesis and angiogenesis are the fundamental processes, forming new blood 

vessels1.  

1.1.1 Vasculogenesis 

During vasculogenesis, endothelial cells (ECs) derive from the successive differentiation 

of mesodermal cells into hemangioblasts, which leads to the formation of the first vascular 

structures. The hemangioblasts from the centre of primitive blood islands give rise to the 

hematopoietic stem cells, whereas the peripheral hemangioblasts differentiate into 

angioblasts, the precursors of mature ECs2. Under the influence of vascular endothelial 

growth factor (VEGF), the angioblasts and newly formed ECs migrate on a matrix 

constituted mainly of collagen and hyaluronan, allowing the fusion of blood islands, their 

remodelling into tubular structures, and the formation of the first vascular plexus. These 

tubules remodel through vasculogenesis into larger vessels, leading to vascularization of 

the embryo3.  

1.1.2 Angiogenesis 

In contrast to vasculogenesis, angiogenesis refers to the formation of blood vessels from 

pre-existing ones. Two distinct mechanisms of angiogenesis have been described: 

sprouting and intussusception. Intussusceptive angiogenesis is caused by the insertion of 

interstitial cellular columns into the lumen of pre-existing vessels and the subsequent 

stabilization results in partitioning of the vessels and remodelling of the local vascular 

network4. Sprouting angiogenesis entails two successive phases: neovessel growth and 

neovessel stabilization. 

Angiogenesis is required in many physiological and pathological processes, including 

embryonic development, wound healing, tissue regeneration, and the growth and 

metastasis of solid tumors5. Attracted by proangiogenic signals, ECs become motile and 

invasive and protrude filopodia. These so-called tip cells lead new sprouts and probe the 

environment for guidance cues. Following tip cells, stalk cells proliferate to support sprout 

elongation. Tip cells fuse with cells from neighbouring sprouts to build vessel loops 
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(Figure 1). The initiation of blood flow, the establishment of a basement membrane, and 

the recruitment of mural cells stabilizes new connections6. This sprouting process iterates 

until proangiogenic signals are reduced.  

 

Figure 1 Steps of vessel sprouting during angiogenesis. (1) Tip/stalk cell selection; (2) tip cell 

navigation and stalk cell proliferation; (3) branching coordination; (4) stalk cell elongation, tip cell 

fusion, and lumen formation; (5) perfusion and vessel maturation (adapted from Potente et al.
6
). 

1.2 Endothelial cells 

1.2.1 Diversity and function of endothelial cells 

In adults, most ECs are quiescent and poised for repair. Whilst it was originally thought 

that all ECs were homogenous7, it is now commonly accepted that there is a high degree 

of heterogeneity along the vascular tree, to allow biological adaption to local needs8. The 

structural and functional diversity of ECs has been investigated between different EC 

populations including arteries and veins9, large and small vessels10 and normal and tumor 

vessels11. This diversity is the result of molecular differences between EC populations. 

During angiogenesis, ECs perform a variety of functions, including degradation of the 

extracellular matrix (ECM), migration, proliferation, lumen formation, and vessel 

stabilization. Roles for the Rho GTPases RhoA, Cdc42, and Rac1 have been identified in 

many of these processes12. 

The most commonly used human ECs for in vitro angiogenesis assays are human 

umbilical vein endothelial cells (HUVECs), which are isolated by perfusion of the umbilical 

vein with trypsin or collagenase and have been successfully cultured since 197313. 
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1.2.2 Tip and stalk cell characteristics 

The first cell in a vessel branch is the tip cell, which leads the way14. Key features of this 

cells are their location at the forefront of vessel branches, highly polarized nature, and 

numerous filopodia probing the environment, while migrating toward an angiogenic 

stimulus. Tip cells do not form a lumen and mostly proliferate minimally15. They have a 

specific molecular signature, characterized by the expression of vascular endothelial 

growth factor receptor (VEGFR) 2, VEGFR3, platelet-derived growth factor (PDGF), Delta-

like ligand 4 (Dll4) and others16–18. These cells detect gradients of navigator cues and 

integrate combinatorial molecular codes into directional migration14. A second endothelial 

subtype is called stalk cell. This cell trails behind the leading tip cell and tasks at 

proliferation, stalk elongation, lumen formation and connection to the circulation19. In 

contrast to tip cells, stalk cells do not form filopodia15.  

VEGF and Notch signalling pathways are key players governing tip and stalk cell 

behaviour (Figure 2): VEGF interacts with VEGFR2, expressed at the surface of ECs of 

quiescent vessels. Neuropilin-1 (Nrp1) modulates the VEGF signalling output, enhancing 

the binding activity and signalling of VEGF through VEGFR2. Under VEGF stimulation, 

Dll4 expression is up-regulated in the tip cells. In turn, Dll4 ligand activates Notch 

signalling in the stalk cells, consequently suppressing the tip cell phenotype. Notch 

signalling activation reduces VEGFR2 expression and increases VEGFR1 levels as well 

as the expression of different Notch target genes. In contrast, the tip cell receives low 

Notch signalling, allowing high expression of VEGFR2 and Nrp1, but low VEGFR1. 

Contrary to Dll4, Jagged1 ligand is expressed by stalk cells. Jagged1 antagonizes 

Dll4/Notch signalling in the sprouting front when the Notch receptor is modified by Fringe. 

The duration and amplitude of the Notch signal are modulated by Sirtuin-1 (SIRT1), which 

primes the Notch intracellular domain for ubiquitination and degradation by direct 

acetylation20. 
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Figure 2 Tip and stalk cell specification during sprouting angiogenesis. During vascular 

angiogenesis, VEGF and Notch signalling pathways are implicated in the specification of the tip 

and stalk cells in the vascular endothelium (adapted from Blanco et al.
20

). 

1.3 Cell migration 

1.3.1 Three dimensional cell migration 

The basic concepts underlying EC migration have been obtained mostly from 

observations in two-dimensional (2D) cell culture systems2,5. However, the three-

dimensional (3D) environment encountered in vivo is far more complex. The cells have to 

integrate and coordinate their adhesion with the ECM and interpret attractive and 

repulsive cues to choose their path21,22. 

Many studies in the last years revealed that different cell types employ different 

mechanisms to migrate into and navigate through the ECM. Studies in primary human 

fibroblasts showed that structurally distinct 3D environments support different modes of 

cell migration, and that polarization of phosphatidylinositol (3,4,5)-triphosphate (PIP3) and 

Rho family GTPase signaling differs between lobopodia- and lamellipodia-based 3D 

migration23. Studies of leukocyte motility and cancer cell migration in 3D environments 

revealed a switch of these cells between adhesion-dependent mesenchymal (elongated) 

and adhesion-independent amoeboid (rounded) cell motility. This motility is driven by actin 
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polymerization, and actomyosin contraction24,25. Actomyosin dynamics appeared to 

constitute a core component of bleb formation. Plasma membrane blebbing was primarily 

viewed as a by-product of apoptotic and necrotic processes26. However, subsequent 

studies could show that cell blebbing is not limited to the execution of cell death 

programs27,28, but is also implicated in cell movement. Actually, plasma membrane blebs 

are now numbered among other cell migration mediating protrusions like filopodia, 

lamellipodia, invadopodia, and podosomes29. 

1.3.2 Rho GTPase signalling in cell migration 

What is common to all the above mentioned modes of migration is the involvement of Rho 

GTPases. There are 20 Rho GTPase genes in humans30. Most Rho GTPases are active 

and stimulate their downstream targets when bound to guanosine triphosphate (GTP), 

and inactive when bound to guanosine diphosphate (GDP). They are activated by guanine 

nucleotype exchange factors (GEFs), which induce the exchange of GDP for GTP, and 

inactivated by GTPase-activating proteins (GAPs), which catalyse the hydrolysis of GTP 

to GDP. The best studied Rho GTPases are Rho, Rac and Cdc4231. 

In 3D environments, slow moving cells, such as fibroblasts can extend lamellipodia23, 

which have been frequently observed at the front of single cells, as well as at the leading 

front of collectively migrating cells32,33. Under normal conditions, lamellipodium-driven 

migration requires active Rac proteins, interacting with a WAVE-associated complex of 

proteins, which in turn activates actin nucleation by the Arp2/3 complex (Figure 3)30. In 

addition to Rac, RhoA and Cdc42 are active in lamellipodial regions and contribute to 

lamellipodium extension34. RhoA might contribute to actin polymerization through a formin, 

while Cdc42 and integrins contribute to induce and maintain active Rac selectively at the 

leading edge of migrating cells. Negative feedback loops restrict the extent of Rac 

activation, including Arpin (inhibits Arp2/3 complex). RhoC acts further back in the cell, 

behind Rac, to downregulate cofilin activity and hence decreases actin polymerization, 

and stimulates actomyosin contractility (via Rho-associated protein kinase (ROCK)), 

which pulls the lamellipodial network rearwards. During migration, integrin based focal 

contacts need to be turned over, and this involves Rac itself, acting through PAK/GIT/β-

PIX complex that is localized to focal contacts30. For melanoblasts and fibroblasts it is 

shown, that lamellipodia are not essential for migration. They can also migrate without 

Rac or the Arp2/3 complex, albeit more slowly. It is shown that cells compensate the 

absence of Rac or Arp2/3 by using filopodia or other protrusion in order to migrate35. 
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Figure 3 Signalling in lamellipodia. Rho family GTPases Cdc42, Rac1 and Rho act at different 

regions in a cell to orchestrate migration. Cdc42 generally controls the cell polarity and contributes 

to maintain Rac active at the leading edge. RhoA influences cell adhesion and maturation, in 

addition to controlling stress fiber formation and contractile activity. Rac primarily controls actin 

assembly and nascent adhesion formation in the lamellipodium (adapted from Ridley et al.
30

). 

In contrast to lamellipodial migration, bleb-based migration is driven by cortical 

actomyosin contractility, and is associated with high levels of active RhoA/ROCK 

signalling36. The predominant Rho GTPase involved in bleb-driven migration is RhoA, 

acting through ROCK to stimulate myosin light chain phosphorylation (pMLC) and hence 

cortical actomyosin contractility. At the back of the cell, ezrin is associated with the actin 

cortex and reduces bleb formation. At the front of the cell, actomyosin contractility leads to 

focal detachment of the plasma membrane from the actin cortex to form blebs. 

Subsequently actin polymerizes on the bleb membrane to stabilize the protrusion, 

eventually leading to bleb retraction (Figure 4)30. 

 

Figure 4 Rho GTPases in bleb-driven migration. Bleb-based migration is driven by cortical 

actomyosin contractility, and is associated with high levels of active RhoA/ROCK signalling 

(adapted from Ridley et al.
30

). 
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1.4 Artificial angiogenesis 

Angiogenesis was first observed in vitro by Folkman and Haudenschild37. After long-term 

culture of capillary ECs, they observed the spontaneous organization of the cells into 

capillary-like structures. Additionally, they have confirmed the presence of a lumen by 

phase contrast microscopy and transmission electron micrography. This report of 

angiogenesis provided the basis for in vitro endothelial angiogenesis. 

Depending on the way the cells reorganize, the commonly used assays can be roughly 

categorized into two categories: 2D (when ECs develop tubular structures on the surface 

of a substrate) and 3D (when ECs invade the surrounding matrix consisting of a 

biogel)38,39.  

1.5 Tube formation 

In vivo, ECs are in contact on their basal surface with a thin, highly specialized ECM, the 

basement membrane. This matrix forms a sleeve around the ECs, and maintains the tube-

like structures of the blood vessels40,41. Because EC tube formation on basement 

membranes replicates many steps in angiogenesis, it has been widely used as a screen 

for angiogenic and anti-angiogenic factors42. As a first screening assay it has many 

advantages. It is rapid, quantitative, and can be done in high throughput mode to screen 

large numbers of chemicals. Moreover it encompasses all steps in the angiogenic 

process: adhesion, migration, protease activity, alignment, and tube formation.  

1.6 Hydrogels 

Hydrogels are crosslinked polymer networks that absorb substantial amounts of aqueous 

solutions. They have attracted enormous research interest in the last years, because of 

the potential for a wide range of applications. Hydrogels have been successfully used in 

biomedical fields for example as wound dressings43 and as cell-based therapeutics44.  

Hydrogels can be divided into two categories based on their natural or synthetic 

origins45. Hydrogel-forming synthetic polymers are prepared using chemical 

polymerization methods46. Natural polymers, which form hydrogels, include proteins such 

as collagen and gelatin, and polysaccharides such as alginate and agarose47. In vitro 
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growth matrices attempting to mimic the 3D environment of a cell, consist of a mixture of 

purified proteins such as collagen and laminin48. The most widely utilized example of an 

ECM extracted from living cells is the cell culture matrix commercialized as Matrigel49,50. 

Matrigel is an assortment of ECM proteins that have been extracted from Englebreth-

Holm-Swarm tumors in mice51 and is considered to be a reconstituted basement 

membrane preparation. 

The complexity and dynamic structure of the endothelial basement membrane 

contributes to its various functions: Collagen IV contributes to the basement membrane’s 

structural integrity and promotes cell adhesion and migration40. Heparan sulphate 

proteoglycans link collagen and laminin networks, bind soluble components, such as 

growth factors, and regulate the filtration activity of the basement membrane matrix52. The 

laminins are considered to be the major biologically active components of the basement 

membrane53,54. They organize and establish the basement membrane matrix and promote 

EC adhesion, migration and differentiation55. Thrombospondins inhibit EC proliferation and 

migration, by binding to many molecules in the basement membrane. Additionally, active 

antiangiogenic fragments have been identified56. Cells are tightly anchored to this matrix 

via cell surface receptors, including integrins, syndecans and dystroglycan. 

Matrigel primarily consists of laminin, collagen IV and entactin and is mainly used to 

culture ECs, which start to build tubular structures when seeded on a Matrigel layer.  
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1.7 Aim of the study 

Angiogenesis is the formation of new blood vessels out of pre-existing ones and is thus 

essential during development, but nonetheless, it also occurs in adults, during wound 

healing or diseases such as cancer57. 

The proliferation and migration of ECs is a central occurrence during the angiogenic 

process and although Blobel claimed that “3D trumps 2D when studying EC migration”58, 

no detailed characterization of EC behavior in 3D exists up to now. 

Thus the aim of this study was to characterize migration of HUVECs on Matrigel, which 

is commonly used as in vitro matrix for endothelial tube formation, as well as on a single 

cell basis, when cells are embedded in two structurally different hydrogels. 

For this purpose, the main cues initiating endothelial tube formation should be 

elucidated, by analyzing biophysical (substrate rigidity and mechanotransduction), 

biochemical (secretion of growth factors, proteolysis) and cell biological (integrins) 

parameters. Furthermore, the experimental findings were implemented into simple 

mathematical models.  

Concerning the analysis of single cells, the migration mode of ECs in 3D environments 

was analyzed. To investigate the impact of matrix composition on cell migration, the cells 

were embedded in structurally different hydrogels (spongy Matrigel and fibrillar rat tail 

collagen I gels), and cell morphology as well as migration parameters like contractility, 

polarization and adhesion were comparative studied and matched to the in vivo situation 

in the murine retina.  

Concluding, this work aimed to elucidate the main regulator of endothelial tube 

formation on Matrigel and to characterize the migration behavior of ECs in hydrogels.  

 

  



 

 
 
 
 
 
 
 
 
 

2 MATERIAL AND METHODS 
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2 MATERIAL AND METHODS 

2.1 Material 

All used equipment and consumables are listed in the Appendix 7.1. Pharmacological 

inhibitors are given in the Appendix 7.1.4. Primary and secondary antibodies for 

immunofluorescence are listed in Appendix 7.1.5. Fluorescent dyes (7.1.6) and hydrogels 

(7.1.7) are also listed in the Appendix. The composition of buffers is listed in the Appendix 

7.1.8.  

2.2 Methods 

2.2.1 Cell culture 

HUVECs 

HUVECs were purchased from Promocell (Heidelberg, Germany) and maintained in 

endothelial cell growth medium (ECGM) containing 4.7% supplement mix, 10% fetal calf 

serum (FCS), 10.000 U/ml penicillin/streptomycin, 250 µg/ml amphotericin B under 

constant humidity at 37°C and with 5% CO2. Experiments were performed using cells at 

passage #3. 

Passaging 

For passaging, medium was removed, cells were washed twice with phosphate buffered 

saline (PBS), trypsin/ethylenediaminetetraacetic acid was added and incubated at 37°C. 

After three minutes of incubation, digestion was stopped by adding stopping medium 

(10% FCS in M199). Cells were centrifuged (1000 rpm, 5 minutes, room temperature), 

resuspended in ECGM and, finally, transferred to a new flask or seeded for experiments. 

Freezing and thawing 

For long time storage, confluent HUVECs from a 75 cm2 flask were trypsinized, 

centrifuged (1000 rpm, 5 minutes, room temperature) and resuspended in 3 ml ice-cold 

freezing medium (20% FCS, 10% dimethyl sulfoxide (DMSO) in M199). 1.5 ml aliquots 

were frozen in cryovials and stored at -80°C for 24 hours before being moved to liquid 
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nitrogen for longtime storage. In order to thaw cells, cryovials were warmed up to 37°C 

and the content was immediately dissolved in pre-warmed ECGM. DMSO was removed 

via centrifugation, cells were resuspended in ECGM and transferred to a 75 cm2 flask. 

Transfection of cells  

For transfection of HUVECs the Targeffect-HUVEC kit was used. 250 000 cells/ml were 

seeded in a 6-well plate and incubated overnight. For transfection complex, 1000 µl 

DMEM were supplemented with 1 µg plasmid deoxyribonucleic acid (DNA), 5 µl targeffect 

and 15 µl peptide enhancer, with flicking the tube ten times after each addition. The 

mixture was incubated 25 minutes at 37°C and 5% CO2. Afterwards, the medium of cells 

was removed and the transfection solution was added and incubated for two hours at 

37°C, 5% CO2.  

2.2.2 Hydrogels 

Rat tail collagen I gels 

All solutions were placed on ice. In order to prepare collagen I gels with a final 

concentration of 1.0 mg/ml (1.5 mg/ml), 20 µl (20 µl) 10x endothelial basal medium 

(ECBM) were placed in a sterile tube. Then, 112 µl (79 µl) sterile H2O, 8 µl (11 µl) 

NaHCO3 7.5%, and 50 µl (50 µl) 1x ECBM were added. After adding 60 µl (90 µl) of the 

collagen I solution (stock concentration 5 mg/ml), the content of the tube was mixed 

thoroughly. If desired, 18 x 106 HUVECs/ml were added to the mixture. For gelation, the 

gel was incubated at 37°C, 5% CO2 for at least 30 minutes. 

Matrigel 

Matrigel was thawed on ice for several hours and mixed thoroughly for homogeneity after 

thawing and kept on ice. In order to reach final concentrations of 2.49 mg/ml and 

4.15 mg/ml the gel was diluted with ice cold 1x ECBM. If desired, 18 x 106 HUVECs/ml 

were added. For gelation, the gel was kept at 37°C, 5% CO2 for at least 30 minutes. 

2.2.3 Retina preparation and imaging  

Animals 

Lifeact- enhanced green fluorescent protein (EGFP) transgenic mice have been 

previously described59,60. The expression of lifeact-EGFP is driven by a chicken actin 

promoter under the influence of a cytomegalovirus enhancer ensuring ubiquitous 
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expression61. Mice were kindly provided by Eloi Montanez, Walter Brendel Centre of 

Experimental Medicine and Munich Heart Alliance, Ludwig-Maximilians-Universität, 

Munich, Germany. All experiments with mice were performed in accordance to the 

German guidelines and regulations. The protocols were approved by the Committee on 

the Ethics of Animal Experiments of the Ludwig-Maximilians-Universität, Munich, 

Germany. 

Preparation and imaging of fixed postnatal day three (P3) mouse retina 

The retina was explanted from P3 mice eyes as previously published62. The eye was fixed 

in 4% para-formaldehyde (PFA) at room temperature for two hours. The vitreous body and 

the lens were removed, the retina was extracted and cut into four equal quadrants from 

the rim to half of its radial length. The retina was blocked and permeabilized by retina 

blocking buffer over night at 4°C. The blocked retina was washed with PBlec three times 

for 20 minutes, each. After washing, the retina was incubated with isolectin GS-B4, Alexa 

488 conjugate 1:25 and primary antibodies 1:100 in retina blocking buffer overnight at 

4°C. The retina was washed with retina wash buffer (retina blocking buffer/PBS, 1:1) five 

times for 20 minutes, each. Secondary antibodies were diluted 1:400 in retina blocking 

buffer and incubated two hours at room temperature, followed by washing with retina 

wash buffer (4x 20 minutes). Prior to microscopy a drop of mounting medium FluorSave™ 

Reagent was placed on the retina and the retina was covered by a glass coverslip. 

Preparation and live-imaging of P3 mouse retina  

The retina was explanted from P3 mice eyes without fixation of the eye and cut into four 

equal quadrants from the rim to half of its radial length as described in the section before. 

To take the retina into in-situ culture, the retina was placed in one well of µ-Slide 8 Well 

and fixed at the bottom of the well with 10 µl Matrigel. The retina was covered with a glass 

coverslip afterwards. After 60 minutes incubation at 37°C, 5% CO2 the retina was covered 

with 200 µl DMEM, 10% FCS, 1.25 µg/ml amphotericin B. Confocal imaging of live vessel 

growth was performed using a laser-scanning confocal microscope with Plan Apochromat 

63x/1.3 NA glycerol objective using LAS X Core Software (Leica, Wetzlar, Germany). 3D 

image projection and volume rendering was performed using IMARIS ([IMARIS x64 7.6.5] 

Bitplane, Zurich, Switzerland). The surface area detail level was set to 0.4 µm for images 

and 0.6 µm for movies. After the image rendering a volume and intensity threshold was 

set. Live imaging was performed at 37°C, 5% CO2 and 80% humidity.  
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2.2.4 Rheology of hydrogels 

The quantification of the elastic modulus of the hydrogels was performed on a stress-

controlled macrorheometer with a 25 mm plate-plate geometry at a plate separation of 

200 μm using a torque of 0.5 μNm and a frequency of 1 Hz ensuring linear response. The 

rheometer plate was cooled to 5°C before 150 μl of the samples were added, and gelation 

was induced by a sudden temperature change to 37°C. An applied oscillatory stress 

σ = σ0 sin (⍵t) with a frequency ⍵ resulted in an oscillatory strain with the same 

frequency, γ = γ0 sin (⍵t + δ), where δ denotes the phase shift between stress σ and 

strain γ. With those parameters, the storage modulus G‘= σ0 / γ0 cos (δ) can be calculated, 

which is a measure for the elastic property of the gel. 

2.2.5 Immunostainings 

Immunostaining of hydrogels 

6 µl of the desired gel were filled into the observation channel of µ-Slide Chemotaxis3D. 

Staining-solutions were filled into the reservoirs. The polymerized gel was fixed with 2% 

glutaraldehyde in PBS for 40 minutes and washed afterwards with PBS for 30 minutes. 

The gels were blocked with 1% bovine serum albumin (BSA) in PBS overnight. Primary 

antibodies were diluted 1:100 in 1% BSA and gels were incubated for 72 hours. Before 

incubation of secondary antibodies (1:200 in 1% BSA), the gels were washed twice with 

PBS for 30 minutes. The incubation of secondary antibodies was for 48 hours. Prior to 

microscopy, the gels were washed again with PBS for 30 minutes. Afterwards, the PBS 

was renewed and kept in the reservoirs during confocal microscopy. 

Immunostaining of HUVECs 

HUVECs embedded into hydrogels were fixed with 4% PFA for 40 minutes and washed 

with PBS twice for 20 minutes. The cells were permeabilized for 20 minutes with 0.5% 

Triton X-100 in PBS and washed afterwards with PBS for 30 minutes. The cells were 

blocked with 1% BSA in PBS overnight. Primary antibodies were diluted 1:100 with 

1% BSA in PBS and cells were incubated for 72 hours. Prior to incubation with secondary 

antibodies (1:200 in 1% BSA) the cells were washed twice with PBS for 30 minutes. The 

cells were incubated with secondary antibodies for 48 hours. Afterwards the cells were 

washed with PBS for 30 minutes and stained with rhodamine phalloidin (1:400 in 1% BSA) 

and Hoechst 33342 (0.5 µg/ml) for 40 minutes. Prior to microscopy the cells were washed 

again with PBS for 30 minutes. Finally, the PBS was renewed and kept in the reservoirs 

during confocal microscopy. 
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Confocal microscopy of hydrogels and HUVECs 

Confocal images were collected using a laser-scanning confocal microscope with Plan 

Apochromat 63x/1.4 NA oil, 63x/1.3 NA glycerol, 63x/1.2 NA water objectives using LAS X 

Core Software (Leica, Wetzlar, Germany). All imaging was performed at room 

temperature.  

2.2.6 Single cell migration 

3D chemotaxis 

3D chemotaxis experiments were conducted according to the manufacturer’s instructions 

(ibidi, Martinsried, Germany). After reaching confluency, HUVECs were trypsinized and 

embedded into rat tail collagen I gels or Matrigel as described in chapter 2.2.2. Finally, the 

gels were filled into the µ-Slide Chemotaxis3D. 1x ECBM was used as attractant-free 

medium, while ECGM supplemented with 10% FCS was used as chemoattractans, in 

order to analyze the chemotactic effect on migration of HUVECs. 

Phase contrast and fluorescent microscopy for live cell imaging  

Time-lapse video microscopy with HUVECs was performed using an inverted microscope 

Eclipse Ti, a 4x phase contrast objective, and a charge coupled device (CCD) camera 

with a time interval of ten minutes between images. The slides were inserted into a 37°C 

heating and incubation system. The system was flushed with actively mixed 5% CO2 at a 

rate of ten l/hour. The humidity was kept at 80% to prevent dehydration. 

Cell tracking and image analysis 

Time-lapse video microscopy was performed over a time period of 21 hours. The time-

lapse interval was ten minutes. Cell tracking was performed using the ImageJ software 

(National Institutes of Health, Bethesda, USA) plugin “Manual tracking” (Fabrice 

Cordelières, Institut Curie, Orsay, France). Each experiment was repeated three times, 

completely independent from each other. On average 20-30 cells were tracked per 

experiment. To further analyze and evaluate chemotactical processes and cell migration 

velocities, the “Chemotaxis and Migration Tool” (ibidi, Martinsried, Germany) was used. 

For quantification of chemotaxis and migration, the forward migration indices (FMIs) in 

parallel and perpendicular to the direction of the gradient, the cell velocity and the 

directness of cells were evaluated63. 
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Accumulated distance 

The accumulated distance di,accum for each cell was calculated as the sum of all 

incremental movements measured in between all m single images. The average 

accumulated distance daccum is the average over all di,accum, where m is the number of all 

analyzed images and di,j is the displacement of the cell number i from image j-1 to image j. 

𝑑𝑎𝑐𝑐𝑢𝑚 =  
1

𝑛
 ∑ 𝑑𝑖,𝑎𝑐𝑐𝑢𝑚

𝑛
𝑖=1 ; 𝑑𝑖,𝑎𝑐𝑐𝑢𝑚 = ∑ 𝑑𝑖,𝑗

𝑚
𝑗=2  

Forward migration indices parallel and perpendicular to the gradient  

The FMIǁ, FMI⊥ represent the efficiency of forward migration of cells parallel and 

perpendicular to the gradient, respectively. For experiments shown in this thesis we chose 

the coordinate system such that the y-axis was parallel to the gradient and the x-axis was 

perpendicular to the direction of the gradient. 
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Euclidian distance 

The Euclidian distance di,euclid for each cell was calculated as the length of the straight line 

between the cell start and end point. The average Euclidian distance deuclid was calculated 

as the average over all di,euclid. 

𝑑𝑒𝑢𝑐𝑙𝑖𝑑 =
1

𝑛
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Directness 

The directness (D) represents a cell’s tendency to travel in a straight line. It was 

calculated by dividing the Euclidian distance by the accumulated distance for each cell. Di 

is the directness of one single cell, D is the average of all values of directness for all cells. 
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2.2.7 Tube formation assay 

HUVEC tube formation assay was performed in µ-Slide angiogenesis. Matrigel was 

thawed on ice for several hours, mixed thoroughly for homogeneity and kept on ice. 

Pipette tips as well as the µ-Slide angiogenesis were kept on ice for the whole experiment. 

The inner well of the slide was filled with 10 µl Matrigel. For gelation, the gel was kept at 

37°C, 5% CO2 for at least 30 minutes. After reaching confluency, HUVECs were 

trypsinized and diluted to the desired concentration. 50 µl of the desired concentration of 

cells was applied to the upper well of the slide. The slide was covered by the supplied lid 
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and incubated at 37°C and 5% CO2. Either live imaging was performed or images were 

taken after a desired period of time. 

2.2.8 Polyacrylamide gels coated with Matrigel 

Cleaning and activation of glass coverslips 

Glass coverslips were cleaned in an ultraviolet (UV) cleaner for 15 minutes. Afterwards 

the coverslips were carefully placed in a stainless steel rack, which was filled with 99.8% 

ethanol. The rack was placed in an ultrasound bath for five minutes. The ethanol was 

discarded afterwards and the rack was refilled with 2% (3-aminopropyl) trimethoxysilane 

(APTES) in ethanol (99.8%) and incubated for 15 minutes in ultrasound. The coverslips 

were washed by immersing the rack in two changes of ethanol (95%). Afterwards the rack 

was removed from ethanol and dried in an oven (~30 minutes, 70°C). While cooling the 

rack, 0.5% glutaraldehyde solution in ddH2O was prepared. The round coverslips were 

immersed in the glutaraldehyde solution for 30 minutes at room temperature. The 

coverslips were washed in ultrasound with ddH2O for 15 minutes. A small amount of 

dichlordimethylsilane (DDS) was placed on the square coverslips, to increase 

hydrophobicity, until the coverslip was completely covered by a thin layer of DDS and 

incubated for 10 minutes. Afterwards the DDS was wiped off from the coverslips and they 

were rinsed with ddH2O.  

Preparation of the polyacrylamide substrate 

Acrylamide, bis-acrylamide, and PBS were mixed to produce the desired gel stiffness in a 

15 ml conical tube. An appropriate amount of acrylamide solution was placed into a 1 ml 

tube, 1:100 volume of ammonium persulfate (APS) and 1:1000 volume of 

tetramethylethylenediamine (TEMED) were added to the gel solution. After mixing, 35 µl 

of the gel mixture were quickly pipetted onto the aminosilanated coverslips, before the 

chlorosilanated coverslips were placed on top of the polymerizing gel solution. The gels 

polymerized on wet paper towels under a petri dish for 60 minutes. After polymerization 

was completed the surface of the slides was flooded and the gels were covered with 

50 mM HEPES. The chlorosilanated coverslips were removed and the gels were placed 

into fresh 50 mM HEPES.  

Cross-linking ECM to the polyacrylamide sheet 

Excess HEPES was wicked off with a lint-free tissue before the coverslip was placed in a 

6-well plate under a UV-light. 200 µl of sulfo-SANPAH cross-linker (0.4 mM in ddH2O) 

were added to the polyacrylamide (PAA) surface. For using short-wavelength (300-
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350 nm) UV-light lamps, the gel had to be placed in a distance of 8 cm to the lamp. After 

10 minutes of UV treatment, the coverslip was washed in PBS to remove excess sulfo-

SANPAH. The UV-light activation step was repeated two times. 

Matrigel coating and seeding of HUVECs 

Matrigel was thawed on ice for several hours, mixed thoroughly for homogeneity, and kept 

on ice. The spin coater was located in a cold room (~4°C). The coverslip coated with the 

PAA gel was placed on the rotation table of the spin coater, with the PAA gel on top. After 

reaching maximum speed (10 rps) 150 µl Matrigel were pipetted on the PAA gel. The 

rotation after adding Matrigel lasted 20 seconds. Afterwards, the coverslip was placed in a 

6-well plate and fixed on the bottom of the plate with solvent-free nail polish. The Matrigel 

was allowed to polymerize for 30 minutes at 37°C and 5% CO2. A desired concentration of 

HUVECs in ECGM was seeded on the gel and investigated for tube formation. 

2.2.9 Traction force microscopy 

Glass coverslips (8x8x0.17 mm) and µ-Slide 8-well (uncoated) were cleaned in an UV 

cleaner for 2x 15 minutes. Afterwards the hydrophobicity of the coverslips was increased 

by DDS (10 minutes), they were washed with ddH2O and finally dried off. The 8-well slides 

were treated with 0.5% glutaraldehyde solution in ddH20 for 30 min, and afterwards 

washed two times with ddH2O. Yellow-green microbeads of 1 µm diameter, 2% solids 

were mixed with Matrigel (1:750). 30 µl of the bead/Matrigel mixture were pipetted into the 

8-well slide. The gel was gently pressed on by a coverslip and incubated for 30 minutes at 

37°C, 5% CO2, before 250 000 cells/ml were seeded on the gel. Fluorescent microscopy 

was performed according to chapter 2.2.6. Data were analyzed by Andriy Goychuk, 

Arnold Sommerfeld Centre for Theoretical Physics and Centre for NanoScience, LMU 

Munich. 

2.2.10 Microfluidics 

For cultures under flow conditions the channels (µ-Slide I Luer) were coated with Matrigel 

(100 µl per slide) and kept at 37°C, 5% CO2 for at least 30 minutes. HUVECs (5 x 105 per 

cm2) were seeded into the channels with a micropipette, and the cells could attach to the 

gel within 20 minutes under static conditions at 37°C, 5% CO2. Afterwards the channel 

slide was inserted into a 37°C heating and incubation system. The system was flushed 

with actively mixed 5% CO2 at a rate of ten l/hour and placed on an inverted microscope 
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Eclipse Ti. The humidity was kept at 80% to prevent dehydration. Fresh medium was then 

pulled through the channel at a flow rate of 0.1 ml/minute for six hours. 

 

Figure 5 Illustration of the microfluidic experiment. HUVECs were seeded in Matrigel-coated µ-

Slide I Luer. Cells were cultured at a constant flow rate of 0.1 ml/minute for six hours. 

2.2.11 Statistical evaluation 

The data are presented as the mean value from three independent experiments with the 

corresponding SD or SEM. Statistical tests were student’s t-test performed using Excel 

(Microsoft Corp., Redmond, WA) or Prism software (GraphPad Software). The differences 

were statistically significant at P≤0.001 (indicated on graphs as triple asterisks), P≤0.01 

(indicated as double asterisks), or P≤0.05 (indicated as single asterisk). 
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3  RESULTS 

3.1 Spatio-temporal characterization of endothelial tube formation 

3.1.1 Formation of cell-cell contacts depends on the mean distance between 

single cells 

To investigate the impact of the cell number on network formation of ECs, we prepared 

tube formation assays on Matrigel with different cell densities. At a low density of HUVECs 

(60 000 cells/ml) plated on Matrigel, the cells barely moved and no network formation took 

place (Figure 6A). Rather than forming cords, the cells simply stayed separate. At 

100 000 cells/ml, the cells could stretch and gain cell-cell contacts. Initial network 

connections were made, and cords were formed. At higher densities such as 

140 000 cells/ml, 200 000 cells/ml and 280 000 cells/ml, cells formed a more defined and 

compact network. At 340 000 cells/ml, the cells condensed into large islands of cells and 

did not form tubular structures, the network connections were built out of cell clusters. 

These observations were confirmed in the quantitative analysis of the images, shown in 

Figure 6B. The number of tubes increased up to 280 000 cells/ml, while it was reduced at 

340 000 cells/ml. The other parameters were consistently increasing with higher cell 

numbers. Viewed together, Figure 6 shows that a minimum cell density of 

100 000 cells/ml is required for network formation and increased cell density leads to an 

increased network formation. 
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Figure 6 A minimum cell density is required for network assembly. HUVECs were seeded on 

Matrigel with different cell densities. (A) At least 100 000 cells/ml were necessary to induce tube 

formation, while in lower cell numbers, HUVECs stayed separate and were too sparse to form a 

network. Images were taken after six hours. (B) Quantification of number of tubes, nodes, total 

tube length and mean mesh size showed an increase in all parameters with increasing cell 

densities. If the cell density is too high (340 000 cells/ml), cell clusters were formed, followed by a 

decreased number of tubes (n=3). Bars, 100 µm. 

The dependence of the cell movement direction on the position of the nearest 

neighbouring cell is shown in Figure 7. The angle (Cnn) between the direction of 

movement of a cell and the direction in which the nearest neighbour of the cell is located 

is shown exemplarily for 200 000 cells/ml (Figure 7A). This graph indicates that the 

movement directions of the nearest neighbouring cells are highly correlated thus, nearest 

neighbours move in the same direction almost all the time, before they build clusters and 

consequently stick together and move in the same direction. The time required for nearest 
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neighbouring cells to find each other (τ) decreased with increasing cell densities (Figure 

7B). This showed that the higher the cell densities, the faster the cells find each other, 

with the exception of 340 000 cells/ml. This might be due to image analysis, where it is 

difficult to analyse single cells at such a high cell density. 

 

Figure 7 Relative motion of the cell population is a directed process. (A) The angle (Cnn) 

between the movement direction of a cell and the direction in which its nearest neighbouring cell is 

located, with a cell density of 200 000 cells/ml. (B) Biexponential fit, with the inverse exponent τα
-1

 

against the cell density. The inverse exponent showed that with increasing cell densities, the cells 

took less time to find its nearest neighbour (n=3). In collaboration with Andriy Goychuk, Arnold 

Sommerfeld Centre  for Theoretical Physics and Centre for NanoScience, Department of physics, 

LMU Munich. 

3.1.2 Morphogenesis is not based on soluble or matrix bound gradients of growth 

factors 

It has been shown that ECs migrate chemotactically in gradients of VEGF64. It is unknown, 

however, if the existence of a VEGF gradient initiates the formation of cells and thus, 

starts the process of tube formation. As shown in immunostainings and intensity profiles in 

Figure 8A, there was no matrix bound gradient of VEGF (green) between single cells, or 

tubular structures, respectively. At the starting point (0 hours), the fluorescence intensity 

of VEGF (green) was evenly distributed with small intensity peaks at the cells, but without 

a gradient. The intensity plot after three hours showed an equal progression: The intensity 

of VEGF bound to the matrix, was at a basal level, while there were intensity peaks at the 

areas covered by cells, respectively tubes. A matrix-bound gradient of VEGF between 

single cells or tubes was not detectable at early steps of tube formation. Having shown 

that matrix bound gradients of VEGF do not exist and thus cannot direct cell movement, 

we further investigated the impact of soluble VEGF gradients. We saturated the VEGF 

concentration by adding 20 nM to the EC growth medium (Figure 8B). As controls we 
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analyzed endothelial tube formation for HUVECs seeded in growth medium as well as in 

PBS containing calcium and magnesium. After three and six hours we detected no 

hindrance of endothelial tube formation by saturating VEGF gradients. Even more, we 

could show that endothelial tube formation is independent of external growth factors, too, 

since the formation of tubes and nodes is not inhibited, when cells were seeded in 

PBS+Ca2+, Mg2+. To specifically avoid the formation of soluble gradients in the medium, 

we performed microfluidic experiments, where HUVECs were cultured on Matrigel at a 

constant volume flow of 0.1 ml/minute (Figure 8C). This showed that the initial pattern 

formation of cells, as well as the formation of tubular structures was not hindered by a 

constant flow of EC growth medium, which avoids the formation of a soluble gradient. 

Recapitulatory, the formation of tubular structures in the EC tube formation assay on 

Matrigel does not depend on matrix bound or soluble gradients of VEGF. 
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Figure 8 Neither bound nor soluble gradients are critical for EC tube formation. (A) HUVECs 

were seeded on Matrigel at 200 000 cells/ml in ECGM and fixed with 4% PFA 0, and 3 hours after 

adhesion to the matrix. Immunostaining of VEGF and subsequent analysis of intensity profiles 

showed no bound VEGF gradient over time. Intensity profiles were analyzed using ImageJ 

software. (B) Quantification of number of nodes and tubes after saturation of soluble VEGF 

gradients by 20 nM VEGF had no impact on the formation of tubular structures. HUVECs 

(200 000 cells/ml) were analyzed 3 and 6 hours after seeding on Matrigel. Control cells were 

seeded in ECGM (control) and PBS containing Ca
2+

 and Mg
2+

 (PBS+). (C) Microfluidic experiments 

of HUVECs seeded into µ-Slide I Luer, coated with Matrigel. The channel was flushed with ECGM 

at 0.1 ml/minute and image was kept after six hours. The absence of soluble gradients did not 

impair HUVEC tube formation (n=3; *P≤0.05). Bars, 100 µm. 
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3.1.3 Cells actively deform their substrate to attract other cells 

To analyse whether ECs communicate via cellular forces exerted on the matrix, we 

investigated the deformation of the matrix by cells. We embedded fluorescent microbeads 

into Matrigel and seeded HUVECs (200 000 cells/ml) on the gel (Figure 9). The analysis 

of the bead displacement over the first 50 minutes after seeding the cells on Matrigel, 

revealed a clear force exerted on the underlying matrix, as seen by bead movement 

towards cells (Figure 9A, left image). Investigating an exemplary single cell (white 

asterisk), we could show that this cell is attracted by the forces exerted by the cell, 

focused with the blue asterisk (Figure 9A). Furthermore, we could show that the velocity of 

bead movement, representing cellular forces exerted on the matrix, decreases over time 

(Figure 9B). That implies that cells first deform the matrix, and afterwards form the 

network. By colour coding of bead density we could show that beads were evenly 

distributed and do not form aggregates, which might otherwise distort the displacement of 

single beads. 
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Figure 9 HUVECs exert forces on the ECM. HUVECs (200 000 cells/ml) were seeded on 

Matrigel, containing fluorescent beads. (A) Left image: Analysis of bead velocity over 50 minutes. 

The red vectors represent the velocity of bead movement, indicating applied force. The direction of 

the vectors indicates the averaged direction of bead movement. Blue asterisk focuses an 

exemplarily cell exerting high mechanical forces on the matrix, at three different time points (50, 

210 and 250 minutes). The white asterisk focuses a cell, which migrates in the direction of these 

forces. (B) The direction of vectors indicates the averaged direction of bead movement at two 

different time points (10 and 250 minutes). Colour codes show local density of beads. The velocity 

of bead movement is represented by the length of each vector, indicating that the applied forces 

decrease over time. Images in the lower panel show cells at respective time. Bars, 100 µm. 

(Vectors were analyzed by Andriy Goychuk). 



3  RESULTS 29 

 

3.1.4 Endothelial tube formation with different cell-to-cell distances depends on 

the rigidity of the matrix 

Besides the matrix composition, the substrate rigidity might influence the adhesion and 

migration of cells. We created PAA gels with defined stiffness and coated them with 

Matrigel (Figure 10A). To this end we coated coverslips with PAA gels with controlled 

stiffness between 3 and 5000 Pa and seeded different numbers of HUVECs on the gels. 

Figure 10A shows that different cell densities are needed for a respective substrate 

rigidity, in order to allow for optimum EC tube formation. In Figure 10B the cell densities 

are plotted against the respective gel rigidity, which allows for optimum tube formation. 

The graph indicates that for lower cell densities higher substrate stiffness is necessary to 

promote tube formation, while for higher cell numbers soft gels provide the best substrate 

for the building of tubules. 

 

Figure 10 Matrix stiffness influences endothelial tube formation. (A) HUVECs were seeded on 

PAA gels with different stiffness, coated with Matrigel, at 60 000, 100 000, 200 000 and 

280 000 cells/ml. Images were taken after nine hours. The gel stiffness optimally promoting tube 

formation is shown for each cell density. (B) Cell number plotted against the elastic modulus, which 

is ideal for tube formation at the respective cell density. Bars, 100 µm. 
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3.1.5 Proteolytic activity is not essential for the formation of tubes 

Extracellular proteolysis has been implicated in many steps of the angiogenic processes, 

including basement membrane degradation, cell migration, and capillary lumen 

formation65. To investigate the role of matrix metalloproteinases (MMPs) for endothelial 

tube formation on Matrigel, we inhibited a broad range of MMPs with 10 µM batimastat 

(Figure 11). Visually (Figure 11A) as well as quantitatively (Figure 11B), we could not 

detect any hindrance of the tube formation process after batimastat treatment of cells. On 

the contrary, the formation of tubular structures is enhanced by batimastat treatment. 

 

Figure 11 HUVEC tube formation is not hindered by inhibition of MMPs. (A) HUVECs were 

seeded on Matrigel at 200 000 cells/ml in ECGM as control and with 10 µM batimastat to inhibit 

MMP activity. Images were taken after six hours. (B) Quantitative analysis of the number of nodes 

and segments, mesh size and total tube length showed that the activity of MMPs is not crucial for 

HUVEC tube formation (n=3; *P≤0.05; **P≤0.01). Bars, 100 µm. 

3.1.6 Cell adhesion to laminin is essential for endothelial tube 

formation 

In the context of mechanotransduction we investigated the importance of the interaction 

between integrins and ECM proteins for EC tube formation. Therefore we used different 

integrin-blocking antibodies (Figure 12). While inhibition of integrin binding to fibronectin 

and other ECM proteins (integrins α4, α5 and αv) did not influence endothelial tube 

formation, blocking of integrin binding to laminin (integrins α1, α2, α3 and α6) potently 
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inhibits the formation of nodes and tubes. This indicates that laminin is a crucial matrix 

component for the formation of tubes. 

 

Figure 12 Adhesion to laminin is crucial for endothelial tube formation. (A) HUVECs were 

seeded on Matrigel at 200 000 cells/ml in ECGM. To investigate the role of adhesion to different 

matrix proteins, antibodies against integrins α1, α2, α3, α4, α5, α6 and αv were added (40 µg/ml). 

Images were taken after six hours. (B) Quantitative analysis of the number of nodes and tubes, 

showed that blocking of laminin binding integrins (α1, α2, α3 and α6) significantly decreased the 

number of nodes and tubes, while blocking of collagen and fibronectin binding (integrins α4, α5 and 

αv) did not affect endothelial tube formation (n=3; *P≤0.05). Bars, 100 µm. 

3.1.7 Contractility impacts endothelial tube formation 

It has been shown that contractility plays a pivotal role in mechanotransduction12. 

Therefore we investigated the role of cellular contractility for endothelial tube formation, by 

treatment of cells with the myosin II ATPase inhibitor blebbistatin (10 µM) (Figure 13). Due 

to myosin II inhibition initial pattern formation was hindered and tubular structures were 

not detectable (Figure 13A). The quantitative analysis confirmed this observation by a 
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significantly reduced number of nodes and a reduction in the number of tubes (Figure 

13B). 

 

Figure 13 Inhibition of contractility hinders endothelial tube formation. (A) HUVECs were 

seeded on Matrigel at 200 000 cells/ml in ECGM as control, and treated with 10 µM blebbistatin to 

inhibit contractility of cells. Inhibition of contractility using blebbistatin hindered the formation of 

tubular structures. (B) Images were taken after six hours and analyzed on the number of nodes 

and tubes (n=3; P≤0.05). Bars, 100 µm. 

3.1.8 Simulation of endothelial tube formation shows a directed, force dependent 

process 

The above stated experimental results were taken as assumptions to adapt a numerical 

model of endothelial tube formation. Using an extension of the Cellular Potts Model on a 

triangular lattice, random, chemotactic and directed cell migration were compared (Figure 

14). Here, we could show that simulations for random, as well as chemotactic migration 

(Figure 14A and B) did not result in the formation of tubular structures after 

1000 Monte Carlo steps (MCS). In contrast, confirming the experimental results, a 

directed migration process based on mechanotransduction (Figure 14C) showed the 

formation of a compact network after 1000 MCS. The simulations were performed by 
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Andriy Goychuk as part of his master’s thesis at the Arnold Sommerfeld Centre for 

Theoretical Physics and Centre for NanoScience (LMU Munich). 

 

Figure 14 Simulation of the endothelial tube formation process shows a directed, force-

dependent migration. (A) Control population after 1000 MCS. The simulation parameters were 

set as: Qα=85, qα=70, A=6, B=4, Rα=Rβ=15, rα=0.1, mα=0.05, aα=0.04, 400 cells, 2.5 x 10
5
 lattice 

sites and non-periodic boundary conditions. (B) Chemotactic cell migration after 1000 MCS. Basic 

parameters identical to (A) and following chemotactic parameters: D=0.85, α=0.1, γ=0.35, Κ=10. 

(C) Mechanotransduction of directed migrating cells after 1000 MCS. Basic parameters identical to 

(A), mechanotransduction parameters: λ=100, dmax=50, 200 cells, 62 500 lattice sites and non-

periodic boundary conditions (Parameters are defined in 7.2). Simulations were performed by 

Andriy Goychuk. 

3.2  Comparative characterization of single endothelial cell migration 

in Matrigel and collagen I gels 

3.2.1 Matrix composition influences morphology of migrating endothelial cells  

To investigate if the matrix composition influences the migration phenotype of ECs, we 

embedded HUVECs in two structurally different hydrogels: Matrigel and rat tail collagen I. 

To visualize the topography of Matrigel we stained for its three major components, 

laminin, collagen type IV and the crosslinking protein entactin at different Matrigel 

concentrations. Here, we identified a dense gel with small pores (Figure 15A) and 

detected a correlation between the protein concentration and the mesh density of 

Matrigel. In contrast, collagen I staining (Figure 15B) showed a dense fibrillar network with 

a correlation between the fibrillar density and the protein concentration. We choose 

protein concentrations of the hydrogels, which resulted in comparable stiffness (Figure 

15C). For the following experiments we used 2.49 mg/ml Matrigel and 1.00 mg/ml rat tail 

collagen I gels, since these concentrations resulted in the most reproducible migration 
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behavior of HUVECs. Interestingly, the cell morphology of HUVECs was completely 

different in both settings (Figure 15D). F-actin staining of HUVECs migrating in Matrigel 

showed an elongated cell shape, which is characterized by a lack of stress fibers, focal 

adhesions and a relatively thick cortical rim of f-actin, restricting the cell shape. We 

detected just very small blebs on the cell surface in HUVECs migrating in Matrigel. 

Additionally, HUVECs embedded in Matrigel (Figure 15D upper right panel) are 

characterized by a capping of ECM protein, shown here for collagen type IV. Furthermore, 

focusing on the gel topography, we observed persisting paths inside the gel, where the 

cell’s route is reconstructable. These paths are coated with ECM proteins, here shown for 

collagen type IV. By contrast, HUVECs migrating in collagen I gels (Figure 15D bottom 

panel), showed a rounded cell shape with large blebs on the cell surface. We could not 

observe stress fibers or focal adhesions. Furthermore, immunostaining of collagen I 

revealed a protein coated cell surface. The cells are migrating along single collagen I 

fibers, paths are not detectable in contrast to cells migrating in Matrigel. Beside the round 

morphology we describe here for HUVECs migrating in collagen I gels, the cells 

temporary elongate during their migration cycle. Since we do not detect the rounded cell 

shape with pronounced blebs (diameter > 2 µm) in cells migrating in Matrigel, we compare 

this phenotype, characteristic for collagen I gels, to the elongated phenotype, 

predominantly detected in Matrigel. 

As a measure of the physical hindrance that cells migrating in both settings have to 

overcome, we compared the cell migration velocity (Figure 15E): HUVECs migrating in 

collagen I gels are more than two times faster than cells migrating in Matrigel, 

independent of the concentration and the density of the gel. Thus the migration phenotype 

might mechanistically influence EC migration. 
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Figure 15 Substrate topography influences morphology of ECs. (A) Immunostaining of 

4.15 mg/ml and 2.49 mg/ml sponge-like Matrigel, performed for laminin, collagen IV and entactin. 

(B) Confocal 3D view of collagen I staining in 1.50 mg/ml and 1.00 mg/ml fibrillar rat tail collagen I 

gels. (C) Determination of elastic modulus for Matrigel (4.15 and 2.49 mg/ml) and collagen I gels 

(1.50 and 1.00 mg/ml) by rheology. (D) Left, f-actin (red) and nuclei (blue) staining of elongated EC 

morphology in Matrigel and round EC shape in collagen I gel. Right, ECM proteins collagen I and 

IV were visualized by antibody staining (green). (E) Quantification of different cell migration 

velocities of HUVECs invading Matrigel or collagen I gels. HUVECs were migrating along a 

gradient of FCS (n=3). Bars, 10 µm. 
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3.2.2 The role of myosin II-dependent contractility depends on matrix composition 

To investigate the effect of matrix composition on EC migration on a molecular level, we 

inhibited myosin II contractility in migrating HUVECs using blebbistatin. To quantify 

differences in migration behavior, we analyzed the FMI, directness and velocity of 

migrating HUVECs in Matrigel and collagen I gels (Figure 16A). To induce directed 

migration, we created a gradient of FCS (+/-). In order to distinguish between arbitrary 

migration effects and chemotaxis, we performed two reference measurements in all 

cases. For the negative control (-/-), we investigated the migration of cells in basal 

medium without chemoattractant, while as positive control (+/+), we filled the entire 

system with 10% FCS as chemoattractant, the control values should be below the FMI for 

directed migration. To indicate chemotaxis, the critical value of FMI, which discriminates 

between directed and non-directed migration is set at 0.163. In Matrigel we observed no 

changes in velocity and chemotaxis after treatment with blebbistatin. In contrast, analyzing 

HUVECs migrating in collagen I gels, the FMI was significantly decreased compared to 

DMSO treated control cells, while the velocity of migrating cells was significantly 

increased after treatment with blebbistatin. To investigate whether the cell morphology is 

differently altered, too, we stained the f-actin of HUVECs migrating in Matrigel and 

collagen I gels (Figure 16B). Here we observed a switch from rounded mode with 

pronounced blebs in collagen I control cells to an elongated shape without blebs after 

treatment with blebbistatin. When cells were migrating in Matrigel they kept their 

elongated shape after treatment with blebbistatin. These observations were confirmed by 

quantification of cell morphology in both hydrogels (Figure 16C): HUVECs migrating in rat 

tail collagen I gels switched their mode from round pronounced blebs (84%) into 

elongated (88%) after treatment with blebbistatin, while HUVECs migrating in Matrigel 

kept their main elongated phenotype (69/85%). That implies, that inhibition of myosin II in 

collagen I gels induces a switch from the rounded bleb-based migration phenotype to the 

elongated mode, together with an increase in velocity and a decrease in the ability to 

sense the chemotactic gradient, while the migration of ECs in Matrigel remains 

unaffected. 
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Figure 16 Morphological and functional characterization of ECs in Matrigel and collagen I. 

(A) Quantification of FMI in parallel to a chemotactic gradient, directness and velocity of ECs 

invading Matrigel or collagen I gels. Cells were treated with 10 µM blebbistatin (bleb) or DMSO as 

control. A FCS gradient was used to induce directed cell migration (+/-), additionally positive- (+/+), 

and negative- (-/-) controls were analyzed (n=3; *P≤0.05; ***P≤0.001). (B) F-actin (red) and nuclei 

(blue) staining of HUVECs showed a phenotypic switch after blebbistatin treatment in collagen I 

gels. (C) Quantification of cell morphology of HUVECs exemplarily shown in B (n=3). Bars, 10 µm. 
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3.2.3 Matrix composition influences polarization of small GTPases in endothelial 

cells 

Beside contractility, we investigated the polarization of small GTPases as a further 

migration parameter. Here, immunostaining of Rac1 and Cdc42 showed different cellular 

localization of both proteins in Matrigel and collagen I gels (Figure 17A). In Matrigel both 

GTPases were distributed evenly all over the cell, while in collagen I Rac1 and Cdc42 

showed a polarized localization in pronounced blebs at the leading edge of the cells. 

Analyzing quantitative parameters, the inhibition of Rac1 in Matrigel showed a significantly 

reduced FMI (Figure 17B), which was nevertheless higher than 0.1, implying chemotaxis. 

Since the directness of cells was unaffected, chemotaxis was not completely inhibited but 

restricted. In contrast, in collagen I gels chemotaxis was inhibited after treatment with the 

Rac1 inhibitor, shown by significant reduction of both, FMI and directness of cells. In this 

setting, the velocity of migration was significantly reduced, too. Using ML141, to inhibit 

Cdc42, we detected similar effects as for Rac1 inhibition: chemotaxis and the migration 

velocity were unaffected in Matrigel, while the FMI as well as the directness were 

significantly decreased in collagen I gels. 
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Figure 17 Rac1 and Cdc42 as key-players in migration show different polarization-dependent 

effects in Matrigel and collagen I. (A) Immunostaining of HUVECs invading Matrigel or collagen I 

gels for polarization markers Cdc42 and Rac1 (green), additionally f-actin (red) and nuclei (blue) 

were stained. The direction of movement was set by a FCS gradient. (B) Quantification of FMI in 

parallel to a chemotactic gradient, directness and velocity of HUVECs treated with 50 µM Rac1 

inhibitor (Rac1 inh), 25 µM ML141 or DMSO, invading Matrigel or collagen I gels. FCS was used to 

induce directed cell migration (+/-), controls were analyzed as described in Figure 16 (n=3; 

*P≤0.05; **P≤0.01). Bars, 10 µm. 
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3.2.4 Self-secreted ECM proteins are deposited during migration in Matrigel and 

in vivo 

To investigate whether matrix remodeling depends on the composition of the matrix, we 

stained for self-secreted proteins in Matrigel and collagen I. Here we could show that 

HUVECs deposit fibronectin during migration in Matrigel (Figure 18A). Fibronectin fibers 

were secreted to coat the paths, which were characteristically formed during migration in 

Matrigel (Figure 15D). To test whether the secreted fibronectin attaches to the 

cytoskeleton or the cell membrane, we performed f-actin staining and transfection of 

HUVECs with pMyrPalm_mEGFP, which is located at the cell membrane. We did not 

perform stainings of other ECM proteins like laminin and collagen IV, since these proteins 

are the main components of Matrigel and a clear distinction between self-secreted and 

matrix proteins would be not feasible. In collagen I gels staining of the ECM proteins 

fibronectin, laminin and collagen IV showed localization of these proteins on the cell 

surface but no deposition in the collagen matrix (Figure 18B). To investigate the relevance 

of self-secreted proteins in vivo, we performed staining of P3 mouse retina with an 

endothelial marker (isolectin GS-B4, green) and immunostaining of the ECM protein 

laminin (red) (Figure 18C). This confirmed the deposition of laminin, as an exemplarily 

matrix protein, along newly built vessels in vivo in the mouse retina.  
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Figure 18 ECs deposit ECM-proteins in Matrigel and in mouse retina tissue but not in 

collagen I gels. (A) Confocal view of fibronectin (cyan) secreted and deposited by HUVECs 

invading Matrigel. Additionally visualization of cell membrane (green), f-actin (red) and nuclei 

(blue). (B) Confocal images of secreted fibronectin, laminin and collagen IV (cyan) of ECs invading 

collagen I gels. ECM proteins stick to the cell surface. (C) Laminin (red) deposition in P3 mouse 

retina. ECs (green) were stained with isolectin GS-B4. Bars, 10 µm. 
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3.2.5 Cell blebbing compensates for loss of proteolytic activity in collagen I gels 

We showed differences in secretion and deposition of ECM proteins dependent on the 

environment of the cells (Figure 18). Therefore, we investigated the importance of 

proteolytic activity for the degradation of self-secreted ECM proteins for cells migrating in 

Matrigel (Figure 19A). To inhibit MMPs, we treated HUVECs with batimastat. The 

fluorescence intensity of laminin increased during the first 20 hours in DMSO treated 

control cells and decreased up to 70 hours afterwards. When cells were treated with 

batimastat, the secreted laminin was not degradable and the fluorescence intensity of 

laminin increased over the whole time period. To quantify the functional influence of MMP 

inhibition, we analyzed chemotaxis parameters as well as the velocity of migrating cells in 

Matrigel and collagen I gels (Figure 19B). Batimastat treatment of cells in Matrigel led to 

an inhibition of chemotaxis, while cell velocity of migrating cells was slightly increased. 

Whereas, both parameters were not influenced when cells were embedded into collagen I 

gels. To identify whether the ability to form pronounced cell blebs compensates the loss of 

proteolytic activity in collagen I gels, we induced the elongated phenotype, which is 

characteristic for cells migrating in Matrigel, by blebbistatin treatment and treated the cells 

additionally with batimastat (Figure 19C). This combinatory treatment of cells showed a 

significant loss of directed cell migration, while the velocity of cells was increased. These 

were exactly the same findings as we got for cells embedded in Matrigel (Figure 19B).  
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Figure 19 Different effects of MMP inhibition in Matrigel and in collagen I gels. (A) 

Quantification of fluorescence intensity of laminin after MMP inhibition by treatment with batimastat 

in Matrigel. The fluorescence intensity of laminin, which surrounded the cell surface, was analyzed 

using confocal images. HUVECs were fixed 10, 20 and 70 hours after embedding them into 

Matrigel. (B) Quantification of FMI in parallel and perpendicular to a chemotactic gradient, velocity 

and directness of HUVECs migrating in Matrigel and collagen I gels. MMPs were inhibited by 

treatment with 10 µM batimastat, DMSO was used as control. FCS was used as chemoattractant 

(n=3; *P≤0.05). (C) FMIs, directness and velocity of cells migrating in collagen I gels after treatment 

with 10 µM batimastat, 10 µM blebbistatin, and a combination of both (bati/blebbi), or DMSO as 

control. FCS was used as chemoattractant (n=3; *P≤0.05; **P≤0.001). Bars, 10 µm. 
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3.2.6 Inhibition of laminin binding integrins induces a morphological switch of 

endothelial cells 

To address the question why HUVECs adapt a rounded morphology with pronounced 

blebbing in collagen I gels and not in Matrigel, we induced the formation of this mode in 

Matrigel by inhibition of different integrin-motifs (Figure 20A, B). Treatment of HUVECs 

migrating in Matrigel, with different α integrin antibodies showed that inhibition of laminin 

binding integrins (α1, α2, α3, α6) induced the formation of a rounded cell shape with 

pronounced blebs in Matrigel, representing a similar phenotype as seen in collagen I gels 

(Figure 15D). Inhibition of collagen and fibronectin binding integrins (α4, α5, αv) did not 

change the elongated cell shape of migrating HUVECs compared to the control cells. Vice 

versa, we could show that addition of laminin to collagen I gels induced the elongated cell 

shape and inhibited pronounced cell blebbing (Figure 20C). Quantifying the cell migration 

velocity, we observed similar velocities of cells migrating in Matrigel and in collagen I gels 

supplemented with laminin. These velocities were significantly lower than the velocity of 

cells migrating in pure collagen I gels (Figure 20C). 
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Figure 20 Laminin determines elongated migration mode. (A) F-actin (red) and nuclei (blue) 

staining of HUVECs invading Matrigel. Cell morphology was analyzed after inhibition of α1, 2, 3, 4, 

5, 6 and v integrins by antibodies (40 µg/ml). A gradient of FCS guided the direction of movement. 

Bars, 10 µm. Based on these images, the cells were categorized into round with pronounced blebs 

(blebs > 2 µm), round, elongated with pronounced blebs and elongated (B). At least 60 cells were 

analyzed. (C) Left panel, confocal view of HUVECs migrating in collagen I gels, supplemented with 

100 µg/ml laminin. Collagen I was visualized by immunostaining, cells were stained for f-actin (red) 

and nuclei (blue). Right panel, quantification of cell migration velocity of HUVECs migrating in 

either collagen I gels, Matrigel or collagen I gels supplemented with laminin (n=3; *P≤0.05; 

**P≤0.01). Bars, 25 µm. 



3  RESULTS 46 

 

3.2.7 Endothelial cell migration in vivo approves elongated migration morphology, 

inhibition of laminin binding induces a morphological switch 

To validate, which mode of migration resembles an in vivo situation of EC migration more 

closely, we established time-lapse live cell imaging of the growing vasculature of a P3 

mouse retina expressing lifeact-EGFP (Figure 21A). 3D maximum intensity projection 

showed a smooth surface of the cells within the vascular network of the control retina 

(Figure 21A upper panel). Moreover, we could not detect any cell blebs or rounding of 

cells in the untreated retina, while inhibition of α6 integrin induced extensive cell blebbing 

(Figure 21B bottom panel). Furthermore, we analyzed the cell shape of migrating cells, 

which build the leading front of the growing vasculature (Figure 21B). Here, we exclusively 

saw an elongated cell shape during the formation of vascular sprouts. The cells showed 

several filopodia located at the leading edge. In contrast, when the adhesion of cells to 

laminin was inhibited by an anti-α6 integrin antibody, cell blebbing, as we observed during 

migration in collagen I gels, was detected. Thus, migration of ECs in murine retina 

resembles the elongated migration morphology, as observed in Matrigel (Figure 15D) and 

inhibition of laminin binding integrin α6 leads to a morphological switch into the bleb-

dependent migration phenotype. 
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Figure 21 Live-imaging of ECs in mouse retina shows elongated mode of migration in vivo. 

(A) Confocal view of vasculature in P3 mouse retina, expressing Lifeact-EGFP in ECs. 3D 

maximum intensity projection was performed using IMARIS. Elongated morphology in the control 

retina (upper panel) switched into the blebbing based phenotype by treatment with an anti-integrin 

α6 antibody (bottom panel). (B) Growing vasculature was imaged for 14 hours. Asterisks indicate 

the migration of elongated (upper panel) and blebbing (bottom panel) cells during vessel sprouting, 

10, 12 and 14 hours after dissection of the retina. Bars, 10 µm.  
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4 DISCUSSION 

4.1 Mechanical forces exerted on the matrix and matrix adhesion are 

decisive for endothelial tube formation 

Angiogenesis is characterized by a complex morphogenetic cascade of events during 

which quiescent resting ECs become activated to proteolytically degrade their underlying 

ECM, directionally migrate towards the angiogenic stimulus, proliferate and align into new 

3D capillary networks4,66. The EC tube formation on basement membranes encompasses 

all steps of the angiogenic process: adhesion, migration, alignment and tube formation. 

Hence, this assay has been widely used as a screen for angiogenic and anti-angiogenic 

factors42,67. Nevertheless, the mechanisms initiating EC tube formation on a basement 

membrane matrix, e.g. Matrigel, are mostly unknown. In this thesis it was possible to 

spatio-temporally characterize the process of endothelial tube formation. On the basis of 

experimental evidence and theoretical insights, we emphasize mechanical forces as main 

communication strategies for initiating cell-cell finding as well as matrix adhesion to be 

crucial for maturation of tubes in vitro.  

4.1.1 Formation of initial cell-cell contacts is a directed process dependent on cell 

density 

The results shown in this thesis indicate that cell density influences the initial 

communication of cells and hence, the formation of tubular structures. Too sparse cell 

density prohibits recognition of cells among themselves as well as tube formation. 

Consequently, the initial formation of cell-cell contacts seems to play a pivotal role for 

following tube maturation processes. Up to now initial cell finding was often assumed as a 

random process68. We used a mathematical model approach to validate this. Here we 

could show that endothelial tube formation is a directed process, which is not driven by 

chemotactic stimuli, like it is often hypothesized69. 

Most of the cell-based mathematical models of (tumor-induced) angiogenesis, available 

in literature, are modelling the angiogenic process without experimental basis68,70,71. In 

these models they often study blood vessel formation in relation to shear stress and 

pressure72, or cell motion along gradients of chemical concentrations and adhesiveness70. 

Many studies rely on in vivo angiogenesis70 or expect collagen as a well-characterized in 

vitro matrix68. Matrigel, which is often used for biological approaches investigating the 
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process of endothelial tube formation, is neglected in modelling studies up to now. An 

assumption, which is often made, is a random cell motion, where cells exert traction 

forces on the ECM. According to this hypothesis, the pulling of cells causes the ECM to 

move, and along with it the cells that have adhered to the moving gel. After a few hours, 

the cells are predicted to form aggregates and the ECM becomes reorganized: most of 

the ECM would then be accumulated underneath the cell clusters, while the remaining 

ECM has reorganized into a network of fibrous lines that tessellates the plane. These 

hypothetical lines have been postulated to be used by the cells as a scaffold for their 

migration68. Since we could show that ECs secret huge amounts of ECM proteins during 

migration, the assumed protein accumulations are not necessarily reorganized proteins 

but could also be self-secreted by the cells. Our study revealed that the forces exerted on 

the ECM are instead used to attract other cells and lead the way to the nearest 

neighbouring cell.  

4.1.2 VEGF gradients are not inevitable for cell communication 

Since during normal and pathological angiogenesis in vivo, gradients of secreted 

signalling proteins guide growing blood vessels64, we considered chemotactic control of 

initial cell communication in the endothelial tube formation process. On the basis of the 

finding, that VEGF is known as a master switch of the angiogenic cascade at an early 

point in the hierarchical order of morphogenic events73, 2D in vitro experiments have 

shown that stable VEGF gradients are sufficient for induction of EC chemotaxis64. 

Therefore, we investigated whether soluble or matrix bound gradients of VEGF are 

regulators for the initial communication of cells. We could show that (i) cell to matrix 

adhesion is critical for the formation as well as the maturation of tubules, (ii) although 

relatively large amounts of VEGF are secreted by ECs, matrix bound gradients of VEGF 

are not detectable, and (iii) soluble VEGF gradients are neither guiding the initial 

communication of cells, nor the formation of tubular structures.  

Taken these observations together, another critical regulator for initial cell-cell 

communication has to exist. 

4.1.3 Initial communication of cells depends on mechanical forces exerted on the 

substrate 

There is evidence that cells exert forces via traction on their underlying substrate and that 

there is a link between the traction forces and the rigidity of the matrix.  
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It has been shown that slow moving cells such as fibroblasts exert forces via traction 

that are 100- to 1000-fold greater than it is necessary to propel the cells at normal speeds 

in vitro74. It is thought that such high levels of traction allow fibroblasts to compress and 

align ECM during repair of wounds75 and during the development of dense connective 

tissues76. Furthermore it has been shown that NIH 3T3 fibroblasts generate stronger 

traction forces and spread to larger size on stiff substrates than on soft substrates77. This 

suggests that fibroblasts adaptively regulate their contractility in accord with the prevailing 

conditions of substrate stiffness. 

The traction of ECs in vitro has been shown to be similar in magnitude to that of dermal 

fibroblasts78; therefore, it is plausible that ECs restructure ECM via traction for purposes of 

morphogenesis in vivo. The function of traction during angiogenesis is unclear; Vernon et 

al.78 suggest that traction might contribute directly to the propulsion of ECs through ECM 

and/or facilitate the reorganization or clearance of ECM immediately ahead of invading 

ECs. ECs at the tips of adjacent sprouts would align ECM between them by a traction 

mediated two-center effect, and fuse to establish common lumen. 

Our results investigating the early steps of tube formation on Matrigel, indicate that ECs 

communicate via traction forces they exert on the matrix. The displacement of fluorescent 

labelled microbeads showed that the cells actively deform their substrate. Furthermore, 

we could show that for low cell densities correlating with large distances between single 

cells, high substrate stiffness is necessary to create a field of deformation, which is large 

enough to bridge the gap between the cells. Using high cell densities (and thus low 

distances between single cells) the force transmission between cells is sufficient also on 

soft gels. This means with lower cell densities, the substrate has to get stiffer for effective 

transmission of cellular forces exerted on the substrate. 

4.1.4 Laminin binding integrins might act as force sensors 

Many biological processes, including angiogenesis depend on tightly controlled 

interactions between cells and the ECM. For traction-mediated interactions between ECs 

and ECM to occur, forces developed by the cytoskeleton must be transmitted across the 

plasma membrane to the ECM. Mediators of this process include the integrins, which link 

the actin-associated proteins, such as talin, vinculin and paxillin, to the ECM79–81. 

We used different integrin-blocking antibodies and could show that laminin is the 

crucial ECM protein, controlling EC tube formation. For the first time laminin has been 

shown to influence tube formation by Kubota et al.82. Of the 15 available laminin isoforms, 

laminin-1 has been shown to be of particular interest in angiogenesis, as it mediates EC 

adhesion and differentiation83, tube formation and furthermore mediates the activity of 
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endostatin, an angiogenic inhibitor that blocks tube formation84. This laminin isoform is the 

major glycoprotein component of Matrigel85. It consists of a α1 chain, which contains an 

IKVAV (isoleucine, lysine, valine, alanine and valine) site which promotes collagenase, 

plasminogen and metalloproteinase activity85–87. The activation of these enzymes results 

in matrix degradation thereby permitting cellular detachment and migration, and the 

release of matrix-sequestered pro-angiogenic factors, all of which are central to tube 

formation85. 

There is evidence in literature that integrins themselves act as mechanosensors88. For 

instance, it has been shown that application of force to integrin α5β1 is required for 

conversion to a state that can be chemically cross-linked to the fibronectin beneath a cell. 

Furthermore inhibition of cell contractility has been shown to block cross-linking but was 

rescued by application of force from fluid shear stress89. This indicates that laminin 

binding integrins might act as a force-sensor, which is crucial for initial cell communication 

by sensing mechanical forces exerted by neighbouring cells. 

4.1.5 Cell adhesion and thus morphology of endothelial cells plays a pivotal role 

for the maturation of tubular structures 

Mechanotransduction plays a critical role in cell motility, with actin fibers being the most 

important contractile components of the cytoskeleton that comprise bundles of 

actomyosin12. It has been shown that the stiffness of stress fibers can be altered by 

pharmacological perturbation of contractility: blebbistatin decreases the stiffness of stress 

fibers, while calyculin A increases it90. Mechanistic studies have shown that blebbistatin 

binds to myosin-ADP-Pi complex with a high affinity and interferes with the phosphate 

release process91. The alteration of stress fiber stiffness and thus the imbalance of 

contractility might be responsible for inhibition of tube formation after treatment of cells 

with blebbistatin. Connolly et al.92 characterized the changes in cell shape, which are 

critical in EC tube formation. They have been shown that cells stimulated to form capillary 

tubes in the presence of Matrigel, disassemble their organized actin stress fibers and form 

dynamic protrusive structures, leading to capillary assembly. Consequently, the imbalance 

of actin stress fibers respectively contractility in this study might inhibit capillary assembly 

via hampering the formation of dynamic protrusive structures. 
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4.2 Endothelial cells switch their migration modes based on matrix 

composition 

When Judah Folkman first presented the concept of starving a tumor by inhibiting 

angiogenesis, genetic stability and morphological homogeneity of ECs were postulated7,93. 

However, the migratory behavior of ECs has been mainly studied on 2D substrates. 

Though Blobel claimed that “3D trumps 2D when studying EC migration”58, no detailed 

characterization of EC behavior in 3D exists up to now. 

4.2.1 Matrix topography influences endothelial cell morphology  

From different cell types we know that cell behavior depends on the dimensionality of the 

surrounding matrix94, and its composition95. For example macrophages use either 

amoeboid migration mode in fibrillar collagen I or mesenchymal migration mode in 

Matrigel96. Additionally, for 3T3 cells it has been shown that substrate topography affects 

cell shape and migration by modifying cell-to-substrate interactions97. However, no such 

information on the migration of ECs exists. Here, we show that the morphology of 

migrating HUVECs is influenced by the surrounding matrix, too, but is basically different 

from fibroblasts or carcinoma cell lines24. HUVECs embedded into dense Matrigel display 

an elongated phenotype, with a thick rim of cortical actin. They deposit large amounts of 

ECM proteins presumably to stabilize their migration paths inside the gel. In fibrillar 

collagen I gels with a stiffness comparable to Matrigel the cells adapt a rounded cell 

shape with pronounced plasma membrane blebs, which resembles the amoeboid 

migration mode, which has been described for various cell types24,98. Up to now, cell 

blebbing in ECs was only investigated on 2D substrates, indicating a role of cellular blebs 

in the early stage of cell spreading99. The adaption of different cell morphologies might be 

necessary to compensate limiting substrate conditions, which enable or preclude 

migration in 3D ECM22. It should not be neglected that the nucleus is the largest single 

organelle in every cell100. Different matrix topographies and densities lead to compression 

of the nucleus, which induces alterations in gene expression101, and thus, maybe also on 

the migration phenotype.  

4.2.2 Bleb-driven migration in rat tail collagen I depends on contractility and 

polarization of small GTPases  

Amoeboid cell migration has previously been found to be a fast mode of migration in 

dendritic and cancer cells as well as zebrafish embryos102,103. Cells migrating in this mode 
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have a dynamic actin cytoskeleton without stress fibers and the regulation of the actin 

cytoskeleton takes place via the small GTPases Rac, Rho and Cdc42. Characteristically, 

amoeboid cells show weak adhesions and contractility, which allows fast repolarization 

and turning25. HUVECs migrating in collagen I gels show a phenotype, which is similar to 

that of amoeboid cells, but interestingly the mechanisms of cell migration seem to be 

completely different. The myosin II inhibitor blebbistatin switches this “amoeboid-like” to 

an elongated morphology in collagen I gels with no effect on directed cell migration, while 

HUVECs migrating in an elongated morphology in Matrigel seem to be independent of 

contractility. Kolega104 has shown that treatment of ECs with blebbistatin in a 2D setup 

inhibits cell migration. Consequently, the role of contractility depends on the 

dimensionality of the experiment as well as on the type of matrix, which is used. The 

inhibition of the polarization markers Rac1 and Cdc42 revealed that cells migrating in the 

elongated mode do not show a polarized distribution of Rac1 and Cdc42. In contrast, 

Rac1 and Cdc42 are localized in plasma membrane blebs in cells migrating in collagen I. 

In 2D experiments a clear polarization of HUVECs has been shown105. Treatment of cells 

with ML141106 or the Rac1 inhibitor 553502107 has been additionally shown to reduce 

directed cell migration in 2D settings. Here, we could also reveal differences in 3D 

compared to 2D. Moreover, a previous study has shown cell polarization in mesenchymal 

cells and unpolarized migration in amoeboid cells108. Thus, our findings indicate that the 

migration modes of HUVECs cannot be simply categorized into already existing models 

for tumor cells or fibroblasts and the migration phenotype strongly depends on the matrix. 

4.2.3 Physiological remodeling of the ECM is absent in rat tail collagen I gels 

The ECM is a highly dynamic structure, which constantly undergoes a remodeling 

process, where ECM components are deposited, degraded, or otherwise modified109. This 

is an important mechanism during cell differentiation, including processes such as 

angiogenesis and wound repair110. It has been shown that using a protease inhibitor mix 

to inhibit the matrix remodeling ability of mesenchymal cells induced mesenchymal to 

amoeboid transition24. HUVECs migrating in Matrigel deposit and assemble ECM proteins 

during migration, thus, they might compensate active degradation of the matrix, visible as 

small tunnels stabilizing the paths they dig inside the gel. However, in collagen I gels, the 

secreted ECM proteins stick to the cell surface but are not deposited in the matrix. The 

deposition of laminin around newly formed vessels in P3 mouse retina argues for a 

physiological relevance of deposited ECM proteins. 

We could show that in Matrigel self-secreted ECM proteins that stick on the cell surface 

are degraded over time, which can be inhibited by batimastat. Treatment of HUVECs, 



4 DISCUSSION 55 

 

migrating in Matrigel with batimastat inhibits chemotaxis, and significantly diminishes the 

directness of cells, while the velocity stays surprisingly unaffected. This might be due to 

ECM proteins, which stick to the cell surface and prevent binding of the chemoattractant 

to its cell surface receptors. In collagen I gels, chemotaxis and velocity of migration are 

unaffected after batimastat treatment. The blebbing of cells, which occurs in collagen gels 

might compensate for the batimastat treatment: blebbing might increase the cell surface 

and thus keep the ability to recognize chemotactic stimuli. In a previous study it has been 

indicated that inhomogeneity in membrane curvature affects protein association111. We 

confirmed the role of membrane blebbing in this context by combinatory treatment of cells 

with batimastat and blebbistatin in collagen I gels. 

4.2.4 Laminin determines the migration mode 

The role of laminin in angiogenic processes has been previously shown112. Adhesion of 

ECs to laminin has been described to induce Dll4 expression and thus leads to an 

activation of the Notch pathway. Dll4/Notch participates in the establishment of an 

adequate balance between tip and stalk cells during angiogenic sprouting. Additionally, 

appropriate laminin/integrin-induced signaling has been shown to be essential to induce 

physiologically functional levels of Dll4 expression and regulate the branching frequency 

during angiogenesis in vivo113. By the inhibition of laminin binding integrins, we could on 

the one hand induce a round bleb-based migration phenotype in Matrigel, which we 

otherwise only detected in collagen I gels. On the other hand, addition of laminin to 

collagen I gels in concentrations, which were shown to have no influence on the stiffness 

of the hydrogel114, induced a switch from the usually rounded bleb-based migration mode 

to an elongated cell phenotype. Hence, we assume laminin as the main determinant of the 

migration mode of HUVECs. 

4.2.5 Physiological migration of endothelial cells in mouse retina is similar to 

elongated migration morphology in Matrigel 

In vivo EC migration is often studied in zebrafish115–117. In this model optical resolution 

imaging of the vasculature in developing animals over time has been established. 

Nevertheless, the relevance of fish EC angiogenesis is under debate8. To our knowledge, 

there is no mammalian model for angiogenesis, which allows life-imaging of the growing 

vasculature. Our murine retina model shows the behavior of ECs during the formation of 

new vessels. ECs are migrating in an elongated shape with no visible rounding or surface 

blebbing. A 3D image rendering shows relatively smooth cell surfaces. We could clearly 
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identify a tip and stalk cell phenotype of ECs14. The cells do not move as a sheet but form 

sprouts in the direction of movement. The retina model can be related to our single cell 

migration study, since the single cells obviously phenotypically mimic tip cell 

characteristics. Apart from that, inhibition of α6 integrin in the murine retina induced a 

switch from the elongated phenotype into extensive blebbing on the cell surface. This 

validates our findings about the importance of laminin as the main determinant of the 

migration mode. 

4.3 Conclusion and future perspectives 

This study demonstrates that early stages of endothelial tube formation are controlled by 

mechanotransduction, with laminin binding integrins acting as force sensors. Furthermore, 

focusing on the migration of single cells, an enormous contextual plasticity of ECs is 

shown. The cells are able to switch between an elongated cell shape, ordinarily detected 

in spongy Matrigel and a round morphology with pronounced cell blebs, depicted in fibrillar 

collagen I gels and use this shift to evade pharmacological inhibition of contractility, small 

GTPases and proteolysis. 

This is a long stride towards a better understanding of EC migration in 3D model 

systems as well as of the tube formation process, to further close the gap between in vitro 

approaches and in vivo models of angiogenesis. Based on these findings a directed 

manipulation of hydrogels might be possible to create a new dimension of angiogenic 

model systems, mimicking the processes in vivo more closely. 
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5 SUMMARY 

Angiogenesis, the formation of a vascular network originating from already existing 

vessels, is of persistent and central interest for both, developmental and pathological 

processes. Judah Folkman was the first, who presented the concept of starving a tumor 

by inhibiting angiogenesis7. In this early study of angiogenesis, he postulated a high 

genetic stability and morphological homogeneity of ECs. Further studies mainly 

investigated the behavior of ECs on flat 2D substrates and up to now there is still a large 

gap between classical in vitro approaches, which are easy to handle, but have a low 

prognostic value, and elaborated in vivo models, which facilitate a closer look at the 

reality, but allow only a low degree of spatio-temporal control118. 

In this work we spatio-temporally characterized endothelial tube formation on Matrigel 

and identified a close interaction between biophysical and cell biological parameters. 

Here, we show that initial phases of endothelial tube formation are independent of 

chemotaxis, more precisely soluble or matrix bound gradients of VEGF. Further we depict 

the influence of cell to cell distances, which are decisive for the recognition of cells. 

Additionally, there is coherence between cell density and the rigidity of the matrix. Since 

cells actively deform their underlying substrate by exerting mechanical forces, with an 

important role of contractility, we concluded that the initial formation of cell-cell contacts, 

the first step of endothelial tube formation, is driven by mechanotaxis. Here, laminin 

binding integrins might act as important sensors for mechanical forces. 

To understand morphogenetic systems such as the vasculature and depict its 

heterogeneity, it is inevitable to additionally consider the vessels as composed of 

autonomous, individual entities, in this case single ECs.  

Therefore, we characterize the migration of single ECs through two structurally different 

hydrogels: spongy Matrigel and fibrillar collagen I. ECs adapt an elongated migration 

morphology in Matrigel, and a rounded cell shape with pronounced cell blebs 

(blebs > 2 µm) in collagen I, with laminin as the main determinant of the elongated 

phenotype, which facilitates a morphological switch between these modes. Further, we 

feature that ECs can evade pharmacological inhibition of contractility, small GTPases and 

proteolysis by morphological switches between these two modes. As in-situ proof of 

principle, we established live-imaging of EC migration during vascular growth in a murine 

retina, which reveals an elongated phenotype in untreated retina and a shift into extensive 

cell blebbing after inhibition of integrin binding to laminin.  
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Concluding, this work provides evidence for an unexpected contextual plasticity of EC 

behavior in 3D matrices and reveals the importance of mechanotransduction in 

angiogenesis. 

 

Figure 22 Summary of the thesis. (A) Spatio-temporal characterization of endothelial tube 

formation on Matrigel reveals mechanotransduction as the main regulator of early stages of tubule 

formation. Cell to cell distances, matrix rigidity, mechanical forces exerted on the matrix, 

contractility and laminin binding integrins influence the process. (B) On single cell level the 

composition of the matrix regulates cell morphology, secretion of matrix proteins and the 

polarization of small GTPases. Endothelial cells show a round phenotype in collagen I gels, which 

is switched into an elongated migration mode according to inhibition of contractility. In contrast cells 

show an elongated cell shape in Matrigel which shifts to the rounded shape by blocking of integrin 

binding to laminin. 
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7 APPENDIX 

7.1 Material 

7.1.1 General equipment and chemicals 

Table 1 General lab equipment and consumables 

Equipment Manufacturer 

Digital UV Ozone System Novascan, Ames, USA 

Eppendorf Easypet Eppendorf, Hamburg, Germany 

Eppendorf Research Plus 10, 100, 1000 µl Eppendorf, Hamburg, Germany 

HERACell 150i incubator Thermo Scientific, Bonn, Germany 

Incubator Memmert, Schwabach, Germany 

Laminarflow Heraeus, Herasafe Thermo Scientific, Bonn, Germany 

Macrorheometer MCR 302 Anton Paar, Graz, Austria 

Megafuge 1.0 RS Thermo Scientific, Bonn, Germany 

Mikro 220R Hettich, Bäch, Switzerland 

Small Vacuum Pump MVP Novocontrol Tech., Montabaur, Germany 

Spin Coater SCC-200 Novocontrol Tech., Montabaur, Germany 

Transferpette 20 µl Brand, Wertheim, Germany 

Ultrasonic cleaner Gallay, Mulgrave, AU 

UV-light Benda, Wiesloch, Germany 

ViCellTM XR Beckman Coulter, Brea, USA 

Glass coverslips 24 x 24 mm VWR, Radnor, USA 

Round glass coverslips 25 mm VWR, Radnor, USA 

 

Table 2 Chemicals 

Chemicals Manufacturer 

3-aminopropyltriethoxysilane Sigma Aldrich, St. Louis, USA 

Acrylamide solution 40% Biorad, Munich, Germany 

Alpha integrin blocking and IHC kit Millipore, Darmstadt, Germany 

Ammonium persulfate (APS) Roth, Karlsruhe, Germany 

Bis-acrylamide 2% Biorad, CA, USA 

Bovine serum albumin  Sigma Aldrich, St. Louis, USA 

Dichlordimethylsilane  Sigma Aldrich, St. Louis, USA 

Dimethylsulfoxide Applichem, Darmstadt, Germany 
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FluorSaveTM Reagent mounting medium Millipore, Darmstadt, Germany 

Glutaraldehyde Amresco, Solon, USA 

HEPES (>99.5%) Sigma Aldrich, St. Louis, USA 

Paraformaldehyde Applichem, Darmstadt, Germany 

Sodium bicarbonate 7.5 % Sigma Aldrich, St. Louis, USA 

Sulfo-SANPAH Thermo Scientific, Bonn, Germany 

Tetramethylene-diamine (TEMED) Roth, Karlsruhe, Germany 

Triton X-100 Roth, Karlsruhe, Germany 

Yellow-green microbeads 1 µm, 2% solids Life Technologies, Carlsbad, USA 

7.1.2 Microscope equipment and consumables 

Table 3 Microscope equipment and consumables 

Equipment and consumables Manufacturer 

µ-Slide 8 well, ibiTreat Ibidi, Martinsried, Germany 

µ-Slide 8 well, uncoated Ibidi, Martinsried, Germany 

µ-Slide angiogenesis, ibiTreat Ibidi, Martinsried, Germany 

µ-Slide chemotaxis 3D, ibiTreat Ibidi, Martinsried, Germany 

µ-Slide VI 0.4, ibiTreat Ibidi, Martinsried, Germany 

CCD camera DS-Qi1Mc Nikon, Duesseldorf, Germany 

Cover slips 8 well (8 x 8 x 0.17 mm) H.Saur Laborbedarf, Reutlingen, Germany 

Gas incubation system Ibidi, Martinsried, Germany 

Heating system Okolab, Pozzuoli, Italy 

Heating system, multi-well plates Ibidi, Martinsried, Germany 

Heating system, universal fit Ibidi, Martinsried, Germany 

Inverted microscope Eclipse Ti Nikon, Duesseldorf, Germany 

Plan Apochromat 63x/1.2 NA water 

objective 

Leica, Wetzlar, Germany 

Plan Apochromat 63x/1.3 NA glycerol 

objective 

Leica, Wetzlar, Germany 

Plan Apochromat 63x/1.4 NA oil objective Leica, Wetzlar, Germany 

TCS SP8 SMD  Leica, Wetzlar, Germany 
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7.1.3 Cell culture consumables 

Table 4 Cell culture consumables 

Consumables Manufacturer 

10x endothelial cell basal medium PromoCell, Heidelberg, Germany 

Amphotericin B 250 µg/ml AppliChem, Darmstadt, Germany 

Collagen G Biochrom AG, Berlin, Germany 

Collagenase A Roche, Mannheim, Germany 

Dulbecco’s modified Eagle’s medium 

(DMEM) 

PAN-Biotech, Aidenbach, Germany 

EDTA disodium salt dihydrate Roth, Karlsruhe, Germany 

Endothelial cell growth medium kit 

enhanced 

PELOBiotech, Martinsried, Germany 

Endothelial cell growth medium with 

Supplement Mix C-39215 

PromoCell, Heidelberg, Germany 

Fetal calf serum PAA Laboratories, Pasching, Austria 

M199 medium PAN-Biotech, Aidenbach, Germany 

Penicillin/Streptomycin 10 000 U/ml PAN-Biotech, Aidenbach, Germany 

Sodium bicarbonate Sigma Aldrich, St. Louis, USA 

Targefect-HUVEC kit Targetingsystems, El Cajon, USA 

Trypsin PAN-Biotech, Aidenbach, Germany 

7.1.4 Inhibitors 

Table 5 Pharmacological inhibitors 

Inhibitor Manufacturer 

Batimastat Sigma Aldrich, St. Louis, USA 

Blebbistatin Sigma Aldrich, St. Louis, USA 

ML141 Sigma Aldrich, St. Louis, USA 

Rac1 inhibitor 553502 Millipore, Darmstadt, Germany 

Y27632 Sigma Aldrich, St. Louis, USA 
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7.1.5 Antibodies for immunofluorescence 

Table 6 Primary and secondary antibodies 

Primary or secondary antibody Manufacturer 

Alexa Fluor 488, donkey anti-rat, IgG (H+L) Life Technologies, Carlsbad, USA 

Alexa Fluor 488, goat anti-mouse, IgG 

(H+L) 

Life Technologies, Carlsbad, USA 

Alexa Fluor 488, goat anti-rabbit, IgG (H+L) Life Technologies, Carlsbad, USA 

Alexa Fluor 680, goat anti-mouse, IgG 

(H+L) 

Life Technologies, Carlsbad, USA 

Alexa Fluor 680, goat anti-rabbit, IgG (H+L) Life Technologies, Carlsbad, USA 

Alexa Fluor 680, goat, anti-rat, IgG (H+L) Life Technologies, Carlsbad, USA 

Cdc42, rabbit, pAb Santa Cruz, Heidelberg, Germany 

Collagen type I, mouse, mAb Sigma Aldrich, St. Louis, USA 

Collagen type I, rabbit, pAb Abcam, Cambridge, UK 

Collagen type IV, rabbit, pAb Millipore, Darmstadt, Germany 

Entactin, rat, mAb Santa Cruz, Heidelberg, Germany 

Fibronectin, mouse, mAb Santa Cruz, Heidelberg, Germany 

Laminin, rabbit, pAb Sigma Aldrich, St. Louis, USA 

Rac1, mouse, mAb Thermo Scientific, Bonn, Germany 

7.1.6 Fluorescent dyes 

Table 7 Fluorescent dyes 

Fluorescent dye Manufacturer 

Hoechst 33342 Sigma Aldrich, St. Louis, USA 

Isolectin GS-B4,Alexa 488 conjugate Life Technologies, Carlsbad, USA 

Rhodamine phalloidin Life Technologies, Carlsbad, USA 

7.1.7 Hydrogels 

Table 8 Natural hydrogels 

Hydrogel Manufacturer 

Collagen type I, rat tail, 5 mg/ml, non-

pepsinized 

Ibidi, Martinsried, Germany 

Matrigel, growth factor reduced, phenol red 

free  

Corning, Amsterdam, Netherlands 
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7.1.8 Buffers 

Table 9 Buffers 

Solution Composition 

PBS (pH 7.4) 123.3 mM NaCl 

 10.4 mM Na2HPO4 

 3.2 mM KH2PO4 in H2O 

  

PBS + Ca2+/Mg2+ (pH 7.4) 136.9 mM NaCl 

 2.7 mM KCl 

 8.1 mM Na2HPO4 

 1.5 mM KH2PO4 

 0.5 mM MgCl2 x 6 H2O 

 0.7 mM CaCl2 x 2 H2O in H2O 

  

Retina blocking buffer 0.5 ml 1% BSA 

 0.3% Triton X-100 

 50 ml PBS (pH 7.4) 

  

PBlec 1 mM MgCl2 

 1 mM CaCl2 

 MnCl2 

 10% Triton X-100 

 50 ml PBS (pH 7.4) 
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7.2 Simulation parameters 

Table 10 Parameters for simulation of endothelial tube formation 

A Energy gain per created contact 

aα Area 

B Energy loss per broken contact 

D Diffusion coefficient 

dmax Maximum strand length 

mα Marker 

Qα Upper polarization bound 

qα Lower polarization bound 

rα Velocity of cytoskeleton-adaption 

Rα/β Diffusion speed of chemical signals within cells α or β 

α Secretion rate of the chemoattractant 

γ Decay rate of the chemoattractant 

Κ Force with which cells respond to the chemotactic gradient 

λ Increase of anchoring sites along strands 
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7.3 Publications 

7.3.1 Original publications 

Spatio-temporal characterization of endothelial tube formation: Early stages of 

morphogenesis are driven by mechanotransduction 

Kerstin Kick, Andriy Goychuk, Berenice Jahn, Carina Wollnik, Florian Rehfeldt, Angelika 

M. Vollmar, Erwin Frey, Stefan Zahler 

In preparation 

 

A new view on endothelial cell migration: Switching of migration modes based on matrix 

composition 

Kerstin Kick, Katharina Nekolla, Markus Rehberg, Angelika M. Vollmar, Stefan Zahler 

In preparation 

 

Morphological switching of endothelial cells on micro-tracks mimics aspects of 3D 

migration in collagen gels 

Simon L. Schuster, Felix J. Segerer, Kerstin Kick, Florian A. Gegenfurtner, Christoph 

Schreiber, Max Albert, Angelika M. Vollmar, Joachim O. Rädler, Stefan Zahler 

In preparation 

 

Influence of surface modifications on the spatio-temporal microdistribution of quantum 

dots in vivo 

Katharina Nekolla, Kerstin Kick, Sabine Sellner, Karina Mildner, Stefan Zahler, Dagmar 

Zeuschner, Fritz Krombach, Markus Rehberg 

In preparation 

 

The biophysical properties of basal lamina gels depend on the biochemical composition of 

the gel 

Fabienna Arends*, Constantin Nowald*, Kerstin Pflieger, Kathrin Boettcher, Stefan Zahler, 

Oliver Lieleg 

PLoS One. 2015 Feb 17; 10(2) 

 

Components of the plasminogen activation system promote engraftment of porous 

polyethylene biomaterial via common and distinct effects 

Christoph A. Reichel*, Maximilian E. T. Hessenauer *, Kerstin Pflieger, Markus Rehberg, 

Sandip M. Kanse, Stefan Zahler, Fritz Krombach, Alexander Berghaus, Sebastian Strieth 
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PLoS One. 2015 Feb 6; 10(2) 

 

The impact of cysteine-rich intestinal protein 1 (CRIP1) in human breast cancer 

Natalie Ludyga, Sonja Englert, Kerstin Pflieger, Sandra Rauser, Herbert Braselmann, Axel 

Walch, Gert Auer, Heinz Höfler, Michaela Aubele 

Molecular Cancer. 2013; 12:28 

 

*These authors contribute equally. 

7.3.2 Poster presentations 

Endothelial cell migration in three-dimensional hydrogels - focusing on angiogenesis 

Kerstin Pflieger, Angelika M. Vollmar, Stefan Zahler 

SFB 1032 Retreat 2015, February 3-5, Altoetting, Germany  

 

Endothelial cell migration in three-dimensional hydrogels - focusing on angiogenesis 

Kerstin Pflieger, Angelika M. Vollmar, Stefan Zahler 

American Society for Matrix Biology (ASMB) Biennial Meeting 2014, October 12-15, 

Cleveland, Ohio 

 

Characterization of HUVEC migration in hydrogels focusing on angiogenesis 

Kerstin Pflieger, Stefan Zahler 

International Physics of Living Systems Network (iPoLS) 2014, July 21-24, Munich, 

Germany 

 

Controlling cellular function by structured surfaces: “Artificial angiogenesis” 

Kerstin Pflieger, Simon Schuster, Angelika M. Vollmar, Stefan Zahler 

SFB 1032 Spring Workshop 2013/ Joint Meeting NIM Areas IV and V 2013, February 18-

19, Hohenkammer, Germany 

7.3.3 Oral presentations 

“Artificial Angiogenesis” – Set the stage for new models 

Kerstin Pflieger, Simon Schuster, Stefan Zahler 

SFB 1032 Retreat 2014, February 24-25, Frauenchiemsee, Germany 



7 APPENDIX 80 
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Geburtsdatum   25.07.1988 
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Ausbildung 

ab 10/2012   Dissertation am Lehrstuhl für Pharmazeutische Biologie 

    Department Pharmazie der LMU München 

    Betreuer: Prof. Dr. Stefan Zahler 

10/2010-10/2012  Studium der Biochemie (Master of Science) 

    Technische Universität München 

10/2007-09/2010  Studium der Biochemie (Bachelor of Science) 

    Technische Universität München 

06/2007   Abitur 
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