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Abstract

The Earth mantle convects on a global scale, coupling the stress field at every point to every
other location at an instant. This way, any change in the buoyancy field has an immediate
impact on the convection patterns worldwide. At the same time, mantle convection couples
to processes at scales of a few kilometers or even a few hundred meters. Dynamic topography
and the geoid are examples of such small-scale expressions of mantle convection. Also, the
depth of phase transitions varies locally, with strong influences on the buoyancy, and thus
the global stress field. In order to understand these processes dynamically it is essential to
resolve the whole mantle at very high numerical resolutions.

At the same time, geodynamicists are trying to answer new questions with their models,
for example about the rheology of the mantle, which is most likely highly nonlinear. Also,
due to the extremely long timescales we cannot observe past mantle states, which calls for
simulations backwards in time. All these issues lead to an extreme demand in computing
power. To cater to those needs, the physical models of the mantle have to be matched
with efficient solvers and fast algorithms, such that we can efficiently exploit the enormous
computing power of current and future high performance systems.

Here, we first give an extensive overview over the physical models and introduce some
numerical concepts to solve the equations. We present a new two-dimensional software as a
testbed and elaborate on the implications of realistic mineralogic models for efficient mantle
convection simulations. We find that phase transitions present a major challenge and suggest
some procedures to incorporate them into mantle convection modeling. Then we give an
introduction to the high-performance mantle convection prototype HHG, a multigrid-based
software framework that scales to some of the fastest computers currently available. We
adapt this framework to a spherical geometry and present first application examples to answer
geodynamic questions. In particular, we show that a very thin and very weak asthenosphere
is dynamically plausible and consistent with direct and indirect geological observations.





Zusammenfassung

Konvektion im Erdmantel findet auf globalen Skalen statt und koppelt das Spannungsfeld an
jedem beliebigen Punkt mit jedem anderen ohne Zeitverzögerung. Dadurch hat jede Änderung
im Auftriebsfeld eine sofortige Wirkung auf die Konvektionsströme weltweit. Gleichzeitig
gibt es Wechselwirkungen zwischen Mantelkonvektion und Prozessen auf Skalen von wenigen
Kilometern oder sogar einigen hundert Metern. Dynamische Topographie und Geoid sind
Beispiele für solche kleinskaligen Ausprägungen der Mantelkonvektion. Auch variiert die Tiefe
von Phasenübergängen lokal, was einen starken Einfluss auf das Auftriebsfeld und damit das
globale Spannungsfeld hat. Grundvorraussetzung, um diese Prozesse dynamisch verstehen zu
können, ist eine sehr hohe numerische Auflösung im gesamten Mantel.

Derzeit wenden sich Geodynamiker mit ihren Modellen neuen Fragen zu, zum Beispiel
der der Rheologie des Mantels, welche mit hoher Wahrscheinlichkeit stark nichtlinear ist.
Auch kann man aufgrund der extrem langen Zeitskalen den Zustand des Mantels in der
Vergangenheit nicht beobachten, weshalb Simulationen rückwärts in der Zeit nötig werden.
All dies führt zu einer extremen Nachfrage an Rechenleistung. Um dem gerecht zu werden,
müssen den physikalischen Modellen des Mantels effiziente Löser und schnelle Algorithmen
zur Seite gestellt werden, so dass die enorme Rechenleistung von aktuellen und zukünftigen
Hochleistungsrechnern effizient genutzt werden kann.

Wir beginnen diese Arbeit mit einem ausführlichen Überblick über die physikalischen
Modelle und einer Einführung in einige der numerischen Konzepte zur Lösung der Gleichun-
gen. Wir stellen dann eine neue zweidimensionale Software als Testbett vor und diskutieren
die Implikationen realistischer mineralogischer Modelle für effiziente Mantelkonvektionssimu-
lationen. Wir stellen heraus, dass Phasenübergänge eine groe Herausforderung darstellen, und
wir diskutieren einige Möglichkeiten, diese anzugehen, und Phasenübergänge in Mantelkon-
vektionsmodelle einzubinden. Darauf folgt eine Einführung in den Hochleistungscode HHG
als Prototyp für einen Mantelkonvektionscode. HHG ist ein mehrgitterbasiertes Software-
Framework, das auf einige der aktuell schnellsten Computer der Welt skaliert. Wir adap-
tieren HHG auf eine sphärische Geometrie und präsentieren ein erstes Anwendungsbeispiel,
in dem wir geodynamische Fragestellungen beantworten. Konkret zeigen wir, dass eine sehr
dünne und mechanisch sehr schwache Asthenosphäre dynamisch plausibel und konsistent mit
direkten sowie indirekten geologischen Beobachtungen ist.
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Notation

Scalars are typeset in normal letters, 2d and 3d vectors are underlined, and tensors are
underlined twice. For vectors and matrices with n � 3 (mostly in the FEM context) we
use boldface. The absolute of a vector is denoted by the same letter as the vector, but is
not underlined, except for some exceptions where both meanings are listed separately (j, n, t).

For thermodynamic derivatives, we use the standard notation, where e.g.
(
∂S
∂T

)
p

gives the
change in entropy with temperature at constant pressure.

Sometimes we split quantities into contributions from a reference state and a deviation from
this state. We use the subscripts ◦ref and ◦dev to distinguish between them.

The subscript ◦bnd gives a quantity at any boundary, ◦upper or ◦0 at the upper boundary,
and ◦lower at the lower boundary. ◦init denotes a quantity at initial time.

In the finite element section, we use the standard symbols from set theory.
Since chapter 5 is a re-print of a journal article, symbols in this chapter are not listed here
and are not consistent with the rest of this thesis.

Units

Since the scales on which mantle convection takes place are far from every day intuitive scales,
it is sometimes convenient to use non-SI units. Here we list all non-SI units used in this work,
together with a conversion factor.

a year 31 556 926 s ≈ π · 107 s
cm centimeter 0.01 m
h hour 3600 s
km kilometer 1000 m



xii Notation

Abbreviations

ccNUMA cache-coherent non-uniform memory access, a shared-memory computer
architecture

CFL Courant-Friedrichs-Lewy criterion, limiting the maximal time step
CMB core-mantle boundary
CG conjugate gradients, a Krylov subspace method
D” Perovskite/postperovskite phase transition in the lower mantle
DFG Deutsche Forschungsgemeinschaft, the German federal research council
FEM finite element method
Flatland a 2d mantle convection code for the annulus
Flop/s floating point operations per second
GMRES generalized minimum residual, a Krylov subspace method
HHG hierarchical hybrid grids, a 3d FEM solver framework
HPC high performance computing
IOCB inner-outer core boundary
LAB lithosphere-asthenosphere boundary
LAPACK Linear Algebra Package, a direct solver
LU decom- decomposition of a matrix into lower and upper triangular matrices
position
MINRES minimum residual, a Krylov subspace method
MOHO Mohorovic discontinuity, the crust-mantle boundary
MPI Message passing interface, a standard parallelization library for distributed

memory architectures
OpenMP Open Multi-Processing, a standard parallelization library for shared memory

architectures
P1-P1 linear-linear finite element pair defined on triangular or tetrahedral elements
PARDISO Parallel Sparse Direct Solver, a direct solver package
PSPG pressure stabilizing Petrov-Galerkin method
PVM Parallel Virtual Machine, a programming model for parallel applications
Q1-P0 mixed finite element pair with bilinear velocity on a hexagonal grid and

constant pressure
Q1-Q1 linear-linear finite element pair defined on quadrilateral elements
SPPEXA Priority program Exa-scale computing by the DFG
TERRA legacy mantle convection code
Terra-
neo

DFG funded project to develop a high performance mantle convection code



Notation xiii

Upper Case Latin Symbols

A viscous operator
[

Pa s
m2

]
a(◦, ◦) bilinear form representing the viscous operator A

[
Pa s
m2

]
A finite element matrix representing the viscous operator A

[
Pa s
m2

]
A area [m2]
B negative of the gradient operator [m−1]
b(◦, ◦) bilinear form representing the gradient operator B [m−1]
BT finite element matrix representing the gradient operator B in the Boussinesq approximation [m−1]
B finite element matrix representing the divergence operator D [m−1]
c◦(◦, ◦) bilinear form for the stabilization of the discrete Stokes system [m−1]
D divergence operator, includes a density scaling for the TALA [m−1]
d(◦, ◦) bilinear form representing the divergence operator D [m−1]
Dt Lagrangian derivative ∂t + v · grad (◦) [s−1]
Ek Ekman number [-]
F force [N]

f(◦) linear form representing the buoyancy term f
[

Pa
m

]
g◦(◦) linear form for the stabilization of the discrete Stokes system [m−1]

H volumetric radiogenic heat production rate
[

J
m3 s

]
H1

0 (◦) Sobolev space H1
0 on the domain given as parameter

K bulk modulus [Pa]
K ′ bulk modulus’ derivative with respect to pressure [-]
L2(◦) Hilbert space of all square integrable functions on the domain given as parameter
N set of natural numbers not including zero
Nu Nusselt number [-]
Pe Peclet number [-]
Pr Prandtl number [-]
Qν solution space for approximated pressure on element ν
R right hand side of the heat equation [K s−1]
Ra

b
Rayleigh number describing bottom heating [-]

Rai Rayleigh number describing internal heating [-]
Re Reynolds number [-]
S Schur complement, S := −BA−1BT [Pa−1 s−1]
T temperature [K]
T triangulation of the domain
T(◦) elements of the discretized domain

T ◦(◦) interior of the elements

U internal energy [J]
V volume of a sample mass m [m3]
Wµ solution space for approximated velocity on element µ



xiv Notation

Lower Case Latin Symbols

aµ(,i),
bµ(,i), cµ(,i),
dµ(,i)

FEM coefficients, related to the degrees of freedom [-]

cp specific heat at constant pressure
[

J
kg K

]
curl (◦) curl [m−1]
div (◦) divergence [m−1]
ê◦ unit base vector [-]

f buoyancy term
[

Pa
m

]
f finite element vector, representing the buoyancy term

[
Pa
m

]
g gravitational acceleration, pointing radially outwards

[m
s2
]

grad (◦) scalar argument: gradient; vectorial argument: vector gradient [m−1]
h mantle thickness [km]
i, j, k, l,m spatial indices [-]. i, j, k, l,m ∈ {1, 2, 3} in three dimensions,

and i, j, k, l,m ∈ {1, 2} in two dimensions

j conductive heat flux
[

J
m2 s

]
k size of a matrix [-]

k thermal conductivity
[

W
m K

]
m sample mass [kg]
n number of elements of a mesh, n ∈ N [-]
nlevel number of regular refinements of a mesh [-]
nr number of radial nodes of a mesh (annulus or sphere) [-]
nt number of tangential nodes of a mesh (annulus or sphere) [-]
n unit normal vector, orthogonal to the surface [m]
p total pressure [Pa]
p′ total pressure when no reference state is assumed,

deviatoric pressure otherwise [Pa]
pν discrete version of p′ on element ν [Pa]
p coefficient vector, representing the discrete pressure pν [Pa]

q test functions for the pressure [Pa]
qν discrete test functions for the pressure on element ν [Pa]
q′ν shape function for the pressure on element ν [Pa]
r radius / radial coordinate [km]
r right hand side of the pressure correction system, r := −BA−1f
t time [a]
t tangential vector, unit vector parallel to the surface in 2d [m]
uµ shape function on element µ

[cm
a
]

v velocity
[cm

a
]

vµ discrete velocity on element µ
[cm

a
]
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v coefficient vector, representing the discrete velocity vµ [Pa]

vrms root mean square velocity
[cm

a
]

w test functions for the velocity
[cm

a
]

wµ discrete test functions for the velocity on element µ
[cm

a
]

xi ith coordinate in any given coordinate system [m], i ∈ {1, 2, 3} in three
dimensions, or i ∈ {1, 2} in two dimensions

x first cartesian coordinate [m]
y second cartesian coordinate [m]
z third cartesian coordinate [m]

Upper case Greek Symbols

∆ Laplace operator [m−2]
∆p Polar Laplacian [m−2], ∆p◦ = 1

r∂r (r∂r◦) + 1
r2
∂2
ϕ◦

∆E energy change in a control volume
[

J
s

]
∆T temperature difference between lower and upper boundary [K]
∆x spatial displacement [m]
∆x spatial resolution [m]

Ψ stream function
[

m2

s

]
Ω Domain. Annulus in 2d [m2], spherical shell in 3d [m3]

Lower Case Greek Symbols

α thermal expansion coefficient [K−1]
α generic tensor

β generic tensor

δ infinitesimal change
δij Kronecker delta [-]
ε strain tensor [-]

ε̇ strain rate tensor [s−1]

ζi element-local coordinate [m], i ∈ {1, 2, 3}
η dynamic viscosity [Pa s]
θ dilatation (average of the diagonal of the strain tensor) [-]
λ vorticity [s−1]
µ element index, µ ∈ N
ν element index, ν ∈ N
ξ deviatoric strain [-]



xvi Notation

π pi, ratio of a circle’s circumference to its diameter [-]

ρ density
[

kg
m3

]
σ stress tensor [Pa]

τ deviatoric stress tensor [Pa]
ϕ tangential coordinate in polar coordinates [-]
χ time stepping index [-]
ψ iteration index [-]
ω Earth’s angular velocity [h−1]

Other Symbols

(·) between vectors: scalar product

in the scientific notation for decimals (◦ · 10(◦)): multiplication between scalars
(:) dyadic double dot product, α : β =

∑
i,j αijβij

◦ placeholder for any quantity
∝ proportionality
∂t partial derivative with respect to time [s−1]
∂r partial derivative in radial direction [m−1]
◦̇ partial derivative with respect to time [s−1]
∂Ω(u/l) domain boundary. Circles in 2d [m], spherical surfaces in 3d [m2].

Index u stands for upper, index l for lower boundary.



1 Introduction

It is a common view that the Earth’s interior consists of three layers: crust, mantle and
core. This is based on the two main seismic reflectors within the solid Earth: The Mohorovic
discontinuity at 5 − 10 km depth below the ocean floor and at 20 − 90 km depth below the
continents, and the core-mantle boundary at 2890 km depth. Additional significant reflectors
have been observed at the transition zone between 410 km and 660 km, at the perovskite/post-
perovskite transition roughly 200 km above the core mantle boundary, and at the inner-outer
core boundary at 5150 km depth (Dziewonski and Anderson, 1981).

For the Earth’s internal dynamics, a different structure seems relevant: The outermost
part, where brittle behavior is dominant, is called the lithosphere. Below a depth of roughly
50−250 km, the mechanically weak asthenosphere begins. Below 50−600 km of asthenosphere,
at a depth between 200 and 660 km, the mechanically stronger lower mantle starts. The core
mantle boundary separates the solid mantle from the liquid outer core, and at the center of
the Earth there is the solid inner core. Figure 1.1 gives a schematic representation of this
interior structure.

The material within the mantle is solid, and can transmit seismic shear waves. The high
pressures below the lithosphere however make it ductile and thus behave like a fluid on long
time scales: material can deform permanently without rupturing by migrating defects through
the crystal structure. The characteristic time scale that determines the transition from elastic
to fluid behavior is called the Maxwell time, and is on the order of 1000 years for the mantle
(Ricard , 2007). The viscous behavior can be inferred from the response of the solid Earth to
the melting of glaciers: the modified load yields a new isostatic state, and from the way the
Earth adjusts to this new state one can infer elastic and viscous properties of the underlying
material (Haskell , 1935; Cathles, 1975; Mitrovica, 1996).

Radioactive decay and latent heat from the solidification of the inner core are constantly
adding heat to the Earth (Lay et al., 2008; Korenaga, 2011), heat that has to be transported
out through the surface. The efficiency of conductive cooling depends on the length scale: the
time to transport a given amount of heat between two points of given temperature increases
with the square of the distance between the points. This makes it impossible to cool a body of
the size of the Earth conductively, leaving convection as the only possibility to remove heat.

Convection of the Earth’s mantle has shaped the surface of the Earth. It is the main driv-
ing force behind plate tectonics (Richardson and Solomon, 1976; Bercovici , 2003) and as such
responsible for processes like mountain building, ocean formation, earthquakes and volcanism.
The exact mechanisms that couple mantle convection to plate tectonics are debated (see e.g.
Richter , 1973; Forsyth and Uyeda, 1975; Hager and O’Connell , 1981; Lithgow-Bertelloni and
Silver , 1998), but it is clear that buoyancy differences within the mantle are responsible for
sustaining tectonic processes.

The mantle is not very accessible to observations. Firstly, it is deeper down into the Earth



2 1. Introduction

Figure 1.1: Schematic representation of the Earth’s interior (to scale). In the upper part, the layers
as derived from the main seismic reflectors are shown: The crust, the upper mantle (consisting of
the lithospheric mantle and the asthenosphere), the lower mantle, and the outer and inner core. In
the lower part, the major seismic discontinuities and dynamic transitions are shown: The Mohorovic
discontinuity (MOHO) at 5 − 90 km depth, the lithosphere-asthenosphere boundary (LAB) at 50 −
250 km depth, the 410 km and the 660 km phase transitions, the core-mantle boundary at 2890 km
depth and the inner-outer core boundary (IOCB) at 5150 km depth.

than anyone has ever been able to drill (Fuchs et al., 1990). Secondly, with typical velocities
of a few centimeters per year, the processes are so slow that within a human lifetime we can
at best get a peek at one single geological time slice. There is however a number of indirect
observations that we can use to infer the current and past state of the mantle, out of which
we would like to mention two in particular: For one, seismograms can be used to deduce
the traveltimes of seismic waves generated by earthquakes. These can be used to generate
tomographic models of wavespeeds within the Earth (Grand et al., 1997; Ritsema et al., 2011).
Using models about composition and mineralogical properties of the mantle (Workman and
Hart , 2005; Stixrude and Lithgow-Bertelloni , 2005, 2011; Chust et al., 2015), these wavespeeds
can be transformed into estimates of densities and temperatures. Secondly, when oceanic crust
forms from upwelling magma at the mid-ocean-ridges, the Earth’s magnetic field (generated
by the outer core) imprints a residual magnetization. Since the magnetic field changes its
orientation periodically, one can use maps of the magnetic orientation of the sea floor to
reconstruct past plate motion back in time to approximately 150 Ma (McElhinny and Lock ,
1996; Müller et al., 2008). This limit comes from the fact that when oceanic crust gets
subducted, the magnetic information stored on it gets lost.

Seismic tomographic models now give us information on the current state of the mantle,
while paleomagnetic reconstructions can tell us about the evolution of the surface over time.
Together, these indirect observations and inferences give us terminal and boundary conditions,
which can be incorporated into global mantle circulation models. Other observations like i.e.
geodetic information (Larson et al., 1997; GRACE , 2002; Brockmann et al., 2014), inferred



3

dynamic topography (Winterbourne et al., 2009) and past sea levels (Haq et al., 1998) are
typically used as independent constraints to ascertain the quality of the simulations.

In order to infer the evolution of the Earth’s mantle from terminal and boundary condi-
tions, we also need to know about the governing physics. We have already established that
the mantle is solid, not liquid, but behaves like a fluid on long time scales. We can therefore
employ the well-established theory of fluid dynamics and use the Navier-Stokes equations
(Landau and Lifshitz , 1959). Some additional information has to be provided, like i.e. ma-
terial properties from rheology (Haskell , 1935; Cathles, 1975; Mitrovica, 1996; Hirth and
Kohlstedt , 2003; Lenardic et al., 2006; Cordier et al., 2012; Alisic et al., 2012), thermodynam-
ical behavior from mineralogy (Irifune and Tsuchiya, 2007; Nakagawa et al., 2009; Stixrude
and Lithgow-Bertelloni , 2005, 2011; Chust et al., 2015) and information about the heating
mode (internal heating through radioactive decay and bottom heating from the core, Davies
and Richards, 1992; Bunge et al., 1997; Lay et al., 2008). Incorporating all this information
we can then solve the Navier-Stokes equations numerically with the given constraints (Gun-
zburger , 1989). It is worth mentioning that the very slow speeds within the mantle render
inertial forces negligibly small. This allows the simplification of the full Navier-Stokes equa-
tions to a Stokes-type set of equations. In this approximation, all changes in the boundary
conditions or in the driving buoyancy term propagate through the whole domain instantly
(Iaffaldano and Bunge, 2015). It is therefore important to consider flow on a global scale,
since all local or regional models introduce artificial boundaries, which immediately affect the
whole convection pattern.

Mantle convection has been described early with the help of boundary layer theory (Tur-
cotte and Oxburgh, 1967; Schubert et al., 1975; Houseman et al., 1981). After the ground
work for numerical simulations had been laid out (McKenzie et al., 1974; Jarvis and McKen-
zie, 1980), first global convection models have been presented by Baumgardner (1985) and
Glatzmaier (1988). Baumgardner (1985) discretized the planet based on a refined icosahedral
mesh with first/zeroth order mixed finite elements, yielding approximately 200 000 degrees of
freedom. Glatzmaier (1988) used a spectral approach, expanding the variables tangentially
into spherical harmonics and radial Chebyshev polynomials, for a total of about one million
degrees of freedom. These models were able to produce a planform of up- and downwellings
similar to the Earth, but could not account for realistic rheologies and Rayleigh numbers for
lack of computing power. With the introduction of commercially available supercomputers
such as the Cray T3D PVM or the Intel Paragon, and the newly developed programming
models PVM (Parallel Virtual Machine) and MPI (Message Passing Interface) in the 1990s,
the necessary computing power became available, and the existing codes were adapted for
the new parallel architectures (Tackley et al., 1993; Bunge and Baumgardner , 1995). Many
more mantle convection codes have been written since, and simulations with more realistic
Rayleigh numbers, rheologies and mineralogic properties have been presented, and given dy-
namical explanations for geological observations (Tackley , 1996; Stuhne and Peltier , 1996;
Stegman et al., 2002; Zhong et al., 2007a; Schuberth et al., 2009; Tackley , 2012; Steinberger
and Torsvik , 2012).

Most of these studies run their models forward in time with linear rheologies, and incorpo-
rate simplified thermodynamical properties near the phase transitions. To be able to exploit
the knowledge from seismology about the current mantle state in its full extent, simulations
need to be performed backwards in time, constituting an inverse problem due to the diffusive
nature of heat conduction. Nonlinear rheologies are most likely present in the mantle, posing
a great challenge on numerical solvers and requiring additional extensive computing power.



4 1. Introduction

The discontinuities that arise from phase transitions further complicate the matter.
Most of todays codes can resolve the globe to at most 10 km. While this is far beyond

the resolution of seismic tomography models of a few hundred kilometers (Grand et al., 1997;
Ritsema et al., 2011), seismic reflector depths are known to a much higher precision of a few
kilometers (Dziewonski and Anderson, 1981). Dynamic topography as a surface expression of
mantle convection is on the order of a kilometer (Winterbourne et al., 2009), while the geoid,
also dominated by mantle structure, doesn’t exceed 100 m (Brockmann et al., 2014). If we
want to fully exploit these indirect observables, we need to represent the mantle at resolutions
of one kilometer or even less.

In the Earth, up- and downwelling regions, strong viscosity contrasts and phase transitions
are highly localized, while large regions with mostly homogeneous properties exist in between.
Exploiting this, Burstedde et al. (2009, 2013) and Kronbichler et al. (2012) have introduced
codes that employ adaptive mesh refinement. Here, the domain gets re-meshed every few time
steps, automatically adapting to resolve regions with strong gradients at high resolutions,
while using much coarser grids in the other regions. This approach allows resolutions of up
to a few hundred meters locally, without the need to spend computing time on regions where
effectively nothing is happening. On the other hand, this comes with a big administrative
overhead, as the mesh has to be regenerated constantly, the solvers need to adapt to the
modified grid and the load balance on parallel machines has to be adjusted accordingly. Also,
the problem becomes much harder for modern compute architectures, which can deal with
uniformly repeating instructions and aligned data much better than with constantly adapting
central structures. In addition, the CFL-criterion still limits the time step globally, leading
to computational overhead in the more uniform regions.

Apart from some notable exceptions (Burstedde et al., 2009, 2013), most current mantle
convection codes do not scale beyond 1000 − 10 000 processes. Modern supercomputers on
the other hand provide up to several million compute cores and up to 50 petaflop/s peak
performance (Strohmaier et al., 2015). Furthermore, in 1965 Moore predicted that the number
of transistors in an integrated circuit and thus also the computing speed of a computer doubles
approximately every one and a half years, correcting it to two years in 1975. While he did
not expect this exponential behavior to continue for more than a decade, it still holds true
today, although first indications of a moderate slow down to a two and a half year cadence
exist (Clark , 2015). But even under this assumption we can expect the first computers with a
performance of one exaflop/s around the year 2026. These future machines will be even more
parallel, with heterogeneous hardware, where many millions of processing units are combined
with accelerators and graphics cards. This poses new challenges for software design, as one
will need highly scalable algorithms with new mathematical metrics that are able to deal
with localized failures at runtime (resilience). Asynchronous execution will play an ever more
important role, and an efficient use of resources will be mandatory. Finally, the enormous
amount of data generated will have to be stored and processed in an efficient manner.

The Terra-neo project is part of the SPPEXA priority program funded by the German
research council DFG, and aims to develop a new software framework to bring mantle convec-
tion to these new machines. As part of this program, we will first discuss the equations that
govern mantle convection, and introduce some numerical concepts and algorithms for their
solution. We will then introduce the 2d-testbed Flatland developed in the course of this work
and show some applications to questions on the mineralogy of the mantle, such as the incor-
poration of phase changes into mantle convection modeling. We will then elaborate on the
Hierarchical Hybrid Grids (HHG) software (Hülsemann et al., 2003; Bergen and Hülsemann,
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2004; Bergen, 2005; Gradl and Rüde, 2008; Gmeiner , 2013; Gmeiner et al., 2014a) as a pro-
totype for a new high performance mantle convection software framework. We further show
an application of HHG to the question of whether fast flow velocities in the upper mantle are
dynamically feasible.





2 Governing Equations

For the purpose of mantle convection modeling, we describe the Earth mantle’s material as
a highly viscous fluid. We will thus disregard plastic deformation and brittle fracture in the
lithosphere, which is described by lithospheric models (i.e. Popov and Sobolev , 2008; Gerya
and Yuen, 2007). We also neglect elastic behavior in the form of seismic wave propagation (i.e.
Fowler , 2005). The governing equations that describe convective flow in the Earth’s mantle
are thus the Navier-Stokes equations, as described e.g. in Landau and Lifshitz (1959). For
the derivation of the equations in this chapter we loosely follow the books by Fowler (2005),
Davies (1999) and Cathles (1975), essays by Ricard (2007) and Ribe (2007), the theses written
by Baumgardner (1983), Yang (1997) and Davies (2008) and the study by King et al. (2010).

2.1 Dimensional Analysis

2.1.1 Simplifications from the Full Navier-Stokes Equations

The density of the mantle ρ is roughly 4000
kg
m3 (Dziewonski and Anderson, 1981), typical

flow velocities are on the order of v ≈ 3 cm
a (Davies, 1999), the viscosity is on the order

of η ≈ 1021 Pa s (Haskell , 1935) and a typical length scale is the thickness of the mantle,
h = 2 867 km (Dziewonski and Anderson, 1981). The Reynolds number, which is the ratio of
inertial over viscous forces, is thus on the order of

Re =
ρvh

η
≈ 10−20. (2.1)

We will therefore neglect inertial forces as well as kinetic energy.
Similarly, the Prandtl number, which is the ratio of momentum diffusion over thermal

diffusion, is given by

Pr =
cpη

k
≈ 1024, (2.2)

with a specific heat of cp ≈ 1000 J
kg K

(Ricard , 2007) and a thermal conductivity of k ≈ 1 W
m K

(Ricard , 2007). Momentum diffusion through the mantle can thus be considered immediate.
Finally, we look at the Ekman number, which is the ratio of viscous over Coriolis forces.

In a latitude-independent definition it is given by

Ek =
η

ρωh2
≈ 2.5 · 109, (2.3)

where ω = 1
24 h

is the angular velocity of the Earth’s rotation. This allows us to also neglect
the Coriolis force.
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The centrifugal force is isostatically adjusted, transforming the Earth’s shape from a
sphere to an ellipsoid of rotation. However, neglecting this force as well leads to a geometry
of a spherical shell, or, in a two dimensional setting, to an annulus.

2.1.2 Characterizing Mantle Flow

In addition to the very large or very small numbers introduced above, other nondimensional
numbers are commonly used to characterize the flow of the mantle (as described i.e. in Ribe,
2007). We select those numbers that are important for this work and introduce them here.

There are two driving mechanisms for mantle convection: Heating from the core and
internal heating from radioactive decay within the mantle. The respective contributions from
these two sources to the total heat flux out of the Earth’s crust is debated (Lay et al., 2008;
Korenaga, 2011). For both heating mechanisms, there is an associated Rayleigh number that
describes the vigor of the convection as induced by the corresponding heating mechanism.
The Rayleigh number for basal heating is defined as

Ra
b

=
ρ2gα∆Th3cp

ηk
≈ 108, (2.4)

with the gravitational acceleration g ≈ 10 m
s2 , the thermal expansion coefficient α ≈ 2 · 10−5 K−1

(Ricard , 2007) and the superadiabatic temperature difference between lower and upper bound-
ary ∆T ≈ 1500 K (Ricard , 2007). Only above a critical Rayleigh number of roughly 1000,
instabilities from the lower boundary amplify and lead to convective cooling (Turcotte and
Oxburgh, 1967; Houseman et al., 1981; Baumgardner , 1985). The Rayleigh number for inter-
nal heating is given as

Rai =
gρ2αHh5cp

ηk2
≈ 1011, (2.5)

with the volumetric radiogenic heat production rate H ≈ 3 · 10−7 J
m3 s (Ricard , 2007). We

note that the relation of the two Rayleigh numbers does not directly allow an inference on
the relative heat input from the two sources. Notably, when both sources are equally strong,
the internal Rayleigh number is larger than the basal Rayleigh number by about two orders
of magnitude (Bunge et al., 1997).

Closely related to the Rayleigh number is the Peclet number. It is defined as the ratio of
advective to conductive heat transport rate,

Pe =
vhρcp
k
≈ 104. (2.6)

While the Rayleigh numbers are defined purely in terms of physical properties of the mantle,
the Peclet number uses the velocity to quantify the contributions by advection, thus relying on
a quantity that emerges from these properties. The Rayleigh numbers are thus predetermined
and can be used as an input parameter in a nondimensionalized version of the equations, while
the Peclet number can be determined from the results of a simulation run. As described
in detail in Davies (1999), one can derive the following relation between the basal Rayleigh
number and the Peclet number from a simple box convection model combined with a halfspace
cooling model:

Pe ∝ Ra2/3
b

(2.7)
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This simple relationship can be used as a first plausibility test for mantle convection simula-
tions.

Another related number is the global Nusselt number, which comes from boundary layer
theory and is defined as the ratio of convective and conductive heat flux across the mantle,

Nu = −
∫
∂Ωu

h∂rT

∆T
dΩ ≈ 100. (2.8)

Here, Ω is the computational domain and ∂Ωu its upper boundary. Conductive heat flux
is given as the heat that would be transported across the mantle assuming fixed boundary
temperatures, whereas convective heat flux through the mantle is given in terms of the tem-
perature gradient at the upper boundary, as a measure for the total (purely conductive) heat
flux across the boundary. The high temperature gradient (and thus conductive heat flux) at
the boundary is sustained by convection through the mantle. Once again, there is a simple
scaling with the basal Rayleigh number,

Nu ∝ Ra1/3
b
. (2.9)

The Nusselt number is commonly used as a benchmarking quantity (Blankenbach et al., 1998;
King et al., 2010).

Another quantity that is commonly used for benchmarking is the root mean square ve-
locity,

vrms =

√√√√∫
∂Ω

(∑
i

v2
i

)
dΩ. (2.10)

Finally, to describe the compressibility of the rock material over the depth of the mantle,
the dissipation number is introduced,

Di =
αgh

cp
≈ 0.5. (2.11)

For incompressible fluids, it is equal to zero.

2.2 First Principle Conservation Equations

With the assumptions stated above, the full Navier-Stokes equations reduce to a Stokes flow
problem, consisting of the conservation of momentum and mass. They are coupled with an
energy equation and an equation of state,

−div
(
σ
)
− ρg = 0 (2.12)

∂tρ+ div (ρv) = 0 (2.13)

DtU + ∆E = 0 (2.14)

ρ = ρ(p, T ). (2.15)

Here, σ [Pa] is the stress tensor, Dt = ∂t(◦)+v ·grad (◦) [s−1] the Lagrangian derivative, U [J]

the internal energy, p [Pa] the pressure and T [K] the temperature. ∆E
[

J
s

]
is the energy

change within a control volume, and includes conduction, radiogenic heat production, shear
heating and compressional heat release.

We will now proceed to explain and reformulate these equations, and introduce some
additional assumptions in the process.
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2.2.1 Conservation of Momentum

We begin by reformulating the conservation of momentum (2.12),

−div
(
σ
)
− ρg = 0. (2.12 revisited)

Stress and Strain

The stress tensor σ is given as the force F per unit area A in all directions,

σ =
∂F

∂A
. (2.16)

We can define the pressure p as the negative of the average of the diagonal elements of σ in

three dimensions as

p = −1

3
(σ11 + σ22 + σ33) = −1

3

∑
k

σkk, (2.17)

where k ∈ {1, 2, 3} in three dimensions, and k ∈ {1, 2} and σ33 = 0 in two dimensions.
Subtracting out the pressure (or rather adding it, due to the sign convention) gives the

deviatoric stress tensor τ [Pa] as

τlm = σlm + pδlm = σlm −
1

3

∑
k

σkkδlm, (2.18)

with the Kronecker Delta δlm, and indices l,m ∈ {1, 2, 3} for the three spatial dimensions, or
l,m ∈ {1, 2} in two dimensions.

Next we define the strain tensor ε [-] as

εlm =
1

2

(
∂∆xl
∂xm

+
∂∆xm
∂xl

)
, (2.19)

where ∆xl and ∆xm are the displacement in direction l and m, respectively.
In analogy to (2.17) we now define the dilatation θ [-] as

θ =
1

3
(ε11 + ε22 + ε33) =

1

3

∑
k

εkk, (2.20)

which we can subtract out of the strain tensor ε to obtain the deviatoric strain ξ [-],

ξlm = εlm − θδlm = εlm −
1

3

∑
k

εkkδlm. (2.21)

Constitutive Relation

To relate stress and strain rate, we need a constitutive relation. In mantle minerals, there
are likely to be two dominating mechanisms: diffusion creep and dislocation creep (Davies,
1999). Diffusion creep describes the diffusion of atoms or vacancies through the grain crystals,
while dislocation creep describes the migration of higher-dimensional dislocations through the
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grains. Diffusion creep is associated with linear stress-strain relationships, while dislocation
creep requires a nonlinear constitutive relation. Karato and Wu (1993) estimated that the
contributions of both mechanisms are of similar order in the upper mantle, while the lower
mantle is likely dominated by linear diffusion creep.

For the purpose of this thesis, we will only account for diffusion creep, and neglect non-
linear behavior. Furthermore, we will assume that the viscous resistance to compression is
negligible, which causes the bulk viscosity to vanish. With this, we get a linear relation be-
tween deviatoric stress and strain rate, with a proportionality factor of 2η, where η is the
dynamic viscosity:

τlm = 2η
∂ξlm
∂t

= 2η
∂
(
εlm − 1

3

∑
k εkkδlm

)
∂t

= 2η

(
ε̇lm −

1

3

∑
k

ε̇kkδlm

)
. (2.22)

Force Balance Equation

Since the rate of displacement is simply the velocity v,

∂∆x

∂t
= v, (2.23)

we get for the strain rate ε̇ [s−1]:

ε̇lm =
∂εlm
∂t

=
1

2

(
∂vl
∂xm

+
∂vm
∂xl

)
(2.24)

Plugging (2.24) into (2.22) we obtain

τlm = η

(
∂vl
∂xm

+
∂vm
∂xl
− 2

3

∑
k

∂vk
∂xk

δlm

)
. (2.25)

We can now set up the force balance based on the conservation of momentum (2.12):

−
∑
m

∂σlm
∂xm

− ρgl = 0 (2.26)

−
∑
m

∂(τlm − pδlm)

∂xm
− ρgl = 0 (2.27)

−
∑
m

∂τlm
∂xm

+
∂p

∂xl
− ρgl = 0 (2.28)

−
∑
m

∂

∂xm

[
η

(
∂vl
∂xm

+
∂vm
∂xl
− 2

3

∑
k

∂vk
∂xk

δlm

)]
+
∂p

∂xl
− ρgl = 0 (2.29)

This describes the conservation of momentum for our case. It depicts one equation per spatial
dimension, one for each component l.
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2.2.2 Conservation of Mass

We have formulated the conservation of mass (2.13) as

∂tρ+ div (ρv) = 0. (2.13 revisited)

Since flow in the mantle is slow, we neglect the changes in density over time, giving

div (ρv) = 0. (2.30)

This is exact for incompressible flow. However, it is a necessary assumption also for compress-
ible flow, since the full continuity equation would introduce unphysical waves. It is worth to
note that these waves are not seismic waves, since they originate from the viscous equations
(2.12 to 2.15).

2.2.3 Conservation of Energy

We will now proceed to restate the energy equation (2.14)

DtU + ∆E = 0 (2.14 revisited)

in terms of temperature.
First we note that this equation does not contain explicit terms for kinetic or potential

energy. As described in section 2.1, the velocities in the mantle are so small that kinetic
energy is negligible. Potential energy on the other hand arises from density differences along
equipotential surfaces, and has to be accounted for. Looking at the momentum equation
(2.12) we note that these density differences are described by the buoyancy term ρg, where
potential energy is converted into heat by viscous dissipation. We account for the resulting
heat within the energy change term ∆E in the form of shear heating.

The Energy Change Term

The change in energy of a sample mass can be due to conduction, radiogenic heat production,
shear heating or compression. This gives

∆E = V

div
(
j
)
−H −

∑
i,j

σij ε̇ij + p div (v)

 , (2.31)

where V [m3] is the volume of our sample and j
[

J
m2 s

]
the conductive heat flux per unit

area.
We will now reformulate the compressional term, the last one in (2.31). For this purpose,

we consider the change in volume V of an arbitrary, fixed sample mass m [kg] with density ρ
in a Lagrangian reference frame:

DtV = mDt
1

ρ
= −m

ρ2
Dtρ = −m

ρ2
[∂tρ+ v grad (ρ)] = −m

ρ2
[∂tρ+ div (ρv)− ρ div (v)] (2.32)

Using the continuity equation (2.13) this simplifies to

DtV = −m
ρ2

[−ρdiv (v)] =
m

ρ
div (v) = V div (v) (2.33)
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or

div (v) =
1

V
DtV (2.34)

We thus get for (2.31):

∆E = V

div
(
j
)
−H −

∑
i,j

σij ε̇ij

+ pDtV. (2.35)

First Law of Thermodynamics

The first law of thermodynamics tells us that the change in internal energy δU can be by
either work on the sample or by a heat flux across the border of the sample,

δU = TδS − pδV, (2.36)

where δ denotes an infinitesimal change in the given quantity and S
[

J
K

]
denotes the entropy

of the sample.
Entropy can be substituted by

δS =

(
∂S

∂T

)
p

δT +

(
∂S

∂p

)
T

δp, (2.37)

and further, using Maxwell’s relation (∂S/∂p)T = −(∂V/∂T )p by

δS =

(
∂S

∂T

)
p

δT −
(
∂V

∂T

)
p

δp. (2.38)

We note that the specific heat at constant pressure cp is given by

cp =
T

m

(
∂S

∂T

)
p

, (2.39)

and the thermal expansion coefficient α by

α =
1

V

(
∂V

∂T

)
p

. (2.40)

Inserting these definitions into (2.38) we get

δS =
cpm

T
δT − αV δp, (2.41)

and further, inserting into (2.36),

δU = T
(cpm
T

δT − αV δp
)
− p δV (2.42)

= cpmδT − αTV δp− p δV (2.43)

= V (cpρ δT − αTδp)− p δV. (2.44)

Since we are looking at a sample mass in a Lagrangian reference frame, we can identify the
infinitesimal change δ with the Lagrangian derivative Dt and get

DtU = V [cpρ ∂tT − αT∂tp+ cpρ v · grad (T )− αTv · grad (p)]− pDtV. (2.45)
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Conduction

To describe heat conduction, we use Fourier’s law,

j = −k grad (T ) . (2.46)

Shear Heating

Using the definitions from section 2.2.1, with some manipulations we can express shear heating
in terms of the velocity as∑

i,j

σij ε̇ij = η
∑
i,j

(
∂vi
∂xj

+
∂vj
∂xi

)(
∂vi
∂xj

)
− 2

3
η [div (v)]2 − p div (v) . (2.47)

Temperature Formulation

Inserting (2.35), (2.45) and (2.46) into the energy conservation equation (2.14) we get

V

[
cpρ ∂tT − αT∂tp+ cpρ v · grad (T )− αT v · grad (p)

− div (k grad (T ))−H −
∑
i,j

σ
ij
ε̇ij

]
= 0. (2.48)

We note that the term that accounts for compressional heating, pDtV , cancels out. This
simply represents the fact that the energy needed to compress a sample mass is equal to the
heat that is released by the compression.

We now divide by V and re-order for the time derivative of the temperature to get

cpρ ∂tT = αT∂tp− cpρ v · grad (T ) +αT v · grad (p) + div (k grad (T )) +H +
∑
i,j

σij ε̇ij . (2.49)

For ease of notation, the expansion of the shear heating term (2.47) is not included here.

2.3 Equation of State

We will now look at the equation of state (2.15),

ρ = ρ(p, T ). (2.15 revisited)

This equation constitutes a basic material law and is necessary to solve the system of conser-
vation equations discussed above, (2.12) to (2.14). Several formulations have been suggested,
most of which are based on linear thermal expansion, thus containing

ρ

ρ0
= −αT (2.50)

in some form, where ρ0 ≈ 3300
kg
m3 is the surface density (Dziewonski and Anderson, 1981).

To include the pressure dependence, several laws have been proposed, the simplest of which
is the linear relationship

p

K
+ 1 =

ρ

ρ0
+ αT. (2.51)
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Here, K ≈ 1011 Pa is the bulk modulus (see e.g. Ricard , 2007).
As a refinement, Murnaghan (1944) proposed that the bulk modulus itself is a function

that depends linearly on pressure. This leads to the relationship(
K ′

K
p+ 1

) 1
K′

=
ρ

ρ0
+ αT, (2.52)

where K ′ ≈ 4 (Birch, 1947) is the derivative of the bulk modulus with respect to pressure.
An expansion of the nonlinear dependence of the bulk modulus on pressure to higher

terms has been presented by Birch (1947). Comparisons with experimental data suggest that
a good fit to measurements can be achieved by an expansion up to third order, giving for the
dependency of pressure on density for a given temperature

p =
3

2
K

[(
ρ

ρ0

) 7
3

−
(
ρ

ρ0

) 5
3

][
1− 3

4
(K ′ − 4)

[(
ρ

ρ0

) 2
3

− 1

]]
. (2.53)

Note that we cannot re-arrange this for density, so in this study we use a Newton solver
to obtain the scaled density ρ

ρ0
. We then account for thermal expansion by subtracting αT

according to (2.50).
Alternatively, we can use data from solid state physics models (e.g. Stixrude and Lithgow-

Bertelloni , 2005; Piazzoni et al., 2007) to obtain the density as a function of temperature and
pressure.

2.4 Simplifications and Approximations

2.4.1 The Truncated Anelastic Liquid Approximation (TALA) and the Ref-
erence State

A common assumption is to drop the term αT∂tp in the energy equation (2.49). For param-
eters common for the Earth mantle one finds that the magnitude of this term is about one
percent of the other terms. Leng and Zhong (2008) show that by this we ignore the effect of
dynamic pressure on buoyancy, leading to a slight imbalance between gravitational potential
energy and viscous dissipation. For this study, we will accept this imbalance, so that the
system of equations (2.29), (2.30) and (2.49) reads

−
∑
m

∂

∂xm

[
η

(
∂vl
∂xm

+
∂vm
∂xl
− 2

3

∑
k

∂vk
∂xk

δlm

)]
+
∂p

∂xl
− ρgl = 0 (2.54)

div (ρv) = 0 (2.55)

−cpρ v · grad (T ) + αT v · grad (p) + div (k grad (T )) +H +
∑
i,j

σ
ij
ε̇ij = cpρ ∂tT (2.56)

ρ = ρ(p, T ). (2.57)

We will call these the reference state free anelastic / compressible equations.
A further step that is commonly done is to introduce a reference state. This is motivated

by the fact that at any point in the mantle, there is an isostatic, adiabatic contribution to
pressure, density and temperature from the load of the material above it. We can subtract
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out these contributions and set T = Tref + Tdev, p = pref + pdev and ρ = ρref + ρdev, where the
subscript ref denotes the adiabatic and dev the deviatoric contribution. Since the reference
state is static by definition, it does not contribute to the dynamics, and we can re-write the
governing equations in terms of deviatoric quantities:

−
∑
m

∂

∂xm

[
η

(
∂vl
∂xm

+
∂vm
∂xl
− 2

3

∑
k

∂vk
∂xk

δlm

)]
+
∂pdev
∂xl

− ρdev gl = 0 (2.58)

div (ρref v) = 0 (2.59)

−cpρ v · grad (T ) + αT v · grad (pref) + div (k grad (T )) +H +
∑
i,j

σ
ij
ε̇ij = cpρ ∂tTdev (2.60)

ρdev = ρdev(Tref, pref, ρref, Tdev) (2.61)

Note that we have introduced two further assumptions here: First, we assume that the
conservation of mass (2.59) is dominated by the reference density. Second, we assume that
the pressure is dominated by the adiabatic reference pressure, so that the dynamic pressure
in the momentum equation does not feed back into the equations at any other place. In the
remainder of this study, we will call these equations (2.58 to 2.61) the Truncated Anelastic
Liquid Approximation (TALA), or simply the anelastic / compressible equations.

The reference state is chosen along an adiabate, δUref = −pref δVref. This gives TrefδSref = const
and thus, since we have no constraint on Tref, δSref = 0. With this we get from (2.41)

cpm

Tref

δTref = αVref δpref (2.62)

The only change of quantities in the reference state is in the radial direction, thus we get by
integration

cp∂r(log(Tref)) =
α

ρref

∂r(pref). (2.63)

Since the reference state is static by definition, all terms containing a velocity in the momen-
tum equation (2.54) vanish and we get

∂rpref = −ρref g (2.64)

Together with the equation of state (2.57), these two equations (2.63, 2.64) determine the
reference state. For a linear equation of state (2.51), this leads to Tref, ρref and pref increasing
exponentially with depth.

2.4.2 The Boussinesq Approximation

While the mantle material is compressible, the density variations are dominated by gravi-
tational compression in radial direction (Dziewonski and Anderson, 1981). Lateral density
changes are caused by either thermal expansion or chemical heterogeneity and usually vary by
less than one percent (e.g. Schuberth et al., 2009). For almost incompressible media like this,
a common simplification is the Boussinesq approximation, which is based on the assumption
that density variations can be disregarded everywhere in the equations except in the buoyancy
term (Landau and Lifshitz , 1959). Even though compression in radial direction is significant
in the mantle, it does not contribute to the buoyancy, and so the Boussinesq approximation is
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quite common in geodynamic modeling (e.g. Tackley , 2000; Zhong et al., 2007a; Alisic et al.,
2012; Horbach et al., 2014). The equations then read

−
∑
m

∂

∂xm

[
η

(
∂vl
∂xm

+
∂vm
∂xl

)]
+
∂pdev
∂xl

− ρdev gl = 0 (2.65)

div (v) = 0 (2.66)

−cpρ0 v · grad (Tdev) + div (k grad (Tdev)) +H +
∑
i,j

σ
ij
ε̇ij = cpρ0 ∂tTdev (2.67)

ρdev

ρ0
= −αTdev. (2.68)

The −2
3div (v) term in the momentum equation (2.58, 2.65) drops out, because the velocity

field becomes divergence free due to the continuity equation (2.66). Also, with an adiabate
as our reference state we get from (2.41) that cpρref grad (Tref) = −αTrefgrad (pref), which
simplifies the heat equation (2.67). For simplicity, one usually also replaces T by Tdev in
the conduction term div (k grad (T )), assuming that temperature gradients are insignificant
except near the boundaries. With this, the only place left where the reference state shows is in
the equation of state. With the common assumption of a first order equation of state (2.51),
the reference state vanishes altogether, and since we consider an incompressible medium, the
equation of state reduces even further to (2.68).

2.4.3 Further Simplifications

In case the viscosity is constant we can further simplify the momentum equation (2.65). The
second term vanishes, because after moving the viscosity in front of the sum it contains a
divergence, which is zero in the Boussinesq approximation (cf. 2.65). This can be seen as
follows: ∑

m

∂

∂xm

∂vm
∂xl

=
∂

∂xl

∑
m

∂vm
∂xm

=
∂

∂xl
div (v) = 0. (2.69)

If we further substitute the equation of state (2.68) into the momentum equation (2.65),
neglect shear heating and internal heating and assume constant thermal conductivity, the full
system reads

−η∆v + grad (pdev) = ρ0αgTdev (2.70)

div (v) = 0 (2.71)

∂tTdev = −v · grad (Tdev) +
k

cpρ0
∆Tdev, (2.72)

with the Laplace operator ∆.

2.4.4 The Static Equations

We note that we can also solve the system in any approximation without a time dependence
by dropping the heat equation. In this case, we obtain equations that represent a problem
similar to a Stokes flow problem. We then need a buoyancy distribution as input, which
corresponds to the prescription of an initial temperature Tinit.
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2.5 Initial and Boundary Conditions

In all approximations, the governing equations need to be supplemented with initial and
boundary conditions, so that they have a unique solution. We need initial and boundary
conditions for the temperature, boundary conditions but no initial conditions for the velocity
and only a single offset value for the pressure to determine a unique solution. Due to its
nature that resembles a physical potential, the pressure is fully determined by the Stokes
system except for a constant offset. This offset can be prescribed in several ways, e.g. as an
average value or as a fixed potential at a given place.

The simplest choice for velocity boundary conditions are homogeneous Dirichlet condi-
tions,

v(x) = 0, x ∈ ∂Ω, (2.73)

also called no slip conditions. They are commonly used to describe a stagnant lid in a
terrestrial planet (Solomatov , 1995). To incorporate plate motions as boundary conditions,
one commonly uses inhomogeneous Dirichlet conditions,

v(x) = vbnd(x), x ∈ ∂Ω, (2.74)

where vbnd are the given boundary velocities from plate reconstructions (e.g. Müller et al.,
2008). Another common choice especially for the core mantle boundary is the free slip con-
dition. It combines a no outflow condition in radial direction with a tangential no stress
condition, in 3d

v(x) · n(x) = 0 ∧
(
σ(x) · n(x)

)
× n(x) = 0, x ∈ ∂Ω, (2.75)

with the surface normal vector n, or in 2d

v(x) · n(x) = 0 ∧
(
σ(x) · n(x)

)
· t(x) = 0, x ∈ ∂Ω, (2.76)

with the tangential vector t.
For the temperature, one usually either wants to describe a boundary temperature or a

heat flux. A fixed temperature is given by inhomogeneous Dirichlet conditions,

T (x) = Tbnd(x), x ∈ ∂Ω, (2.77)

while a heat flux is given by inhomogeneous Neumann conditions,

∂T (x)

∂n
= −

j
bnd

k
, x ∈ ∂Ω, (2.78)

with the boundary heat flux j
bnd

.
Finally, we need an initial buoyancy distribution,

T (x, t = tinit) = Tinit(x), (2.79)

with time t and the initial time tinit. An appropriate choice is a topic of current research (see
e.g. Liu and Gurnis, 2008; Horbach et al., 2014; Vynnytska and Bunge, 2014).



3 Numerical Methods

The equations introduced in the previous chapter do not have analytical solutions except for
some special cases (Landau and Lifshitz , 1959), which is why we employ numerical solution
schemes. The unknowns we solve for are the temperature T , the pressure p, the velocity v
and the density ρ. In case we have a reference state, we solve for the corresponding deviatoric
quantities. Density is directly related to temperature and pressure via the equation of state,
so the main focus lies on temperature, pressure and velocity.

The basic solution strategy is to first solve the coupled momentum and mass equations for
velocity and pressure with a given initial buoyancy field (i.e. a temperature). The resulting
velocity field can then be used to advect the temperature field by a given time step via the
heat equation (see e.g. Davies, 2008; Zhong et al., 2007b).

If we don’t use a reference state, there is a consistency problem in this approach: we need
the pressure to obtain the density in the right hand side of the momentum equation from the
equation of state, yet the pressure is only obtained after the solution of the Stokes system.
While in principle, one would have to iterate over the Stokes equations, for the purpose of
this work we simply take the pressure from the previous time step to obtain the right hand
side. In case we have a reference state, this problem does not occur, since the equation of
state takes the reference pressure as input.

3.1 Stokes System in Operator Notation

To have a general formulation of the Stokes system for all approximations, we reformulate
the equations of momentum and mass conservation in operator form,

Av + Bp′ = f (3.1)

Dv = 0. (3.2)

For the TALA approximation (2.54 and 2.55), we then have

(Av)l = −
∑
m

∂

∂xm

[
η

(
∂vl
∂xm

+
∂vm
∂xl
− 2

3

∑
k

∂vk
∂xk

δlm

)]
(3.3)

B = grad (◦) (3.4)

p′ = p (3.5)

f = ρg (3.6)

D = div (ρ◦) , (3.7)
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or, if we include the reference state (2.58 and 2.59), in deviation from the above

p′ = pdev (3.8)

f = ρdevg (3.9)

D = div (ρref◦) . (3.10)

For the Boussinesq approximation (2.65 and 2.66) we get

(Av)l = −
∑
m

∂

∂xm

[
η

(
∂vl
∂xm

+
∂vm
∂xl

)]
(3.11)

B = grad (◦) (3.12)

p′ = pdev (3.13)

f = ρdevg (3.14)

D = div (◦) , (3.15)

or, for constant viscosity and a first order equation of state (2.70 and 2.71), deviating from
the previous case

A = −η∆ (3.16)

f = ρ0αgT. (3.17)

3.2 Finite Element Discretization of the Stokes System

We want to find an approximate solution to (3.1) and (3.2) together with appropriate bound-
ary conditions on a discrete domain. The idea of the Finite Element Method (also FEM or FE
method) is to solve a discretized version of the weak form of the partial differential equations
(PDEs) instead. The derivations in this chapter are based on the book by Braess (2007), the
theses by Davies (2008) and Gmeiner (2013), and articles by Zhong et al. (2007b), Gmeiner
et al. (2014a) and Gmeiner et al. (2014b).

For simplicity, we now assume homogeneous Dirichlet (no-slip) boundary conditions (2.73)
and fix the average pressure to zero,

∫
Ω p
′dΩ = 0.

We multiply equations (3.1) and (3.2) with test functions w ∈
[
H1

0 (Ω)
]3

and q ∈ L2(Ω)
and integrate them over the whole domain. We obtain the weak formulation∫

Ω
w · Av dΩ +

∫
Ω
w · Bp′ dΩ =

∫
Ω
w · f dΩ, (3.18)∫

Ω
qDv dΩ = 0. (3.19)

Here, the Hilbert space L2(Ω) is the space of all square integrable functions on Ω, and the
Sobolev space H1

0 (Ω) is the subset of L2(Ω) that contains only functions that vanish on the
boundary and have a derivative which is also square integrable.

Next we divide our domain into n ∈ N convex subdomains Tµ such that

Ω =

n⋃
µ=1

Tµ and T ◦µ ∩ T ◦ν = ∅ for µ 6= ν, µ, ν ∈ N. (3.20)
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We call T our triangulation of the domain Ω and the subdomains Tµ ⊂ T our elements. T ◦µ
and T ◦µ are the interiors of the corresponding domains Tµ and Tν .

We can now discretize the system (3.18) and (3.19) by restricting the solution spaces to

finite-dimensional spaces, Wµ(Tµ)∩
[
H1

0 (Ω)
]3

and Qν(Tν)∩L2(Ω). The actual choice of these
spaces will be discussed in section 3.4.

The problem can now be stated as: Find (vµ, pν) ∈Wµ ×Qν such that

a(vµ, wµ) + b(wµ, pν) = f(wµ), ∀wµ ∈Wµ(Tµ) ∩
[
H1

0 (Ω)
]3
, (3.21)

d(vµ, qν) = 0, ∀ qν ∈ Qν(Tν) ∩ L2(Ω). (3.22)

The exact definitions of the forms a(◦, ◦), b(◦, ◦), d(◦, ◦) and f(◦) depend on the ap-
proximation we make. We will now restrict ourselves to the Bousssinesq approximation with
constant viscosity and the first order equation of state, (3.12), (3.13), (3.15), (3.16) and (3.17).
In this approximation, the bilinear form a(◦, ◦) reads

a(vµ, wµ) = η

∫
Ω

grad
(
vµ
)

: grad
(
wµ
)
dΩ, (3.23)

where grad (◦) is the vectorgradient, and (:) the double dot product defined as α : β =
∑

i,j αijβij .

This is derived from an integration by parts of the expression

a(vµ, wµ) = −η
∫

Ω
wµ ·∆vµ dΩ, (3.24)

where the surface term vanishes because of our homogeneous Dirichlet boundary conditions.
As an example, in 2d cartesian coordinates a(◦, ◦) evaluates to

a(vµ, wµ) = η

∫
Ω

(
∂vx
∂x

∂wx
∂x

+
∂vy
∂x

∂wy
∂x

+
∂vx
∂y

∂wx
∂y

+
∂vy
∂y

∂wy
∂y

)
dΩ. (3.25)

The bilinear form b(◦, ◦) in this approximation is given as

b(wµ, pν) = −
∫

Ω
wµ · grad (pν) dΩ. (3.26)

This time, the need for pν to have a first derivative contradicts our requirements on Qν(Tν),
which once again we resolve by integrating by parts,

b(wµ, pν) =

∫
Ω
pν div

(
wµ
)
dΩ. (3.27)

Once again, the surface term vanishes because wµ (as all functions from Wµ(Tµ)) vanishes on
the boundary. As mentioned before, this requirement was introduced because of the no-slip
conditions. For other boundary conditions, the surface integrals need to be evaluated.

Next we look at the bilinear form d(◦, ◦), again in the Bousssinesq approximation with
constant viscosity and first order equation of state. It reads

d(vµ, qν) =

∫
Ω
qν div

(
vµ
)
dΩ. (3.28)
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Figure 3.1: Sample triangulation T of a
2d annulus with nr = 5 and nt = 8. To
obtain elements with a better balanced as-
pect ratio, one will usually use more sub-
divisions in tangential direction relative to
the radial ones than shown here.

We note that b(◦, ◦) = d(◦, ◦), which makes the system (3.21) and (3.22) a Stokes problem
in the strict sense. However, this equality is only true for the Boussinesq approximation, but
does not hold for the truncated anelastic approximation (TALA), (2.54) and (2.55).

Finally we consider the linear form f(◦), which is given as

f(wµ) =

∫
Ω
wµ · fµ dΩ, (3.29)

where f
µ
∈Wµ(Tµ) is a discretized approximation of f .

3.3 Triangulation

3.3.1 2d Annulus

In two dimensions, we approximate the Earth’s mantle as an annulus. We will use a quadri-
lateral triangulation T , with nr nodes in radial direction and nt nodes tangentially. The total
number of elements is then (nr − 1) · nt. An example is shown in figure 3.1.

3.3.2 3d Spherical Shell

In three dimensions, we will regard the Earth’s mantle as a thick, spherical shell, neglect-
ing flattening at the poles by rotation and dynamically free deforming surfaces. Similar to
Baumgardner (1983), Baumgardner and Frederickson (1985) and others we will use a tri-
angulation based on an icosahedron, which will be refined tangentially and radially. First,
the 20 triangles of the icosahedron are logically combined into 10 diamonds as shown in fig-
ure 3.2a. Next, each of the edges is subdivided into nt nodes, and each triangle is subdivided
into (nt − 1)2 sub-triangles, such that the subdivisions of the edges and the triangles coin-
cide. Finally, each of the new nodes on the triangles and on the edges is projected onto a
spherical surface, resulting in meshes as e.g. shown in figure 3.2. To obtain a grid for a thick
spherical shell, we now take nr spherical surfaces with different radii and connect all vertices
with their corresponding nodes in the adjacent layers. We now obtain a grid that consists of
10 diamonds, one of which figure 3.3 shows an example of. Each element is now a triangular
prismoid. Finally, we divide each prismoid into three tetrahedra as shown in Fig, 3.4. Special
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a) b)

c) d)

Figure 3.2: Sample triangulations T of a 3d spherical surface with a) nt = 2, b) nt = 3, c) nt = 5 and
d) nt = 10. Colored by diamond, where each diamond consists of two triangles on the icosahedron.

Figure 3.3: Tangentially and radially refined dia-
mond of a mesh with nt = 5 and nr = 4. Equidis-
tance of the radial layers is not required. Figure 3.4: Subdivision of a prismoid into three

tetrahedra. Left: Visualization of the subdivided
prismoid. Right: Exploded view.
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a) b) i−1 i i+1

0

1 pressure

velocity

coordinate

Figure 3.5: Shape functions of the two dimensional Q1-P0 element, spanning the finite element spaces
Wµ(Tµ) and Qν(Tν). a) One component of one velocity shape function is shown in red. The pressure
shape functions are drawn in gray shadings, each one has a value of one within exactly one cell and
zero everywhere else. b) Shape functions in either of the coordinate directions r or ϕ. Shown is one of
the velocity shape functions component (dashed) together with the pressure shape functions (dotted).
Nodes are indexed by i.

care has to be taken to make sure that the resulting grid is admissible, i.e. that two adjacent
tetrahedra always have common edges.

3.4 Choice of Elements

The quality of the solution and the numerical properties of the solution algorithms strongly
depend on the choice of the finite element spaces Wµ(Tµ) and Qν(Tν), and there is a vast
variety of possible choices in the literature (see e.g. Zienkiewicz et al., 2005; Braess, 2007).
Here, we will present the element pairs used to obtain the results in the remainder of this
thesis: Q1-P0 and Q1-Q1 for the 2d cases, and P1-P1 in three dimensions.

3.4.1 The Q1-P0 Element in 2 Dimensions

In two dimensions, it is convenient to use polar coordinates (r, ϕ) to define the functions that
span our discretized spaces. For the velocity, we will now use functions that are piecewise
linear in r and ϕ, such that for all elements with index µ ∈ {1, ..., n} we have

Wµ(Tµ) := {uµ,1ê1 + uµ,2ê2 |uµ,i = aµ,ir + bµ,iϕ+ cµ,i continuous on T , i ∈ {1, 2}}, (3.30)

where aµ,i, bµ,i and cµ,i are the coefficients that relate to our degrees of freedom, and êi
are the base vectors we use for the two components of the velocity. Note that they do not
have to coincide with the polar coordinates we use for the functions that define each of the
components. We use the same grid for the pressure and define element-wise constant pressure
functions

Qµ(Tµ) := {q′µ | q′µ = const on Tµ}, µ ∈ {1, ..., n}. (3.31)

We now choose the base vectors that span the velocity space Wµ(Tµ) such that they are
unequal to zero in at most four adjacent elements, forming a hat shape, while the base
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a) b) i−1 i i+1

1

coordinate

velocity / pressure

Figure 3.6: Shape functions of the two dimensional Q1-Q1 element, spanning the finite element spaces
Wµ(Tµ) and Qν(Tν). a) The red hat corresponds to one component of a velocity shape function and a
single pressure shape function. b) Shape functions in either of the coordinate directions r or ϕ. Shown
is one of the shape functions, which can be either a pressure shape function or a single component of
a velocity shape function. Nodes are indexed by i.

vectors spanning Qµ(Tµ) are one in one particular element µ and zero everywhere else. These
base vectors are called the shape functions and are visualized in figure 3.5. The test functions
wµ and qν are chosen to be equal to the shape functions. The discretized unknowns vµ and
pµ are expanded into these base functions, which gives us two degrees of freedom per node for
the velocity, one for each dimension, and one degree of freedom per element for the pressure.
We call this the Q1-P0 element.

3.4.2 The Q1-Q1 Element in 2 Dimensions

For the Q1-Q1 element, we choose the same velocity elements as in the Q1-P0 case, such that
again we have for all elements with index µ ∈ {1, ..., n}

Wµ(Tµ) := {uµ,1ê1 + uµ,2ê2 |uµ,i = aµ,ir + bµ,iϕ+ cµ,i continuous on T , i ∈ {1, 2}}.
(3.30 revisited)

For the pressure, we use the same linear elements,

Qµ(Tµ) := {q′µ | q′µ = aµr + bµϕ+ cµ continuous on T , i ∈ {1, 2}}. (3.32)

As before we choose a set of local base functions for the shape and the test functions
(visualized in figure 3.6). The expansion of vµ and pµ into the shape functions now gives us
two degrees of freedom per node for the velocity and one degree of freedom per node for the
pressure. We call this the Q1-Q1 element.

The Q1-P0 as well as the Q1-Q1 element have the inherent problem that they violate
the inf-sup stability condition (see e.g. Griffiths and Silvester , 2011), which tends to lead to
oscillatory modes in the pressure. While methods to stabilize the system exist (e.g. Dohrmann
and Bochev , 2004), we find that choosing an uneven number of nodes tangentially nt is
sufficient to suppress the oscillations. Moreover, we are mainly interested in the velocity,
which is unaffected by the error in the pressure. More thorough testing of the unstabilized
Q1-P0 and Q1-Q1 element pairs is presented in section 4.1.
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3.4.3 The P1-P1 Element in 3 Dimensions

For our three dimensional setting, we choose functions that are piecewise linear in an element-
local coordinate system spanned by the coordinates ζ1, ζ2 and ζ3. This coordinate system is
chosen such that the origin is located at an arbitrary node of the tetrahedron, and the three
coordinate axes are oriented along the adjacent tetrahedron edges such that they form a right
handed system. We can map any function from these coordinates to a reference tetrahedron
defined by the nodes (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) in a cartesian reference frame
(x1, x2, x3).

For the velocity we now choose our discrete function space such that for all elements with
index µ ∈ {1, ..., n} we have

Wµ(Tµ) := {uµ,1ê1 + uµ,2ê2 + uµ,3ê3 |uµ,i = aµ,iζ1 + bµ,iζ2 + cµ,iζ3 + dµ,i

continuous on T , i ∈ {1, 2, 3}}. (3.33)

Since our computational framework HHG (see e.g. Bergen, 2005; Gmeiner , 2013) restricts us
to piecewise linear elements, we choose for the pressure

Qµ(Tµ) := {q′µ | q′µ = aµζ1 + bµζ2 + cµζ3 + dµ continuous on T } (3.34)

on the same grid.
Once again we choose a set of local base functions for the shape and the test functions.

The expansion of vµ and pµ into the shape functions now gives us three degrees of freedom
per node for the velocity and one degree of freedom per node for the pressure. We call this
the P1-P1 element.

As the Q1-P0 and the Q1-Q1 elements, the P1-P1 element does not satisfy the inf-sup
condition and is thus unstable. There are various suggestions for a stabilization in the liter-
ature. Here we briefly introduce the two methods that are supported by HHG. Both of them
are based on adding additional terms to the discretized momentum equation that are zero
in the continuous limit, and thus do not alter the original equations (3.1) and (3.2). The
discrete equations (3.21) and (3.22) now read

a(vµ, wµ) + b(wµ, pν) = f(wµ) (3.35)

d(vµ, qν)− cν(pν , qν) = gν(qν) (3.36)

A common choice for cν(pν , qν) and gν(qν) is called the pressure stabilizing Petrov-
Galerkin (PSPG) method, where linear least-squares terms are chosen. It has been introduced
by Hughes et al. (1986), a brief overview of its application in HHG is given e.g. by Gmeiner
et al. (2014a).

The other approach supported by HHG is described in Gmeiner et al. (2014b). It uses a
coarser triangulation of the domain Ω for the pressure than for the velocity, thus achieving
inf-sup stability. Since HHG uses the multigrid method (see section 3.5.4), the unknowns v
and p′ are already defined on various levels, so this stabilization presents a natural choice.
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3.5 Solution Algorithms

For simplicity, we now present the solution strategy for the unstabilized equations (3.21) and
(3.22). We can re-write them in matrix-vector form as follows:(

A BT

B 0

)(
v
p

)
=

(
f
0

)
(3.37)

A, B and BT are matrices that can be calculated by evaluating the forms a(◦, ◦), b(◦, ◦) and
d(◦, ◦) with the given shape functions, and factoring out the coefficients that represent the
unknowns. They are moved into v and p, denoting the coefficient vectors that represent the
discrete velocity and pressure vµ and pν , respectively. Note that in the Boussinesq approx-
imation, this procedure leads to two matrices for b(◦, ◦) and d(◦, ◦) that are the transpose
of each other, and we can thus use BT and B to represent them here. Evaluating the linear
form f(◦) leads to the right hand side vector f .

We have now re-formulated the problem in terms of linear algebra and can use computa-
tional methods to obtain a solution for v and p. These coefficients can then be multiplied
with the corresponding shape functions to obtain an approximate solution for the original
problem; with all the simplifications made in this chapter, this would be (2.70), (2.71) and
(2.73).

3.5.1 Direct Methods

Direct solvers are based on a Gaussian elimination of the matrix in (3.37), which requires
O(k3) basic operations, where k is the number of rows/columns of the square matrix. In our
case, we solve the system by decomposition of the square matrix in (3.37) and subsequent
forward- and backward-substitution. In case the matrix does not change in between time
steps, we can compute its factorization once and re-use it for all following time steps. This
is possible for the Boussinesq approximation and for the TALA with reference state, where
constant viscosity in time is required in both cases. Since the computational costs of the
substitution only requires O(k2) operations, this is much faster than re-computation of the
factorization in every time step.

Our 2d mantle convection code Flatland supports two direct solvers, LAPACK (netlib.org ,
2015) and PARDISO (Kuzmin et al., 2013). While the LAPACK linear algebra package is
freely available under a BSD license, it computes an LU decomposition of the full matrix,
and thus requires an amount of memory that scales with O(k2). Also, it is not parallelized,
and can thus not be scaled far beyond the computing power of a typical desktop machine.
In practice, this limits calculations to grids with roughly 10, 000 nodes, or about 40 radial
layers.

This procedure leaves some potential for optimization, since the test functions have local
support, which results in sparse problem matrices. For the Q1-P0 element, an example spar-
sity pattern is shown in figure 3.7. It is apparent that storing the full matrix is very inefficient
with respect to memory usage. Taking advantage of the sparsity, the PARDISO solver pack-
age supports the compressed row storage (CRS) format to store the problem matrix. Together
with fill-in-reducing permutations of the system, this leads to a greatly decreased memory
footprint compared to the straight-forward LU-decomposition. Computationally, PARDISO
uses highly involved variants of Gaussian elimination to achieve good runtimes within the
O(k3) limit for the number of computations. A detailed description of these algorithms is
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Figure 3.7: Sparsity pattern of a problem matrix
from the Q1-P0 element on a grid with nt = 11.
Each of the three main bands in A consists of
three adjacent non-zero entries, coupling each
node with its nine neighbors. In B and BT ,
each velocity node couples to four pressure cells,
two on each of the two bands. The dots outside
the main bands stem from the periodic boundary
condition in tangential direction. The single dot
in the lower right corner represents the regular-
ization of the pressure, fixing one pressure degree
of freedom to zero.

given in Schenk and Gärtner (2014). Also, the PARDISO solver is parallelized for shared
memory architectures. Altogether, it allows us to solve much larger systems than with the
LAPACK routines.

3.5.2 Iterative methods

To avoid the O(k3) limit for the number of computations, one commonly uses iterative meth-
ods. These methods provide an approximate solution through a number of iterative steps,
where ideally the error of the solution decreases with each step. There is a huge variety
of methods available, most optimized for matrices with certain properties. A very success-
ful method is the multigrid method, which is designed for elliptic problems like the Poisson
problem and employs solvers on meshes with varying resolutions. Another common set of
methods are the Krylov subspace methods, from which we would like to mention the follow-
ing: conjugate gradient (CG) methods are designed for symmetric, positive definite matrices.
The minimum residual method (MINRES) relaxes this requirement to symmetry only, and
the generalized minimum residual method (GMRES) is also able to handle non-symmetric
problems. For sparse matrices, all of these methods can find an approximation of the solution
within a given error in O(k) steps. Especially for large systems, they are usually much faster
than direct methods.

3.5.3 Pressure Correction Scheme

While HHG is quite flexible with respect to the implementation of new multigrid based solvers,
our legacy code TERRA (see e.g. Baumgardner , 1983; Bunge and Baumgardner , 1995; Yang ,
1997; Davies, 2008) as well as the HHG framework support a pressure correction scheme as
introduced by Verfürth (1984); Atanga and Silvester (1992) and Ramage and Wathen (1994).
We will briefly discuss this scheme here based on these studies as well as on Davies (2008)
and Gmeiner et al. (2014a).
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By applying a block Gaussian elimination step to the system (3.37) we obtain(
A BT

0 −BA−1BT

)(
v
p

)
=

(
f

−BA−1f

)
, (3.38)

where S := −BA−1BT is called the Schur complement. This allows us to isolate a system
that we need to solve for pressure only,

Sp = r, (3.39)

where r := −BA−1f . Assuming that S and r are given, this system can then be solved
iteratively with a CG method as described by Verfürth (1984); Atanga and Silvester (1992)
or Ramage and Wathen (1994). To achieve better convergence, HHG uses a lumped mass
matrix as preconditioner (Gmeiner et al., 2014a).

The operations we need to perform within this scheme are the application of B, BT and
A−1 to different given vectors. We can avoid assembling the matrices altogether by using a
matrix-free, stencil based representation of the operators B and BT and A. The inverse of
A is not calculated explicitly, instead we replace each application of A−1 with a geometric
multigrid algorithm.

3.5.4 Geometric Multigrid

The systems that remain to be solved are of the form

Au = g, (3.40)

where g is a right hand side vector and u the vector of unknowns. The actual definition of
these vectors can differ as given by the pressure correction scheme.

One of the central components of the multigrid method is the smoother, e.g. a Jacobi or
a Gauss-Seidel relaxation. These smoothers converge to the correct solution for all matrices
with a spectral radius of less than one, and are very efficient in eliminating short wavelength
errors, but are very slow for low frequency errors. We call an approximate solution to (3.40)
after a few smoothing iterations u

approx
, and note that the algebraic error e is given by

e = u∗ − u
approx

, (3.41)

with the exact solution u∗. We further define the residual as

r = g −Au
approx

(3.42)

and find the residual equation
Ae = r. (3.43)

The central idea of the multigrid method is now to run a few smoothing steps on the
initial grid, and then restrict the residual to a coarser mesh. On this mesh we can then solve
the residual equation to obtain the error, which we can then prolongate back to the fine grid
to correct the unknown u

approx
. To minimize errors from the prolongation, we once again

perform a few smoothing steps. If we now use the same procedure to solve the system on the
coarser mesh, we get an iterative scheme that step by step restricts the problem to a much
coarser mesh, solves the problem there and then prolongates the solution back, once again



30 3. Numerical Methods

Figure 3.8: Different multigrid cycles with a grid hierarchy of four levels. Reprinted with kind per-
mission from Gmeiner (2013).

step by step. On the coarsest mesh, we still need a solver, but since for a three-dimensional
domain the problem size is reduced by about a factor of eight for each restriction, this solution
process is much more inexpensive than a direct solution of the full system. For the restriction
and prolongation, several methods have been proposed, but most of them are based on simple
low-order interpolation.

We can traverse the different grid levels in various manners, a selection of common choices
is visualized in figure 3.8. The two-grid cycle comprises the simplest case with one restriction
and one prolongation, and is mainly used for demonstration and testing purposes. The V-
cycle arises from recursively applying the two-grid cycle to the solution process of the coarse
grid problem. The W-cycle implements a second recursive call after the first call, resulting
in a more accurate coarse grid correction. Like in the V-cycle, for the F-cycle the problem
is first restricted to the coarse grid step by step, but additional V-cycles are applied on each
level when prolongating back towards the fine grid. We note that all of these schemes except
for the two-grid cycle result in a computational complexity of O(k).

To solve the problem on the coarse grid, once again a conjugate gradient method is
applied. This method requires the application of matrix-vector and matrix-matrix products,
which poses a challenge in parallel computations, especially since the problem on the coarse
grid is typically distributed over a lot more processors than one would usually use for this
relatively small-sized problem. This makes the coarse grid solver especially communication-
heavy. However, as Gmeiner et al. (2014a) have shown, the largest amount of time is spent
with the fine grid smoother, so the efficiency of the coarse grid solver does not influence the
total efficiency very much.

A more detailed description of the multigrid method can be found e.g. in Briggs et al.
(2000), Gmeiner (2013) and Gmeiner et al. (2015), on which this overview is based.
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3.6 Discretizing the Heat Equation

In the truncated anelastic liquid approximation (TALA), the heat equation (2.56) reads

−cpρ v ·grad (T )+αT v ·grad (p)+div (k grad (T ))+H+
∑
i,j

σ
ij
ε̇ij = cpρ ∂tT. (2.56 revisited)

As mentioned before, we can assume that velocity and pressure are given from the solution
of the Stokes system. The terms that account for volumetric compression (second), internal
heating (fourth) and shear heating (fifth) can simply be accounted for by adding a constant
value per time step and discrete degree of freedom, so we re-write

∂tT = −v · grad (T ) +
1

cpρ
div (k grad (T )) + const. (3.44)

In case we use a reference state, we need to solve equation (2.60),

−cpρ v · grad (T ) + αT v · grad (pref) + div (k grad (T )) +H +
∑
i,j

σ
ij
ε̇ij = cpρ ∂tTdev.

(2.60 revisited)
Splitting the temperature T into a reference temperature Tref and a deviatoric temperature
Tdev, we can then also absorb the terms that contain the gradient of the reference temperature
into the constant and get

∂tTdev = −v · grad (Tdev) +
1

cpρ
div (k grad (Tdev)) + const, (3.45)

in complete analogy to the reference state-free case (3.44). For the Boussinesq approximation
(2.67) we obtain

∂tTdev = −v · grad (Tdev) +
1

cpρ0
div (k grad (Tdev)) + const, (3.46)

where the constant contains internal heating and shear heating. For the further simplified
case (2.72) we finally have

∂tTdev = −v · grad (Tdev) +
k

cpρ0
∆Tdev. (2.72 revisited)

The conceptional similarity of equations (3.44), (3.45), (3.46) and (2.72) is apparent.

3.6.1 Time stepping

The two terms in the above equations that cannot be accounted for by simple addition of a
number are the advective term (v · grad (T )) and the diffusive term (div (k grad (T ))). The
advective term is a local quantity that can be computed from any spatial discretization scheme
every time we need to calculate the right hand side of the heat equation. As we have noted in
section 2.1, the Peclet number tells us that the advective heat transport rate is larger than its
conductive counterpart by four orders of magnitude. We can thus also evaluate the diffusive
term locally.
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In all cases, the part of the heat equations that is relevant for the temporal discretization
can be written as

∂tT = R(T (x, t), x, t). (3.47)

We discretize this equation in time, and introduce the notation Tχ for the temperature field
at time step χ. The time between two time steps χ and χ + 1 is noted as ∆t. We allow
for time steps of different duration, but leave out the index for the ∆t, keeping in mind its
potential dependency on the time step number χ.

In this notation, the forward Euler scheme can be noted as

Tχ+1 ≈ Tχ + ∆tR(Tχ), (3.48)

with a local error of O(∆t2) and a global error of O(∆t).
For the explicit midpoint method, we subdivide the time step between χ and χ + 1 into

two equally long time steps between χ, χ+ 1/2 and χ+ 1, and get the second order scheme

Tχ+1 ≈ Tχ + ∆tR(Tχ+1/2), (3.49)

Tχ+1/2 ≈ Tχ +
1

2
∆tR(Tχ), (3.50)

with a local error of O(∆t3) and a global error of O(∆t2). Note that this scheme requires
two evaluations of the right hand side R and thus of the Stokes system.

In regions of phase transitions, where densities become strongly dependent on depth and
temperature, these explicit methods become unstable and oscillations can be observed. To
prevent this, we introduce the implicit Euler scheme

Tχ+1 ≈ Tχ + ∆tR(Tχ+1), (3.51)

with a local error of O(∆t2) and a global error of O(∆t). Since we are interested in Tχ+1,
this requires the solution of a nonlinear system of equations. A standard choice for this would
be Newton’s method, but since we do not know the derivatives of R with respect to T , we
cannot apply it here. Instead, we use the secant method, which can be considered a finite
difference approximation to Newton’s method. In this iteration process, the temperature at
the current time step Tχ is given, while we have to iteratively find Tχ+1, for which we will
use an upper left index to denote the iteration number. Starting with initial temperatures
0Tχ+1 = (Tχ + const) and 1Tχ+1 = (Tχ − const) we can iterate

ψ+1Tχ+1 = ψTχ+1 −
ψTχ+1 − ψ−1Tχ+1

ψTχ+1 − ψ−1Tχ+1 +R(ψTχ+1)−R(ψ−1Tχ+1)
(3.52)

Since R(Tχ+1) depends on the velocity at time χ + 1, in principle one would have to intro-
duce another iteration loop around the secant iterations to solve the Stokes system for the
new buoyancy field ψmaxTχ+1. In practice we simply use the velocity at time χ. Numerical
experiments seem to confirm that this inaccuracy is small enough for practical purposes.

These time stepping schemes are standard methods and well known from the numerics of
ordinary differential equations. A more detailed description of these methods can be found
in any standard introductory book, e.g. in Butcher (2008).
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Flatland is a two dimensional finite element code developed in the course of this work. It is
written in Fortran, featuring many of the modern software concepts that have been introduced
to the language since the release of the 1990 standard (ISO1539 , 1991). It parallelized with
OpenMP and can thus run in parallel on shared memory architectures. It works with the
Q1-P0 and the Q1-Q1 element on the annulus (see section 3.4) and includes three different
solvers (section 3.5): two direct solvers (LAPACK, netlib.org (2015) and PARDISO, Kuzmin
et al. (2013)) as well as an iterative solver comprised of a CG pressure correction scheme and a
multigrid solver. The multigrid solver uses a linear interpolation for the prolongation and the
corresponding transpose for the restriction, together with either a Jacobi or a Gauss-Seidel
smoother. For the time stepping, the explicit and implicit Euler scheme as well as the explicit
midpoint method (section 3.6) are supported.

Flatland supports the compressible (TALA) and the incompressible (Boussinesq) ap-
proximation (section 2.4.1 and 2.4.2), and can solve the static and the transient case (sec-
tion 2.4.4). Homogeneous and inhomogeneous Dirichlet boundary conditions are implemented
(section 2.5). For testing, solution of the pure Poisson problem is included as well.

Flatland features set of predefined test cases to ensure the basic functionality. We will
now introduce some scenarios that compare the solution of the finite element system against
known analytical solutions (section 4.1), and some to test the quality of the advection scheme
(section 4.2). Other tests are performed in addition to ensure basic functionality, such as
convergence checks, basic tests on the individual operators and tests of the Poisson problem.

4.1 Tests of the Stokes Equations with Manufactured Solu-
tions

To test the quality of a numerical solution, it is desirable to compare it to analytical solutions.
While this is not possible in general, we can find special solutions to the Stokes system in the
Boussinesq approximation (2.65) and (2.66). We will thus introduce the biharmonic equations
as given i.e. in Davies (1999).

4.1.1 Biharmonic Equation

To produce an analytic solution, we start with the constant viscosity equations (2.70) and
(2.71),

−η∆v + grad (pdev) = ρ0αgT (2.70 revisited)

div (v) = 0 (2.71 revisited)
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on a spherical shell with rlower = 1 and rupper = 2 and no slip conditions on all boundaries.
We replace the right hand side in (2.70) with the arbitrary right hand side vector f ,

−η∆v + grad (pdev) = f (4.1)

div (v) = 0. (2.71 revisited)

In order to find an analytical solution, we now interpret (4.1) and (2.71) as a three dimensional
problem with an all-zero third component. We can then define the stream function Ψ as

v = curl (Ψ) . (4.2)

A stream function that always gives us a zero z-component in the velocity is

Ψ = (0, 0,Ψz). (4.3)

This definition leaves only one degree of freedom in the stream function and thus also in
the velocity. However, we can show that this reduction is directly linked to automatically
fulfilling the continuity equation (2.71): plugging (4.2) into the left hand side of the continuity
equation (2.71) we get

div (v) = div (curl (Ψ)) = 0, (4.4)

because the divergence of the curl of any vector field is always zero. The continuity equation
is thus fulfilled.

We now define the vorticity

λ = curl (v) = curl (curl (Ψ)) (4.5)

and note that as the stream function Ψ it is of the form λ = (0, 0, λz). In cylindrical coordi-
nates, this enables us to re-write the only non-zero component of (4.5) as

λz = ∆pΨz, (4.6)

where ∆p is the polar Laplacian, given as ∆p◦ = 1
r∂r (r∂r◦) + 1

r2
∂2
ϕ◦.

Taking the curl of λ yields

curl (λ) = curl (curl (v))

= grad (div (v))−∆v

= −∆v, (4.7)

and inserting into the momentum equation (4.1)

− η curl (λ) + grad (pdev) = f. (4.8)

Taking the curl on this equation the pressure pdev drops out, because the curl of any gradient
field is zero, and we get

− η curl (curl (λ)) = curl
(
f
)
. (4.9)

Once again we exploit that the gradient of the divergence is zero, so we can re-write

− η∆λ = curl
(
f
)
, (4.10)

and using (4.6), the z-component becomes

− η∆2
pΨz =

1

r
∂r(rfϕ)− 1

r
∂ϕfr. (4.11)

We call this the bi-harmonic equation. It is a transformation of the constant viscosity Boussi-
nesq equations (4.1) and (2.71) into a single fourth order partial differential equation.
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4.1.2 Application of the Biharmonic Equation as a Benchmark

Rather than actually solving the Biharmonic equation (4.11), we choose some Ψz and calculate
the right hand side f from it. Let

Ψz =
1

2
(r − 1)2(r − 2)2 sin(2ϕ). (4.12)

Using (4.2) this gives for the velocity

vr =
1

r
(r − 1)2(r − 2)2 cos(2ϕ)

vϕ = −(r − 1)(r − 2)(2r − 3) sin(2ϕ), (4.13)

which fulfills the boundary conditions v(r = 1) = v(r = 2) = 0 and v(ϕ = 0) = v(ϕ = 2π).
Also the continuity equation (2.71) is fulfilled, since div (v) = 0.

Applying the polar Laplacian ∆p twice gives

∆2
pΨz =

9(5r2 − 6)

r3
sin(2ϕ), (4.14)

which we can then insert into (4.11):

− η9(5r2 − 6)

r3
sin(2ϕ)− 1

r
∂r(rfϕ) +

1

r
∂ϕfr = 0. (4.15)

The equation is underdetermined, but since we are only interested in one particular solution
we can choose fϕ = 0 and pick

fr = −η9(5r2 − 6)

2r2
cos(2ϕ). (4.16)

We have now obtained a right hand side that we can plug into Flatland to check whether we
obtain a velocity field that satisfies (4.13). Figure 4.1 visualizes the buoyancy term from this
test as well as the analytical and an example of a numerical solutions.

4.1.3 Error Analysis

In figure 4.2 we compare the L2-error between the analytical solution (as given in equa-
tion 4.16) and several numerical solutions obtained in Flatland. We test six combinations
of discretization and solver: Q1-P0 and Q1-Q1, together with the three solvers described in
section 3.5), the two direct solvers LAPACK and PARDISO and an iterative solver. The
iterative solver uses the pressure correction conjugate gradient method with a maximum of
30 iterations, or until the residual in the L2-norm changes by less than one percent. The multi-
grid scheme applies three W-cycles with five Gauss-Seidel pre- and post-smoothing steps. On
the coarse grid we only have one layer with nodes of unknowns, consisting of eight nodes
tangentially. This coarse grid problem is solved by 25 Gauss-Seidel smoothing steps. We run
a set of tests with increasing resolution for each of the six combinations of discretization and
solver. To guarantee a reasonable aspect ratio of the cells, we set the number of radial layers
to roughly one eights the number of nodes in tangential direction. In figure 4.2 we plot the
error against the radial resolution at an assumed mantle depth of one.
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Figure 4.1: Comparison of analytical and numerical solutions of the constant viscosity Stokes problem.
(a) Analytically obtained velocity and buoyancy term fr. (b) Numerically obtained pressure and
velocity for nr = 19 and nt = 63, obtained with the Q1-P0 discretization and the LAPACK solver.

The plot shows an almost perfect quadratic convergence for the direct solvers up to the
highest resolved case with ∼ 27 000 degrees of freedom for the LAPACK solver and ∼ 6.3 ·
106 degrees of freedom for the PARDISO solver, respectively. This is a good indication
that the error is dominated by the discretization error, which arises because of the difference
between discrete and continuous solution. In the iterative scheme, we see good convergence up
to ∆x = 7.69·10−3 (corresponding to 131 radial layers) for the Q1-P0 discretization, and some
deviations from the ideal convergence for Q1-Q1 in this range. For higher resolutions, the
solution does not improve significantly, for which the standard explanation would be round-off
errors. Since at ∼ 10−4 the error is still relatively high for double precision calculations, we
cannot rule out errors in the details of the implementation. However, since a re-write of the
iterative solver is due in any case, no further investigations have been made.

4.2 Tests of the Heat Equation

4.2.1 Tangential Advection

To test the quality of the solution of the advection equation, we set up a velocity field with
constant angular velocity and no radial component, corresponding to a solid body rotation.
We then advect an initial temperature perturbation once around the annulus for six different
cases, as given in table 4.1. The setup and result for the Boussinesq case with an explicit
Euler time stepping are shown in figure 4.3. Due to numerical diffusion, the final temperature
distribution is smeared out tangentially, such that between 80 and 90 percent of the energy
perturbation are diffused away. The amount depends mainly on the time stepping scheme, the
approximation (Boussinesq or TALA) does not play a significant role here. The tangentially
diffused amount of energy is negligible, which is to be expected, since numerical diffusion
should only occur in the direction of advection.
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Figure 4.2: L2 error norm be-
tween the analytical solution of
the velocity (as given in equa-
tion 4.16) and different numer-
ical solutions obtained in Flat-
land. Shown are solutions for
two different discretizations (red:
Q1-P0, blue: Q1-Q1) and three
different solvers (as described in
section 3.5): LAPACK (circles),
PARDISO (dots) and an iterative
solver based on the pressure cor-
rection scheme and a multigrid
algorithm (PC-MG, lines).

4.2.2 Radial Advection

To test the quality of the reference state implementation, we advect an initial temperature
perturbation outwards and back in (see figure 4.4). While the amount of energy of this
perturbation depends on its depth, its energy should be restored after being moved back to
its original location. The results are given in table 4.2. The total energy defect, i.e. the
difference in total energy in the system before and after the advection is on the order of 10−4,
while the energy that is found outside the original angle range is on the order of 10−5.

For reference, values for the Boussinesq case are also provided. Since the reference state
is subtracted out here, it is not considered in the calculation of the total energy, leading to
the difference in the values given in table 4.2.

4.2.3 TALA with and without reference state

Flatland provides two versions of the TALA, a traditional one in with the reference state is
subtracted out of the state variables (equations 2.58–2.61), and another one, where the state
variables represent the total quantities (equations 2.54–2.57). To check whether they both
yield the same result, we run a test scenario with both versions, advecting and diffusing an
initial temperature distribution for 20 time steps. The initial setup is plotted in figure 4.5 a,
the final distribution for the two cases is shown in figures 4.5 c and 4.5 d. Figure 4.5 b shows
the reference state that is used in the scenario with reference state. At the same time, this
reference state is used for initialization of the reference state-free scenario and subtracted
from the final state for the evaluation and plotting. For the test case, we use the Q1-P0
discretization and the LAPACK solver, together with an explicit Euler time stepping. The
relative root mean square temperature error between the two final states is 2.27 · 10−4.
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Figure 4.3: Advection of a temperature anomaly once around the annulus for the Boussinesq case
with an explicit Euler time stepping scheme. Shown are the initial (a) and final (b) temperature
distribution.

Radially Tangentially Tangential
diffused diffused center

energy energy of energy
Scenario Time stepping [percent] [percent] [degrees]

Boussinesq forward Euler 3.50 · 10−13 80.4 −7.96 · 10−6

TALA with ref. state forward Euler 1.25 · 10−13 81.0 1.58 · 10−4

Boussinesq explicit midpoint 0 85.3 −0.0221

TALA with ref. state explicit midpoint 0 86.0 −0.0211

Boussinesq implicit Euler 3.52 · 10−13 88.0 −0.193

TALA with ref. state implicit Euler 1.27 · 10−13 88.6 −0.193

Table 4.1: Numerical errors from the advection of a temperature anomaly outwards and back inwards
for different approximations and time stepping schemes. All values would be zero for an ideal solver.
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Figure 4.4: Advection of a temperature anomaly outwards and back for the TALA case with reference
state and an explicit Euler time stepping scheme. Shown are the initial temperature distribution (a),
the intermediate step at which the velocity is switched from outwards to inwards (b), and the final
temperature distribution (c). Panel (d) shows the reference state.

Total energy Energy outside
initially in [-] Total energy Relative energy original angle

Scenario the system [-] defect [-] defect [percent] range [percent]

Boussinesq 1.86 · 1010 3.31 · 107 0.178 1.67 · 10−15

TALA with
ref. state

7.23 · 1012 1.65 · 109 0.0228 0.00381

Table 4.2: Numerical errors from the advection of a temperature anomaly outwards and back inwards
for different approximations and an explicit Euler time stepping scheme. All values would be zero for
an ideal solver.
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Figure 4.5: Comparison of a convection simulation in the TALA approximation with and without
reference state with a first order Euler time stepping scheme. Panel (a) shows the initial temperature
distribution, (c) and (d) the final state after 20 time steps in the formulations with and without a
reference state. Panel (b) shows the reference state, which is also used to calculate the deviatoric
temperature in the reference state-free scenario.



5 Mantle Convection Simulations in Two
Dimensions

5.1 Introduction

The patterns that arise in mantle convection models are dominated by many factors, out of
which we would like to mention here: rheology, initial and boundary conditions, heating mode
and mineralogy (including phase changes and compressibility).

From stability analysis we know that the main parameter that steers mantle convection
is the Rayleigh number (Turcotte and Oxburgh, 1967; Houseman et al., 1981; Davies, 1999;
Ribe, 2007), and many numerical simulations confirm this finding (Jarvis and McKenzie,
1980; Baumgardner , 1985; Gurnis and Davies, 1986; Dubuffet et al., 2000). Convection starts
at about Ra

b
= 1000, and becomes more vigorous with higher Rayleigh numbers. Once they

get sufficiently high, the influence of the initial conditions diminishes after a few times the
convective timescale (Ita and King , 1994). The boundary conditions on the other hand influ-
ence the convective patterns at all times. Three types of boundaries are relevant for mantle
convection: homogeneous Dirichlet conditions (no-slip), stress-free (free-slip) and inhomoge-
neous Dirichlet conditions (plate-like) (Solomatov , 1995; Schubert et al., 2001). While no-slip
and free-slip conditions at both boundaries imply purely buoyancy-driven flow, plate-like
boundaries can provide an additional driving component.

Another very important factor for the convective planform is viscosity stratification.
Bunge et al. (1996) have studied the effect of layered viscosities and found that high strat-
ification shifts the planform towards low degree, long wavelength patterns. They also con-
cluded that phase changes further increase the dominating convective wavelength. Bunge
et al. (1997) then established that viscosity stratification is the dominating factor for the
long wavelength patterns above phase transitions, which have less influence on the planform.
Tackley (1996) found that also lateral viscosity variations are of less importance compared to
viscosity layering.

The role of phase transitions in the mantle has also been explored by Schubert et al.
(1975), who determined from boundary layer theory that material can penetrate the transition
zone convectively, and that mineralogical effects in the transition zone can enhance mantle
convection. Later, slabs have been found to pond near the 660 km phase transition, warming
conductively before they continue downward into the lower mantle. The ponding slabs can
also be seen in seismic images of the upper mantle. Fukao et al. (2009) give a review of the
relevant studies.

The effects of hydrostatically compressible materials in three dimensional spherical models
of the mantle have first been studied by Baumgardner and Frederickson (1985); Glatzmaier
(1988), and are today routinely described by the TALA approximation (see section 2.4.1).



42 5. Mantle Convection Simulations in Two Dimensions

Steinbach et al. (1989) have found that compressibility induces an asymmetry between the
structures in the upper and the lower boundary layer. Zhang and Yuen (1996) pointed out
that compressibility mainly influences small-scale structures, while its effects on the global
patterns are relatively small.

Concerning the heating mode, early estimates of the mantle’s heat budget assume roughly
ten percent bottom heating compared to internal radiogenic heat production (Davies and
Richards, 1992). More recent studies correct this estimate to about 30 percent (Lay et al.,
2008). Bunge et al. (1997) confirmed that bottom heating is responsible for a lower boundary
layer, where it adds modest thermal heterogeneity compared to purely internal heating.

Another topic that is strongly debated in the geodynamic community is that of the nature
of large seismically slow anomalies in the lowermost mantle. It has been proposed that these
large low shear velocity provinces consist of chemically distinct material (Trampert et al.,
2004), and it has been suggested that plumes originate from the borders of these so-called
chemical piles (Burke et al., 2008; Steinberger and Torsvik , 2012). Statistical analysis however
suggests that this assumption may not be robust (Davies et al., 2012; Austermann et al., 2014),
so the nature of these provinces stays debated.

In this chapter we will examine the effects of a depth-dependent viscosity in combination
with compressibility and the heating mode, and then move on to examining the effect of
realistic mineralogical parameters. We use Flatland with the Q1-P0 discretization, the PAR-
DISO solver for the constant viscosity case, and the pressure correction/multigrid scheme for
variable viscosity. For integration in time we use the second order explicit midpoint method
scheme with adaptive time steps according to the CFL criterion in the simulations with-
out phase transitions (section 5.2), and an implicit Euler time stepping for simulations that
incorporate latent heat effects (section 5.3).

5.2 Planform of Mantle Convection

5.2.1 Boussinesq, Bottom Heated

We set up an incompressible, bottom-heated model with no-slip boundary conditions on an
annulus with Ra

b
= 107, which corresponds to the low end range of assumed Rayleigh numbers

within the Earth. We run one simulation with a constant viscosity of 1022 Pa s, and another
with a two-layered viscosity profile. This profile has an upper/lower mantle transition at
660 km, with a viscosity of 1022 Pa s in the lower mantle and 1020 Pa s in the upper mantle.

Figure 5.1 shows the resulting convective patterns after an initialization phase of several
overturns. For the constant viscosity case, we notice up- and downwellings of equal strength,
and an average deviatoric temperature that corresponds to the average between the upper
and lower boundary temperature. We also note that stress and strain rate are diffused evenly
across the domain, owing to the elliptic nature of the Stokes equations.

For the depth-dependent viscosity, the downwellings become more numerous, while the
upwellings are more focused along well-defined vertical channels. Also, due to the lower
viscosity in the upper layer, heat is removed from the system more efficiently at the upper
boundary than heat is entered at the CMB. This leads to an effective cooling of the system,
and thus a sub-adiabatic average temperature throughout the whole mantle after equilibration
has been achieved.

The strain rate across the upper/lower mantle interface changes by a factor of about two,
leading to correspondingly larger velocities in the upper mantle. The stress on the other hand
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Figure 5.1: Convective patterns of two mantle convection simulations in the Boussinesq approximation
and pure bottom heating several overturns after initialization. Left: Constant viscosity of 1022 Pa s,
right: Layered viscosity model with 1022 Pa s below 660 km and 1020 Pa s above. Top: Deviatoric
temperature, center: strain rate, bottom: deviatoric stress.
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decreases by a factor of roughly 50.

5.2.2 Anelastic, Bottom Heated

To evaluate the effect of compressibility, we employ the same setup as before, but use the
TALA approximation with a reference state as shown in figure 5.2. This represents a planet
that is somewhat more compressible than the Earth. We neglect shear heating to strictly
exclude all internal heating contributions.

The resulting convective patterns are shown in figure 5.3 (top). In contrast to the Boussi-
nesq case, we observe an asymmetry between down- and upwellings, with amplified down-
wellings and weakened plumes. The impact of the viscosity on the convective planform is
similar to the incompressible case. Since the Rayleigh number has been calculated using the
surface density, we observe an overall slightly more vigorous convection than in the incom-
pressible case, owing to the effectively higher density in the lower mantle. The low- viscosity
zone in combination with compressibility leads to a stronger sub- adiabaticity in the lower
than in the upper mantle, where cold material from the surface accumulates more effectively
than in the Boussinesq case. In the constant viscosity case, the average temperature follows
the adiabate.

5.2.3 Anelastic, Mixed Heating

Finally, we add internal heating to the previous setup, with a Rayleigh number for internal
heating of Rai = 6 · 108, and bottom heating of Ra

b
= 107 as before. As shown in figure 5.3

(bottom), we observe a strongly super-adiabatic temperature for the constant viscosity case.
The depth-dependent viscosity on the other hand allows for an effective cooling from the upper
boundary and thus a sub-adiabatic average temperature very similar to the bottom-heated
case. For both viscosity settings, the planform is similar to the bottom-heated scenario, with
only slightly more vigorous convection patterns in the mixed-heating settings.

5.3 Mineralogy

Based on model parameters by Stixrude and Lithgow-Bertelloni (2011), Chust et al. (2015)
have developed a model of a pyrolitic mantle, giving its physical properties in dependence of
temperature and pressure. Using lookup-tables, this allows us to incorporate realistic values
for density, entropy, thermal conductivity, bulk modulus, specific heat and thermal expansion
coefficient into our 2d model of the mantle. Latent heat is incorporated into the specific heat
and the thermal expansion coefficient, rendering them effective properties. Since we need to
resolve the latent heat within our mantle convection model, we smooth all physical properties
such that the latent heat is distributed over a pressure range which is represented by several
radial grid nodes within the convection model. As an example, density, effective thermal
expansion coefficient and effective heat capacity are shown in figures 5.4, 5.5 and 5.6.

We use the truncated anelastic liquid approximation (TALA) in the reference-state-free
formulation, although we still calculate an adiabate in order to show deviatoric quantities. A
resolution of nr = 100 and nt = 601 is chosen, and we use a constant viscosity of 1022 Pa s
in a purely bottom-heated mantle. We set up an adiabatic reference state with a reference
temperature of 1600 K at the upper boundary, while we prescribe an actual temperature
of 300 K at the surface, yielding a deviatoric temperature at the surface of −1300 K. The
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Figure 5.3: Convective patterns of two mantle convection simulations in the TALA approximation sev-
eral overturns after initialization. Top: pure bottom heating, bottom: mixed heating. Left: Constant
viscosity of 1022 Pa s, right: Layered viscosity model with 1022 Pa s below 660 km and 1020 Pa s above.
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Figure 5.4: Smoothed
phase diagram for a pyro-
lite. Melting occurs in the
upper left, therefore no data
is shown here. The white
line represents the adiabatic
reference state within the
simulated mantle.

Figure 5.5: Smoothed effec-
tive thermal expansion co-
efficient for a pyrolite, in-
cluding latent heat. Melt-
ing occurs in the upper left,
therefore no data is shown
here. The white line rep-
resents the adiabatic refer-
ence state within the simu-
lated mantle.

Figure 5.6: Smoothed effec-
tive heat capacity cp for
a pyrolite, including latent
heat. Melting occurs in the
upper left, therefore no data
is shown here. The white
line represents the adiabatic
reference state within the
simulated mantle.
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resulting adiabate is shown in 5.7. The deviatoric temperature at the lower boundary is set
to 1500 K, yielding a Rayleigh number of Ra

b
= 107.

Figure 5.8 shows an example of a planform that arises after roughly three overturns with
this setting. In contrast to all previous simulations with constant viscosity, the average
temperature is hotter than the adiabate. The three major phase transitions at 410 km and
660 km depth and the perovskite/post-perovskite transition 200 km above the CMB are clearly
visible in the density plot, since small perturbations in the depth of the transition zones show
as strong density deviations from the discontinuous adiabatic background. Hot material
accumulates below the perovskite/post-perovskite transition, offering a possible explanation
for large low shear velocity provinces without requiring chemical heterogeneities. The effect of
slab ponding near the 660 km transition can also be seen, although it is not very pronounced.

5.4 Discussion and Conclusions

In this chapter we have restricted our analysis to no-slip conditions. From stability analysis
we know that free-slip conditions yield a slightly lower critical Rayleigh number than no-slip
conditions. Analogously, it is often assumed that for higher Rayleigh numbers, the behavior
of both setups is similar when slightly higher Rayleigh numbers are chosen in the no-slip case.
For a more detailed overview on the topic see e.g. Ribe (2007); Ricard (2007).

The effect of viscosity stratification described by Bunge et al. (1996, 1997); Tackley (1996)
can clearly be seen in our simulations, the lateral coherence length of the convection is consis-
tently larger in the variable viscosity cases. In addition, we find that the low-viscosity layer
in the upper mantle leads to an effective cooling of the mantle. This is a result of the low
viscosity near the upper boundary, which increases the effective Rayleigh number and thus
removes heat from the boundary more efficiently. A brittle lithosphere will most likely change
this behavior, since it serves as a thermal insulator and will greatly modify the properties of
the boundary layer. We thus conclude that for realistic, transient models of the Earth and
other planets, the inclusion of a realistic upper boundary is indispensable Höink and Lenardic
(2008, 2010); Höink et al. (2011, 2012).

As shown in figure 5.1, the strain rate across the upper/lower mantle interface changes
by a factor of about two, while the stress decreases by a factor of roughly 50. Effectively,
this means that the Stokes equations mainly diffuse the strain rate, not the stress. This can
be attributed to the layered structure of the viscosity, in combination with the radial driving
force from buoyancy: If we imagine a thin pipe placed vertically within the mantle, the mass
flux (and thus the velocity in an incompressible setting) is constant everywhere within the
pipe, regardless of the viscosity. The force (and thus the stress) required to move the material
through the pipe on the other hand is highly dependent on the resistance (and thus on the
viscosity). Since within the mantle, lateral outflow from the imagined pipe is possible, the
velocity within the upper mantle can (and does) increase, while the stress does not reduce as
much as it would in our vertical pipe. The vertical nature of buoyancy combined with the
horizontally layered viscosity does however lead to the observed effect that the interface in
the viscosity mainly induces a change in stress, not in strain rate.

In the compressible case, we find a broken symmetry between the up- and downwellings.
For downwellings as an example this effect can be understood by looking at two adiabates:
One that starts at the upper boundary at reference temperature, and one at the same place
but at a lower temperature. Due to the exponential nature of the adiabates, the difference
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Figure 5.7: Adiabatic refer-
ence state for the simulated
mantle with pyrolitic com-
position. The phase tran-
sitions at 410 km, 660 km
and the perovskite/post-
perovskite transition near
the CMB are smoothed out,
but still well visible in the
density.

Figure 5.8: Deviatoric density (left) and temperature (right) of a mantle convection simulations in the
TALA approximation with material properties from mineral physics and bottom heating.
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in the temperatures increases when the material moves deeper down into the mantle. Since
each package of material follows its own adiabate, the temperature difference between a
downwelling and its surrounding increases, effectively cooling a downwelling relative to its
surrounding on its way down. The same effect in reverse holds for the plumes, effectively
weakening them in the process. This is in agreement with findings by Steinbach et al. (1989),
who reported a break of symmetry between the upper and lower boundary.

In accordance to Davies et al. (2012) and Austermann et al. (2014), our preliminary sim-
ulations with mineralogical models suggest that the low shear velocity provinces as reported
by Trampert et al. (2004) could possibly be caused by thermal effects alone, without invoking
chemically distinct material. However, a more detailed analysis would be required to make a
reliable statement on the matter.

Finally, a word of caution is necessary for the models with realistic mineralogical prop-
erties, since there is a great source of uncertainty within the numerics, in a sense that that
running a model with an explicit solver yields numerical instabilities near the phase transi-
tions. To explain this phenomenon, let us assume that we have a warm anomaly below an
endothermic phase transition. Buoyancy moves this anomaly upwards across the interface,
cooling it down in the process. Since we are using a finite time step, the package is poten-
tially moved far beyond the phase transition, and thus cooled far more than it would be in
nature. In the next time step, the newly acquired very low buoyancy will move the package
back down, heating it up again. This numerical artifact leads to strong and well observable
small-scale oscillations along the transition zone, completely dominating the convective pat-
terns within the simulation. We can counter this effect to some degree with an implicit time
stepping scheme, but sometimes the implicit Euler scheme does not converge to a solution.
Resetting the implicit solver with new parameters and a new initial search window can help,
but sometimes we still run into unresolvable non-converging time-steps.

A different way to deal with phase transitions is described i.e. in Nakagawa et al. (2009),
where compositional fields are tracked and latent heat is added and subtracted as material
changes its phase. However, to the best of my knowledge, there exists no discussion on
potential numerical instabilities in this procedure. The unpredictable behavior in our scheme
thus calls for caution with the above interpretation of the models that incorporate a realistic
mineralogy.





6 Hierarchical Hybrid Grids (HHG)

The Hierarchical Hybrid Grids software (HHG) is a massively parallel software package orig-
inally designed to solve the Poisson equation on very large domains (Hülsemann et al., 2003;
Bergen and Hülsemann, 2004; Bergen, 2005). It is based on block-structured tetrahedral
grids, combining an unstructured coarse grid with structured refinements of the tetrahedral
blocks as proposed by Bey (1995). HHG has been able to solve a linear system of equations
with 1010 unknowns (Bergen et al., 2005) on an SGI Altix supercomputer in 2005, scaled to
1011 unknowns on the HLRB-II in 2008 (Gradl and Rüde, 2008; Gradl et al., 2008) and to
1012 unknowns on the Juqueen supercomputer in 2013 (Gmeiner et al., 2014a).

In 2013, HHG became the prototype for a new mantle convection code called Terra-
neo. In this context, significant development has taken place: The first extension of HHG
to a solver for the Stokes system with the Schur-complement/pressure correction/multigrid
algorithm (as introduced in section 3.5) has been presented by Gmeiner (2013) and Gmeiner
et al. (2014a). They have scaled the code to the full Juqueen supercomputer and shown that
the code is bound by computations, not memory bandwidth, which is an unusual property for
a high performance code like HHG. Variable viscosity has also been introduced to HHG by
Gmeiner (2013) in a way that preserves the low memory-bandwidth requirements of the code.
The transport problem for the heat equation has been addressed by Gmeiner et al. (2014b)
and Waluga et al. (2015), presenting a way to enforce local mass conservation for the Q1-Q1
finite element pair. New solvers for the Stokes system and free slip boundary conditions have
been implemented by Huber et al. (2015), enabling a shorter time to solution and physically
more realistic boundaries.

6.1 The HHG Parallelization Concept

HHG is designed for first order finite elements, and so the unknowns can be mapped to
the points of a mesh. To minimize communication, HHG uses a concept that subdivides
the grid into four so called primitives: vertices, edges, faces and volumes. The coarse grid
nodes are stored in a vertex data structure, and all fine grid points along the edges that
connect the vertices are stored on an edge data structure. The points on the faces between
the tetrahedra are stored in a triangular face data structure, and all remaining points within
the coarse grid tetrahedron have a tetrahedral volume data structure. All computations
(smoothings, residual calculations and operator applications, in the following called lattice
updates) are done locally on each primitive. Since they sometimes require values from outside
their primitive, each primitive gets so called ghost layers, which shadow all points from the
neighboring primitives that are needed for the computations. The resulting data layout is
visualized in figure 6.1.

For the parallelization, the primitives are distributed among the processes. Ghost layers
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Figure 6.1: HHG data layout. a) 2d simplification of vertex, edge and face primitives after two
refinements. The inner points are numbered arbitrarily, with their ghost copies labeled correspondingly.
b) Two macro tetrahedra with some of the neighboring faces and edges.

are exchanged via local copy operations for primitives that share common memory, and by
message passing for primitives on remote compute nodes. For the smoother, this means that
HHG implements a pseudo-Gauss Seidel algorithm, since it exchanges the ghost layers only
after every smoothing sweep, using values from before the smoothing sweep on the ghost
nodes.

Much of the high performance of HHG stems from the fact that each primitive element is
regularly refined, such that the stencils are identical for all fine grid points within a primitive,
and can be assembled in the setup phase (Bergen, 2005; Gmeiner et al., 2014a). This way,
the stencil does not have to be loaded from memory, and each lattice update requires only
29 floating point operations.

For variable viscosity, the stencil varies depending on the viscosity. Gmeiner (2013) has
implemented a scheme in which instead of the 15 stencil values, the 96 entries of the local
element matrix get stored, a quantity that is once again the same for each point within a
coarse grid tetrahedron. For each node, the stencil can then be assembled on-the-fly from
the local element matrix and the viscosity, now requiring 227 floating point operations per
lattice update, but preserving the low-memory bandwidth requirements of HHG (Gmeiner
et al., 2014a).

6.2 Projected Coordinates

6.2.1 Motivation

To simulate the Earth’s mantle in HHG, an icosahedral mesh as described in section 3.3 is
used as the coarse grid. This mesh consists of 20 · (nr − 1) · (nt − 1)2 prismoids, each divided
into three coarse grid tetrahedra. Each coarse grid tetrahedron is then nlevel times regularly
refined, leading to a total of 60 · (nr − 1) · (nt − 1)2 · n3

level fine grid tetrahedra. The problem
with this procedure is that the additional nodes that we get from the refinement process are
not on the original spherical surface. Assuming nt = 65 on the coarse grid (as in the HPC
run by Gmeiner et al., 2014a), we get a distance of ∼ 100 km between the coarse grid nodes.
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Figure 6.2: Examples for the different possible types of primitives for the projection. a) Two types of
tetrahedra: Type 1 with three nodes on one spherical surface, type 2 with two nodes on two distinct
spherical surfaces each. b) Three types of faces: Type 1 with three tangential edges, type 2 with
one tangential and two diagonal edges, and type 3 with one tangential edge, one radial edge and one
diagonal edge. c) Three types of edges: Type 1 tangential, type 2 radial, and type 3 diagonal.

This means that the direct line between two of these nodes from the regular refinement is
up to ∼ 200 m below the spherical surface. For a typical run on a mid-size cluster we could
assume nt = 17, corresponding to a distance of ∼ 400 km between the coarse grid nodes. With
this we would obtain points that are up to ∼ 3.1 km below the spherical surface.

We would like to note two issues that arise from this setup: First, the buoyancy term
near the surface and the core mantle boundary (and, to a lesser degree, near the phase
transitions) is distorted due to the additional mass that is contained within the bulges which
arise from the non-spherical surface. Assuming a typical lateral density variation of 2%
(Ritsema et al., 2011; Stixrude and Lithgow-Bertelloni , 2005), this bulge would correspond
to a density anomaly of 10 km thickness for the HPC scenario, and 155 km for the mid-size
cluster scenario. This effect can be seen in some of the preliminary simulations with HHG,
where up- and downwellings form preferentially along the coarse grid nodes. Second, we
are interested in geoid and dynamic topography signals from the simulations. These can be
derived from independent observations of the Earth and can be calculated in the simulations
from the stress state near the surface. Typical geoid signals are on the order of 100 m (e.g.
Hager and Richards, 1989; Brockmann et al., 2014), while dynamic topography signals are
typically on the order of 1 km (e.g. Winterbourne et al., 2009). Distortions in the surface
geometry of a few hundred meters to several kilometers would render these tests against
independent observations impossible.

6.2.2 Projection

We can avoid these problems if we adjust the local element matrices and the stencils such that
they represent a geometry in which the fine grid nodes are projected onto the sphere. Since
HHG does not store geometric information on the fine grid, the first challenge is to determine
the coordinates of all fine grid nodes from the coordinates of the nodes of the coarse grid
primitive. For this, we assume that the center of the spherical mesh is at the origin of the
coordinate system and distinguish nine different types of primitives as shown in figure 6.2:

• Tetrahedron type 1: Three of the four coarse grid nodes are on one spherical surface,
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while the fourth is at a different radius. As shown in figure 6.3, we call the node at
a separate radius d, the one radially above or below r, and the remaining two nodes
ea and eb. We know the fine grid coordinates of a given point p on the unprojected
mesh. To obtain the coordinates of the projected point p’ we first construct the plane
f parallel to the plane (r, ea, eb) with the normal vector n and the point of support
p. Intersecting f with the line (r, d) gives us the point q, which has the same distance
from the origin as p’. We can now obtain p’ by projecting p to the radius given by q.

• Tetrahedron type 2: Two of the coarse grid nodes are on one spherical surface, and two
on another. One of these nodes each are radially above each other. Of the other two
we pick one at random and project it to the other spherical plane. Now we know the
three nodes from one of the bases of the prism, and we can proceed as for tetrahedra of
type 1.

• Face type 1: In this case, all three coarse grid nodes are on the same spherical surface,
and we simply have to project all inner nodes to the same radius as any of the coarse
grid nodes.

• Face type 2: Here, two coarse grid nodes are on the same spherical surface, and the
third node is on a different surface and not radially above or below one of the other
nodes. In this case, we call the two nodes on the same surface ea and eb, the third node
d, and obtain a node r by projecting d to the same spherical surface as ea and eb. From
here we can then continue as for tetrahedra of type 1.

• Face type 3: Here we have two coarse grid nodes radially above each other which we call
r and d, and one on the same spherical surface as r, called e. Instead of a plane we now
set up a straight line parallel to the line (r, e) that passes through p. The intersection
of this line with the line (r, d) gives us the point q, which then tells us to what distance
from the origin we have to project p.

• Edge type 1: Both points are on the same spherical surface. As for the face of type 1,
we can simply project all nodes on the edge to the distance from the origin of either of
the coarse grid nodes.

• Edge type 2: Both coarse grid points are radially above each other. In this case, all fine
grid nodes are at the correct distance from the origin, and we do not have to project.

• Edge type 3: Both nodes are on different spherical surfaces and not radially above each
other. In this case, we exploit the fact that the distance of the fine grid nodes from the
origin scales linearly between the two coarse grid nodes. We can then scale the radial
distances from the origin linearly with the distance of the unprojected points to the
coarse grid nodes.

• Vertex: All coarse grid vertices are on the correct spherical surface, so no projection is
necessary.

For the basic geometric operations, special care has to be taken with nodes along the main
coordinate axes to avoid divisions by zero. Extra if-clauses are introduced to catch these cases
and treat them correctly.
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Figure 6.3: Projection of a
point p within a prismoid to
the point p’ on a spherical
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Once we know the coordinates of the fine grid nodes, we can evaluate the local element
matrices and compute the stencils from them and from the viscosity. An exemplary im-
plementation of a Gauss-Seidel smoother on a tetrahedron with projected coordinates and
constant viscosity is shown in appendix A. Here, we calculate the local element matrix for
each of the 24 tetrahedra that are adjacent to the current node and add the corresponding
entries to obtain the stencil. For variable viscosity, we would then scale the element matrices
with the viscosity in the elements. Finally, we can apply the stencil as in the unprojected
smoother.

6.2.3 Analysis

For the unprojected, constant coefficient case, every lattice update requires 29 floating point
operations: 15 multiplications to multiply the stencil weight with the corresponding neighbor
and 14 additions to add the contributions from the neighbors together. For variable viscos-
ity as implemented by Gmeiner (2013) we need an additional 16 operations to average the
node-based viscosities to the elements, 181 operations to assemble the stencil from the pre-
computed element matrices and the averaged viscosity, and one division to obtain the inverse
of the central stencil entry, giving a total of 227 operations. For the projected coordinates,
we now also have to calculate the local element matrices, at the cost of one function call and
53 operations per element matrix for the Laplace operator. Since we have to calculate 24 ele-
ment matrices, we get a total of 1272 additional operations for these cases. Table 6.1 lists an
overview of the number of operations for the different cases, and gives runtime measurements
for an example run. In it we solve the scalar Poisson problem with nr = 3 and nt = 5 on the

Projected Variable FLOPs / runtime runtime runtime
coordinates? viscosity? lattice update nlevel = 3 nlevel = 5 nlevel = 7

no no 29 0.17 s 0.85 s 28 s
no yes 227 0.90 s 2.6 s 63 s
yes no 1483 0.40 s 9.1 s 610 s
yes yes 1499 1.4 s 14 s 700 s

Table 6.1: Number of floating point operations for the smoothing of a single grid point with a Laplacian
in four different scenarios. Also shown is the corresponding runtime for one V-cycle for the Poisson
problem on a BorgCube machine (see text).
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Figure 6.4: Residual (a) and error against an analytical solution (b) of the HHG multigrid solver for
the Poisson problem.

coarse grid, which we refine nlevel times for the fine grid. We use a V-cycle with five pre- and
post-smoothing steps and a Gauss-Seidel coarse grid solver with 100 iterations. The problem
has been run on a BorgCube ccNUMA machine with 32 virtual cores at 2.7 GHz. For a high
number of refinements nlevel, the wall clock time increases by about a factor of ten for the pro-
jected coordinates compared to the unprojected, variable viscosity case, owing to an increase
in the required number of computations of about seven and the additional function calls for
the computation of the local element matrices. A more detailed analysis and performance
optimizations for the projected coordinate case are in preparation (Bauer et al., 2016).

To assess the quality of the implementation, we use the above setup to solve the scalar
Poisson problem

∆v(x, y, z) = −3 sin (x) sin (y) sin (z) ∀ (x, y, x) ∈ Ω (6.1)

v(x, y, z) = sin (x) sin (y) sin (z) ∀ (x, y, x) ∈ ∂Ω. (6.2)

The analytical solution to this problem is v(x, y, z) = sin (x) sin (y) sin (z) ∀ (x, y, x) ∈ Ω. We
start with an initial solution of v(x, y, z) = 0 ∀ (x, y, x) ∈ Ω, and show the residual and the
error between numerical and analytical solution in the L2 norm (figure 6.4).

The residual plot represents the convergence of the multigrid algorithm, showing very
similar behavior for the projected and the unprojected case. The residual between iteration 5
and 15 reduces by a factor of 6.9 for nlevel = 3, and by 2.9 for nlevel = 7, so multigrid
convergence is better for a coarser problem and for a shallower multigrid hierarchy. To assess
the cause in more detail, one would have to analyze the eigenvalues of the iteration matrix
(i.e. Baumann and Mohr , 2015).

The error in the unprojected case is dominated by the geometric error from the edgy
domain. A finer resolution does not significantly increase the quality of the solution, since the
coarse grid and thus the geometry stays the same for all refinement settings. In the projected
case, the error reduces by an average factor of 8.2 for nlevel = 3, and by 4.3 for nlevel = 7 between
the first few iterations, before it converges to the discretization error. The discretization
error decreases by an average factor of 3.989 with every additional refinement, representing
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Figure 6.5: Visualization of the as-
thenosphere in a static mantle convec-
tion simulation with a buoyancy from
tomography (see text). Color-coded is
the normalized absolute of the veloc-
ity, not the seismic tomography. Well-
visible is the fast upwelling region un-
der the African superswell.

quadratic convergence, as would be expected from the theory of linear finite elements (see
e.g. Gunzburger , 1989; Braess, 2007).

6.3 Application to the Earth

As an example for an application of HHG to the Earth, we calculate the velocity field that
arises from a tomography-derived buoyancy term in a static simulation. We set up a spherical
shell with nondimensionalized radii that correspond to the Earth mantle, rlower = 0.545 and
rupper = 1. We use a two-layered viscosity profile with an upper-to-lower mantle boundary
at r = 0.843 (corresponding to a depth of 1000 km) and a viscosity that is ten times smaller
in the upper than in the lower mantle, in agreement with the Haskell-constraint (Haskell ,
1935; Mitrovica, 1996). Both boundaries are no-slip, and the buoyancy is derived from the
tomographic model by Grand et al. (1997), converted to densities with the mineralogic model
by Stixrude and Lithgow-Bertelloni (2005). We use a resolution of nr = nt = 129, resulting in
a total of approximately 21 million unknowns. The system is solved with a pressure correction
Schur CG solver and a four-level V-cycle multigrid on a BorgCube machine with 32 virtual
cores.

In the nondimensional setting, absolute velocities scale linearly with the Rayleigh number,
which is a poorly constrained parameter for the Earth. We therefore show a normalized veloc-
ity field in figure 6.5. Features such as the fast upwelling speeds below the African superswell,
old subduction under the Eastern Mediterranean and the upwelling around the Icelandic
plume can be identified. For a more realistic setup, future simulations will incorporate free-
slip boundaries and a more sophisticated upper boundary (i.e. from plate reconstructions) as
well as a more shallow asthenosphere. Time-dependent simulations, ideally inverse and back-
wards in time, together with realistic, nonlinear rheologic models and mineralogical tables are
the long-term goal.





7 Fast Asthenosphere Motion in High-
Resolution Global Mantle Flow Models

A variety of geologic observations point to fast upper mantle flow that may exceed plate
tectonic velocities by an order of magnitude. At the same time there is mounting evidence
from seismology for flow like structures in the upper 100 − 200 km of the mantle. In this
chapter we present a set of simulations done with HHG to link these observations. In a
synthetic setting, we include asthenospheric channels of varying thickness, with an extreme
case of 100 km, and a significant viscosity contrast of up to four orders of magnitude relative
to the deeper mantle. We obtain an increase in velocity by a factor of ten between a 1000 km
thick and the very thin channel, translating into velocities of ∼ 20 cm/a within the narrow
asthenosphere. We further present and verify a simple Poiseuille flow model, predicting that
the upper mantle velocity scales with the inverse of the asthenosphere thickness.

The work in this chapter constitutes a collaborative effort between myself, Björn Gmeiner,
Siavash Ghelichkhan, Markus Huber, Lorenz John, Barbara Wohlmuth, Ulrich Rüde and
Hans-Peter Bunge. The text has previously been published as Weismüller et al. (2015).

7.1 Introduction

The asthenosphere is a mechanically weak layer beneath the lithosphere that was advocated
early on as a means to promote isostatic movement (Barrell , 1914) and lubricate plate motion
(Chase, 1979). Robust evidence for a weak layer in the uppermost mantle beneath the litho-
sphere comes from a variety of observations. They include studies of the geoid (e.g. Hager and
Richards, 1989), glacial rebound (e.g. Mitrovica, 1996), oceanic intraplate seismicity (Wiens
and Stein, 1985), ocean ridge bathymetry (Buck et al., 2009), seismic anisotropy (e.g. Debayle
et al., 2005), and electromagnetic sounding (e.g. Jones, 1982). A cause for low mechanical
strength in the asthenosphere is seen in weakening effects related to partial melting (e.g.
Anderson and Sammis, 1970) and/or water (e.g. Karato and Jung , 1998), or a combination
of pressure and temperature (e.g. Stixrude and Lithgow-Bertelloni , 2005). A consequence
is the concentration of upper mantle flow into a thin channel of greatly enhanced material
mobility. Fluid dynamic studies based on numerical and analytic modeling techniques (e.g.
Bunge et al., 1997; Busse et al., 2006; Tackley , 1996) agree that high material mobility in the
asthenosphere is essential to promote the long-wavelength character of mantle flow observed
on Earth.

Interest in the asthenosphere has been renewed lately. New upper mantle tomographic
models based on computationally demanding full waveform modeling techniques suggest a
narrow width of the asthenosphere. The seismic studies have imaged a thin horizontal layer of
∼ 100−200 km depth extent beneath the lithosphere, with heterogeneity structures indicative
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of channeled flow (e.g. Fichtner et al., 2009; French et al., 2013; Colli et al., 2013). At the same
time, a variety of geological observations suggest that fast flow velocities in the asthenosphere
may exceed plate tectonic speeds by an order of magnitude in some cases. These observations
include V-shaped ridges of thickened oceanic crust near Iceland, which have been attributed
to the fast propagation of plume related material (Vogt , 1971; Parnell-Turner et al., 2014),
rapid uplift events along passive margins (Japsen et al., 2012a) together with strong gradients
in dynamic topography (Winterbourne et al., 2009), as well as transient landscapes in the
North Atlantic sea floor, now buried beneath marine sediments. The latter were used to infer
the horizontal passage of buoyant sublithospheric material at velocities in excess of 20 cm/a
(Hartley et al., 2011).

A series of papers by Höink and Lenardic (2008, 2010) and Höink et al. (2011, 2012)
has explored the geodynamic implications of a thin low viscosity layer for mantle convection
models in the context of Poiseuille/Couette flow, i.e. pressure driven vs. plate driven flow.
The pressure driven Poiseuille flow type can be tied to geologic observables, as it relates plate
motion changes explicitly to non-isostatic vertical motion, i.e., changes in dynamic topography
(Iaffaldano and Bunge, 2015). Poiseuille flow, therefore, provides a plausible link between
rapid spreading changes and coeval episodes of epeirogenic motion (Colli et al., 2014) that is
documented in the South Atlantic region (e.g. Japsen et al., 2012b).

The amount of viscosity reduction in the asthenosphere relative to the deeper mantle is
not well known. A consensus exists that the average viscosity in the upper part of the mantle
is smaller than at greater depth. But the magnitude of the viscosity increase and its depth
remain debated. Haskell (1935) calculated the viscosity of the upper part of the mantle to
be ∼ 1021 Pa s, a value known as the Haskell constraint. While Mitrovica (1996) showed that
the Haskell constraint applies effectively to mantle depths of 1000 − 1200 km, Paulson and
Richards (2009) and Schaber et al. (2009) emphasized the inherent trade-off between radial
viscosity contrast and layer thickness: models favoring a coarse subdivision of the mantle
into two layers separated at the 660 km phase transition naturally obtain modest viscosity
contrasts, while fitting the data as well as models with a thin layer and strong viscosity
reduction. The trade-off arises because the decay time τ for a given loading wave number
varies linearly with the viscosity µ and inversely with h3 (e.g. Cathles, 1975), where h is the
layer thickness. These results, when combined with the seismic evidence for a narrow channel
width, argue for a substantial viscosity reduction in the asthenosphere.

It is now feasible to simulate global mantle flow at very high numerical resolution on
massively parallel architectures using more than 100 000 processor cores (Burstedde et al.,
2009, 2013; Kronbichler et al., 2012). In this article, we employ the Terra-neo prototype
HHG to explore the mantle flow field in a three dimensional spherical geodynamic model.
Specifically, we focus on the velocity contrast that develops between the high viscosity deeper
mantle and the asthenosphere in the presence of a strongly localized low viscosity channel.
We find fast asthenosphere motion in our models, and report that the velocity increases by
more than a factor of ten when decreasing the asthenosphere channel thickness by a factor
of ten. We use our results to derive a simple scaling relation for the asthenosphere/deeper
mantle velocity contrast based on Poiseuille flow.
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Figure 7.1: Viscosity profiles of the five
simulation scenarios explored in this study.
The lower mantle viscosity is assumed as
1022 Pa s, while the upper mantle viscosity of
the 1000 km reference scenario (red) is set to
the Haskell value (see text). Two cases with a
channel thickness corresponding to either the
660 or 410 km mantle phase transitions (green,
blue), or a thin channel scenario with a 200 or
100 km layer depth (magenta, light blue) are
shown as well.

7.2 Methods and Results

Our code is based on the hierarchical hybrid grids (HHG) multigrid software framework
(Bergen et al., 2006; Gmeiner et al., 2014a), which is optimized for high performance com-
puting and scales to some of the fastest systems currently in use (Gmeiner and Rüde, 2014).
This allows our global mantle flow solutions to treat different types of boundary conditions
and to vary the key controlling parameters, i.e., viscosity reduction and channel width, sys-
tematically over a wide range in accord with the Haskell constraint. We perform our com-
putations on the JUQUEEN Supercomputer at Jülich Supercomputing Center using up to
65 536 processes for a thin-layer asthenosphere scenario with a channel width of 100 km. For
this scenario, we use a total of 2.3 · 1010 degrees of freedom, resolving the asthenospheric
channel with 32 radial layers. We assume the Boussinesq approximation for the stationary
Stokes equations. Nondimensionally they are of the form

−∇ ·
(
µ

µ0

(
∇u + (∇u)t

))
+∇p = −RaT êr (7.1)

∇ · u = 0 (7.2)

and describe the momentum balance for creeping flow, i.e. flow that ignores the effects
of inertia. Here, u [-] denotes the velocity, µ [Pa s] the dynamic viscosity, µ0 = 1022 Pa s a
normalization factor for the viscosity, p [-] the pressure, Ra [-] the Rayleigh number, T [-]
the buoyancy term (e.g. temperature) and êr [-] the unit vector in radial direction. We note
that the momentum balance is linear and yields a direct scaling with the Rayleigh number
between driving buoyancy forces and resulting flow velocities. This means that the absolute
value for the upper and lower mantle velocities will depend linearly on the choice for the
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Figure 7.2: Visualization of the simulation setup and the resulting velocity field for the scenario with
410 km channel depth and a stagnant lid. The left color bar represents the nondimensional temperature
(and thus the buoyancy field Y 2

2 , red = hot, blue = cold), which is cut off above 410 km depth in the
front half of the sphere. In the asthenosphere, flow vectors from the associated nondimensional velocity
field are superimposed (right color bar, red=fast, green=slow). On the top left part of the figure, the
shell is cut open all the way to the core mantle boundary, and flow is visualized by flow lines instead
of arrows. Here it becomes apparent that high velocities are concentrated in the asthenosphere.

amplitude of the mantle buoyancy field. We will thus use the average channel velocity of the
1000 km reference scenario as our reference velocity and for the thinner channel cases report
the average velocity relative to this reference value.

Heterogeneity in the Earth’s mantle is dominated by large scale structure, concentrated at
the lowest spherical harmonics degree two (Ritsema et al., 2011; Grand et al., 1997). Hence we
choose a long wavelength heterogeneity field for our simulations, and set the buoyancy term to
the spherical harmonics term Y m=2

l=2 , normalized in the range [0, 1] and multiplied by a linear
decrease to zero radially within 225 km from the upper and lower boundary. (Solomatov ,
1995), field of Channelized flow in the asthenosphere is approximated by modeling mantle
flow under the two end member cases of a stagnant and a mobile lid regime (Solomatov ,
1995). For the stagnant lid, we impose a no-slip condition (u = 0) on the surface velocity
field of the shell, while the mobile lid is approximated with a free-slip condition (no outflow, no
tangential stress). We vary the thickness hu of the low viscosity layer systematically between
values of 1000 km and 100 km. This setup yields a simplified two-layer radial viscosity profile,
where the lower mantle viscosity assumes a fixed value of µl = 1022 Pa s, while the weak layer
viscosity µu is specified in accordance with the Haskell constraint (Haskell , 1935; Mitrovica,
1996). In other words, µu scales with the third power of the channel thickness (e.g., Cathles
(1975)), as suggested by Paulson and Richards (2009) and Schaber et al. (2009), such that

µu = 1021 ×
(

h

1000 km

)3

[Pa s]. (7.3)

Fig. 7.1 reports the resulting viscosity profiles for five scenarios. Our reference case has a
1000 km channel thickness, i.e. the Haskell depth, with µu = µ0 = 1021 Pa s. In two further
cases we reduce the channel thickness to 660 km and 410 km, i.e., depth levels associated
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Figure 7.3: Average flow veloc-
ities in a low viscosity astheno-
sphere channel relative to a ref-
erence scenario with a channel
thickness of 1000 km. High flow
velocities (left axis) arise for thin
channel widths (lower axis). The
blue curve represents theoretical
predictions from Poiseuille flow,
red dots and purple crosses are
simulation results from the no-
slip and free-slip upper bound-
ary condition, respectively. The
upper axis gives the astheno-
sphere viscosity corresponding to
the channel thickness according
to the h3 law (equation 7.3).

with the major mantle phase transitions. Additionally, two extreme cases are modeled. Here
we assume a narrow depth extent for the asthenosphere of 200 km and 100 km, respectively,
as suggested by the seismic observations. Table 7.1 gives an overview of the key model
parameters (viscosity and channel thickness) for the different mantle flow simulations. In
Fig. 7.2 we show the buoyancy and flow fields for the 410 km scenario as an example of our
simulations. In this, as in all other cases, we obtain two large scale upwelling and downwelling
regions in the lower mantle. They are induced by the degree two buoyancy term we have
imposed. In the asthenosphere we find the flow field to be dominated by lateral motion. This
is evident from the horizontal orientation of flow lines in this region, as seen in Fig. 7.2. The
flow velocities increase systematically with decreasing channel depth and viscosity, with a
slightly stronger increase for the mobile lid cases. The scenario with a low viscosity layer
of 660 km thickness yields an increase in the average velocity of about 1.7 compared to the
1000 km reference scenario for both stagnant and mobile lid regime. Our end member cases,
where we assume a narrow 100 km channel thickness, yield an increase in the average upper
mantle velocity of 11.1 for the stagnant lid and 12.4 for the mobile lid case. These values are
listed in Table 7.1 and plotted in Fig. 7.3.

channel asthenosphere asthenosphere asthenosphere
thickness viscosity (µu) velocity (stagnant lid) velocity (mobile lid)

1000 km 1021 Pa s 1.0 1.0
660 km 2.87 · 1020 Pa s 1.67 1.72
410 km 6.89 · 1019 Pa s 2.80 2.93
200 km 8 · 1018 Pa s 5.67 6.18
100 km 1018 Pa s 11.1 12.4

Table 7.1: Parameter values of the simulations showing thickness and viscosity of the low viscosity
channel, where the lower mantle viscosity is 1022 Pa s in all cases. Also shown are the resulting upper
mantle average velocities for the stagnant and mobile lid cases, normalized to the 1000 km reference
scenario (see text).
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7.3 Discussion

Recent geological observations are indicative of sublithospheric flow speeds on the order of
20 cm/a: they include ridges of thickened oceanic crust near Iceland (Vogt , 1971; Parnell-
Turner et al., 2014), rapid uplift events along passive margins (Japsen et al., 2012a) together
with strong variations in dynamic topography (Winterbourne et al., 2009) and transient land-
scapes in the North Atlantic sea floor (Hartley et al., 2011). Our results, reported as velocities
relative to the reference scenario with a channel thickness of 1000 km, are consistent with these
observations. They suggest that high asthenosphere velocities arise self-consistently in global,
buoyancy driven flow. If we assume an average deep mantle flow velocity of 1.5 cm/a (Butter-
worth et al., 2014), the thin channel simulations with 200 km and 100 km depth extent yield
asthenosphere velocities that average to 8.15 cm/a and 15.7 cm/a for the stagnant lid case,
respectively, and 9.78 cm/a and 18.6 cm/a for the mobile lid regime, an order of magnitude
higher than average plate velocities (DeMets et al., 2010).

To explain our results, we introduce a simple scaling based on Poiseuille flow, similar to
Höink and Lenardic (2010): We approximate the asthenosphere as a two dimensional, plane
channel, in which the flow is driven by a pressure gradient between the two ends. Applying
this model to the reference case as well as to the case we are investigating, the velocity in the
channel normalized to the reference velocity is given by

u

uref

=
µref h

2

µh2
ref

. (7.4)

Together with the h3 scaling derived from the Haskell constraint (7.3), this model results in
a scaling of the upper mantle velocity of

u

uref

=
href

h
. (7.5)

We note that this model is free of any fitting parameters, and depends on nothing but the
channel thickness of the current scenario and that of the reference case. It is plotted in
Fig. 7.3, showing a good prediction with errors of consistently less than 15% for the stagnant
lid case, and an underprediction of up to 25% for the mobile lid case.

We must qualify our results and point to important limitations in this study. For instance,
both models restrict asthenospheric flow to the Poiseuille regime: For the stagnant lid case,
the channel is bounded by the surface and the high-viscosity lower mantle, and flow is driven
by pressure alone. An alternative view on asthenospheric flow is Couette flow (Chase, 1979):
Here, the idea is that flow is driven solely by the moving plates above the asthenosphere,
in which case asthenosphere velocities can never exceed plate speeds. Höink and Lenardic
(2010) have shown that both flow regimes may be present in the Earth, and suggested that
on small scales (short wavelengths), Poiseuille flow is the dominant component, whereas on
larger scales (long wavelengths), flow is dominated by the moving plates, i.e. the Couette
regime.

Our stagnant lid simulations show that with a very thin channel, the Poiseuille component
alone can reach significant magnitudes also for long wavelengths. Simulations by Höink and
Lenardic (2010) among others show that adding a Couette component (i.e. a moving plate)
can potentially further increase these velocities. While closer examination of this case would
be of high interest, our mobile lid scenarios show that channel speeds somewhat above the
predictions by the simple Poiseuille model are well within the realm of possibilities.
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As another simplification we take the viscosity as constant and Newtonian, even though
there is evidence for nonlinear, stress dependent behavior at least within the upper mantle
(e.g. Karato and Wu, 1993). While it is more difficult to anticipate the effects of a nonlinear
rheology on upper mantle flow, it seems reasonable to assume it would yield larger flow
velocities. This would render the flow velocity estimates from our study in the upper mantle
as conservative. Another point is the fact that models of lithosphere thickness show significant
regional variations (e.g. Artemieva, 2006). These variations should have a strong influence
on asthenosphere flow velocities for the relatively narrow channel thickness considered here.
More realistic models including deep cratonic roots thus would be important to consider in
future studies.

7.4 Conclusions

A variety of evidence points towards the existence of a weak asthenosphere layer in the
upper mantle, although neither its depth extent nor its viscosity are well known. Using a
new global high resolution mantle convection model, we explore a parameter space of global
mantle flow with a very strong viscosity reduction in a very thin asthenospheric channel.
While traditionally the asthenosphere is assumed to extend to the depth of the large seismic
discontinuities at 660 or 410 km, observational constraints allow for much thinner and weaker
channels. In our simulations we have used channel thicknesses of down to 100 km, and shown
that velocities on the order of 20 cm/a arise naturally in this setting.

Our setup is consistent with the Haskell constraint, which suggests that the viscosity
of the upper 1000 − 1200 km is on the order of 1021 Pa s. We have further argued that the
simulations are in agreement with recent seismological studies that find a thin horizontal layer
in a depth of 100− 200 km as well as seismic heterogeneities in this part of the mantle. The
results also agree with recent geological observations of rapid uplift, short wavelength dynamic
topography signals and V-shaped ridges of oceanic crust, indicative of high sublithospheric
velocities.





8 Conclusions

The equations that govern mantle convection are a Stokes-type approximation of the Navier-
Stokes equations. The laws of momentum and mass conservation constitute a time-independent
elliptic problem, immediatley propagating any change in the boundary conditions or the buoy-
ancy term through the whole domain. Time dependence is incorporated via the energy equa-
tion, which is dominated by the advective term throughout most of the domain. Conduction is
mainly important near the boundaries, where no radial advective transport is allowed. Com-
plementing the conservation laws, additional material laws are needed to describe the physical
behavior of the mantle, most notably the equation of state (coupling density, temperature
und pressure) and the rheology (governing the viscosity).

The equations are solved numerically with either first order or mixed first/zeroth order
finite elements on an annulus in two dimension and on an icosahedron-based mesh in three
dimensions. The resulting system is then solved with a multigrid based iterative solver,
coupled with a first or second order explicit or implicit time stepping scheme.

We have presented the new 2d mantle convection code Flatland together with a set of tests
and benchmarks. This software has been used to assess the effects of viscosity stratification
and mineral physics on global convection patterns. We have shown that a radial jump in the
viscosity mainly reduces the stress across the interface, and not the strain rate, and explained
that this is due to the radial nature of the buoyancy term. We elaborated on the challenges
of including mineral models into convection simulations, and speculated that the D” phase
transition could be responsible for the large low shear velocity provinces in the mantle without
requiring a chemically distinct material.

We then introduced the high performance software framework HHG as a prototype for a
new mantle convection code Terra-neo. HHG is a highly parallel, multigrid based software
package that uses an unstructured coarse grid, which is then refined structurally. This ap-
proach combines high scalability with high node-level performance, but has some limitations
on the geometry of the overall grid. Most importantly for our application, it cannot resolve the
curvature between coarse grid nodes, leading to artifacts in the solution. To resolve this issue,
we have presented a method to project the fine grid nodes to the sphere while maintaining the
block-structured nature of the grid. Tests show that this resolves the geometry artifacts, at
the cost however of a reduced node-level performance. Current but unfinished work is aiming
to reduce the computational costs of the approach with the help of a polynomial interpolation
of the curvature, and a mesh that resolves curvature only near the boundary.

Finally, we have presented an application of the HHG software package to the question
of the depth and viscosity of the asthenosphere. We have found that fast velocities of up
to 20 cm/a in an asthenospheric channel of 100 km thickness are dynamically feasible and
consistent with a wide set of geological direct and indirect observations.
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Gradl, T., and U. Rüde (2008), High performance multigrid in current large scale parallel
computers, in 9th Workshop on Parallel Systems and Algorithms (PASA), vol. 124, pp.
37–45.
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Appendix





A Code Example for a Projected Coordi-
nate Smoother in HHG

Listing A.1: On-the-fly stencil assembly and application for projected coordinates and con-
stant coefficients.

// Gauss-Seidel smoother for constant coefficients and projected coordinates on a tetrahedron

void tet_gs_coords(std::vector<double*> &u, std::vector<double*> &f, std::vector<double*> &X,

std::vector<hhgTetrahedronOperator<double>*> oprTypes, int tsize) {

const int tet_mcq = 0,

const int tet_me = 1;

const int tet_mnw = 2;

const int tet_mn = 3;

const int tet_ts = 4;

const int tet_tse = 5;

const int tet_tw = 6;

const int tet_tc = 7;

const int tet_bc = 8;

const int tet_be = 9;

const int tet_bnw = 10;

const int tet_bn = 11;

const int tet_ms = 12;

const int tet_mse = 13;

const int tet_mw = 14;

const int tet_mc = 15;

int mp, tp, bp;

int mp_mr, mp_tr, mp_br;

int tp_mr, tp_br;

int bp_mr, bp_tr;

int p0, p1, p2, p3;

bp = 0;

mp = PLANESIZE(tsize);

tp = mp + PLANESIZE(tsize - 1);

// The 15-point stencils for all operators and the local element matrix

std::vector<double*> stencil;

double c[16];

// Coordinates of the four corners of the fine grid tetrahedron

double coords[4*3];
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// We store 16 stencil entries, one of them is the inverse of the central element

for (int op = 0; op < oprTypes.size(); ++op) {

stencil.push_back(new double[16]);

}

// Main loops over all inner points within the coarse grid tetrahedron

for (int k = 1; k < (tsize - 3); ++k) {

bp_mr = bp + tsize - k + 1;

bp_tr = bp + 2 * (tsize - k + 1) - 1;

mp_br = mp;

mp_mr = mp + tsize - k;

mp_tr = mp + 2 * (tsize - k) - 1;

tp_br = tp;

tp_mr = tp + tsize - k - 1;

for (int j = 1; j < (tsize - k - 2); ++j) {

for (int i = 1; i < (tsize - j - k - 1); i = i + 1) {

// Loop over all operators we want to apply

for (int op = 0; op < oprTypes.size(); ++op) {

// Object that provides the method to calculate the local stiffness matrix

hhgTetrahedronOperator<double>& localMatrix = *oprTypes[op];

/////////////////////////////////////////

// group zero element

/////////////////////////////////////////

// position zero

p0 = TET_MC; p1 = TET_ME; p2 = TET_MN; p3 = TET_TC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mc] = c[0 + 0*4];

stencil[op][tet_me] = c[0 + 1*4];

stencil[op][tet_mn] = c[0 + 2*4];

stencil[op][tet_tc] = c[0 + 3*4];

// position one

p0 = TET_MW; p1 = TET_MC; p2 = TET_MNW; p3 = TET_TW;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mw] = c[1 + 0*4];

stencil[op][tet_mc] += c[1 + 1*4];

stencil[op][tet_mnw] = c[1 + 2*4];

stencil[op][tet_tw] = c[1 + 3*4];
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// position two

p0 = TET_MS; p1 = TET_MSE; p2 = TET_MC; p3 = TET_TS;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_ms] = c[2 + 0*4];

stencil[op][tet_mse] = c[2 + 1*4];

stencil[op][tet_mc] += c[2 + 2*4];

stencil[op][tet_ts] = c[2 + 3*4];

// position three

p0 = TET_BC; p1 = TET_BE; p2 = TET_BN; p3 = TET_MC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bc] = c[3 + 0*4];

stencil[op][tet_be] = c[3 + 1*4];

stencil[op][tet_bn] = c[3 + 2*4];

stencil[op][tet_mc] += c[3 + 3*4];

/////////////////////////////////////////

// group one element

/////////////////////////////////////////

// position zero

p0 = TET_MC; p1 = TET_TS; p2 = TET_TW; p3 = TET_TC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mc] += c[0 + 0*4];

stencil[op][tet_ts] += c[0 + 1*4];

stencil[op][tet_tw] += c[0 + 2*4];

stencil[op][tet_tc] += c[0 + 3*4];

// position one

p0 = TET_BN; p1 = TET_MC; p2 = TET_MNW; p3 = TET_MN;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bn] += c[1 + 0*4];

stencil[op][tet_mc] += c[1 + 1*4];

stencil[op][tet_mnw] += c[1 + 2*4];

stencil[op][tet_mn] += c[1 + 3*4];
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// position two

p0 = TET_BE; p1 = TET_MSE; p2 = TET_MC; p3 = TET_ME;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_be] += c[2 + 0*4];

stencil[op][tet_mse] += c[2 + 1*4];

stencil[op][tet_mc] += c[2 + 2*4];

stencil[op][tet_me] += c[2 + 3*4];

// position three

p0 = TET_BC; p1 = TET_MS; p2 = TET_MW; p3 = TET_MC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bc] += c[3 + 0*4];

stencil[op][tet_ms] += c[3 + 1*4];

stencil[op][tet_mw] += c[3 + 2*4];

stencil[op][tet_mc] += c[3 + 3*4];

/////////////////////////////////////////

// group two element

/////////////////////////////////////////

// position zero

p0 = TET_MC; p1 = TET_MNW; p2 = TET_TW; p3 = TET_TC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mc] += c[0 + 0*4];

stencil[op][tet_mnw] += c[0 + 1*4];

stencil[op][tet_tw] += c[0 + 2*4];

stencil[op][tet_tc] += c[0 + 3*4];

// position one

p0 = TET_MSE; p1 = TET_MC; p2 = TET_TS; p3 = TET_TSE;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mse] += c[1 + 0*4];

stencil[op][tet_mc] += c[1 + 1*4];

stencil[op][tet_ts] += c[1 + 2*4];

stencil[op][tet_tse] = c[1 + 3*4];

// position two
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p0 = TET_BE; p1 = TET_BN; p2 = TET_MC; p3 = TET_ME;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_be] += c[2 + 0*4];

stencil[op][tet_bn] += c[2 + 1*4];

stencil[op][tet_mc] += c[2 + 2*4];

stencil[op][tet_me] += c[2 + 3*4];

// position three

p0 = TET_BC; p1 = TET_BNW; p2 = TET_MW; p3 = TET_MC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bc] += c[3 + 0*4];

stencil[op][tet_bnw] = c[3 + 1*4];

stencil[op][tet_mw] += c[3 + 2*4];

stencil[op][tet_mc] += c[3 + 3*4];

/////////////////////////////////////////

// group three element

/////////////////////////////////////////

// position zero

p0 = TET_MC; p1 = TET_ME; p2 = TET_TSE; p3 = TET_TC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mc] += c[0 + 0*4];

stencil[op][tet_me] += c[0 + 1*4];

stencil[op][tet_tse] += c[0 + 2*4];

stencil[op][tet_tc] += c[0 + 3*4];

// position one

p0 = TET_MW; p1 = TET_MC; p2 = TET_TS; p3 = TET_TW;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mw] += c[1 + 0*4];

stencil[op][tet_mc] += c[1 + 1*4];

stencil[op][tet_ts] += c[1 + 2*4];

stencil[op][tet_tw] += c[1 + 3*4];

// position two

p0 = TET_BNW; p1 = TET_BN; p2 = TET_MC; p3 = TET_MNW;
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coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bnw] += c[2 + 0*4];

stencil[op][tet_bn] += c[2 + 1*4];

stencil[op][tet_mc] += c[2 + 2*4];

stencil[op][tet_mnw] += c[2 + 3*4];

// position three

p0 = TET_BC; p1 = TET_BE; p2 = TET_MSE; p3 = TET_MC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bc] += c[3 + 0*4];

stencil[op][tet_be] += c[3 + 1*4];

stencil[op][tet_mse] += c[3 + 2*4];

stencil[op][tet_mc] += c[3 + 3*4];

/////////////////////////////////////////

// group four element

/////////////////////////////////////////

// position zero

p0 = TET_MC; p1 = TET_TS; p2 = TET_TSE; p3 = TET_TC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mc] += c[0 + 0*4];

stencil[op][tet_ts] += c[0 + 1*4];

stencil[op][tet_tse] += c[0 + 2*4];

stencil[op][tet_tc] += c[0 + 3*4];

// position one

p0 = TET_BN; p1 = TET_MC; p2 = TET_ME; p3 = TET_MN;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bn] += c[1 + 0*4];

stencil[op][tet_mc] += c[1 + 1*4];

stencil[op][tet_me] += c[1 + 2*4];

stencil[op][tet_mn] += c[1 + 3*4];

// position two

p0 = TET_BNW; p1 = TET_MW; p2 = TET_MC; p3 = TET_MNW;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];
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coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bnw] += c[2 + 0*4];

stencil[op][tet_mw] += c[2 + 1*4];

stencil[op][tet_mc] += c[2 + 2*4];

stencil[op][tet_mnw] += c[2 + 3*4];

// position three

p0 = TET_BC; p1 = TET_MS; p2 = TET_MSE; p3 = TET_MC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bc] += c[3 + 0*4];

stencil[op][tet_ms] += c[3 + 1*4];

stencil[op][tet_mse] += c[3 + 2*4];

stencil[op][tet_mc] += c[3 + 3*4];

/////////////////////////////////////////

// group five element

/////////////////////////////////////////

// position zero

p0 = TET_MC; p1 = TET_MNW; p2 = TET_MN; p3 = TET_TC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mc] += c[0 + 0*4];

stencil[op][tet_mnw] += c[0 + 1*4];

stencil[op][tet_mn] += c[0 + 2*4];

stencil[op][tet_tc] += c[0 + 3*4];

// position one

p0 = TET_MSE; p1 = TET_MC; p2 = TET_ME; p3 = TET_TSE;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_mse] += c[1 + 0*4];

stencil[op][tet_mc] += c[1 + 1*4];

stencil[op][tet_me] += c[1 + 2*4];

stencil[op][tet_tse] += c[1 + 3*4];

// position two

p0 = TET_MS; p1 = TET_MW; p2 = TET_MC; p3 = TET_TS;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];
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coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_ms] += c[2 + 0*4];

stencil[op][tet_mw] += c[2 + 1*4];

stencil[op][tet_mc] += c[2 + 2*4];

stencil[op][tet_ts] += c[2 + 3*4];

// position three

p0 = TET_BC; p1 = TET_BNW; p2 = TET_BN; p3 = TET_MC;

coords[0] = X[0][p0]; coords[ 1] = X[1][p0]; coords[ 2] = X[2][p0];

coords[3] = X[0][p1]; coords[ 4] = X[1][p1]; coords[ 5] = X[2][p1];

coords[6] = X[0][p2]; coords[ 7] = X[1][p2]; coords[ 8] = X[2][p2];

coords[9] = X[0][p3]; coords[10] = X[1][p3]; coords[11] = X[2][p3];

// Calculate the local stiffness matrix and add the elements to the stencil

localMatrix.matrix(c, coords);

stencil[op][tet_bc] += c[3 + 0*4];

stencil[op][tet_bnw] += c[3 + 1*4];

stencil[op][tet_bn] += c[3 + 2*4];

stencil[op][tet_mc] += c[3 + 3*4];

}

// Do we have a vector-valued problem?

if (f.size() > 1) {

double tf[3] = { f[0][mp_mr + i], f[1][mp_mr + i], f[2][mp_mr + i] };

int opm[3][3] = { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 } };

// We have three components on our unknown vector and on our right hand side.

for (int opi = 0; opi < 3; ++opi) {

for (int com = 0; com < 3; ++com) {

int op = opm[com][opi];

tf[com] = tf[com] - stencil[op][1] * u[opi][mp_mr + i + 1]

- stencil[op][2] * u[opi][mp_tr + i - 1]

- stencil[op][3] * u[opi][mp_tr + i]

- stencil[op][4] * u[opi][tp_br + i]

- stencil[op][5] * u[opi][tp_br + i + 1]

- stencil[op][6] * u[opi][tp_mr + i - 1]

- stencil[op][7] * u[opi][tp_mr + i]

- stencil[op][8] * u[opi][bp_mr + i]

- stencil[op][9] * u[opi][bp_mr + i + 1]

- stencil[op][10] * u[opi][bp_tr + i - 1]

- stencil[op][11] * u[opi][bp_tr + i]

- stencil[op][12] * u[opi][mp_br + i]

- stencil[op][13] * u[opi][mp_br + i + 1]

- stencil[op][14] * u[opi][mp_mr + i - 1];

}

}

double invdet = 1.0 / (stencil[0][15] * stencil[4][15] * stencil[8][15]

- stencil[0][15] * stencil[5][15] * stencil[5][15]

- stencil[1][15] * stencil[1][15] * stencil[8][15]

+ 2 * stencil[1][15] * stencil[2][15] * stencil[5][15]

- stencil[2][15] * stencil[2][15] * stencil[4][15]);



91

double b11 = ( stencil[4][15] * stencil[8][15]

- stencil[5][15] * stencil[5][15]) * invdet;

double b12 = (-stencil[1][15] * stencil[8][15]

+ stencil[2][15] * stencil[5][15]) * invdet;

double b13 = ( stencil[1][15] * stencil[5][15]

- stencil[2][15] * stencil[4][15]) * invdet;

double b22 = ( stencil[0][15] * stencil[8][15]

- stencil[2][15] * stencil[2][15]) * invdet;

double b23 = (-stencil[0][15] * stencil[5][15]

+ stencil[1][15] * stencil[2][15]) * invdet;

double b33 = ( stencil[0][15] * stencil[4][15]

- stencil[1][15] * stencil[1][15]) * invdet;

u[0][mp_mr + i] = (b11 * tf[0] + b12 * tf[1] + b13 * tf[2]);

u[1][mp_mr + i] = (b12 * tf[0] + b22 * tf[1] + b23 * tf[2]);

u[2][mp_mr + i] = (b13 * tf[0] + b23 * tf[1] + b33 * tf[2]);

} else {

// We have a scalar problem

// compute center weight quotient

stencil[0][tet_mcq] = 1.0 / stencil[0][tet_mc];

int comp = 0;

int op = 0;

u[comp][mp_mr + i] = stencil[op][0] * (f[comp][mp_mr + i]

- stencil[op][1] * u[comp][mp_mr + i + 1]

- stencil[op][2] * u[comp][mp_tr + i - 1]

- stencil[op][3] * u[comp][mp_tr + i]

- stencil[op][4] * u[comp][tp_br + i]

- stencil[op][5] * u[comp][tp_br + i + 1]

- stencil[op][6] * u[comp][tp_mr + i - 1]

- stencil[op][7] * u[comp][tp_mr + i]

- stencil[op][8] * u[comp][bp_mr + i]

- stencil[op][9] * u[comp][bp_mr + i + 1]

- stencil[op][10] * u[comp][bp_tr + i - 1]

- stencil[op][11] * u[comp][bp_tr + i]

- stencil[op][12] * u[comp][mp_br + i]

- stencil[op][13] * u[comp][mp_br + i + 1]

- stencil[op][14] * u[comp][mp_mr + i - 1]);

}

}

bp_mr = bp_tr;

bp_tr = bp_tr + tsize - j - k;

mp_br = mp_mr;

mp_mr = mp_tr;

mp_tr = mp_tr + tsize - j - k - 1;

tp_br = tp_mr;

tp_mr = tp_mr + tsize - j - k - 1;

}

bp = mp;

mp = tp;
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tp = tp + PLANESIZE(tsize-k-1);

}

}
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