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A B S T R A C T

Animals are able to form associative memories and benefit from
past experience. In classical conditioning an animal is trained
to associate an initially neutral stimulus by pairing it with a
stimulus that triggers an innate response. The neutral stimulus
is commonly referred to as conditioned stimulus (CS) and the
reinforcing stimulus as unconditioned stimulus (US). The un-
derlying neuronal mechanisms and structures are an intensely
investigated topic.

The fruit fly Drosophila melanogaster is a prime model animal to
investigate the mechanisms of learning. In this thesis we pro-
pose fundamental circuit motifs that explain aspects of aversive
olfactory learning as it is observed in the fruit fly. Changing
parameters of the learning paradigm affects the behavioral out-
come in different ways.

The relative timing between CS and US affects the hedonic
value of the CS. Reversing the order changes the behavioral
response from conditioned avoidance to conditioned approach.
We propose a timing-dependent biochemical reaction cascade,
which can account for this phenomenon.

In addition to form odor-specific memories, flies are able to as-
sociate a specific odor intensity. In aversive olfactory condition-
ing they show less avoidance to lower and higher intensities
of the same odor. However the layout of the first two olfactory
processing layers does not support this kind of learning due
to a nested representation of odor intensity. We propose a ba-
sic circuit motif that transforms the nested monotonic intensity
representation to a non-monotonic representation that supports
intensity specific learning.

ix



Flies are able to bridge a stimulus free interval between CS and
US to form an association. It is unclear so far where the stim-
ulus trace of the CS is represented in the fly’s nervous system.
We analyze recordings from the first three layers of olfactory
processing with an advanced machine learning approach. We
argue that third order neurons are likely to harbor the stimulus
trace.
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1
I N T R O D U C T I O N

1.1 learning and memory

Learning is the ability of an organism to change its behavior
based on experience. Therefore an external input has to lead
to the change of an internal state. By storing this new state
in a memory, the organism is able to behave differently to a
subsequent exposure to the same stimulus.

In the work of this thesis we work on the topic of associative
learning. Here the organism learns to link initially indepen-
dent stimuli or behaviors together by training. There is a com-
mon separation between two sub-types of associative learning,
called operant conditioning and classical conditioning. In op-
erant conditioning an innate behavior is strengthened or weak-
ened by an external stimulus. Classical conditioning links an in-
nate behavioral response to a previously neutral stimulus. We
focus on classical conditioning in this thesis and continue there-
fore with a detailed introduction to the topic.

1.1.1 Classical Conditioning

Classical conditioning is the process of linking an innate behav-
ioral stimulus response with an initially neutral stimulus. This
requires first an unconditioned stimulus (US) that produces an
innate unconditioned response (UR). For example, upon touch-
ing a hot surface one naturally pulls back the hand. And sec-
ondly it requires an initially neutral stimulus, the conditioned
stimulus (CS), which elicits no behavioral response. This could
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2 introduction

be the sound of a bell. In the training phase of classical condi-
tioning the CS is temporally paired with the US by presenting
them together. If the training was successful, that means if an
association between both stimuli is formed, a subsequent pre-
sentation of the CS alone triggers a conditioned response (CR).
It is worth making a distinction between UR and CR, as they
are not necessarily identical.

Classical condition became famous by Ivan Pavlov’s seminal
work around the turn of the 20

th century ([1], therefore known
as Pavlovian conditioning). In his experiments Pavlov trained
dogs to associate the presentation of food with the sound of an
electric bell. In this setup the presentation of food acts as US. A
dog’s natural (unconditioned) response to food is an increased
saliva secretion rate. The sound of the bell acts as CS and elic-
its no behavioral response before training. In the training trial
Pavlov presented first the sound followed by the presentation
of food. After repeated training trails the sound alone triggered
an increased salivation, indicating that the dogs indeed formed
and association between US and CS.

A comprehensive overview about classical conditioning can be
found in Murphy and Lupfer [2]. In the next section I will focus
on the relevant aspects of classical conditioning for this thesis
and describe the corresponding experimental paradigm used
for acquiring the data that underlies the proposed models in
this thesis.

1.1.2 Olfactory Learning

Drosophila melanogaster has been used successfully as model an-
imal to investigate learning and memory on both a behavioral
and functional level. A well-established paradigm of associative
learning is an aversive olfactory learning paradigm introduced
by Quinn et al. [3] and refined by Tully and Quinn [4]. As de-
scribed above associative learning consists of linking an uncon-
ditioned stimulus (US) with unconditioned response (UR) with
a conditioned stimulus (CS) to reveal a conditioned response
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(CR). Olfactory learning uses an odor stimulus as CS and elec-
tric shock serves as aversive CS. The electric shock triggers a
reflexive avoidance response.

In the experiment, flies are typically trained en masse in groups
of about 50 flies. The flies are put into a training tube that is
lined with an electric wire to deliver the shock. The tube’s di-
ameter is small such that flies cannot fly and are in contact with
the electric wire. During the whole experiment, air is sucked
through the tube at a constant rate. Odor is diluted in liquid
and placed in an odor cup. The cup is designed such that it
can be mounted onto the tube and allows air to flow through
it. Odor evaporates in the air and is delivered to the flies in the
tube.

During the training phase first a control odor is delivered to
the flies. Then, after a temporal gap on the order of minutes
the training odor is placed at the end of the tube and an elec-
tric shock is delivered by applying a voltage difference to the
electric wire.

After training, flies are transferred into the middle of a “T-
maze”. The maze consists of two tubes extending in opposite
directions, again with odor cups at the end and air flowing
through both cups and tubes towards the middle of the maze
where the air is sucked out. One cup contains the trained odor,
the other the control odor. Flies can now move into either arm.

To evaluate the flies learning ability, flies in both tubes are
counted and a preference index (PI) is calculated as the differ-
ence between the number of flies on both sides normalized by
the total number of flies: PI = (#trained odor − #control odor)/#total.
The PI ranges from −1 to 1, where 1 means all flies moved
to the side of the trained odor, 0 equal number of flies in both
arms and −1 that all flies went on the side of the control odor.

The choice of the flies in the maze will be influenced by their
innate response to the odor. To avoid a misinterpretation of the
PI a reciprocal control group is trained. For this group training
and control odor are switched and PIcontrol is calculated. Then
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a learning index (LI) is calculated as the mean PI of trained and
reciprocal group as LI = (PI + PIcontrol)/2. Assuming that in-
nate odor preference and trained odor preference sum linearly
the LI gives the net associative effect of training. It ranges from
−1 to 1, where 0 means no associative training could be ob-
served. A positive LI corresponds to a conditioned approach
towards the trained odor in the test, a negative LI to a condi-
tioned avoidance.

1.1.3 Relative Timing of US and CS

An experimental parameter that influences the net associative
effect of training, i.e., the LI, is the temporal relationship be-
tween CS and US. The inter stimulus interval (ISI) expresses the
relative timing between CS and US. It is the time between onset
of the electric shock1 and onset of the odor stimulus (see Fig. 1,
upper left part for an illustration). Plotting the LI vs. the corre-
sponding ISI results in a behavioral response curve sketched in
the lower part of Fig. 1 (for the corresponding experiment, see
Tanimoto et al. [5]).

For large ISIs on the order of tens of seconds, both positive and
negative, the LI is not different from zero, which indicates that
flies are not able to associate odor and shock.

For negative ISIs the odor precedes electric shock. We refer to
cases with a stimulus-free interval between both stimuli as trace
conditioning. The flies need to bridge this stimulus-free inter-
val to form an association until the presentation of the electric
shock. We call this neural stimulus correlate of the odor the
olfactory stimulus trace. As indicated in the lower left part of
Fig. 1, flies are indeed able to bridge this gap and show a con-
ditioned avoidance response in the test situation (see also Galili
et al. [6]). In this case the flies learn that the odor predicts the
electric shock.

1 The electric shock is usually not delivered as continuous current through
the wire but as pulse of electric shocks over a certain amount of time. We
refer to this as one reinforcement stimulus.
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Figure 1: Timing-dependent behavioral response curve for aver-
sive classical conditioning. In training, an unconditioned
stimulus (US), e.g., electric shock, is paired with a condi-
tioned stimulus (CS), e.g., an odor. Presenting the condi-
tioned stimulus alone tests the associative strength. The tim-
ing between the two is characterized by the inter stimulus
interval (ISI), which we define from onset of the shock to
onset of the odor. The upper part shows different timing re-
lations: When the odor (blue) precedes the electric shock and
there is a stimulus free interval between the two, we refer to
it as trace conditioning. Delay conditioning refers to the situa-
tion when odor precedes shock, but both stimuli overlap in
time. For the reversed order, shock before odor, we use the
term relief learning. The lower part depicts the learning in-
dex (LI) of a behavioral learning experiment with odor and
shock as CS and US. The LI measures the associative effect
between CS and US in an experiment, which leads to either a
conditioned approach (positive LI) or conditioned avoidance
(negative LI, see main text for a detailed explanation of the
learning paradigm and how the LI is calculated). When the
odor precedes the shock (negative ISIs), the trained odor is
avoided in the test; whereas the trained odor is approached,
if shock precedes the odor (positive ISIs). We interpret this bi-
modality of the behavioral response curve as a change in the
hedonic value of the CS that depends on the relative timing
of CS and US.



6 introduction

For shorter negative ISIs odor and shock stimulus overlap in
time. We call this delay conditioning. Similar to trace condition-
ing, the odor signals the onset of electric shock and triggers
a conditioned avoidance response after training. Compared to
trace conditioning the LI is larger for a single training trial. Flies
form a stronger association for shorter ISIs.

Interestingly the reversal of the order of both stimuli changes
not only the sign of the ISI but also the sign of the resulting
LI (see the right side of the lower part of Fig. 1). Flies show a
conditioned approach towards the trained odor in the test. We
interpret this as a change of the hedonic value of the US. The
associative strength is less strong than for delay conditioning
and the ISI range for learning is smaller.

The opponent process theory proposed by Solomon and Corbit
[7] and Solomon [8] provides a basis to understand the change
from a conditioned avoidance to conditioned approach. In this
theory an unconditioned stimulus changes an organism’s state
from neutral to an evoked state A. After offset of the stimulus,
the state variable does not simply decay back to the neutral
state but rebounds into an opposite state B. From the opposite
state it decays back to the neutral state. Applying this concept
to electric shock as US the evoked state A corresponds to a
state of pain; whereas the opposing state is a relief from pain.
For positive ISIs the presentation of the odor falls into the time
window where the fly is in a state of relief. Consequently the
odor is positively associated and the flies show a conditioned
approach in the test. We therefore refer to this type of learning
as relief learning.

Tanimoto et al. [5] only used single training trials for all ISIs
which led to the behavioral response curve depicted in Fig. 1. It
is interesting to note however that repeated training trials lead
to the same asymptotic LIs for trace and delay conditioning
[6]. Galili et al. [6] could also show the effect of changing the
ISI monotonically for repeated training trials. Increasing the ISI
from trial to trial leads to a better behavioral performance than
decreasing the ISIs. Past experience enables the fly to bridge
longer time intervals between both stimuli.
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1.1.4 Stimulus Intensity

Stimulus intensity affects the LI in a behavioral experiment. For
electric shock as US, larger number of electric shocks increases
the behavioral performance [4]. Increasing the voltage of the
electric shock also increases the LI [4, 9].

At first increasing odor intensity also increases learning per-
formance. For higher intensities learning performance however
decreases again [10].

Yarali et al. [10] investigated the effect of a mismatch of odor
intensity during training and test. In a first step three odor in-
tensities are defined (low, medium and high). These are cho-
sen such that learning performance increases with increasing
intensity. Then groups of flies are trained at the medium inten-
sity and tested either at low, medium or high intensity. Testing
at the same medium intensity results in a baseline LI. When
tested against a lower intensity the resulting LI is smaller than
the baseline LI, as one would expect from the way the three
intensities were chosen. But also when tested against a higher
intensity the learning index is smaller than the baseline LI. We
conclude that flies are able to form intensity specific associa-
tions of an odor.

1.2 the fruit fly drosophila melanogaster

For more than 100 years the fruit fly Drosophila melanogaster
has been a widely used model organism in various fields of
biology, including genetics, behavior, learning and memory and
development. Despite the relatively small number of about 300

000 neurons in their brain it shows a remarkable behavioral
diversity. For a review of the history of research with Drosophila
melanogastsr see Bellen et al. [11].
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1.2.1 Neuronal Organization of the Olfactory System

Lateral horn

Antennal
lobe

Antennal
nerve

Antenna

Mushroom
body

Calyx Kenyon cell

Figure 2: Sketch of Drosophila head with olfactory pathway.
Odor molecules bind to olfactory receptor neurons that
express receptors in the antennae. Olfactory receptor neu-
rons project via the antennal nerve (green) to the antennal
lobes where they form synapses with projection neurons in
anatomical clusters called glomeruli (red sphere-like struc-
tures). Projection neurons (yellow fibers) carry odor informa-
tion to the lateral horn and the mushroom body calyx (mush-
room body depicted in blue). In the mushroom body calyx
they form synapses with Kenyon cells. Taken from [12].

The neuronal organization of the olfactory system shares re-
markable similarities between different species of invertebrates,
but also between invertebrates and vertebrates. [12–16]. Here
I concentrate on the olfactory system of Drosophila melanogas-
ter.

The first step of odor detection happens on sensory hairs, called
sensilla, on antennae and maxillary palps (see Fig. 2 for an il-
lustration). Odor molecules enter through pores in the sensilla,
which house the dendrites of first order sensory neurons, called
olfactory receptor neurons (ORNs) [17]. Upon uptake of sen-
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Figure 3: Schematic depiction of fruit fly olfactory system. It
is organized in a hierarchical layered structure. In the an-
tenna, olfactory receptors (ORs) expressed by OR neurons
(ORNs) bind odor molecules, which leads to spiking activity
of ORNs. Each ORN typically expresses only one receptor
type. ORNs project to the antennal lobe (AL), the first brain
structure of olfactory processing. All ORNs expressing the
same receptor type converge onto the same neuronal struc-
ture, called glomerulus (depicted as gray dashed circle). The
convergence ratio is high, between 10 to 100 ORNs project to
the same glomerulus. In the glomeruli ORNs form excitatory
synapses with projection neurons (PNs). Odor information is
processed in the AL by different types of local neurons (LNs),
both inhibitory and excitatory (iLNs, eLNs). LNs are both
uni- and multi-glomerular, innervating only one, a few or al-
most all glomeruli. PNs transfer the odor information to two
distinct third order regions, the mushroom body (MB) and
the lateral horn (LH). In the MB PNs form synapses with
∼2500 Kenyon cells (KCs). Connections are quasi-random
and sparse. The MB is the center of associative learning
where also the appetitive and aversive reinforcement signals
are transmitted. Odor representation in the LH is topograph-
ically structured. The LH provides an innate evaluation of
odors. The output of both structures drives the behavioral
response.
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sillum lymph, odorant molecules are transported via binding
proteins to the olfactory receptors expressed by the ORNs. A
transduction cascade leads to spiking activity in ORNs. These
early steps of olfactory transduction, including uptake of odor-
ant molecules by olfactory receptors and the spike generation
within the ORN have been studied and modeled in detail [18–
21].

Each sensillum houses dendrites from two to four ORNs [22,
23]. Each individual ORN expresses only one functional re-
ceptor type [24]. Around 50 different olfactory receptor types
are known, and each receptor type is expressed by 10 to 100

cells [23, 25–27]. The olfactory system includes around 1200

ORNs. ORNs send their axons to the first processing stage
in the fly olfactory system, the antennal lobe (AL). The an-
tennal lobe consists of anatomically distinct neuropils called
glomeruli. All ORNs expressing the same receptor type project
to the same glomerulus [24], giving a total number of around 50

glomeruli. Glomerular positions are stereotypic between types,
which makes identification of individual glomeruli in different
flies possible [28–30].

In the glomeruli ORNs form excitatory synapses with second
order neurons, the so-called projection neurons (PNs). Just as
individual ORNs only innervate a single glomerulus, excita-
tory PNs are monoglomerular, meaning they only receive input
from one glomerulus [31]. On average there are three excitatory
PNs per glomerulus, making a total number of around 150 PNs.
On the other hand multiglomerular PNs are mainly inhibitory
and innervate many glomeruli. In addition to ORNs and PNs
a network of local neurons is present within the AL. Excitatory
and inhibitory LNs can be local to one glomerulus or connect
multiple glomeruli with each other [32–34].

From the AL PNs convey the olfactory information to two dis-
tinct brain regions. Uniglomerular excitatory PNs project to the
mushroom body (MB) and the lateral horn (LH), whereas the
majority of inhibitory multiglomerular PNs only project to the
LH [35–38]. In the MB calyx, PNs form excitatory synapses with
Kenyon cells (KCs). The connection pattern between AL and
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MB is thought to be quasi random and sparse [39]: PNs form
synapses with around 5 percent of the around 2500 KCs [12].
In contrast to the random connections from AL to MB, con-
nections to the LH are highly stereotyped and the lateral horn
contains less neurons than the MB [37, 40].

The neural organization of the later stages after MB and LH is
less clear. The synaptic output of KCs converges onto only a
few output neurons (∼40) [41]. The valence of a trained odor is
suggested to be specific to the activity of a small subset of MB
output neurons [42].

1.2.2 Processing of Olfactory Information

In the previous chapter I described the anatomical organization
of the olfactory system. Here I will explain how odors are coded
in the olfactory system and how the representation changes
from one anatomical layer to the next.

The first order neurons are the ORNs. In the absence of input
ORNs exhibit a level of baseline firing rate [43]. Upon binding
of odors to olfactory receptors spike rates quickly peak and
ORNs maintain a stable spiking activity [23, 43–47]. Instead of
increasing the spike rates, ORN baseline firing rates can also be
suppressed in response to an odor [43–45]. ORNs of the same
type fire independently [48]. ORN response profiles are diverse:
Some ORN types are broadly tuned and activated by many lig-
ands; whereas other are narrowly tuned, responding strongly
only to very few to single ligands. Most ligands activate several
ORN types [43]. Increasing odor intensity leads to higher firing
rates in ORNs that saturates for high intensities. The dynamic
range typically covers several orders of magnitude of odor in-
tensity. The sensitivity of different ORN types varies depending
on the ligand, which means that for higher intensities also the
number of activated ORN types increases [43]. The dynamics
of ORN responses are to a certain degree invariant under inten-
sity changes [49, 50]. On the level of ORNs odors are encoded
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by the combination of activated ORNs with respective firing
rates.

ORNs are the main excitatory drive for PNs. Depending on
the receptor, around 10 to 100 ORNs express the same recep-
tor type and converge onto the same glomerulus [23, 51]. As a
consequence, PN response are more sensitive to smaller inten-
sities and less variable from trial-to-trial compared to ORN re-
sponse [52]. PN response also peak earlier than ORN responses
[52, 53] and they are more sensitive to small changes in ORN
firing rates than to changes at high frequencies [54].

ORNs and PNs also drive a network of excitatory and inhibi-
tory local neurons in the AL that shape the odor representa-
tion and responses of PNs. This network has been studied in
great detail [33, 34, 52, 53, 55–57]. Lateral inhibition of LNs
between different glomeruli lead to a transformation that has
been termed input gain control [54]. For higher intensities more
ORNs are activated and activated ORNs increase their firing
rate. In turn this also increases lateral inhibition between glo-
meruli, leading to a more balanced response of PNs with in-
creasing odor intensity. Another effect of lateral inhibition is
contrast enhancement of odor representation of different odors
[54, 58].

From the AL PNs project to the LH and MB. In the MB calyx
they form synapses with KCs, the MB intrinsic neurons. KCs in
the MB respond sparsely and stereo-typically to different odors
[59–61]. In contrast to the AL, KC responses are not conserved
between different flies [62]. On the level of KCs the represen-
tation of an odor is a sparse combinatorial pattern of activated
cells. The activation of LH neurons is anatomically patterned.
Inhibitory neurons innervating the whole AL convey a summed
inhibitory input to the LH, which leads to non-monotonic re-
sponses of at least some LH neurons [37, 40].

One aspect I disregarded in this introduction of odor process-
ing are so-called labeled line odors. These odors most likely
have a specific innate meaning to the fly, e.g., pheromones [63–
67] and activate only a single ORN type. Although this labeled
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line coding is very interesting from a behavioral and evolution-
ary point of view, in the context of learning and memory with
respect to innately neutral odors, which I consider in this thesis,
I will not go into more detail.

1.3 modeling olfaction

After giving an overview about both anatomical and functional
organization of the Drosophila melanogaster olfactory system, I
will now introduce models of olfaction and learning that touch
the topics covered in the work of this thesis.

1.3.1 Odor Coding

Flies are able to detect and discriminate different odors and
concentration, which can be tested with the classical condition-
ing paradigm introduced above ([3, 4, 10], but also other insects,
e.g., bees [68, 69] and mice [70]). But how are odors encoded in
the fly’s nervous system? Most odors activate more than one
receptor type and consequently more than one glomerulus di-
rectly. As such the quality of an odor cannot be determined by
extracting information from a single ORN or glomerulus but it
is encoded in the combined activation pattern of all glomeruli.
This is what we call a combinatorial code. A fitting auditory
analogy has been suggested by Galizia and Szyszka [71]. In
music a chord consists of several notes. The note itself does not
reveal the chord, but changing only one note within a chord
results in a very different sound.

We can describe a combinatorial code in mathematical terms
by a multi-dimensional space. Each dimension in the space cor-
responds to the response of one unit of the code, which is in
our case the response of one glomerulus. The AL activity of the
∼50 glomeruli can then be described by a vector of length 50,
each entry indicating the activity of a given glomerulus. To con-
sider temporal coding aspects of coding one analyzes the evo-
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lution of the vector over time, which is a trajectory in the multi-
dimensional space. So in each instant of time the state of the
AL network corresponds to a point in the multi-dimensional
space.

How can this mathematical representation then help to under-
stand coding of odors? Fdez Galán et al. [72] performed a set of
experiments in honeybees in which they recorded optically PN
activity in the AL in response to a set of odors. Before odor pre-
sentation the activity is in a resting state that fluctuates around
the origin. Upon odor delivery the activity quickly changes
and reaches an odor specific fix point in the multi-dimensional
space. The fix point is stable during the time of odor presenta-
tion and repeated presentation of the stimulus results in similar
trajectories and fix points. After odor offset the activity ceases
and the trajectory decays back to the origin. To visualize the
evolution of the trajectories the authors performed a Principal
Component Analysis (PCA)2 [73, 74] on the multi-dimensional
AL space. It turns out that more than half of the variance in the
data is explained by the first three principle components.

Following the result that attractor points in the AL space repre-
sent odors this opens the possibility to separate and classify dif-
ferent odors within this space. A straight forward approach is
the linear discriminant analysis (LDA, [75]). It belongs to the class
of supervised machine learning models and classifies based
on a geometrical distance measure between points. For KC re-
sponses of flies Turner et al. [60] employed this method to clas-
sify odors responses. First they determined a mean odor attrac-
tor for each odor from repeated measurements. Then, for each
individual response, they calculate the Euclidean distance to
each of the mean odor attractors. Its smallest distance to an at-

2 PCA is an orthogonal basis transformation. The new basis is chosen such
that the new variables, called principle components, are linearly uncorre-
lated. The first principle component is along the axis of greatest variance
in the original data set, the second along the second along the axis of sec-
ond greatest variance and so on. PCA can be used to analyze the internal
variance structure of multi dimensional data. An important measure is the
variance explained by each principal component. For example, if most of
the variance within a data set is explained by only the first few principle
components, it might suffice to analyze the data in a lower dimensional
space.



1.3 modeling olfaction 15

tractor classifies the response. Implicitly this introduces separat-
ing planes symmetrically between all attractors that determine
the identity of each response.

A more sophisticated approach towards classifying odor re-
sponse are support vector machines (SVMs) [76–80]. An advan-
tage to the LDA is that also non-linear separating planes might
be used for classification. SVMs work on a higher dimensional
space than the original data by first projecting to this space with
an appropriate kernel function. The SVM then finds a separat-
ing hyperplane that maximizes the margin between two classes.
With the right kernel function also differences of only a small
subgroup within the observed variables can be exploited for a
classification. On the other hand SVMs require a finer tuning
of parameters and an appropriate choice of kernel functions.

1.3.2 Relative Timing of Odor and Shock

As introduced above, changing the relative timing of CS and
US changes the hedonic value of the CS: For odor - shock train-
ing, punishment is turned into reward. A question arising is
whether different competing processes take place or if there
is only one underlying process that explains both sides of the
curve shown in Fig. 1. The latter possibility is explored in a
model proposed by Drew and Abbott [81]. As basis they rec-
ognize the similarity between the time dependent experimen-
tal outcome and the effect of spike-timing-dependent plasticity
(STDP).

STDP is an activity dependent synaptic modification as a result
of paired firing of pre- and post-synaptic cells [82, 83]. Similar
to Hebbian learning [84], the synaptic weight changes if both
cells fire within a time frame of several tens of milliseconds.
For Hebbian learning the change of synaptic weight is zero if
both cells are active at different times and positive if both cells
are active at the same time. STDP extends this mechanism with
an asymmetric timing component. If the pre-synaptic cell re-
peatedly fires shortly before the post-synaptic cell the synaptic
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weight increases, a process termed long-term potentiation. If
the order of firing is reversed, i.e., the pre-synaptic spikes arrive
repeatedly after the post-synaptic spike, the synaptic weight de-
creases, a process called long-term depression ([82], see [85] for
a review). Plotting the change in synaptic efficacy against the
relative timing of pre- and post-synaptic spike results in a bi-
modal efficacy curve. Following the first experiments this phe-
nomenon has been described both by phenomenological and
detailed mechanistic models [86–91] . More complex combina-
tions of spikes lead to different forms of efficacy curves [92].
STDP is believed to underlie learning and information storage
in neuronal circuits [93–97].

The bimodal synaptic efficacy curve qualitatively resembles the
behavioral response curve of olfactory conditioning, but with
time-scales different by three order of magnitude. In their mod-
el Drew and Abbott [81] propose a mechanism that bridges
from the time-scale relevant for synaptic changes to the time-
scale relevant for behavior. Therefore they first assume that
STDP takes place in at the synapse detecting the coincidence
of odor and shock. Although not directly shown for Drosophila,
STDP could be observed in Kenyon cells of locust [98]. Second
they assume prolonged firing of pre-synaptic cells at a high
firing frequency. The prolonged firing mainly bridges the time
between odor and shock. Appropriate timing of spikes and a
number of repetitions leads to either synaptic facilitation or
depression onto the conditioned avoidance circuit. In the test
this will trigger the experimentally observed conditioned re-
sponse.

The described mechanism elegantly applies the idea of STDP to
serve as coincidence detection on a behaviorally relevant time-
scale. The proposed neurons are in all likelihood Kenyon cells,
that serve as coincidence detector of odor and shock in the Dro-
sophila olfactory system [99]. The known properties of Kenyon
cells however do not fit with the key assumptions of prolonged
firing and high rates [60, 62, 100].
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1.3.3 Convergence of Odor and Shock Signal in Kenyon Cells

Kenyon cells are necessary for flies to form olfactory memories
(as recently published, also for visual memories [101]). When
mushroom bodies are not intact, flies are not able to form as-
sociative memories [102–104]. Investigations with the temper-
ature sensitive dynamin transgene shibirets revealed the role
of KC output synapses. In this setting, synaptic transmission
can be blocked by raising the temperature. Blocking output
synapses from KC during training has no effect on memory
acquisition. However blocking output synapses during test im-
pairs memory retrieval, arguing for the memory to be stored
upstream of KC output synapses [105–108]. As shown by sev-
eral studies, KCs are also sufficient for the formation of aversive
olfactory memories [109–111].

Electric shock activates a dopaminergic signal that is delivered
to all KCs [112–116]. Dopamine binds to a G-protein-coupled
receptor (GPCR) on KCs, which activates the G protein within
the cell. An odor on the other hand only activates a small sub-
set of KCs, which leads to an increase in intra-cellular calcium
(Ca++) concentration [59, 117, 118]. Both signals most likely
converge on the Ca++-calmodulin-sensitive rut-adenlyl cyclase
[99, 119]. During training the adenlyl cyclase in odor activated
KCs is synergistically activated which leads to an increased pro-
duction of cAMP within these cells [99, 119]. cAMP in turn
strengthens the output synapses onto the conditioned avoid-
ance circuit [120, 121]. In the test situation the fly has to choose
between the trained odor and a different odor. The trained odor
activates the same cells as before, which leads to a stronger in-
put to the conditioned avoidance circuit compared to the un-
trained odor. Hence the fly will move away from the trained
odor, showing a conditioned avoidance response.

An adapted model by Rospars et al. [21] can describe the intra-
cellular reaction dynamics in the KCs. A set of coupled differ-
ential equation calculates the amount of reaction components
over time. In the first step a transmitter (in this case dopamine,
which is activated by electric shock as described above) binds
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to the G-protein-coupled receptor and forms a complex that
dissociates again. When the complex is activated it acts as cat-
alyst of the dissociation of the trimeric G protein into an acti-
vated and non-activated sub-unit. The activated sub-unit now
interacts with adenylate cyclate and forms an activated com-
plex. The activated complex dissociates again and the trimeric
G protein sub-units reassemble again. The amount of activated
G-protein - adenylate cyclase complex serves as output of the
model.

1.3.4 Intensity Coding

In a sensory modality that represents increasing input intensity
by monotonically increasing the neuronal response, the repre-
sentation of lower intensities is nested within the representa-
tion of higher intensities. This is for example the case in olfac-
tion on the level of ORNs and PNs, where an increase in odor
intensities leads to both an increase in firing rate of active neu-
rons and the to more neurons responding to a specific odors at
higher concentrations (for Drosophila, see e.g., [43]). Strikingly
however flies are able to form intensity specific memories [10],
which argues that they need a neuronal representation of odor
intensity that is not nested, arguing for non-monotonically re-
sponding neurons.

In a model by Luo et al. [58] non-monotonically responding
neurons arise on the third level of olfactory processing that is
in KCs. The main focus of their model is response properties
of both third order neurons, KCs and LH neurons. Measured
ORN responses serve a input to model. They are described
by spike rates taken from the extensive data set of Hallem
and Carlson [43]. It consists of responses of 24 different recep-
tor types to a panel of 110 odors at at the same odor inten-
sity. Responses to a subset of ten odors were also recorded at
three additional intensities. In the next step the resulting PN re-
sponses are calculated by transforming the ORN responses by
a non-linear functions suggested by Olsen et al. [54]. This non-
linearity leads on the one hand to a response normalization of
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PN response magnitude for different odors. On the other hand
it decreases the correlation between responses patterns of dif-
ferent odors, thus increasing the selectivity of odor response
patterns. Additionally random noise is added to the calculated
PN responses.

Serving as input to third order neurons the calculated PN re-
sponses are multiplied by a synaptic weight and then compared
to a pre-determined threshold. If the activation is above the
threshold, the third order neuron responds to the odor, other-
wise it remains silent. For an analysis of response strength of
third order neurons the authors calculated a response proba-
bility of each third order neuron based on repeated trials with
the same odor. Following the suggested role of LH neurons in
the literature of being responsible for innate odor specific re-
sponses, weights to the lateral horn are tuned such that each
neuron responds almost exclusively and reliably to a single
odor, independent of odor intensity. This seems to be in contrast
to more recent studies suggesting non-monotonic responses of
LH neurons for increasing odor intensities [37, 40].

Odor intensity specific responses arise on the level of mod-
eled KCs. Again the authors follow experimental results and
build their model accordingly. The twenty modeled PNs de-
liver direct excitatory input to 2500 KCs with a quasi-random
connection pattern as suggested by Murthy et al. [62] (for a
more recent study, see also [39]). The connections are sparse,
each PN makes functional connections to only five percent of
KCs and each KCs only receives input from about five percent
of PNs. As a consequence model KCs respond sparsely to an
odor as observed in experiments [60]. Inhibitory input is pro-
vided by one global inhibitory neuron that sums the activity of
all excitatory PNs and projects to all KCs. The analysis of KC
responses to different odor intensities reveals both monotonic
and non-monotonic responding KCs that have their maximum
of activation probability at an intermediate odor intensity. The
layout and the synapses of the inhibitory neuron are the reason
for non-monotonic responding KCs. When a KC receives in-
put from a PN that is tuned to higher intensities with a strong
synapse and at the same time input from a PN tuned to low in-
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tensities with a smaller synaptic weight, the PN tuned to higher
intensities will drive the inhibitory neuron stronger at intensi-
ties, which leads to a decrease in response probability. The large
number of KCs and the random allocation of synaptic weights
suggest that there will always be a subset of KCs that receive in-
put with this specific configuration of weights and PNs. If this
is however enough to explain intensity specific coding remains
an open question and awaits a detailed investigation.
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E V E N T T I M I N G I N A S S O C I AT I V E L E A R N I N G :
F R O M B I O C H E M I C A L R E A C T I O N D Y N A M I C S
T O B E H AV I O U R A L O B S E RVAT I O N S

2.1 summary

Flies are able to form associative memories. For aversive olfac-
tory conditioning the relative timing between odor and shock
determines the hedonic value of the conditioned stimulus. Pre-
senting the odor before the shock leads to conditioned avoid-
ance (delay and trace conditioning). When shock precedes the
odor flies will subsequently show conditioned approach towards
the trained odor.

We present a model that explains this peculiar behavior as the
effect of the same biochemical reaction cascade. We combine
results from different studies and species to model the cAMP
reaction cascade in Kenyon cells. The odor is represented as
Ca++ influx into the cell and increases both the activation and
deactivation rate of an activated G-protein adenylate cyclase
complex in the same way. We interpret the amount of activated
complex as proxy for the strengthening of the synaptic output
of the Kenyon cells onto the conditioned avoidance circuit.

By design, the Ca++ induced increase of the reaction constant
serves both as coincidence detector of odor and shock and has
a bi-modal influence on the reaction product based on relative
timing. When the Ca++ influx happens during the activation of
the complex this leads to more activated complex. In contrast
Ca++ influx during deactivation of activated complex leads to
an overall smaller amount of activated complex.

21



22 event timing in associative learning

Our model explains the bi-modal behavioral response curve ob-
served in the experiment.

2.2 reference

This work was performed together with A. Yarali, R. Tanimoto
and Andreas V. M. Herz. I presented a poster of the final work
at CoSyne 2012.

Ayse Yarali, Johannes Nehrkorn, Hiromu Tanimoto, Andreas
VM Herz (2012). Event timing in associative learning: From bio-
chemical reaction dynamics to behavioral observations. Cosyne
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Yarali A, Nehrkorn J, Tanimoto H, Herz AVM (2012) Event Tim-
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Introduction

Predicting future events is a key to survival. For example, if a

sensory stimulus typically precedes an aversive event, this

relationship will be learned to trigger anticipatory behaviour,

such as avoidance [1]. On the other hand, a stimulus that occurs

after an aversive event has subsided will be learned as a predictor

for relief [2,3] or safety [4,5] and will induce approach. Event

timing, therefore, determines which of the two opposite learned

behaviours is established, as shown in various species including

man [6–12]. Drosophila olfactory associative learning is well-suited

for studying this phenomenon (Fig. 1) [11,13–17]: Flies learn to

avoid an odour that precedes electric shock during training (i.e.

punishment learning); whereas an odour that follows the shock is

subsequently approached (i.e. relief learning).

In an attempt to explain punishment and relief learning in fruit

flies, Drew and Abbott [18] propose a model circuit where the

odour activates a large number of pre-synaptic neurons; while the

shock impinges upon a common post-synaptic neuron that

mediates the conditioned avoidance. For both types of neuron,

the authors assume high firing rates that decay over several

seconds upon the termination of the respective stimuli. Within this

model circuit, a spike-timing-dependent plasticity (STDP) rule

operating at the millisecond-scale can account for the effect of

relative odour-shock timing on the conditioned behaviour, which

occurs at the scale of several seconds. While demonstrating that

slowly decaying spiking activity can enable STDP to function over

long intervals, this model does not capture fruit fly olfactory

learning, as the corresponding empirically measured odour

responses in the Kenyon cells are sparse and short-lasting [19–

21], violating the model’s key assumption.

Here, we propose an alternative model motivated by cellular

and biochemical data. In the Drosophila brain, individual odours

activate small, specific groups of Kenyon cells increasing their

intracellular Ca++ concentration [22–24]; whereas shock induces a

dopaminergic reinforcement signal, which is also delivered to the

Kenyon cells [25–29]. These two inputs likely converge on the

Ca++-calmodulin-sensitive adenylate cyclase, rutabaga; this process

seems necessary and sufficient in the Kenyon cells for olfactory

learning [30–33]. Thus, during punishment training, this adeny-

late cyclase is synergistically activated in the specific trained odour-

responding Kenyon cells [34,35]; the resulting cAMP signalling

then likely strengthens the output from these cells to the

conditioned avoidance circuit (Fig. 2) [36]. Those Kenyon cells

that respond to a control odour that is presented sufficiently before

or after the shock also receive both inputs, but separated in time;

consequently, less cAMP is produced [34] and the output of these

Kenyon cells is strengthened less, if at all. Then, at test, flies are

typically given the choice between the trained odour, which, due

to the strengthened output of the respective Kenyon cells, can

trigger conditioned avoidance, and the control odour, which does

not trigger conditioned avoidance, as the output of the

corresponding Kenyon cells has remained weak. To summarize,

with respect to punishment learning, a particular, Ca++-calmod-

ulin-sensitive adenylate cyclase seems to be the critical detector of

the odour-shock convergence.

The biochemical properties of the corresponding Ca++-calmod-

ulin-sensitive adenylate cyclase in Aplysia (AC-AplA, [37]) have been

analyzed in detail. During gill withdrawal reflex conditioning, a Ca++

influx due to siphon-touch and a tail-shock-induced serotonergic

signal converge on this adenylate cyclase (Fig. 2) [38–40], which is
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sensitive to the relative timing of the two inputs [41–43] (see Results

for details). We test whether this biochemical phenomenon observed

in Aplysia (and in rats [44]) can serve as a mechanism for the effect of

event timing on associative learning as found in Drosophila. A

computational approach allows us to overcome the shortage of

behavioural data in Aplysia and biochemical data in Drosophila by

combining findings from both systems.

Results

In an Aplysia in vitro neural membrane preparation [41–43], a

transient serotonin input activates the adenylate cyclase; upon

cessation of serotonin, the adenylate cyclase activity returns to the

base-line. This effect of serotonin is modified by Ca++. If Ca++

precedes serotonin by a short time, the adenylate cyclase is

activated more rapidly so that the cAMP production exceeds the

serotonin-only situation. If, however, Ca++ closely follows

serotonin, the adenylate cyclase is deactivated faster, resulting in

a cAMP production below the serotonin-only case. We implement

this property of the adenylate cyclase in two alternative models

[45,46]. This makes it possible to quantitatively explore whether

and how far this biochemical phenomenon can explain the effect

of event timing on learning; to this end, we simulate a key

Drosophila experiment (Fig. 1). In addition, we test in silico for the

Figure 1. Event timing affects associative learning. Fruit flies are trained such that a control odour is presented alone, whereas a trained odour is
paired with pulses of electric shock as reinforcement. Across groups, the inter-stimulus interval (ISI) between the onsets of the trained odour and shock is
varied. Here, ISI is defined such that for negative ISI values, the trained odour precedes shock; positive ISI values mean that the trained odour follows
shock. For each ISI, two fly subgroups are trained with switched roles for two odours (not shown). During the test, each subgroup is given the choice
between the two odours; the difference between their preferences is taken as the learning index. Positive learning indices indicate conditioned
approach to the trained odour, negative values reflect conditioned avoidance. Very long training ISIs support no significant conditioned behaviour. If the
odour shortly precedes or overlaps with shock during training (ISI = 245 s, 215 s or 0 s), it is strongly avoided in the test (punishment learning). If the
odour closely follows the shock-offset during training (ISI = 20 s or 40 s), flies approach it in the test (relief learning). *: P,0.05/8 while comparing to zero
in a sign test. Sample sizes are N = 8, 24, 34, 47, 24, 35, 12 and 12. Data from [15], with permission from Informa healthcare.
doi:10.1371/journal.pone.0032885.g001

Modeling Event Timing in Associative Learning
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effects of parameter changes and relate our results to behavioural

findings in Drosophila.

Stimulation of the adenylate cyclase by the transmitter
We use the model by Rospars et al. [46] as a general framework

to describe post-receptor G protein signalling. Adapting this model

to our case (Fig. 3A), the shock-induced transmitter (Tr) binds to

the G protein coupled receptor (GPCR) to form a complex (Tr/

GPCR), resulting in receptor activation (GPCR*). GPCR* then

dissociates the trimeric G protein (Gabc) into an activated a-

subunit (Ga*) and the bc-subunits (Gbc). Ga* either spontane-

ously deactivates (Ga) to reassemble with Gbc, or it interacts with

the adenylate cyclase (AC) to form an enzymatically active

complex (Ga*/AC*), which is prone to dissociation into inactive

AC and Ga. The concentration of the Ga*/AC* complex, i.e. the

activated adenylate cyclase, serves as the output variable of the

system.

We stimulate this model with a transient transmitter input

(Fig. 3B, left; see the Materials and Methods for details), which

mimics the in vitro experiments in Aplysia (Fig. 1A of [42]). When

the reaction rate constants k5 and k-5 are appropriately adjusted

(for a detailed sensitivity-analysis, see Fig. 5A), the concentration of

Ga*/AC* first rises to a peak within ,20 s and then decays back

to zero within the next ,100 s (Fig. 3B, left), closely matching the

corresponding Aplysia data (Fig. 4A of [42]); the deactivation of the

adenylate cyclase in the model is slightly slower than the

experimental observations.

Effect of Ca++

As discussed above, in Aplysia, a brief serotonin input results in

cAMP production; Ca++ in turn bi-directionally modulates the

amount of this cAMP production, depending on its timing relative

to serotonin [41–43]. Critically, at the steady state, Ca++ and

serotonin have no synergistic effect on cAMP production [41–43].

In these biochemical experiments, Ca++, bound to calmodulin,

seems to interact with the adenlylate cyclase [43] and the Ca++-

effect on adenylate cyclase is delayed by 2–3 s relative to the effect

of serotonin [42,43]. As a simple way to account for all these

findings in our model, we allow Ca++ to transiently increase the

rate constants for both the formation and the dissociation of the

Ga*/AC* complex (k5 and k-5) with a delay of 2.5 s (Fig. 3A; see

the Materials and Methods for details). For simplicity we exclude

from our model the biochemical step(s) leading to the Ca++-

calmodulin interaction (see below for a discussion). We indeed find

that if a Ca++ input (Fig. 3B, middle; see the Materials and

Methods for details), fashioned after Aplysia in vitro experiments

(Fig. 1A of [42]), arrives immediately before the transmitter, it

accelerates the rise in Ga*/AC* concentration, as at this time

point, Ga*/AC* formation is the dominant reaction. Consequent-

ly the area under the Ga*/AC* curve is increased. Assuming that

the amount of cAMP production is proportional to the

concentration of active adenylate cyclase, this translates into more

cAMP production. If, however, Ca++ arrives once the transmitter

has been reduced, it accelerates the fall of Ga*/AC* concentration

(Fig. 3B, right), since at this time point, dissociation of Ga*/AC* is

dominant. The area under the resulting Ga*/AC* curve is then

smaller, meaning less cAMP production.

Effect of the relative timing of the transmitter and Ca++

In the Drosophila learning experiment shown in Fig. 1, a control

odour is given 210 s before electric shock; whereas a trained odour

is paired with shock with varying inter-stimulus intervals (ISI). To

simulate this experiment we represent the odour by the Ca++ input

and the shock by the transmitter input. We neglect the very short

time delays between the delivery of these stimuli and the resulting

Ca++ influx into and transmitter release onto the Kenyon cells.

Thus, in the control condition (Fig. 4, left), Ca++ arrives 210 s

before the transmitter. We assume that the area under the

resulting Ga*/AC* concentration curve reflects the total amount

of cAMP produced. This can be thought of as the cAMP

production in those Kenyon cells that are responsive to the control

odour (i.e. ‘control’ Kenyon cells). During associative training

(Fig. 4, right), Ca++ follows or leads the transmitter by a variable

ISI. Again, the time integral of the respective Ga*/AC*

concentration curve is taken as an estimate of cAMP production.

Applied to the fly learning experiment in Fig. 1, this would be the

amount of cAMP produced in those Kenyon cells that respond to

the trained odour (i.e. ‘trained’ Kenyon cells). We plot the

difference in cAMP production between the control condition and

the associative training as percent of the control condition (Fig. 4,

bottom: Percent associative effect). This reflects the test situation in

the behavioural experiment in Fig. 1, where flies are given the

Figure 2. Adenylate cyclase as a molecular coincidence detector. In a variety of associative learning systems, a potential coincidence
between the trained stimulus and the reinforcement is detected at the pre-synapse by a particular kind of adenylate cyclase. The stimulus acts on the
respective neurons, raising the intracellular Ca++ concentration. The reinforcement induces the release of a transmitter that binds to its respective G
protein coupled receptors (GPCR) on the very same neurons and activates the G protein (G*). If stimulus and reinforcement are appropriately timed,
the two types of input act synergistically on the adenylate cyclase (AC*), triggering cAMP signalling, and thus lead to the strengthening of the output
from these neurons to the respective conditioned behaviour pathway.
doi:10.1371/journal.pone.0032885.g002
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Figure 3. Regulation of the adenylate cyclase by the transmitter and Ca++. A. Adapting the model of Rospars et al. [46], the transmitter
reversibly binds to its respective G protein coupled receptor (GPCR) to form a complex, resulting in reversible receptor activation (GPCR*). GPRC*
catalyzes the dissociation of the trimeric G protein (Gabc) into an activated a-subunit (Ga*) and the b- and c-subunits (Gbc). Ga* spontaneously
deactivates (Ga) and reassembles with Gbc, or it reversibly interacts with the adenylate cyclase (AC) to form an enzymatically active complex (Ga*/
AC*), which serves as the output. Following data from Aplysia [41–43], Ca++ in turn transiently increases the rate constants for both the formation and
the dissociation of the Ga*/AC* complex (represented by the thickened arrows). The ksubscript denote the rate constants of the respective reactions. B.
When this model is stimulated with a transmitter input alone the Ga*/AC* concentration rises to a peak of ,0.42 molecules/mm2 in ,20 s after
stimulus onset, and decays back to zero within the next ,100 s (left). If a Ca++ input immediately precedes the transmitter, the build-up of the Ga*/
AC* concentration is transiently accelerated (middle). If on the other hand the Ca++ input follows the transmitter, the decay of the Ga*/AC*
concentration is transiently accelerated (right). For graphical reasons, normalized concentrations are calculated by dividing with the peak Ga*/AC*
concentration given transmitter input alone. The transmitter concentration reaches a peak of ,6.7?104 molecules/mm2 in ,7 s and decays back to
zero within ,18 s; the Ca++ concentration starts rising ,4.5 s after the onset, reaches a peak value of 5.6?1024 moles/L at ,6 s and decays back to
zero within ,8.5 s after the onset. Also these inputs are plotted as normalized concentrations.
doi:10.1371/journal.pone.0032885.g003
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Figure 4. Relative timing of the transmitter and Ca++ affects the adenylate cyclase. We stimulate the model with transmitter and Ca++ (see
Fig. 3B for the details). In the ‘control condition’ (left), Ca++ precedes the transmitter by an onset-to-onset interval of 210 s. In ‘associative training’
(right), the two inputs follow each other with an inter-stimulus interval (ISI), which is varied across experiments. Negative ISIs indicate training with
first Ca++ and then the transmitter; positive ISIs mean the opposite sequence of inputs. For either condition, we take the area under the respective
Ga*/AC* concentration curve as a measure of cAMP production. For each ISI, we calculate an ‘associative effect’, by subtracting the amount of cAMP
produced during the respective associative training from that in the control condition. We then express the associative effect as percent of the area
under the Ga*/AC* concentration curve in the control condition. These percent associative effects are plotted against the ISIs. For very large ISIs, we
find no associative effect. If the Ca++ is closely paired with the transmitter, we find negative associative effects; the strongest negative associative
effect (215.5%) is obtained when using ISI ,23 s. If on the other hand Ca++ follows the offset of the transmitter during training, we find positive
associative effects; the largest positive associative effect (6.3%) is obtained for ISI ,26 s. Thus, depending on the relative timing of Ca++ and
transmitter during training, opposing associative effects come about, closely matching the behavioural situation in Fig. 1.
doi:10.1371/journal.pone.0032885.g004
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choice between the control odour and the trained odour. Note that

in the control condition, a non-zero amount of cAMP is produced;

when applied to the learning experiment this would mean a basic

amount of cAMP in all Kenyon cells, possibly causing a basic

strengthening of their output. Indeed in flies, mere exposure to the

shock modifies the olfactory behaviour; interestingly, the resulting

non-associatively modified odour responses are less aversive upon

loss of cAMP signalling or Kenyon cell function [47,48].

Despite the overall simplicity of our approach, the simulation

results (Fig. 4) agree strikingly well with the behavioural situation

(Fig. 1). First, short negative or short positive ISIs result in negative

associative effects; in other words, associative training with close

Ca++ and transmitter pairing produces more cAMP than the

control condition. Translating this to the learning experiment, more

cAMP will be produced in the trained Kenyon cells than in the

control Kenyon cells. Consequently, the output from the trained

Kenyon cells to the downstream conditioned avoidance circuit will

be strengthened more than that of the control Kenyon cells,

resulting, at a choice situation, in relative avoidance of the trained

odour (i.e. punishment learning). Next, for intermediate positive

ISIs, the model produces positive associative effects, indicating less

cAMP production during associative training than in the control

condition. Applying this to the learning experiment, the output

from the trained Kenyon cells to the downstream conditioned

avoidance circuit will be strengthened less than the output from

the control Kenyon cells. Consequently, given the choice between

the two odours, the net behaviour will be conditioned approach

towards the trained odour (i.e. relief learning). Finally, for very

large (positive as well as negative) ISIs, the model shows no

associative effect, as in the behavioural setting.

Other features of the simulation results are also reminiscent of

the behavioural data in Fig. 1. First, the negative associative effect

is larger than the positive associative effect. Second, the strongest

negative associative effects are found when the onset of Ca++

precedes that of the transmitter; overlapping onsets result in a less

pronounced negative associative effect. Note that, in behaviour,

even an ISI of 245 s supports learning (Fig. 1); whereas in the

model, negative ISIs longer than 5 s are not effective; this

discrepancy is likely due to the properties of the Ca++ input in the

present simulation (see Fig. 8 for a detailed analysis). Finally, in

both behaviour and model, the strongest positive associative effects

are obtained when the odour or Ca++ closely follows the offset of

the shock or the transmitter.

Even with a single training trial, the negative and positive

associative effects respectively reach up to ,16% and 6% of the

control, measured at the level of cAMP production. More intense

Ca++ inputs (see Fig. 8 for details) and repetitive training will boost

these effects significantly, as will the high amplification factors

often seen in signal transduction cascades [49].

Relationship between the adenylate cyclase dynamics
and the associative effects

We next test how the agreement between model and

behavioural data is influenced by changes in key model

parameters. To this end, we first vary the rate constants for

Ga*/AC* formation and dissociation (k5 and k-5). The dynamics

of adenylate cyclase activation/deactivation (Fig. 5A) dictates both

the ISI-dependency and the size of the associative effects (Figs. 5B1

and 5B2). Particularly, the duration of the rising and the falling

phases of active adenylate cyclase concentration determine the

window of ISI values appropriate for the negative and the positive

associative effects, respectively. The sizes of the associative effects

also depend on the dynamics of active adenylate cyclase

concentration; intermediate speeds for build up and decay are

best suited (see the legend of Fig. 5 for details). Notably, both the

adenylate cyclase dynamics (Fig. 5A) and the associative effects

(Figs. 5B1 and 5B2) remain stable over more than five orders of

magnitude of the formation rate constant; whereas changes in the

dissociation rate constant have much stronger influence.

The associative effects are influenced little by varying the rate

constants of GPCR (Fig. 6A) or G protein (Fig. 6B) activation and

deactivation within a certain range. But when the respective

forward rate constants are increased beyond the shown values, the

associative effects abruptly decrease (see the legend of Fig. 6 for a

detailed explanation). These findings agree with a previous, more

systematical sensitivity-analysis [50] of the model proposed by

Rospars et al. [46].

Effects of the duration and intensity of the transmitter
To what extent do the observed associative effects depend on

the specific properties of the inputs used?

We first study the effect of changes in the duration of the

transmitter (Fig. 7), keeping the Ca++ input the same as in the

previous experiments. For a fixed rise time of the transmitter,

increasing its decay time constant from 0.1 s to 1 s hardly changes

the size of the associative effects (Fig. 7, the first two cases). A more

slowly decaying transmitter input on the other hand, due to a

much higher control level of cAMP production, allows only for

smaller percent associative effects (Fig. 7, the last case). A

Figure 5. Influence of the rate constants for Ga*/AC* formation and dissociation. A. Time course of the Ga*/AC* concentration, following a
stimulation of the model with transmitter (see Fig. 3B for the details). B1. ISI-dependent associative effects, as explained in Fig. 4. B2. Color-coded
representation of the size of the peak negative (left) and positive (right) associative effects. In (A), (B1) and (B2), we systematically change the rate
constants for Ga*/AC* formation and dissociation (k5 and k-5 in Fig. 3A). Using the default values of both rate constants, we obtain associative effects
fitting the behavioural situation in Fig. 1 (B1, B2: marked with asterices). Notably, this fit is stable over more than five orders of magnitude of the
formation rate constant, but is more sensitive to changes in the dissociation rate constant (B1, B2). The size (B2) and ISI-dependency (B1) of the
associative effects are dictated by the dynamics of adenylate cyclase activation/deactivation (A). Particularly, the negative associative effect depends
on the rising phase of the Ga*/AC* concentration: When either the formation or the dissociation rate constants are increased beyond their default
values, the rising of the Ga*/AC* concentration becomes too fast to be further improved by Ca++; the negative associative effect is thus attenuated.
Also, in this case, the short rising phase of Ga*/AC* concentration limits the window of ISI values appropriate for the negative associative effect. In
turn, decreasing both rate constants below their default values slows down the rise of Ga*/AC* concentration, leaving more space for improvement
by Ca++, thus boosting and -due to the longer rising phase- ‘widening’ the negative associative effect. As for the positive associative effect, the falling
phase of the Ga*/AC* concentration matters: When both rate constants are moderately increased beyond their default values, the fall of Ga*/AC*
concentration gets faster, that is, the dissociation of Ga*/AC* better dominates over its formation, boosting the positive associative effect. Critically,
when the rate constants are increased too much, the drop of Ga*/AC* concentration is accelerated to its limit; thus, both the size and the ‘width’ of
the positive associative effect suffer. To summarize, the negative associative effect is favoured by small values of both rate constants, whereas the
positive associative effect needs moderately high values of these. Consequently, the overall effect size cannot be improved much beyond the default
case, without compromising the relative sizes of the two associative effects with respect to each other and thus the fit to the behavioural situation.
doi:10.1371/journal.pone.0032885.g005
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corresponding effect of shock duration on the strength of learning

remains to be probed for in fly learning experiments. As for the

ISI-dependence of the associative effects, short transmitter inputs

give good fit to the behavioural situation in Fig. 1 (Fig. 7, the first

two cases). For more slowly decaying transmitter inputs, the

positive associative effect only occurs for longer ISIs due to the

broadened dynamics of adenylate cyclase activation/deactivation

(Fig. 7, the last case). Quantitatively, we cannot provide a detailed

comparison between these effects and those found at the

behavioural level, since the dynamics of dopamine availability in

the synaptic cleft upon shock stimulation is not known. It is

however noteworthy that also in Drosophila behavioural experi-

ments shock duration affects the window of ISIs appropriate for

relief learning. For example, in Fig. 1, the shock lasts for 15 s;

accordingly, relief learning is possible with ISIs longer than 15 s.

For a 1.5s-long shock stimulus, however, an ISI of 2 s already

supports relief learning (Fig. 8C of [17]). This invites a more

systematic behavioural analysis of the effect of shock duration on

relief learning.

To test for the effects of varying the transmitter intensity, we use

the intermediate time course shown in Fig. 7 and keep the Ca++

input as in the previous simulations. Scaling the transmitter input

up and down over more than 10 orders of magnitude leaves the

associative effects largely unchanged, both in terms of their percent

size and their ISI-dependencies (data not shown). Only, unreal-

istically large transmitter inputs ($107 molecules/mm2), immedi-

Figure 6. Dependence upon the activation and inactivation rate constants of GPCR and G protein. The percent associative effect is
shown as a function of the ISI, as detailed in Fig. 4. Asterices mark the default conditions. A. Varying the rate constants for GPCR activation and
inactivation hardly affects the size, or the ‘shape’ of the associative effects. B. Varying the rate constant of G protein activation also has nearly no
bearings on the associative effects. As for the rate constant for G protein inactivation, higher values result in overall larger associative effects; this is
because, both the rise and the fall of active adenylate cyclase concentration become moderately faster (not shown, see the legend of Fig. 5 for a more
detailed explanation). In both (A) and (B), increasing the respective forward rate constants beyond the depicted range immediately recruits all
available adenylate cyclase molecules, precluding any effect of Ca++ and thus any associative effect (not shown).
doi:10.1371/journal.pone.0032885.g006

Figure 7. Influence of the transmitter duration. With a fixed Ca++ input, three different transmitter inputs are tested (top). They are all initiated
at 210 s, rise to a peak of 7?104 molecules/mm2 within 40 ms after the onset, but decay with different time constants as indicated above the panels.
We plot the resulting adenylate cyclase dynamics (middle) and the ISI-dependent associative effects (bottom). In terms of the percent sizes of
associative effects, changing the transmitter decay time constant from 0.1 to 1 (the first two cases) hardly makes a difference. A slower decaying
transmitter input (the last case) broadens the dynamics of adenylate cyclase activation/deactivation, resulting in much higher cAMP production in the
control condition; thus, the percent associative effects remain small. As for the ISI-dependence of the associative effects, short transmitter inputs (the
first two cases) give good fits to the situation in Fig. 1; when a slower decaying transmitter input is used (the last case), the positive associative effect
only occurs for large positive ISIs, due to the broadened adenylate cyclase activation/deactivation dynamics.
doi:10.1371/journal.pone.0032885.g007
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ately activate all the available adenylate cyclase; this abolishes the

possibility of modulation by Ca++ and precludes any associative

effect (data not shown). These findings only partially reflect the

situation in the fruit fly learning experiments, where intermediate

shock intensities work best [13,51].

Effect of Ca++duration and intensity
In Fig. 1, given a 15s-long odour presentation, even an ISI of

245 s supports punishment learning. When adhesion of residual

odour substance to the experimental setup is excluded, a 10s-long

odour presentation enables punishment learning with an ISI of up

Figure 8. Influence of Ca++ duration and intensity. Complementing the analysis shown in Fig. 7 we now vary the Ca++ input while keeping the
transmitter input fixed. In all three examples shown in (A), the Ca++ input rises to a peak of 6?1024 moles/L within 40 ms after the Ca++ onset, but
decays with different time constants, chosen as 0.1 s, 1 s and 10 s (A, top). In this scenario, the associative effects increase with increasing Ca++

duration (A, bottom). In addition, a large decay constant causes a long tail of the Ca++ input that enables negative associative effects for longer ISIs (A,
the last case). In (B) we provide an exemplary Ca++ input (B, top) which gives good fit to the behavioural results in Fig. 1 in terms of the ISI-
dependency of the associative effects but not in terms of their sizes relative to each other (B, bottom). In this case, the Ca++ concentration rises to a
peak of 6?1024 moles/L within 13 s after the onset, comparing well with the 15s- long odour presentation in Fig. 1. Note that the best negative
associative effect occurs with ISI = 213 s, similar to the behavioural situation in Fig. 1. Finally, in (C), we study the effects of the intensity of the Ca++

input. We fix the transmitter input and use the Ca++ input depicted in (B), but scaled up and down by one order of magnitude. The intensity of Ca++

strongly influences the sizes of both the negative and the positive associative effects; the balance between the two is however somewhat
compromised with increasing Ca++ intensity.
doi:10.1371/journal.pone.0032885.g008
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to 225 s [52]. That is, a brief gap between the offset of the odour

and the onset of the shock is readily tolerated. As an attempt to

account for such ‘trace conditioning’ in our model, we vary the

decay time constant of the Ca++ input, keeping constant its rise

time and peak (Fig. 8A, top). In fact, implementing the

biochemical steps of Ca++-calmodulin interaction would likely

have the same effect (Fig. 1 of [53]). In any case, more slowly

decaying Ca++ inputs lead to larger associative effects (Fig. 8A,

bottom); and enable longer ISIs to lead to negative associative

effects (Fig. 8A, the last case). As exemplified in Fig. 8B, the shape

of the Ca++ input is indeed a critical parameter for reproducing the

behavioural situation in Fig. 1 (see the respective figure legend for

details). In short, a long tail of odour-induced Ca++ (or Ca++-

calmodulin complex) increase in the Kenyon cells could bridge

over at least part of the temporal gap between odour offset and

shock onset. This could then be used by the Ca++-calmodulin-

dependent adenylate cyclase or likely also other signalling

molecules [54] to enable ‘trace conditioning’. Studies using

genetically encoded Ca++ sensors to monitor the Kenyon cell

odour responses neither rule out nor confirm the existence of such

long tails in the Ca++ concentration [22–24].

Next, we look at the effects of the intensity of the Ca++ input. To

investigate a scenario that mimics the behavioral situation as

closely as possible, we use Ca++ inputs shaped as in Fig. 8B. We

scale their size up or down by one order of magnitude. As shown

in Fig. 8C, this strongly influences both the negative and the

positive associative effects. In the fruit fly, too, learning is typically

improved with increasing odour concentration; beyond a certain

concentration, however, further increase deteriorates learning

[13], which is not explained by our model.

Alternative model for the adenylate cyclase regulation
Finally, we test the generality of our results using an alternative

model for the regulation of the adenylate cyclase by the transmitter

[45]. This model (Fig. 9) includes only a single biochemical step for

the GPCR activation and it ignores the trimeric nature of the G

protein. In addition to its reduced complexity (i.e. five instead of

nine differential equations), it differs from the first model (Fig. 3A)

in terms of the initial concentrations of the molecules, as well as

the reaction rate constants (see Materials and Methods for details).

In response to a transmitter input, the alternative model

generates time courses for the active adenylate cyclase concentra-

tion (Fig. 10A) and associative effects (Fig. 10B) whose salient

features are strikingly similar to those of the first model (Fig. 5).

Most importantly, the simplified model also clearly shows

opposing associative effects that depend in the same qualitative

manner on event timing and the adenylate cyclase dynamics.

Note that the two models we use are adapted from two different

systems (i.e., olfactory transduction in moth [46] and actin

polymerization in human neutrophils [45], respectively) and thus

the parameter estimates come from different methods, processes

and species. Having reconciled these, we are confident that our

results capture the generic properties of Ca++-calmodulin-sensitive

adenylate cyclase regulation. We believe that this cross-species

approach we use strengthens the proof of concept that the reaction

dynamics of adenylate cyclase signalling could explain the effect of

event timing on associative learning.

Discussion

Event timing critically affects associative learning. Fruit flies, for

example, learn an odour as a signal for punishment or relief,

depending on whether it precedes or follows shock during training

(Fig. 1) [11,13–17]. We suggest a simple biochemical explanation

for these two opposing kinds of learning. During punishment

training, a Ca++-calmodulin-sensitive adenylate cyclase in the

Kenyon cells seems to detect the convergence of the odour and the

shock signals (Fig. 2) [30–35] (see also [55] for a similar

mechanism in striatal medium spiny neurons). Based on

biochemical data from Aplysia [41–43], we implement a model

where shock-induced transmitter activates the adenylate cyclase

and the underlying reaction dynamics are bi-directionally

regulated by odour-induced Ca++, depending on the relative

timing of the two inputs (Fig. 3). Using this model, we simulate the

key fruit fly learning experiment for the effect of event timing

(Fig. 1). To mimic the situation in the control Kenyon cells, we use

Ca++ and transmitter inputs that are sufficiently separated in time,

Figure 9. An alternative model for adenlyate cyclase regulation by the transmitter. To complement our main analysis based on the model
adapted from [46] and shown in Fig. 3A, we finally use a simpler model variant [45]. Here, the transmitter reversibly binds to its respective G protein
coupled receptor (GPCR) to form an active complex (Transmitter/GPCR*). This complex then dissociates, or it interacts with the G protein (G) to
activate it (G*). The trimeric nature of the G protein is ignored (compare with Fig. 3A). G* on the one hand spontaneously deactivates (G), on the other
hand it reversibly interacts with the adenylate cyclase (AC) to form an enzymatically active complex (G*/AC*), which serves as the system’s output.
The effect of Ca++ is implemented the same way as in Fig. 3A.
doi:10.1371/journal.pone.0032885.g009

Modeling Event Timing in Associative Learning

PLoS ONE | www.plosone.org 11 March 2012 | Volume 7 | Issue 3 | e32885



and assume that the resulting cAMP production will strengthen

the output of these cells to the conditioned avoidance circuits to a

certain level. To simulate the situation in the trained Kenyon cells,

we use various inter-stimulus intervals (ISI) between the Ca++ and

the transmitter. In this setting, the equivalent of punishment

training leads to more cAMP than the control level (Fig. 4) so that

the output of the trained Kenyon cells will be strengthened more

than that of the control Kenyon cells, resulting in avoidance of the

trained odour in a choice situation. The equivalent of relief

training, in turn, results in a cAMP production below the control

Figure 10. Alternative model: Influence of G*/AC* formation and dissociation rate constants. A. We stimulate the alternative model
based on [45] with a transmitter input (details as in Fig. 3B) and plot the time course of the resulting G*/AC* concentration. B. Repeating the
experiment in Fig. 4, we plot the percent associative effect as a function of the ISI. Comparison with Fig. 5 shows that despite their various differences
both models generate rather similar associative effects.
doi:10.1371/journal.pone.0032885.g010
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level (Fig. 4); consequently, the output of the trained Kenyon cells

will remain weaker than that of the control Kenyon cells, resulting

in net approach to the trained odour. Despite its simple

biochemical formulation, the model also recapitulates other salient

features of punishment and relief learning (Fig. 4). This agreement

between the simulation- and the behavioural data is robust with

respect to changes in various model parameters within reasonably

wide ranges (Figs. 5 and 6). Given the effects observed beyond

these ranges however, it may be interesting to experimentally

manipulate reaction rate constants, e.g., by changing ambient

temperature, to then see the effects on the behavioural ISI-

learning function. Importantly, our conclusions also hold for a

rather different model for transmitter-mediated adenylate cyclase

activation (Figs. 9 and 10).

The associative effects we report in Fig. 4 reach up to ,16% of

the control condition; a stronger Ca++ input boosts these effects

significantly (Fig. 8C); also, repetition of training will result in a

cumulative increase. In addition, these effects will most likely be

amplified through the downstream signal transduction cascade

[49]. Note that a previous model based on spike-timing-dependent

plasticity reports up to only ,0.7% change in synaptic strength in

a single training trial (Fig. 1C of [18]), despite assuming

unrealistically strong odour-induced activity. Experimentally,

e.g., in vertebrate brain slices, no less than 20 pre-post synaptic

action potential pairings are necessary to obtain only ,10%

potentiation of synaptic strength [56]. Given these, the sizes of the

associative effects we report seem reasonable. Critically, the

quantitative relationship between synaptic plasticity and behav-

ioural plasticity has not been characterized with respect to

Drosophila olfactory learning; whereas few studies exist in other

systems, e.g., [57] reports 10–20% strengthening in hippocampal

synapses upon behavioural training. In general, the question of

how much change in synaptic strength is required for making a

difference in behaviour, is open.

The present model uses the amount of cAMP production as

output. Clearly, much happens in reality between this step and the

synaptic plasticity underlying learning. Implementing the follow-

ing stages of signal transduction (e.g., activation of the cAMP-

dependent protein kinase (PKA), phosphorylation of Synapsin

[58]) may help understanding key features of associative learning,

other than its sensitivity to event timing. For example, in the honey

bee antennal lobe, a single olfactory reward training trial

transiently activates PKA; repetitive training on the other hand

results in prolonged PKA activation, which may be important for

the formation of long-term memory [59] (see [60] for a

computational model relying on this mechanism). Also, degrada-

tion of cAMP [35] and de-phosphorylation of key downstream

proteins [61] is likely critical for restricting the effects of learning

both during training and thereafter. All these downstream

processes can be added to the model to explain the dynamics of

memory acquisition or decay. In the current study however we

focus on the effect of event timing on learning and provide a proof

of concept that bi-directional regulation of adenylate cyclase can

be the underlying mechanism. As a next step, one should

experimentally test for a role of the Ca++-calmodulin-sensitive

adenylate cyclase, rutabaga in relief learning, using the available

genetic tools, e.g., loss of function mutations [30,32,33], RNAi-

knockdown [62]. Also the role of dopaminergic signalling in relief

learning remains open. Blocking the neuronal output from two

different, incomplete sets of dopaminergic neurons leaves relief

learning intact [16]; however, given the caveats of the genetic

techniques used in the respective study, the complementary

approach of interfering with dopamine receptor function using

genetic [27,63] and pharmacological [64] tools seems warranted.

Note that for punishment learning, both the adenylate cyclase-

and the dopamine roles are better established [25–33].

A previous model by Drew and Abbott [18] suggests that

punishment learning strengthens the Kenyon cell output, whereas

relief learning has a weakening effect, so that opposite kinds of

conditioned behaviour result. As key mechanism the authors

implement spike-timing-dependent plasticity (STDP) at the

Kenyon cell output synapses [65,66]. To bridge the gap in time

scales between STDP and behavioural event timing effects, they

need to assume high and slowly decaying spiking activity in the

Kenyon cells and postsynaptic neurons, following odour and

shock, respectively. As these assumptions are experimentally not

fulfilled [19–21], this particular, STDP-based model does not seem

appropriate for olfactory learning in the fruit fly. This does

however not exclude a role for STDP in insect olfactory learning:

In the locust, specific Kenyon cell output synapses seem to be

‘tagged’ by the occurrence of temporally adjunct pre- and post-

synaptic action potentials, mimicking the situation during odour

presentation; only these tagged synapses are then modified upon

delivery of a delayed neuromodulator [66]. Such a process could

underlie punishment learning, including ‘trace conditioning’; it

can however not readily account for relief learning.

Both in Drew and Abbott’s STDP-based model [18] and in the

present adenylate cyclase-based model, punishment and relief

training act on the same Kenyon cell output to the same

downstream circuit, but in opposite ways. This scenario readily

accounts for the observed diametrically opposite conditioned

behaviours, i.e. avoidance vs. approach [11,13–17]. Further

investigation into the repertoire of conditioned behaviours after

punishment and relief training may well render this scenario short,

e.g., if punishment learning can modulate kinds of behaviour that

relief learning leaves unaffected and vice versa. In that case, an

alternative scenario could be that punishment and relief learning

strengthen the output from two distinct sets of Kenyon cells which

redundantly encode the trained odour, but receive different kinds

of reinforcement signal and send their output to different

downstream circuits. In a related scenario, punishment and relief

memory traces would be laid down within the same Kenyon cells,

but at distinct sub-cellular sites, which receive different reinforce-

ment signals and send output to different downstream circuits. In

either case, it is not known how the reinforcement signal for relief

is implemented at the neuronal level [16]. Finally, with respect to

all scenarios discussed, the role of the Kenyon cells in relief

learning awaits testing. Note that for punishment learning, this

role is well-established [25,31–33].

To summarize, further experiments on the molecular, cellular

and behavioural level are needed to elucidate the mechanism of

relief learning. The present computational study may guide this

process in that it identifies one plausible candidate scenario. More

generally, our approach shows that even a simple biochemical

process may help explain a non-trivial behavioural observation,

such as the bi-directional effect of event timing on associative

learning.

Materials and Methods

All simulations were done in MATLAB 7 (Mathworks, Natick,

USA) on a PC. Except in Figs. 5B2, 8B and 8C, the differential

equations were solved using the forward Euler method, where the

time-dependent inputs and dynamical variables were discretized at

0.001 s. Variations of the temporal step size showed that this

approach yielded a faithful yet simple numerical representation of

the dynamics. In Figs. 5B2, 8B and 8C, we used the ordinary

differential equation solver ode15 s, provided by MATLAB.
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Regulation of the adenylate cyclase by the transmitter
and Ca++

We implemented two alternative models for the regulation of

the adenylate cyclase by the transmitter and Ca++. The first model

was adapted from a previous model of G-protein-mediated insect

olfactory signal transduction [46]. The alternative model was

adapted from an implementation of G-protein signalling in actin

polymerization in human neutrophils [45]. In what follows, we

present in detail the first model; the alternative model is briefly

explained at the end.

The transmitter (Tr) was the primary input to the model, as

sketched in Fig. 3A. Unless stated otherwise, the time course of the

Tr concentration was fashioned after biochemical experiments

performed in Aplysia. To this end, we extracted the time-

dependent serotonin concentration from Fig. 1A of [42] and used

linear interpolation to generate the additional data points required

for the simulations. Numerical values were converted from

mmoles/L to molecules/mm2 using a conversion factor.

Conversion factor

~10{21:Avogadro0s number:
Cell volume

Cell surface area

ð1Þ

Avogadro’s number is 6.02?1023 molecules/mol and, following

[46], the cell volume was 2600 mm3 and cell surface area was

426 mm2, leading to a conversion factor of ,3700 molecules?mm/

mol. The resulting Tr concentration reached a peak value of

6.7?104 molecules/mm2 within ,7 s and decayed back to zero

within ,18 s after stimulus onset.

For the simulations depicted in Fig. 7, the Tr concentration over

time was taken as

½Tr�(t)~e{t=t1{e{t=t2 ð2Þ

To cover different decay courses, the time constant t1 was chosen

as 0.1 s, 1 s and 10 s, respectively; with t2 = 0.01 s, the peak

concentration was reached within ,40 ms after transmitter onset.

The resulting concentrations were normalized such that the peak

was 7?104 molecules/mm2 in each case. For varying Tr intensity,

we used the time constants t1 = 1 s and t2 = 0.01 s and up- and

down-scaled the respective function by division.

In each experiment, the desired Tr concentration time course

was initiated at the specified point in time. In Figs. 3B and 4, for

plotting reasons, concentrations were normalized relative to their

peak values. For molecules other than Ca++ and Tr, concentra-

tions were initiated with the values specified in Table 1.

The concentration of each kind of molecule was then updated

according to the respective equation, below.

d½GPCR�
dt

~{k1
:½Tr�:½GPCR�zk{1

:½Tr=GPCR� ð3Þ

d½Tr=GPCR�
dt

~k1
:½Tr�:½GPCR�

{(k{1zk2):½Tr=GPCR�zk{2
:½GPCR��

ð4Þ

d½GPCR��
dt

~k2
:½Tr=GPCR�{k{2

:½GPCR�� ð5Þ

d½Gabc�
dt

~{k3
:½Gabc�:½GPCR��zk4

:½Ga�:½Gbc� ð6Þ

d½Gbc�
dt

~k3
:½Gabc�:½GPCR��{k4

:½Ga�:½Gbc� ð7Þ

d½Ga��
dt

~k3
:½Gabc�:½GPCR��{k{3

:½Ga��{k5
:½Ga��:½AC� ð8Þ

d½Ga�
dt

~k{3
:½Ga��{k4

:½Ga�:½Gbc�zk{5
:½Ga�=AC�� ð9Þ

d½AC�
dt

~{k5
:½Ga��:½AC�zk{5

:½Ga�=AC�� ð10Þ

d½Ga�=AC��
dt

~k5
:½Ga��:½AC�{k{5

:½Ga�=AC�� ð11Þ

In these equations, the reaction rate constants (k) took the values

listed in Table 2.

Table 1. Components and initial concentrations for the first model.

Abbreviation Molecule Initial concentration (molecules/mm2)

GPCR G protein coupled receptor 6000

Tr/GPCR Complex of Tr and GPCR 0

GPCR* Activated GPCR 0

Gabc Trimeric G protein 1000

Gbc G protein b- and c- subunits 0

Ga* Active Ga 0

Ga Inactive G protein a-subunit 0

AC Adenylate cyclase 500

Ga*/AC* Complex of Ga* and activated AC 0

All values were chosen according to [46] and were estimates from moth olfactory transduction (see [46] for further references).
doi:10.1371/journal.pone.0032885.t001
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Ca++ was the second input to the model. Unless stated

otherwise, its time-dependent concentration was modeled accord-

ing to data from biochemical experiments carried out in Aplysia

(Fig. 1A of [42]), using linear interpolation. The resulting Ca++

concentration started to rise at ,4.5 s, reached a peak value of

5.6?1024 moles/L within 6 s and decayed back to zero within

,8.5 s after stimulus onset. For Fig. 8A, the Ca++ concentration

was calculated according to the Eq. (2), and then normalized such

that the peak value was 6?1024 moles/L. In Figs. 8B and 8C, the

Ca++ concentration over time was taken as

½Cazz�(t)~

0 tƒt0,

½Cazz
peak�:

etmax=t1

etmax=t1{1
: 1{e(t0{t)=t1
� �

t0vtƒtma  x,

½Cazz
peak�:e({tzt0ztmax)=t2 tmaxvt

8>>><
>>>:

ð12Þ

[Ca++
peak], the maximum value of [Ca++], was taken as 6?1024

moles/L in Fig. 8B and was varied as shown in Fig. 8C. t0 was the

onset of the Ca++ input; tmax = 13 s was the time it took the [Ca++]

to reach its maximum; t1 = 10 s and t2 = 1 s were the time

constants of [Ca++] rise and fall, respectively.

In order to account for the findings in Aplysia [41–43] (see

Results for details), we assumed Ca++ to affect the reaction rate

constants k5 and k-5 with a delay of 2.5 s so that k5 and k-5 became

k5(t)~kbase-line
5

: 1zCazzfactor:½Cazz�(t{D)f g ð13Þ

k{5(t)~kbase-line
{5

: 1zCazzfactor:½Cazz�(t{D)f g, ð14Þ

where the time-dependent input [Ca++](t) is replaced by [Ca++](t-

D) and D= 2.5 s. We used Ca++ factor = 10 000 L/(moles?s).

Effect of event timing on the adenylate cyclase
The model system was stimulated with a transmitter input, as

described above, delivered at time t = 210 s. For the control

condition, a Ca++ input was given at t = 0 s. For the associative

training, the Ca++ input was separated from the transmitter input

with an inter-stimulus interval (ISI), which was varied across

experiments between 2150 s and 200 s in steps of 1 s, except in

Fig. 5B2, where the range was 2100 s to 200 s. Here, negative

ISIs indicated that Ca++ preceded the transmitter; positive ISIs

meant that Ca++ followed the transmitter. The timing of stimuli

was fashioned after the behavioural experiment in Fig. 1. During

the 550s- long simulation, the area under the Ga*/AC*

concentration curve was taken as a measure of cAMP production.

For each ISI, we then calculated the percent associative effect as

Percent associative effect

~
AreaControl condition{AreaAssociative training

AreaControl condition

:100
ð15Þ

Negative values thus indicated that associative training with the

particular ISI resulted in more cAMP production than the control

Table 2. Rate constants of the reactions for the first model.

Rate constant Reaction Value Unit

k1 Formation of the Tr/GPCR complex 5.6?1025 mm2/(molecules?s)

k-1 Dissociation of the Tr/GPCR complex 8 1/s

k2 Activation of GPCR 17 1/s

k-2 Inactivation of GPCR 100 1/s

k3 Dissociation of Gabc into Ga* and Gbc 0.75 mm2/(molecules?s)

k-3 Deactivation of Ga* to Ga 0.05 1/s

k4 Reassembly of Ga and Gbc into Gabc 2 mm2/(molecules?s)

k5
base-line Formation of the Ga*/AC* complex 1025 mm2/(molecules?s)

k-5
base-line Dissociation of the Ga*/AC* complex 0.1 1/s

Apart from k5 and k-5, all values were chosen according to [46]. Thus, k1, k-1, k2, k-2 were estimates from moth olfactory transduction or vertebrate phototransduction
(see [46] for further references). For the parameters k5 and k-5 (see also Eqs. 13 and 14), the listed base-line values were chosen to mimic the experimentally measured
dynamics of adenylate cyclase activation/deactivation in response to transmitter [42], for a detailed sensitivity-analysis, see Fig. 5A. k5 and k-5 were sensitive to Ca++ (Eqs.
13 and 14).
doi:10.1371/journal.pone.0032885.t002

Table 3. Components and initial concentrations for the alternative model.

Abbreviation Molecule Initial concentration (molecules/cell)

GPCR G protein coupled receptor 55 000

Tr/GPCR* Complex of Tr and activated GPCR 0

G* Activated G protein 0

AC Adenylate cyclase 100 000

G*/AC* Complex of G* and activated AC 0

G G protein 100 000

Apart from the initial concentrations of AC and G*/AC*, values were as in [45] and thus estimates from neutrophil actin polymerization (see [45] for further references).
doi:10.1371/journal.pone.0032885.t003
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condition; positive values meant less cAMP production compared

to control.

Alternative model
The alternative model for the dual control of the adenylate

cyclase by the transmitter (Tr) and Ca++ was based on [45] and is

sketched in Fig. 9. The Tr and Ca++ concentrations were chosen

according to the experiments performed in Aplysia (Fig. 1A of

[42]), as already explained in the context of the first model, except

that Tr concentration was measured in moles/L. Model

components and initial concentrations are given in Table 3. The

dynamical variables were updated according to the Eqs. (16) to

(21) and the reaction rate constants are given in Table 4. The

effect of Ca++ and the percent associative effect were defined as in

the first model.

d½GPCR�
dt

~{k1
:½Tr�:½GPCR�zk{1

:½Tr=GPCR�� ð16Þ

d½Tr=GPCR��
dt

~k1
:½Tr�:½GPCR�{(k{1zk6):½Tr=GPCR�� ð17Þ

d½G��
dt

~k3
:½G�:½Tr=GPCR��{k{3

:½G��{k5
:½G��:½AC� ð18Þ

d½AC�
dt

~{k5
:½G��:½AC�zk{5

:½G�=AC�� ð19Þ

d½G�=AC��
dt

~k5
:½G��:½AC�{k{5

:½G�=AC�� ð20Þ

½G�z½G��z½G�=AC��~100000 ð21Þ
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3
A M O D E L F O R N O N - M O N O T O N I C I N T E N S I T Y
C O D I N G

3.1 summary

Flies are able to associate the intensity of an olfactory stimulus
with an electric shock. When trained at an intermediate inten-
sity, they show a smaller conditioned response both for higher
and lower odor intensities presented during the test, despite
the fact that learning performance generally increases with in-
creasing odor intensity.

This is particularly striking when regarding the representation
of odor intensity in the first layers of olfactory processing in
the fly olfactory system. Neuronal activity increases monoton-
ically with increasing stimulus intensity. The activity pattern
of a smaller intensity is always a subset of active units of the
higher intensity. This representation is therefore not suitable for
intensity specific learning.

We propose a minimalistic circuit motif that resolves this prob-
lem of nestedness by introducing a layer of intensity specific
units. A balance of excitatory and inhibitory synapses com-
bined with self-regulating homeostatic weights leads to neu-
rons that respond strongest at an intermediate odor intensity.
By incorporating a learning mechanism we show that the pro-
posed circuit motif replicates the behavioral results obtained
in the experiment. We further show numerical stability of the
model under parameter variations, emphasizing the generality
of the motif.

41



42 non-monotonic intensity coding

By relating the proposed model units in the circuit motif to the
known anatomy of the fruit fly, we are able to suggest dedicated
experiments that test the model assumptions.
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1. Summary
Peripheral neurons of most sensory systems increase their
response with increasing stimulus intensity. Behavioural
responses, however, can be specific to some intermediate intensity
level whose particular value might be innate or associatively
learned. Learning such a preference requires an adjustable trans-
formation from a monotonic stimulus representation at the
sensory periphery to a non-monotonic representation for the
motor command. How do neural systems accomplish this
task? We tackle this general question focusing on odour-
intensity learning in the fruit fly, whose first- and second-order
olfactory neurons show monotonic stimulus–response curves.
Nevertheless, flies form associative memories specific to
particular trained odour intensities. Thus, downstream of the first
two olfactory processing layers, odour intensity must be re-coded
to enable intensity-specific associative learning. We present a
minimal, feed-forward, three-layer circuit, which implements the
required transformation by combining excitation, inhibition, and,
as a decisive third element, homeostatic plasticity. Key features
of this circuit motif are consistent with the known architecture
and physiology of the fly olfactory system, whereas alternative
mechanisms are either not composed of simple, scalable building
blocks or not compatible with physiological observations. The
simplicity of the circuit and the robustness of its function under
parameter changes make this computational motif an attractive
candidate for tuneable non-monotonic intensity coding.

2. Introduction
Varying a sensory stimulus can influence behaviour in two
fundamentally different ways. First, the map from stimulus to
behaviour can be one-to-one. For example, the reaction time of

2015 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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human beings to a light stimulus decreases steadily with increasing light intensity [1]. At the neuronal
level, monotonic stimulus–response curves suffice to explain this phenomenon. Second, a particular
behaviour may only be triggered by a certain range of intermediate stimulus values; for instance, rats
and fruit flies prefer weak, but not strong, salt solutions over plain water [2,3]. In this case, the brain
needs to represent the stimulus in a non-monotonic way to generate the appropriate behaviour.

For some stimulus attributes, bell-shaped tuning curves at the sensory periphery solve this task. The
peaked frequency tuning of hair cells [4], for example arises because the basal membrane of the vertebrate
cochlea vibrates most strongly at a location determined by the frequency of the presented sound. For
other stimulus dimensions, such as sound amplitude [5], sensory neurons have monotonic input–output
curves, raising the question of how non-monotonic stimulus dependencies of behavioural responses
are generated.

A suitable system to study this general question is odour-intensity learning. Odour intensity is
typically encoded in a monotonic way by the first- and second-order olfactory neurons; consequently, the
neuronal population activated by an odour grows with increasing odour intensity and the representation
of a lower intensity is nested within that of a higher intensity (e.g. [6–8]). The overall increase in
neuronal activation with rising odour intensity can be useful to explain the ability to detect odour
gradients (as argued, e.g. in [9–11]) as well as the improvement of olfactory detection, associative
learning and memory retrieval at higher intensities (e.g. [12]). Changes in the hedonic value of an odour
with increasing intensity can arise if neurons with different sensitivities are connected to opponent
downstream pathways (e.g. [13]). Finally, changes in discriminability across odours with rising intensity
are consistent with growing odour representations (e.g. [14]). However, a key behavioural observation
remains unexplained: animals form associative memories specific to trained odour intensities such that
later on, neither lower nor higher intensities release as strong a conditioned behaviour, as shown in the
fruit fly [12,15–17], honeybee [18] and mouse [19]. This intensity specificity of learning suggests that
along the olfactory pathway, downstream of the initial monotonic encoding, odour intensity must be
re-coded in a non-monotonic manner.

We present a simple, biologically plausible neuronal circuit motif that does just this. We quantitatively
compare the intensity coding ability of this model to the intensity specificity of olfactory memories, as
assayed in the fruit fly and discuss how this circuit may be implemented in the fly olfactory system, thus
leading to experimentally testable hypotheses. The circuit motif found may also be relevant for other
cases where stimulus intensity must be encoded in a non-monotonic fashion to enable intensity-specific
behaviours (for an example in the auditory modality, see [5]).

3. Material and methods
3.1. Input layer
The activity of excitatory and inhibitory input neurons (figure 2b) are described by logistic input–
output functions:

exck(i) = 1
e−4b(i−ak) + 1

and inh(i) = inhmax

e−4binh(i−ainh) + 1
, (3.1)

where i is the odour intensity in logarithmic units. Thus, ak and ainh are the odour intensities at the
turning points of the respective logistic sensitivity functions, i.e. a large negative a-value implies a high
sensitivity. The factor 4 in the exponents is chosen so that b and binh are the slopes at the turning points,
where b > binh. The parameter inhmax > 1 scales the sensitivity function of the inhibitory input neuron.
For simplicity, only three excitatory input neurons are considered. Their ak values are shifted in steps of
one logarithmic unit.

3.2. Intermediate layer
The activity of the intermediate-layer neurons (figure 2c) are calculated as rectified weighted sums of the
input activities as

interk(i) = Rect(wexc exck(i) + winh inh(i)), (3.2)

where wexc and winh are the weights of the respective excitatory and inhibitory inputs. The rectifying
function Rect(x) is defined as Rect(x < 0) = 0 and Rect(x ≥ 0) = x, and results in a threshold neuronal
activation function.
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3.3. Homeostatic plasticity
We consider two scenarios for homeostatic plasticity. In both cases, we do not model how the
synaptic strength changes in response to each individual stimulus presentation but rather calculate the
resulting mean effect of homeostatic plasticity under the assumption that already prior to the specific
associative odour-shock training, the system has been exposed to odours drawn from a broad range
of concentrations.

In the first scenario (figure 3a(i)), the weights of the inhibitory synapses to the intermediate layer
are set uniformly to be winh = −1; whereas each excitatory synapse (wexc) is subject to homeostatic
plasticity. To implement the mean effect of this regulatory process, the weights wexc are adjusted based
on the sensitivity of the respective excitatory input neurons: the more sensitive an input neuron is (more
negative a-value), the higher its mean activation and, consequently, the mean rate at which it drives
the downstream intermediate-layer neuron. This effect will be balanced by homeostatic plasticity. As a
measure of the input neuron’s sensitivity, we take the integral of the input–output function exck(i) over
a concentration range [c0, c1]:

s =
∫ c1

c0

exc(i) di = 1
4b

ln

{
1 + e4b(c1−a)

1 + e4b(c0−a)

}
= s(a). (3.3)

The sensitivity function s(a) approaches c1–c0 for a → −∞ and zero for a → ∞. For intermediate values
c0 < a < c1, s(a) scales roughly linear in a. Then, based on s(a), we adjust the respective excitatory output
weight as

wexc(a) = −α(s(a) − d), (3.4)

where α is a scaling factor and d is set such that wexc(a) > 0 (see inset in figure 3a(i)). Thus, in the spirit
of homeostatic plasticity, the more sensitive an excitatory input neuron is, the weaker its synapse to the
intermediate layer will be. Mechanistically, this could either be implemented through ‘local’ homeostatic
plasticity [20,21] acting directly at this excitatory synapse, or through classical homeostatic plasticity [22],
as we only consider a single excitatory input to each intermediate-layer neuron.

In the second scenario (figure 3b(i)), the weights of all excitatory synapses are set to wexc = 1.
Implementing the mean effect of homeostatic plasticity, the weight of each inhibitory synapse is scaled
according to the sensitivity of the cognate excitatory input neuron as

winh(a) = −α̃s(a), (3.5)

where α̃ is a scaling factor (see inset in figure 3b(i)). Thus, the smaller the excitatory drive of an
intermediate neuron, the weaker is also its inhibitory input, in accordance with experimental findings
on homeostatic plasticity at inhibitory synapses [21,23,24].

3.4. Output neuron and associative plasticity
The activity of the output neuron is calculated as the weighted sum of the intermediate-layer
neuron activities:

out(i) =
∑

k

wtraining,kinterk(i). (3.6)

Initially, the weights wtraining,k are all zero. During associative odour-shock training (e.g. figures 2d,
3a(iii),b(iii)), these weights change proportional to the odour-induced activity in the respective
intermediate neuron, owing to the delivery of a concurrent reinforcement signal as

�wtraining,k = Θ(shock) interk(itraining), (3.7)

where θ (x) is the Heaviside function, defined as 0 if x ≤ 0 and 1 otherwise, representing the presence
versus absence of shock and itraining is the odour intensity at training.
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4. Results
4.1. Olfactory memories of flies are odour-intensity specific
The intensity specificity of fruit fly olfactory memories has been reported in several studies
using different developmental stages, experimental rationale and reinforcers ([12,15–17,25,26]; for a
comparative discussion see [12]). We start with a meta-analysis of three experiments that apply a
common paradigm to three odours [12]. In each experiment, flies are trained en masse, with pairings
of a chosen intensity of the respective odour and electric shock. Different groups of flies are then tested
for their avoidance of this odour at the trained, a lower or a higher intensity (figure 1a). In each case,
conditioned avoidance is scored by comparing the behaviour of flies trained as explained with paired
presentation of odour and shock versus flies trained with temporally unpaired presentation of the same
stimuli; thus, the scores refer to effects of associative learning and not to innate odour-responsiveness.
Across all three experiments, flies show the strongest conditioned avoidance when the testing and
training intensities match (figure 1b). For better comparison across experiments, we align the three
datasets along the stimulus and the response axes and find similar Gaussian fits, despite the diversity
of odours (figure 1c). Results from an appetitive olfactory learning assay in Drosophila larvae [17] paint a
similar picture (see the legend of figure 1c).

4.2. A simple circuit motif for odour-intensity-specific memories
Fruit fly olfactory sensory neurons (OSNs) and projection neurons (PNs) increase their activity with
rising odour intensity at the single-cell level, as exemplified in figure 1e,f (see also [8,10,27,29–32] for
demonstration of this property using a variety of methods). As a direct consequence of such monotonic
input–output curves, an odour at low intensity excites relatively few neurons, whereas the same odour
at a higher intensity recruits not only these but also additional neurons. Based on such a nested
representation of odour intensities alone, the memory trace of a low-intensity odour would be activated
at least as strongly by a higher intensity of the same odour. However, olfactory associative memories in
flies are intensity specific (figure 1a–c). This implies that non-monotonic intensity responses must emerge
in downstream layers of the olfactory pathway. The following model accomplishes this task.

The input layer of the model harbours multiple excitatory neurons (figure 2a, blue) with different,
monotonic responses, represented by logistic functions that are shifted by different offsets along the
stimulus axis (figure 2b, blue). These functions are inspired by fly OSN- and PN-electrophysiology
(e.g. [27] and [29]; figure 1e,f ), as well as computational models of olfactory transduction (e.g. [33]).
The modelled excitatory input neurons are connected one-to-one with neurons of the intermediate
layer (figure 2a, green). In addition, a single inhibitory neuron with monotonic input–output function
(figure 2a,b, red) provides input to all intermediate neurons. The convergence of excitation and inhibition
endows each intermediate neuron with a bell-shaped tuning curve (figure 2c). The relative shift of
sensitivity across the excitatory input neurons (figure 2b, blue) and the shallower sensitivity curve of
the inhibitory neuron as compared with the excitatory neurons cause the intermediate neurons to differ
in their tuning curves (figure 2c) but the nestedness of these tuning curves rules out that memories are
intensity specific.

To illustrate this important limitation we introduce an output neuron, onto which all intermediate
neurons converge (figure 2a, black). Prior to any training, the synaptic weights are set to zero so that the
output neuron does not respond to even the most intense odour (note that the innate olfactory behaviour
pathway is not represented in the model). When we train the circuit by pairing a given odour intensity
with electric shock (figure 2d, training), each intermediate neuron is activated to a certain degree, which
depends on its tuning curve and the intensity of the presented odour. In addition, a reinforcement signal,
induced by the electric shock is delivered to the output synapse of each intermediate neuron (figure 2a,
yellow). Owing to this reinforcement signal, each output synapse is strengthened proportional to the
respective level of odour-induced activity (figure 2d, training). This potentiation of output synapses is
the trace for the odour-shock memory. To read out this trace at test, we present the circuit with various
odour intensities and measure the activity of the output neuron (figure 2d, test). If the circuit mimics the
flies’ intensity-specific learning (figure 1a–c), the output neuron will respond most strongly when the
training and testing intensities match. This is not the case (figure 2d, test): although after all three kinds
of training, the output neuron activity depends on the odour intensity with a bell-shaped function, the
peaks do not correspond to the respective odour intensities used at training.
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Figure 1. (Caption overleaf.)

To solve this problem, we enrich the circuit shown in figure 2a with homeostatic synaptic plasticity,
which maintains the activity level of intermediate-layer neurons within a certain range by boosting
weak signals, while suppressing strong ones [20–24]. Indeed, homeostatic regulation has been shown on
different levels of the fly olfactory system [34–36]. Accordingly, we assume that the animal is exposed to
a wide range of odours at various concentrations prior to the associative odour-shock training, and that
this leads to homeostatic plasticity, which we describe at the level of time-averaged effects in our model.
First, we implement this mechanism at the excitatory input synapses projecting onto the intermediate
layer (figure 3a(i)). For simplicity, we calculate the resulting mean effect of homeostatic regulation
instead of modelling the synaptic strength changes in response to each individual stimulus presentation.
As expected, the more often an intermediate-layer neuron is activated on average (because of a more
sensitive input neuron), the weaker the respective excitatory synapse becomes. In an alternative scenario
(figure 3b(i)), we implement the homeostatic plasticity at the inhibitory synapses onto the intermediate
layer. This means that the inhibitory synapses are adjusted such that the more often an intermediate-layer
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Figure 1. (Overleaf.) Learned olfactory behaviour is intensity specific, unlike the response characteristics of sensory and projection
neurons. (a) One subgroup of flies is trained en masse such that an odour is temporally paired with electric shock; whereas a second
subgroup (not sketched) is presented with odour and shock in an unpaired fashion. Each subgroup is then tested for choice between the
trained odour versus a non-odorous solvent and a preference index is calculated as PI= (#Odour − #Solvent) · 100/#Total, where # is the
number of flies on each side. A conditioned avoidance score is defined as CAS= (PIPaired − PIUnpaired)/2, i.e. PIUnpaired acts as a baseline
to which PIPaired is compared. Negative CASs indicate conditioned avoidance. To probe for the intensity specificity of the conditioned
behaviour, we compare CASs across groups, which are trained with one common odour intensity, but tested with different intensities
(different grey shades). (b) In three different experiments, the design in (a) is applied to the odours 3-octanol (OCT), n-amylacetate (AM)
and 4-methlycyclohexanol (MCH). Critically, odour intensities are chosen from the dynamic range of the respective dose–response curves
of learning and retrieval [12]. Themedian CAS is shown as a function of the odour intensity at test. For filled symbols, the testing intensity
equals training intensity. Sample sizes are left to right N = 20, 20, 20 for OCT, N = 20, 24, 24 for AM and N = 24, 31, 24, 24 for MCH,
referring to the number of independent measurements. Data are from [12]. For a more detailed description of the methods, see [12].
(c) Data in (b) are normalized along the intensity axis by dividing test intensities by the training value; and along the CAS axis by dividing
median CASs by values frommatching training and testing intensities. The results are fittedwith Gaussian distributions. Their half widths
at half maximum (HWHM, inset) are similar (mean: 1.1, s.d.: 0.3) and close to results from odour-sugar associative learning experiments
in larval Drosophila ([17], HWHMmean ± s.d.= 1.5 ± 0.4). (d) In three different experiments, the design in (a) is applied to the odour
MCH. In each experiment, a different MCH intensity is used for training. The box plots represent the median by the midline, 25 and 75%
by the box boundaries and 0 and 100% by the whiskers. Grey filling indicates matching training and test intensities. Training with a
very low MCH intensity (left panel) results in CASs that are not different from zero, no matter the testing intensity (Kruskal–Wallis test:
H = 1.04, d.f.= 2,p= 0.59; one-sample sign test comparingpooleddata to zero:p= 0.90;N = 16, 24, 24).When the training intensity
is somewhat raised (middle panel), the CASs statistically do not depend on test intensity and when pooled indicate slight conditioned
avoidance (Kruskal–Wallis test:H = 4.65, d.f.= 3,p= 0.20; one-sample sign test comparingpooleddata to zero:p< 0.05;N = 31, 33,
33, 33). Finally, for a further raised training intensity (right panel), CASs depend on test intensity (Kruskal–Wallis test:H = 9.27, d.f.= 3,
p= 0.02) and are strongest when training and test intensities resemble each other (Mann–Whitney U tests: test at 0.0003 versus 0.001:
U = 147.00, p< 0.05/3; test at 0.00054 versus 0.001,U = 290.00, p= 0.17; test at 0.01 versus 0.001,U = 159.00, p< 0.05/3;N = 24,
31, 24, 24). Data in the right panel from [12]. Note that the training intensity used in this panel is chosen from the middle of the dynamic
range of the dose–effect function for learning and retrieval [12]. (e) Monotonic intensity tuning of single olfactory sensory neurons (OSN)
which ectopically express the specified olfactory receptor (Or)molecule, taken from [27]. For a comparison between the electrophysiology
of such transgenic OSNs versus wild-type ones, see [28]. Note that monotonic intensity tuning has been documented also with respect
to wild-type OSNs (e.g. [29]). (f ) Monotonic intensity tuning of single olfactory projection neurons, innervating the indicated antennal
lobe glomeruli, taken from [29]. In (e) and (f ), the lines correspond to fitted logistic functions.

neuron is activated, the stronger the respective local inhibitory synapse becomes. Both scenarios result
in non-monotonic and, critically, non-nested tuning curves across the intermediate layer (figure 3a(ii),
b(ii)). Consequently, in either scenario, when we train the circuit with a given odour intensity paired
with electric shock, the output neuron indeed responds most strongly to this very intensity at test
(figure 3a(iii),b(iii)), mimicking the flies’ odour-intensity-specific memories. Furthermore, with lower
training intensities, the output neuron activity at test is smaller and more broadly tuned (especially
pronounced in figure 3a(iii)), reflecting fly behavioural data, where lower training intensities result in
weaker and less intensity-specific conditioned avoidance scores (figure 1d).

Within a biological implementation of the model, the sketched excitatory neurons of the input layer
need to receive common olfactory input so that the rank order of sensitivities does not change with
odour identity. This circuit property can be fulfilled if these neurons were, e.g. uni-glomerular projection
neurons innervating a common antennal lobe glomerulus, or multi-glomerular projection neurons each
innervating a large sum of glomeruli (see Discussion and figure 4 for details). Note also that the time scale
on which the homeostatic plasticity occurs is long compared to the time scale of the training and testing of
odour-intensity-specific memories. This is consistent with homeostatic adjustments taking place during
development and/or early life in response to olfactory exposure.

Importantly, the ability of the model to mimic flies’ intensity coding is robust across a large parameter
space, as revealed by a detailed sensitivity analysis (electronic supplementary material, figure S1). This
flexibility may render the model circuit attractive for a variety of neuronal systems.

5. Discussion
The early stages of most sensory systems encode stimulus intensity with monotonic response curves
(see [42,43] for vision, [44] for hearing, [45] for somatosensation, [46] for taste, but [3] for an exception
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memories. (a) Model circuit. The odour is feed-forwardly processed through three neuronal layers. For simplicity, the input layer consists
of only three excitatory (blue) and one inhibitory neuron (red). The excitatory neurons connect one-to-one with three intermediate-
layer neurons (green) with weights wexc, the single inhibitory neuron provides input to all intermediate neurons with weights winh.
Intermediate neurons converge onto one output neuron (black) withweightswtraining. The output synapses of the intermediate layer also
receive an electric shock-induced reinforcement signal (yellow). (b) The activity of input neurons increaseswith increasing odour intensity
according to the logistic functions exc(i) (blue) and inh(i) (red), respectively. Thedifferent exc(i) share slope andasymptote, but are shifted
along the intensity axis. Critically, the function inh(i) is less steep than the exc(i) functions. (c) The activity of each intermediate neuron
is the weighted difference between its cognate excitatory input and the shared inhibitory input, i.e. exc(i)–inh(i) (green), as the weights
of all inputs are adjusted to 1. The resulting bell-shaped tuning curves are nested. (d) Using this circuit, we simulate three experiments.
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intensity, each intermediate neuron is activated depending on its tuning. Upon the contingent delivery of shock, a reinforcement signal
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with a series of odour intensities, including the trained ones, andmeasure the activity of the output neuron, which indeed depends non-
monotonically on odour intensity in each experiment (grey lines). Critically, however, the activity peaks around the same intensity-range
in all three experiments, despite the difference in the training intensities used.

regarding taste). The absence of non-monotonic intensity tuning in the initial processing steps is
particularly striking in olfaction, because animals readily form odour-intensity-specific associative
memories [12,15–19,25,26].
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Figure 3. (Caption opposite.)

A suitable case to tackle this discrepancy is the fruit fly, where olfactory sensory and projection
neurons (OSNs and PNs) have monotonic responses [8,10,27,29–32] (but see [9] for few examples of non-
monotonic tuning at PN output sites). Peaked intensity tuning curves mainly emerge downstream, in
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Figure 3. (Opposite.) Adding homeostatic plasticity enables intensity-specificmemories. (a) Homeostatic plasticity is added to the circuit
motif of figure 2: each excitatory synapse onto the intermediate layer is adjusted based on the respective input neuron’s sensitivity. Thus,
the weightwexc becomes a function of a, which is the turning point of the logistic function exc(i), such that a large a-value (indicating a
low neuronal sensitivity) is counterbalanced by a higherwexc and vice versa (a(i) inset). (a(i)) Consequence of this homeostatic regulation
on the excitatory synaptic inputs to the intermediate layer (wexc(a) · exc(i), blue), together with the unadjusted inhibitory input
(−inh(i), red). (a(ii)) The convergence of these inputs confer non-monotonic and non-nested intensity tuning to the intermediate
neurons (wexc(a) · exc(i)–inh(i), green). In (a(iii)), we apply the training and test design from figure 2d. Unlike in figure 2d, the output
neuron at test respondsmost strongly to the respective intensity used at training. (b)With an alternative homeostatic plasticity rule, each
inhibitory input synapse is adjustedbasedon the sensitivity of the cognate excitatory input. Thus,winh becomes a functionofa as shown in
the inset of (b(i)). In (b(i)), we plot the resulting, homeostatically regulated inhibitory inputs to the intermediate layer (−winh(a) · inh(i);
red) and the excitatory inputs (exc(i), blue). (b(ii)) These converging inputs confer non-monotonic and non-nested tuning curves to the
intermediate-layer neurons (exc(i)–winh(a) · inh(i), green). In (b(iii)), we apply the training-test design fromfigure 2d and obtain results
similar to those in (a(iii)).
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Figure 4. Scenarios for implementation in the fly olfactory system. We present four scenarios for implementing the circuit motif in
figure 2a in the adult Drosophila olfactory system. In adult flies, approximately 1300 olfactory sensory neurons (OSNs) per hemisphere
converge onto approximately 50 antennal lobe glomeruli, based on their olfactory receptor expression [37,38]. For simplicity, in each
scenario, we depict only two glomeruli (grey dashed ellipsoids), each with six afferent OSNs. On average three homotypic uniPNs receive
input at each glomerulus [39]. In (a) and (b), we use these ‘sister’ uniPNs as the excitatory input neurons (blue) and consider as the
intermediate layer (highlighted in green) their post-synaptic partners, either the mushroom body Kenyon cells (KCs) in (a) or the lateral
horn neurons (LHNs) in (b). For implementing the feed-forward inhibition from antennal lobe to the KCs (a) or to the LHNs (b), we
propose anatomically described GABAergic multi-glomerular projection neurons (inh-multiPNs; red; see the main text for details). As
the responses of uniPNs are partially odour identity-specific, an entanglement of identity and intensity coding is conceived in (a) and (b).
Alternatively, the coding of identity and intensity may be segregated. Thus, in two further scenarios, we use multiPNs as the excitatory
input neurons (multiPNs; blue; see themain text for anatomical references) and take as the intermediate layer their downstreampartners
the KCs (c) or the LHNs (d). The inhibitory channels are as proposed for (a) and (b), respectively. Note that these scenarios are based on
adult Drosophila olfactory anatomy. At the larval stage, each antennal lobe glomerulus is innervated by a single uniPN [40] thus (a) or (b)
would not apply; whereas (c) or (d) may be plausible as multi-glomerular projection neurons have been described in the larval olfactory
system [41].
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mushroom body (MB) Kenyon cells (KCs) [47,48], and, as recently found, in lateral horn neurons (LHNs)
[49] (also see [50] for locust KCs). What kind of connectivity carries out this transformation?

5.1. Computational models of non-monotonic intensity coding
In a model suggested by Luo et al. [51], a layer of uni-glomerular projection neurons (uniPNs) gives
randomly connected excitatory output to a layer of 2500 KCs and drives a global inhibitory neuron that
also impinges upon the KCs. The synapses along the feed-forward inhibitory pathway are adjusted such
that more sensitive uniPNs contribute stronger to inhibition, whereas those KCs with stronger excitatory
input receive more inhibition. Although the model is concerned with the odour identity-tuned responses
of third-order olfactory neurons, a substantial portion of the KCs also shows peaked intensity tuning. The
large number of KCs in adult flies (e.g. [52]) fulfils the model’s requirement. In flies, however, KCs display
a heterogeneity of function in supporting short- versus long-term and perhaps even appetitive- versus
aversive olfactory memories (e.g. [53,54]) and they support a variety of additional behavioural functions
(e.g. context-generalization [55], regulation of sleep [56], decision-making [57]). It is thus not clear how
many KCs would be ‘available’ for implementing this solution with respect to a given olfactory learning
event. The randomness of the connectivity in Luo et al.’s model [51], despite being realistic (e.g. [58]), does
not allow pinpointing an explicit minimal network structure that transforms monotonic responses to
non-monotonic ones. Such information would be useful for generalizing to other developmental stages,
species and modalities, where fewer neurons might be available. Technical implementations, too, would
benefit from a design principle, which can be scaled according to need.

Here, different from Luo et al. [51] or the related framework of reservoir computing [59], we
explicitly suggest a dedicated circuit motif transforming monotonic into non-monotonic responses. In
this three-layer feed-forward circuit (figure 2), the input layer consists of multiple excitatory neurons
with monotonic response curves reflecting different sensitivities and a single inhibitory neuron with
a monotonic response function that is less steep than those of the excitatory neurons. Convergence
of these elements onto the intermediate layer results in peaked tuning curves. To support intensity-
specific memories, however, it is critical to have different neurons with non-nested tuning curves
peaking at different values along the intensity axis (figures 2 versus 3). This property is generated
through a homeostatic adjustment [20–24] of the excitatory versus inhibitory balance in the input to the
intermediate neuron layer. Finally, all intermediate-layer neurons converge onto a single output neuron,
with synapses that are subject to associative plasticity. In this scheme, the generation of peaked tuning
curves in the intermediate layer resembles the mechanism by which mammalian auditory brainstem
neurons encode sound amplitude with bell-shaped profiles [5]. The necessity of homeostatic plasticity,
on the other hand, echoes a key ingredient of Luo et al.’s [51] model, where the feed-forward inhibitory
pathway synapses are adjusted to balance out the effects of the excitatory pathway.

Could there be even simpler circuit motifs than those considered so far? Indeed, endowing
intermediate-layer neurons with a resonate-and-fire mechanism [60] could achieve the required
nonlinear transformation between stimulus intensity and circuit output. As in our model framework,
odour intensity would be encoded monotonically in the frequency of periodic spike trains of input
neurons (e.g. PNs). If their discharge frequency is too low or too high, the intermediate neuron would
not fire. However, if the discharge frequency is close to (or matches) the resonance frequency of the
intermediate neuron, this neuron would generate periodic spike trains, too.

Now consider a larger group of resonate-and-fire neurons with different resonance frequencies whose
range covers the behaviourally relevant firing rates of the input neurons. In an odour-shock training
episode with a given odour intensity, there would thus only be one neuron or a small group of neurons
in resonance with the input. Different odour intensities would drive different subgroups. Owing to a
reinforcement signal, the output synapses of these activated intermediate neurons would be associatively
strengthened, laying down an intensity-specific memory trace. The larger the mismatch between input
frequency and resonance frequency, the smaller the synaptic changes would be. After learning, only
odour intensities close to the trained intensity would be transmitted; whereas lower or higher intensities
would be filtered out, thus enabling intensity-specific conditioned behaviour.

A decisive ingredient of this alternative mechanism is the layer of resonate-and-fire neurons with
cell-specific resonance frequencies. From each of these neurons, one would expect that during odour
presentation, the inter-spike-intervals cluster around a particular value, reflecting the neuron’s inverse
resonance frequency. Neither fly [47,61], nor locust [50,62] KCs show this property; instead, KC inter-
spike intervals vary significantly within a single response to one odour, across multiple responses to the
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same odour and across responses to different odours. The data presented in [49] suggest that the same is
true for LHNs.

A further alternative model [17] is conceptually similar to our approach but assigns to each
intermediate neuron one excitatory and one inhibitory pre-synaptic partner, thus employing more
neurons than the present model and requiring a rather specific circuit structure that may not match
the fly olfactory system. The model proposed here is simpler and could be readily implemented in
the fly olfactory system, where activity-dependent homeostatic plasticity has been observed at various
neuropils [34–36].

5.2. Implementation of the present circuit motif in the Drosophila olfactory system
Given the scarceness of odour-intensity-resolved physiological data from the MB [47,48,50] and the LH
[49] and the absence of behavioural studies that discriminatively test for the roles of these in intensity
learning, we believe it too early to restrict the discussion to one or the other neuropil. We thus consider
all known neuron types in the fly olfactory system to suggest four alternative implementations of the
model, including detailed references to anatomy, thus pointing to testable hypotheses (figure 4).

In the first two scenarios (figure 4a,b), the excitatory input neurons for each antennal lobe glomerulus
correspond to the homotypic uniPNs innervating that glomerulus [39]. UniPNs have monotonic response
functions (see above for references). To accommodate our model, we assume different sensitivities
for the different uniPNs innervating a common glomerulus; as these receive common OSN-input, the
rank order of their sensitivities will be identical for all odours. As uniPNs project to both the MB
and the LH, we consider either neuropil as the intermediate layer in figure 4a,b, respectively. Feed-
forward inhibition from antennal lobe to MB is limited. The single identified type of likely GABAergic,
multi-glomerular PN (inh-multiPN) projecting to the MB calyx ([39]; named ‘mlPN4’ in [63]) could
implement the inhibition in figure 4a. Alternatively, inhibition could be carried out by the APL neuron,
which provides feedback to the KCs [63,64] or by the MB-C1 neuron which connects LH to the MB
[52] and has GABAergic counterparts in other insects [65,66]. For the inhibitory channel in figure 4b,
several GABAergic inh-multiPN types projecting to the LH (e.g. ‘mlPN2’ and ‘-3’ in [63]) are available
as candidates. Interestingly, at least one of these neurons innervates almost the entire antennal lobe
(‘mlPN3’ in [63]; also see [67]), providing a particularly elegant solution. Furthermore, some inh-multiPN
types are known to have monotonic sensitivity functions, as required for a role in the present model
[68–70]. Whether the detailed parametric properties of these sensitivity functions would enable non-
monotonic intensity coding across the behaviourally relevant range remains to be investigated. As
the responses of uniPNs are partially odour identity-specific, the scenarios in figure 4a,b conceive an
entanglement of identity and intensity coding. This is especially true for the scenario in figure 4a, as a
large body of evidence point to the MB KC output synapses as the site of the critical plasticity underlying
learned olfactory behaviour (reviewed in [71,72]; also see e.g. [54,73,74] for neurogenetic analyses in
Drosophila and e.g. [75,76] for electrophysiological accounts in other insects).

The extent to which animals should discriminate versus generalize along the odour intensity and the
odour identity dimensions probably depends on the behavioural task at hand. In that sense, separating,
instead of entangling the coding of these dimensions offers more degrees of freedom in regulating the
balance between discrimination and generalization. Thus, in two further scenarios (figure 4c,d), we
use multiPNs as the excitatory input neurons. Two anatomical candidates for such neurons project,
respectively, to the MB and the LH and to only the LH (‘mPN4’ and ‘lPN2’ in [63]). Accordingly,
we consider either neuropil for the intermediate layer in figure 4c,d, respectively, with the inhibitory
channels as elaborated above. In these two scenarios, as the intensity coding circuit sums up activity
across the antennal lobe glomeruli, it loses the information on odour identity and these two dimensions
are coded separately. Whether and how these stimulus dimensions can be bound together to form a
unitary percept of a particular odour at a particular intensity to enable an intensity- and identity-specific
olfactory memory remains open.

The scenarios we propose can be directly tested because they are based on identified neuron types, as
detailed above, and because transgenic tools for interfering with these neurons are available (e.g. [63]).
The experimental design outlined in figure 1a can be used in conjunction with these tools to investigate
the roles of specific neuron types. Particularly, the role of multi-glomerular projection neurons have so
far been considered in the framework of innate olfactory behaviour, given their monotonic intensity
sensitivity (e.g. [69,70]); a role for these neurons in enabling non-monotonic coding and associative
learning of intensity is a novel suggestion.
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Behavioural responses often depend in a bell-shaped fashion on certain stimulus attributes whose

preferred value might be determined through associative learning. The present model demonstrates that
an elementary circuit motif can achieve the required tuneable signal transformation. The model can be
tested experimentally at a quantitative level. Owing to its simplicity, the underlying circuit motif could
serve as an attractive candidate for tuneable non-monotonic intensity coding.
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4.1 summary

Animals are able to associate two stimuli even when these are
presented discontinuously. During this temporal gap the ani-
mal needs to keep a trace of the stimulus in its nervous system.
In an olfactory trace conditioning paradigm flies show their
ability to bridge stimulus free intervals of a duration of up to
five seconds.

So far it is not clear which units harbor this stimulus trace.
We analyzed optical recordings of first, second and third or-
der olfactory neurons (ORNS, PNs and KCs) from Drosophila.
We performed both a correlation analysis and a machine learn-
ing approach based on support vector machines (SVMs) on a
single fly level. We compared the direct stimulus response with
the post-stimulus activity and found, consistent with previous
studies, low correlation values on the level of ORNs and PNs.
Classification with SVMs also failed for the first two layers of
olfactory processing. The analysis for KCs however revealed
high correlation values and successful classification of stimulus
responses based on training of post-stimulus activity. This em-
phasizes the role of the KCs in olfactory learning not only as
convergence site but also as place for a stimulus trace that is
kept for a time period of several seconds.

All data discussed in this paper was generously shared by Alja
Lüdke, working at the University of Constance together with
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Both vertebrates and invertebrates are able to form associations between stimuli, even when the
first stimulus ends before the second one starts, as demonstrated by trace conditioning. To form
such an associative memory, some neural representation of the first stimulus has to be retained
by the nervous system until the onset of the second stimulus. How and where this stimulus trace
is encoded in insects has remained an open question. We analyze Drosophila olfactory neurons
recordings from the first three layers of sensory processing — olfactory receptor neurons (ORNs),
projection neurons (PNs), and Kenyon Cells (KCs) — and compare their internal calcium dynamics
during stimulus representation with post-stimulus calcium responses. We show that the information
in the post-stimulus responses of ORNs or PNs is not sufficient to correctly classify the identity of
an odor. However, odor classification based on post-stimulus responses was successful at the KC
level. This finding provides a strong indication that the calcium dynamics of Kenyon Cells encode
olfactory stimulus traces and thus enable associations between temporally disconnected stimuli.

INTRODUCTION

Fruit flies and other animals can be trained to associate
an odor with an electric shock [30], even if there is a
stimulus-free interval between the offset of the odor and
the onset of the shock [9, 12, 24, 26]. This variant of
classical conditioning is called trace conditioning since
the animal has to keep a trace of the past conditioned
stimulus (CS) until the onset of the unconditioned stim-
ulus (US). In rodents, the hippocampus is required for
trace conditioning [33]. But where is the stimulus trace
represented in an insect brain? To address this key ques-
tion for learning and memory, we apply state-of-the-art
data-analysis methods to data obtained by in vivo Cal-
cium imaging in the fruit fly Drosophila melanogaster.

The olfactory system of Drosophila consists of several
layers of neurons [16]. Odorant molecules bind to recep-
tors expressed by olfactory receptor neurons (ORNs) in
the two antennae, evoking odor-specific activity patterns
[14, 19]. ORNs project to the antennal lobe (AL), where
they form synapses with projection neurons (PNs) and
local interneurons in distinct neuropils called glomeruli.
Typically, ORNs express only one type of olfactory re-
ceptor and all ORNs expressing the same receptor type
project to the same glomerulus; in addition the glomeru-
lar layout of the AL is stereotypic between flies [32].

Local excitatory and inhibitory interneurons in the AL
transform the antennal odor representation [1, 21–23, 34–
36] and PNs forward this new representation to the mush-
room body (MB) and lateral horn (LH). Kenyon cells
(KCs) in the MB respond sparsely to odors [3, 17, 31].
The connectivity between PNs and KCs has been sug-
gested to be quasi random [4], unlike the more organized
projection from AL to LH [10, 29]. Functionally, the MB

is the convergence center for odor information and re-
inforcement signals [8, 15], whereas the LH is generally
considered to be involved in innate odor responses; for
an alternative functional interpretation, see Galizia [13].

Recently, Galili et al. [12] established a rigorous ex-
perimental paradigm to compare trace conditioning and
delay conditioning (the first stimulus is still present when
the second stimulus starts) at the behavioral level. In ad-
dition, these authors carried out in vivo calcium imaging
of ORNs in search for the neural correlate of the stim-
ulus trace. Averaging over responses of different flies,
these authors performed a compound correlation analy-
sis that suggests that the neural substrate of the trace is
most likely downstream of the ORNs.

We extend this study and analyze the time-resolved
response patterns obtained by in vivo Calcium imaging
of populations of ORNs, PNs and KCs. Comparing the
responses to different odorants we aim at finding and
characterizing the neural correlate of the stimulus trace
that the animal might use to form associative memories
between odors and a reinforcing stimulus. In particular,
we ask whether this trace simply reflects binding and
unbinding processes at the ORN level or whether it is
constructed de novo at the level of the antennal lobe or
mushroom body.

RESULTS

Successful olfactory trace conditioning requires an odor-
specific trace of neural activity that extends sufficiently
beyond the termination of the CS presentation. To de-
tect such a stimulus trace, we compared the patterns of
calcium activity during the CS with the post-odor re-
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sponse, the activity in the interstimulus-interval follow-
ing the CS. To determine where this trace is formed in
the insect brain, the analysis was done separately at the
ORN-, PN- and KC-level. As a measure for the similar-
ity of responses during odor stimulation and post-odor
responses we calculated Pearson correlation coefficients
at different time points (see Methods), both for two rep-
etitions of the same stimulus and across stimuli. To test
whether the post-odor response reliably encodes the pre-
ceding stimulus and thus enables trace conditioning, we
asked whether this stimulus can be correctly classified
using only its particular post-odor response.

Correlations – same odor

To measure the similarity of neural responses, we calcu-
lated the Pearson correlation coefficient individually for
each stimulus and fly (auto-correlation) and between two
repetitions of the same stimulus (cross-correlation). As
an example, correlation matrices for Butanol stimulation
are shown in Fig. 1 for ORNs, PNs, and KCs (top to bot-
tom), with auto-correlations in the left-hand panels and
cross-correlations in the right-hand panels. Each panel
contains 175×175 pixels, corresponding to the 175 frames
that were recorded at a frequency of 20 Hz, for a total
duration of 35 seconds. The stimulus was presented from
time t = 0 s until t = 10 s, as indicated by the gray bars,
followed by a 20-second post-stimulus period. Each pixel
shows the Pearson correlation coefficient between the two
time points indicated on the x and y axes. Correlation
values are color coded as explained in the color bar: Pos-
itive correlations are red, negative values blue, and low
correlations are in pale colors.

The upper-right triangular part of Fig. 1A demon-
strates that the ORN odor response is strongly correlated
with itself during the entire stimulus duration (high cor-
relation values for all time pairs between around t = 0 s
and t = 10 s); the same holds for the first 10 to 15 seconds
of the post-odor response, although the stripes indicate
stronger temporal fluctuations in that period. Notably,
the correlation between odor response and post-odor re-
sponse is much lower (pale colors for in the upper right
quadrant), suggesting that at the ORN-level post-odor
responses do not provide suitable stimulus traces.

Apart from slightly higher similarities between odor
and post-odor responses (in particular around t = 25 s),
the correlation structure evoked by a repeated Butanol
stimulus, ButL 2, (lower-left part of Fig. 1A) closely
mimics that triggered by ButL 1. Indeed, the cross-
correlation between the first and second repetition of
ButL shows high values during the stimulus presentation
(Fig. 1B, from t = 0 s to t = 10 s) but the correlation
of the post-odor responses is rather weak (Fig. 1B, for
t > 10 s).

PN responses (Figs. 1C and 1D) are similar to ORN
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FIG. 1. Temporal evolution of response correlations. Each
panel depicts time-dependent Pearson correlation coefficients
between the glomerular responses at the times indicated on
the x and y axis. gray bars represent stimulus presentation.
(A) Auto-correlation of the activities of olfactory receptor
neurons (ORNs) of one fly in response to two stimulus pre-
sentations of Butanol (upper-right triangle: 1st presentation,
lower-left triangle: 2nd presentation). (B) Cross-correlation
for the responses in (A). (C, D) As (A, B) but for projection
neurons (PNs). (E, F) As (A, B) but for Kenyon cells (KCs).

responses in some aspects: Patterns of high correlation
are visible for time periods during and after stimulus pre-
sentation for both repetitions of Butanol (Fig. 1C, upper
and lower triangle for t ∼ 0s to t ∼ 10s and t ∼ 10s
to t ∼ 30s). However, the correlations between odor-
and post-odor responses are now much lower, at times
even negative. Temporal fluctuations are stronger, both
during and after odor presentation, and generate the pro-
nounced stripe-like patterns. This is also evident in the
cross-correlations of PNs (Fig. 1D): During odor presen-
tation, correlations are not as large as for ORNs and and
vary strongly in time. After odor presentation, however,
there is still an area of high correlation with temporal
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fluctuation from t ∼ 10 s to t ∼ 30 s.
In stark contrast to these observations, there are no

structured patterns in the KC responses (Figs. 1E, 1F).
For both repetitions of Butanol (upper and lower trian-
gle of Fig. 1E) a band of high correlation extends along
the entire diagonal, indicating that irrespective of the
stimulus offset the stimulus response changes slowly over
time. The duration of high similarity (the width of the
high-correlation band) varies between five and ten sec-
onds. As for the ORN and PN responses, KC responses
are also stereotypic between repetitions of the same stim-
ulus (Fig. 1F). From stimulus onset until about 5 to 10
seconds after stimulus offset, a band of high correlation
along the diagonal is clearly visible. This observation
holds for most but not all KC recordings.

Correlations across odors

To successfully associate a particular odor trace with the
shock stimulus, the post-stimulus responses triggered by
different odors must be sufficiently different from each
other, but similar enough to the stimulus response of the
same odor. We therefore analyzed correlations across
odors at the same points in time and across different
points in time.

For mean correlation values close to one the variance
has to be small, as demonstrated by the rightmost data
points in all three panels of Fig. 3. However, at smaller
mean correlation values across flies, the responses of
ORNs, PNs, and KCs differ systematically. For ORNs,
the smallest mean correlation values are close to zero.
In this region, the variability between flies ranges from
almost -1 to +1. With increasing mean correlation, the
variability quickly drops to rather small values, with the
most reliable response (high R values for all flies) occur-
ring for a repeated presentation of the same odor (ButL).
For PNs, the smallest mean correlation values are nega-
tive and far less variable than in ORNs. The variability
then slightly increases and only slowly (and in a non-
monotone fashion) approaches zero for the highest mean
correlation values. Finally, for KCs, mean correlation
values range from just below zero up to almost one, with
one outlier fly that shows a completely different behav-
ior. For all others, high values correspond also to the
repetition of the same odor (Fig. 2). Unlike in ORNs,
the variability between flies starts with very small val-
ues. Overall, the fly-to-fly variability at the KC level is
smaller than at the PN level.

The correlation analysis shows that odor pairs can be
separated into two complementary response classes at the
ORN level. One class has low mean correlation values
and a high fly-to-fly variability, the other has high corre-
lation values that are consistent across flies (low variabil-
ity). For PNs, only very few odor pairs yield high cor-
relation values and the variation across flies is higher for

A ORN

B PN

R

C KC
R

R

--

--

--

FIG. 2. Response correlations across odors for individual flies.
Correlations between responses to the stimulus pairs indicated
on the x-axis were calculated one second after stimulus onset
(t = 1 s). In each panel, every color-symbol combination cor-
responds to one individual fly (but is re-used for different flies
in the different panels). The dashed red line denotes the mean
correlation over all flies for each odor pair, the dashed blue
line depicts the corresponding variance. Results are shone in
(A) for ORNs, in (B) for PNs and in (C) for KCs. The sim-
ilarity of responses to different odors as well as the variability
of responses between flies are clearly visible.

all odor pairs. In KCs, except for the pair (MCH, ProL),
the variability between flies is consistently low. Correla-
tion values are only high for repetitions of the same odor
which indicates well separated representations of odors
in KCs.

Analyzing correlation values averaged over flies sup-
ports this finding. During stimulus presentation, the sim-
ilarity across odors decreases from ORNs to PNs to KCs
(Fig. 3A, blue boxplots), indicating an increase in odor
separation. Correlations for the same odor are high for
all three layers of processing (Fig. 3A, yellow boxplots).
For ORNs and PNs, however, values only represent the
repetition of a single stimulus, butanol. Correlations for
post-odor responses at t = 15 s are generally smaller
(Fig. 3B). For ORNs and PNs however the correlation
for the same odor is smaller than for KCs (Fig. 3B, yel-
low boxplots).
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FIG. 3. Mean stimulus correlations. Boxplots show values
across flies. Yellow symbols (“same”) refer to correlations
between two presentations of the same odor, blue symbols
(“across”) denote correlations between different odors. Box-
plots show mean, upper and lower quartile and whiskers ex-
treme values. For ORNs and PNs, only butanol was presented
twice, hence the small variation for ORNs during stimulus
presentation. (A) Responses during stimulus (S) presenta-
tion at t = 1 s. Mean correlations between the same stimuli
are high, and lower across different stimuli. (B) Post-stimulus
(PS) responses after t = 15 s. For ORNs, PNs and KCs, cor-
relations across stimuli are similar to the stimulus correlations
in A. Unlike the trend for across-odor correlations of stimulus
and post-stimulus responses alike, same-odor correlations in-
crease for post-odor responses from ORNs and PNs to KCs.

---- --
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FIG. 4. Correlation between stimulus response of odor 1 (S1)
and post-stimulus response of odor 2 (PS2) vs. correlation
between stimulus response of odor 2 (S2) and post-stimulus
response of odor 1 (PS1). (A) ORNs, (B) PN, (C) KC.
Each point represents the value for one odor pair, and within
one panel the same plot markers correspond to the same fly.
For each fly, a correlation value was calculated and tested
for significance. Significant correlations are highlighted with
larger symbols. For ORNs, two flies show significant corre-
lation (−0.55 and 0.40), for PNs three (−0.46, −0.18, 0.37)
but all flies for KC (0.52, 0.61, 0.61, 0.28, 0.52, 0.61, 0.42,
0.37). This analysis shows that stimulus and post-stimulus
responses are consistent only at the KC-level.

To analyze the consistency of post-stimulus responses
we calculated the correlation between stimulus and post-
stimulus responses across all odor pairs (Fig. 4). If the
post-stimulus response contains information about the
stimulus, it should do so consistently from trial to trial.
We would then expect the correlation between stimulus
response of odor 1 and post-stimulus response of odor
2 (we call this R(S1,PS2)) to be similar to the reversed
case of post-stimulus response of odor 1 and stimulus
response of odor 2 (R(S2,PS1)). For ORNs and PNs this

is clearly not the case (Fig. 4A, B). Correlation values
are scattered in all four quadrants and the correlation
between R(S1,PS2) and R(S2,PS1) is significant only for
two flies with values of −0.55 and 0.40 for ORNs and
three flies for PNs with values −0.46, −0.18 and 0.37.
For a consistent response we expect correlation values to
be significant and similar across flies. This is the case
for KCs (Fig. 4C). Correlation between R(S1,PS2) and
R(S2,PS1) is significant for all flies and the values are ∼
1/2, indicating a consistent post-stimulus response across
all odors and flies.

Classification

The correlation analysis provides a measure of response
similarity over time for repetitions of the same odor and
across different odors. Based on this analysis, we learned
that the correlation between the odor response and the
post-odor response is low at the level of ORNs and PNs.
At the KC-level, however, the representation of the stim-
ulus is slowly varying in time without an abrupt change
after stimulus offset.

This observation hints at a possible neural substrate
for the olfactory stimulus trace. We therefore tested
whether the information contained in the stimulus re-
sponses at the ORN, PN and KC level can be used to rec-
ognize an odor during stimulus presentation based solely
on the post-odor response. To do so, we first used sup-
port vector machines (SVMs), a classification model in
machine learning which gains its power from projecting
the data into a high-dimensional feature space. Next,
we use a second approach, a linear discriminant analysis
which is well established in analyzing data from olfac-
tory experiments ([11], [3] and references therein) and
can readily be implemented in a biological system using
integrate-and-fire neurons. In this approach responses
are classified based on the Euclidean distance between
the multi-dimensional response vectors.

Support Vector Machines

For each fly, we trained one SVM at time t = 15 s
(post-odor response) for each odor. We then classified
responses for the same point in time and for t = 1s (stim-
ulus response). Doing this for different parameter com-
binations, we find parameter sets for each fly giving the
best classification performance.

For ORNs, PNs and KCs, training and testing at the
same point in time (15s s) revealed a reliable classifica-
tion (Fig. 5, left of dashed line), with classification per-
formance reaching unity in almost all cases. This holds
for a broad range of parameters (not shown).

When testing against the stimulus response (t = 1 s),
there is a clear difference between ORNs and PNs vs.



5

0 10 200 10 20
0.0

0.5

1.0

0 10 20

%
 c

or
re

ct

trained others all

0.0

0.5

1.0

tafter tduring tafter tduringtafter tduring

trained others all
t/s

%
 c

or
re

ct

t/s t/s

ORN PN KC

D E F

A B C

ORN PN KC

FIG. 5. Classification results for C-SVMs. (A) - (C) Each
plot indicates the percentage of correct classifications. Within
one panel, different flies are indicated by different colors. Tri-
angles pointing upwards indicate a correct classification of
the trained odor, downward pointing triangles correct classi-
fication of all other odors and squares the overall classification
performance (see Fig. 6 for an illustration of the implications).
In each plot, on the left hand side of the dashed line, the clas-
sification performance for training and testing at t = 15s is
indicated, on the right side when trained at t = 15 s and tested
at t = 1 s. Box plots show the distribution of the classifica-
tion performance for the trained odor across flies (upwards
pointing triangles). Whiskers denote extreme values, the box
upper and lower quartiles. Classification for ORNs and PNs
fails mainly because trained odors are misclassified with mean
values of ∼ 33%, (A) and (B). For KCs, the mean classifica-
tion performance is ∼ 70% (C). We conclude that the neural
representation at the ORN and PN level is not sufficient for
trace learning. Rather, the stimulus trace is represented at
the KC level. (D) - (F) Temporal evolution of classification
success. Each plot shows the classification result over the
time course of the experiment for SVMs trained at t = 15 s
(dark gray bar). Stimulus duration is indicated by a light gray
background and the intermediate gray bar and the medium
gray bar indicates the time used for classification in (A) - (C).
Classification for ORNs and PNs is only good in close prox-
imity to t = 15 s. For KCs classification performance is high
both during stimulus presentation and for the post-stimulus
response.

KCs (Fig. 5, right of dashed line). We decomposed the
overall classification performance into classification of the
trained odor, all others and overall classification due to
the imbalance in the number of responses (trained: up-
wards triangle, other: downward triangle, squares: over-
all). As there are more other odors, overall classification
might seem high, even though the trained odors were
classified incorrectly (see Fig. 6 for an illustration of this
problem). This is what we actually observe for ORNs and
PNs: Trained odors are classified poorly, as illustrated by
the box plots for the classification performance of trained
odors. Medians are around 30 % and the spread is not
very large. On the other hand, when classifying KC re-

sponses during the stimulus, classification of the trained
odor is relatively high, with a median across flies over
60 %. The instances shown in Fig. 5 correspond to the pa-
rameter combinations with the best overall performance
(see Methods). In this case, the results are more sensi-
tive to the parameters used (not shown). We performed
the same analysis with a different kind of support vector
machine, called ν-SVM (see Methods). The results did
not differ from the ones obtained with C-SVMs, which
shows that the approach does not rely on a specific ma-
chine learning approach.

Classification performance over time revealed a high
classification performance for ORNs and PNs only in
close proximity of the trained time (Fig. 5D, E, grey bar
at 15s); whereas classification performance for KCs re-
mained high over a long period of time (Fig. 5F).

DISCUSSION

For trace conditioning, it is crucial to keep information
of the CS until the arrival of the US. Fruit flies readily
form an associative memory between an odor stimulus
and an electric shock, even when these two stimuli are
separated by a stimulus free interval of a few seconds
[12]. In this study, we were interested in how and where
in the nervous system this trace is kept.

Temporal evolution of stimulus representation

At the population level, Galili et al. [12] already found
a strong correlation of ORN responses during stimulus
presentation and after stimulus presentation, but not be-
tween the two. Their analysis was based on averaged
responses across different flies. Due to the large response
variability between different flies, the correlation of odor
pairs varies also strongly form fly to fly (Fig. 2). At the
ORN level odor responses fall in two different classes.
For one class of odors, responses are similar across flies.
For the other, similarity varies greatly between flies, and
almost vanishes when averaged across flies. At the next
processing layer, the PNs, odor responses are less similar
and the variation between flies is greater. The largest
change, however, happens from PNs to KCs. The sim-
ilarity of different odor responses is consistently small
across flies, only repeated presentations of the same odor
reach high correlation values.

Taking mean correlation values across flies and odors
emphasizes this sharpening and the reliability of the odor
response (Fig. 3A). Correlation values for the same odor
are high across the three processing layers, correlations
across odors are, however, smallest at the KC level, in-
dicating a well separated odor representation. This is in
line with earlier work, both experimentally and theoret-
ically. According to these studies, the AL sharpens the
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odor representation by a non-linear transformation that
enhances small ORN responses and saturates for strong
ORN responses [18, 22]. The quasi-random connectiv-
ity pattern from AL to KCs leads to a sparse and well
separated odor representation [3, 18, 20].

The temporal evolution from stimulus response to
post-odor activity changes from ORNs to PNs to KCs.
ORNs show a high level of correlation during odor pre-
sentation for all flies, both for the auto-correlation and
the cross-correlation between two repetitions of the same
stimulus. The correlation pattern of the post-stimulus
response was mixed: In most cases, rather large auto-
correlations could be observed, whereas cross-correlation
were weak. So even though the post-odor response is
similar to itself, it is not as stable as the odor responses
to repetitions of the same stimulus. The correlation be-
tween odor presentation and post-odor response was gen-
erally weak, confirming that ORNs most likely do not
harbor a trace of the stimulus.

The responses of PNs contain a richer temporal struc-
ture as the corresponding ORN responses. The correla-
tion matrices show striped patterns on a temporal order
of seconds. Similar to ORNs, the level of auto-correlation
during stimulus presentation is high, although not as
high as for ORNs and temporally less strongly separated.
The calculated cross-correlations were not as large as for
ORNs and not as prolonged in time. Post-odor responses
showed a greater variability between flies, ranging from
well correlated responses (both in terms of auto- and
cross-correlations) to cases of no correlation at all. Inter-
estingly, correlations between stimulus and post-stimulus
responses was smaller and in most cases even negative for
PNs. This strong difference between odor and post-odor
response makes the PNs also an unlikely place for a stim-
ulus trace.

The third level of olfactory processing, the KCs,
showed a rich diversity of correlation patterns. In some
cases, we found correlation patterns similar to ORNs and
PNs, with rather clear separations between stimulus and
post-stimulus responses. More interesting, however, were
cases, where the correlation pattern did not abruptly
change after stimulus onset, but rather changed slowly
over a time period of five to ten seconds. This happened
for auto-correlations as well as for cross-correlations.
Such responses could harbor a stimulus trace, enabling
flies to associate odor responses with a temporally sepa-
rated electric shock.

Probing the information content of responses by
machine learning approaches

The KCs in the mushroom body have already been sug-
gested to harbor an olfactory stimulus trace [12]. To test
the information content of an olfactory stimulus presen-
tation, machine learning approaches are well suited and

have been used before [3, 7, 28]. So far only stimulus
responses have been classified, revealing a well-separated
representation of different odors at the KC level and en-
abling predictions about the perceptual similarity of dif-
ferent odors.

Our findings of well separated odor responses are in line
with these findings. Classification with SVMs performs
well and is not sensitive to either the particular SVM
model or a particular set of parameters. Given the high
performance, we can not find a difference between ORN,
PN and KC odor representation if we focus on single time
points.

This changes, however, drastically as soon as the time
of training and testing differs. The representation at
the level of ORNs and PNs changes on a short time-
scale, such that a classification of responses outside a
time-window of a few seconds fails (Fig. 5A, B and D,
E). The information about the odor is not preserved be-
tween stimulus response and post-stimulus response. KC
responses differ strongly in this respect: Reliable classi-
fication of odor identity is possible over a longer period
of time, including the stimulus response when trained
on the post-stimulus response. In this case the choice
of parameters for the SVM becomes more critical, but
again the particular model (C-SVM or ν-SVM) does not
change the overall outcome.

Stimulus trace

The insect mushroom bodies are the associative center
for olfactory learning of insects, especially for Drosophila.
Th representation of different odors is odor specific and
both appetitive and aversive reinforcement signals are
projected to the Kenyon cells [8]. This makes these neu-
rons a plausible substrate for the olfactory stimulus trace,
as had already been suggested in the study of Galili et
al. [12]. Using a combination of a correlation analysis
and a machine learning approaches, we extended these
findings to the single-fly level. We found that it is highly
unlikely for the stimulus trace to be present in the first
or second layer of olfactory processing. We could also
show that odors can be successfully classified based on
the post-odor KC activity, as is required for trace condi-
tioning. The data analyzed were Ca++ recordings, indi-
cating that the trace might be represented by the internal
calcium dynamics of KCs. Whether the spiking activity
of KCs also provides a suitable substrate for a stimulus
trace remains an open question for further research.

METHODS

In vivo calcium imaging. Imaging data were recorded
with a rate of 5 Hz for 35 seconds, resulting in 175 frames.
Odors were presented for 10 seconds (frames 26 - 75) in
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FIG. 6. Illustration of classification performance. (A) Re-
sponses of two glomeruli at time t1 to a stimulus are plotted
along the glomerular response axes g1 and g2, respectively.
Crosses correspond to odor A, circles to odor B. A classi-
fier calculates a separation boundary (dashed line). In this
case, all responses on the left of the line are correctly classi-
fied as indicating the presence of odor A, all responses on the
right as odor B. Accordingly, the performance of the classi-
fier is p = 100%. (B) At time t2, the responses might differ
from those in (A), as indicated by the shifted crosses and
circles. When testing with the same classifier as in (A), the
three responses indicated in red are misclassified, reducing
the performance to p = 75%. (C) In this example, there
are also three misclassified responses (red), again resulting in
p = 75%. However, all responses to odor A are now misclas-
sified, whereas all responses to odor B are correctly classified,
so that pA = 0 and pB = 100%. As there are many more
responses to B than to A, the overall performance measure
is still high, even though the classification fails completely.
We therefore consider not only the overall performance p but
also the subgroup performances when evaluating a particular
classifier.

a pseudorandom order after 5 seconds of baseline record-
ing. For each trial, time t is defined such that the stim-
ulus presentation begins at t = 0. The identification of
glomeruli was done as described in Silbering and Galizia
[27] and Silbering et al. [28]. A relative change in fluo-
rescence was calculated as ∆F (i)/F , where F (i) is the
fluorescence signal of the ith frame, and F is the base-
line fluorescence for frames 10 - 25. Bleach correction
was applied. For a detailed description, see [12].

Neural responses. For the data analysis, the responses
were represented as relative fluorescence changes for each
frame of the whole recording time, sorted by fly and
glomerulus for ORNs and PNs and identified areas for
KCs. These responses were first temporally smoothed by
taking running averages over one-second long windows.
For one fly and at a given time t, the response vector r
consists of the responses of all glomeruli (or MB areas
which we consider as KCs) at that time, in response to
one stimulus.

Correlations. We calculate the Pearson’s correla-
tion coefficient R between two response patternsr(t1) =
{r1(t1), . . . , rN (t1)} and r(t2) = {r1(t2), . . . , rN (t2)} at

times t1 and t2

R[r(t1), r(t2)] =

N∑
j=1

[rj(t1)−r(t1) ][rj(t2)−r(t2) ]

√
N∑

j=1
[rj(t1)−r(t1) ]2

N∑
j=1

[rj(t2)−r(t2) ]2
,

where r(t1) and r(t2) denote the population-averaged re-
sponses at time t1 and t2, respectively, N is the number
of glomeruli or areas, and j ∈ {1, . . . , N}. R-values range
from −1 (perfectly anti-correlated) to 1 (perfectly corre-
lated).

Classification. In the first step, we train one classi-
fier for each stimulus. The classifier separates one odor
against all others odors at time tafter = 15s, i.e., five sec-
onds after odor presentation ended. We then test the
classifiers at time tafter and at a specific time-point dur-
ing stimulus presentation, tduring = 1s. The performance
p of the classifier is defined as the percentage of correct
classifications. We discriminate between the performance
for the trained odor (ptrained), other odors (pother) and
overall performance p to avoid misinterpretations arising
from the imbalance in the number of responses for trained
and other odors. This problem is illustrated in Fig. 6:
When all responses are classified correctly, p = 100%
(Fig. 6A). Figs. 6B and C show two cases with identical
p = 75% but very different ptrained and pother. In Fig. 6B,
ptrained = 2/3 and pother = 7/9, which we would consider
a reasonable classification performance. In Fig. 6C how-
ever, ptrained = 0% and pother = 100%. As all trained
odors were classified incorrectly, the classification failed
completely despite a high overall “performance” measure.

Support Vector Machines (SVMs). Classifications
based on SVMs were performed using the LIBSVM li-
brary [5] with the integrated interface to MATLAB. Cal-
culations were carried out with MathWorks MATLAB
R2014a. Classifications consisted of training a SVM for
each stimulus at time t = 15 s and classifying responses
over the whole recording time. Because of the anatom-
ical stereotypy of the fly olfactory pathways up to the
AL [32], this can be done at the level of ORNs and PNs
for multiple flies at once by using the largest set of com-
mon glomeruli and treating recordings of different flies
as repetitions of the same experiment. We considered
two different implementations of SVMs, C-support vector
classification (C-SVC) [2, 6] and ν-SVC [25] and tested
various kernel functions; linear: K(x, x′) = x · x′, poly-

nomial: K(x, x′) = (γx · x′ + c)
3
, radial basis functions:

K(x, x′) = exp
(
−γ‖x− x′‖2

)
and a sigmoidal function:

K(x, x′) = tanh (γx · x′), where γ is a parameter that was
adjusted together with the cost parameter C for C-SVC
or the parameter ν for ν-SVC. To maximize the classifi-
cation performance we scan a range of parameters. We
define maximum classification performance when both
ptrained and pother are as large as possible, and p follows
as a result of the two.
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5
D I S C U S S I O N

Learning is a key to survival. Using the experience of past
events to make decisions for the future is crucial, for animals
and humans alike. The underlying neural structures and mech-
anisms of learning have been the subject of intense studies for
more than a century.

In this thesis we developed computational models adjusted to
olfactory learning in the fruit fly Drosophila melanogaster. Our
focus was on fundamental properties of stimulus representa-
tion and association, which gives the developed models also
relevance beyond the scope of the chosen model animal.

In the first paper we present a model for the timing-dependent
bi-directional change of a biochemical reaction product. In the
model animal the bi-directional production of an activated com-
plex changes the hedonic value of the CS, which changes its
behavior from conditioned avoidance to conditioned approach.
In the experiment, an odor was paired with an electric shock,
which is a well established learning paradigm referred to as
aversive olfactory conditioning. We found that a bi-directional
modification of intra-cellular reaction dynamics in KCs is suffi-
cient to account for the shift from aversive to attractive behavior
after training only depending on the relative timing of odor and
shock.

In the second paper we introduce a minimal circuit motif that
transforms a monotonic stimulus representation into a non-
monotonic one. The experimental and behavioral motivation is
a phenomenon called intensity learning. Fruit flies are able to
associate an intermediate odor intensity with an electric shock,
which they express by showing a smaller conditioned avoid-
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ance response to both lower and higher intensities of the same
odor. In the first two olfactory processing layers, odor intensity
is however encoded as monotonically increasing neuronal ac-
tivity. The proposed circuit motif breaks the nestedness that is
inherent in such a code by balancing excitation and inhibition
and introducing homeostatic plasticity into the system. This
transformation introduces units with peak responses at differ-
ent intermediate intensities, which we could show to support
intensity specific learning.

In the third study we aim to reveal the neuronal units that
harbor an olfactory stimulus trace. Flies are able to bridge a
stimulus free interval between an odor and shock in classical
olfactory conditioning to form an associative memory of the
odor. To this end they need to generalize from the post-stimulus
odor representation that coincides with the shock to the stimu-
lus representation of the same odor, which they are exposed to
during the test at a later point in time. We apply advanced data
analysis techniques to investigate the similarity of the combi-
natorial olfactory code during and after stimulus presentation.
We analyzed optical recordings of Drosophila olfactory recep-
tor neurons (ORNs), projection neurons (PNs) and KCs. Using
machine learning algorithms we evaluated the probability to
correctly classify odor identity given its post-odor representa-
tion. We could show that for ORN and PN responses post-odor
response patterns are not likely to harbor a stimulus trace. For
KCs however response patterns during and after odor presen-
tation share similar features that allow for correct classification.
This is a strong indication that KCs activity keeps a stimulus
trace for a time, which is long enough to bridge a stimulus free
interval on the order of seconds.

5.1 classical conditioning , learning and memory

Ivan Pavlov highlighted classical conditioning as a form of as-
sociative learning in the beginning of the 20

th century [122]. In
his well-known experiments he trained dogs to associate the
presentation of food with the sound of a bell. Behaviorally the
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successful association between the two stimuli manifested itself
in increased salivation when the dogs heard only the ring of the
bell. Less known is the discovery of Edwin Twitmyer around
the same time. He studied the human patellar tendon reflex.
He warned his subjects by ringing a bell before giving them a
tap to their patellar tendon. As a case of a coincidental discov-
ery, he realized that after a number of repetitions the sound of
the bell itself was enough to elicit the reflexive response of a
knee jerk [123].

The neuronal basis of learning is an intensely investigated topic.
In mammals it is studied in an eyeblink conditioning paradigm.
An auditory or visual stimulus is paired with an air puff or
weak electric shock to the eye (for an early example in rabbits,
see [124, 125]). Mccormick et al. [126] showed in lesion stud-
ies the critical role of the cerebellum for the formation of asso-
ciative memories for delay conditioning (see also [127, 128]), a
form of associative training, where conditioned and US overlap
in time. More recent studies could pinpoint the location within
the cerebellum to the anterior interpositus nucleus [129]. Ad-
ditionally the amygdala plays a role in memory consolidation,
both for delay and trace conditioning [130, 131], where trace
conditioning refers to associative training with a stimulus-free
interval between conditioned and US. Trace conditioning re-
quires also additional cerebral structures. Studies have shown
the necessity of the hippocampus [132] and the anterior cingu-
late cortex [133–135]. In mice the involvement of the cerebellum
in trace eyeblink conditioning is under debate [136].

Also invertebrates such as insects and mollusks [137] have the
ability to associate two stimuli with each other. For the fruit fly
and the honey bee Apis mellifera the paradigm of choice is olfac-
tory conditioning. An odor serves as unconditioned stimulus
(US) and is paired with either an aversive conditioned stimu-
lus (CS) such as electric shock or an appetitive CS such as a
sugar solution (for Drosophila see [3, 4]; for bees see [138, 139]).
In particular Drosophila melanogaster has been and still is the
prime model organism. Despite having a nervous system with
a relatively small number of neurons on the order of 100.000

[140], it is able to show an impressively complex repertoire of
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behaviors [141, 142]. Flies show delay and trace conditioning as
well as relief learning, which is yet another variation of aversive
classical conditioning. For relief learning, the order of CS and
US is reversed, such that the CS follows the US, which leads
to a change of the hedonic value of the US compared to trace
and delay conditioning. The advantages of studying classical
conditioning in Drosophila lie both in the in part easily accessi-
ble nervous system as well as in the vast array of genetic tools,
which are readily available to target and manipulate specific
neuronal populations [11]. This enables targeted testing of hy-
pothesis by manipulating the processing part and measuring
the behavioral performance of the fly through classical condi-
tioning.

5.2 stimulus representation

To form an associative memory the animal first has to detect
both stimuli and represent them in its nervous system in an
appropriate way. A stimulus activates a first layer of sensory
neurons. Along the sensory pathway to higher brain areas the
stimulus representation undergoes a change, e.g., to enhance
certain stimulus features and suppress others.

Neurons encode stimuli in different ways. Adrian [143] intro-
duced the notion of rate coding. They measured spiking activ-
ity of muscular neurons in response to different forces applied
to the muscle. They calculated mean firing rates of the mus-
cular neurons and showed that increased weight leads to an
increased firing rate. When neurons respond with few or only
a single spike to a stimulus it is not possible to appropriately
determine a firing rate. In this case the precise timing of the on-
set spike with respect to stimulus onset could encode a stimu-
lus feature. Gollisch and Meister [144] showed such a temporal
coding scheme for retinal ganglion cells. These cells encode spa-
tial information through spike timing. If neurons fire in a back-
ground of oscillations, the relative phase of the spike could also
carry information. This has been suggested, e.g., for the visual
cortex [145] and for neurons in the entorhinal cortex [146].
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Encoding complex stimuli with single neurons quickly requires
a large number of neurons. Making use of the joint activity of
a set of neurons increases the encoding capacity. In mammals
position in space is encoded in two different ways. A place cell
fires only in one specific location [147]. To encode a large space
with a certain precision requires many cells. Grid cells however
fire at multiple locations in a regular pattern [148]. The activity
of a single cell leaves ambiguity to the position in space, but the
combined activity of all cells determines the position precisely.
The same precision requires fewer grid cells than place cells
[149].

Coding of olfactory stimuli is another prominent example of
such population codes. A large set of receptors is tuned broadly
to odorant molecules. Many receptors are activated by a set of
odorants and most odorants in turn activate a set of receptors.
An odor identity is characterized by the joint activation pattern
of all receptors. Given the large number of possible combina-
tions of joint activation, already a relatively small number of
receptors has a large encoding capacity (for references see chap-
ter 1).

Simultaneous recordings of a large set of neurons are the ba-
sis to understand the combinatorial odor code, which changes
from one processing layer to the next. Fdez Galán et al. [72]
optically recorded ORN activity in the antennal lobe (AL) in
response to a set of odors. They represent the response as a
vector in a multi-dimensional odor space, which is spanned by
glomerular activity. They reduced the complexity of the data by
projecting it onto the first two or three principle components. In
this reduced representation, they could show that the response
to an odor quickly reaches an odor-specific fix point. The odor
representation is stable during stimulus presentation and de-
cays back to a resting state after stimulus offset.

Campbell et al. [150] investigated odor identity coding in Droso-
phila KCs. By imaging a population of neurons simultaneously,
they could computationally classify neuronal responses and
compare this to behavioral performance. They found that their
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analysis based on KC activity could well predict the behavioral
performance of odor discrimination.

When the animal is trained to form an associative memory, the
reinforcing stimulus coincides with the current odor represen-
tation within the nervous system. Subsequently in the test, the
odor representation alone triggers a conditioned response. For
delay conditioning, this is straightforward. Thus the same re-
ceptors respond to the odor, the same glomerular activity pat-
tern is active in the AL and the same KCs are active during
formation of the association and retrieval.

For trace conditioning however CS and US are separated by a
temporal gap during training. This means that the CS coincides
with the post-stimulus response of the US instead of the direct
stimulus representation. In the test already the direct stimulus
response triggers the conditioned response. Therefore the ani-
mal has to be able to infer the stimulus from its post stimulus
representation. If the two are too dissimilar, an association can-
not be formed. Galili et al. [6] showed, that Drosophlia is able
to form associative memories in an olfactory trace condition-
ing paradigm. Additionally they analyzed Ca++ recordings of
ORNs in the AL in search for the stimulus trace. They calcu-
lated mean correlations across all experiments between odor
and post-odor response as a measure of similarity. Correlation
values between both were however low, and they suggested
that the trace should be represented in one of the subsequent
neuronal layers of olfactory processing. Szyszka et al. [151] per-
formed a similar experiment with bees in an appetitive olfac-
tory trace conditioning paradigm. Here the proboscis extension
reflex in response to the touch of the antenna with a sugar so-
lution serves as conditioned response. In the same analysis of
PN responses in the AL they also were not able to find a sign
of an olfactory stimulus trace in the post-odor activity.

Both Galili et al. [6] and Szyszka et al. [151] suggested the KCs
as the next logical location of the stimulus trace. In chapter 4

we analyzed Ca++ recordings from Drosophila ORNs, PNs and
KCs in search for an olfactory stimulus trace. In contrast to
Galili et al. [6] and Szyszka et al. [151] we analyzed the data
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from each fly individually. Especially for odors with low mean
similarity scores the variability across flies was large. On the
population level, our analysis confirmed findings from previ-
ous studies: Odor quality separability increased from ORNs to
PNs to KCs. Correlation of repeated presentation of the same
odors remained high through all three layers, but correlation
across different odors decreased from ORNs to KCs. The corre-
lation between stimulus and post-stimulus response was only
high in KCs. Comparing the correlations between odor and
post-odor responses between repeated measurements showed
only in KCs consistent correlation values. We argue that this
consistency of post-odor responses is a critical feature of a stim-
ulus trace.

In a second step we employed a machine learning approach to
classify odor and post-odor responses with support vector ma-
chines (SVMs). In contrast to correlation values, SVMs are sen-
sitive to differences of responses in only a small subset of units.
As first test we classified odor quality during stimulus presenta-
tion. As expected classification performance is high on all three
levels of olfactory processing. We then trained the SVMs on the
post-odor representation and tested it against the representa-
tion during odor stimulation. The performance for ORNs and
PNs was poor, consistent with the findings from the correlation
analysis. For KCs on the other hand classification performance
was high for all odors and almost all flies. This finding shows
that the representation and its temporal evolution on the level
of KCs is suitable for olfactory trace conditioning. We therefore
suggest that the trace of an olfactory stimulus is contained in
the prolonged Ca++ signal within KCs.

5.3 stimulus timing

The timing of stimuli has a large impact on the learned behavior.
For training with an aversive US, switching the order of stimuli
changes also the hedonic value of the CS.
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A modeling study by Drew and Abbott [81] suggests spike-
timing dependent plasticity as underlying mechanism. Qual-
itatively the change in synaptic efficacy has a similar timing
dependent shape as the behavioral learning experiment demon-
strated by Yarali et al. [152]. However a key assumption of the
model, prolonged firing at a high rate of third order olfactory
neurons, is not met in the olfactory system of Drosophila.

We offer now a different explanation of the phenomenon on the
level of the molecular reaction dynamics, which underlie mem-
ory formation in KC. In vitro experiments in Aplysia revealed
a Ca++-sensitivity of adyenylate cyclase activation by the trans-
mitter serotonin. Depending on the timing of Ca++, more or
less activated adyenylate cyclase is produced. We incorporate
this finding into a model of post-receptor G-protein signaling
developed for olfactory transduction in moth. In the case of ol-
factory learning of Drosophila, the electric shock activates the
transmitter, which is delivered to the KCs. The odor stimulus
leads to a rise of Ca++ concentration in a subset of odor-identity
specific KCs. We model this effect by transiently increasing the
reaction constants for the formation and dissociation of the acti-
vated G-protein complex, depending on the Ca++ concentration.
The amount of produced activated complex now depends on
the relative timing between transmitter and Ca++ signal. When
the dominant process is the formation of activated complex, in-
creased reaction dynamics lead to an overall increased amount
of activated complex. On the other hand, if Ca++ concentration
increases when the dominant process is the dissociation of ac-
tivated complex, overall less of the activated complex will be
produced. We interpret the total amount of activated complex
as proxy for synaptic strengthening onto the behavioral output
circuit. Since the modification by Ca++ only takes place in odor-
activated KCs, the behavioral response is specific to the trained
odor.

The heart of the presented model is the symmetrical modifica-
tion of the reaction rate as a result of a transient input. Despite
the complexity of the reaction cascade, which was implemented
for the transduction mechanism in the case of olfactory learn-
ing, the main building block is simple. Yet the result is a bi-
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modally changed outcome controlled by the relative timing of
both inputs.

5.4 stimulus properties

We discussed stimulus representation in the nervous system
above and focused on the aspect of odor quality. In general
there is a second attribute we can assign to a stimulus, which
we call “intensity”. This holds for all sensory stimuli. Light is
described in terms of its frequency or wavelength and its in-
tensity or brightness. We characterize a sound by its frequency
and its loudness or amplitude; an odor by the chemical com-
pounds and the concentration, either in dilution or in air. How
are these two different stimulus properties encoded in the ner-
vous system?

In mammals, the detection of auditory stimuli is solved by the
anatomical properties of the inner ear. Ossicles transmit oscilla-
tions from air to the perilymph in the cochlea. The movement of
the perilymph is detected by hair cells on the basilar membrane.
Mechanically opened ion channels in conjunction with voltage
gated ion channels depolarize the hair cell. The cell releases
neurotransmitters onto the second order nerve cell, which trig-
gers action potentials. The detection of different sound frequen-
cies happens along the cochlea in a tonotopic order. Given the
diameter of the tube-shaped cochlea and stiffness of the basilar
membrane, hair cells resonate at different frequencies in dif-
ferent locations. Detection of high frequencies happens at the
front of the cochlea whereas lower frequencies are detected fur-
ther down the tube. Sound loudness or sound level is encoded
by the firing rate of the auditory nerves in a monotonic fash-
ion [153, 154]. In short, stimulus quality is encoded by different
neurons along a tonotopic axis and from there transferred to
higher brain areas, conserving the spatial arrangement in the
cochlea. Sound intensity is encoded monotonically by increas-
ing firing rates of auditory neurons.
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In the olfactory system of both mammals and invertebrates,
odor quality is encoded in the first step by a set of olfactory
receptors. Most receptors have overlapping response profiles,
such that one chemical compound activates different receptors
to a different degree and each receptor is activated by differ-
ent chemical components. In this combinatorial code, the com-
bined activity of all receptors represents an odor’s quality. A
combinatorial code vastly increases the capacity of the system
compared to a labeled line code, where one receptor codes
only for one specific odor1. Different to the auditory system,
there is no obvious spatial organization in the olfactory bulb
or AL, which would correspond to, e.g., chemical properties of
odorants. Odor intensity on the other hand has a similar repre-
sentation as auditory loudness in mammals. Receptor neurons
and projection neurons monotonically increase their firing rates
with increasing odor intensity.

What is the consequence of such an encoding scheme on sub-
sequent behavior, especially associative learning? When the an-
imal learns the link between CS and US, it associates the cur-
rent neuronal representation of the stimulus with the reinforc-
ing US, which triggers the behavioral response. The subsequent
reactivation of the same neuronal representation then triggers
the behavioral response without the US hence the name condi-
tioned response. The animal might however generalize the con-
ditioned response to different stimuli with a similar neuronal
representation. This allows measuring the subjective similarity
of different stimuli. In the case of olfactory stimuli, different
combinations of neuronal units are activated by different odors.
Even if two different odors activate the same subset of neurons,
an animal will show a stronger conditioned response to the
trained odor. If they are compared in the test, the conditioned
response to the trained odor will be stronger. This case is even
simpler for the auditory example with hair cells that are tuned
to a certain frequency. A sound with different frequency will

1 For specific chemicals, the olfactory system does have a labeled line code.
There might be an underlying balance between the optimization of the ca-
pacity of a system vs. the ability to reliably detect very specific stimuli. For
flies, for example, certain pheromones and CO2 are encoded by specific re-
ceptor neurons and directly trigger a behavioral response.
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activate different neurons, therefore not driving a conditioned
response.

For a monotonic stimulus representation, which is the case
for sound and odor intensity, the situation is different. The
code is nested, i.e., the representation of a lower intensity is
always a subset of the neuronal representation of a higher in-
tensity. When the animal forms an association with an inter-
mediate intensity, the subsequent test with a higher intensity
will trigger the same conditioned response. Moreover, when
the higher intensity is tested against the lower, the higher in-
tensity will drive the conditioned response at least as strong as
the lower one, possibly even stronger. Such a coding scheme
should therefore not support intensity specific learning. Nev-
ertheless flies form olfactory memories specific to an interme-
diate intensity. They show a less strong conditioned avoidance
to both lower and higher odor intensities. Here, the classical
conditioning paradigm revealed an interesting capability of the
system. Along the processing path of olfaction, units with in-
tensity specific tuning have to arise.

Zhou et al. [155] investigated intensity selective neurons in the
rat auditory system. Intensity selective cells appear along the
auditory pathway first in the dorsal cochlear nucleus. Zhou
et al. [155] performed in vivo recordings from pyramidal neu-
rons, which showed non-monotonic response properties. Inten-
sity selective cells received fast saturating excitatory input, but
slow saturating inhibitory input. Thus, for higher sound inten-
sities, inhibition dominates over excitation, effectively creating
non-monotonic intensity tuning.

In a behavioral assay, Zhang et al. [156] showed a non-monoto-
nic behavioral response to an increasing sensory stimulus in
Drosophila. They investigated the perception of different salt
concentrations, which revealed an attractive preference peak
at an intermediate salt concentration. They argue that a cer-
tain amount of salt is beneficial to the animal whereas a too
high concentration is harmful. They show that the coding of
salt-concentration preference relies on two distinct sets of gusta-
tory receptor neurons. One set codes for low salt concentrations
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and drives attraction, the other for high concentration driving
rejection. The competition between both receptors leads to a
bi-directional non-monotonic response to increasing salt con-
centration.

In the olfactory system of Drosophila Yarali et al. [10] showed
non-monotonic conditioned behavior to increasing odor inten-
sity. Flies were conditioned in an aversive olfactory condition-
ing paradigm to an intermediate intensity of an odor. In the
test they showed the strongest conditioned avoidance reaction
to the same intermediate odor intensity. When tested against
both lower and higher intensities, the conditioned avoidance
scores were significantly lower. The underlying neuronal cir-
cuit of third order olfactory neurons was investigated by Fişek
and Wilson [37]. Stereotyped connections from the AL con-
vey olfactory information to the lateral horn. The combination
of both inhibitory and excitatory projection neurons leads to
non-monotonic responses of lateral horn neurons with increas-
ing intensity. Even though the lateral horn is believed to be
most important with respect to innate odor behavior rather
than learned behavior, the emergence of intensity selective neu-
rons along the olfactory pathway is a notable step towards un-
derstanding intensity specific behavior. In a modeling study
Luo et al. [58] also investigated third order neuron responses
in the mushroom body. As input to their model they use mea-
sured ORN responses from a study by Hallem and Carlson
[43]. The AL is simplified as transformation of neuron activ-
ity, taking into account the local non-linear properties of AL
synapses and lateral inhibition in the AL as described by Olsen
et al. [54]. A quasi-random connectivity pattern transfers the
olfactory representation to the KCs, which receive excitatory
input from a subset of glomeruli and a global inhibition pro-
portional to AL activity. Under these assumptions a subset of
KCs shows a non-monotonic response probability to increas-
ing odor intensity. In their approach the non-monotonic tuning
of KCs emerged as a result of the large number of KCs and
the randomized connectivity pattern with randomized weights
and the associated inhibitory weight. It was however outside
of the scope of their study to investigate this phenomenon in
detail.
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In contrast to the model by Luo et al. [58], we propose a dedi-
cated minimal circuit motif that transforms a monotonic stimu-
lus representation to a non-monotonic one. The necessary ingre-
dients are excitation, inhibition and as decisive factor, homeo-
static plasticity and a straightforward connectivity pattern with
one-to-one excitation and global inhibition. The result is a neu-
ronal layer in which units only respond within a specific inten-
sity range and are inactive for lower and higher intensities.

The necessary elements are present in the olfactory pathway of
the fruit fly, which makes our model suitable to explain inten-
sity specific learning. Indeed, by introducing a read-out neuron
to the circuit, which sums the activity of the intensity specific
units and incorporates the reinforcement signal through synap-
tic learning, we can reproduce the experimental results from
Yarali et al. [10]. A similar model was qualitatively suggested
by Mishra et al. [157]. It relies on ordered excitation and inhi-
bition from one layer of neurons to the next. Additionally it
requires almost twice as many neurons as our model, making
it both more complicated to develop in a biological system and
more resource intensive.

An anonymous reviewer provided an interesting alternative
minimal solution. Could resonate-and-fire neurons also code
for intensity? As discussed above, single neurons encode stim-
ulus intensity as a rate code. A set of resonate-and-fire neu-
rons with resonance frequencies covering the whole intensity
range would respond then in an intensity specific way. A read-
out neuron similar to the one proposed in our model could
integrate over the activity of the intermediate resonate-and-fire
neuron layer and provide a mean response. With the right tun-
ing such a circuit should also be able to code for intensity
and enable intensity specific learning. However fruit fly KCs
do not show the properties of the suggested resonate-and-fire
neuron layer suggested above. KC rates are variable during the
response to one odor and across repeated responses of the same
odor ([60, 62], also the case for locust KCs [158, 159]).



80 discussion

5.5 outlook

Theories and models should always be experimentally scruti-
nized. Only an experiment can eventually refute a theory or
legitimate a further investigation and refinement. On the other
hand a reduced model of a complex system can help to un-
derstand the underlying principles and in turn suggest well-
defined and directed experiments to test a hypothesis.

This is also the very heart of the work in this thesis. The de-
veloped models shed a new light of understanding on prin-
ciples underlying learning and memory, both in the fruit fly
and in a broader conceptual framework. To continue the work
experimentally we have suggested key experiments to test pro-
posed the hypothesizes. In the case of event timing experiments
interfering with the intra-cellular mechanisms underlying the
timing-dependent model outcome would test the plausibility
of the model.

For trace conditioning one can imagine experiments that ma-
nipulate the post-odor response of KCs. If data analysis of ma-
nipulated flies reveals problems in classifying odor responses
and behavioral experiments show a decreased learning ability,
it would justify a further investigation of KCs as a locus of the
stimulus trace.

Also for the model concerned with intensity learning of fruit
flies in chapter 3 we suggest key experiments that test the role
of specific neurons. If flies show a decreased learning ability
when these neurons are blocked specifically it will support the
proposed model. When blocking has no effect on the learning
ability the proposed scenario might be scrapped.

Also on a theoretical level the limits of the proposed models
could be further investigated. How does the outcome of the
models change for more complex stimuli, such as odor mix-
tures? Was happens in the case of the basic model for intensity
learning if realistic neurons are modeled?
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