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Summary

Spatial hearing is crucial to the survival of a wide range of animal species. The ability to

localize a sound source plays a decisive role for many situations and tasks, for example

predation, navigation, and reproduction. Spatial hearing is also important for humans,

for example, it contributes to the ability to focus on a conversation with another person

in a cocktail party situation and provides additional guidance in visually confusing

situations. In the mammalian brain, auditory space is computed from various monaural

and binaural features which are extracted from the perceived sound in specialized

neurons and nuclei in the auditory brainstem. Low-frequency sound sources in the

horizontal plane can be localized using interaural time differences (ITDs), which arise

when a sound reaches the ear closer to the sound source earlier than the opposite ear.

Owing to the traveling speed of sound through the air of around 340 m/s and the limited

ear-to-ear distance of particularly small mammals, ITDs are in the magnitude of at most

a few hundreds of microseconds. Consequently, the detection of such minute arrival

time differences requires exceptional temporal precision which is unique in the

mammalian nervous system. The first structure in the mammalian brain that generates

sensitivity to ITDs is the medial superior olive (MSO). MSO neurons receive fast

excitatory inputs from both ears that are phase-locked to the fine structure of the sound

and thus faithfully carry the information of the sound's arrival times to the two ears.

Additionally, the MSO receives phase-locked inhibitory inputs from both ears. In

keeping with their demanding temporal task, MSO cells show remarkable features. To

discriminate ITDs with a temporal resolution of few tens of microseconds mature MSO

neurons exhibit a membrane time constant of only a few hundred microseconds, making

them up to a hundred times faster than most cortical neurons. The high speed of the

MSO neurons' membrane dynamics is based on a strong expression of low-threshold

potassium channels (Kv1) and hyperpolarization-activated channels (HCN) on the

somatodendritic membrane that generate a strong current leak, causing the membrane

potential to rapidly return to its equilibrium. As a consequence, the integration time

window of MSO neurons is very short, making MSO neurons extremely fast

coincidence detectors.

3



The exceptional temporal precision necessary to successfully detect minute ITDs has

drawn considerable attention on MSO neurons and the microcircuitry they are

embedded in. Although numerous insights into the properties of the somatic membrane,

the phase-locked inputs, and the two sub-threshold channels in mature and developing

MSO neurons have been gained, many questions regarding these neurons are still

insufficiently investigated or heavily debated. Three of those questions, each of which

was treated in a separate study, are addressed in this thesis: (1) the excitability and

action potential generation of MSO neurons, in Chapter 2; (2) the role of glycinergic

inhibition in the coincidence detection in Chapter 3; and (3) the role of HCN channels in

the integration of inputs from different frequency channels, in Chapter 4. Each of these

studies is comprised of an experimental and a computational part. The author of this

thesis contributed to the computational part of the studies, the experiments were

performed by experimental collaborators (see Author Contributions). In the following,

the questions of the studies are outlined, and the results are briefly summarized.

The first study (Chapter 2) treats the excitability and action potential (AP) initiation of

MSO neurons. It is generally assumed that the site of AP initiation is located in the axon

initial segment (AIS). In most cortical neurons, which exhibit membrane time constants

ranging from several to tens of milliseconds, the soma is capable of providing a stable

current source to the AIS, such that AP initiation is facilitated. Owing to the very fast

membrane speed of MSO neurons, such a requirement is not met. In MSO neurons, two

strong sub-threshold conductances mediated by Kv1 and HCN channels, cause the soma

of MSO neurons to constitute a tremendous current sink to the AIS. Furthermore, strong

phase-locked synaptic inputs at rates up to 2 kHz lead to the further opening of the sub-

threshold channels, intensifying the current sink effect of the soma. How, under these

difficult circumstances, MSO neurons generate APs and even generate sustained firing

rates of up to 100 Hz, as observed in vivo, is a mystery. To investigate this question, an

extensive computational study was conducted, aided by immunohistochemical and

electrophysiological experiments. The immunohistochemical stainings showed that

MSO neurons exhibit particularly thin axons (0.66 microns in diameter) and a length of

the first myelinated segment of 100 microns. Using the obtained morphological

parameters a biophysical model of an MSO neuron with a detailed axon was created.

We found that the AIS was well isolated from the leaky soma and capable of generating

4



APs, in line with the current textbook view of AP initiation obtained from notably more

excitable neurons. However, when simulating high-frequency naturalistic input trains, a

growing portion of action potentials started to become initiated in more distal axonal

segments, the first nodes of Ranvier, while the AIS was merely capable of producing

sub-threshold responses. These results indicate that MSO neurons might not have a

distinct site of AP initiation but rather that the AP generation is established by an

interaction of the proximal axon (AIS and the first nodes of Ranvier) as a whole,

depending on stimulus frequency and intensity. The reasons behind this phenomenon

were found to be the strong somatic current sink to the AIS  that is intensified by higher

frequency inputs and additional inhibition. Furthermore, the inactivation of sodium

channels in the AIS caused by the temporal summation of high-frequency excitatory

inputs was identified to modulate the site of AP initiation. We speculate that our results

for MSO neurons could also apply to other leaky neurons in the central nervous system

as well as more excitable neurons during strong synaptic bombardment, challenging the

current textbook view of the AIS being the singular site of AP initiation. Moreover, our

results show that it is the axon which maintains the neuron's excitability in situations

where the soma is not excitable. Thus, it follows that to investigate the firing behavior

of particularly leaky neurons, a single compartment model is not sufficient.

The study in Chapter 3 focuses on the role of phase-locked glycinergic inhibition in the

tuning of the coincidence detection performed in the MSO. In vivo recordings assessing

the ITD sensitivity have shown that MSO neurons respond best to sounds arriving from

the contralateral side. Blocking glycinergic inhibitory inputs in vivo reduces this bias

and shifts the best response towards zero ITD (corresponding to a sound arriving from

straight ahead), indicating that inhibition is involved in the tuning of the neuron's ITD

sensitivity. Moreover, masking the phase-locked endogenous inhibition by tonically

applying glycine in vivo, it was found that the ITD sensitivity bias vanished, suggesting

that a specific timing of the inhibitory inputs relative to the corresponding excitatory

inputs is necessary to tune ITD sensitivity. To investigate the role of precisely-timed

inhibition in tuning the coincidence detection in the MSO, as well as to quantify relative

timing conditions of inhibitory inputs that would explain in vivo results, a thorough in

vitro study of MSO neurons was performed. It was found that precisely-timed inhibitory

inputs are indeed capable of shifting the ITD sensitivity of MSO neurons, and specific
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relative timing conditions for inhibitory inputs with respect to the excitation that can

explain in vivo data were identified. The tuning of coincidence detection by inhibition

showed to be robust against synaptic jitter and temporal summation of the inputs during

stimulus trains. In a computational model, which was constrained to fit the membrane

and response kinetics found in vitro, we were able to reproduce the results found in the

slice. Moreover, the computational model allowed us to establish that an active Kv1-

current further facilitates the inhibition-enforced effects.

The third study (Chapter 4) was concerned with HCN channels largely expressed in

MSO neurons. Membrane properties, such as the input resistance and time constant, are

tuned to the specific function a neuron implements. Cortical neurons, for example  layer

5 pyramidal cells, integrate their inputs over several milliseconds and thus exhibit

longer time constants. On the other hand, the coincidence detection of MSO neurons

requires small time constants to maintain temporal precision. However, even within the

same class of neurons differences in membrane properties were found, for example to

support different input frequencies like in the auditory system. Most nuclei of the

auditory system, like the MSO, are tonotopically arranged, i.e. there is a spatial gradient

within the nucleus where lower to higher frequency sounds are processed. In the MSO,

the dorsal part processes lower- and the ventral part processes higher-frequency sounds.

It is thus interesting to investigate whether membrane and channel properties in MSO

neurons are differentially distributed along the dorsoventral axis. Therefore, an in vitro

study of MSO neurons was performed, aided by computational modeling. The in vitro

recordings revealed that the amplitude of the HCN current (Ih) varied systematically

along the dorsoventral axis. Higher Ih current densities and faster kinetics were observed

for ventral MSO neurons compared to their dorsal counterparts. This difference in Ih

was also reflected in lower input resistances and time constants of ventral neurons.

Also, ventral neurons showed smaller half-widths and less temporal summation in

response to a 100 Hz train of simulated inhibitory events. To examine possible

mechanisms underlying these differences of synaptic integration along the dorsoventral

axis, biophysical models of prototypical dorsal and ventral MSO neurons were created,

by adjusting the kinetics of the incorporated HCN channel model according to the

voltage-clamp data of Ih in dorsal and ventral MSO cells. Using these cell models we

demonstrated that an interplay of the ventrally larger Ih currents and fast-activating Kv1

6



channels facilitates the processing of higher frequency inhibitory inputs with less

temporal summation in ventral neurons. This result indicates that the larger Ih helps to

counteract higher frequencies of inhibitory inputs keeping the membrane potential close

to the action potential threshold.
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Zusammenfassung

Räumliches Hören ist für eine breite Vielfalt von Tierspezies überlebenswichtig. Für

viele Aufgaben und Situationen, wie beispielsweise die Beutejagd, die Navigation und

die Fortpflanzung, spielt die Fähigkeit eine Schallquelle zu lokalisieren eine

entscheidende Rolle. Räumliches Hören ist auch für den Menschen wichtig, so trägt es,

zum Beispiel, in einer Cocktail Party Situation dazu bei, sich auf ein Gespräch mit einer

anderen Person konzentrieren zu können und bietet darüber hinaus auch eine

Orientierungshilfe in visuell unübersichtlichen Situationen. Im Säugerhirn wird der

akustische Raum mithilfe verschiedener monauraler und binauraler Eigenschaften

berechnet, welche von speziellen Neuronen und Hirnkernen aus dem wahrgenommenen

Klang extrahiert werden. Tieffrequente Schallquellen können auf der horizontalen

Ebene geortet werden, indem sogenannte interaurale Laufzeitdifferenzen (interaural

time differences; ITDs) ausgewertet werden. Diese entstehen, da der Schall das zur

Schallquelle nähere Ohr früher erreicht als das gegenüberliegende Ohr. Aufgrund der

Schallgeschwindigkeit in Luft von etwa 340 Meter pro Sekunde, sowie des begrenzten

Ohrenabstandes von, insbesondere, kleinen Säugern, sind diese ITDs in einer

Größenordnung von höchstens einigen hundert Mikrosekunden. Die Detektion dieser

winzigen Laufzeitdifferenzen erfordert daher eine außerordentliche zeitliche Präzision,

wie sie im gesamten Nervensystem von Säugern einzigartig ist. Die erste Hirnstruktur,

die eine Sensitivität für ITDs erzeugt, ist die mediale obere Olive (medial superior olive;

MSO). Die Neurone der MSO erhalten schnelle exzitatorische Eingangssignale von

beiden Ohren. Diese synaptischen Eingangssignale erreichen die MSO jeweils zu einer

bestimmten Phase der Feinstruktur des Klanges (auch genannt: phasen-gekoppelt) und

bewahren somit die Information über die Ankunftszeiten des Klanges an beiden Ohren.

Zusätzlich zu den exzitatorischen Eingängen erhalten MSO Neurone phasen-gekoppelte

hemmende (inhibitorische) Eingänge. MSO Neurone weisen, ihrer zeitlich

anspruchsvollen Aufgabe entsprechend, einige bemerkenswerte Eigenschaften auf. Um

ITDs mit einer zeitlichen Auflösung von nur wenigen zehn Mikrosekunden

unterscheiden zu können, verfügen MSO Neurone über eine Membranzeitkonstante von

nur wenigen hundert Mikrosekunden. Damit ist die Membran von MSO Neuronen um
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bis zu einhundert Mal schneller als die der meisten kortikalen Neuronen. Dieser hohen

Geschwindigkeit der Membrandynamik liegt eine hohe Expression von niedrig-

schwelligen Kalium-Kanälen (Kv1 Kanäle) und Hyperpolarisations-aktivierten, durch

zyklische Nukleotide modulierten, Kation-Kanälen (hyperpolarization-activated and

cyclic nucleotid-gated; HCN Kanäle) in der somatodendritischen Membran zugrunde,

welche einen starken Leckstrom erzeugen und somit eine schnelle Repolarisation der

Membran zum Equilibrium hin verursachen. Aufgrund dieses Umstandes ist das

Zeitfenster, in welchem eine Integration der Eingangssignale stattfindet, besonders klein

und MSO Neurone extrem schnelle Koinzidenzdetektoren.

Die bemerkenswert hohe zeitliche Präzision, die notwendig ist um erfolgreich winzige

ITDs zu detektieren hat beachtliche Aufmerksamkeit auf MSO Neurone sowie den

neuronalen Schaltkreis, in welchem sie eingebettet sind, gezogen. Zwar konnten bereits

zahlreiche Erkenntnisse über die Membraneigenschaften des Somas, die phasen-

gekoppelten Eingangssignale und der zwei unterschwelligen Ionenkanäle in

erwachsenen, sowie sich in der Entwicklung befindlichen, MSO Zellen bereits errungen

werden. Viele Fragen MSO Neurone betreffend sind jedoch noch sehr wenig untersucht

oder stark umstritten. In dieser Arbeit werden drei solcher Fragestellungen, jede in einer

separaten Studie,  behandelt: (1) die Erregbarkeit und Aktionspotential-Generierung von

MSO Zellen, in Kapitel 2; (2) die Rolle der glyzinergen Inhibition bei der

Koinzidenzdetektion, in Kapitel 3; und (3) die Rolle der HCN Kanäle bei der

Integration von Eingangssignalen aus verschiedenen Frequenzkanälen, in Kapitel 4.

Jede dieser Studien besteht aus einem experimentellen, sowie einem theoretischen Teil.

Der Autor dieser Doktorarbeit trug jeweils zum theoretischen Teil der Studien bei, der

experimentelle Teil wurde von Experimentatoren durchgeführt (siehe Author

Contributions). Im Folgenden werden die Fragestellungen der Studien erläutert, sowie

die Ergebnisse kurz zusammengefasst.

Die erste Studie (Kapitel 2) behandelt die Erregbarkeit sowie die Generierung von

Aktionspotentialen in MSO Neuronen. Es wird allgemein angenommen, dass

Aktionspotentiale von Neuronen im Axon nah am Zellkörper – im sogenannten „axon

initial segment“ oder kurz AIS – erzeugt werden. Die meisten kortikalen Neurone

weisen eine Membranzeitkonstante von einigen, bis zu mehreren zehn Millisekunden

auf. Dieser Umstand begünstigt die Erzeugung von Aktionspotentialen, da hier der
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Zellkörper dieser Neurone dem AIS eine stabile Stromquelle liefert. Aufgrund der

äußerst geringen Membranzeitkonstante, ist diese Voraussetzung für MSO Neurone

nicht gegeben. In MSO Neuronen ist sogar genau das Gegenteil der Fall: zwei stark

exprimierte unterschwellige Ionenkanaltypen im Soma (Kv1 und HCN) erzeugen einen

enormen transmembranen Leckstrom. Damit stellt das Soma von MSO Neuronen eine

immense Stromsenke für das AIS dar. Ein weiteres Problem stellen die starken

synaptischen Eingänge der MSO Neurone dar, welche effektiv die Kv1 und HCN

Kanäle noch weiter öffnen und somit den Effekt der Stromsenke sogar noch

intensivieren. Wie MSO Neurone, unter diesen schwierigen Umständen, Aktions-

potentiale, geschweige denn die in vivo gemessenen Feuerraten von bis zu 100 Hz

erzeugen können, ist völlig unklar. Um diese Frage zu untersuchen, wurde, unterstützt

von immunohistochemischen und elektrophysiologischen Experimenten, eine umfang-

reiche computergestützte theoretische Studie erstellt. Bei den immunohistochemischen

Färbungen wurde entdeckt, dass MSO Zellen Axone mit einem besonders geringen

Durchmesser von nur 0.66 Mikrometern, sowie eine Länge des ersten myelinierten

Abschnittes von etwa 100 Mikrometern, aufweisen. Basierend auf diesen

morphologischen Daten wurde ein biophysikalisches Modell eines MSO Neurons mit

seinem Axon erstellt. In unseren Simulationen konnten wir zeigen, dass das AIS von

MSO Neuronen elektrisch gut vom Zellkörper isoliert ist und somit imstande ist

Aktionspotentiale zu generieren. Dies stimmt überein mit der heutigen

Lehrbuchmeinung bezüglich Neuronen, welche eine deutlich bessere Erregbarkeit als

MSO Neurone zeigen. Stimuliert man jedoch mit hochfrequenten naturalistischen

synaptischen Inputs, so beginnt das neuronale Modell Aktionspotentiale mehr und mehr

in distaleren axonalen Segmenten – den ersten Ranvier'schen Schnürringen – zu

erzeugen, während das AIS nur noch unterschwellige Antworten generieren kann. Diese

Resultate zeigen auf, dass in MSO Neuronen möglicherweise kein einzelner, eindeutiger

Ort für die Erzeugung von Aktionspotentialen verantwortlich ist, sondern vielmehr ein

Zusammenwirken verschiedener proximaler Segmente des Axons (dem AIS und den

ersten Ranvier'schen Schnürringen). Dieses Zusammenwirken zeigte sich im Model

durch die Stimulusfrequenz und -intensität beeinflussbar. Als Ursachen dieses

Phänomens wurde der Zellkörper als starke Stromsenke für das AIS identifiziert,

welches durch höherfrequente und hemmende Eingänge weiter intensiviert wird.
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Darüber hinaus stellte sich heraus, dass durch die Aufsummierung von hochfrequenten

erregenden Eingängen, Natriumkanäle, besonders im AIS, inaktivieren, wodurch der

Ort der AP Erzeugung im Axon moduliert wird. Wir vermuten, dass sich unsere

Resultate bezüglich MSO Zellen auch auf weitere weniger gut erregbare Zelltypen

erweitern lassen. Auch stellt sich die Frage, ob sich unsere Ergebnisse nicht auch auf

gut erregbare Neurone, etwa wenn sie einem starken synaptischen Bombardement

ausgesetzt sind, anwenden lassen. Im Falle einer positiven Antwort, würde dies die

derzeitige Lehrbuchmeinung des AIS als einzigen Ort der AP Erzeugung im Axon in

Zweifel ziehen. Unter dem Strich legen unsere Ergebnisse dar, dass es das Axon ist,

welches die Erregbarkeit des Neurons erhält, wenn der Zellkörper in manchen

Situationen besonders schlecht erregbar ist. Daraus folgt auch, dass eine Untersuchung

des Feuerverhaltens von besonders undichten Neuronen mittels eines Punkt-

neuronmodells nicht ausreichend ist.

Die Studie in Kapitel 3 befasst sich mit der Rolle der glyzinergen Inhibition auf die

Justierung der Koinzidenzdetektion in der MSO. In Messungen der ITD Sensitivität in

vivo wurde gefunden, dass MSO Neurone die höchste Antwortrate für Geräusche

zeigen, welche aus kontralateraler Richtung kommen. Wird die glyzinerge Inhibition

blockiert, verschwindet diese Präferenz und die beste Antwortrate von MSO Neuronen

verschiebt sich Richtung 0 ITD (welches einer Geräuschquelle direkt von vorn

entsprechen würde). Dieses Resultat deutet stark darauf hin, dass glyzinerge Inhibition

die ITD Sensitivität in der MSO beeinflusst. Indem man durch eine tonische

Applikation von Glyzin die endogenen hemmenden Eingangssignale maskierte, konnte

man darüber hinaus in vivo zeigen, dass Inhibition allein nicht ausreicht, um die

kontralaterale Präferenz der MSO Neurone zu erzeugen. Vielmehr gibt dieses Resultat

Hinweise darauf, dass ein bestimmtes Timing der hemmenden Eingangssignale relativ

zu den exzitatorischen Eingangssignalen notwendig ist um die kontralaterale Präferenz

der MSO Neurone zu erklären. In dieser Studie soll die Rolle einer präzise getimten

Inhibition bei der Justierung der Koinzidenzdetektion in MSO Neuronen untersucht

werden. Dabei sollen auch konkrete Zeitbedingungen für die inhibitorischen Eingänge

relativ zur Exzitation bestimmt werden, welche die in vivo Resultate erklären können.

Um dieser Frage auf den Grund zu gehen wurde eine umfassende in vitro Studie an

MSO Neuronen angefertigt. Dabei wurde gefunden, dass eine zeitlich gut abgestimmte
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Inhibition tatsächlich in der Lage ist die Koinzidenzdetektion von MSO Neuronen zu

justieren und die in vivo Resultate zu erklären. Des Weiteren stellte sich heraus, dass die

Einstellung der Koinzidenzdetektion mithilfe der Inhibition robust war gegenüber

synaptischem Jitter und zeitlicher Summation der Eingangssignale, wenn Folgen von

Stimuli präsentiert wurden. In einem Computermodell, welches auf den in vitro

gemessenen Eigenschaften der Zellmembran und der Eingänge basierte, waren wir in

der Lage die in vitro gemessenen Ergebnisse zu reproduzieren. Schließlich konnten wir

im Modell zeigen, dass ein aktiver Kv1-Kanal die durch die Inhibition induzierten

Effekte unterstützt.

Die dritte Studie (Kapitel 4) in dieser Arbeit beschäftigt sich mit den in MSO Zellen

stark exprimierten HCN Kanälen. Zellmembraneigenschaften, wie der Eingangs-

widerstand und die Zeitkonstante, sind angepasst auf die Funktion, die ein Neuron

implementiert. Neurone der Großhirnrinde, wie etwa die Pyramidalzellen der Lamina V,

summieren ihre Eingangssignale über mehrere Millisekunden hinweg auf und weisen

somit längere Zeitkonstanten auf. Auf der anderen Seite benötigt die Koinzidenz-

detektion, die MSO Zellen durchführen, sehr kleine Membranzeitkonstanten, um die

zeitliche Präzision sicherzustellen. Auch innerhalb eines Zelltyps wurden Unterschiede

in den Membraneigenschaften gefunden, etwa im auditorischen System, um die

Verarbeitung verschiedener Frequenzen zu erleichtern. Die meisten Hirnkerne im

auditorischen System, auch die MSO, sind tonotop angeordnet. Das bedeutet, dass

innerhalb eines Hirnkernes ein Gradient existiert entlang welchem tiefe bis hin zu hohen

Frequenzen verarbeitet werden. In der MSO werden tieffrequente Signale im dorsalen

Teil und hochfrequente Signale im ventralen Teil verarbeitet. Es ist daher von großem

Interesse, ob sich Membran- und Ionenkanaleigenschaften entlang der dorsoventralen

Achse der MSO unterscheiden. Um dies zu untersuchen wurde eine in vitro Studie

durchgeführt, unterstützt von Computersimulationen. In vitro konnte dabei gezeigt

werden, dass sich, in der Tat, die Amplitude des Stromes, welcher durch die HCN

Kanäle fließt (Ih), entlang der dorsoventralen Achse systematisch verändert. Darüber

hinaus wurde gezeigt, dass Ih im ventralen Abschnitt höhere Stromdichten und

schnellere Kinetiken aufwies als im dorsalen Abschnitt der MSO. Diese Unterschiede

fanden ihre Entsprechung auch im niedrigeren Eingangswiderstand und kleineren

Zeitkonstante der MSO Zellen im ventralen Teil.  Auch zeigten die Neurone im
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ventralen Teil der MSO schmalere Antworten und weniger zeitliche Aufsummierung als

Reaktion auf eine 100 Hz Folge von inhibitorischen Eingangssignalen. Im theoretischen

Teil der Studie wurde untersucht, welche Mechanismen diesen Unterschieden in der

synaptischen Integration dorsaler und ventraler Zellen zu Grunde liegen. Dazu wurde

jeweils ein Modell einer prototypischen dorsalen und ventralen MSO Zelle angefertigt,

indem die jeweiligen HCN Kanäle angepasst wurden auf die durchschnittlich in

dorsalen und ventralen Zellen gemessen Kanalkinetiken. Im Ergebnis konnten wir in

unseren Simulationen zeigen, dass ein Zusammenspiel des ventral stärkeren Ih mit

schnellen Kv1 Kanälen es ventralen MSO Zellen ermöglicht höhere Raten

inhibitorischer Eingänge, bei geringerer zeitlicher Aufsummierung,  zu verarbeiten  im

Vergleich zu dorsalen Neuronen. Dieses Ergebnis zeigt auf, dass der größere Ih im

ventralen Teil dabei helfen kann, den putativ höherfrequenten hemmenden Eingangs-

signalen entgegenzuwirken und damit das Membranpotential näher an der Schwelle für

Aktionspotentiale zu halten. 

14



1. Introduction

1.1. The auditory brainstem with a focus on binaural processing

1.1.1. From sound to a signal in the auditory nerve

Sound is a pressure wave which propagates through compressible media, such as air.

When a sound reaches the ear (Figure 1a), it passes the external ear canal and induces a

vibration of the tympanic membrane. This vibration causes the three middle ear ossicles

(malleus, incus and stapes) to oscillate. The stapes connect to the cochlea through the

oval window. The cochlea can be described as a coil-, or snail-shaped1 fluid-filled tube

subdivided into three chambers: the scala tympani, the scala media, and the scala

vestibuli (Figure 1b). The movements of the stapes transduce the sound waves from the

outer air to the cochlear fluids and hence manifest the sound as a traveling wave of the

basilar membrane which separates the scala media from the scala tympani. The basilar

membrane varies in width and stiffness along its longitudinal axis and thus has different

resonance properties from its base to its apex. While the thin and stiff base shows the

largest membrane deflection for high-frequency sounds, the broader and more flexible

apex responds most to low-frequency sounds (von Békésy, 1947). This spectral analysis

defines the cochleotopic structure and functionally yields a tonotopic organization,

which is preserved throughout the auditory system. Located on the basilar membrane is

the organ of Corti which incorporates the inner hair cells (IHCs). The heads of the IHCs

develop a hair-like structure, the cilia, which themselves are connected to the tectorial

1 hence the name “cochlea”, a latin word, derived from the greek κόχλος, the snail or the snail shell.
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Figure 1. Human ear and cochlea. (a) Ear cross section. (b) Cochlea cross section.



membrane. The motion of the basilar membrane induces a shearing force between the

IHCs and the tectorial membrane that opens mechanosensitive channels in the cilia. The

resulting ionic influx changes the membrane potential of the corresponding hair cells

and thus transforms the mechanically transmitted sound into an electrical signal.

Membrane depolarization of the IHCs results in action potentials (APs) being generated

in the peripheral processes of type I spiral ganglion cells which synapse at the base of

the IHCs. The axons of the spiral ganglion cells (called the primary auditory fibers) then

establish the cochlear part of the vestibulocochlear nerve.

An important temporal feature of the APs elicited at this stage is that they are generated

at a specific phase of the sinusoidal voltage deflections of the IHC (phase-locked;

Galambos and Davis, 1943; also see Figure 2). The fact that the APs are generated in a

phase-locked manner is inevitable for the high-resolution temporal processing in

downstream nuclei as will be discussed in Section 1.1.7. This thesis covers the binaural

nucleus of the MSO and will henceforth focus on the nuclei of the ascending auditory

pathway that are relevant for binaural processing.

1.1.2. The cochlear nucleus

As the primary auditory fibers enter the cochlear nucleus complex, they synapse with

mainly four different cell types in the cochlear nuclei: the bushy cells in the anterior

ventral cochlear nucleus (AVCN), the octopus cells in the posterior ventral cochlear

nucleus (PVCN), the multipolar cells in the ventral cochlear nucleus (VCN) and the
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Figure 2. Schema displaying the phase-locked response of the auditory nerve to a presented pure tone sound. Circles (at the top)

indicate action potentials generated in the auditory nerve in response to the sound (at the bottom) for different trials. For each cycle

of the sound, an arrow points toward the (average) phase the firing of the auditory nerve is restricted to in this illustration.



stellate cells in the dorsal cochlear nucleus (DCN). Each of these cell groups encodes

different auditory informations and thus initiates a different pathway of auditory

processing. From a binaural viewpoint, the most important cells in the cochlear nucleus

are the bushy cells in the AVCN. The bushy cells can be divided into two sub-groups:

the spherical and the globular bushy cells (SBCs and GBCs, respectively). Both cell

types receive inputs mediated by large synapses from the type I spiral ganglion cells.

For SBCs these synapses are especially large, called endbulbs of Held. Owing to these

sizable synapses most action potentials carried by the primary auditory fibers result in

APs in the bushy cells, thus preserving the responses of the primary auditory fibers

(Joris et al., 1994a,b).

1.1.3. The superior olivary complex

The superior olivary complex (SOC) is comprised of several major nuclei: the lateral

and medial superior olive (LSO and MSO) and the lateral and medial nucleus of the

trapezoid body (LNTB and MNTB). These nuclei receive most of their synaptic inputs

from the spherical and globular bushy cells in the AVCN. Furthermore, the major nuclei

of the SOC are surrounded by various other nuclei, called periolivary nuclei, one of

them being the superior periolivary nucleus (SPN), located dorsal to the MNTB

(Webster, 1992; Schwartz, 1992).

The LNTB receives excitatory inputs from the ipsilateral GBCs, while the MNTB
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Figure 3. The medial superior olive (MSO) and its upstream nuclei.



receives excitatory inputs from the contralateral GBCs (Tolbert et al., 1982; Friauf and

Ostwald, 1988; Kuwabara et al., 1991; Smith et al., 1991; Thompson and Schofield,

2000; also see Figure 3, and Section 1.1.7. for more details).

The MSO is located laterally to the MNTB (Figure 3). The principal neurons of the

MSO are arranged on the dorsoventral axis and exhibit stereotypical bilateral dendrites

extending along the mediolateral axis (Ramón y Cajal, 1909; Stotler, 1953; Schwartz,

1992; Grothe, 2000). The neurons of the MSO (and the LSO) are the first to be

innervated from both ears and thus are the first to process binaural information in the

mammalian brain. The principal cells of the MSO receive glutamatergic excitatory

inputs from both, the ipsi- and contralateral AVCN (Stotler, 1953; Warr, 1966; Clark,

1969; Perkins, 1973; Lindsey, 1975; Cant and Casseday, 1986). Additionally they

receive inhibitory inputs from the ipsilateral LNTB (Cant and Hyson, 1992; Kuwabara

and Zook, 1992; Spirou and Berrebi, 1996) and MNTB (Spangler et al., 1985; Banks

and Smith, 1992). Both inhibitory inputs are glycinergic (Adams and Mugnaini, 1990;

Spirou and Berrebi, 1997). Recently, a GABAergic inhibitory input to the MSO, arising

from a disynaptic feedback loop via the superior periolivary nucleus (SPN), has been

identified (Stange et al., 2013). For an overview of the MSO and its upstream nuclei see

Figure 3.

The LSO is located laterally to the MSO (Figure 3). The LSO receives excitatory inputs

from the ipsilateral AVCN and inhibitory inputs from contralateral site relayed via the

ipsilateral MNTB (Spangler et al., 1985; Cant and Casseday, 1986; Matsubara, 1990;

Sanes, 1990; Kuwabara et al., 1991).

In the literature, the two main binaural response types of MSO and LSO neurons are

commonly referred to as EE (excitatory-excitatory) and EI (excitatory-inhibitory),

respectively – where the two letters describe the predominant ipsilateral and

contralateral inputs (Grothe et al., 2010).
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1.1.4. The lateral lemniscus and the inferior colliculus

The lateral lemniscus (LL) extends from the lower pontine tegmentum and is the main

auditory tract that connects the SOC to the inferior colliculus (Webster, 1992; Schwartz,

1992). It contains axons from both the cochlear nuclei and the SOC. Three different cell

types that infiltrate the LL give rise to the three lemniscal nuclei: the ventral,

intermediate and dorsal nucleus of the lateral lemniscus (VNLL, INLL and DNLL).

While the VNLL and INLL are monaural (Covey, 1991, Yavuzoglu, 2010), the DNLL

responds best to binaural inputs. The DNLL receives glutamatergic excitatory

connections from the ipsilateral MSO and contralateral LSO, as well as glycinergic

inhibitory inputs from the ipsilateral LSO (Adams, 1979; Glendenning et al., 1981 and

1992; Glendenning and Masterton, 1983; Aitkin and Shuck, 1985; Shneiderman, 1988,

Saint-Marie et al., 1989; Saint Marie and Baker, 1990). Also, the DNLL  projects to its

contralateral counterpart with GABAergic connections via the commissure of Probst

(Adams and Mugnaini, 1984; Thompson et al., 1985; Moore and Moore, 1987;

Shneiderman et al., 1988).

The largest auditory structure in the brainstem is established by the inferior colliculus

(IC). The IC is located in the midbrain dorsal to the LL. It is comprised of three

subdivisions, the central nucleus (ICC), the dorsal cortex and the external cortex. The

IC receives multi-modal inputs from a vast number of different nuclei and brain regions,

some of the auditory being: the LL, the medial geniculate nucleus and the auditory

cortex. Furthermore, the nuclei of the SOC innervate the IC in different ways. The IC

receives excitatory projections from the ipsilateral MSO and contralateral LSO and

inhibitory connections from the ipsilateral LSO (Adams, 1979; Glendenning and

Masterton, 1983; Aitkin and Shuck, 1985; Saint Marie et al., 1989; Saint Marie and

Baker, 1990). Like the DNLL, the IC sends projections to its contralateral counterpart

(Moore and Goldberg, 1963; Brunso-Bechtold et al., 1981). The neurons of the ICC,

which receive most of their inputs from the LL seem to be involved in binaural

computation, since many of them are ITD-sensitive (Rose et al., 1966).

Both, the DNLL and the ICC have proven to provide a comparably easy-to-access read-
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out of the MSO and LSO regarding ITD-related data (Rose et al., 1966; Kuwada and

Yin, 1983; Yin and Kuwada, 1983a,b; Caird and Klinke, 1987; McAlpine et al., 1998

and 2001; Siveke et al., 2006, 2007 and 2012).

1.1.5. Two localization cues in the horizontal plane

A sound source which is not located exactly in front (or behind) of a listener will give

rise to arrival time and level differences at the two ears (for review see Grothe et al.,

2010). These two differences are the physical cues for the horizontal localization of a

sound source, and are called interaural time differences (ITDs) and interaural level

differences (ILDs).

ITDs arise since sound waves arrive at the ear closer to the sound source first, then

propagate along the listener's head and ultimately, only microseconds later, reach the

opposite ear (Figure 4a). The physiologically relevant range of ITDs, or the maximally

possible ITD, depends on the listener's ear-to-ear distance, as well as the size and shape

of the head. For the mongolian gerbil (Meriones unguiculatus), which is the animal

model underlying all performed studies in this thesis, the maximum ITD is around +/-

135 µs (Maki and Furukawa, 2005). For humans, which exhibit considerably larger

heads, the maximum ITD is roughly +/- 700 µs (Moore, 2012). Relative to the

considered hemisphere, positive ITDs thereby indicate that the sound source is located
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Figure 4. Two localization cues in the horizontal plane: (a) interaural time difference (ITD), (b) interaural level difference (ILD). 

See text for further description. Reproduced similar to Grothe et al. (2010).



on the contralateral side, and negative ITDs mean the sound source is on the ipsilateral

side. As a sound originating from exactly the front (or behind) reaches both ears at the

same time, the resulting ITD is consequently zero. ITDs can be utilized as a localization

cue for low-frequency sounds that exhibit a wavelength larger than the ear-to-ear

distance. For high-frequency sounds ITDs become ambiguous, since for the usage of

ITDs it is imperative to be able to distinguish between the timing of individual cycles of

a sound wave. When stimulating with pure tones or stimuli with a sinusoidal structure,

it became sensible to sometimes use the notion of interaural phase differences (IPDs)

when referring to arrival time differences of sound (Grothe, 2000).

ILDs emerge, when sounds are reflected by the listener's head thus reaching the

opposing ear (in the sound shadow) at a lower intensity than the ear facing the sound

source (Figure 4b). Since low-frequency sounds are diffracted by the listener's head

rather than reflected, ILDs are especially eligible as a localization cue for high-

frequency sounds with a wavelength which is shorter than the ear-to-ear distance.

The assignment of localization cues to different frequency bands goes back to the work

of Lord Rayleigh (1907) and his “duplex theory”. The duplex theory states that ITDs are

used to localize low-frequency sound sources, while ILDs are employed to localize

high-frequency sounds sources. The duplex theory was later refined by restricting the

range where ITDs are a useful cue for humans to below 1.5 kHz (Sandel et al., 1955;

also see Hartmann and Macaulay, 2014). Even though an attribution of both cues to

low- (ITD) and high-frequencies (ILD) is generally accurate, it does not tell the whole

story. It has been shown that substantial ILDs are also generated when a low-frequency

sound source is nearby the listener (Brungart and Rabinowitz, 1999; Shinn-Cunningham

et al., 2000). On the other hand, low-frequency components as in the amplitude

envelope of high-frequency sounds give rise to utilizable ITDs (Bernstein, 2001; Griffin

et al., 2005).

The nuclei concerned with the detection of these localization cues are the MSO and the

LSO in the SOC. The principal cells of the MSO have been found to be ITD sensitive in

a variety of mammals (for example, cat: Galambos et al., 1959; Caird and Klinke, 1983;
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Yin and Chan, 1990; dog: Goldberg and Brown, 1969; kangaroo rat: Moushegian et al.,

1975; Crow et al., 1978; rabbit: Batra et al., 1997a,b; gerbil: Spitzer and Semple, 1995;

Brand et al., 2002; Pecka et al., 2008). In fact, the MSO has shown to be the primary

structure for ITD coding in the brain. Albino cats, which present a pronounced atrophy

of their MSO nuclei (Conlee et al., 1984 and 1986), show strong behavioural deficits

regarding the localization of sound sources in the horizontal plane (Heffner and Heffner,

1987) and a reduced sensitivity to ITDs (Yin et al., 1990). The principal cells of the

LSO are mainly sensitive to ILDs (Boudreau and Tsuchiani, 1968; Tollin, 2003),

however low-frequency LSO neurons have also shown to be ITD-sensitive (Tollin and

Yin, 2005).

1.1.6. Encoding of ITDs in the MSO

The principal cells of the MSO are sensitive to ITDs, i.e. their firing rate is substantially

modulated by the ITDs of a sound stimulus (Rose et al, 1966; Goldberg and Brown,

1969; Yin and Chan, 1990; Brand et al., 2002). The firing rate of a cell as a function of

ITDs is called the ITD function (Figure 5). The ITD to which the cell responds with the

highest firing rate is called the best ITD. When stimulated with a pure tone and a range

of artificially generated ITDs that exceeds the length of several cycles of the tone, the

ITD-function shows multiple peaks and troughs (Figure 5; Goldberg and Brown, 1969;

Yin and Chan, 1990). The distance between these peaks then represents the period of
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Figure 5. Schema of a typical response of a gerbil MSO cell to pure tones at different ITDs. Colors indicate different stimulus

frequencies (green = best frequency (BF), orange (>BF), blue (<BF)). Arrow heads indicate the corresponding best ITD. Note the

preference for positive ITDs as observed in vivo. The shaded area indicates the physiologically relevant range for ITDs (in this

example the range between +/- 135 µs corresponding to the head size of a gerbil). Note how the slopes of the ITD functions are

within the physiological range, establishing a rate code of ITDs.



the presented pure tone. MSO neurons can discriminate ITDs with a resolution of tens

of microseconds (Lesica et al., 2010).

The underlying mechanism of this ITD sensitivity is generally accepted to be a

coincidence detection of the two phase-locked excitatory inputs coming from the two

ears (Jeffress, 1948, Yin and Chan 1990; also see Figure 2 and 3). In 1948, Lloyd

Alexander Jeffress proposed a theoretical model of how ITDs can be analyzed and

processed by coincidence detectors in the auditory system. His theory assumes that

excitatory inputs are conveyed to target coincidence detector neurons via afferent axons

of systematically varying lengths (called “delay lines”) in order to compensate for the

arrival time differences of sound at the two ears (Figure 6a, right). Consequently, it

suggests that for every frequency channel a map of the horizontal auditory space is

created with individual neurons encoding one specific ITD by its peak rate, thus

establishing a peak-coding strategy (Jeffress, 1948; also see Figure 6b). This intriguing

hypothesis was heavily investigated particularly to find anatomical evidence for the

delay line structure. Indeed, in the avian counterpart of the MSO, the nucleus laminaris

(NL), evidences of systematic length variations of NL afferents and a systematic

representation of best ITDs were found (Rubel and Parks, 1975; Sullivan and Konishi,

1986; Carr and Konishi, 1990). Although indications for a putative delay-line type of

structure of excitatory MSO afferents in mammals were found (Smith et al., 1993;

Beckius et al., 1999, but see Karino et al., 2010), recent studies incorporating in vivo

data of the MSO and its downstream neurons in the DNLL and IC provide several

reasons to challenge the Jeffress theory (McAlpine et al., 2001; Brand et al., 2002;

Hancook and Delgutte, 2004; Siveke, et al., 2006; Pecka et al., 2008; for review: Grothe
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Figure 6. The Jeffress model. (a) Left: The yellow speaker is activated and evokes sound waves travelling towards the listener's

head. The left ear perceives the sound with a small delay with respect to the right ear. Right: This delay is compensated by the

lengths of the afferents to the MSO. (b) The corresponding ITD functions of the MSO neuron in (a). Note how the peak responses

encode the ITDs. Figure reproduced similar to Grothe, 2003.



et al., 2010). The main arguments in opposition of the Jeffress theory applying to the

MSO are now elaborated on further.

First, for the Jeffress model to apply one would expect to see a homogeneous

distribution of best ITDs over the physiological range to properly encode azimuthal

space by a peak-coding strategy (Figure 6b). Even though for the data of Yin and Chan

(1990) one could argue the distribution of best ITDs in the physiological range to be

rather homogeneous, more recent studies show that there exists a strong bias towards

positive ITDs, rendering the best ITDs to be mostly outside the physiological range

(McAlpine et al., 2001; Brand et al., 2002; Hancook and Delguette, 2004; Siveke, et al.,

2006; Pecka et al., 2008; van der Heijden et al., 2013). Furthermore, low-frequency

tuned neurons show markedly larger and more widespread best ITDs compared to high-

frequency neurons, i.e. the best ITD and its variability is strongly dependent on the best

frequency2 (BF) of the neuron (McAlpine et al., 2001). This circumstance renders the

steepest part of the ITD function's slope to be inside of the physiological range

(illustrated in Figure 5). Taken together, this strongly indicates that, at the very least for

small mammals, instead of a peak-coding strategy, a population rate coding strategy is

more plausible for the MSO.

Second, there is considerable evidence that MSO neurons receive strong phase-locked

inhibitory inputs, mediated by the ipsilateral LNTB and MNTB (Clark, 1969; Perkins,

1973; Wenthold et al., 1987; Cant, 1991; Cant and Hyson, 1992; Kuwabara and Zook,

1992; also see Section 1.1.3.). While early studies already speculated that inhibition

might play a role in ITD detection (Rose et al., 1966; Yin and Kuwada, 1983), the

extent to which it influences the encoding of ITDs is still a matter of debate (for

reviews, see Grothe, 2003; Joris and Yin, 2006; Grothe et al., 2010 and 2014). In vivo

recordings of the gerbil MSO show that blocking the glycinergic inhibitory inputs with

strychnine removes the preference for positive ITDs and shifts the best ITD to zero

(Brand et al., 2002; Pecka et al., 2008). This finding unveils the crucial role of the

phase-locked inhibition in tuning the coincidence detection of MSO neurons and

contradicts the pure excitatory coincidence detection mechanism the Jeffress model

2 The stimulus frequency to which the neuron shows the largest firing rate.
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proposes.

The third reason to challenge the Jeffress model is regarding the characteristic phase

(CP) and characteristic delay (CD) of a cell. In 1966, Rose and colleagues defined the

CD as the ITD to which the cell responds with the same relative amplitude over

different stimulation frequencies (Rose et al., 1966). Since then, several studies used the

notion of a CD, identifying the CD of a cell by visual inspection (for example: Brugge

et al., 1969, 1970, 1973; Geisler et al., 1969; Stillman 1971). The lack of an appropriate

objective measure of CD prompted Yin and Kuwada to provide a simple method to

statistically determine whether a cell shows a

CD (Yin and Kuwada, 1983). To do so, they

plotted the best IPD versus the stimulation

frequency and fitted a linear function to this

data by linear regression. The slope of this fit

function establishes the CD of the cell. The CP

of the cell, which is defined as the IPD at

which the CD occurs, can be obtained by

evaluating the fit function at zero (Figure 7).

When we now consider the EE type

coincidence detector neurons of the MSO to be

driven by purely excitatory inputs, and being innervated by delay-line-type afferents

according to the Jeffress scheme, we would expect the best ITD to be invariant with

respect to the stimulation frequency. Thus, the CD of such a neuron would show at the

peak firing rate and the CP would be zero. At the other extreme, when we observe an EI

neuron which receives excitatory inputs from the ipsilateral side and inhibitory ones

from the contralateral side, we would expect the troughs of the ITD functions to be

invariant with respect to the stimulation frequency. We would expect to see the best

ITDs to occur when these two inputs are maximally out of phase and thus the CP of

such a neuron to be around 0.5 cycles. However, several older (Goldberg and Brown,

1969; Rose et al., 1966; Stillman, 1971) and newer (Batra et al., 1997a,b; Pecka et al.,

2008) in vivo studies have shown that the CPs are by no means restricted to 0 or 0.5

only, but assume a variety of values between 0 and 0.5 CP. This observation indicates
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Figure 7. Determining the characteristic delay (CD)

and characteristic phase (CP) of an MSO neuron.

Circles indicate exemplary best phases (IPDs) of an

MSO neuron given a pure tone stimulus presented at

five different frequencies (abscissa). The line represents

the linear regression of these five data points.



that the ITD sensitivity seems to be not only generated by a pure time delay as

suggested by the Jeffress model, but additionally incorporates a phase delay which

cannot be explained by that model. Such a phase delay could arise from the well

established strong phase-locked inhibitory inputs and their timing relative to the

corresponding excitatory inputs (see Discussion, Subchapter 5.3). 

1.1.7. The MSO from a biophysical perspective

The discrimination of minute discrepancies in arrival time of incoming signals is a

physiologically demanding task. To establish the sensitivity to these sub-millisecond

arrival time differences of the inputs, two major prerequisites must be met. First,

appropriately brief synaptic inputs have to reliably transport the exquisite temporal

information of the incoming sound. Second, the cell must only integrate these precisely

timed synaptic inputs over a very small time window to distinguish between tens of

microseconds in arrival time difference.

The first requirement is addressed by the circumstance that MSO neurons receive some

of the most temporally precise inputs in the whole central nervous system. Inside the

ITD frequency domain, the auditory nerve fibers (ANFs) generate action potentials

which are highly synchronized to a specific phase of the sinusoidal signal in the IHCs

(Galambos and Davis, 1943; Kiang et al., 1965; Rose et al., 1967). These phase-locked

discharges build the temporal fundament of the ITD-detection in the MSO for two

reasons. First, they reliably carry the temporal information of incoming sounds at each

ear. Second, they are preserved throughout the whole ITD-detection circuitry up to the

MSO. The SBCs, that directly mediate the excitatory inputs to the MSO, as well as the

GBCs, which innervate the MNTB and LNTB in the inhibitory pathway to the MSO,

have shown phase-locking at an even higher degree of precision than that of the ANFs

(Spirou et al., 1990; Smith et al., 1991; Joris et al., 1994a,b; McLaughlin et al., 2008;

Rhode, 2008; Lorteije et al., 2009; Recio-Spinoso, 2012). The MNTB itself was found

to be exceptionally well-suited for temporarily precise computation, for it receives its

inputs through the largest synapse in the brain, the calyx of Held. The mere size and the

massive vesicle release of the calyx of Held ensures that a presynaptic AP results in an
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AP in the MNTB neuron at a very small synaptic delay and thus preserves the phase-

locked response (Smith et al., 1998; Paolini et al., 2001; Kopp-Scheinpflug et al., 2003;

Hermann et al., 2007; McLaughlin et al., 2008; Englitz et al., 2009; Kopp-Scheinpflug

et al., 2011; Borst and Soria van Hoeve, 2012; Roberts et al., 2014). Even though the

incoming excitatory synapses to the LNTB are smaller, the intrinsic physiology of

LNTB neurons has also shown to be well capable of phase-locking at input frequencies

of 600 Hz or higher and thus deliver rapid and temporarily precise inhibition to the

MSO (Roberts et al., 2014). The principal cells of the MSO also phase-lock to pure tone

stimuli themselves (Galambos et al., 1959; Goldberg and Brown, 1969; Crow et al,

1978; Yin and Chan, 1990; Spitzer and Semple, 1995; Batra et al., 1997a; Brand et al.,

2002; Pecka et al., 2008), thereby showing a higher degree of phase-locking to

favorable ITDs than at unfavorable ones (Goldberg and Brown, 1969; Crow et al., 1978;

Caird and Klinke, 1983; Yin and Chan, 1990; Spitzer and Semple, 1995; Batra et al.,

1997a,b).

Aside from the temporal precision of their arrival times, the synaptic inputs to the MSO

principal cells are also some of the fastest regarding their time course in the whole

brain. The time constant of excitatory inputs is only around 0.3 milliseconds and the

time constant of inhibitory inputs ranges around 1.5 milliseconds (Couchman et al.,

2010).

To fulfill the second condition, the principal neurons of the MSO exhibit an

exceptionally small membrane time constant of only around 350 µs (Scott et al., 2005;

Couchman et al., 2010). The very fast membrane kinetics are a result of the unusually

low input resistance of MSO neurons of only about 5 Mohm at rest (Scott et al., 2005;

Couchman et al., 2010), which is based on the high expression of two sub-threshold

channels: a hyperpolarization-activated and cyclic nucleotid-gated channel (HCN or just

h-channel) and a low-voltage activated potassium channel (Kv1, sometimes also called

KLT or K-LVA). The corresponding currents (Ih and IKv1) differ drastically in their

kinetics and polarity and thus operate on different time scales and serve different

purposes.

IKv1 is a fast-activating and slow-inactivating outward current mediated by potassium
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ions. Its voltage-dependent activation time constant averages around 1 millisecond (at

35°C, Mathews et al., 2010). The channels to conduct IKv1 are encoded by the Kv1 (or

KCNA) gene subfamily. Due to the sensitivity to DTX-K (dendrotoxin-K; specific

Kv1.1 blocker) the heteromeric Kv1-channels in the MSO have shown to contain

member 1 (KCNA1, Kv1.1) as a subunit (Svirskis et al., 2002; Scott et al., 2005;

Mathews et al., 2010). As a byproduct of the immunohistochemical stainings in Chapter

2, a substantial expression of Kv1.2 in the soma could be observed (Chapter 2, Figure

2). In the MSO, Kv1-channels have shown to sharpen the integration time window and

half-width of EPSPs and thus to substantially improve the temporal resolution of

coincidence detection (Scott et al., 2005, Mathews et al., 2010). Furthermore, Kv1

channels have been identified to have a share in the attenuation of axonally initiated

action potentials in the soma which therefore do not interfere with synaptic integration

(Scott et al., 2007). Apart from the MSO (Smith, 1995), Kv1-channels are also found in

various nuclei of the auditory brainstem, for example in the VCN (Manis and Marx,

1991), the MNTB (Brew and Forsythe, 1995), the LSO (Barnes-Davies et al., 2004),

where they contribute to the phasic AP firing pattern (i.e. a singular or very few APs at

the onset of a depolarizing step, as opposed to repetitive (tonic) firing). The role of Kv1

channels in the MSO is discussed in more detail in Subchapter 5.2.

In contrast, Ih is a slow (time constant of tens to hundreds of milliseconds) non-selective

cation current, which is activated on hyperpolarization (Biel et al., 2009; Wahl-Schott

and Biel, 2009). Ih
 is carried by sodium and potassium ions (Pape, 1996). Since the usual

sub-threshold membrane potential yields a much larger driving force for sodium as

opposed to potassium ions, this current is strongly mediated by the influx of sodium

ions and thus causes the membrane potential to depolarize (Biel et al., 2009). HCN

channels are encoded by four genes (HCN1-4). Immunofluorescence labeling in the

MSO has identified HCN1 and HCN4 to be the primary underlying subunits in the

principal cells; HCN1 being the most expressed subunit (Koch et al., 2004; Khurana et

al., 2012). The half-activation potential and activation time constant of Ih is modulated

by intracellular levels of cAMP (Biel et al., 2009; Wahl-Schott and Biel, 2009; Khurana

et al., 2012). HCN channels primarily based on HCN1 are usually activated for more

depolarized voltages, showing the fastest time constant and being least sensitive to

28



modulation by cAMP. On the other hand, HCN channels based on HCN4 are the exact

opposite, i.e. they are opening for more hyperpolarized membrane voltages, gating

slowly and are strongly sensitive to cAMP (Wahl-Schott and Biel, 2009). In MSO

neurons Ih is contributing to the large resting conductance and thus the fast membrane

time constant (Khurana et al., 2011).

Kv1 and HCN channels should not be only considered separated from each other. On

the contrary, it is the balanced co-expression of these two adversatively activating

channels which sets the membrane resting potential. Also, since both channels are

already open at rest to a significant extent, they mediate the large resting conductance of

MSO cells and thus their exceptionally low input resistance (Scott et al., 2005; Mathews

et al., 2010; Khurana et al., 2012). The dynamic interplay of Kv1 and HCN channels in

the MSO has shown to maintain the temporal resolution of coincidence detection

(Khurana et al., 2011).

MSO neurons are not fast, high-resolution coincidence detectors from the outset.

Studies in gerbils have shown that the principal cell's membrane properties undergo

drastic changes in the first weeks after hearing onset (in gerbil: postnatal day 12 (P12);

Scott et al., 2005; Khurana et al., 2012). Underlying these changes are an increase of

channel expression and/or modulatory factors of Kv1 and HCN channels, causing a

substantial upregulation of IKv1 and Ih. The upregulation of these sub-threshold currents

entails a dramatic decrease of input resistance and membrane time constant and thus a

significant shortening of the integration time window (Scott et al., 2005; Khurana et al.,

2012).

1.2. Action potential initiation

1.2.1. History of the action potential

The history of the discovery of the action potential goes back to (and is strongly

associated with) the foundations of modern electrophysiology. At the end of the 18th

century, Luigi Aloisio Galvani discovered that dissected legs of frogs began to twitch
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when hit by an electrical spark (Galvani, 1791; Hoff, 1936; Piccolino, 1997). It was

Galvani's finding that led to the invention of the first electric battery by Alessandro

Volta, a professor at the university of Pavia (Volta, 1800; Piccolino, 2000). Following

Galvani's work, Carlo Matteucci, an Italian physicist and professor at the university of

Pisa, found that injured muscles generated a direct current between the cut and intact

surface (Moruzzi, 1996; Seyfarth, 2006). Inspired by Matteucci's work, the German

physician Emil du Bois-Reymond reproduced the experiments in muscles and nerves,

which led him to the discovery of the action potential (AP; du Bois-Reymond, 1843; du

Bois-Reymond, 1848; Moruzzi, 1996). A few years later, du Bois-Reymond's colleague

and friend, Hermann von Helmholtz was the first to measure the conduction velocity of

action potentials in a dissected sciatic nerve of a frog3 (von Helmholtz, 1850; Hoff and

Geddes, 1960; Piccolino, 1998; Schmidgen, 2011). Julius Bernstein, who among others

studied medicine under Emil du Bois-Reymond and later worked as an assistant to

Hermann von Helmholtz in the beginning of his scientific career, developed a

hypothesis today known as the “membrane theory” which he published in 1902 and

refined in 1912 (Bernstein, 1902 and 1912). His work was mainly focused on the origin

of the resting potential and action potentials in the nerve. Bernstein suggested that the

negative resting potential is established by the permeability of the membrane to

potassium ions while being impermeable to other ions. As potassium ions move through

the membrane of the cell they would carry positive charge outside, leaving an excess of

negative charge inside the cell when the electrochemical equilibrium sets in. An action

potential in Bernstein's view would occur when the membrane suddenly becomes

permeable to all ions, called the “membrane breakdown”, once the internal potential is

sufficiently raised by, for example, electrical stimulation or the arrival of another action

potential. He suggested that once the membrane breakdown happens, the membrane

potential would jump to zero giving rise to an action potential.

3 Helmholtz reported that the conduction time of an impulse propagating through the nerves (50 to 60 

millimeter in length, kept at 2 – 6 °C) measured from 0.0014 to 0.002 seconds, which translates to a 

velocity of around 25 to 43 meters per second (von Helmholtz, 1850; Hoff and Geddes, 1960).
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In 1939, Ken Cole and Howard Curtis confirmed Bernstein's theory by showing that the

membrane permeability increases during an AP in squid axons (Cole and Curtis, 1939).

In the same year Alan Lloyd Hodgkin and Andrew Fielding Huxley found that an action

potential (starting at a negative membrane potential) in the giant squid axon

substantially overshot 0 mV by tens of millivolts, inducing a polarity change of the

membrane potential, which was a contrast to Bernstein's theory of a mere “breakdown”

of the membrane potential (Hodgkin and Huxley, 1939; Huxley, 2002). Ten years later,

Hodgkin and Bernard Katz published a result of what they found to be the reason for

this overshoot: the massive increase of the

membrane permeability during an action

potential was mainly mediated by an

increase of permeability to sodium ions,

which marked another milestone in the

understanding of AP generation (Hodgkin

and Katz, 1949). Using voltage-clamp

recordings Hodgkin, Katz and Huxley

then demonstrated the dependence of

sodium and potassium permeability on

voltage and time (Hodgkin, Huxley and Katz 1952, Hodgkin and Huxley 1952a,b,c;

Figure 8) which ultimately led to the quantitative description the generation of the

action potential, today well-known as the Hodgkin-Huxley model (Hodgkin and Huxley

1952d; also see Section 1.2.2.).

The model of Hodgkin-Huxley assumes the existence of distinct channels for sodium

and potassium ions in the membrane which can assume the states “open”, “closed” and

“inactivated”. This hypothesis was confirmed by Erwin Neher and Bert Sakmann who

were able to show the different conductance states of individual ion channels using their

newly invented patch-clamp technique (Neher and Sakmann, 1976; Neher, Sakmann

and Steinbach, 1978; Neher and Sakmann, 1992; Sakmann and Neher, 1995).

1.2.2. Modeling a neuronal membrane with Hodgkin-Huxley equations

To investigate the different questions of this thesis biophysical modeling of MSO
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Figure 8. The action potential and the involved conductances.

Voltage deflection of the neuronal membrane (black),

underlying sodium (red) and potassium (green) conductances.

Figure reproduced similar to Hodgkin and Huxley (1952d).



neurons is performed using differential equation systems that are based on the Hodgkin-

Huxley equations (Hodgkin and Huxley 1952d). In this section a brief description is

given on how a neuronal membrane is modeled following the Hodgkin-Huxley

paradigm.

The Hodgkin-Huxley model regards the excitable neuronal membrane as an electrical

RC circuit where the membrane itself is modeled by a capacitor and the transmembrane

ion channels by resistors (Figure 9). The gating of voltage-sensitive ion channels is

modeled by two types of gating particles, which represent the activation and

inactivation of the channel. The gating particles are thereby modeled by the first order

differential equation

da

dt
=

a∞(V )−a(V )

τ(V )
, (1)

whereby a∞ represents the voltage-dependent steady-state activation (or inactivation) of

the channel, and τ is the voltage-dependent time constant of the respective gating

particle. The transmembrane current I  flowing through a population of channels of the

given kinetics can then be described by

I=g a
x
b

y(V −E ) . (2)
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Figure 9. Equivalent electrical circuit of a membrane patch as proposed in Hodgkin and Huxley (1952d). The  membrane is 

modeled by a capacitor with capacitance Cm giving rise to the membrane potential Vm. Resistors (RNa, RK, Rlk) indicate the voltage-

dependent permeabilities of sodium and potassium ions and the passive leak through the neuronal membrane. The electrochemical 

gradients are mimicked by batteries (ENa, EK, Elk).



The number g denotes the maximum conductance of the channels per specified area of

the putative channel population in the membrane. The activation of the channel is

modeled by a and the inactivation is modeled by b, both according to Equation 1. The

variables x and y represent the number of the respective gating particles and E denotes

the reversal potential of the channel. If a channel does not inactivate, b is set to 1 or

omitted. Considering the classical Hodgkin-Huxley model of an excitable membrane,

incorporating sodium, potassium and unspecified passive leak, the temporal evolution

of the membrane potential can be given by

C
dV

dt
= I ext−g Na m

3
h(V −E Na)⏞

I Na

−gK n(V −E K )⏞
I K

−glk (V −Elk)⏞
I lk

. (3)

The constant C represents the capacitance of the neuronal membrane viewed as a

capacitor. INa, IK, and Ilk describe the ionic currents flowing through the sodium,

potassium and leak channels, respectively. Iext represents an external current which is

injected to stimulate the membrane patch.

In case of a multi-compartmental cable model (as is used in Chapter 2), Equation 3 has

to be extended by an axial current. If Vi denotes the voltage of the i-th segment, the axial

current Iax linking the i-th segment of the cable to its neighbors can be described by

I ax

i =
V i−1−V i

Rax

i−1,i
+

V i+1−V i

Rax

i+1,i
, (4)

where Rax denotes the axial resistance between the i-th compartment and its respective

neighbors (see the Chapter 2, Materials and Methods).

In the past decades a large number of voltage-sensitve channels in miscellaneous

neurons were identified, including different types of sodium, potassium, calcium and

hyperpolarization-activated unspecific cation channels. Using voltage-clamp recordings,

the activation kinetics of these channels were extracted which allowed to generate

biophysical models of various neuronal types adapting the Hodgkin-Huxley equations

accordingly. For a thorough treatment of biophysical modeling using Hodgkin-Huxley
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equations (among other models), see Izhikevich, 2007 and Koch, 1999.

1.2.3. The morphology of myelinated axons

The axon is a relatively thin process mostly emerging from the soma or proximal

dendrite of a neuron. The axon conducts electrical impulses away from the cell forming

the main transmission structure in the nervous system. Myelinated axons (Figure 10)

can be divided into the proximal unmyelinated part, the axon initial segment (AIS), and

an extended myelinated part. The most proximal part of the AIS is called the axon

hillock, which initiates the axonal process by tapering its diameter down to only a few

microns forming a conical shape. The AIS expresses a high density of sodium channels.

The myelinated part which is much longer than the AIS can branch extensively forming

collaterals. It thus constitutes the major part of the axon. In the central nervous system

the myelination arises from oligodendrocytes which wrap their processes around axons

providing them with an insulation called the myelin sheath. The myelination is

periodically interrupted by the nodes of Ranvier. Like the AIS, the nodes of Ranvier

exhibit a high sodium channel density which, in concert with the low membrane

capacitance provided by the myelin-sheath, enables a fast transmission of APs in a

reproductory fashion called saltatory conduction. The most distal part of the axon (or

collaterals) forms unmyelinated branches and culminates in the synaptic terminals

which connect the presynaptic cell to the postsynaptic cells.
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Figure 10. Cartoon of a neuron with its axon. Regions of high sodium channel densities are indicated in red.



1.2.4. Action potential initiation in cortical neurons

The integration of synaptic inputs in central neurons generally concludes with the

generation of all-or-nothing impulses – the action potentials (APs; for detailed review,

see: Stuart et al., 1997b; Bean, 2007; Debanne et al., 2011). Once generated, APs are

transmitted by the axon which synapses on other neurons and thus conveys the

information encoded by the AP rate and pattern. A growing number of evidences

indicates that also the shape of the AP waveform itself encodes information, modulating

the transmitter release at the synapses (Geiger and Jonas, 2000; Kole et al., 2007,

reviews: Debanne, 2004; Debanne et al., 2011). Since the site of AP initiation in a

neuron is the location where a putative modulation of neuronal output could take place

most efficiently, as well as to better understand how inputs are ultimately translated into

output signals, it is of particular interest to investigate where neurons generate their

action potentials.

Seminal work of the 1950s marked the starting point of AP initiation site investigation,

when, investigating spinal motoneurons, AP initiation was already suggested to occur in

the axon (Coombs et al., 1957; Fatt, 1957; Fuortes et al., 1957; also see Eccles, 1964;

Llinás, 1988). In contrast to these early influential studies growing evidence on active

sodium and calcium conductances in dendrites of several central neuron types indicated

that APs could be initiated in the dendrites (Spencer and Kandel, 1961; Wong et al.,

1979; Turner et al., 1989; Pockberger, 1991; Regehr et al., 1992 and 1993). Inspired by

these findings, several studies employing simultaneous somatodendritic patch-clamp

recordings were prepared to test the hypotheses of axonal or dendritic AP initiation in

the following years. It was found that for neurons in the cortex, cerebellum, and further

brain structures the APs are initiated in the axon and then are subsequently

backpropagated into the soma and dendrites (Stuart and Häusser, 1994; Stuart and

Sakmann, 1994; Häusser et al., 1995; Spruston et al., 1995; Bischofberger, et al., 1997;

Stuart et al, 1997a). In some cases, however, upon particularly strong synaptic

stimulation, it was found that dendrites can also elicit regenerative responses mediated

by sodium and calcium channels which can precede the somatic AP (Stuart et al.,

1997a; Golding, Spruston, 1998; Rancz et al., 2006). A breakthrough which finally

35



allowed to pinpoint the AP initiation site was achieved only a couple of years ago with

the progress of existing, or the employment of new recording methods. Results from

whole-cell (Williams et al., 1999; Shu et al., 2006; Kole et al., 2007 and 2008, Schmidt-

Hieber, et al., 2008) and loose-patch recordings (Raastad et al., 2003; Meeks, et al.,

2005; Clark, et al., 2005; Boudkkazi et al., 2007; Atherton et al., 2008), as well as the

usage of voltage-sensitive dyes (Palmer, et al., 2006; Foust et al., 2010, Palmer et al.,

2010, Popovic et al., 2011) and sodium imaging (Kole et al., 2008; Bender et al., 2009;

Fleidervish et al., 2010) further corroborated that action potentials are initiated in the

axon. Moreover, it was found that in most neurons with myelinated axons, AP initiation

was identified to take place in the distal part of the axon initial segment (AIS; Khaliq et

al., 2005; Khaliq et al., 2006; Palmer et al., 2006; Shu et al., 2007; Atherton et al., 2008;

Yu et al., 2008; Foust et al., 2010; Palmer et al., 2010).

Section 5.1 of this thesis provides an extensive discussion about action potential

initiation in central neurons, including the methods involved, and our results (of Chapter

2) in the context of the current state of scientific knowledge.
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1.3. Aims of this thesis

This thesis is subdivided into three individual studies, presented in Chapter 2, 3, and 4,

investigating the excitability, the role of the glycinergic inhibition in the tuning of

coincidence detection, channel properties and synaptic integration along the tonotopic

axis in the principal cells of the MSO. Each of these studies is comprised of an

experimental and a computational part. The author of this thesis contributed to the

computational part of the studies; the experiments were performed by experimental

collaborators (see Author Contributions). A detailed statement of the author's

contributions to the individual studies can be found at the end of the thesis (see Author

Contributions). Before the results are presented (Chapter 2, 3, and 4), the introduction is

briefly summarized and the aims of each study, as well as our approaches to reach these

aims, are outlined.

The medial superior olive (MSO) is a nucleus in the mammalian auditory brainstem.

MSO neurons are the first to receive binaural inputs and encode arrival time differences

of sounds at the two ears by means of coincidence detection. These arrival time

differences, called interaural time differences (ITDs), are in the magnitude of only

microseconds, and represent the major cue for localizing low-frequency sounds in the

horizontal plane. The extreme temporal precision required to discriminate these minute

ITDs has been subject to a large number of studies over the past several decades

investigating the MSO and its upstream microcircuitry. It was found that the ITD

detection circuitry includes some of the fastest and temporally most accurate axons and

synapses in mammalian anatomy, that convey phase-locked excitatory and inhibitory

inputs to MSO neurons, and preserves the ITDs in the earlier stages prior to the MSO.

Moreover, it has been demonstrated that the principal neurons of the MSO themselves

exhibit some of the fastest membrane kinetics in the mammalian central nervous

system. Underlying this speed are strong transmembrane conductances mediated by

low-threshold potassium channels (Kv1 channels) and hyperpolarization-activated

cyclic nucleotide-gated channels (HCN channels) which are expressed in the MSO
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neuron's somatodendritic membrane and drastically decrease the membrane time

constant and input resistance of MSO neurons.

Study 1 (Chapter 2)

While the increased membrane conductance mediated by Kv1 and HCN channels is

essential for the exceptional temporal precision of the MSO neuron's coincidence

detection, it is problematic for the neuron's excitability, since the strong transmembrane

leak renders the somatodendritic membrane to constitute a tremendous current sink to

the axon initial segment, the typical site of action potential initiation, thus impeding the

generation of action potentials (APs). How, under these difficult circumstances, MSO

neurons are capable of generating action potentials and even produce sustained high

firing rates, as has been observed in vivo, is unclear. To investigate this question, we

conducted a thorough computational study, aided by immunohistochemical and

electrophysiological experiments. We created a biophysical model of an MSO neuron

and its axon based on anatomical data that has been obtained analyzing the morphology

of MSO axons. Using temporally extended naturalistic conductance trains we assessed

how the firing probability is influenced by morphological and electrical parameters of

the model. Also, the firing threshold's dependence on input frequency was investigated

in simulations, as well as in MSO neurons in vitro. Furthermore, we developed a

sophisticated algorithm that allowed us to determine the site of AP initiation for each

AP elicited during trains of synaptic stimuli, for a variety of input rates, morphological

and electrical parameters of the model. Monitoring electrical membrane properties and

channel activation during stimulation enabled us to identify mechanisms that keep the

neuron excitable, as well as that modulate the site of AP initiation.

Study 2 (Chapter 3)

In vivo recordings demonstrated that MSO neurons generally respond best to positive

(i.e. contra-leading) ITDs. Moreover, it has been shown that blocking the glycinergic

inputs to MSO neurons in vivo shifts the peak of the ITD function towards zero,

providing direct evidence that inhibition tunes the ITD sensitivity of MSO neurons. As

a consequence, a model (here referred to as inhibition model) was developed that

proposes a mechanism how a precisely-timed phase-locked inhibition is able to tune the
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coincidence detection such that the preference for positive ITDs can be explained. The

fundamental principle of the inhibition model is that precisely-timed inhibitory inputs

shift the peak timing of excitatory inputs on each side, thereby influencing the timing of

best coincidence. Several studies challenged the hypothesis of glycinergic inhibition

being capable to tune coincidence detection of MSO neurons in the way the inhibition

model proposes. Also, the inhibition model lacks thorough experimental testing under

physiologically relevant conditions, in particular to quantify its efficacy as well as the

specific relative timing conditions of inhibitory inputs that could explain in vivo data.

The aim of the second study is to investigate these questions, thereby also addressing

arguments recently brought up against the inhibition model. To do so, an extensive in

vitro study in acute auditory brainstem slices of adult gerbils was performed, aided by

computational modeling. To base the quantitative analysis on realistic synaptic kinetics,

the time courses of excitatory and inhibitory synaptic conductances (ESPGs and IPSGs)

were extracted in voltage-clamp experiments. To assess the magnitude of the inhibition-

enforced peak shifts, these EPSGs and IPSGs were used as templates to inject them into

the soma in conductance-clamp covering a broad parameter space of arrival times of

inhibitory inputs relative to the excitatory inputs. To test the robustness of the

inhibition-induced effects, these experiments were repeated for a wide range of

physiologically relevant parameters, such as different synaptic kinetics, arrival time

jitter, as well as for trains of inputs. To assess the impact of these peak shifts on

coincidence detection, AP probability was determined in a supra-threshold setting. We

created a biophysical model of an MSO neuron that was constrained to fit the

membrane and response properties of the MSO neurons measured in vitro. This model

allowed us to corroborate the in vitro findings as well as to investigate the impact of the

fast-activating Kv1 channels on the inhibition-enforced effects by adjusting the

activation parameters of the channel.

Study 3 (Chapter 4)

The MSO is tonotopically organized. Low-frequency sounds are thereby processed in

the dorsal part of the nucleus, whereas higher frequencies are processed in the ventral

part. The hyperpolarization-activated currents mediated by HCN channels substantially

contribute to the tuning of membrane properties, hence to the temporal precision of
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MSO neurons. The goal of this study is to investigate the putative differences of HCN

currents along the tonotopic axis, in particular in the context of integration of inhibitory

input trains at different frequencies. To investigate this question,  in vitro experiments in

acute auditory brainstem slices were performed, aided by computational modeling.

Voltage-clamp measurements were conducted to determine putative differences of HCN

current properties and membrane properties along the dorsoventral axis of the MSO. To

investigate whether differences in the integration of inhibitory inputs along the

dorsoventral axis exist, previously recorded inhibitory post-synaptic currents (IPSCs)

were injected in trains at a rate of 100 Hz into dorsal as well as ventral MSO neurons,

using a current-clamp setup. The responses to these injected IPSC trains were analyzed

to determine the half-widths and the temporal summation. We developed two

computational models of MSO neurons that were constrained to fit the HCN and

membrane properties of an average dorsal and ventral MSO neuron, respectively. Using

the models we determined the temporal summation in response to inhibitory input trains

at different frequencies, assuming dorsal and ventral neurons receiving phase-locked

inhibition at different rates. Finally, by manipulating the channel properties of HCN and

Kv1 channels in the computational models, we are able to identify a mechanism how an

interplay of HCN channels and fast-activating Kv1 channels facilitates the processing of

inhibitory inputs at higher rates in ventral neurons.

40



2. Action Potential Generation in an 

Anatomically Constrained Model of Medial 

Superior Olive Axons

Published in The Journal of Neuroscience (2014).

Reference: Lehnert S, Ford MC, Alexandrova O, Hellmundt F, Felmy F, Grothe B,

Leibold C. Action potential generation in an anatomically constrained model of medial

superior olive axons. J Neurosci 34: 5370–5384, 2014. 

Author Contributions:

List of authors: Simon Lehnert (SL), Marc C. Ford (MCF), Olga Alexandrova (OA),

Franziska Hellmundt (FH), Felix Felmy (FF), Benedikt Grothe (BG), and Christian

Leibold (CL).

Individual contributions: SL and CL, conception and design of the study, SL designed

and generated the computational model, performed all simulations and analyzed the

resulting data, SL and CL interpreted the results of the modeling; MCF and OA,

designed and performed the immunohistochemical experiments, MCF and OA analyzed

the immunohistochemical data; FF designed the electrophysiological experiments, FH

and FF performed the electrophysiological experiments and analyzed the data; SL

prepared all figures, except Figure 2, which was made by MCF. SL wrote the initial

draft of the manuscript, MCF wrote the immunohistochemical part of the manuscript.

FF, BG and CL contributed to various parts of the manuscript. SL, MCF, FF, BG and

CL critically revised the manuscript. All authors approved the final version of the

manuscript.

41



42



Systems/Circuits

Action Potential Generation in an Anatomically Constrained
Model of Medial Superior Olive Axons

Simon Lehnert,1 Marc C. Ford,1,2 Olga Alexandrova,1 Franziska Hellmundt,1,2 Felix Felmy,1,3 Benedikt Grothe,1

and Christian Leibold1

1Department Biology II, 2Graduate School of Systemic Neurosciences, and 3Department Biology I, BioImaging Zentrum, Ludwig-Maximilians-Universität
München, D-82152 Planegg-Martinsried, Germany

Neurons in the medial superior olive (MSO) encode interaural time differences (ITDs) with sustained firing rates of !100 Hz. They are
able to generate such high firing rates for several hundred milliseconds despite their extremely low-input resistances of only few megao-
hms and high synaptic conductances in vivo. The biophysical mechanisms by which these leaky neurons maintain their excitability are
not understood. Since action potentials (APs) are usually assumed to be generated in the axon initial segment (AIS), we analyzed
anatomical data of proximal MSO axons in Mongolian gerbils and found that the axon diameter is "1 !m and the internode length is
#100 !m. Using a morphologically constrained computational model of the MSO axon, we show that these thin axons facilitate the
excitability of the AIS. However, for ongoing high rates of synaptic inputs the model generates a substantial fraction of APs in its nodes of
Ranvier. These distally initiated APs are mediated by a spatial gradient of sodium channel inactivation and a strong somatic current sink.
The model also predicts that distal AP initiation increases the dynamic range of the rate code for ITDs.

Key words: action potential; axon; coincidence detection; interaural time difference; sound localization

Introduction
The generation of action potentials (APs) is widely assumed to
take place in the axon initial segment (AIS). Evidence for this
assumption stems predominantly from cortical pyramidal neu-
rons and cerebellar Purkinje neurons using simultaneous so-
matic and axonal whole-cell recordings (Stuart and Sakmann,
1994; Stuart et al., 1997; Kole et al., 2007; Shu et al., 2007) and
voltage-sensitive dye imaging (Palmer and Stuart, 2006; Foust et
al., 2010; Palmer et al., 2010; Popovic et al., 2011). At rest, these
neurons have relatively high input resistances of 10 –200 M$,
allowing them to integrate synaptic inputs over several millisec-
onds. Thus, during depolarizing stimuli, the soma generally
serves as a strong and temporarily stable current source for the
AIS. In neurons with very low input resistances of 2–5 M$, the
mechanisms of AP initiation have not yet been studied in such
great detail. In those cells, the membrane time constants are too
short to allow the soma to serve as a temporarily stable current
source. Conversely, the soma might even act as a current sink to
the AP generating zone and therefore increases the AP threshold
at the AIS.

In the present study, we investigated AP generation in neu-
rons of very low input resistance, the principal cells of the medial
superior olive (MSO). These neurons have membrane time con-
stants in the range of only a few hundreds of microseconds and
input resistances as low as 5 M$ (Scott et al., 2005; Couchman et
al., 2010). The MSO is a binaural nucleus in the ascending
auditory pathway. MSO neurons encode the azimuthal posi-
tion of low-frequency sounds via differences in the time of
arrival at the two ears by their firing rate (Goldberg and
Brown, 1969; Yin and Chan, 1990; Fitzpatrick et al., 1997;
Brand et al., 2002) with a precision of only a few tens of mi-
croseconds. This exquisite temporal precision of binaural coin-
cidence detection is partly achieved by the fast membrane time
constants of neurons resulting from the high expression of low-
voltage-activated potassium channels and hyperpolarization-
activated cation channels (Svirskis et al., 2002; Koch et al., 2004;
Scott et al., 2005; Mathews et al., 2010; Baumann et al., 2013),
both of which are already open at rest. Despite the resulting low
input resistance, these neurons can fire at high rates of #100
Hz and more. The mechanisms by which this is possible are
still unresolved.

In this article, we address the question of how AP generation is
accomplished in leaky neurons using a computational model of
MSO neurons with axonal morphology based on new detailed
morphometric data. Our simulations show that, despite the leaky
soma, the AIS remains electrotonically isolated and retains its
ability to generate APs. However, we also identified conditions
under which the APs are initiated at the nodes of Ranvier. This
distal initiation of APs increases the dynamic range of the rate
code of interaural time differences (ITDs).
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Materials and Methods
General
All experiments were performed according to institutional guidelines,
and national and regional laws; it was approved by the Regierung von
Oberbayern (AZ55.2–1-54 –2531-105–10). All results are given as the
mean % SEM.

Retrograde labeling of MSO cells
Mongolian gerbils (Meriones unguiculatus) of either sex [n & 4; postnatal
day 29 (P29) to P31] were anesthetized with pentobarbital (2 mg/kg body
weight) and intracardially perfused with ice-cold Ringer’s solution con-
taining 0.1% heparin. After decapitation, the brainstem was removed
from the skull under ice-cold dissection solution comprising the follow-
ing (in mM): 125 NaCl, 2.5 KCl, 1 MgCl2, 0.1 CaCl2, 25 glucose, 1.25
NaH2PO4, 25 NaHCO3, 0.4 ascorbic acid, 3 myo-inositol, and 2 pyruvic
acid (all chemicals were from Sigma-Aldrich). For retrograde labeling of
MSO cells, the brainstem was sectioned along the posterior–anterior axis
until the MSO, lateral superior olive, and superior paraolivary nucleus
(SPN) were clearly visible. Borosilicate glass micropipettes with a tip
diameter of 10 –15 !m were filled with a 10% solution of tetramethyl-
rhodamine dextran (3000 molecular weight; Invitrogen) and visually
guided to the SPN. Cells were labeled by applying 2– 4 electroporation
pulse trains (50 ms, 50 V, 10 Hz; modified from previous studies; Ford et
al., 2009). Subsequently, the explants were transferred to a chamber con-
taining oxygenated incubation solution (same as incubation solution,
but containing 2 mM instead of 0.1 mM CaCl2) and incubated at room
temperature for 90 min. Thereafter, brainstems were immersion fixed at
room temperature overnight in 4% paraformaldehyde solution.

Immunohistochemistry
Brainstems were sectioned transversally (80 –120 !m slice thickness),
rinsed in PBS, and transferred to blocking solution containing 1% bovine
serum albumin, 2% Triton X-100, and 0.1% saponin in PBS. Multiple-
immunofluorescence labeling was performed with the following primary
antibodies: ankyrin G (sc-28561; rabbit; 1:500; Santa Cruz Biotechnol-
ogy), Kv1.2 (75-008 clone K14/16; mouse; 1:500; NeuroMab),
microtubule-associated protein 2 (CH22103; chicken polyclonal; 1:1000;
Neuromics), and myelin basic protein (ab7349; rat monoclonal; 1:20;
abcam). The incubation time (4°C) for primary antibodies was 3 d. After
incubation with secondary antibodies (1–2 d; 4°C) and rinsing in PBS,
sections were mounted with Vectashield mounting medium.

Confocal microscopy
Confocal images were acquired with a TCS SP5-2 confocal laser-
scanning microscope (Leica Microsystems) equipped with HCX PL APO
63'/numerical aperture 1.3 glycerol objective. Fluorochromes were ex-
cited at 405, 488, 561, 594, and 633 nm for aminoethylcoumarin acetate,
DyLight488, tetramethylrhodamine dextran, Alexa Fluor 594, and Dy-
Light649, respectively. The emission filters for these fluorochromes were
set to (in the same order) 410 – 460, 510 –550, 565–585, 605– 625, and
640 –760 nm. For each optical section the images were collected sequen-
tially for four to five fluorochromes. Stacks of 8-bit grayscale images were
obtained with axial distances of 290 nm between optical sections and a
pixel size of 120.4 nm. To obtain an improved signal-to-noise ratio, each
section image was averaged from five successive scans. After stack acqui-
sition, the Z chromatic shift between color channels was corrected. RGB
stacks, montages of RGB optical sections, and maximum-intensity pro-
jections were assembled into tables by using ImageJ 1.37k plugins and
Photoshop version 8.0.1 (Adobe Systems) software.

Morphometry
Morphometric measurements were made from overlapping image stacks
of MSO principal cells. Using the ImageJ 1.37k paint-brush tool, individ-
ual axons of MSO cells filled with tetrametylrhodamine dextran were
manually labeled by following single axons subsequently through each
optical section of the confocal stack (Werthat et al., 2008; for dendrites,
see Couchman et al., 2010). Afterward, the neighboring axons were dig-
itally deleted. We refer to this method as digital extraction. The same
axon was identified in the neighboring overlapping confocal stacks and
digitally extracted. AISs and nodes of Ranvier were identified on the basis

ankyrin G/Kv1.2 antibody staining. AIS and internode lengths were mea-
sured in three dimensions in confocal stack images using the ImageJ
1.37k Sync Measure 3D tool. AIS and internodal axon diameters were
measured at the positions defined by ankyrin G and Kv1.2 labeling (see
Fig. 2B) in maximum-intensity projections of image stacks based on
tetrametylrhodamine dextran labeling. The mean diameter of the first
internode was averaged from measurements at several (10 –29) different
positions between the outer borders of the juxtaparanodes (see Fig. 2B,
K3 and K6).

Electrophysiology
Experimental procedures were as described in Couchman et al. (2010). In
brief, Mongolian gerbils of either sex of P60 –P80 were anesthetized with
isoflurane. Brains were removed after decapitation, and 110-!m-thick
horizontal brainstem slices were taken with a VT1200S vibratome (Leica)
in dissection solution containing the following (in mM): 50 sucrose, 25
NaCl, 27 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 3 MgCl2, 0.1 CaCl2, 25
glucose, 0.4 ascorbic acid, 3 myo-inositol, and 2 Na-pyruvate, pH 7.4
when bubbled with 95% O2 and 5% CO2. Slices were incubated in re-
cording solution (same as slice solution but with 125 mM NaCl, no su-
crose, and 2 mM CaCl2 and 1 mM MgCl2) at 36°C for 45 min, bubbled
with 5% CO2 and 95% O2.

Incubated slices were placed into a recoding chamber attached to a
BX51WI microscope (Olympus) equipped with a custom-made gradient
contrast illumination and continuously perfused with recording solution
kept at 34 –36°C by a Warner Instruments heating system. MSO neurons
were visualized at 60' magnification with a Retiga 2000 DC camera (Till
Photonics/FEI Munich). Current-clamp whole-cell recordings were per-
formed using an EPC10/2 amplifier (HEKA Elektronik) on visually iden-
tified MSO neurons with electrode resistances of #3 M$. Access
resistance was estimated in voltage-clamp after break in and was bridge
balanced to 100% in current-clamp mode. The internal recording solu-
tion consisted of the following (in mM): 145 K-gluconate, 4.5 KCl, 15
HEPES, 2 Mg-ATP, 2 K-ATP, 0.3 Na2-GTP, 7.5 Na2-phosphocreatine, 5
K-EGTA, pH 7.2. The liquid junction potential was corrected on-line
with an estimated value of 17 mV.

Computational modeling
Based on the morphometric analysis, a multicompartmental model was
created to study the generation of APs in MSO principal cells. The model
consists of one large somatic compartment that combines the somatic
and dendritic membrane surface (Ashida et al., 2007). The model focuses
on the axonal morphology, since APs are generally assumed to be gener-
ated there. The axon model consisted of an unmyelinated AIS followed
by an extensive myelinated part that was periodically interrupted by 21
nodes of Ranvier. Figure 1A shows a schematic drawing of the first seg-
ments of the model up to the fourth node of Ranvier (R4). The AIS was
further subdivided into a tapering part (tAIS) and a constant part (cAIS),
resembling the actual geometry of the AIS. The voltages of the compart-
ments followed a Hodgkin–Huxley-type equation as follows:

Cm

dV

dt
" # (INa $ IKHT $ IKLT $ Ih $ Ilk $ Isyn $ Iaxial $ Iext),

where Iext is the external current, and the ohmic transmembrane currents
are as follows:

Ix(V) " gxax
mbx

n(V # Ex).

Here, Cm is the membrane capacitance, gx is respective peak conduc-
tances, ax and bx are the gating variables, and m and n are the respective
cooperativities. The dynamics of the gating variables are modeled ac-
cording to first-order kinetics, as follows:

da

dt
"

a* # a

%a
and

db

dt
"

b* # b

%b

where a* and b* are the steady-state activation functions, and %a and %b

are the voltage-dependent time constants.
The axial current for the ith compartment is defined as follows:
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Iaxial
i "

Vi+1 # Vi

Raxial
i+1, i $

Vi,1 # Vi

Raxial
i,1, i ,

in which Raxial denotes the axial resistance be-
tween the ith compartment and its respective
neighboring compartments. The axial resis-
tance results from the geometry of the axonal
segment (diameter and length) as well as the
specific axial resistivity of 100 $cm, which is in
the range of usually assumed values (Mainen et
al., 1995; Mainen and Sejnowski, 1996; Shu et
al., 2007).

The specific model for the sodium channel
was taken from Scott et al. (2010) with a rever-
sal potential for sodium of 69 mV and a mod-
ified conductance density in the axon of 4 nS/
!m 2 to fit the firing threshold of our current-
clamp measurements (see Fig. 4). We chose the
somatic sodium conductance density to be 0.2
nS/!m 2, a value 20-fold smaller than that in
the axon and reflecting the low sodium channel
density found in MSO principal cell somata
(Scott et al., 2010). The high-threshold potas-
sium channel was modeled according to Roth-
man and Manis (2003) without a slow
activation variable and only at the soma since it
had only little effect in the axon. The low-
threshold potassium channel (KLT) was
modeled according to (Mathews et al., 2010)
and was present in the soma and all unmyeli-
nated axonal compartments. The potassium
reversal potential was set to +90 mV. The
hyperpolarization-activated cation channel
gives rise to a somatic hyperpolarization (h)-
activated cation current (Ih), which was mod-
eled using the kinetics measured in dorsal MSO
neurons (Baumann et al., 2013), with a reversal
potential of +35 mV. The resting potential of
+68 mV and the somatic input resistance of 5
M$ were set by adjusting the peak conduc-
tances of KLT and h current. The somatic sur-
face was set to 8750 !m 2, such that we get a
somatodendritic capacitance of 70 pF (Rauten-
berg et al., 2009), assuming a specific capaci-
tance of 0.8 !F/cm 2 (Gentet et al., 2000; Shu et
al., 2007). As a consequence, the somatic mem-
brane time constant is 350 !s, which closely
resembles the measured membrane time con-
stants in vitro (Scott et al., 2005; Couchman et
al., 2010). The specific myelin conductance per
lamella was set to 0.1 !F/cm 2 (McIntyre et al.,
2002, 2004). Together with a g-ratio of 0.7 and
an assumed myelin periodicity of 16 nm
(Agrawal et al., 2009), our standard model ex-
hibits nine myelin lamellae. Thus, we obtain a
specific capacitance of the myelin sheath of
0.0111 !F/cm 2, similar to the value of 0.01 !F/
cm 2 used in Kuba et al. (2006) for axons of
nucleus laminaris (NL) neurons. Some com-
putational studies of axons use specific capaci-
tances per lamella that are significantly higher;
however, they compensate for this by a larger number of myelin lamellae.
Using a substantially larger myelin capacitance (e.g., three times or
higher) would cause propagation failures of generated APs in our model,
a result that would contradict the secure propagation of APs known from
MSO principal neurons (Scott et al., 2007). This matching of an experi-
mental finding argues in favor of our parameter choice. The validity of
the parameter choice is further supported by our physiological measure-
ments of firing thresholds for onset-like responses in Figure 4.

A detailed account of the geometrical and electrical features of the
model is given in Tables 1 and 2, respectively.

In response to somatic current injections, the neuron model exhib-
its typical onset behavior (Fig. 1B; i.e., it fires only one AP; Scott et al.,
2005; Couchman et al., 2010) at the onset of the depolarizing pulse.
The AP amplitude at the soma resembles physiologically measured
values of #10 mV (Scott et al., 2005; Couchman et al., 2010), whereas,
at the nodes of Ranvier, the APs exhibit usual amplitude values of
#100 mV.
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Figure 1. Computational model. A, Schematic drawing of the first segments from the soma to R4 of the MSO model neuron. The
AIS is subdivided into two compartments: the tAIS and the cAIS. B, Voltage response in different compartments (top, R5; middle,
soma) to current injections at the soma (bottom). C, D, The input conductances were obtained from noise that is filtered by a
gammatone filter with a center frequency of 500 Hz (gray) and half-wave rectified (C, black). The trace from C is transformed into
conductance inputs by convolution with excitatory (ipsilateral, dark red; contralateral, light red) and inhibitory (ipsilateral, green;
contralateral, light green) synaptic kernels (D; see Materials and Methods). E, Voltage responses of the soma (blue) and R5 (light
gray) of the model when driven with the conductance trains depicted in D. F, The AP initiating segment (IS, black arrow) is derived
from the voltage traces at the individual compartments (color coded segments: blue, soma; pink, tAIS; red, cAIS; green, R1; dark
gray to light gray, R2–R7). Example traces show a cAIS-generated (left) and an R1-generated (right) AP. Dashed traces indicate the
search intervals of duration L that are defined by the voltage peak (dot) of the downstream segment (see Materials and Methods).
The voltage peak that occurs earliest in time defines the SIS.
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Since ongoing synaptic bombardment under in vivo conditions in-
creases the leakiness of the neuron, we decided to study AP generation
using a temporally extended naturalistic stimulus that resembles the pe-
riodicity of a cochlear channel with a specific center frequency. Our
stimuli were generated using bandpass-filtered white noise n(t) (Fig. 1C)
that was linearly filtered (convolved) with a gammatone kernel, as
follows:

f(t) " t4e+t&cos (t'c),

with & ('c) & 24.7(4.37 ' 'c/(2(),1) in kilohertz (Glasberg and
Moore, 1990) and the center frequency 'c/(2() in kilohertz. The filter
output was half-wave rectified and normalized to yield a spike probabil-
ity function with a mean AP rate R (200 Hz) during the stimulus length l
& 300 ms. The resulting input train was then multiplied with a factor S,
which we call the stimulus intensity, and afterward convolved with
double-exponential functions Gexc and Ginh, which we created to resem-
ble electrophysiologically measured synaptic kinetics for excitatory and
inhibitory synaptic activity (Couchman et al., 2010):

Gexc(t) " gexc

(1 # e+t/1.0)1.3 e+t/0.27

max ((1 # e+t/1.0)1.3 e+t/0.27)
and

Ginh(t) " ginh

(1 # e+t/0.4) e+t/1.6

max ((1 # e+t/0.4) e+t/1.6)
.

Here, gexc & 37 nS and ginh & 57 nS are the peak conductances of single
fibers (Couchman et al., 2010), and time t is considered in milliseconds.
Examples for such synaptic conductance trains are shown in Figure 1D.
Unless mentioned otherwise, we used two inhibitory inputs based on the
same stimulus wave form; one advances the excitatory inputs by 0.6 ms
and one lags them by 0.11 ms (see Impact of distal AP initiation on ITD
coding; Leibold, 2010). Apart from the simulations in which the inhibi-
tory inputs are essential (see Figs. 5M, 8), all simulations were performed
with only excitatory inputs activated.

Neuron model with dendrites
To test the robustness of our findings in a model with dendrites, we
performed simulations (see Fig. 8) in a model variant in which two
identical dendrites (five compartments each) were added to the soma.
Excitatory synapses were placed at the dendrites (ipsilateral inputs at the
lateral dendrite, contralateral inputs at the medial dendrite), and inhib-
itory synapses were restricted to the soma (Kapfer et al., 2002). The
parameters of the dendritic model were chosen such that the basic char-
acteristics at the soma (input resistance, resting potential, capacitance,
and EPSP kinetics) matched that of the model with a single somatoden-
dritic compartment and hence the physiological data from Scott et al.
(2005) and Couchman et al. (2010). Most importantly, the length of each
of the dendrites was 200 !m, with a constant diameter of 5 !m. The
somatic surface was reduced to 2467 !m 2, such that the total cell surface
remained at 8750 !m 2, which is equal to the model with only one soma-
todendritic compartment. The geometrical length of the dendritic com-
partments appears slightly longer than that observed in MSO neurons
(Rautenberg et al., 2009), since we did not take into account branching of
dendrites but had to match the overall cell surface for comparability.

In the dendritic compartments, sodium channels were omitted (Scott
et al., 2010), and thus the sodium density of the remaining somatic com-
partment was scaled up such that the total sodium conductance matched
that of the simpler model with only one somatodendritic compartment.
The conductance of the low-threshold potassium channels decayed ex-
ponentially along the dendrites with a length constant of 74 !m
(Mathews et al., 2010). The peak conductance at the somatic compart-
ment was thereby identical to that of the simpler model. The conduc-
tance of the h current was chosen to follow the same gradient along the
dendrite to keep the local balance of the two channels. Finally, the input
resistance and resting potential of the model with dendrites were
matched to those of the simpler model by adjusting the peak conduc-
tances of the h current and the passive leak current.

Analysis of simulations
In our simulations, APs during ongoing stimulation were often not detect-
able in the soma (Fig. 1E). However, at more distal locations in the axon, the
amplitude and kinetic differences of subthreshold responses and APs are
much larger, and, thus, at the more distal axonal compartments these two
cases are very easy to separate by a simple amplitude threshold.

Initiating segment. Since the MSO model is described by a system of
coupled differential equations, the generation of an AP necessarily re-
quires the interplay of all compartments. The question of where an AP is
generated thus can only be answered by a phenomenological criterion.
This phenomenological AP-initiating segment was identified as follows
(Fig. 1F ). First, a stimulus evoked AP was defined by a voltage threshold
criterion in R7 at which AP and no AP events are clearly separable.
Second, we inspected the voltage trace at the axonal nodes of Ranvier and
the AIS going from distal to proximal, and identified the segment-
specific AP times via the voltage peaks (above +50 mV) that occurred
within a certain time interval of duration L around the voltage peak in the
(previous) downstream node. The duration L of this time interval is
determined by L & 5.33 ), where ) is the impulse conduction time from
node to node for a strong current stimulus delivered at rest, which elicits
a clear AIS AP. The window is asymmetrically aligned to the previous
voltage peak such that the preceding part is three times longer than the
part following the voltage peak. The factor 5.33 allows for a slower AP
propagation of the AIS and near-threshold stimuli. Within the set of all
detected voltage peaks, the earliest in time defines the AP initiation seg-
ment. This algorithm has been tested against a variety of simple threshold
and phase space criteria, and has proven to give more reliable results for
different axonal morphologies and different input parameters, even for
extremely fast voltage deflections.

In simulations in which we tested higher somatic input resistances (see
Fig. 5L), the somatic AP was strongly influencing the voltage trace in the
AIS, which made it difficult to identify a clear AIS voltage peak. We
therefore identified the AIS AP as the first drop of the voltage derivative
below 50 V/s, identifying a shoulder in the voltage deflection.

In few cases (see Fig. 6) during orthodromic propagation does the AP
amplitude initially decrease before increasing again in the more distal

Table 1. Geometrical parameters of the model

Parameters Values

Soma/somatodendritic compartment
Area 8750 !m 2

Axon initial segment (tapering part)
Length 10 !m
Large diameter 1.64 !m
Small diameter 0.66 !m

Axon initial segment (constant part)
Length 10 !m
Diameter 0.66 !m

Internodes
Length 100 !m
Inner diameter 0.66 !m
Outer diameter 0.948 !m (corresponding to a g-ratio of 0.7),
Myelin lamellae 9 (corresponding to a myelin periodicity of 16 nm)*

Node(s) of ranvier
Length 1 !m
Diameter 0.66 !m

*From Agrawal et al. (2009).

Table 2. Maximum conductances of voltage-gated channels

Channels Soma tAIS cAIS Internodes Nodes

gNa 0.2 4 4 0 4
gKHT 0.1 0 0 0 0
gKLT 1.55 1.55 1.55 0 1.55
gh 0.02 0.02 0.02 0 0
glk 0.0005 0.0005 0.0005 0.0002 0.05

Data are in nS/!m 2.
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axonal segments. Such APs were also labeled as being distally initiated,
even though they would have been an AIS AP according to the time-
window criterion.

Relative slope during ongoing conductance trains. To identify the input
features that are most predictive for spiking, we placed particular empha-
sis on current amplitude and the relative current slope (derivative di-
vided by amplitude). We chose relative slope because the derivative of
any oscillating function linearly scales with the amplitude of the input,
and, thus, without such normalization, dependencies on slopes are con-
founded by amplitude effects. To determine the relative derivative of the
input current in Figure 7, G and H, we normalized by the amplitude of a
high-pass-filtered version (fourth-order Butterworth filter with a cutoff
of one-third of the stimulation frequency) of the input current rather
than by the actual amplitude itself. This was necessary to obtain the actual
local relative slope for each cycle and not a distorted value caused by the
temporal summation of the input currents of high-frequency stimuli.

ITD coding
To assess how well the responses of the model neuron resolve an ITD %,
we computed the Fisher information I(%), assuming a Gaussian distribu-
tion of AP counts. From at least 90 repetitions of a 300 ms stimulus, we
obtained the mean AP count (tuning curve) !(%) and its variance v(%),
and calculated the Fisher information as follows:

I(%) "
!-(%)2

v(%)
$

1

2 !v-(%)

v(%) " 2

Results
Morphometry of the AIS and proximal axon
Using a combination of retrograde tracing of MSO neurons and
immunohistochemical labeling of ankyrin G and Kv1.2 channels,
a detailed morphometric analysis of the AIS and proximal axon of

Figure 2. Morphometry of the AIS and first internodal segments in MSO neurons. A, Retrogradely labeled MSO neuron after digital extraction from the surrounding area. Insets A! and A" show
magnifications of the AIS and first node of Ranvier, respectively. B, Schematic of the proximal axon segment comprising the AIS, the first internode, and the first node of Ranvier, illustrating the
positions where measurements were made. Red and green dots indicate the distribution of ankyrin G and Kv1.2 immunolabeling in the AIS and axon. A1–A4 and K1–K8 indicate the borders of
ankyrin G- and Kv1.2-positive domains, respectively. JPN, Juxtaparanodes. C, Mean diameter of the AIS at various positions plotted as a function of the mean distance from the soma. Diameter and
distance measurements were made at the positions indicated in B. Error bars show the SEM.
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12 MSO neurons was performed (Fig. 2A). Our immunostain-
ings revealed that the AIS consisted of a 17.3 % 1.1-!m-long
ankyrin G-positive domain emerging directly from the soma and
a 11.2 % 0.6-!m-long Kv1.2-positive domain starting at 7.6 %
0.7 !m distal from the soma in the labeled axons (Fig. 2A,B).
Diameter measurements indicated that the AIS consisted of the
tAIS and the cAIS. On average, the diameter of the AIS decreased
from 1.6 % 0.1 !m at the soma (position A1) to 0.6 % 0.1 !m at
the position K2, as defined in Figure 2, B and C. The length of the
AIS (measured from A1 to K2; Fig. 2B) ranged from 14.0 to 24.0
!m (18.8 % 1.0 !m). Adjacent to the AIS was a 2.3 % 0.2-!m-
long segment devoid of ankyrin G and Kv1.2 labeling, which
we interpret as the paranodal (or para-AIS) region, where
myelin is anchored to the axon (Duflocq et al., 2011; Fig. 2A-,
arrow). The paranodal region was followed by a 2.9 % 0.5-!m-
long Kv1.2-positive domain representing the juxtaparanode
(or juxtapara-AIS). The first node of Ranvier was identified
based on its typical arrangement of two juxtaparanodal Kv1.2-
positive domains that were separated from the nodal ankyrin
G domain through unlabeled paranodes (Fig. 2A-). The length
of the first internode ranged from #50 to #150 !m (100.4 %
9.1 !m), and its mean diameter (Fig. 2 B, C, measured at sev-
eral positions between the two juxtaparanodal borders K3
and K6) was 0.7 % 0.1 !m. These axonal parameters were used
to constrain a computational model of the MSO neuron
(Table 1).

Input– output functions
We first determined how the AP frequency of our computational
neuron model is influenced by the parameters that we assumed to
be most crucial for axonal excitability (AP threshold), i.e., the
morphological parameters internode length, axonal diameter,
proximal diameter, and tAIS length; and the electrical properties
density of sodium channels in the unmyelinated axonal segments
and somatic input resistance (Fig. 3). We tested how much the
influence of these excitability parameters on AP probability de-
pended on the center frequency of the bandpass stimuli (see Ma-
terials and Methods) and found that for center frequencies of
*500 Hz all of the axonal parameters had little influence on
spiking probability (Fig. 3A–D, example of internode length). For
higher stimulus frequencies, the axonal parameters had distinct
influences on the input– output functions. As we increased the
internode length, the spiking probability generally decreased
(Fig. 3A–D), which can be attributed to a reduction of the axial
current flow. Geometrical alterations that increase the axonal
sodium conductance (while keeping the channel density con-
stant) mostly result in an increase of the firing rate. This increase
could be observed in simulations with altered axonal diameter
[keeping a constant ratio of 0.7 between the inner (axon) and
outer (myelin) diameter of the internode]. The firing rate also
increased with axonal diameter (Fig. 3E), reflecting the corre-
sponding increase of the number of sodium channels. Also an
increase of the length of the tAIS led to a higher AIS sodium
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conductance and an increasing firing probability (Fig. 3F). In line
with these findings, a direct increase in the sodium conductance
in unmyelinated axonal compartments (Fig. 3G,H) also facili-
tated AP probabilities. However, a different effect was observed
when the proximal diameter of the tAIS was decreased, which
also decreased the amount of sodium conductance but, interest-
ingly, increased AP frequency (Fig. 3I). This indicates that in
addition to the total local sodium conductance excitability of the
axon also profits from an increased electrotonic isolation from
the leak currents in the soma. This interpretation was corrobo-
rated by the following two additional sets of simulations: (1) an
increase of the tAIS input resistance by removing all tAIS sub-
threshold conductances from the equation had almost no effect
on firing probability (Fig. 3I, inset); and (2) increasing the so-
matic input resistance (by multiplicative scaling of the peak con-
ductances of KLT channel and h current, keeping a constant
resting potential) strongly enhanced AP frequency (Fig. 3J). The
MSO soma thus acts as a strong current sink for the AIS, and,
hence, the axon excitability crucially depends on rather small
changes of the somatic current reaching the axon.

Frequency-dependent threshold
Since the firing probabilities strongly depended on the center
frequency of the inputs (Fig. 3), we performed a more systematic
analysis of the frequency dependence of excitability of our com-
putational neuron model and corroborated these data by in vitro
measurements of MSO cells. The frequency dependence of MSO
firing probability in the model was determined for a large range of
bandpass stimuli with center frequencies ranging from 100 to

1250 Hz and varying stimulation intensities (Fig. 4A). This allows
the assessment of the firing thresholds of MSO neurons with
respect to both the shape (frequency content) and the amplitude
of the input currents. The lowest current thresholds were ob-
served at #500 Hz. For higher as well as lower input frequencies,
more excitatory drive was necessary to reach a certain firing
probability.

To better understand the dependence of AP initiation on the
input kinetics, we simulated two onset stimulation paradigms
using brief current stimuli applied at rest. First, we applied a ramp
stimulus for which we could independently vary amplitude and
ramp duration (Fig. 4B1). The ramp duration was assumed to
serve as a proxy for stimulus shape (frequency) during the ongo-
ing bandpass stimulation. The firing probabilities (Fig. 4B2) ob-
tained with these stimuli very well explained the behavior
observed for low-frequency bandpass inputs, which effectively
implements a slope threshold (Golding and Oertel, 2012); that is,
the neuron fires in response to a specific speed of membrane
depolarization that is rather independent of amplitude. Such be-
havior has been previously described in octopus cells (Ferragamo
and Oertel, 2002), in the vestibular pathway (Beraneck et al.,
2007) and the MSO (Jercog et al., 2010), and is generally attrib-
uted to the fast kinetics of the KLT channels, which are further
opening only for slow stimuli and cannot generate such addi-
tional leaks for fast-rising stimuli. The high-frequency behavior
of our threshold profile, however, could not be modeled using the
simple ramp stimuli. We therefore also applied half-wave-
rectified sine waves (Fig. 4C1). Here again, both the low- and the
high-frequency increase of threshold amplitudes was observed
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(Fig. 4C2). Thus, the threshold amplitude
for high frequencies crucially depends on
the duration of the stimulus. This indi-
cated that the high-frequency part of the
threshold curve reflects the limit imposed
by the charging of the membrane capaci-
tor for regimes in which the membrane
voltage rises too quickly to open the low-
threshold potassium channels (Jercog et
al., 2010). These modeling results were
verified physiologically using whole-cell
current-clamp recordings using the same
stimuli as in the model (see Materials and
Methods). From the recorded data ob-
tained with the ramp stimuli, the AP
probability was fitted by a sigmoid for
each ramp duration as a function of the
amplitude using at least 10 consecutive
trials. The amplitude at which the fit was
at 50% AP probability was defined as the
threshold. The physiologically obtained
threshold curves qualitatively matched
the modeling results for the ramp-current stimuli (Fig. 4B2, su-
perimposed black trace, D) with less firing for slow-input ramps
and secure responses for faster ramps. For the half-wave-rectified
sine stimuli, threshold amplitudes were obtained by manual test-
ing (Fig. 4C2, superimposed black trace, E) and also qualitatively
matched the simulations with the lowest firing threshold for me-
dium frequencies and less firing for low and high frequencies.
From these simulations and experiments, we concluded that the
threshold behavior observed during ongoing stimulation is func-
tionally very similar to that in onset-like stimulus paradigms with
single current pulses.

Site of AP initiation
Although AP initiation might be functionally similar under onset
and ongoing stimulus conditions, the underlying mechanisms
may be different, since, owing to the temporal summation of the
inputs, the ongoing stimulation sets the cell membrane into a
state that is very different from resting conditions (e.g., because of
steady-state activation of channels and changes in input resis-
tance). We therefore investigated AP initiation during ongoing
stimulation in greater detail. In particular, we were interested in
the contributions of the different cellular (somatic and axonal)
compartments to the generation of APs.

A first assessment of the local excitability of the model neuron
was derived from local input resistance measurements, using
small hyperpolarizing current pulses (amplitude, +100 pA for
300 ms) that were consecutively injected into the soma, the cAIS,
and the nodes of Ranvier of our model at rest (Fig. 5A, black
trace). Here, the input resistance was derived from the peak of the
voltage responses and not the steady-state component to obtain a
measure for the instantaneous susceptibility of the local mem-
brane. In our model, the peak conductance parameters were cho-
sen such that the somatic input resistance was fixed at 5 M$
(Scott et al., 2005; Couchman et al., 2010). With the standard
parameter settings (Tables 1 and 2), the AIS had two (tAIS, 9.7
M$) to six times (cAIS, 28.5 M$) the input resistance of the
soma. Further distally in the axon, the R1 showed a 50-fold in-
crease of input resistance (256.5 M$). We next applied a current
pulse of 1 nA at the soma while at the same time extracting the
peak of the axial current in the respective axonal segments (Fig.
5B, black trace). The portion of this current that spread from the

soma into the AIS was only 0.4% (4 pA), with further attenuation
at the R1 (0.3 pA). Multiplying the axial current by the local input
resistance yields a measure that can be interpreted as the axonally
mediated voltage amplitude (Vax). This voltage amplitude was
further used as an estimate for the local excitability. The axially
mediated voltage amplitude was maximal at the second and third
nodes of Ranvier (Fig. 5C, black trace). Thus, in contrast to the
classical model of AP initiation at the AIS, the second and third
nodes appear to be more excitable, indicating that the more distal
compartments play an important role in axon excitability in leaky
neurons.

A detailed analysis of AP times in the individual compart-
ments revealed that the site of AP initiation was indeed not re-
stricted to the AIS (Fig. 5D–H). Although many APs were
initiated in the AIS (Fig. 5F, I–K), 5– 60% (depending on input
conditions) of the APs first crossed the detection threshold (see
Materials and Methods) at the first (Fig. 5G) or even the second
(Fig. 5H) node of Ranvier, while the AIS showed a response
similar to the subthreshold case (Fig. 5E). The amplitudes of the
somatic and AIS APs were relatively small, independent of where
they were generated, and underwent subsequent amplification
by the nodes of Ranvier as they orthodromically propagated
along the axon (Fig. 5F–H).

To further elucidate the mechanisms of this distal AP initia-
tion, we quantified its occurrence under our naturalistic ongoing
input paradigm for different morphological parameters. For
purely excitatory inputs, the fraction of distally initiated APs over
AIS APs increased with stimulus frequency (Fig. 5I–L). For
shorter internodes (Fig. 5I) and thicker axonal diameter (Fig. 5J),
more distal APs were observed. This is because the resulting in-
creased axial conductance allows the stimulus-evoked potential
to propagate further along the axon and is also illustrated by the
peak of the Vax located at more distal regions of the axon in both
conditions (Fig. 5C, cyan and magenta traces). Consistently, a
higher nodal sodium conductance increased the fraction of dis-
tally initiated APs as well, because APs could be more easily ini-
tiated at the nodes (Fig. 5K).

A major factor influencing distal AP initiation for inputs at all
center frequencies is the somatic input resistance. The prevalence
of distal AP initiation is strongly reduced with the increase of
input resistance of the soma (Fig. 5L). Hence, distal spiking
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should be particularly prevalent in leaky neurons that receive
fast-fluctuating inputs such as in the MSO.

Since MSO neurons not only receive excitatory inputs but also
strong phase-locked inhibitory inputs via the medial and lateral
trapezoid body, we also performed simulations with excitatory
and inhibitory inputs. In these simulations, the frequency depen-
dence of the site of AP initiation is less clear (Fig. 5M). On the one
hand, the fraction of distally initiated APs also increased with
frequency for center frequencies of !500 Hz. On the other hand,

for a low center frequency of 250 Hz, in-
hibition also generated large amounts of
distal AP initiation. This already indicates
that distal AP initiation may result from a
variety of different mechanisms, particu-
larly also those that add to the somatic
current sink.

Distal AP initiation for
high-frequency inputs
The steady-state approach to axonal excit-
ability (Fig. 5A–C) disregards contribu-
tions from the dynamics of the ion
channels. To understand whether such
dynamic properties of the neuron model
also contribute to distal AP initiation, we
used strictly periodic synaptic (conduc-
tance) input trains of different frequen-
cies (Fig. 6A). Temporal summation of
the synaptic inputs generated a conduc-
tance plateau that increased with fre-
quency as revealed by low-pass filtering
(Fig. 6A, second-order Butterworth low-
pass filter with a cutoff frequency of 100
Hz, red traces). We then applied these av-
erage conductance values as a constant
conductance to the cell and measured the
corresponding steady-state sodium chan-
nel inactivation at the soma, the AIS, and
the first three nodes of Ranvier (Fig. 6B).
This revealed that a larger average con-
ductance generally caused more sodium
channel inactivation. Moreover, the con-
ductance level was highest at the soma and
decreases along the axon. Thus, a regime
of a high-frequency input generates a per-
sistent depolarization of the membrane
with a larger fraction of inactivated so-
dium channels at the proximal axonal
membranes than at the distal segments
(Fig. 6C). As a result, this leads to a larger
fraction of distal AP initiation with in-
creased input frequency (Fig. 6D).

Influence of distal AP initiation on the
firing threshold
To understand the functional relevance of
distal AP initiation, we next investigated
which input properties are particularly
amenable to evoke distal APs during on-
going stimulation (Fig. 2B–D). We there-
fore repeatedly stimulated the neuron
model with identical input trains for con-
secutively increasing mean synaptic con-

ductances. Figure 7A–F shows an exemplary stimulus cycle for
which, with increasing conductance, the voltage profile along the
axon transitions from a completely subthreshold response (Fig.
7B) over an AP being initiated at the nodes of Ranvier (Fig. 7C,D)
to an AP generated at the AIS (Fig. 7E,F). From these examples,
it seemed that distal AP initiation is particularly prevalent at the
AP threshold.

To further evaluate the threshold property of distal AP initia-
tion, we ran the simulations using excitatory bandpass inputs of
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different center frequencies and amplitudes. For a low-frequency
input with a center frequency of 250 Hz, the rate of distally initi-
ated APs was highest right at the border between no APs and AIS
APs (Fig. 7G1,G2). The orientation of this border was diagonal in
amplitude–frequency space and qualitatively matched the AP
boundaries from Figure 4 (Fig. 7G1). For 1000 Hz, the distribu-
tion of AIS APs and distally initiated APs is different (Fig.
7H1,H2). There, the boundary between AP firing and no firing
was approximately vertical, indicating that the cell effectively im-
plemented an amplitude threshold being insensitive to the slope
of the input current (Fig. 7H1). Moreover, for 1000 Hz center
frequency, distal AP initiation could no longer be seen as a threshold
effect. In fact, after an initial dip for low amplitudes, the overall
fraction of distally initiated spikes rose with input amplitude (Fig.
7H), which is in line with the dependence of the fraction of distally
initiated APs on sodium inactivation from Figure 6.

In conclusion, distal AP initiation seems to have two effects.
(1) If the sodium channels were only slightly inactivated, the cell
is able to fire in response to smaller stimulus amplitudes than
without distal initiation of APs. (2) If the sodium channels are
largely inactivated (as in the case of temporally summed high-
frequency input), distal AP initiation allows the cell to keep up
high firing rates for high-frequency stimuli with large stimulus
amplitudes.

Impact of distal AP initiation on ITD coding
The above findings have important consequences for the firing
behavior of MSO cells in vivo. We simulated ITD tuning functions
using our ongoing input paradigm with synaptic conductances de-
rived from bandpass-filtered noise. Mimicking phase-locked au-

ditory activity from the two ears, we split up the synaptic inputs
into two channels with distinct temporal disparity for the puta-
tive ipsilateral and contralateral excitatory synapses, which, dis-
regarding possible additional cochlear and transmission delays,
we interpret as an ITD. We assumed that the cell also received
phase-locked inhibitory input from both ears (from the medial
and lateral nuclei of the trapezoid body) and used the inhibitory
synapses to generate a maximum shift in best ITD (Brand et al.,
2002; Leibold and van Hemmen, 2005; Pecka et al., 2008; Leibold,
2010). For bandpass input with a center frequency of 250 and 500
Hz, the contralateral inhibition was advanced compared with
excitation by 0.8 ms, whereas the ipsilateral inhibition was de-
layed with respect to excitation by 0.11 ms. For these low center
frequencies of the input, the model generated a rate code of ITD
(Fig. 8A1,A2) in which firing at low rates was relatively more
supported by distally initiated APs (Fig. 8B1,B2). This becomes
obvious if one computes Fisher information as a means to assess
the ITD resolution of the neuronal responses (Fig. 8C). Fisher
information (resolution) is particularly high at the slopes of the
tuning curves. In line with the high fractions of distally initiated
APs at low firing rates (Fig. 8B), distally initiated APs also con-
tribute a particularly large amount of information at these low
rate regimes. Although, for the present definition of ITDs, these
low rate parts are largely outside the physiological range (Fig. 8,
gray bars), they might still become physiologically relevant if ad-
ditional bilaterally asymmetric cochlear, axonal, or cellular delays
exist that shift the tuning curves in parallel to the ITD axis.

To achieve the maximal peak shift for bandpass input with a
center frequency of 1000 Hz, we set the contralateral inhibition to
lead the excitation by 0.5 ms. The situation was very similar to
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those for the two lower center frequencies, only that the best ITD,
in contrast to in vivo findings (Brand et al., 2002), was close to the
midline (Fig. 8A3), and the code was mediated by distal AP initi-
ation to an even larger extent (Fig. 8B3). Also Fisher information
was particularly high for distally initiated APs, even within the
physiological range without any additional asymmetric delays
(Fig. 8C3). Thus, the realistically slow decaying inhibition (expo-
nential decay with a time constant of 1.6 ms; Magnusson et al.,
2005; Couchman et al., 2010) could well account for the observed
peak shifts of low-frequency cells in gerbils, whereas it (at least
alone) does not do so for frequencies of #1 kHz and beyond
(Pecka et al., 2008).

As a control, we ran the simulations without inhibitory inputs
(Fig. 8A4,B4,C4) which resulted in a best delay of zero. In this case,
distally initiated APs were less prevalent. We thus conclude that
distal AP initiation is an important mode of AP generation, par-
ticularly in the high-frequency channels but also in low-
frequency channels with phase-locked inhibition.

In a final set of simulations, we tested how robust our findings
are in a model that includes dendrites (Fig. 8A5,B5,C5). MSO
neurons typically have two dendrites, a lateral one receives
ipsilateral excitatory input fibers and a medial one targeted by
contralateral excitatory input fibers. We adjusted the model
such that all basic physiological properties matched those of
the simpler model and, hence, the published electrophysiolog-
ical data (Scott et al., 2005; Couchman et al., 2010). The tuning
curves and distal AP fractions from this extended model were
almost identical to that of the simpler model. We thus con-

clude that the additional dendritic cur-
rent sinks do not influence the
excitability of the neuron beyond their
contribution to the basic physiological
parameters (input resistance, resting
potential, and EPSP shape).

Discussion
In this study, we used naturalistic synaptic
conductance trains to investigate AP ini-
tiation in a model of binaural coincidence
detector neurons in the MSO, featuring a
detailed axonal morphology. Modeling as
well as electrophysiology showed that
MSO cells incorporate temporal filtering
properties such that they were easiest to
excite for an input frequency of #500 Hz.
In contrast to current theories, the site of
AP generation was not restricted to the
AIS but varied depending on the spectral
composition of the input. Further distally
initiated APs (at the nodes of Ranvier) oc-
curred close to the AP threshold in low-
frequency channels, particularly in the
presence of inhibition, as well as for strong
stimulation in the high-frequency chan-
nels. Mechanistically, distal AP initiation
at low frequencies was mediated by a
strong somatic current sink, whereas for
high frequencies it resulted from a stron-
ger sodium channel inactivation in the
AIS than in the distal axon. Importantly,
in both cases, the ability of the neuron to
generate APs in more distal axonal seg-
ments increased the dynamic range of fir-
ing rates. Distal AP initiation thereby

facilitates the resolution of the rate code of ITDs in the cell (Skot-
tun, 1998).

Our model simulations show that AP initiation cannot be
viewed to generally occur at one specific site, but rather the prox-
imal axonal segments act as a whole during this process. This is
because the axial transport of charge particularly strongly deter-
mines the excitability of neighboring axonal segments (Baranaus-
kas et al., 2013). To support the idea of distributed AP generation
on a phenomenological level, we compared the trajectories of AIS
APs and distally initiated APs plotting AIS voltage against voltage
at the first node of Ranvier (Fig. 9). Although, on average, we see
a clear distinction between the trajectories of the AIS and distally
initiated APs, for higher stimulus frequencies the two sorts of
trajectories form a continuum. This means that for some APs it is
valid to assign a single site of initiation, but for others (Fig. 9, close
to the border between red and green traces) it is rather difficult. A
further argument in favor of spatially distributed AP generation is
that the distribution of AP initiation sites in our model also
depends on stimulus frequency, with high frequencies giving
rise to more distal spiking (Fig. 5I ). This finding is consistent
with previous reports about layer 5 pyramidal neurons reveal-
ing that the first node of Ranvier facilitates high-frequency
(!100 Hz) burst firing and reduces the somatic AP threshold
by 5 mV (Kole, 2011). In summary, these results suggest that
for high-frequency inputs, AP initiation of MSO cells indeed
results from a spatially distributed and collective mechanism,
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Figure 9. Is there a discrete site of AP initiation? AIS voltage vs voltage at the first node of Ranvier during AP firing for inputs
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whereas for low-frequency inputs APs are rather generated at
a distinct site.

Our computational model explains the small AP amplitudes
observed in vivo (Yin and Chan, 1990) and in vitro (Scott et al.,
2007; Couchman et al., 2010). However, the specific choice of
parameters is crucial to further justify the model results. Whereas
most of the parameters are closely tied to the existing MSO liter-
ature and the new morphometric data presented in this article,
specifically the sodium conductances have not yet been deter-
mined experimentally in MSO axons. We have set the axonal
sodium conductance density such that the firing threshold (70 –
110 nS) for a single excitatory synaptic conductance stimulus fits
our current-clamp measurements (Couchman et al., 2010).
Moreover, the axonal sodium conductance density of 4 nS/!m 2

used in the model lies within the range of values reported for
cortical pyramidal neuron AISs (2.5 nS/!m 2, Kole et al., 2008)
and has been used in several other studies (7.5 nS/!m 2, Shu et al.,
2007; 4.5 nS/!m 2, Spirou et al., 2008). In our standard parameter
set, we decided to use the same sodium channel density for all
unmyelinated axonal compartments (the AIS and the nodes of
Ranvier). This simplification rather leads to an underestimation
of distal AP initiation (Fig. 5K). Assuming a higher sodium chan-
nel density in the nodes of Ranvier than in the axon initial seg-
ment, as shown by immunogold electron microscopy in cortical
pyramidal cells (Lorincz and Nusser, 2010), relatively decreases
the excitability of the AIS, thereby increasing the fraction of dis-
tally initiated APs.

In the analog ITD circuitry of birds, axonal processing has also
been shown to be functionally important (Kuba et al., 2006;
Ashida et al., 2007). In NL cells receiving phase-locked inputs up
to 3 kHz, the AP initiation zone (clustering of sodium channels)
of the AIS is located substantially more distal compared with the
low-frequency neurons (Kuba et al., 2006). This finding is in line
with the present observation of AP initiation moving to more
distal parts of the axon for high-frequency stimuli. Compared
with MSO principal neurons, which we suggest to have a dynam-
ically changing site of AP initiation, in NL neurons the site of AP
initiation seems rather hardwired, which is also supported by a
partial myelination of the initial segment (Carr and Boudreau,
1993).

The mechanisms underlying ITD tuning of MSO principal
neurons are highly debated (Grothe et al., 2010; Roberts et al.,
2013; van der Heijden et al., 2013). Traditionally, ITD processing
was thought to rely exclusively on the coincidence detection of
excitatory inputs and neuronal ITD representation on the neu-
rons that respond most at their best ITD. This best ITD is deter-
mined by the difference of internal delay lines between the ears
and the coincidence detector neuron (Jeffress, 1948). While in the
bird systems this concept still seems to constitute the core mech-
anism underlying ITD maps (Ashida and Carr, 2011), the situa-
tion in mammals is less clear. In brainstem and midbrain, the best
ITDs change with stimulus frequency inconsistently with the as-
sumption of a solely temporal conduction delay (i.e., they exhibit
a so-called characteristic phase; Yin and Chan 1990, Agapiou and
McAlpine, 2008, Siveke et al., 2012). Furthermore, blockade of
glycinergic transmission in vivo shifted the best ITD of MSO
neurons toward zero (Brand et al., 2002), hence arguing for a
distinct effect of inhibitory inputs on the timing and shape of the
excitatory potentials (Brand et al., 2002; Pecka et al., 2008) and
providing a putative explanation for the frequency-dependent
best ITDs (Leibold, 2010). Although it has been assumed that,
given its slow kinetics, inhibition alone cannot account for a sub-
stantial shift of the best ITD (Jercog et al., 2010; Day and Semple,

2011; Roberts et al., 2013), our present modeling results show
that inhibition has the potential to generate shifts as large as the
physiological ITD range of gerbils (#130 !s), at least for frequen-
cies "500 Hz. This, of course, does not exclude further mecha-
nisms like cochlear or axonal delays (Schroeder, 1977; Shamma et
al., 1989; Joris et al., 2006; Day and Semple, 2011) and morpho-
logical (Zhou et al., 2005; but see Rautenberg et al., 2009) or
physiological (Jercog et al., 2010; but see Roberts et al., 2013)
asymmetries. A further argument against a contribution of fast
inhibition to the shift of best ITDs stems from recent in vivo
whole-cell recordings (van der Heijden et al., 2013), which state a
lack of obvious hyperpolarizing IPSPs. Because of the slow inhib-
itory time constant, our simulations show that during an ongoing
stimulus IPSPs indeed do not show up as isolated potentials (Fig.
1D) but nevertheless influence the phase of the monaurally in-
duced oscillations sufficiently to induce a shift of best ITDs (even
for 1 kHz, although not much).

Beyond the auditory brainstem, fast and leaky cell membranes
have also been reported in cortical pyramidal cells during massive
synaptic bombardment such as in high-conductance states [Paré
et al., 1998 (who reported input resistances as low as 4 M$)]
and sharp wave ripple events (Bähner et al., 2011). Under both
conditions, the cells show extensive spiking activity in vivo
(Csicsvari et al., 1999; Steriade, 2001). It is thus tempting to
speculate that distal AP initiation contributes to firing as well
by allowing the somatic current sink to decouple from the
axonal AP-generating zones in a context-dependent manner
(Vladimirov et al., 2013).
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Coincidence detection of afferent synaptic inputs is a
hallmark of neuronal processing. In many brain areas,
such as the cerebral cortex and cerebellum, neurons

integrate hundreds of synaptic inputs and perform coincidence
detection with millisecond resolution. In contrast, neurons in the
mammalian brainstem nucleus of the medial superior olive
(MSO) integrate relatively few, clearly defined synaptic inputs1,
but must perform coincidence detection with orders of magnitude
higher precision. They detect microsecond differences in the
arrival time of low-frequency sounds between the ears (interaural
time differences or ITDs)2 and generate a rate code that
represents the location of sounds in the horizontal plane3.

MSO neurons generally respond best to contralateral-leading
ITDs4–8. To allow best coincidence detection of such temporally
staggered inputs, the circuit must generate internal delays to
compensate for the external delay created by the head. A longer
excitatory path length from the contralateral side can explain this
phenomenon at the population level, but there is increasing
evidence that axonal length disparity9 alone is insufficient to
explain the diversity of preferred ITDs observed in vivo10–13.
Thus, it has become a crucial question how individual neurons
within the population are tuned to their specific ITDs7,14–18, an
answer to which is necessary for a complete understanding of
low-frequency sound localization in mammals.

Previous studies found that blocking glycinergic inhibition
in vivo shifted the peak of ITD functions, providing direct
evidence that inhibition is important for ITD tuning6,7.
As glycinergic inputs to the MSO are extremely fast and
precise1,6,19–23, a computational model was developed in which
the relative arrival time of excitatory and inhibitory inputs tunes
neurons to their preferred ITDs by modulating the peak timing of
the summated input from each side7,17,24,25. However, this model
was not rigorously tested under naturally occurring conditions
and has been recently challenged8,26. In one study, the difference
in arrival time between inhibition and excitation was measured
in vitro. Inhibition was indeed precise and actually preceded
excitation, but the average timing condition did not tune ITD
functions, and it was concluded that inhibition was not important
for ITD tuning26. In a second study, ITD functions were
determined by juxtacellular and whole-cell recordings in vivo,
but preceding inhibition as measured in vitro could not be
detected8. Thus, there are now discrepancies between the existing
data6–8,24–26 and confusion regarding the relevance of inhibition
for ITD tuning3,27–29.

To understand these discrepancies, we systematically re-
evaluate the role of precise inhibition in synaptic integration
and coincidence detection under well-defined, physiologically
relevant conditions using acute brain slices from adult Mongolian
gerbils. We find that inhibition indeed tunes coincidence
detection in a manner consistent with the original model6,7,24,28,
but much more dynamically than originally proposed. Moreover,
we provide evidence that the specific involvement of inhibition in
ITD tuning in vivo may not be discernable with currently
available techniques. Thus, we expand the framework for the role
of inhibition in ITD tuning and provide explanations for the
discrepancies in the literature.

Results
Inhibition modulates the peak timing of excitation. Coin-
cidence detection neurons in the MSO are strikingly bipolar in
shape (Fig. 1a)30 and receive bilateral excitatory and inhibitory
synaptic inputs (Fig. 1b)31. Because synaptic kinetics and input
resistance change markedly during development20,21,32, we
restricted our primary experiments exclusively to mature gerbils
of ages postnatal day (P) 60–90. As a basis for our quantitative

re-evaluation of cellular ITD sensitivity, we first extracted the
time course of excitatory and inhibitory synaptic conductances
(EPSGs and IPSGs, respectively) in a separate set of
voltage-clamp experiments (Supplementary Fig. 1). Individual
conductance waveforms were then selected and injected as
templates into the soma using conductance-clamp to simulate
excitatory and inhibitory postsynaptic potentials (EPSPs
and IPSPs, respectively), which produced events that largely
resembled synaptically evoked responses (Supplementary Fig. 2).
This allowed us to investigate precise temporal interactions
between excitation and inhibition based on synaptic responses
measured in mature tissue.

A fundamental principle of the original inhibitory model of
ITD tuning proposes that inhibition modulates the timing of best
coincidence by enforcing a shift in the peak timing of excitation
on each side6,7,24,28. As there is strong evidence that the arrival
times of excitatory and inhibitory inputs to the MSO is exquisitely
precise19,33,34, we determined whether a precisely timed IPSP can
shift the peak timing of an EPSP, here arbitrarily designated
to the contralateral side (Fig. 1). Inhibitory inputs are
predominantly restricted to the soma35–37, and thus simulating
IPSPs with conductance-clamp is suitable to mimic realistic
IPSPs. However, because excitatory inputs predominantly
target the dendrites35 we compared the influence of a single
conductance-clamp-simulated (G-inject) IPSP on the peak
timing of a synaptically evoked (F-stim) EPSP (Fig. 1c) and a
conductance-clamp-simulated EPSP (Fig. 1d) in the same
recording. We used an IPSG template with a decay time
constant (tIPSG) that represented our population average
(1.5 ms) and an EPSG template with a decay time constant
(tEPSG) that generated an EPSP matching the kinetic profile of the
synaptically evoked EPSP (0.2–0.3 ms, where 0.3 ms was the
average; Supplementary Fig. 2). EPSG and IPSG peak amplitudes
were then adjusted to achieve an effective excitation–inhibition
(E–I) ratio of 1:1 (see Methods).

Because the actual arrival times of excitation and inhibition to
the MSO in vivo is not known, we investigated a broad range of
relative inhibitory timing conditions (Dtinh; Fig. 1e). Indeed we
found timing conditions that advanced the peak timing of both
the synaptically evoked and conductance-clamp-simulated EPSPs
(Dtinh¼ 0.1 ms, F-stim: " 62±8 ms; G-clamp: " 53±3ms, n¼ 7;
Fig. 1f,g, left) and others that delayed the peak of the EPSPs, albeit
to a lesser extent (Dtinh¼ " 0.6 ms, F-stim: 21±9 ms; G-clamp:
4±6 ms, n¼ 7; Fig. 1f,g, right). The similarity of the timing-
dependent peak shifts between synaptically evoked and con-
ductance-clamp-simulated EPSPs (Dtinh¼ 0.1 ms: P¼ 0.986;
Dtinh¼ " 0.6 ms: P¼ 0.647, two-way analysis of variance
(ANOVA)) indicates that inhibition influences synaptic integra-
tion at the soma (Fig. 1h). This was further supported by separate
dual-electrode conductance-clamp experiments that revealed no
substantial difference in PSP kinetics or the magnitude of
inhibition-enforced EPSP peak shifts compared with single-
electrode experiments (Supplementary Fig. 3). Taken together,
these findings demonstrate that single-electrode conductance-
clamp is suitable to investigate precise temporal interactions
between excitation and inhibition in MSO neurons. Thus,
inhibition can indeed modulate the peak timing of excitation
from either side in a bidirectional manner depending on its
arrival time relative to excitation. These findings are consistent
with the basic predictions of the original inhibitory model6,7,24,28

as well as recent reports26.

Input speed and balance influence peak shift magnitude.
Conductance-clamp is advantageous over synaptic stimulation in
that many parameters can be tested quickly in a single recording.
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Using this advantage, we investigated a broad parameter space in
each neuron to gain insight into the mechanism by which the
relative timing of inhibition modulates the peak timing of
excitation. For example, this allowed us to test whether the wide
range of excitatory and inhibitory input kinetics we observed
(Supplementary Fig. 1) is relevant for the efficacy of inhibition-
enforced EPSP peak shifts (Fig. 2a–f). Here, we compared
representative fast (Fig. 2a,b) and slow (Fig. 2c,d) EPSG and IPSG
templates with their average-speed (tEPSG¼ 0.3 ms, tIPSG¼ 1.5
ms) counterparts (Supplementary Fig. 2), maintaining an E–I
ratio of 1:1. Peak shifts were substantially dependent on excitatory
input kinetics, where slower excitation (tEPSG¼ 0.5 ms) was
comparably more sensitive to peak shifts in both directions
(Dtinh¼ 0.1 ms: " 92±12 versus " 58±6ms, P¼ 0.003; Dtinh¼
–0.6 ms: 32±8 versus 2±6 ms, P¼ 0.011, two-way ANOVA,
n¼ 5; Fig. 2a,c,e). Peak shifts were also sensitive to inhibitory
input kinetics, where faster inhibition (tIPSG¼ 1.0 ms) was more
effective at enforcing the peak delay (Dtinh¼ " 0.6 ms: 20±6,
P¼ 0.015, two-way ANOVA, n¼ 5), but did not substantially
impact the peak advance (Dtinh¼ 0.1 ms: " 62±8, P¼ 0.925,
two-way ANOVA, n¼ 5; Fig. 2b,d,f). Thus, although we
predominantly use the average-speed EPSG and IPSG throughout
the manuscript, slower excitation and faster inhibition will
generally enhance the impact of inhibition on excitatory timing.

Because inhibition can impose both a shunt and hyperpolar-
ization on the membrane, we next evaluated their independent
contributions to EPSP peak shifts (Fig. 2g). Shunting inhibition

was isolated by hyperpolarizing neurons to the set reversal
potential for chloride (–90 mV)20. This manipulation revealed
a peak advance regardless of timing (Dtinh¼ 0.1 ms: " 32±4 ms;
Dtinh¼ " 0.6 ms: " 23±4ms, n¼ 11; Fig. 2g, dotted black).
Depolarizing neurons from this point revealed the contribution of
hyperpolarization that manifested itself as a biphasic function
superimposed on the shunt-induced function. Compared with the
median resting potential (" 65 mV, Fig. 2g, maroon and
Supplementary Fig. 4) more depolarized potentials (" 45 mV,
black) revealed larger peak shifts in both directions
(Dtinh¼ 0.1 ms: " 101±3 versus " 67±4 ms, Po0.001;
Dtinh¼ " 0.6 ms: 17±6 versus " 10±5 ms, Po0.001, two-way
ANOVA, n¼ 11; Fig. 2g). We also doubled the E–I ratio to
reduce the relative strength of inhibition and found that peak
shifts were proportionally reduced, particularly for the peak
advance (at " 65 mV, Dtinh¼ 0.1 ms: " 42±4 ms, P¼ 0.002;
Dtinh¼ " 0.6 ms: " 3±6 ms, P¼ 0.972, two-way ANOVA,
n¼ 11; Fig. 2h). Thus, an inhibitory shunt generally advances
the peak of an EPSP, but hyperpolarization enforces the
bidirectional effect of inhibition on EPSP peak timing,
depending on the balance of excitation and inhibition. Here,
more depolarized membrane potentials (imposing a larger driving
force on IPSPs) and stronger inhibition (relative to excitation)
enhance the inhibitory control of excitatory timing.

Because MSO neurons integrate their synaptic inputs
linearly8,26, these findings can be explained by a simple model
(Fig. 2i,j). Here, we schematized an EPSP as a Gaussian function

Cochlea
AVCN

LNTB

MNTB Excitatory neurons
Inhibitory neurons

Lateral

a b

c d e

f g h

Ventral

F-stim EPSP, G-inject IPSP G-inject EPSP and IPSP Timing convention

Exc (t=0)
Inh (∆tinh)

–1.2 to –0.4 ms –1.2 to –0.4 ms∆tinh: –0.2 to 0.4 –0.2 to 0.4

!EPSG: N/A
!IPSG: 1.5 ms

!EPSG: 0.2–0.3 ms
!IPSG:1.5 ms

Ipsi

5

0

–5
–0.4 0.4

Inh only

0 –0.4
Relative time (ms) Relative time (ms)

0.40 –0.4 0.40 –0.4 0.4

50

–50

D
el

ay
A

dv
an

ce

–100

–150
–1.5 –1.0 –0.5 0 0.5 1.0

E
P

S
P

 p
ea

k 
sh

ift
 (

µs
)

0

F-stim
G-inject

0

∆V
m

 (
m

V
)

Contra

G-clamp

Ipsi Contra

G-clamp
Stim

Exc

Exc+ Exc
onlyInh

Exc+ Exc
onlyInh

ExcExc
InhInh

Exc –1 0 1Exc
Inh Inh-lead Inh-lagTime (ms)

Inh-lead Inh-lag∆tinh (ms)

Inh

MSO

Figure 1 | Inhibition modulates the timing of excitation. (a) Fluorescence micrograph of a P60 MSO neuron. Scale bar, 50mm.
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respectively. Dtinh¼0.1 ms, P¼0.986; Dtinh¼ "0.6 ms, P¼0.647; two-way ANOVA, n¼ 7 recordings.
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and the hyperpolarizing profile of an IPSP as a sloped line (in this
case the re-depolarizing phase). If we add the line to the Gaussian
function, the peak of the summated function is shifted
proportionally towards the slope of the line (Fig. 2i). This
explains why coincident or slightly lagging inhibition (imposing a
negative slope) enforces a peak advance, and why leading
inhibition (positive slope) enforces a peak delay. It also
illustrates why faster and stronger inhibition (steeper slope) is

more effective at enforcing EPSP peak shifts22. Because
differences in inhibitory kinetics predominantly influence the
slope of the re-depolarizing phase of the IPSP (Supplementary
Fig. 2), it further shows why inhibitory kinetics predominantly
influenced the peak delay compared to the peak advance. Finally,
if we double the Gaussian half-width to mimic a relatively slower
EPSP, larger shifts are generated (Fig. 2j). This explains why
slower excitation is more sensitive to peak shifts. Thus, inhibitory
control of excitatory timing is influenced by factors beyond the
relative time of arrival6,7,22,28.

The activity of potassium channels facilitates peak shifts. Before
investigating the consequences of inhibition-enforced EPSP peak
shifts on bilateral coincidence detection, we investigated the
role of low-threshold potassium channels (KLTA) in inhibition-
enforced EPSP peak shifts. KLTA has been implicated in
sharpening EPSPs32,38 and has recently been shown to interact
with IPSPs26. Simply blocking KLTA does not allow an assessment
of its influence on synaptic integration because KLTA also
maintains the neuron’s exquisitely fast membrane time constant
in the adult (B180ms). To circumvent this pharmacological
limitation, we generated a point-neuron model based on our
electrophysiological measurements and performed cell-wise
fittings of EPSPs and IPSPs that were recorded in conductance-
clamp (Fig. 3). The model recapitulated the kinetic profile and
amplitude of measured events (Fig. 3a) by altering only a few
independent parameters (Fig. 3b,c), demonstrating its accuracy
for evaluating synaptic integration. It also successfully
recapitulated inhibition-enforced EPSP peak shifts for
individual recordings (Fig. 3d) and the entire population (Fig. 3e).

To determine whether native KLTA activity influenced
inhibition-enforced EPSP peak shifts, we eliminated the KLTA
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(a–d) Normalized (norm) voltage traces for an example recording of
inhibition-enforced EPSP peak shifts comparing fast (tEPSG¼0.2 ms,
a; tIPSG¼ 1.0 ms, b; goldenrod) and slow (tEPSG¼0.5 ms, c; tIPSG¼ 2.2 ms,
d; chartreuse) speed EPSGs (a,c) and IPSGs (b,d) with their average-speed
counterparts (tEPSG¼0.3 ms; tIPSG¼ 1.5 ms) for Dtinh¼0.1 (left) and
"0.6 ms (right). Insets are zooms of the peaks, aligned in amplitude. Inset
scale bar (a, bottom), 0.1 mV. Traces are colour-coded as follows: light
traces indicate the EPSP and IPSP alone, dark traces indicate the composite
PSP. Traces are aligned in time to the peak of the EPSP alone for each kinetic
template pair. Vrest: "62 mV. (e,f) Average (±s.e.m.) EPSP peak shifts
plotted against Dtinh for comparing EPSG (Dtinh¼0.1 ms: tEPSG¼0.2 ms,
P¼0.542; tEPSG¼0.5 ms, P¼0.003; Dtinh¼ "0.6 ms: tEPSG¼0.2 ms,
P¼0.422; tEPSG¼0.5 ms, P¼0.011) (e); and IPSG (Dtinh¼0.1 ms:
tIPSG¼ 1.0 ms, P¼0.925; tIPSG¼ 2.2 ms, P¼0.213; Dtinh¼ "0.6 ms:
tIPSG¼ 1.0 ms, P¼0.015; tIPSG¼ 2.2 ms, P¼0.500) (f) kinetics. Two-way
ANOVA, n¼ 5 recordings. (g,h) Same as in e,f, except the average-speed
EPSG and IPSG were used, and the holding potential (Vm) was between
"90 and "45 mV in 5 mV increments. Compared with the median
Vrest: "65 mV (maroon; Supplementary Fig. 4b), Vm¼ "45 mV (black):
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shallow (grey) or steep (black) linear functions. AU, arbitrary units.
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activation kinetics, thereby rendering the channel passive.
Interestingly, this manipulation did not substantially reduce peak
shifts (Dtinh¼ 0.1 ms: " 66 versus " 73ms; Dtinh¼ " 0.6 ms: " 6
versus –6 ms; Fig. 3f, turquoise). However, optimal model fit
parameters (Fig. 3b) supported by measured intrinsic membrane
properties (Supplementary Fig. 4) indicate that in contrast to
observations in juvenile (P16–19) gerbils38 KLTA channels in
adult (P60–P90) gerbils are activated at more hyperpolarized
potentials (V0.5¼ " 73 mV), thus rendering a larger fraction of
them open at rest (" 65 mV). Indeed, we found that in contrast
to P17 gerbils, the slowing and tightening of the membrane with
increasing hyperpolarization (indicating that KLTA had closed)
was not complete, even at –90 mV (Supplementary Fig. 4d,e).
Interestingly, depolarizing the activation voltage in the model to
levels observed in juvenile gerbils (V0.5¼ " 38 mV)38 revealed
more robust peak shifts, particularly for a peak delay

(Dtinh¼ 0.1 ms: " 90 ms; Dtinh¼ " 0.6 ms: 10 ms; Fig. 3f, black).
We also repeated the same protocol using the slow-speed EPSG
and found even more pronounced peak delays (Dtinh¼ " 0.6 ms:
55 versus 8 ms; Fig. 3g).

To gain insight into the mechanism underlying the facilitation
of KLTA activity on inhibition-enforced EPSP peak shifts, we
further evaluated the EPSPs (Fig. 3h,i) and the IPSP (Fig. 3j)
produced by the model. When the KLTA activation voltage was
depolarized, both EPSPs and the IPSP amplitudes increased, but
only IPSP kinetics were visibly altered. KLTA gating is fast enough
to follow the profile of the IPSP and is thus closed during the
hyperpolarizing phase. This naturally moves the membrane
potential away from the potassium reversal potential, speeding
the re-depolarizing phase, from which our previous experiments
would predict larger peak delays (Fig. 2b,f,i)39. The observation
that the slow-speed EPSG is even more sensitive to KLTA activity
is also consistent with our observation that slower EPSPs are
generally more sensitive to peak shifts (Fig. 2c,e,j). Thus, KLTA
activity promotes inhibition-enforced EPSP peak shifts by
speeding the decay kinetics of the IPSP, and therefore may
have a more influential role in facilitating E–I interactions during
development14,32,38.

Inhibition tunes coincidence detection. We have shown that
inhibition can modulate the peak timing of excitation from one
side, but it was not known how this influences the integration of
bilateral excitation. We therefore evaluated the effect of a pre-
cisely timed IPSP on subthreshold PSP summation and supra-
threshold action potential probability functions (Fig. 4). Because
excitation from both sides have equal strength (Supplementary
Fig. 1) and summate linearly at the soma8,26, we injected two
identical EPSGs at various relative times (Dtexc) to simulate ITDs
in vitro (Fig. 4a, see Methods)25,26. We then determined whether
a single IPSP (timed relative to the contralateral EPSP) could bias
the excitatory timing of best PSP summation (PSP sum) or
greatest action potential probability (AP prob). For these
experiments, it matters at what Dtexc the largest summation or
the most action potentials occur and not when they occur, which
was the case for previous experiments (Figs 1–3). In the absence
of inhibition, these functions peaked near zero (PSP sum: 3±2 ms,
n¼ 5; Fig. 4b; AP prob: 7±3ms, n¼ 7; Fig. 4c).

Contralateral inhibition modulated coincidence detection
timing in a manner consistent with its effects on the peak timing
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of contralateral excitation. Inhibitory timing conditions that
advanced the peak of the contralateral EPSP (Dtinh¼ 0.1 ms)
biased subthreshold summation and action potential probability
functions towards ipsilateral-leading excitation (PSP sum:
" 96±8 ms, n¼ 5; Fig. 4d; AP prob: " 73±2 ms, n¼ 7;
Fig. 4e). This corresponds to an advanced contralateral EPSP
that now summates best with an ipsilateral EPSP that occurs
earlier in time. Timing conditions that did not robustly influence
the peak timing of the EPSP (Dtinh¼ " 0.2 ms) did not
substantially bias coincidence detection (PSP sum: " 11±2 ms,
n¼ 5; Fig. 4f; AP prob: 6±3 ms, n¼ 8; Fig. 4g), consistent with a
different study that was performed with synaptic stimulation26.
However, this timing condition (Dtinh¼ " 0.2 ms) did narrow the
half-widths of the coincidence detection functions (PSP sum:
387±7 versus 467±6 ms, Po0.001, n¼ 5; AP prob: 208±6
versus 221±8 ms, Po0.001, two-way ANOVA, n¼ 8), also
consistent with the synaptic stimulation experiments26. Finally,
timing conditions that delayed the peak of the contralateral
EPSP (Dtinh¼ " 0.6 ms) biased coincidence detection towards
contralateral-leading excitation, albeit to a lower extent (PSP sum:
41±6 ms, n¼ 5; Fig. 4h; AP prob: 41±2 ms, n¼ 8; Fig. 4i). This
corresponds to a delayed contralateral EPSP that now summates
best with an ipsilateral EPSP that occurs later in time. Thus, a
precisely timed contralateral IPSP can modulate coincidence
detection in a bidirectional manner, but only under timing
conditions that had not been previously explored26.

Because recent in vivo recordings of MSO neurons revealed
many cases where the EPSP was much slower than our average
in vitro measurements8, we also evaluated the slow-speed EPSG
paired with the average-speed IPSG (Fig. 4b–i,k, chartreuse). The
peaks of both PSP summation and action potential probability
functions were biased comparably further towards ipsilateral-
leading (Dtinh¼ 0.2 ms, PSP sum: " 136±2 ms, n¼ 5; AP prob:
" 127±3 ms, n¼ 7) and contralateral-leading (Dtinh¼ " 0.4 ms,
PSP sum: 64±5ms, n¼ 5; AP prob: 66±3 ms, n¼ 12) excitation.
This is consistent with the observation that slower EPSPs are
more sensitive to inhibition-enforced peak shifts (Fig. 2c,e).
Importantly, the similarity between the peaks of subthreshold and
suprathreshold coincidence detection functions (Fig. 4j,k)
indicates that the influence of inhibition on subthreshold
summation accurately translates into action potential generation.

Synaptic jitter enhances peak shifts. Because MSO neurons can
be ITD-sensitive at frequencies between B100 and B1,500 Hz
(ref. 48) we returned to our single-side E–I interaction paradigm
(Figs 1–3) and evaluated the efficacy of inhibitory modulation of
excitatory timing under such naturalistic conditions. Although
phase locking is relatively stronger at low frequencies, synaptic
inputs are actually more jittered39. We therefore challenged our
inhibition-enforced EPSP peak shift paradigm with increasing
amounts of jitter (Fig. 5). We introduced jitter to four EPSGs and
IPSGs with gamma distribution functions of up to 640 ms in half-
width (Fig. 5a,b). The resulting composite EPSPs and IPSPs
revealed a broadening of event kinetics with increasing jitter, but
much more pronounced for EPSPs than IPSPs (Fig. 5c).
Increasing excitatory jitter alone robustly increased peak shifts
in both directions (for 320 ms excitatory jitter, Dtinh¼ 0.1 ms:
117±8 versus 67±6 ms, Po0.001; Dtinh¼ " 0.6 ms: 44±4
versus 6±3 ms, P¼ 0.002, two-way ANOVA, n¼ 6; Fig. 5d,e,
blue), and increasing inhibitory jitter alone decreased peak shifts
(for 320ms inhibitory jitter, Dtinh¼ 0.1 ms: " 48±4ms, P¼ 0.023;
Dtinh¼ " 0.6 ms: " 5±3 ms, P¼ 0.344, two-way ANOVA, n¼ 6;
Fig. 5d,e, red). Interestingly, increasing both excitatory and
inhibitory jitter resulted in a net increase in peak shifts (for 320 ms
excitatory plus inhibitory jitter, Dtinh¼ 0.1 ms: " 95±9ms,
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P¼ 0.014; Dtinh¼ " 0.6 ms: 44±4 ms, P¼ 0.047, two-way
ANOVA, n¼ 6; Fig. 5d,e, magenta). Evaluation of individual
trials revealed that substantially jittered conditions increase the
diversity of peak shift magnitudes (Supplementary Fig. 5).
However, the distribution of all trials (Supplementary Fig. 6)
shows a trend towards larger peak shifts with equal amounts of
excitatory and inhibitory jitter. The ability of excitatory jitter to
outcompete the reduction in peak shifts generated by inhibitory
jitter can be explained by larger distortion of the EPSP profile
compared to the IPSP profile with equivalent amounts of jitter
(Fig. 5c), from which our analysis of synaptic kinetics (Fig. 2)
predict larger peak shifts. These findings indicate that naturally
occurring synaptic jitter enhances inhibition-enforced EPSP peak
shifts, despite the degradation of peak timing precision that was
recently suggested to diminish its efficacy8,26. As ITD tuning at
low frequencies has been particularly difficult to explain by axon
length disparity11, these findings support an especially important
role of inhibition for ITD tuning in the low-frequency range40.

Precise inhibition maintains efficacy at high frequencies. At
high frequencies, synaptic jitter is much less, but IPSPs naturally
summate26. We thus challenged inhibition-enforced EPSP peak
shifts with 16 pulse trains at 333, 500 and 800 Hz under timing
conditions that produced a large peak advance (Dtinh¼ 0.1 ms)
and delay (Dtinh¼ " 0.6 ms) (Fig. 6). Despite substantial
summation (Fig. 6a, red, and Supplementary Fig. 7), inhibition
sustained the ability to advance (Fig. 6b, left) and delay (Fig. 6b,
right) EPSP peak timing, even at 800 Hz (for the 16th event,
Dtinh¼ 0.1 ms: " 48±2 ms; Dtinh¼ " 0.6 ms: 22±6 ms, n¼ 8;
Fig. 6b, bottom). Small changes in peak shifts during the train
(16th event compared with the first, Dtinh¼ 0.1 ms: " 70±4 ms,
Po0.001; Dtinh¼ " 0.6 ms: 18±4 ms, P¼ 0.996, two-way
ANOVA, n¼ 8; Fig. 6c) can be attributed to frequency-
dependent interactions between individual IPSPs during
the train, which alter their effective relative peak timing
(Supplementary Fig. 7). Inhibition-enforced subthreshold PSP
summation bias was also similarly maintained at 800 Hz
(Supplementary Fig. 8), strengthening the translation from
inhibition-enforced EPSP peak shifts to coincidence detection
timing. Importantly, at higher frequencies IPSPs cannot be
discerned during the train regardless of whether they lead or lag
EPSPs (Fig. 6a, bottom and Supplementary Fig. 8a, bottom). This
is remarkably consistent with the inability to detect IPSPs from
in vivo whole-cell recordings8. Thus, inhibition maintains its
ability to influence EPSP peak timing and synaptic integration at
high frequencies, despite undergoing substantial summation that
was recently suggested to diminish its efficacy26.

Bilateral inhibition extends the range of tuning. To this point,
we have considered only the influence of one (contralateral)
inhibitory pathway on synaptic integration and coincidence
detection. However, in the full MSO circuit both ipsilateral and
contralateral inhibition are present31,41. We therefore examined
the additional effect of a second, precisely timed (putative
ipsilateral) inhibition in biasing subthreshold PSP summation
(Fig. 7a). In these experiments, we timed the ipsilateral IPSP
relative to its corresponding EPSP (Dtinhi) and used the slow-
speed EPSG paired with the average-speed IPSG to evaluate the
extent of inhibitory modulation on synaptic integration under our
experimental conditions (Fig. 7b). Importantly, an ipsilateral IPSP
will also interact with the contralateral EPSP, but because it is
locked in time to the ipsilateral EPSP, the integration of all four
synaptic inputs can be conceptually simplified as two composite
PSPs from each side that summate linearly at the soma.
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Figure 5 | Synaptic jitter enhances peak shifts. (a) Raster plots showing
100 trials of four event onset times jittered with gamma distributions of
increasing function half-widths (left to right). Orange line indicates the
reference time point (no jitter). Scale bar, 1 ms. (b) Cumulative histogram of
the onset timing s.d. for the four jittered events. (c) Ten overlaid voltage
traces for an example recording of the resulting composite EPSPs (top) and
IPSPs (bottom) generated by jitter functions of increasing half-widths (left
to right). Vrest: " 64 mV. Scale bar, 2 mV, 1 ms. (d) Voltage traces of 25
trials from the recording in c (from left to right) without jitter, or the 320ms
half-width jitter function applied to excitation (Exc) only, inhibition (Inh)
only, or Exc and Inh. Inhibitory timing conditions that advanced
(Dtinh¼0.1 ms, top) and delayed (Dtinh¼ "0.6 ms, bottom) EPSP peak
timing are shown. Grey traces show EPSPs and IPSPs alone, and dark traces
show composite PSPs, aligned in time to the peak of the EPSP alone for each
trial. Dotted vertical lines and arrow heads indicate the average peak shift of
all 100 trials in the recording. (e) Average (±s.e.m.) EPSP peak shifts
plotted against Dtinh for each jitter function applied to Exc only (left), Inh
only (centre) and Exc plus Inh (right). Without jitter, EPSP peak shifts were
similar to those in Fig. 1h. Compared with no jitter conditions, introducing
EPSP jitter (320ms jitter function half-width) increased peak shifts to
B200% (Dtinh¼0.1 ms, Po0.001; Dtinh¼ "0.6 ms, P¼0.002), and
introducing IPSP jitter reduced peak shifts to B75% (Dtinh¼0.1 ms,
P¼0.023; Dtinh¼ "0.6 ms, P¼0.344). Introducing EPSP plus IPSP
jitter increased peak shifts to B150% (Dtinh¼0.1 ms, P¼0.014;
Dtinh¼ "0.6 ms, P¼0.047). Two-way ANOVA, n¼6 recordings.
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We started with a pre-existing contralateral inhibition that was
timed (now termed Dtinhc) to bias ipsilateral-leading excitation
(Dtinhc¼ 0.2 ms: " 163±2 ms, n¼ 7; Fig. 7c–e), produce no
bias (Dtinhc¼ " 0.1 ms: " 2±4ms, n¼ 7; Fig. 7f–h) or bias
contralateral-leading excitation (Dtinhc¼ " 0.4 ms: 71±7 ms,
n¼ 7; Fig. 7i–k). In each case, the additional ipsilateral IPSP
biased the timing of best PSP summation in a manner nearly
equal and opposite to that of the contralateral IPSP at each Dtinhc
tested. This is consistent with an ipsilateral IPSP that shifts the
peak timing of the ipsilateral EPSP in the same manner as for the
contralateral side, which would in fact produce the inverse
influence on coincidence detection timing (Fig. 8a). Now
considering the temporal integration of all four synaptic inputs,
inhibition can bias coincidence detection up to 220±10 ms
towards ipsilateral-leading excitation (Dtinhc¼ 0.2 and Dtinhi¼
" 0.4 ms; Fig. 7e) and up to 217±19 ms towards contralateral-
leading excitation (Dtinhc¼ " 0.4 and Dtinhi¼ 0.2 ms; Fig. 7k).
Remarkably, this 4400ms dynamic range is achieved within a
timing window of just 0.6 ms (Fig. 8a). This is important, because
even though we do not know what other internal delays may be
generated in the circuit, inhibition can provide additional timing
shifts that largely span the distribution of gerbil ITD functions
recorded in vivo (Fig. 8b)6–8,43, which has been thus far
unsuccessful by axon length disparity-based models of ITD
tuning11. Interestingly, at timing conditions where inhibition is
most capable of influencing coincidence detection, IPSPs would
largely be masked by EPSPs, which is compatible with the in vivo
observation that even at low frequencies IPSPs remained
undetected between cycles8. Thus, it is tempting to speculate
that the strong afterhyperpolarizations following EPSPs recorded
in vivo8 reflect the re-depolarization phase of a precisely timed
IPSP that occurs nearly concomitant.

Discussion
We demonstrated that precise inhibition modulates coincidence
detection timing in MSO neurons, supporting a crucial role for
inhibition in ITD tuning at the cellular level. The cellular basis for
the near microsecond discrimination of ITDs, an essential
component of the ability to localize sounds in mammals is
elusive. As it has recently become clear that axon length disparity
alone cannot predict the preferred ITD of individual MSO
neurons11, several alternative models were proposed7,14,15.

The original inhibition-based model was grounded on the
finding that blocking glycinergic inhibition in vivo shifted
contralateral-leading ITD functions towards zero6–8. It was
thought that a leading contralateral inhibition predominantly
mediates this effect by delaying the effective peak timing of
contralateral excitation6,7,24,28. This mechanism was questioned
because it required unusually fast and artificial IPSP kinetics15

and a level of temporal precision that would be diminished by
synaptic jitter and summation8,26. We therefore based our
re-evaluation on measured, mature synaptic responses (Fig. 1)
under challenging temporal conditions (Figs 5 and 6). We found
that inhibition was indeed capable of modulating the timing of
excitation, but that a leading contralateral inhibition alone only
modestly biased coincidence detection timing towards the
contralateral-leading side (B50ms; Fig. 4h,i). However, adding
the ipsilateral source of inhibition31,41, which has received much
less attention, could bias coincidence detection a further B150 ms
towards the contralateral-leading side (Fig. 7k). These data
strongly support the in vivo pharmacological experiments6,7, but
demonstrate that the precise timing of inhibition from both sides
is crucial to explain existing data.

Our rigorous re-evaluation also revealed that inhibitory control
over excitatory timing is more diverse than originally proposed.
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For example, even small differences in synaptic kinetics
(Fig. 2a–f), the driving force on inhibition (Fig. 2g), the balance
of excitation and inhibition (Fig. 2g,h), and the activation of KLTA
channels (Fig. 3) markedly influenced the efficacy of inhibition-
enforced EPSP peak shifts. Moreover, our investigation of a wide

range of timing parameters revealed conditions that biased best
coincidence detection towards the ipsilateral-leading side
(Fig. 4d,e) and others that produced no bias at all (Fig. 4f,g).
As the actual arrival time of inhibition relative to excitation
in vivo could be adjusted on a single-neuron basis, inhibition-
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enforced ITD tuning in vivo may be more diverse than the
existing data would suggest6,7. This provides a powerful
mechanism for tuning individual neurons in the MSO, a central
issue that remains unexplained by anatomical specializations11,41.
Although inhibition is one of several mechanisms that may work
in concert to tune neurons to their preferred ITDs, it can
accomplish this simply by adjustments or adaptations of synaptic
properties43,44, a more flexible solution compared with axonal
length adjustments11. Thus, our findings indicate that the original
inhibitory model should be expanded.

Recently, one study evaluated the predictions of the original
inhibitory model26, specifically whether a leading contralateral
inhibition biased ITD functions towards the contralateral side.
Although there was already evidence that the inhibitory
input pathways are faster compared with their excitatory
counterpart22,23,45, this was directly evaluated in a thick slice
preparation by stimulating the auditory nerve. Inhibition indeed

preceded excitation, but a single IPSP at the average timing
condition (Dtinh¼ " 0.3 ms) did not tune ITD functions. It was
concluded that inhibition, while important for coincidence
detection, is not relevant for ITD tuning26. Although this study
used synaptic stimulation instead of conductance-clamp to
generate ITD functions, our findings are in accord, as a similar
timing condition (Dtinh¼ " 0.2 ms) also did not substantially
influence coincidence detection timing (Fig. 4f,g). Importantly,
the relative arrival time of excitation and inhibition measured in
the study were performed in P15–20 tissue and thus might not
represent the fully matured stage of the circuit26. Moreover, the
measured relative inhibitory timings spanned a range of " 0.5 to
" 0.1 ms26 and are likely even more diverse in vivo, owing
to cochlear delays and natural activation of the cochlear
nucleus12,16,46 that are lost in a slice preparation. Therefore, we
deliberately made no assumptions about the actual arrival times
of excitation and inhibition and indeed found other timing
conditions that generated pronounced modulation of coincidence
detection timing. Finally, the ipsilateral source of inhibition,
which appeared equivalently as strong as the contralateral source,
was not previously evaluated in modulating coincidence
detection26. Our present results indicate that the ipsilateral
source of inhibition may be in fact crucial to ITD tuning, and thus
future studies are required to elucidate the role of its substantial
input to the MSO.

The role of synaptic inhibition in the MSO remains a
topic of intense debate27–29. A second recent study investigated
ITD tuning in vivo using whole-cell recordings. A pronounced
leading inhibition could not be detected8, contradicting the
in vitro measurements. It was nevertheless reasoned from the
lack of detection that the temporal precision of inhibition
was not sufficient to tune ITD functions. In contrast, our
findings demonstrate that inhibitory modulation of excitatory
timing is in fact resilient to synaptic jitter (Fig. 5) and summation
(Fig. 6). More importantly, under timing conditions where
inhibition is most effective at influencing coincidence detection
timing (Fig. 8a), IPSPs would be masked by EPSPs on each
cycle. Even if inhibition could be detected between cycles at
low frequencies, its interaction with excitation during high-
frequency activity would mask its presence, regardless of its
relative timing (Fig. 6a and Supplementary Fig. 8). Unfortunately,
as currently available in vivo electrophysiological techniques are
insufficient to resolve excitatory and inhibitory events
independently8, the exact arrival time of excitation and
inhibition to MSO neurons remains unknown. The manner in
which inhibition tunes ITD functions in vivo thus remains an
open question.

The scope of inhibitory mechanisms that modulate ITD coding
extends far beyond the precise modulation of coincidence
detection timing we report here. For example, the MSO receives
GABAergic input, which activates presynaptic GABAB receptors
on MSO inputs47,48. However, in contrast to phasic glycinergic
inhibition, GABAB signalling enforces a gain control mechanism
to adapt ITD sensitivity in dynamic auditory environments43.
Furthermore, phasic49,50 and sustained51 inhibition are also
prominent in nucleus laminaris (NL), the functionally equivalent
avian analogue to the mammalian MSO52. In contrast to the
MSO, inhibition in NL is predonimantly GABAergic and imposes
a shunting and depolarizing effect on NL neurons48,49. Here
phasic and tonic inhibition work in concert to maintain ITD
sensitivity at different frequencies and intensities53,54. The
inhibitory shunt sharpens the coincidence detection time
window55 in a frequency region-specific manner, but it does
not influence the peak timing of incoming excitatory signals50–52.
Thus, both mammals and birds have evolved diverse inhibitory
mechanisms to modulate ITD processing.
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Methods
Tissue preparation. All experiments were performed in accordance with protocols
approved by the Deutsche Tierschutzgesetz. Male and female Mongolian gerbils
(Meriones unguiculatus) aged P60–P90 or P17 (Supplementary Fig. 4) were
anaesthetized with isoflurane [2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-
ethane] and decapitated. Brains were removed and placed in a warmed (B35 !C,
P60–90) or ice-cold (B4 !C, P17) dissecting solution containing the following
(in mM): 200 sucrose, 25 glucose, 25 NaCl, 25 NaHCO3, 3 MgCl2, 3 myo-inositol,
2.5 KCl, 2 Na-pyruvate, 1.25 NaH2PO4, 0.4 ascorbic acid and 0.1 CaCl2 (pH 7.4
when bubbled with 95% O2 and 5% CO2). Horizontal (110 mm thick, P60–90) or
coronal (250 mm thick, P17) slices were made from the brainstem using a VT1200S
vibratome (Leica). Slices were then incubated for 30–45 min at 35 !C in a perfusion
saline containing the following (in mM): 125 NaCl, 25 NaHCO3, 25 glucose,
3 myo-inositol, 2.5 KCl, 2 Na-pyruvate, 2 CaCl2, 1.25 NaH2PO4, 1 MgCl2 and
0.4 ascorbic acid (pH 7.4 when bubbled with 95% O2 and 5% CO2).

Electrophysiology. All experiments were performed in perfused saline
(1 ml min" 1 and bubbled with 95% O2 and 5% CO2), except that CaCl2 was
reduced to 1.2 mM. Recording temperature was measured near the slice and
maintained at 35±1 !C by an SF-28 in-line heater (Warner Instruments) and PH-1
bath chamber heater (Biomedical Instruments). Tissue was visualized under a
BX50WI upright microscope (Olympus) equipped with infrared Dodt Gradient
Contrast optics (Luigs & Neumann), a Polychrome V monochromator (Till
Photonics) and an Imago camera (TILL Photonics). Whole-cell recordings of
morphologically identified MSO neurons (Fig. 1a) were obtained with borosilicate
glass electrodes using an EPC10/2 patch-clamp amplifier (HEKA Elektronik).

Voltage-clamp experiments. For voltage-clamp experiments (Supplementary
Fig. 1), the internal solution contained the following (in mM): 130 Cs-gluconate,
20 TEA-Cl (tetraethylammonium chloride), 15 HEPES [4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid], 5 Cs-EGTA (caesium ethylene glycol tetraacetic
acid), 5 QX-314 [N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium
chloride], 5 Na2-phosphocreatine, 3 Mg-ATP, 0.3 Na2-GTP, 0.05 Alexa Fluor
568 and 0.01 ZD 7288 (4-Ethylphenylamino-1,2-dimethyl-6-methylaminopyr-
imidinium chloride), adjusted to pH 7.25 and 320 m Osm. Electrodes had 2–3 MO
tip resistances, and experiments were performed at " 75 mV (after correcting for
an estimated liquid junction potential for this internal solution of 15 mV). Series
resistance was 4–7 MO and was compensated to a residual of 1.5–2 MO on the
amplifier. Experiments were terminated if the uncompensated series resistance
changed by 410%.

Synaptic inputs were stimulated with borosilicate glass electrodes (of 3–4 MO
resistance) filled with saline and placed in the vicinity (50–150 mm) of the recorded
neuron. Ipsilateral and contralateral glutamatergic (excitatory) inputs could be
independently activated because they are well segregated to the lateral and medial
sides of the MSO, respectively, (Fig. 1b)55. As glycinergic (inhibitory) inputs are not
well segregated in the slice, the population of inhibitory conductance waveforms
likely reflects inputs from both the lateral and medial nucleus of the trapezoid body
(lateral and medial nucleus of the trapezoid body)56. Axons were stimulated with
brief (0.2 ms) 10–50 V bipolar pulses generated by a Model 2100-isolated pulse
stimulator (A-M Systems). The stimulus voltage was adjusted such that putative
single fibres were activated, as indicated by all-or-none threshold responses and
o25% s.d. in amplitude1. Conductance values (Supplementary Fig. 1f) were
calculated from the measured reversal potential for EPSCs (5 mV) and the
calculated Nernst potential of chloride for IPSCs (" 44 mV). All voltage-clamp
experiments were performed in the presence of 10 mM R-CPP {3-[(R)-2-
Carboxypiperazin-4-yl]-propyl-1-phosphonic acid} and 10 mM SR 95531 [6-Imino-
3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid hydrobromide] to block
NMDA receptors and GABAA receptors, respectively. Glutamatergic and
glycinergic inputs were isolated with 0.5 mM strychnine and 20 mM DNQX (6,7-
Dinitroquinoxaline-2,3-dione), respectively.

Single-electrode conductance-clamp experiments. For single-electrode con-
ductance-clamp experiments (Figs 1, 2 and 4–7 and Supplementary Figs 2 and
5–8), the internal solution contained the following (in mM): 145 K-gluconate,
15 HEPES, 5 Na2-phosphocreatine, 3 Mg-ATP, 0.3 Na2-GTP and 0.05 Alexa Fluor
568, adjusted to pH 7.25 and 320 m Osm. Electrodes had 3.5–5 MO tip resistances,
and series resistance (4–6 MO) was 100% balanced on the bridge of the amplifier
(Supplementary Fig. 4a). The liquid junction potential was estimated to be 15 mV
and compensated online. Selected synaptic conductance waveforms as measured in
Supplementary Fig. 1 were delivered to an SM-1 conductance injection amplifier
(Cambridge Conductance), which calculates instantaneous current commands
[I(t)] by equation (1).

I tð Þ ¼ G tð Þ V tð Þ" Erev½ & ð1Þ

This calculation was performed independently for excitatory (reversal potential
(Erev)¼ 5 mV) and inhibitory (Erev¼ " 90 mV)20 synaptic conductance waveform
templates (G(t)), while simultaneously measuring the membrane potential (V(t)).
Although single inhibitory fibre conductance was roughly twice that of a single
excitatory fibre (Supplementary Fig. 1b,f), previous studies have indicated that

there are also about only half the number of inhibitory inputs compared with
excitatory inputs, and thus the effective inhibitory and excitatory synaptic strength
is balanced1. Therefore, for subthreshold experiments EPSGs and IPSGs were
injected with a peak conductance of 30 nS, yielding an E–I ratio of 1:1 (except for
Fig. 2h, where the IPSG was reduced to 15 nS). To minimize recording time and
maximize the number of parameters that could be tested in a single recording
(typically o10 min)57, EPSG and IPSG template pairs were randomized and
then injected at 50 Hz. Current test pulses were delivered directly before and
after each acquisition epoch to ensure that Ih activity had not substantially
changed56. Experiments were terminated if membrane input resistance changed
by 41 MO.

EPSP peak shifts (Figs 1–3, 5 and 6 and Supplementary Figs 3 and 5–7) were
calculated by comparing the peak EPSP time generated by an EPSG plus IPSG
injection with that of an EPSG injection alone. Subthreshold PSP summation bias
(Fig. 4b,d,f,h, Fig. 7, and Supplementary Fig. 8) was determined by Gaussian fitting
of PSP summation functions. PSP summation functions were generated by
presenting two identical EPSGs at different relative times (Dtexc, in 100 ms
increments). The amplitude of the composite PSP was then normalized to a
single EPSP, and the relationship between the normalized composite PSP
amplitude and Dtexc (an in vitro representation of an ITD in the absence of any
other intrinsic delay mechanisms) was fitted with a Gaussian function. The peak of
the function fit was defined as the best Dtexc. Each timing condition was repeated
six times in each recording, and analysis was performed on the average voltage
responses.

For suprathreshold coincidence detection experiments (Fig. 4c,e,g,i), the timing
convention was the same as for subthreshold PSP summation experiments, but
Dtexc was presented in 20ms increments. Because action potential conductance
thresholds in MSO neurons are extremely sensitive to changes in membrane
potential, baseline current (192±66 pA, n¼ 13 recordings) was injected to
maintain the membrane potential at " 65 mV. Then two identical EPSGs were
injected with a magnitude (tEPSG¼ 0.3 ms: 43±2 nS, n¼ 13 recordings;
tEPSG¼ 0.5 ms: 32±2 nS) that brought the neuron to threshold (Gt), defined as
50% action potential probability at 1 Dtexc. The protocol was then repeated 10 times
at 200 pS (B3%) above Gt, where action potential probability peaked near 100%.
Repeating these experiments with the inclusion of the IPSG (60 nS, tIPSG¼ 1.5 ms)
required an adjustment of EPSG magnitude to depolarize the neuron to Gt.
Adjustments for each Dtinh using the average-speed EPSG (tEPSG¼ 0.3 ms) were as
follows: 0.1 ms: 50±1 nS, " 0.2 ms: 61±2 nS and " 0.6 ms: 48±1 nS.
Adjustments for each Dtinh using the slow-speed EPSG (tEPSG¼ 0.5 ms) were as
follows: 0.2 ms: 51±2 nS, " 0.1 ms: 56±2 nS and " 0.4 ms: 50±3 nS. Owing to
the many trials for these experiments, only 1–3 inhibitory timing conditions were
performed in each recording. The average action potential probability function
from all 10 trials in each recording were then averaged for each inhibitory timing
condition (n¼ 8–12 recordings per condition). For statistical analysis, the data
were fitted with Gaussian functions as for subthreshold experiments (Fig. 4b,d,f,h).

For jitter experiments (Fig. 5), four EPSGs and IPSGs (10 nS each) were jittered
randomly according to the gamma (G) distribution generated by equation (2).

P tþ abð Þ ¼ ta" 1e "
t
bð Þ

baG að Þ
ð2Þ

The function asymmetry variable a was 40 to mimic the shape of sound-evoked
spiking output of AVCN neurons34, and the function width variable b was 20,
40, 80, 120 and 160 ms to evaluate different magnitudes of jitter. This generated
function half-widths of 80, 160, 320, 480 and 640 ms. Iterations of the jittered four
inputs were presented 100 times at each inhibitory timing condition in each
recording.

For train experiments (Fig. 6 and Supplementary Figs 7 and 8), individual
templates were compounded at 200, 333, 500 and 800 Hz for 16 pulses and then
injected. Inhibition-enforced EPSP peak shifts (Fig. 6) were calculated relative to
the excitation-only peak time for each pulse in the train. Analysis for subthreshold
PSP summation bias (Supplementary Fig. 8) was performed as for single-pulse
experiments (Figs 4 and 7). Although depression of synaptic currents has been
reported1, recent observations indicate little if any depression of synaptic potentials
during ongoing activity23. Therefore, the conductance amplitude was constant
for each pulse in the train. This approach thus maximized the effect of summation
at higher frequencies. Each timing condition was repeated six times in each
recording.

Fibre stimulation experiments. For combined fibre stimulation and conductance-
clamp experiments (Fig. 1c,f,h and Supplementary Fig. 2d,e), synaptic conductance
was injected as for single-electrode conductance-clamp experiments, except that
an extracellular stimulating electrode was placed on the medial fibre tract, and
single-fibre stimulation was obtained in current-clamp. Then an EPSG was selected
to match the decay kinetics of the stimulated EPSP, typically tEPSG¼ 0.2 or 0.3 ms.
The strength of the EPSG template was then adjusted to produce an EPSP with
equal amplitude to the synaptically evoked EPSP (Supplementary Fig. 2d). Then
the IPSG template amplitude was matched to the EPSG template such that the
conductance-clamp-simulated EPSP and fibre-stimulated EPSP would have an
equivalent influence of the IPSP (E–I ratio B1:1). Trials were presented at 10 Hz.
To eliminate the potential effects of short-term plasticity during the protocol1, each
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trial was directly preceded by a 20 pulse, 10 Hz train such that the amplitude of
fibre-stimulated EPSPs was securely at steady state1. Each timing condition was
repeated 10 times in each recording. In separate experiments, single-fibre EPSPs
and IPSPs were also synaptically evoked in current-clamp for a comparison with
conductance-clamp-simulated PSPs (Supplementary Fig. 2b,c, blue).

Dual-electrode conductance-clamp experiments. MSO neuron somata were
patched sequentially with two electrodes23, but otherwise performed as for single-
electrode conductance-clamp experiments. To determine the potential influence of
hardware errors introduced by injecting conductance and measuring voltage
through the same electrode, synaptic conductance was always injected through the
first electrode (E-1), but membrane voltage was measured using the same electrode
or using the second (passive) electrode (E-2) and compared (Supplementary Fig. 3).
Both directions were evaluated for each recording. Thus, the terms E-1 and E-2 are
functionally and not physically defined.

Data acquisition and analysis. Data were acquired at 100 kHz. Voltage-clamp
data were additionally filtered at 8 kHz using a shallow three-pole Bessel filter in
the amplifier. Analysis was performed off-line using Igor Pro (Wavemetrics).
Example conductance-clamp traces represent an average of 6–10 trials except for
Fig. 4c,e,g,i and Fig. 5c,d, and Supplementary Fig. 5, which show individual raw
traces. Example voltage-clamp (Supplementary Fig. 1b) and current-clamp
(Supplementary Fig. 2b, blue) traces represent an average of 30 trials. Group
averages are presented as mean±s.e.m., except for the results of Gaussian fittings,
which are presented as peak time (t0)±s.d. Sample sizes for each experiment were
at least five per group, which generated normal distributions (determined by
Kolmogorov–Smirnov normality tests, Po0.05). Statistical analysis of the data was
determined using two-way ANOVA in Prism software (GraphPad). Dunnett’s
post hoc tests were performed to determine statistical significance (Po0.05).

Computational model. A conductance-based point-neuron model was generated
to explain subthreshold postsynaptic integration (Fig. 3). The dynamics of the
membrane voltage V was simulated by current-balance equation (3).

Cm
dV
dt
¼ " Ih þ IKLTA þ Isyn þ Ileak

! "
ð3Þ

Cm denotes the measured individual cell capacitance (24.6 pF on average). Ohmic
currents were assumed in equation (4).

Ix Vð Þ ¼ gxam
x bn

x V " Exð Þ ð4Þ
gx denotes the peak conductance, ax and bx were gating functions with
cooperativities of m and n, respectively, and Ex was the reversal potential. The
gating functions adhere to first order kinetics(equations 5 and 6).

da
dt
¼ a1 " a

ta

db
dt
¼ b1 " b

tb
ð5; 6Þ

aN and bN are the steady-state activation, and ta and tb are the voltage-dependent
time constants. The leak current Ileak was passive (that is, m¼ n¼ 0) with a reversal
potential Eleak¼ " 90 mV and a conductance Gleak¼ 0.8 pSmm" 2, estimated from
the measured remaining input resistance (on average 280 MO) at " 90 mV when
KLTA and Ih channels were blocked with dendrotoxin-k and ZD 7288, respectively.
The KLTA current was modelled with a reversal potential of " 105 mV (ref. 37), an
average half-activation voltage (V0.5) of " 72.9 mV, and an average activation time
constant scaling factor (q) of 0.77. This resulted in kinetics for the KLTA channels in
equations (7–10) (V in mV, t in ms, m¼ 4, n¼ 1).

a1 Vð Þ ¼ 1þ e
V þ 92:74
" 11:7

# $" 1

ta Vð Þ ¼ q"1 21:5
6e

V þ 95:4
7 þ 24e

V þ 95:4
50:6

% &
þ 0:35

ð7; 8Þ

b1 Vð Þ ¼ 1" 0:27
1þ e

V þ 102:4
6:16
þ 0:27

tb Vð Þ ¼ 170
5e

V þ 95:4
10 þ e"

V þ 105:4
8
þ 10:7

ð9; 10Þ

These equations are, apart from the scaling factor q, the same as given by Mathews
et al.39 with 35.4 mV added to all voltages.

The kinetics of the Ih current were modelled by equations 11 and 12.

a1 Vð Þ ¼ 1þ e0:1536 V þ 73:97ð Þ
# $" 1

ta Vð Þ ¼ 7 ( 28:17þ 100:9e
" V þ 63:2ð Þ2=2

364:8

3 39" 32ð Þ=10

ð11; 12Þ

This is similar to the Ih current of Rothman and Manis58, but about three times
slower. The cooperativity was set to m¼ 1, and the reversal potential was set to
" 50 mV.

The synaptic conductance templates were the same as those used for
conductance-clamp experiments in Fig. 2 (tEPSG¼ 0.3, tIPSG¼ 1.5 ms, n¼ 16;
tEPSG¼ 0.5 ms, n¼ 5). Conductance-clamp-simulated voltage traces were fitted

using the following four parameters: V0.5 and q of KLTA (Fig. 3b), and the peak
conductances of Ih and KLTA currents. These parameters were adjusted to fit the
cell-specific PSP kinetics, resting potential and input resistance according to
conductance-clamp measurements.
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Supplementary Figure 1| Properties of synaptic inputs to mature MSO neurons. (a) Schematics of 
recording configurations for stimulating lateral (Lat, ipsilateral side) and medial (Med, contralateral side) 
excitatory inputs (left) and a mix of ipsilateral and contralateral inhibitory (Inh) inputs (right, see 
Methods). (b) Current traces for example recordings in response to single stimuli of lateral (left) and 
medial (centre) excitatory inputs (EPSCs) in one recording, as well as an inhibitory input (IPSCs, right) in a 
different recording. Vm: –75 mV. Light and dark traces represent individual trials and the average response 
of 30 trials, respectively. Scale bar: 0.5 nA, 2 ms. Insets are zooms of the EPSCs. Inset scale bar: 0.5 nA, 
0.5 ms. (c–h) Average (±s.e.m.) postsynaptic conductance waveforms, calculated from the reversal 
potential and peak current amplitude were analysed for lateral and medial excitatory inputs to the same 
neuron (n=9 recordings, 18 inputs) and inhibitory inputs to different neurons (n=16 recordings, 16 inputs) 
shown for individual recordings (light markers) and population averages (dark markers) as follows: peak 
conductance amplitude (c), peak amplitude jitter as determined by the s.d. of peak conductance amplitudes 
(d), conductance onset jitter, determined by the s.d. of synaptic delays (e), 20–80% conductance rise-time 
(f), decay time constant (τdecay) as determined by single exponential fitting (g), and conductance half-width 
(h). Note the additional vertical axis for IPSG analysis in g,h. (i,j)  PSG rise time plotted against decay 
kinetics, shown for EPSGs (lateral and medial inputs pooled, i) and IPSGs (j). Although there was a greater 
diversity of decay kinetics, there was a small positive correlation between rise time and decay kinetics.  
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Supplementary Figure 2| Conductance-clamp simulation of EPSPs and IPSPs. (a) Schematics of recording 
configurations for simulating PSPs with conductance-clamp (left) and fibre-stimulating PSPs in current-clamp (C-clamp, 
right). (b) Normalized traces for an example recording showing the transformation of selected excitatory (EPSG, top) 
and inhibitory (IPSG, bottom) conductance templates into EPSPs and IPSPs, respectively. The conductance command 
waveforms were measured in Supplementary Figure 1 (G-command, dotted black traces) and were converted to a 
current injection command (I-flux, grey traces). Coloured traces indicate the membrane voltage (Vm) from the current 
injection. Three EPSGs (top) and IPSGs (bottom) were selected from the population to represent fast [τEPSG=0.2 ms, 
τIPSG=1.0 ms (goldenrod)], average [τEPSG=0.3 ms, τIPSG=1.5 ms (black)], and slow [τEPSG=0.5 ms, τIPSG=2.2 ms 
(chartreuse)] decay kinetics and are used throughout the manuscript. Normalized example fibre-stimulated EPSPs and 
IPSPs from separate recordings are shown in blue. Scale bar: 1 ms. (c) Cumulative histograms of decay kinetics for PSPs 
generated by each EPSG (left, n=23–26 recordings) and IPSG (right, n=24–30 recordings) in the population. Dotted lines 
indicate the conductance command τdecay. The cumulative distribution of fibre-stimulated EPSPs (n=25 recordings) and 
IPSPs (n=17 recordings) are overlaid for comparison (blue). Note that the distributions of stimulated EPSPs and IPSPs 
cover the range of conductance-clamp-simulated events. (d) Comparison between conductance-clamp-simulated and 
fibre-stimulated EPSP half-width (left) and amplitude (right) measured in the same recording (n=7 recordings, from Fig. 
1f–h). (e) Voltage traces from the example recording in Figure 1f,g re-plotted, but aligned in time to the IPSP for 
conductance-clamp-simulated (top) and fibre-stimulated (bottom, stimulus artefacts removed) EPSPs. Although a larger 
afterhyperpolarization in fibre-stimulated EPSPs indicates a larger recruitment of voltage-gated potassium channels, this 
observation did not correspond to a significant influence on inhibition-enforced EPSP peak shifts (Fig. 1h). Scale bar: 5 
mV, 0.5 ms. 
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Supplementary Figure 3| Single-electrode and dual-electrode conductance-clamp. (a) Schematics of 
recording configurations for dual-electrode whole-cell recordings. In the same recording, the conductance 
was always delivered through one electrode (E-1), but the voltage was either measured (Vm-record) in the 
same electrode (left) or in the second electrode (E-2, right). (b,c) Voltage traces of EPSPs (b) and IPSPs (c) 
for an example recording, measured in E-1 (left) and E-2 (middle) and normalized (right). Vrest: –63 mV. 
Scale bars: 2 mV, 1 ms (top) and 1 mV, 2 ms (bottom). (d) Voltage traces for the recording in b,c of 
inhibition-enforced EPSP peak shifts at timing conditions that advanced (Δtinh=0.1 ms) and delayed (Δtinh=–
0.6 ms) EPSP peak timing, as recorded in E-1 (left) and E-2 (right). Insets are zooms of the peaks, aligned 
in amplitude. Inset scale bar: 0.2 mV, 50 µs. (e–g) Analyses of EPSP (black) and IPSP (red) E-1 
measurements plotted against E-2 measurements for the following parameters: (e) decay time constant (left) 
and half-width (right), (f) 20–80% rise time (left) and latency to 20% of peak amplitude (right), and (g) PSP 
amplitude (left). (right) The ratio of E-1:E-2 amplitude for EPSPs is plotted against IPSPs to indicate the 
linearity of the voltage drop across the electrodes. Note that although there was a consistent voltage drop, 
the kinetic profile was not altered. (h) Average (±s.e.m.) inhibition-enforced EPSP peak shifts plotted 
against Δtinh for experiments as shown in d. For EPSP peak shifts recorded in E-1 and E-2, Δtinh=0.1 ms: –
42±7 and –58±6 µs, respectively (P=0.575) and Δtinh=–0.6 ms: 8±6 and 25±7 µs, respectively (P=0.485). 
Two-way ANOVA, n=10 comparisons from five recording pairs.  
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Supplementary Figure 4| Intrinsic membrane properties of P60–90 and P17 MSO neurons. (a) 
Voltage traces for example current-clamp recordings of MSO neurons from a P85 (top) and P17 (bottom) 
gerbil in response to a –250 pA, 5 ms current step. Vrest: –65 (P85) and –65 mV (P17). Scale bar: 2 mV. 
(b,c) Cumulative histograms of resting membrane potential (Vm, b, left), membrane resistance (Rm, b, 
right), membrane time constant (Wm, c, left), and membrane capacitance (Cm, c, right) for P60–90 (black) 
and P17 (brown) gerbils. (d,e) The voltage-dependence of membrane input resistance (left) and time 
constant (right) for P60–90 gerbils (n=11 recordings, d) and P17 gerbils (n=21 recordings, e). Individual 
recordings and the population average (±s.e.m.) are presented as light lines and dark markers, respectively. 
Note that the input resistance of some neurons further increased between –80 and –90 mV in P60–90 
gerbils, but had completely tapered off by –80 mV in P17 gerbils.  
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Supplementary Figure 5| Example traces from individual jitter trials. Traces from individual trials for 
the example recording in Figure 5c,d, shown for inhibitory timing conditions that generated an EPSP peak 
advance (Δtinh=0.1 ms, top) and delay (Δtinh=–0.6 ms, bottom), but with the excitatory plus inhibitory 640 
µs jitter function half-width (only voltage traces for the 320 µs jitter function half-width are shown in Fig. 
5d). Grey traces indicate the EPSP and IPSP alone, and magenta traces indicate the composite PSP. Arrows 
indicate peak shifts. Examples were chosen to illustrate the diversity of peak shifts observed with 
substantially jittered EPSPs and IPSPs. (from left to right) A “Dropped peak” occurred when inhibition 
hyperpolarized one of two distinguishable peaks. A “Smeared EPSP” was more sensitive to peak shifts, 
consistent with slower EPSPs (Figs. 2c,e,i,j, and 3g). Stochastic timing could also produce a “Normal 
shift,” “No shift” at all, and even an “Opposite shift” of direction the timing condition normally enforced. 
Vrest: –64 mV.  
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Supplementary Figure 6| Analysis of all jitter trials. All trials for experiments in Figure 5 were pooled 
to illustrate the distribution of EPSP peak shifts for each excitatory (a), inhibitory (b), and excitatory plus 
inhibitory (c) jitter functions. Data are separated for inhibitory timing conditions that enforced an EPSP 
peak advance (Δtinh=0.1 ms, top) and delay (Δtinh=–0.6 ms, bottom). Data are colour-coded to indicate the 
amount of jitter for each condition (colour code is indicated below the plots). For each condition, EPSP 
peak shifts for individual trials are plotted against the s.d. of the four jittered input onset times for that 
specific trial (left). Note that for excitatory plus inhibitory jitter conditions (c) data are plotted 
independently against the excitatory jitter s.d. (left) as well as inhibitory jitter s.d. (centre). Cumulative 
histograms are also shown to illustrate the distributions of peak shifts for each jitter function half-width (a–
c, right).  



7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 7| Analysis of independent EPSP and IPSP trains. (a) Voltage traces for an 
example 16 pulse train recording of EPSPs (τEPSG=0.3 ms, blue) and IPSPs (τIPSG=1.5 ms, red) at (from top 
to bottom) 200, 333, 500, and 800 Hz. Dots and numerals above the traces indicate individual events that 
are further analysed in b. Scale bar: 5 mV, 10 ms. (b) The first, second, fourth, and 16th event for each train 
in a overlaid for EPSPs (left) and IPSPs (right), aligned to the predicted peak time based on the ISI. Traces 
are colour-coded to indicate their position in the train (colour code is indicated in a, bottom right). (c) 
Analysis of each event in EPSP (left) and IPSP (right) trains. (top) Absolute peak amplitude of each event 
is normalized to the first to indicate summation. At 800 Hz, EPSPs were depressed to 92±2% at the 16th 
event. IPSP summation begins to develop at 333 Hz. At 800 Hz, IPSPs had summated to 158±2% at the 
16th event. (middle) Trough-to-peak amplitude of each event is normalized to the peak amplitude of the first 
event to indicate the relative voltage modulation throughout the train. At 800 Hz, modulation at the 16th 
EPSP was 97±1% of the first. IPSP modulations began to deteriorate at frequencies above 333 Hz. At 800 
Hz, modulation was reduced to 41±2% at the 16th event. (bottom) Peak time relative to the ISI prediction is 
plotted to indicate changes in the relative timing of EPSPs and IPSPs. At 500 Hz, EPSPs were delayed by 
4±1 µs at the 16th event. IPSPs during the train became advanced at frequencies above 333 Hz, thereby 
altering the effective Δtinh during the train. At 800 Hz, IPSPs were advanced by 176±15 µs at the 16th event. 
n=8 recordings.  
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Supplementary Figure 8| Subthreshold PSP summation bias at high frequencies. The protocol and 
analysis in Figure 4b,d,h was repeated, but for 16 pulse trains at 333, 500, and 800 Hz using the average 
speed EPSG and IPSG. (a) Voltage traces for an example recording at 800 Hz without inhibition (top) and 
with inhibition timed to bias PSP summation toward ipsilateral-leading (Δtinh=0.1 ms, middle) and 
contralateral-leading (Δtinh=–0.6 ms, bottom) excitation. Traces are colour-coded to reflect excitatory 
timing conditions as in Figure 4a. Dots and numerals above the traces indicate individual events zoomed in 
insets, as in Figure 4b,d,f,h. Scale bar: 5 mV, 2 ms. Inset scale bar: 0.5 mV, 0.1 ms. (b) Normalized PSP 
amplitudes plotted against Δtexc and fitted with Gaussian functions for events indicated by the arrow 
greyscale tones of the insets in a. (c) Best texc (±s.d.) plotted against each event in the train at 333, 500, 
and 800 Hz. At high frequencies, Best texc changes during the train, similarly as for inhibition-enforced 
EPSP peak shifts (Fig. 6). At 800 Hz, the 16th event compared to the first, Δtinh=0.1 ms: –59±5 vs –90±8 µs, 
P<0.001; Δtinh=–0.6 ms: 64±5 vs 42±4 µs, P<0.001, two-way ANOVA, n=8 recordings. Note that the peak 
shifts during the train are consistent with an IPSP that becomes relatively advanced in time 
(Supplementary Fig. 7), altering the effective Δtinh during the train.  
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Neuronal membrane properties can largely vary even within distinct morphological cell
classes. The mechanisms and functional consequences of this diversity, however, are
little explored. In the medial superior olive (MSO), a brainstem nucleus that performs
binaural coincidence detection, membrane properties at rest are largely governed by
the hyperpolarization-activated inward current (Ih) which enables the temporally precise
integration of excitatory and inhibitory inputs. Here, we report that Ih density varies along
the putative tonotopic axis of the MSO with Ih being largest in ventral, high-frequency
(HF) processing neurons. Also Ih half-maximal activation voltage and time constant are
differentially distributed such that Ih of the putative HF processing neurons activate faster
and at more depolarized levels. Intracellular application of saturating concentrations of
cyclic AMP removed the regional difference in hyperpolarization-activated cyclic nucleotide
gated (HCN) channel activation, but not Ih density. Experimental data in conjunction with a
computational model suggest that increased Ih levels are helpful in counteracting temporal
summation of phase-locked inhibitory inputs which is particularly prominent in HF neurons.

Keywords: HCN channel, medial superior olive, sound localization, tonotopy, coincidence detection

INTRODUCTION
Neuronal encoding of information in the time domain is
enhanced by specific adjustments of membrane properties to the
dynamics and temporal characteristics of the inputs (O’Donnell
and Nolan, 2011). This is especially important for neurons in
the medial superior olive (MSO), a binaural nucleus in the audi-
tory brainstem that analyses interaural time differences (ITDs) of
different input frequencies with extremely high temporal preci-
sion. This acuity primarily relies on the coincidence detection of
precisely timed excitatory inputs from both ears onto MSO neu-
rons (Grothe et al., 2010). In addition, two glycinergic inputs,
originating from the ipsilateral medial and lateral nucleus of the
trapezoid body, provide a prominent and phase-locked inhibition
to MSO neurons, which fine-tunes the slope of the ITD func-
tion to occur within the physiological range (Brand et al., 2002;
Pecka et al., 2008; Leibold, 2010). Equally important for the high
temporal precision with which these neurons integrate their exci-
tatory and inhibitory inputs are the large voltage-gated channels
that are open around the resting potential of the membrane. Such
exquisitely fine-tuned temporal processing crucially depends on
the composition and the properties of voltage-gated ion chan-
nels. One of these voltage-gated currents is Ih (or HCN-current),
a cationic current, which is activated upon hyperpolarization
(Wahl-Schott and Biel, 2009). Ih is especially large in MSO neu-
rons and is regulated by intrinsic modulators such as cAMP
and PIP2 (Khurana et al., 2012). In addition, these neurons also
express a large low voltage-activated K+-channel (KLVA) that also
opens around the resting potential (Barnes-Davies et al., 2004;
Mathews et al., 2010; Khurana et al., 2011). The sophisticated

interplay between these channels reduces the input resistance and
shortens the membrane time constant and thereby enhances the
temporal acuity with which these neurons integrate their synaptic
inputs (Barnes-Davies et al., 2004; Hassfurth et al., 2009; Mathews
et al., 2010; Karcz et al., 2011; Khurana et al., 2011).

Like most nuclei in the auditory brainstem, the MSO is tono-
topically organized: Low-frequency (LF) sounds are represented
dorsally and higher frequencies are processed ventrally (Guinan
et al., 1972; Müller, 1990). This spatial gradient of input fre-
quencies enabled us to investigate the relationship between Ih
properties, the integration of inhibitory inputs and its depen-
dence on input frequency in the acute brain slice preparation
using whole-cell patch-clamp recordings. We found that Ih is dif-
ferentially distributed along the dorsoventral axis of the nucleus
and that this spatial arrangement is paralleled by differential
properties of synaptic integration.

Moreover, we explored the putative functional consequences
of this relationship theoretically using a computational single-
compartment model featuring HCN and KLVA channels that was
fitted to electrophysiological recordings: this model suggests that
integration of inhibitory inputs in a frequency-dependent man-
ner helps to maintain the neuron’s membrane potential close to
firing threshold.

MATERIALS AND METHODS
All experiments were performed in accordance with the rules
laid down by the EC Council Directive (86/89/ECC) and
German animal welfare legislation and approved by the Regierung
Oberbayern (AZ 55.2-1-54-2531-57-05, Bavaria, Germany).
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All agents were purchased from Sigma-Aldrich (Germany) and
Biotrend (Germany) unless otherwise indicated.

SLICE PREPARATION
Patch-clamp recordings were performed from MSO neurons of
gerbils (Meriones unguiculatus) at the age of postnatal day 17/18
(denoted P18) and 21/22/23 (denoted P22). The animals were
decapitated under isoflurane anesthesia. The brain was removed
in ice-cold oxygenated (95% O2/5% CO2) sucrose replace-
ment solution containing (in mM): 2.5 KCl, 1.25 NaH2PO4, 26
NaHCO3, 0.25 CaCl2, 3 MgCl2, 12.5 glucose and 100 sucrose
(pH 7.4). Transverse brainstem slices (180 µm) comprising the
MSO were cut with a vibratome (VT1200S; Leica, Germany),
incubated at 32◦C for 15 min in oxygenated artificial cere-
brospinal fluid (ACSF) containing (in mM) 125 NaCl, 2.5 KCl,
1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2, 1 MgCl2 and 25 glu-
cose and then maintained at room temperature. For recordings,
slices were transferred to a recording chamber, which was per-
fused continuously with oxygenated ACSF at 32◦C, and visualized
with an upright microscope (Axioscope, Zeiss, Germany) using
infrared-differential interference contrast optics.

ELECTROPHYSIOLOGY
Current- and voltage-clamp recordings were made from visually
identified MSO cells using a Multiclamp 700 A amplifier (Axon
Instruments, USA) with standard electrode solution containing
(in mM): 125 K-gluconate, 5 KCl, 10 HEPES, 1 EGTA, 2 Na2ATP,
2 MgATP, 0.3 Na2GTP and 10 Na-phosphocreatine; adjusted to
pH 7.25 with KOH. All experiments were performed at near-
physiological temperature (32◦C). Patch pipettes were pulled
from borosilicate glass capillaries (BioMedical Instruments,
Germany) on a DMZ Universal Puller (Zeitz Instruments,
Germany). When filled with electrode solution, patch pipettes
had a resistance of 2–4 M!. In some experiments Alexa-488
(100 µM) (Molecular Probes, Germany) was added to the elec-
trode solution in order to verify the location of the neuron along
the presumed tonotopic axis.

During voltage-clamp recordings, whole-cell capacitance was
compensated and used as measure for cell surface. The series
resistance (<10 M!) was compensated to a residual of 2–2.5 M!

and not allowed to change more than 20%. To isolate Ih phar-
macologically we applied the following drugs (in mM): 1 3,4
diaminopyridine, 10 TEA-Cl, 0.2 BaCl2, 0.001 TTX, 0.05 NiCl2,
0.1 CdCl2, 0.01 DNQX, 0.025 DL-AP5 and 0.001 strychnine. NaCl
was reduced to maintain iso-osmolarity.

We cannot exclude that our voltage-clamp recordings are dis-
torted due to space-clamp errors which result in incomplete con-
trol of dendritic membrane potential. We minimize these errors
by using an Ih isolation cocktail. Additionally, MSO neurons
are anatomically compact cells with short dendrites (∼150 µm)
(Rautenberg et al., 2009) so that space-clamp errors should be
small. Moreover, it is likely that the somatic voltage-clamp under-
estimates the HCN channel conductance.

During current-clamp experiments, the bridge-balance was
adjusted to compensate for artifacts arising from electrode resis-
tance. In some experiments, Ih was blocked with the HCN
channel-selective inhibitor ZD7288 (20 µM).

Synaptic currents were evoked stimulating the slice with a glass
electrode filled with 2 M NaCl. Stimulation electrodes were placed
medial and lateral to the MSO. Inhibitory postsynaptic currents
(IPSCs) were isolated by addition of 10 µM DNQX and 25 µM
DL-AP5. IPSCs were evoked by brief pulses (100 µs, intensities
10–40 V) triggered by an analogue stimulus isolation unit (BSI-
950, Dagan Corporation, USA). Patch electrodes were filled with
(in mM) 99 CsMeSO4, 41 CsCl, 10 HEPES, 10 EGTA, 2 Na2ATP,
2 MgATP, 0.3 Na2GTP, 5 TEA-Cl and 1 CaCl2, and 5 QX314
to block postsynaptic Na+ channels; adjusted to pH 7.25 with
CsOH.

In conductance-clamp experiments, simulated inhibitory con-
ductances at 100 Hz were injected into MSO neurons with
a SM-1 amplifier (Cambridge Conductance, UK). The simu-
lated inhibitory conductance based upon recorded IPSCs (decay
time: ∼1.5 ms, 10–90% rise time: ∼0.9 ms, reversal poten-
tial: −90 mV). The reversal potential was chosen according to
data by Magnusson et al. (2005).

DATA ACQUISITION AND ANALYSIS
Both voltage and current signals were low-pass filtered at 10 kHz
with a four-pole Bessel filter and sampled at a rate of 20–50 kHz.
Stimulus generation and recordings were done with pCLAMP
(Axon Instruments, USA). All electrophysiological data were
analysed in IGOR Pro (Wavemetrics, USA) using Neuromatic
and custom-written routines, or in Clampfit (Axon Instruments,
USA). A junction potential of −10.5 mV was corrected.

Steady-state current responses were evaluated at the end of the
voltage pulse. Ih density was obtained by normalizing the ampli-
tude to the compensated whole-cell capacitance. The voltage
dependence of Ih activation was measured from the tail cur-
rent. Values were fitted with a Boltzmann function to obtain the
half-maximal activation voltage V0.5: f (V) = 1/(1 + exp[(V0.5 −
V/k)]), where V is the membrane voltage and k is the slope
factor. The membrane time constants were evaluated by fit-
ting a double-exponential function to the current traces: f (t) =
A1 exp(−t/τfast) + A2 exp(−t/τslow) where τfast and τslow are the
fast and slow time constant of Ih activation. The effective time
constant of Ih activation, τweighted, was calculated according to:
τweighted = (A1 ∗ τfast + A2 ∗ τslow)/(A1 + A2). V0.5 and τweighted
were estimated for each experiment and averaged.

Input resistance was assessed from the peak hyperpolarization
triggered by −100 pA current injection according to Ohm’s law
R = U/I. The membrane time constant was estimated from a
single-exponential fit to the voltage response to −100 pA current
injection.

To determine decay times of evoked IPSCs the decay was fitted
with a single-exponential function. The time course of inhibitory
postsynaptic potentials (IPSPs) was analyzed by averaging 30
traces, normalizing the resulting trace to the first IPSP amplitude,
and then the 10–90% rise time, the 90–10% decay time and the
half-width of the IPSPs were estimated.

Results are expressed as mean ± standard error of the mean
(SEM). Statistical significance was determined by a single-factor
ANOVA test followed by a Scheffé’s post-hoc test or by Student’s
unpaired t-test in Excel (Microsoft) with significance thresholds
of P < 0.05 (∗), P < 0.01 (∗∗), and P < 0.001 (∗∗∗).
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RECONSTRUCTION OF PATCHED NEURONS
Following recording, slices were fixed in 4% paraformaldehyde
for 30 min. After extensive washing in phosphate-buffered saline
(PBS) slices were exposed to blocking buffer (0.5% trition X-
100/0.1% saponin/1% BSA in PBS) followed by incubation with
the primary antibody (chicken anti-microtubule-associated pro-
tein 2, MAP2, 1:1000, Neuromics) in blocking buffer. Slices were
then rinsed in washing buffer (0.5% Trition X-100/0.1% saponin
in PBS) and immunoreactivity was visualized by incubating the
slices with the Cy3-conjugated secondary antibody raised in don-
key (1:300; Dianova). Finally, slices were washed and mounted
on slides with vectashield mounting reagent (Vector Laboratories,
USA).

MODELING
A Hodgkin-Huxley-type single-compartment model was imple-
mented separately for prototypic P22 dorsal and ventral cells.
The temporal evolution of membrane potential V followed the
differential equation

Cm
dV

dt
= − (

Ih + IKLT + Isyn + Ileak
)

with membrane capacitance Cm and Ohmic currents

Ix(V) = gxam
x bn

x(V − Ex).

The parameter gx describes the peak conductance, ax and bx are
the gating variables for activation and inactivation, respectively,
and Ex denotes the reversal potential. The gating variables follow
first order kinetics

da

dt
= a∞ − a

τa
and

db

dt
= b∞ − b

τb

with the steady-state activation a/b∞ and the voltage-dependent
time constants τa/b.

The low-threshold potassium channel (KLT) was modeled
according to Mathews et al. (2010) with EK = −90 mV. The
kinetics of the hyperpolarization-activated cation current (Ih) was
fitted to the data of voltage-clamp experiments from Figure 5,
which resulted in the steady-state activation and the activation
time constant (see Figure 7A)

a∞(V) =
(

1 + e0.1(V + 80.4)
)−1

and τa = 79 + 417e−(V + 61.5)2/800

for dorsal cells, and

a∞(V) =
(

1 + e0.095(V + 75.5)
)−1

and τa = 65 + 292e−(V + 62.5)2/722.

for ventral cells, respectively (V in mV). Since HCN channels do
not spontaneously inactivate, b was set to 1. As reversal potential
we used Eh = −35 mV.

The model has been adapted to the different mean values
of the membrane properties of the ventral (HF) and dorsal
(LF) population by using the following channel peak con-
ductances (in nS/µm2): gKLTdorsal = 0.0531, gHCNdorsal = 0.01025,

gKLTventral = gKLTdorsal ∗ 5.4 and gHCNventral = gHCNdorsal ∗ 3.15.
These settings yield a resting potential of around −60 mV for both
model types and input resistances of Rin = 23.94 M! for the dor-
sal and Rin = 3.77 M! for the ventral model corresponding to
membrane time constants of τm of 1.64 ms and 0.45 ms, respec-
tively. Using a specific membrane capacitance of 1 µF/cm2 these
correspond to a modeled cell surface of 6839 µm2 (dorsal) and
12064 µm2 (ventral) with membrane capacities of 68.39 pF and
120.64 pF, respectively.

For both cell models the passive leak conductance was set to
gleak = 33.3 fS/µm2 and the reversal potential was set to −70 mV.

The fitting procedure described above implicates that the
model parameters (specifically the HCN conductances) are
adjusted according to our current-clamp data. This was done
on purpose, since we assume the voltage-clamp data to be less
accurate due to the above mentioned incomplete voltage-clamp
control especially in the dendrites.

The inhibitory input to the model was implemented as a
conductance with reversal potential of −90 mV. The IPSG kinet-
ics were fitted with a double-exponential (t in ms) to resemble
measurements from Couchman et al. (2010):

G(t) = ginh

(
1 − e−t/0.4

)
e−t/1.6

max
((

1 − e−t/0.4
)

e−t/1.6
)

For simulations to investigate the IPSP half-widths inhibitory
100 Hz input stimuli of 20.5 nS (dorsal) and 90 nS (ventral) were
applied to the models to roughly fit the membrane potential
deflection seen in the corresponding current clamp experiments.
The stimulus train was kept up for 800 ms to show the influence
of the slowly activating HCN current.

RESULTS
IH VARIES ALONG THE DORSOVENTRAL AXIS IN THE MSO
Neuronal processing in the auditory system is tonotopically
organized such that frequencies are orderly represented across
most auditory nuclei. In the MSO, low frequency sounds are
supposed to be encoded in the dorsal part of the MSO and
higher frequency sounds are presumably represented in the
ventral part (Guinan et al., 1972). In general, best frequen-
cies of MSO neurons are lower compared to neurons in the
LSO, but can occasionally still be above 2 kHz (Pecka et al.,
2008). Here, we investigated in a brain slice preparation of P18
gerbils the biophysical properties of MSO neurons along this
putative tonotopic axis. The MSO was subdivided into three
regions, a ventral region, which we refer to as high-frequency
(HF), a dorsal region, which we refer to as low-frequency (LF)
and an intermediate middle-frequency (MF) region. MSO neu-
rons were identified on the basis of their bipolar shape and
their arrangement in a parasagittal plane. In some experiments,
100 µM Alexa-488 was included in the pipette solution to ver-
ify the visually determined location of the neurons along the
dorsoventral axis (Figure 1A). The properties of Ih between the
regions were analyzed using voltage-clamp experiments. In all
cells hyperpolarizing voltage pulses triggered slowly activating,
large inward currents. Ih amplitude was 57% larger in ventral
(presumably HF) neurons compared with dorsal (presumably
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FIGURE 1 | Ih varies systematically along the dorsoventral axis.
(A) A brain slice containing the MSO with Alexa-488-filled neurons (green)
verifies the distribution of the patched neurons along the dorsoventral axis
(red: MAP-2). (B) Pharmacologically isolated Ih current traces were elicited
by depolarizing and hyperpolarizing voltage steps from −60.5 mV to
potentials between −40.5 mV and −120.5 mV for 1 s in 5 mV step
increment and then to −100.5 mV for 0.5 s to elicit the tail current to
determine the voltage dependence of Ih activation. Current traces are
representative for the dorsal, the intermediate and the ventral part of the
MSO. (C) I-V relationships of steady-state (red arrow in B) Ih density for
ventral (n = 15), intermediate (n = 12) and dorsal (n = 18) neurons
emphasize that Ih density amplitudes are smallest in dorsal neurons and

largest in ventral neurons (C1). Ih density amplitudes for a voltage step
to −110.5 mV (C2). (D) Weighted activation time constants at −110.5 mV
(D1). The weighted activation time constants are voltage dependent and
largest in the dorsal part of the MSO (D2). (E) The voltage-dependence of
Ih activation was measured from the tail current 20 ms after the end of the
voltage steps (red arrow) (E1). Values were fitted with a Boltzmann
function to obtain the half-maximal activation voltage. In dorsal neurons
the Ih activation curve is shifted to more negative voltages (E2).
Half-maximal activation voltage was measured in each experiment and
averaged (E3). Black symbols: dorsal neurons; gray symbols: intermediate
neurons; white symbols: ventral neurons. ∗∗P < 0.01, ∗∗∗P < 0.001,
single-factor ANOVA test followed by a Scheffe’s post-hoc test.

LF) neurons [at −110.5 mV: ventral: −3006 ± 165 pA; inter-
mediated: −2388 ± 123 pA; dorsal: −1910 ± 278 pA; ANOVA:
F(2, 42) = 6.60, P = 0.003; Figure 1B]. Also, Ih density was signif-
icantly larger in the ventral part of the MSO compared with the
dorsal and intermediate part [at −110.5 mV: ventral: −127.7 ±
5.3 pA/pF; intermediate: −85.1 ± 5.4 pA/pF; dorsal: −73.4 ±
9.3 pA/pF; ANOVA: F(2, 42) = 14.86, P < 0.001; Figure 1C].
Dorsal neurons not only exhibited the smallest Ih amplitude
but also Ih that activated slowest. The calculated weighted acti-
vation time constant was two-fold larger in dorsal neurons
compared with ventral neurons [at −110.5 mV: ventral: 95.6 ±
7.0 ms; intermediate: 117.9 ± 9.2 ms; dorsal: 191.3 ± 28.1 ms;

ANOVA: F(2, 42) = 6.62, P = 0.003; Figure 1D1]. For all three
regions, the weighted activation time constants were voltage-
dependent with τweighted = 72 ± 5 ms at −120.5 mV increasing
to τweighted = 215 ± 17 ms at −90.5 mV in the ventral part of the
MSO (Student’s paired t-test: P < 0.001) and with τweighted =
152 ± 22 ms at −120.5 mV increasing to τweighted = 367 ± 40 ms
at −90.5 mV in the dorsal part (Student’s paired t-test: P <

0.001) (Figure 1D2). Analyzing the amplitude of the tail cur-
rent revealed that Ih voltage dependence was negatively shifted
in dorsal neurons compared with ventral and intermediate neu-
rons (Figure 1E). Consequently, the half-maximal activation
voltage was most negative in dorsal neurons [ventral: −79 ±
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1 mV; intermediate: −76 ± 2 mV; dorsal: −87 ± 2 mV; ANOVA:
F(2, 42) = 13.51, P < 0.001; Figure 1E]. On average, our mea-
surements are in line with recently published data (Khurana et al.,
2012).

Taken together, we observed a large difference in Ih proper-
ties between the ventral and the dorsal part of the MSO. Dorsal
neurons exhibited smaller Ih amplitude, slower activation kinetics
and more negative half-maximal activation voltage as compared
to ventral neurons.

cAMP MODULATION OF Ih DIFFERS ALONG THE DORSOVENTRAL AXIS
HCN channel properties depend largely on the intracellular
concentration of cAMP. The extent by which cAMP is able
to regulate the gating of HCN channels is determined by the
HCN subunits (Wahl-Schott and Biel, 2009). HCN1, which is

less sensitive to cAMP, is the main subunit in MSO neurons
(Koch et al., 2004; Khurana et al., 2012). Nevertheless, cAMP
modulates the gating of HCN channels in the MSO proba-
bly due to a co-assembly of HCN1 and HCN4 to heteromeric
HCN channels (Khurana et al., 2012). To test whether a cAMP-
dependent modulation underlies the differences in Ih proper-
ties across the dorsoventral axis, we included 25 µM cAMP in
the pipette solution, which induces maximal cAMP modula-
tion (Ludwig et al., 1998). As expected, Ih density amplitude
was still significantly larger in ventral neurons compared with
dorsal neurons (at -110.5 mV: ventral: −99.9 ± 6.6 pA/pF; dor-
sal: −74.6 ± 6.8 pA/pF; Student’s unpaired t-test, P = 0.014;
Figures 2A,B). Moreover, cAMP accelerated the activation kinet-
ics (Figures 2C,E) and positively shifted the activation curves in
the two regions such that the activation curves overlapped for all

FIGURE 2 | Modulation of Ih by cAMP differs along the dorsoventral axis.
(A) Current responses to depolarizing and hyperpolarizing voltage steps were
recorded from MSO neurons in the ventral and dorsal part of the MSO with
25 µM cAMP in the pipette solution. (B) Ih density gradient persists in the
presence of cAMP as illustrated by the current-voltage relationships for
ventral (n = 13) and dorsal (n = 11) neurons (B1) and their Ih density
amplitudes for a −110.5 mV voltage step (B2). (C) The weighted activation
time constants and (D), the voltage dependence of Ih activation overlap in the

presence of cAMP. Comparison of (E) the weighted activation time constants
and (F) the half-maximal activation voltages in the absence and presence of
25 µM cAMP reveals that dorsal neurons are more sensitive to cAMP than
ventral neurons (F2). (F1) In the upper panel, tail currents were elicited using
standard pipette solution. In the lower panel, a different, dorsal neuron is
illustrated using standard pipette solution supplemented with 25 µM cAMP.
Black symbols: dorsal neurons; white symbols: ventral neurons. ∗P < 0.05,
∗∗∗P < 0.001, two-tailed, unpaired t-test.
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neurons (Figures 2D,F), with the largest shift observed in dor-
sal neurons. Here, τweighted decreased more than two-fold from
191.3 ± 28.1 ms (n = 18) to 92.1 ± 18.8 ms (n = 11) at 110.5 mV
(Student’s unpaired t-test: P = 0.012, Figure 2E) and half-
maximal activation voltage increased by 15 mV from −87 ± 2 mV
(n = 18) to −72 ± 3 mV (n = 11) (Student’s unpaired t-test: P <

0.001). In ventral neurons, no shift of τweighted was observed
and half-maximal activation voltage was only shifted by about
9 mV (from −79 ± 1 mV (n = 15) to −70 ± 1 mV (n = 13);
Student’s unpaired t-test: P < 0.001; Figure 2F2). Hence, in the
presence of saturating concentrations of cAMP the Ih activation
kinetics and the dependence of Ih activation are similar whereas
the dorsoventral difference of Ih amplitude persists. We, there-
fore, assume that the spatial arrangement of Ih density originates
from differences in HCN channel density, whereas distinct basal
intracellular cAMP levels cause the dorsoventral organization
of the half-maximal activation voltage and the activation time
constants.

Ih DIFFERENCES AFFECT MEMBRANE PROPERTIES
At rest a fraction of HCN channels is open in the dorsal part
(∼9%) as well as in the ventral part (∼15%) of the MSO
(Figure 1E2). This is in accordance with studies showing that
Ih plays a critical role in determining the membrane proper-
ties in auditory brainstem neurons (Golding et al., 1995; Adam
et al., 2001; Koch and Grothe, 2003; Golding and Oertel, 2012).
To test whether the observed differences in Ih result in diverse
membrane properties we applied depolarizing as well as hyper-
polarizing current injections and recorded the voltage responses
from 59 neurons. As previously reported, depolarization of the
cells elicited a single action potential at the onset of the cur-
rent injection, whereas hyperpolarization induced a depolariz-
ing voltage sag, which can be attributed to the activation of
HCN channels (Figure 3A, Magnusson et al., 2005; Scott et al.,
2005). Despite the different open probability of HCN chan-
nels at rest, the resting potential was nearly identical in all
parts of the MSO (ventral: −58.8 ± 0.3 mV; dorsal: −59.1 ±

FIGURE 3 | Gradient of Ih affects membrane properties. (A) MSO neurons
in the dorsal and in the ventral part of the MSO fire a single spike at the
onset of depolarizing current injections and exhibit a voltage sag during
hyperpolarizing current steps. (B) Resting membrane potential, (C) peak input
resistance, and (D) membrane time constant are not significantly different
between ventral (n = 18) and dorsal (n = 25) neurons (D2). The membrane
time constant was fitted by a single-exponential function as shown in (D1).
(E) Blocking Ih with 20 µM ZD7288, a specific Ih blocker, hyperpolarizes the

cell, increases the input resistance and the membrane time constant. Same
ventral neuron as in (A) but after treatment with 20 µM ZD7288. The
differences in (F) the input resistance (light-gray bars), the resting potential
(dark-gray bars) and (G) the membrane time constant before and after
application of 20 µM ZD7288 varies between ventral and dorsal neurons. The
effects are more pronounced in ventral neurons. Black symbols: dorsal
neurons; white symbols: ventral neurons. ∗P < 0.05, two-tailed unpaired
t-test.
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0.6 mV; Student’s unpaired t-test: P = 0.692; Figure 3B) indicat-
ing compensatory gradient of outward currents. The peak input
resistance and the membrane time constant did not differ sig-
nificantly between the frequency regions, however, both showed
clear trends. Ventral neurons tended to exhibit the lowest input
resistance (at −100 pA: ventral: 10.7 ± 1.8 M!; dorsal: 18.9 ±
5.5 M!; Student’s unpaired t-test: P = 0.240; Figure 3C). The
membrane time constants were determined by fitting a single
exponential function to the voltage traces (Figure 3D1). Ventral
neurons tended to display the smallest membrane time constant
(at −100 pA: ventral: 0.69 ± 0.09 ms; dorsal: 1.23 ± 0.27 ms;
Student’s unpaired t-test: P = 0.108; Figure 3D2). To solidify the
observed trends, we repeated the experiments under bath applica-
tion of 20 µM ZD7288, which selectively inhibits HCN channels.
In all neurons, irrespective of their location along the dorsoven-
tral axis, HCN channel blockade hyperpolarized the membrane
potential and increased the input resistance and the membrane
time constant (Figure 3E). This difference in input resistance and
membrane time constant between control condition and HCN
channel blockade varied significantly between dorsal and ven-
tral neurons (Figures 3F,G). Thus, the fractional contribution
of Ih is significantly different between dorsal and ventral neu-
rons. The effects of 20 µM ZD7288 were more pronounced in
the ventral part of the MSO (Figures 3F,G) demonstrating that
Ih contribution to the membrane properties is larger in ventral
neurons, and confirming that the distinct membrane properties
along the dorsoventral axis can be attributed to the observed
differences in Ih.

INTEGRATION OF SIMULATED INHIBITORY INPUTS VARIES ALONG THE
DORSOVENTRAL AXIS
Assuming the MSO receives inputs that are phase-locked to the
fine structure of a sound, the temporal summation of IPSP
should vary between the regions, being most prominent in ventral
neurons that presumably receive HF inputs and least in dor-
sal neurons that presumably receive LF inputs. This summation
would lead to a stronger hyperpolarization in ventral neurons
and thereby reduce their excitability. In this case the observed
dorsoventral difference of Ih, which activates upon hyperpolar-
ization, would compensate for the putatively increased hyperpo-
larization. To test our hypothesis, we simulated inhibitory inputs
at 100 Hz and recorded the voltage responses from neurons in the
dorsal and ventral part of the MSO. The simulated inhibitory con-
ductance, which was injected into MSO neurons, was based upon
recorded IPSCs (decay time: ∼1.5 ms, 10–90% rise time: ∼0.9 ms,
amplitude: ∼2 nA ). We also confirmed that decay times of IPSCs
did not differ significantly between the regions (ventral: 2.2 ±
0.1 ms, n = 9; dorsal: 2.7 ± 0.3 ms, n = 12; Student’s unpaired t-
test: P = 0.215; Figure 4B). These results are in line with data by
Magnusson et al. (2005) showing that the IPSCs decay with time
constants of around 1.5–3 ms in P18 gerbils (Magnusson et al.,
2005).

As expected, the membrane potential response to the simu-
lated IPSC trains varied as a function of the neuron’s location
along the dorsoventral axis (Figure 4A). The amplitude of the
evoked IPSPs was significantly larger in neurons of the dor-
sal part compared with neurons of the ventral part (ventral:

18.3 ± 0.8 mV, n = 13; dorsal: 21.1 ± 0.9 mV, n = 10; Student’s
unpaired t-test: P = 0.035; Figure 4C1), also indicative for a
larger input resistance in dorsal cells. Moreover, ventral neu-
rons showed less summation than dorsal neurons (IPSP2/IPSP1:
ventral: 0.980 ± 0.001, n = 13; dorsal: 0.995 ± 0.006, n = 10;
Student’s unpaired t-test: P = 0.011; Figure 4C2). To facilitate
comparison of the time course, IPSPs were amplitude-normalized
(Figure 4D1, inset) illustrating that the time course of IPSPs
changed along the dorsoventral axis. The half-width of the IPSPs
was largest in the dorsal part of the MSO and became smaller
in the ventral part (ventral: 3.76 ± 0.25 ms, n = 13; dorsal:
5.63 ± 0.60 ms, n = 10; Student’s unpaired t-test: P = 0.005;
Figure 4D). There was no difference in 10–90% rise time of
the first IPSP between the frequency regions (ventral: 1.10 ±
0.01 ms; dorsal: 1.12 ± 0.03 ms; Student’s unpaired t-test: P =
0.450; Figure 4E), but the 90–10% decay time of the last IPSP was
smallest in the ventral part (ventral: 2.51 ± 0.16 ms, n = 13; dor-
sal: 4.05 ± 0.56 ms, n = 10; Student’s unpaired t-test: P = 0.008;
Figure 4E). Taken together, the time course of the IPSPs is faster
in ventral neurons than in dorsal neurons. We speculate that these
effects can be attributed to the dorsoventral organization of Ih
as HCN channels are the main channel subtypes that open upon
hyperpolarization.

DORSOVENTRAL ORGANIZATION IS PRESERVED IN MORE MATURE
ANIMALS
There is evidence that HCN channels in the superior olivary
complex undergo drastic developmental changes during the first
three postnatal weeks (Leao et al., 2006; Hassfurth et al., 2009;
Khurana et al., 2012). To rule out that these developmental
refinements have implications on the observed dorsoventral orga-
nization, we repeated experiments at P22, which is more at the
end of this developmental period. Compared with P18, P22 MSO
neurons exhibited slightly increased Ih amplitudes, the activa-
tion curves were shifted to more positive half-maximal activation
voltages and the activation kinetics were accelerated (Table 1).
Nevertheless, Ih still varied systematically along the dorsoventral
axis, such that ventral neurons exhibited significantly larger Ih
amplitudes than dorsal neurons (at −110.5 mV: ventral: −3304 ±
1.5 pA, n = 8; dorsal: −2560 ± 238 pA, n = 9; Student’s unpaired
t-test: P = 0.019; Figure 5A). Accordingly, Ih density also var-
ied significantly (at -110.5 mV: ventral; −122.4 ± 9.6 pA/pF, n =
8; dorsal: −92.7 ± 5.0 pA/pF, n = 9; Student’s unpaired t-test:
P = 0.012; Figure 5B). Also, the activation kinetics and the half-
maximal activation voltage differed between the ventral part and
the dorsal part of the MSO (τweighted at −110.5 mV: ventral:
78.0 ± 3.6 ms, n = 8; dorsal: 109.6 ± 18.7 ms, n = 9; Student’s
unpaired t-test: P = 0.138; Figure 5C; V0.5: ventral: −76 ± 3 mV,
n = 8; dorsal: −81 ± 2 mV, n = 9; Student’s unpaired t-test: P =
0.160; Figure 5D). In P22 animals, Ih still was organized along the
dorsoventral axis. However, these differences between ventral and
dorsal neurons were less pronounced as compared to P18 gerbils.

To assess to what extent these subtle changes in HCN proper-
ties between P18 and P22 neurons affect the neurons’ membrane
properties, we also measured voltage changes in response to cur-
rent injections in P22 animals. During depolarization neurons in
the ventral part of the MSO fired a single spike at the beginning
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FIGURE 4 | The integration of synaptic inputs varies along the
dorsoventral axis. (A) Representative voltage traces to simulated IPSC
trains (100 Hz). (B) The time course of IPSCs does not vary along the
dorsoventral axis as indicated by the decay time. IPSCs were evoked by
stimulating the slice medial or lateral the MSO with a stimulation
electrode. (C) Dorsal neurons exhibit the largest IPSP amplitude (C1),
and IPSP summation is increased in dorsal neurons (C2). (D) IPSP time
course changes along the dorsoventral axis as depicted in the inset. The

half-width of IPSPs is largest in dorsal neurons and the time course
accelerates during stimulation with IPSC trains (D1). Half-width for the
first IPSP (D2). (E) There is no difference between the rise times
(10–90%) of the first IPSP (dark-gray bars) but the mean values for the
decay time (90–10%) of the last IPSP (light-gray bars) are larger in dorsal
neurons compared to ventral neurons. Black symbols: dorsal neurons;
white symbols: ventral neurons. ∗P < 0.05, ∗∗P < 0.01, two-tailed paired
or unpaired t-test, as appropriate.

of the current injection (Figure 6A). In most ventral neurons,
only for strong hyperpolarizing current injections the depolariz-
ing voltage sag was obvious which is due to the extremely large Ih.
This is also reflected in the very low input resistance (at −100 pA:
ventral: 3.7 ± 0.7 M!, n = 10; dorsal: 24.0 ± 6.4 M!, n = 12;
Student’s unpaired t-test: P = 0.016; Figure 6B) and in the very
small time constant of ventral neurons (at −100 pA: ventral:
0.45 ± 0.07 ms, n = 10; dorsal: 1.64 ± 0.45, n = 12; Student’s
unpaired t-test: P = 0.047; Figure 6C). Compared with P18 ger-
bils, the differences in the membrane time constant and in the
input resistance between ventral and dorsal neurons were larger
which resulted in significant differences along the dorsoventral
axis (Figures 6B,C; Table 1).

We evaluated the integration of inhibitory postsynaptic inputs
by injecting currents with stimulus amplitudes adjusted to evoke

physiological IPSPs of similar sizes (−8.1 ± 0.3 mV in the ven-
tral part, n = 10, and −8.4 ± 0.3 mV in the dorsal part of the
MSO, n = 12; Student’s unpaired t-test: P = 0.493). Similar to
P18, the voltage response to the simulated IPSC trains varied
along the dorsoventral axis. The half-width of the first IPSP (ven-
tral: 2.73 ± 0.06 ms, n = 10; dorsal: 4.29 ± 0.51 ms, n = 13;
Student’s unpaired t-test: P = 0.014; Figure 6D), the 10–90%
rise time of the first IPSP (ventral: 1.14 ± 0.03 ms, n = 10; dor-
sal: 1.37 ± 0.07 ms, n = 6; Student’s unpaired t-test: P = 0.007;
Figure 6E) as well as the 90–10% decay time of the last IPSP
(ventral: 1.84 ± 0.08 ms, n = 10; dorsal: 3.08 ± 0.39 ms, n = 13;
P = 0.013; Figure 6E) were largest in the dorsal part of the MSO
and became smaller in the ventral part. By comparing the time
course of P18 and P22 neurons (Figure 6F, example for ventral
neurons) we can demonstrate that consistent with an increase
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Table 1 | Summary of HCN channel properties, membrane properties and synaptic properties of dorsal and ventral neurons for P18 and P22.

P18 P22

Ventral Dorsal P Ventral Dorsal P

HCN CHANNEL PROPERTIES (AT -110.5 mV)
Current [pA] −3006 ± 165 (15) −1909 ± 277 (18) ** −3303 ± 134 (8) −2559 ± 238 (9) *

Current density [pA/pF] −127.7 ± 5.3 (15) −73.4 ± 9.3 (18) *** 122.4 ± 4.9 (6) 92.7 ± 5.0 (9) *

Half-maximal activation voltage [mV] −79 ± 1 (15) −87 ± 2 (18) ** −76 ± 3 (8) −81 ± 2 (9) n.s.
τweighted [ms] 95.6 ± 7.0 (15) 191.3 ± 28.1 (18) ** 78.0 ± 3.6 (8) 109.6 ± 18.7 (9) n.s.
MEMBRANE PROPERTIES (AT −100 pA)
Resting potential [mV] −58.8 ± 0.3 (24) −59.1 ± 0.6 (35) n.s. −60.0 ± 0.7 (10) −60.1 ± 0.9 (12) n.s.
Input resistance [M!] 10.7 ± 1.8 (24) 18.9 ± 5.5 (35) n.s. 3.7 ± 7.0 (10) 24.0 ± 6.4 (12) *

Membrane time constant [ms] 0.69 ± 0.09 (24) 1.23 ± 0.27 (35) n.s. 0.45 ± 0.07 (10) 1.64 ± 0.45 (12) *

SYNAPTIC PROPERTIES
IPSP half-width [ms] 3.76 ± 0.25 (13) 5.63 ± 0.60 (10) ** 2.72 ± 0.06 (10) 4.29 ± 0.51 (13) *

Rise time 10–90% [ms] 1.10 ± 0.01 (13) 1.12 ± 0.03 (10) n.s. 1.14 ± 0.03 (10) 1.37 ± 0.07 (13) *

Decay time 90–10% [ms] 2.51 ± 0.16 (13) 4.05 ± 0.56 (10) ** 1.84 ± 0.08 (10) 3.08 ± 0.39 (13) **

Values are mean ± SEM. The level of significance between ventral and dorsal was determined by using Student’s unpaired t-test except for HCN channel properties
of P18, where Scheffe’s post-hoc test was employed following a single-factor ANOVA test (*P < 0.05, **P < 0.01, ***P < 0.001, n.s. not significant). The n-values
for each group are stated in brackets.

in Ih the half-width of the IPSPs is decreased in P22 neurons
(Figure 6G). This emphasizes our hypothesis that Ih accelerates
the time course of the IPSP and thereby decreases the temporal
summation of IPSP. In addition, Ih compensates the summated
hyperpolarization induced by the temporal summation of HF
inhibitory inputs.

Taken together, these data provide evidence that also in mature
animals the integration of synaptic inputs varies as a function
of the neuron’s location along the dorsoventral axis and that a
tonotopic organization of Ih may at least partially account for the
observed gradient in synaptic integration.

TONOTOPIC ORGANIZATION OF Ih ACCOUNTS FOR THE
DORSOVENTRAL DIFFERENCES IN SYNAPTIC INTEGRATION
To gain further mechanistic understanding and to assess the
functional consequences of the dorsoventral Ih gradient in a
computational model of a MSO cell, we first fitted activation
profiles and channel time constants of Ih (from Figure 5) as
described in the Materials and Methods section (Figure 7A). In
addition to Ih, the model also included a low-voltage activated
potassium current IK−LVA to counteract Ih induced depolariza-
tion (Svirskis et al., 2002; see Materials and Methods). The peak
conductances of Ih and IK−LVA were used as free parameters to
adjust the neuron models to a given input resistance and rest-
ing potential. Whereas the former was taken to be 3.77 M! for
ventral (putative HF) neurons and 23.94 M! for dorsal (putative
LF) neurons, the latter was assumed identical (−60 mV) in both
populations.

We first validated our models by reproducing the current
clamp experiments from Figure 6F (Figures 7B,C). Applying a
stimulus of 100 Hz, we measured the half-width of the inhibitory
potentials for cell models with both dorsal and ventral character-
istics. The simulated IPSP half-widths are in very good agreement
with the experimental data.

Following the idea that the dorsoventral differences paral-
lel the tonotopic axis, we simulated the response of the model
neuron to periodic inhibitory inputs with different frequencies
(Figure 7D). The kinetics of the individual IPSGs was modeled
to fit those measured experimentally (Couchman et al., 2010
and Materials and Methods). The decay constant τ = 1.6 ms of
these IPSGs is so slow that there is temporal summation of
the IPSPs, which produces a significant hyperpolarizing volt-
age offset (dark lines in Figure 7D). This offset increased for
higher stimulation frequencies (200 Hz vs. 600 Hz in the exam-
ple of Figure 7D). The increase of the hyperpolarizing volt-
age offset for HF inputs can, however, be mitigated, if we
assume that only the ventral neurons process HF inputs: In
those neurons this offset is smaller because of the lower input
resistance that results from larger Ih and IK−LVA conductances
(Figure 7D).

The kinetics of Ih are much slower than the time constants
that are typical for fast auditory processing. Therefore, Ih is gen-
erally assumed not to be suited to directly interact with neuronal
processing of sound information on a fast time scale. However,
the interplay between Ih and IK−LVA may play an important role
in temporal sharpening of the PSPs (Khurana et al., 2011). In
contrast to Ih, the IK−LVA does possess fast kinetics and thus
has been proposed to contribute to fast temporal processing of
MSO neurons in several studies (Svirskis et al., 2002; Jercog et al.,
2010). To specifically evaluate the interaction between Ih and
IK−LVA channel kinetics in the present context of IPSG trains,
we also simulated a model in which the IK−LVA kinetics had
been slowed down such that the kinetics were comparable to
the Ih kinetics, while leaving the input resistance unchanged.
Comparing both models (fast IK−LVA kinetics, Figure 7C and slow
IK−LVA kinetics, Figure 7E) we found a clear effect on temporal
precision as measured by an increase in IPSP half-width. This
increase was stronger for the model of the ventral MSO neuron
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FIGURE 5 | Ih gradient persists in more mature animals (P22).
(A) Pharmacologically isolated Ih current traces were elicited by
depolarizing and hyperpolarizing voltage steps from −60.5 mV to
potentials between −40.5 mV and −120.5 mV (5 mV step increment).
Current traces are representative for the dorsal and the ventral part
of the MSO. (B) I-V relationships of steady-state Ih density for
ventral (n = 8) and dorsal (n = 10) neurons emphasize that Ih density
amplitudes are smallest in dorsal neurons and largest in ventral

neurons (B1). Ih density amplitudes for a voltage step to −110.5 mV
(B2). (C) The weighted activation time constants are voltage
dependent and largest in the dorsal part of the MSO. (D) The
voltage-dependence of Ih activation was measured from the tail
current. In dorsal neurons the Ih activation curve is shifted to more
negative voltages (D1). Half-maximal activation voltage was measured
in each experiment and averaged (D2). Black symbols: dorsal neurons;
white symbols: ventral neurons. ∗P < 0.05, two-tailed unpaired t-test.

(Figure 7E), i.e., a putative HF processing neuron, although the
input resistance was the same for both IK−LVA kinetics. This shows
that for high frequencies neurons with large Ih the temporal pre-
cision of the hyperpolarizing IPSPs is considerably enhanced by
the active properties of the fast KLVA channels, whereas for low
frequency neurons this temporal integration is mostly explained
by the differences in input resistance. Mechanistically, the Ih-
dependent sharpening of IPSPs can be understood as follows:
During the hyperpolarizing flank of the IPSPs the IK−LVA chan-
nels – which are open at rest – close very rapidly and thereby
effectively set a new equilibrium potential of the whole cell at
a depolarized level close to the reversal of Ih. The resulting
huge driving force massively speeds up the depolarizing flank of
the IPSP and thereby accounts for the temporal sharpening. As
the membrane potential approaches the old equilibrium poten-
tial, the KLVA channels quickly open again and they restore the
original equilibrium potential with only little overshoot as wit-
nessed by the small amplitude of the voltage fluctuation after
the IPSPs in Figure 7C. To test the above hypothesis, we con-
ducted simulations with different reversal potentials of Ih, As

expected, a reduction of the driving force broadened the IPSPs
(Figures 7F,G).

In summary, we conclude that fast KLVA channels in interac-
tion with Ih may predominantly sharpen the IPSPs (particularly
in HF neurons with large Ih), whereas Ih in MSO neurons
alone balances out the hyperpolarizing voltage offset induced
by the temporal summation of phase-locked inhibitory synaptic
currents.

DISCUSSION
In the present study we demonstrate that Ih amplitude systemati-
cally varies along the dorsoventral axis of the MSO, being largest
in ventral neurons and smallest in dorsal neurons. Consistent
with this dorsoventral organization of membrane properties, the
integration of inhibitory inputs systematically varies as a func-
tion of the neuron’s location in both experiments and the model
indicating that MSO neurons are tuned differentially along the
presumed tonotopic axis. Tonotopic gradients of Ih have been
previously observed in auditory brainstem nuclei. For example,
in the lateral superior olive (LSO) Ih is larger in the LF region of
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FIGURE 6 | Differences in membrane properties are more evident in
mature animals. (A) MSO neurons in the dorsal and in the ventral part of the
MSO fire a single spike at the onset of depolarizing current injections and
exhibit a voltage sag during hyperpolarizing current steps. In particular, in
ventral neurons the voltage sag only is obvious for strong hyperpolarizing
current injections due to the large resting conductance of Ih. (B) Peak input
resistance and (C) membrane time constant vary significantly between
ventral (n = 10) and dorsal (n = 12) neurons. Differences in the input
resistance and in the membrane time constant between ventral and dorsal
neurons are significantly larger in P22 animals compared with P18 animals.

(D) IPSP time course changes along the dorsoventral axis as depicted in the
inset. The half-width of IPSPs is largest in dorsal neurons and the time course
accelerates during stimulation with IPSC trains. (E) The mean values for the
rise time (10–90%) of the first IPSP (dark-gray bars) and the decay time
(90–10%) of the last IPSP (light-gray bars) are larger in dorsal neurons
compared to ventral neurons. (F) IPSP time course is accelerated in P22
compared to P18. Representative normalized IPSP trains for the ventral part of
the MSO. (G) Half-widths for the first IPSPs are decreased for P22 in both the
ventral and the dorsal part of the MSO. Black symbols: dorsal neurons; white
symbols: ventral neurons. ∗P < 0.05, ∗∗P < 0.01, two-tailed unpaired t-test.

the nucleus compared to the HF region (Hassfurth et al., 2009).
This opposite gradient might be due to the fact that in general
LSO processes much higher input frequencies compared to MSO
neurons (Sanes et al., 1989; Tolnai et al., 2008). The Ih gradient
is also opposite in the nucleus laminaris (NL) (Yamada et al.,
2005), the bird’s MSO analogue ITD processing stage. Whether
this difference is due to the diverse function of inhibitory inputs
in mammals and birds or to different ITD processing strategies in
the two animal classes is not clear. However, these results suggest
that tuning of biophysical membrane properties through differ-
ential expression of HCN channels along the tonotopic axis in
general optimizes the processing of different inputs frequencies
(Kuba et al., 2005; Slee et al., 2010).

In mammals, Ih (or HCN) channels can derive from
four different genes (HCN1-4) and assemble into homo- or

heterotetramers with distinct electrophysiological properties in
terms of their activation kinetics, their activation dependence,
and their sensitivity to cAMP. In contrast, single-channel conduc-
tance is very similar for the different HCN isoforms (Brandt et al.,
2009) and maximal Ih amplitude depends only very little on intra-
cellular modulators (Ludwig et al., 1998; Wahl-Schott and Biel,
2009). This suggests that the observed dorsoventral gradient of Ih
density in the MSO most likely relies on differences in the num-
ber of HCN channels and is independent of subunit variation.
Our experiments also show that Ih activation kinetics accelerates
and half-maximal activation voltage increases from the dorsal to
the ventral part of the MSO. A distinct distribution of the iso-
forms along the dorsoventral axis might provide an explanation
for the differences in biophysical properties of Ih (Yamada et al.,
2005). MSO neurons mainly express HCN1 and HCN4 subunits
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FIGURE 7 | Integration of IPSG trains, computational model. (A)
Activation curve and time constant of Ih from Figure 5 (symbols) were fitted
for the ventral and dorsal population (solid lines). (B) A 100 Hz IPSG train
(green) was applied to the cell models representative for the dorsal (blue) and
ventral (red) population (see Materials and Methods). The individual inhibitory
conductance was set to 20.5 nS and 90 nS for the dorsal and for the ventral
cell models to obtain similar voltage amplitudes. (C) Half-width of the
resulting IPSPs from (B). The first nine IPSPs were magnified on the right
and overlaid with the respective KLVA steady-state activation (gray levels).

(D) Voltage responses (light colors) for different stimulus frequencies
(as indicated) and model cells (colors). The dark traces were generated by
low-pass filtering the voltage trace with a second-order Butterworth low-pass
filter with cut-off frequency of 100 Hz. (E) Same as (C) for a KLVA model with
100-fold slowed down activation and inactivation time constants.
Conductances for Ih and IK−LVA were adjusted to match the input resistances
and equilibrium potential of the cells in (C). (F) IPSP trains for different
reversal potentials of Ih (color code see G). (G) Half-widths of the IPSP trains
from (F).

which both possess distinct physiological properties (Khurana
et al., 2012). Among all different HCN subunits, HCN4 pos-
sesses the slowest kinetics and the most negative half-maximal
activation voltage, whereas HCN1 possesses the fastest kinetics
and the most positive half-maximal activation voltage (Santoro

et al., 2000; Moosmang et al., 2001). Thus, an increased contri-
bution of HCN1 towards ventral neurons could result in faster
activation kinetics and more positive half-maximal activation
voltage. Conversely, our data suggest that different basal levels of
intracellular cAMP cause the observed dorsoventral gradient in Ih
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properties. The gating of HCN channels in MSO neurons is very
sensitive to cAMP, since most likely HCN1 and HCN4 isoforms
co-assemble to form fast-activating but cAMP-sensitive HCN het-
eromers (Khurana et al., 2012). We show that dialyzing neurons
with a saturating cAMP concentration resulted in nearly identi-
cal activation kinetics and half-maximal activation voltages in all
MSO neurons. This opens the possibility that differential activa-
tion or expression of receptors that modulate intracellular cAMP
levels could modify Ih properties along the presumed tonotopic
axis of the MSO (Yamada et al., 2005) and regulate processing of
various input frequencies in an activity dependent manner.

Functionally, Ih strongly influences basic membrane proper-
ties such as resting potential, input resistance and membrane
time constant of neurons. These properties determine cellular
excitability and synaptic integration. More specifically, Ih depo-
larizes the resting potential toward spike threshold, decreases
the membrane time constant and lowers the input resistance at
and below the resting potential, when the membrane potential is
hyperpolarized in response to inhibitory inputs. Consistent with
this idea we found that ventral neurons had a lower input resis-
tance and a faster membrane time constant than dorsal neurons.
In addition, postsynaptic integration of inhibitory inputs differed
dependent on Ih amplitude and properties.

But what are the functional implications for the diversity
of Ih of different neuron types for information processing in
a small network? This and the relation to Ih has been exten-
sively studied in both the entorhinal cortex and the hippocampus
where Ih properties and HCN channels are as well distributed
along a dorsoventral gradient (Garden et al., 2008; Giocomo and
Hasselmo, 2008; Marcelin et al., 2012a,b). In these structures, Ih
has been hypothesized to contribute to the observed gradient in
grid field spacing in the entorhinal cortex (Giocomo et al., 2011;
Hussaini et al., 2011). This mostly relates to the fact that Ih accel-
erates resonance frequency in those neurons. In these neurons Ih
also tunes the membrane properties to the slow oscillatory activity
of the inputs they receive, which is crucial for the specific function
of these neurons. In auditory brainstem neurons and especially
in the MSO, input frequencies (up to 1.5 kHz) are a magnitude
higher than the activation and deactivation kinetics of Ih and thus
an active contribution to temporal processing is unlikely.

One possible explanation why Ih distribution is tonotopically
organized is suggested by our model and our experimental data.
Neurons in the MSO not only receive two precisely timed exci-
tatory but also two prominent inhibitory inputs from the medial

and lateral nucleus of the trapezoid body (Grothe et al., 2010),
which are phase-locked to the fine-structure of the sound. Due
to the relatively slow time constants of the inhibitory inputs
(Magnusson et al., 2005; Couchman et al., 2010), the inhibi-
tion summates and strongly hyperpolarizes the neuron. Since Ih
is rapidly activated during hyperpolarization we propose that Ih
reduces the integration of synaptic inputs during periods of pro-
longed hyperpolarization. Indeed, both our experimental data
and our model show that Ih decreases the temporal summa-
tion of IPSPs by gradually activating and thereby opposing the
summated hyperpolarization induced by the temporal summa-
tion of HF inhibitory inputs. Functionally such a hyperpolarizing
offset is problematic, since it effectively increases the spike thresh-
old and thereby strongly reduces or even completely prohibits
neuronal spiking in response to these input frequencies. The
additional Ih activated in the ventral MSO region prevents this
excessive hyperpolarization and keeps the neurons in an operat-
ing regime for binaural coincidence detection. In MSO neurons
both Ih and IK−LVA are open at rest (Khurana et al., 2011) and
both contribute to the extremely low membrane time constants.
The balance between the hyperpolarizing IK−LVA and the depo-
larizing Ih determines the resting potential and together lowers
the membrane time constants in both the hyperpolarizing and
the depolarizing range. This decrease in time constant also in
the depolarizing range would then improve coincidence detection
of inputs thereby optimizing ITD analysis in these neurons. In
addition, a higher expression level of Ih also indirectly enhances
IK−LVA-induced sharpening of inhibitory synaptic potentials by
modulating the speed of depolarization via the driving force of
Ih (Figures 7C,E). Conversely, two recent studies suggest that
increasing Ih in the MSO and the NL, the bird’s analogue structure
of the MSO, sharpens the time window for coincidence detec-
tion also of excitatory inputs (Yamada et al., 2005; Khurana et al.,
2012). This all implies that MSO neurons that respond best to
higher frequency sounds and have thus larger Ih should have
sharper time windows for ITD detection compared to neurons
responding best to low frequency sounds. This phenomenon can
indeed be observed for ITD functions of MSO neurons that are
tuned to different best frequencies (Yin and Chan, 1990; Brand
et al., 2002).
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5. Discussion

In three individual studies, presented in Chapter 2, 3, and 4, the excitability and action

potential generation, the role of the glycinergic inhibition in the tuning of coincidence

detection, as well as channel properties and synaptic integration along the tonotopic axis

in the principal cells of the MSO were investigated. Each of these studies is comprised

of an experimental and a computational part. The author of this thesis contributed to the

computational part of the studies; the experiments were performed by experimental

collaborators (see Author Contributions). A detailed statement of the author's

contributions to the individual studies can be found at the end of the thesis (see Author

Contributions).

In Chapter 2, we investigated the excitability and action potential generation in MSO

neurons. An anatomically constrained multi-compartmental biophysical model of an

MSO cell and its axon was created based on data acquired in a morphometric analysis

of MSO axons. Using naturalistic synaptic inputs trains at different rates, our

simulations indicate that the MSO's excitability is substantially modulated by

morphological and electrical properties of the soma and axon. Furthermore, in patch-

clamp experiments in vitro, as well as in our model simulations, we found that MSO

neurons exhibit a frequency-dependent firing threshold. Strikingly, our simulations

indicated that the site of action potential initiation in MSO neurons is modulated by the

rate and intensity of their synaptic inputs. While in general we showed that the AP

initiation takes place in the axon initial segment (AIS), in line with present knowledge

of other cell types, we also demonstrated that, especially at firing threshold and for

high-frequency inputs, a growing portion of action potentials is initiated in the first

nodes of Ranvier. We identified two main mechanisms for these transient changes of

the AP initiation site in MSO neurons. First, the extraordinarily leaky somatodendritic

area constitutes a strong current sink to the AIS, thereby impairing its excitability, while

the nodes of Ranvier are much less affected due to better electrotonic isolation. And

second, the temporal summation of high-frequency excitatory inputs causes a

depolarized baseline in the somatodendritic compartment, which primarily invades the
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proximal axon and causes the inactivation of sodium channels, and thus a loss of

excitability.

In Chapter 3 we studied the role of glycinergic inhibition in the coincidence detection of

MSO neurons. To elucidate the impact of the phase-locked inhibitory afferents to MSO

neurons on coincidence detection, in vitro recordings in acute auditory brainstem slices

of adult gerbils as well as computational modeling were performed. We found that

inhibition shifts the peak timing of excitation depending on its relative timing. As a

consequence of these peak shifts the ITD sensitivity of the cell is modulated, which

underlines the crucial role of inhibition in the ITD tuning of MSO neurons. The

magnitude of the peak shifts was modulated by the excitatory and inhibitory input

kinetics, the balance of excitation and inhibition, as well as the temporal jitter of the

inputs. The inhibition-enforced effects where robust with respect to synaptic jitter and

maintained efficacy during input trains at high frequencies. Using a well-constrained

point model of an MSO neuron, we showed that an active low-threshold potassium

conductance, mediated by Kv1 channels, substantially facilitated the peak shifts.

In Chapter 4 the properties of hyperpolarization-activated cyclic nucleotid-gated

channels (HCN) along the dorsoventral (tonotopic) axis of the MSO are investigated.

For this purpose in vitro voltage-clamp recordings of dorsal and ventral MSO neurons

were performed. These recordings revealed that in the ventral (high-frequency) portion

of the MSO, HCN channels show a larger current density compared to channels in the

dorsal (low-frequency) part. Also, HCN currents in the ventral MSO activated faster and

for more depolarized voltages. These systematic differences of HCN currents affect the

membrane resting properties, and thus the integration of synaptic inputs in MSO

neurons on the dorsoventral axis. Ventral MSO neurons show a faster membrane time

constant and a lower input resistance compared to dorsal cells, resulting in substantially

smaller half-widths of inhibitory postsynaptic potentials (IPSPs) evoked during current-

clamp. Using two biophysical models, each based on the average of HCN channel data

and membrane properties of dorsal and ventral MSO neurons, respectively, we could

reproduce the results obtained in our current-clamp experiments. Our simulations

suggest that the increased level of HCN currents helps to counteract the temporal

summation of high-frequency inhibitory inputs to MSO cells in the ventral part of the

MSO nucleus. Finally, the computational modeling allowed us to show that the
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observed sharpening of IPSPs is mediated by an interplay of HCN channels with the

fast-activating Kv1 channels expressed in MSO neurons.

We now continue discussing three selected topics based on the findings in Chapter 2,3,

and 4, as well as related literature. The first topic (Subchapter 5.1.) is dedicated to the

site of action potential generation in central neurons. In this topic we want to elucidate

reasons why the otherwise generally accepted notion of one singular AP initiation site

(the AIS) might not apply to MSO neurons, as we have demonstrated in Chapter 2.  In

the second topic (Subchapter 5.2.) the role of Kv1 channels in MSO neurons is

discussed. Here, we illustrate the various functions Kv1 channels perform in MSO

neurons showing their importance for coincidence detection. Also, our own results

concerning Kv1 channels that we found in Chapter 3 and 4 are added to this list, further

expanding the significance of Kv1 channels in the MSO.  The third topic (Subchapter

5.3.) regards the biological function of MSO neurons, the encoding of ITDs, and

examines the role of glycinergic inhibition. Since the role of glycinergic inhibition is

strongly debated, we highlight the current arguments against and in favor of glycinergic

inhibition tuning the MSO's coincidence detection, in the light of recent studies and the

results in Chapter 2 and 3. The discussion is concluded with a brief outlook (Subchapter

5.4.) covering yet unanswered questions in the context of our studies in Chapters 2, 3,

and 4.

5.1. The site of action potential initiation in central neurons

The determination of the action potential initiation site (sometimes also called the

trigger zone) in neurons has been a subject of intense study for many decades. During

the course of these studies the site of AP initiation was narrowed down from the

unspecific proximal axon in early works in spinal motoneurons (Coombs et al., 1957;

Fatt, 1957; Fuortes et al., 1957), to the distal part of the AIS (20-40 microns from the

soma) in most of the recent studies investigating neurons with myelinated axons

(Palmer et al., 2006; Shu et al., 2007; Yu et al., 2008; Palmer et al., 2010; Foust et al.,

2010; Popovic et al., 2011). Also for neurons with unmyelinated axons APs were
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reported to initiate in the proximal axon4, within 20 to 30 microns from the soma

(Schmidt-Hieber et al., 2008; Kress et al., 2008; Scott et al., 2014).

The study presented in Chapter 2 of this thesis investigates the action potential initiation

in principal neurons of the medial superior olive. Our findings are in line with the

existing literature as we also show that APs are initiated in the AIS. However, in

contrast to most findings in other neuronal types, we also demonstrate, that the site of

AP initiation might not be restricted to the AIS only, but – under specific circumstances

– can also occur in more distal axonal structures, like the first nodes of Ranvier. This

result, of course, raises the question as to why our results differ from the present

literature in this particular point. This subchapter is dedicated to answering this question

by hinting at the potential differences between our study and existing works in this field.

Furthermore, the major factors that control the site of AP initiation, as well as the first

insights into plasticity of the AP initiation site are discussed.

Compared to the very leaky coincidence detector neurons of the MSO, the vast majority

of research investigating the site of AP initiation in central neurons was carried out in

more excitable neuron types, like layer 5 pyramidal cells (Stuart and Sakmann, 1994;

Stuart et al., 1997a; Palmer et al., 2006; Shu et al., 2007; Yu et al., 2008; Popovic et al.,

2011), Purkinje cells (Stuart and Häusser, 1994; Khaliq and Raman, 2006; Palmer et al.,

2010; Foust et al., 2010) or neurons of the subthalamic nucleus (Atherton et al., 2008).

The input resistance of these neurons ranges between around 15 to 200 MΩ at rest

(Crepel and Penit-Soria, 1986; McCormick and Prince, 1987; Beurrier et al., 1999; Zhu

et al., 2000; McKay and Turner, 2005). The current threshold to evoke an AP in these

neurons typically does not exceed a couple of hundred of picoamperes (pA). With

membrane time constants ranging from several to tens of milliseconds (Crepel and

Penit-Soria, 1986; McCormick and Prince, 1987; Kasper et al., 1994; Roth and Häusser,

2001) the somata of these cell types can provide a stable current source for their

respective axons. For MSO neurons the situation is quite different (see Introduction,

Section 1.1.7). Owing to the exceptionally high expression of sub-threshold activated

4 In neurons with unmyelinated axons, the axon initial segment is often defined as the segment in the 

proximal axon that exhibits a high density of sodium channels and associated proteins, such as the 

scaffolding protein Ankyrin-G  (Kress et al., 2008; Hu et al., 2009; also see Bender and Trussell, 

2012; Kole and Stuart, 2012).
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channels, mature MSO cells exhibit an input resistance of around 5 MΩ and a

membrane time constant of merely ~350 µs at rest (Scott et al., 2005; Couchman et al.,

2010). To elicit an AP at rest a current pulse of 4 to 7 nA (depending on the shape and

duration) is needed (Couchman et al., 2010). Under in vivo conditions, i.e. under the

heavy synaptic bombardment MSO neurons receive, it is well conceivable that due to

the massive additional leak, the input resistance even falls below the mark of 1 MΩ. The

soma of MSO neurons therefore cannot provide a stable current source for AP initiation

but, on the contrary, establishes a particularly strong current sink to the comparatively

short AIS of only 20 microns (see Chapter 2, Figure 2). While for Purkinje cells equally

short initial segments were reported (Clark et al., 2005), layer 5 pyramidal cells have the

advantage of exhibiting AIS's of around 40 microns (Palmer et al., 2006; Shu et al.,

2007), which results in a better electrotonic isolation for the distal parts of the AIS from

the somatodendritic segments.

A second major difference between our study and the existing literature in this field is

the nature of stimulation used to evoke the APs to be investigated. The stimulation

methods include the somatic or axonal applications of current pulses (Palmer et al.,

2006; Shu et al., 2007; Yu et al., 2008; Foust et al., 2010; Popovic et al., 2011) and fiber

stimulation (Stuart et al., 1997a; Palmer et al. 2006; Palmer et al., 2010; Foust et al.,

2010; Popovic et al., 2011). Furthermore, in some studies spontaneously elicited APs

were analyzed (Atherton et al., 2008; Palmer et al., 2010). Most studies are restricted to

the investigation of singular action potentials evoked by a brief singular current pulse.

Only few studies systematically investigate the trigger zone of all APs evoked by a train

of consecutive current pulses (Foust et al., 2010; Popovic et al., 2011), in situations of

spontaneous or pharmacologically evoked up-states (Shu et al., 2007), or mimicked

ongoing synaptic input via dynamic-clamp (Shu et al., 2007). In Chapter 2 we used

temporally extended synaptic input trains in our model to assess the AP initiation site in

in vivo-like situations. We systematically analyzed every AP evoked during such a train

and, since our input trains are based on bandpass-filtered noise, we therefore could

examine APs evoked by a great variety of stimuli with different amplitudes, kinetics

and activity histories. The stimulus trains were presented at various intensities and,

since MSO neurons receive synaptic inputs phase-locked, at various center frequencies
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up to 1 kHz mimicking the periodicity of a cochlear channel. An investigation of the AP

initiation site using stimulation most comparable to ours in Chapter 2 is provided by

Shu et al (2007). In this in vitro study simultaneous whole-cell recordings from cortical

pyramidal neurons during spontaneous up-states and up-states emulated by a dynamic-

clamp procedure are performed. Up-states are thereby defined as synaptic barrages with

a balanced proportion of excitatory and inhibitory activity up to 1 second in length. AP

initiation was also analyzed during pharmacologically evoked epileptiform discharges

and simple current injections. Regardless of the stimulation paradigm used, the AP

initiation site was consistently found in the distal portion of the AIS.

In summary, it can be stated that the anatomical and physiological differences of MSO

cells compared to the cell types typically studied in this context demonstrate that the AP

initiation in MSO cells does take place under different means and thus might occur

differently. Moreover, in Chapter 2 we provide one of the few studies that

systematically investigates all action potentials during a train of heavy synaptic barrages

at different frequencies and intensities, which gives us an insight into action potential

initiation under more in vivo-like circumstances.

The site of AP initiation is typically studied by means of a latency analysis of the AP

timing in different neuronal segments in order to obtain a spatiotemporal profile. Since

normally the somatic AP functions as the reference, the segment with the largest

negative latency with respect to the somatic AP time is considered to be the initiation

site of the AP.

Before a latency analysis can be performed, simultaneous recordings of an action

potential at different locations along the axon are needed. In a computational model this

is a comparatively simple task; however, in vitro it is challenging due to the very small

axonal diameter of central neurons (0.5 to 1.5 microns) making direct recordings

difficult. While simultaneous whole-cell recordings from the soma and AIS have been

established (Kole et al., 2007), myelinated parts of the axons seem to be completely

inaccessible for patch-clamping methods unless loose-patch methods are employed

(Clark et al., 2005; Meeks et al., 2005; Atherton et al., 2008). One recording technique,
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however, allows to obtain whole-cell recordings from more distal axonal sites: the axon

bleb recording (Hu and Shu, 2012). The axon bleb is an enlarged unmyelinated structure

at the cut end of an axon which forms after the slicing procedure. Several studies made

use of simultaneous whole-cell recordings from the soma and the axon bleb (Shu et al.,

2007; Kole et al., 2007; Schmidt-Hieber et al., 2008). However, since the axon (without

counting collaterals) exhibits only one axon bleb at an a-priori uncontrollable distance

from the axon hillock, data from many neurons with axon blebs at different distances

from the axon hillock has to be acquired and pooled such that a spatiotemporal profile

of AP initiation emerges.

This problem can be overcome by employing optical recording and voltage-sensitive

dyes (VSD). The usage of VSD imaging has the advantage that a large number of sites

along a neuronal membrane can be recorded at the same time. To investigate the AP

initiation site using VSD the neuron is filled with the VSD through a patch pipette

attached to the soma in a whole-cell configuration. A camera mounted to a camera port

of the microscope, which is set up to illuminate individual neurons in slices by

excitation light in epi-fluorescence, records the voltage-changes (Popovic et al., 2012).

The maximum amount of distinct optical recording sites using VSD imaging coincides

with the resolution of the camera used. Since for the investigation of the AP initiation

site an extraordinary temporal resolution is necessary, a high-speed CCD camera is

used. Current high-speed CCD cameras used for this purpose provide a resolution of

80x12 pixels at a maximum frame rate of 10 kHz (for example Redshirt Imaging

NeuroCCD-SM(Q); Foust et al., 2010; Popovic et al., 2011). Despite the relatively low

spatial resolution compared to other (not high-speed) digital cameras, these high-speed

CCD cameras still provide a tremendous improvement over conventional electrical

recording methods, by allowing a much larger number of recording sites corresponding

to their pixel amount.

Having acquired a data set of AP time courses at different locations along the axon a

latency analysis is performed. Different points in the time course of the action potential

were used to reference its timing: for example, the peak amplitude (Shu et al., 2007),

voltage derivative criteria (Kole et al., 2007, Atherton et al., 2008) or the half-maximum
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amplitude (Palmer et al., 2006; Palmer et al., 2010; Foust et al., 2010; Popovic et al.,

2011).

In Chapter 2 we used the peak amplitude of the APs as the time reference to perform a

latency analysis in order to identify the AP initiation site. The determination of this AP

peak time for the APs in the soma and every segment of the axon, that occurred during a

train of synaptic inputs was, however, a difficult task. Since we used inputs at different

intensities and frequencies which resulted in a huge variety of response characteristics, a

simple amplitude or derivative criterion was impossible to acquire. Furthermore, the

very fast voltage deflections of MSO neurons, caused by the extreme leakiness,

especially under synaptic bombardment, impedes the distinction of APs from sub-

threshold responses in the soma and proximal axonal segments. We therefore identified

APs in the distal axon, where this distinction is easy (Scott et al., 2007). From the peak

in this distal segment onward, we acquired the voltage peaks of antidromic segments

within a distinct time window (see Chapter 2, Figure 1F and Materials and Methods).

This approach gave us a robust algorithm to acquire the trigger zone of action potentials

throughout a vast number of different stimulus and cell-related parameters. However,

we also came to the conclusion that the AP initiation is not necessarily a matter of a

distinct segment of the membrane (especially for high stimulation frequencies), but

rather a complex interplay of several neighboring compartments (Chapter 2, Figure 9).

A method which does not use latency analysis to determine the AP initiation site is the

local application of tetrodotoxin (TTX) to block sodium channels in putative trigger

zones in order to evaluate their significance for AP generation (Colbert and Johnston,

1996; Khaliq and Raman, 2006). Blocking sodium channels in the first node of Ranvier

led to evidence that the first node of Ranvier might not be the site of AP initiation in

Purkinje neurons (Khaliq and Raman, 2006), even though it was suggested otherwise

using simultaneous loose-patch cell-attached recordings (Clark et al., 2005).

To further elaborate on the question, why the site of AP initiation in MSO neurons

might not be restricted to the AIS only, it is important to understand why, in general,

action potentials are preferentially initiated in the AIS.
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Kole and Stuart (2012) highlighted three reasons why the AIS is a favorable site of AP

initiation. First, the axon generally emerges from the soma and is therefore in a good

position to follow the changes of the somatic membrane potential that are caused by the

integration of synaptic inputs. Second, the axon exhibits a much smaller diameter

compared to the soma resulting in a smaller surface and smaller capacitance. As a

consequence, less inward current is necessary for the AIS to depolarize and accordingly

a lower sodium channel density is needed. Therefore, AP initiation in the AIS is also

energetically advantageous. Furthermore, the small capacitance facilitates fast changes

of the membrane potential occurring during action potentials. Finally, the third reason

emphasizes the circumstance that a singular AP initiation site establishes a single

location where inhibition could efficiently influence AP generation.

These arguments can be extended further. For example: the small diameter of the AIS

does not only lower the capacitance of the membrane, but also makes the AIS into a thin

cable, enabling the electrotonic isolation of the AP initiation site in the axon from the

somatic current sink (see Chapter 2). Moreover, the small local capacitance of the AIS

is also facilitated by the proximity to the low-capacitance myelin sheath (Baranauskas et

al., 2013). Please also note that, interestingly, the majority of these arguments also holds

true for the nodes of Ranvier.

Combining these arguments with the knowledge that sodium ion influx is mediating

action potentials (Hodgkin and Huxley, 1952d, see Section 1.2.1.), two major factors for

the AP initiation site can be identified: (1) the specialized anatomical and electrical

properties of the proximal axon (i.e. the cable properties), and (2) the sodium channels.

Being experimentally comparably easy to access, a majority of AP initiation studies has

focused a lot of attention on the role of sodium channels in AP initiation. Several

approaches, including antibody staining, sodium imaging, patch-clamp experiments,

and modeling suggest that the sodium channel density in the AIS is substantially higher

than in the soma (Kole et al., 2008; Hu et al., 2009; Lorincz and Nusser, 2010, review:

Kole and Stuart, 2012). Moreover, it has been demonstrated that axonal sodium

channels exhibit a lower half-activation (Colbert et al., 1996; Colbert et al., 2002, Hu et

al., 2009) and a faster activation time constant (Schmidt-Hieber et al., 2010). As a

consequence of the considerable number of studies, the role of sodium channels has so
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far dominated the discussion of AP initiation in central neurons. Interestingly, a recent

study shows that the site of the largest sodium influx and the AP trigger zone do not

coincide in layer 5 pyramidal neurons (Baranauskas et al., 2013). Using high-speed

sodium imaging in combination with simultaneous axo-somatic recordings and

computational modeling, Baranauskas et al. (2013) demonstrate that the largest sodium

ion influx is located in the central portion of the AIS, whereas the AP trigger zone is in

the distal part. Moreover, in a computational model Baranauskas et al. (2013) show that

the electrical isolation of the actual AP trigger zone from the somatodendritic

compartment is crucial for AP initiation. In conclusion, these results indicate that the

cable properties of the axon play an important role in determining the AP initiation site

(Baranauskas et al., 2013; also see the commentary: Ma and Huguenard, 2013).

Unfortunately, the influences of the axonal cable properties on the initiation of APs are

hard to assess experimentally. Computational modeling studies, however, make these

properties accessible and therefore have pointed out early that not only the sodium

channels but also the cable properties play a crucial role in AP initiation (Moore et al.,

1983; Mainen et al., 1995).

In line with these observations, our results in Chapter 2 suggest that both, the sodium

channel density and the cable properties, play a key role in the determination of the AP

initiation site and AP generation in general. On the one hand, we show that an overall

increase of the axonal sodium channel density facilitates firing (Chapter 2, Figure 3G).

Increasing only the nodal sodium channel density, the model additionally exhibits an

increase of distal AP initiation probability (Chapter 2, Figures 3H and 5K). On the other

hand, decreasing the influence of the somatic current sink on the axon directly by

decreasing the prominent somatic leak (induced by a reduction of Kv1 and HCN

channel density) strongly facilitated firing (Chapter 2, Figure 3J). Furthermore, our

results demonstrate the delicate interplay of cable properties and sodium channel

density in AP initation. When decreasing the overall axonal diameter, which, since we

kept the sodium density fixed, goes along with a decrease of total sodium conductance,

the AP probability dropped (Chapter 2, Figure 3E). At this point, the sodium channel

density dominated the influence on AP initiation over the better electric isolation from

the soma. However, only decreasing the diameter of the axon's base, resulted in a
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facilitation of firing (Chapter 2, Figure 3I). In this situation, the better isolation from the

somatic current sink and thus the cable properties prevailed over the (lesser) sodium

channel decrease.

Analyzing the locus of AP initiation, we found that in our computational model a

certain extent (depending on cell- and stimulus parameters) of action potentials is not

initiated in the AIS, but in the nodes of Ranvier (Chapter 2, Figure 5). The prevalence of

these distally initiated APs is particularly pronounced at firing threshold for low-

frequency stimulations (250 Hz) and for high-frequency stimulations at high intensities

(1000Hz; Chapter 2, Figure 7G, H). These phenomena can be explained by the

influence of cable properties and sodium channels on AP initiation.

Due to the leaky soma and high axial resistance (induced by the very thin MSO axon,

see Chapter 2, Figure 2), the comparatively distal parts of the axon, like the nodes of

Ranvier, receive the inputs with strongly attenuated amplitudes (Chapter 5, Figure 5B).

However, the good electrotonic isolation from the soma also induces a much better

excitability (indicated by a higher input resistance) of the nodes of Ranvier compared to

the more proximally located AIS (Chapter 2, Figure 5A). A direct consequence of the

larger input resistance is the substantially lower current threshold, which then shows in

the higher probability of action potential initiation at the nodes of Ranvier.

The higher prevalence of distally initiated APs at high-frequency stimuli is again most

likely based on a synergy of cable properties and sodium channel influence. First, the

high-frequency excitatory synaptic inputs induce an increase of the somatic leak and

thus the intensification of the somatic current sink, since more current flows especially

through the low-voltage activated potassium channels. Second, a depolarized baseline,

caused by the temporal summation of the excitatory inputs, is tapped by the axonal

membrane and causes the inactivation of sodium channels, particularly in the soma and

proximal axonal segments, again leaving the nodes of Ranvier with an excitability

advantage. Increasing the intensity of high-frequency stimuli successively even renders

the nodes of Ranvier to be the main AP generating sites, helping to control excitability

and to stabilize neuronal output (Chapter 2, Figure 7H).
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To keep the influence of cable properties and sodium channels on AP initiation at

balance, the sodium channel density of the AIS and the nodes of Ranvier were set to the

same value in the standard model. Increasing the sodium channel density in the nodes

reinforces their excitability advantage over the AIS even further and consequently raises

the probability of APs being initiated at the nodes of Ranvier (Chapter 2, Figure 5K).

Interestingly, immunogold-stainings of pyramidal cells showed an even twice as high

sodium channel density in the nodes compared to the AIS (Lorincz and Nusser, 2010),

hinting that our reported probability of distally initiated APs might even be

underestimated.

A shift of the AP initiation site towards distal due to the partial inactivation of sodium

channels particularly in the proximal axon has also been observed in a very recent study

(Scott et al., 2014). In the present literature regarding the identification of the AP

initiation site, Scott et al. (2014) is arguably the most comparable to our research

presented in Chapter 2. In their study, AP initiation in the unmyelinated axons of

hippocampal dentate granule cells was investigated using dual patch-clamp recordings

from the soma and axon, sodium imaging and computational modeling. Employing

latency analysis of APs recorded at different locations along the axon, the study

confirms that the AP initiation site of dentate gyrus granule cells is located in the axon

around 20 to 25 microns away from the soma (Schmidt-Hieber et al., 2008; Kress et al.,

2008). However, Scott and colleagues also report an activity-dependent expansion of

the AP initiation site away from the soma. The broadening of the AP initiation site was

witnessed when comparing the first and the third spike in a spike train evoked by a

sustained current injection, as well as for APs evoked by slow depolarizations. In the

latter case also a substantial raise of voltage-threshold was observed. In line with our

observations for high-frequency inputs, the mechanism behind this depolarization-

dependent broadening of the AP initiation site was reported to be mediated by the

inactivation of sodium channels following the invasion of somatic depolarization into

particularly the proximal axon (Scott et al., 2014). In our simulations the shift of the

trigger zone from the AIS to the nodes of Ranvier and back occurs during a train of

stimuli (sometimes on a stimulus-to-stimulus basis) and thus constitutes a control
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mechanism of neuronal excitability on a millisecond timescale (Chapter 2, Figure 5).

Thus, similar to our findings in Chapter 2, the work of Scott et al. (2014) shows the

capability of a neuron to rapidly adapt its AP generation in response to specific stimulus

characteristics and their corresponding effects. Furthermore, the influence of sodium

channel inactivation on action potential initiation is emphasized (Chapter 2, Figure 6;

Scott et al., 2014).

The transient changes of the AP initiation site discussed up to this point are mediated by

cell and cable properties in concert with sodium channel inactivation, and thus are not

based on structural changes of the corresponding neuronal tissue. The question arises

whether neurons that regularly receive inputs of a certain frequency and strength

morphologically adjust their action potential generating sites to optimize neuronal

output. In the nucleus laminaris (NL), the avian counterpart of the MSO, this question

can be answered in the affirmative (Kuba et al., 2006). Patch-clamp recordings and

immunohistochemical stainings in acute brainstem slices showed that the length of the

AP initiation site (the hotspot, defined as a clustering of sodium channels) and its

distance from the soma, depends on the characteristic frequency5 (CF) of the neuron

(Kuba et al., 2006). High-CF (around 3 kHz) and medium-CF (1-2.5 kHz) neurons

exhibit a high expression of sodium channels within a short segment of the AIS

comparatively distant from the soma, whereas for low-CF neurons (0.4-1 kHz) the

sodium channel expression is distributed on a longer portion of the AIS. Computational

modeling further indicates that these structural changes of the AP initiation site reduces

the neuron's threshold and improves the sensitivity to ITDs (Kuba et al., 2006). In vitro

studies deliver striking evidence on how initial segments of neurons undergo plastic

changes (referred to as homeostatic plasticity) in response to input deprivation or

increase (Kuba et al., 2010; Grubb and Burrone, 2010; also see Gründemann and

Häusser, 2010). In one study, one day after hatch (i.e. 10 days after hearing onset) the

cochlea of chicks was unilaterally removed, then over the course of two weeks acute

brainstem slices incorporating the NL were cut and investigated using patch-clamp

recordings and immunohistochemical labeling (Kuba et al., 2010). The withdrawal of

inputs to NL neurons due to the cochlea removal resulted in a substantial increase of the

5 The characteristic frequency is typically defined as the stimulation frequency to which the neuron 

responds at the lowest threshold.
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length of the sodium channel and ankyrin-G cluster in NL axons on the deprived side.

Alongside this rearrangement of the AIS, which saturated 7 days after cochlea removal,

an increase of sodium current and decrease of current threshold (thus the increase of

excitability) was observed. Another study investigated the effects of chronic

depolarization on the axons of dissociated hippocampal neurons (Grubb and Burrone,

2010). Using high extracellular concentration of potassium ions mimicking increased

neuronal activity, caused several components of the AIS, including sodium channels, to

move distally over the course of 12 to 14 days. Here, the structural rearrangement of the

AIS, was accompanied by a decrease of neuronal excitability witnessed by the increase

of current threshold and membrane conductance. In sum, these two studies (Kuba et al.,

2010; Grubb and Burrone, 2010) not only show that the AIS undergoes plastic changes,

but also that these changes stabilize neuronal output by reducing excitability for more

inputs and increasing excitability for less inputs. Strikingly, similar to our findings, on

higher input load the site of AP initiation moves in distal direction.

Summary

In the last ten years the research of the AP initiation site in central neurons has taken a

major step forward. Experimental techniques like simultaneous patch-clamp recordings

and optical recording methods like the use of voltage-sensitive dyes or high-speed

sodium imaging allowed to precisely pinpoint the site of AP initiation in the axon. For

neurons with myelinated axons, like layer 5 pyramidal cells or Purkinje neurons, the site

of AP initiation is typically found at the distal end of the AIS in close proximity to the

onset of myelination. The site of AP initiation for neurons with unmyelinated axons,

like hippocampal dentate gyrus granule cells, is located in the proximal axon,

approximately 20 to 25 microns distal to the soma. In Chapter 2 we found the distal AIS

to be the site of AP initiation in principal neurons of the MSO. However, in contrast to

existing work we also found that the AIS is not the only site of AP initiation in these

cells, but, especially at the firing threshold or for high-frequency inputs, can also be

found in the first few nodes of Ranvier. The reason for this discrepancy can be found in

the consilience of two comparably unusual properties of MSO neurons. First, due to the

particularly high expression of sub-threshold activated channels MSO neurons are much
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leakier than neurons typically investigated in this field. Thus, the somatodendritic

compartments of MSO cells establish an exceptionally strong current sink to the AIS.

Second, MSO neurons receive strong synaptic inputs at frequencies of up to 1.5 kHz

which activate even more transmembrane current flow that further intensifies the

current sink, and which also cause a depolarized membrane potential baseline. These

two properties have direct influence on the key factors that determine the AP initiation

site: voltage-gated sodium channels and cable properties of the axon. We found that

high-frequency excitatory synaptic inputs inactivate sodium channels preferentially in

the proximal axon, thus increasing the excitability advantage of the first nodes of

Ranvier compared to the AIS even further. Despite the addition of the first nodes of

Ranvier to the possible locations of AP initiation, our results do not stand isolated in the

recent literature. The tendency of the AP initiation site moving towards distal on higher

input activity has also been observed in other works. A depolarization-dependent

transient broadening of the AP initiation site away from the soma was observed in

dentate gyrus granule neurons (Scott et al., 2014). Also structural changes of the

proximal axon over the course of days based on input deprivation or chronic

depolarization have been found in neurons of the NL and dissociated hippocampal

granule neurons, respectively (Kuba et al., 2010; Grubb and Burrone, 2010). In NL

neurons, which are the most comparable to MSO neurons in the field of AP initiation

site research, high-frequency neurons exhibit a more distal AP initiation site compared

to low-frequency neurons (Kuba et al., 2006). Summarized, the site of AP initiation of

neurons under in vivo-like situations does not seem to be a rigid spot somewhere in the

axon, but subject to activity-dependent rapid changes during input trains or even plastic

changes over the course of days. It is striking that most studies confining the AP

initiation site to one rigid locus in the axon typically focused their stimulation regime on

singular current pulses or pulses in low-frequency succession.
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5.2. The role of Kv1 channels in the context of coincidence 

detection in the MSO

The Kv1 channel is a fast-activating low-threshold potassium channel encoded by the

KCNA gene subfamily (see Introduction). A substantial expression of these low-

threshold activated potassium channels is a common scheme in auditory brainstem

neurons processing temporally sensitive information. Kv1 channels can, for example, be

found in the VCN (Manis and Marx, 1991), the MNTB (Forsythe and Barnes-Davies,

1993), the LSO (Barnes-Davies et al., 2004) and the MSO (Smith et al., 1995). Over the

past years the properties and functional roles of Kv1 channels in auditory brainstem

neurons were investigated. In the following the effects of the strong Kv1-expression,

and the role of Kv1 channels in the MSO's high-resolution coincidence detection are

discussed.

On activation, Kv1 channels mediate an outward current that persists over hundreds of

milliseconds given a long enough depolarizing stimulus. As a consequence, neurons

with a substantial expression of Kv1 channels exhibit a strong outward rectification,

which leads to a response profile called phasic firing. A neuron showing phasic firing

elicits a singular (or very few) action potential(s) only at the onset of a depolarizing

current injection. Apart from MSO neurons (Smith, 1995; Svirskis et al., 2002; Scott et

al., 2005; Couchman et al., 2010), this characteristic firing profile has also been

observed in upstream neurons of the MSO, for example, in cells of the VCN (Oertel,

1983; Manis and Marx, 1991; Isaacson and Walmsley, 1995; Golding et al., 1995) and

in the MNTB (Wu and Kelly, 1991; Banks and Smith, 1992; Forsythe and Barnes-

Davies, 1993; Scott et al., 2005; Roberts et al., 2014). In LNTB neurons a Kv1

expression seems to be less pronounced or less influential as these neurons generate a

tonic firing pattern in response to a depolarizing current step – however, they show a

larger inter-spike-interval between the first and the second action potential (Roberts et

al., 2014).

Kv1 channels in interaction with hyperpolarization-activated cation channels (HCN) are

the main contributors to the resting conductance of MSO neurons (Khurana et al.,
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2011). Indeed, blocking Kv1 channels by the application of dendrotoxin (DTX)

substantially increases the membrane time constant and decreases the current threshold,

showing that Kv1 channels are already open at rest (Scott et al., 2005; Mathews et al.,

2010). These two parameters are of major importance for the high-resolution

coincidence detection performed by MSO neurons: if the membrane time constant is

increased, the membrane potential repolarizes more slowly which broadens the time

window in which synaptic inputs are being integrated (Scott et al., 2005). As a

consequence, less coincident synaptic inputs would be able to drive the cell to firing

threshold which is equivalent to a loss of temporal resolution. The same result can be

expected for a lower current threshold, as it would allow less synchronous synaptic

inputs to evoke an AP.

Another consequence of the increased membrane conductance induced by Kv1 channels

is that action potentials of MSO neurons recorded at the soma are very small (in mature

gerbils around 10-15 mV; Scott et al., 2005 and 2007; also see Chapter 2, Figure 4D, E).

Axonal loose-patch recordings showed that in the axons of MSO neurons, beyond the

initial segment, action potentials are all-or-nothing responses, whereas they are graded

at the soma (Scott et al., 2007). Since action potentials of MSO neurons are generated in

the axon, the APs observed in the soma are the result of backpropagation (Scott et al.,

2005 and 2007; also see Chapter 2). Blocking Kv1 channels substantially increases the

AP amplitude to around 40 mV (Scott et al., 2005). Although this value is still small for

an action potential (compared to the 100 mV or more in pyramidal cells; Palmer et al.,

2006; Popovic et al., 2011), it shows that Kv1 channels have a significant part in

controlling the AP amplitude in MSO neurons. Other mechanisms that keep the AP

amplitude small are most likely the considerable capacitive load of the MSO's

somatodendritic membrane and the additional leak imposed by HCN channels.

Considering the MSO neuron's task is coincidence detection, a small somatodendritic

AP amplitude is highly desirable, since a massive invasion of APs to the

somatodendritic membrane would disturb the temporally delicate integration of synaptic

inputs.

Aside from the additional leak, also the fast activation time constant of Kv1 currents
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shows to have a substantial impact on the processing of inputs in the MSO (Scott et al.,

2005; Jercog et al., 2010). Due to the rapid activation kinetics6, cells expressing Kv1

channels show a filtering property regarding the synaptic inputs in that they inhibit AP

firing for slow depolarizing slopes (Jercog et al., 2010). Recordings in vitro and

computational modeling suggests that MSO neurons often do not elicit an AP when

stimulated with slow input currents, whereas currents with a steeper slope evoke an AP

with higher likelihood (Svirskis et al., 2002; Svirskis et al., 2004). In Chapter 2, in vitro

recordings yielded results that corroborate the preference for fast depolarizations

(Chapter 2; Figure 4B-E). Computational modeling of MSO neurons also demonstrated

the preference for steep excitatory inputs in temporally extended naturalistic input trains

(Jercog et al., 2010 and Chapter 2, Figure 4A). The bias towards steep slopes owing to a

low-threshold potassium current was also observed in other auditory brainstem neurons,

like the bushy and octopus cells of the VCN (Ferragamo and Oertel, 2002; McGinley

and Oertel, 2006), and for neurons of the vestibular pathway (Beraneck et al., 2007). In

the sound localization circuitry of the auditory brainstem, the reason for such a slope

preference can most likely be found in the need for temporal precision and

synchronicity of the signaling. Asynchronous inputs with a comparably large temporal

jitter are most likely to produce a summed input which is too slow to evoke an AP,

since the Kv1 channels would rapidly open, raise the AP threshold and thus inhibit

firing. On the other hand, synchronous synaptic inputs result in a steep summed EPSG

which rapidly drives the membrane potential to threshold, not giving Kv1 channels

enough time to open up (Jercog et al., 2010). Consequently, a neuron with a significant

Kv1 channel expression elicits action potentials with a short latency with respect to the

arrival time of the synaptic input and thus ensures the temporal precision in the auditory

pathway (for review, see Trussell, 1999).

With decay time constants of around 0.3 milliseconds for excitatory and around 1.5

milliseconds for inhibitory synaptic inputs, the inputs to the MSO (and the auditory

brainstem in general) are some of the fastest in the central nervous system (Trussell,

1999; Couchman et al., 2010; also see Chapter 3, Supplementary Figure 1).

Nevertheless, the fast activation kinetics enable Kv1 channels to have a strong impact

6 Mathews et al. (2010) report an activation time constant of the currents mediated by Kv1 channels of 

roughly 1 millisecond at 35 °C.

116



on shaping the membrane responses to even these brief synaptic inputs (Svirskis et al.,

2004; Scott et al., 2005; Mathews et al., 2010). In vitro recordings of MSO neurons

have shown that blocking Kv1 channels broadens the half-width of excitatory

postsynaptic potentials (Scott et al., 2005; Mathews et al., 2010). Thus, Kv1 channels

contribute to the sharpening of EPSPs thus facilitating the temporal resolution of

coincidence detection in MSO neurons (Scott et al., 2005).

Apart from the EPSPs, also IPSPs are influenced by Kv1 channels (Roberts et al., 2013;

also see Chapter 3, Figure 3 and Chapter 4, Figure 7). In Chapter 3 we found that an

active Kv1 channel accelerates the decaying phase of IPSPs, thereby facilitating the

peak shift of the net EPSP particularly for leading inhibitory inputs (Chapter 3, Figure

3f,g,j). A plausible mechanism underlying this sharpening of IPSPs is based on the

interplay of Kv1 and HCN channels in MSO neurons which is presented in Chapter 4

(Figure 7). Since the Kv1 kinetics are fast enough to follow the time course of IPSPs,

Kv1 channels are closing during the hyperpolarizing phase of the IPSP. The successive

closing of Kv1 channels induces membrane equilibrium potential to move towards the

much more depolarized reversal potential of HCN currents7, thereby dramatically

increasing the driving force during the decaying phase of the IPSP. As a consequence,

the decay of the IPSP is substantially accelerated, resulting in a decrease of the IPSP

half-width (Chapter 4, Figure 7F, G).  Removing the fast kinetics of Kv1 channels by

dramatically increasing the activation time constant, or by strongly hyperpolarizing the

Kv1 activation, such that it does not significantly close during an IPSP, strongly

impedes the effect of IPSP sharpening (Chapter 3, Figure 3f,g,j). The same happens

when making the shift of the equilibrium potential impossible by moving the HCN

reversal close to the resting potential of the neuron – which also demonstrates the

importance of HCN channels keeping Kv1 channels within their optimum working

range (Chapter 4, Figure 7F, G).

The interplay of Kv1 and HCN channels has also been investigated in another

7 The resting potential of MSO neurons of around -64 mV is mainly induced by two sub-threshold

channels expressed in MSO neurons, Kv1 and HCN. The current mediated by Kv1 channels is

estimated to reverse at more hyperpolarized potentials (around -100 mV) compared to the resting

potential. On the other hand, the HCN current, which apart from potassium ions, is mediated by

sodium ions, reverses at much more depolarized membrane potentials (around -35 mV).

117



interesting study combining patch-clamp recordings and computational modeling

(Khurana et al., 2011). Khurana et al. (2011) show that the interplay of Kv1 and HCN

channels helps to stabilize the shape and amplitude of individual EPSPs in synaptic

input trains of up to several seconds. Moreover, assuming short-term depression of

synaptic inputs (Couchman et al., 2010), they demonstrate that an interaction of Kv1

and HCN channels helps to maintain the temporal resolution of MSO neurons during

synaptic input trains. This prediction, however, assumes the input resistance to increase

over time during the input trains, which Khurana et al. (2011) indeed found to occur in

their experiments and modeling. In the light of the synaptic bombardment of strong

excitatory and inhibitory inputs of MSO neurons in vivo, however, an increase as

opposed to a decrease of input resistance seems to be rather controversial. Indeed,

Khurana et al. (2011) stimulated with currents instead of synaptic inputs, which would

have induced an additional (synaptic) leak to the membrane counteracting the input

resistance increase. Furthermore, the prominent inhibitory inputs that MSO neurons

receive were not included in neither the experiment nor in the computational model. The

omission of inhibitory inputs poses two intertwined problems. First, the comparably

slow time course of the MSO's glycinergic inhibitory synaptic inputs would result in

temporal summation, thus imposing a steady transmembrane current flow (causing an

input resistance decrease). Second, without inhibition, HCN channels progressively

close during the purely excitatory (thus depolarizing) input trains, which possibly

contributed to the increase of the input resistance. In sum, the exclusion of inhibitory

inputs might be a problematic choice to investigate the evolution of input resistance as

well as the interaction of Kv1 and HCN channels in MSO neurons in vivo.

Summary

Kv1 channels strongly contribute to provide the basis for the exceptional temporal

precision of coincidence detection in the MSO. Being already open at rest, Kv1

channels add to the particularly large membrane conductance of MSO neurons, which in

turn facilitates the MSO neuron's temporal fidelity by lowering the membrane time

constant, increasing the current threshold, and restricting the impact of backpropagating

action potentials to the somatodendritic membrane. Due to the fast activation time
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constant, the strong outward current mediated by Kv1 channels ensures low-latency

firing and furthermore induces the sharpening of excitatory and inhibitory postsynaptic

potentials. To perform its task, an interaction of Kv1 and HCN channels is of particular

importance. The counteracting nature of these two channels is especially well-suited

considering the excitatory and inhibitory synaptic bombardment MSO neurons receive.

On synaptic activity, Kv1 channels act on a short time scale shaping individual

responses, while HCN channels counterbalance the high-frequency (and temporally

summating) glycinergic inhibition, thus keeping Kv1 channels within their optimum

operating range.

5.3. The role of glycinergic inhibition in mammalian ITD 

processing

One of the key arguments against the Jeffress model to be applicable to mammalian ITD

processing is the vast occurrence of non-zero characteristic phases (CPs) obtained for

the coincidence detectors of the MSO (see Introduction). In the gerbil MSO, for

example, CPs are uniformly distributed between +/- 1/4th of a cycle (Pecka et al., 2008),

rather than to concentrate around zero as the Jeffress model would imply. Candidate

mechanisms generating non-zero CPs could, for example, be based on an asymmetry of

the kinetics of ipsi- and contralateral inputs, or asymmetries in the anatomy or electrical

properties of the ipsi- and contralateral dendrites (Zhou et al., 2005; Jercog et al., 2010,

but see van der Heijden et al., 2013 and Franken et al., 2015). However, to date no

evidences for such asymmetries exist. Moreover, in a thorough study of the MSO's

dendritic anatomy no significant differences between the medial and the lateral dendrite

could be found (Rautenberg, et al., 2009). Another candidate which could evoke non-

zero CPs is the theory of stereausis (Schroeder, 1977; Shamma et al., 1989) which

introduces the possibility that inputs from one ear are evoked at a slightly different

locus along the cochlea than the inputs from the other ear. In theory, such small

differences could indeed take account for the CPs measured in vivo (Shamma et al.,

1989; Joris et al., 2006; Day and Semple, 2011). Up to this point, experimental evidence

supporting this proposition is lacking and, regarding the difficulties tracking individual
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MSO inputs back to a specific position alongside the cochlea, is not to be expected

soon. A further candidate to produce non-zero CPs which is corroborated by numerous

experimental results, is the phase-locked glycinergic inhibition to the principal cells of

the MSO. MSO neurons receive glycinergic phase-locked inhibitory inputs from the

ipsi- and the contralateral ear, mediated by the lateral and medial nucleus of the

trapezoid body, respectively (see Introduction). The role of this feedforward inhibition

for ITD processing in the MSO is a topic of intense debate. This subchapter discusses

the recent developments of this debate.

In vivo measurements of the ITD sensitivity of MSO neurons show a preference for

positive (i.e. contra-leading) ITDs (McAlpine et al., 2001; Brand et al., 2002; Pecka et

al., 2008; van der Heijden et al., 2013). Direct evidence for the influence of glycinergic

inhibition on the MSO's ITD sensitivity was provided by applying the glycine-

antagonist strychnine in vivo, which shifted the best ITD towards zero (Brand et al.,

2002; Pecka et al., 2008). This result gave rise to the development of the inhibition

model that provides a possible mechanism underlying the shift of ITD sensitivity

towards positive ITDs (Grothe, 2003) as well as the generation of non-zero CPs (Grothe

et al., 2010; Leibold, 2010). The inhibition model states that apart from the mere

presence of phase-locked inhibition, also its timing relative to the excitatory input from

the same side is imperative to explain the in vivo data (Grothe, 2003; Pecka et al.,

2008). To account for the bias towards positive ITDs seen in most MSO cells, the

contralateral inhibition has to precede the contralateral excitation by a couple of

hundred microseconds and/or the ipsilateral inhibition must arrive at the same time or

slightly after the ipsilateral excitation. This temporal arrangement of the inhibitory

inputs would lead to a lag or advance of the net EPSP peak from the contralateral and

ipsilateral side, respectively (Grothe, 2003). In Chapter 3, the mechanism behind the net

EPSP peak shifts is explained assuming MSO cells integrate linearly (Chapter 3, Figure

2i,j; Roberts et al., 2013; van der Heijden et al., 2013). As a result of the EPSP peak

shifts, the best coincidence of the ipsi- and contralateral net EPSPs is obtained for

contra-leading (hence positive) ITDs. Furthermore, the asymmetry of the net inputs

from both sides gives rise to a non-zero CP (Grothe et al., 2010; Leibold, 2010).
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Evidence that feedforward inhibition is indeed a plausible candidate mechanism to

mediate non-zero CPs observed in vivo is provided by a recent study of neurons in the

dorsal nucleus of the lateral lemniscus (DNLL; Siveke et al., 2012). As a direct target of

the binaural nuclei in the SOC, the neurons of the DNLL inherit the ITD and ILD

sensitivity generated in the MSO and LSO (see Introduction). Performing extracellular

recordings from single neurons in the DNLL in vivo, Siveke et al. (2012) found that,

compared to a control group, the sensitivity to ITDs and ILDs is significantly changed

after the animals are exposed to omnidirectional ambient noise for two weeks. The

changes in binaural sensitivity, that involve a significant rise of the CP, are reversible,

as they were not present after a recovery period of two weeks in a normal acoustical

environment. Using a computational modeling approach it was found that an

upregulation of inhibition in the MSO and LSO is capable of explaining the observed

changes in binaural sensitivity. The study of Siveke et al. (2012) thus provides

important indications in support of the hypothesis of feedforward inhibition tuning ITD

processing. Considering the time scales involved, the control of the synaptic efficacy of

feedforward inhibition presents a conceivable and efficient mechanism underlying the

observed plasticity of CPs.

An interesting problem which the inhibition model has to face is that even though the

ipsi- and contralateral inhibition has to pass an extra nucleus (and thus an extra synapse

imposing a time delay) compared to the excitatory inputs, it is supposed to arrive earlier

or only slightly later than the corresponding excitatory input. Remarkably, the

mammalian ITD circuitry seems to be prepared for exactly this. The MNTB, mediating

the contralateral inhibition, receives its inputs from the contralateral GBCs via

particularly large fibers and the largest, fastest and most secure synapse in the

mammalian brain (the calyx of Held; Harrison and Warr, 1962; Morest, 1968; von

Gersdorff and Borst, 2002; Borst and Soria van Hoeve, 2012). The less investigated

LNTB, mediating the ipsilateral inhibition, receives large synapses from the ipsilateral

GBCs (albeit not as large as the calices of Held) and has shown to also be capable of

providing rapid and temporally precise inhibition to the MSO (Roberts et al., 2014).

Interestingly, despite the longer contralateral inhibitory pathway, both inhibitory inputs

arrive with the same delay. Using a thick slice preparation (1 to 1.5 millimeters) which
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leaves the ITD circuitry from the auditory nerve to the MSO intact, it was found that the

latency and jitter of IPSPs at the MSO evoked by stimulating the auditory nerve on

either side, is not significantly different (Roberts et al., 2014). In an earlier study,

employing the same thick slice setup and providing the first study in which IPSPs in the

MSO could be evoked by stimulating the auditory nerve, it was shown that inhibitory

inputs from either side arrives around 0.3 to 0.4 milliseconds earlier than the

corresponding excitatory input (Roberts et al., 2013). Consequently, Roberts et al.

(2013) used conventional slices (200 µm, horizontal cut) to perform coincidence

detection experiments evoking EPSPs by activating afferent fibers (while inhibition was

blocked) and simulating inhibitory inputs with a dynamic-clamp setup. Applying the

measured inhibition timing profile, no significant shift of the best ITD was found

(Roberts et al., 2013; also see the Supplementary Figure S2). This is in line with the

results in Chapter 3, employing a similar inhibitory timing (Chapter 3, Figure 4f,g).

However, one has to stress the fact that the in vivo timing of inhibition is still unclear.

Also, the thick slice in vitro experiments in Roberts et al. (2013 and 2014) were

performed with tissue of P15-P20 animals, amidst a developmental period of, for

example, membrane and inhibitory input properties, and thus might not represent the

inhibitory timing of a matured circuitry (Magnusson et al., 2005; Scott et al., 2005).

Finally, the subsequent coincidence detection experiments were restricted to the average

timing of inhibition, and thus did not do justice to the diversity of the measured

inhibitory timings (preceding the excitation by 0.15 to 0.54 milliseconds) which is

likely to be even larger in vivo.

Despite the original inhibition model (Grothe, 2003) already incorporated the ipsi- and

contralateral inhibition, it was assumed that the contralateral inhibition is the

predominant factor that tunes coincidence detection in the MSO. This assumption was

mainly based on the circumstance that the contralateral inhibitory pathway via the

MNTB is much more investigated and admits extraordinary anatomical and

physiological features with respect to its reliability, speed and accuracy (von Gersdorff

and Borst, 2002; Borst and Soria van Hoeve, 2012; also see Introduction). In the

seminal paper demonstrating glycinergic inhibition to influence coincidence detection in

the MSO, a computational model was generated to explain the in vivo findings (Brand et
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al., 2002). And indeed, this model featured contralateral inhibition only, with an

inhibitory decay time constant of only 0.1 milliseconds, which is much faster than the

value later found in in vitro measurements (1-2.5 milliseconds; Magnusson et al., 2005;

Couchman et al., 2010; also see Chapter 3, Supplementary Figure 1). Consequently, it

has been argued that inhibition is not capable of producing large enough shifts (or any

shift at all) of the best ITD to explain in vivo results due to its (too) slow kinetics

(Jercog et al., 2010; Day and Semple, 2011; Roberts et al., 2013). In Chapter 3, the time

courses of excitatory and inhibitory synaptic conductances (ESPGs and IPSGs) were

extracted in voltage-clamp experiments. To assess the magnitude of the inhibition-

enforced peak shifts, these EPSGs and IPSGs were used as templates to inject them into

the soma in conductance-clamp using a broad parameter space of arrival times of

inhibitory inputs relative to the excitatory inputs. It was found that despite the slow

IPSG decay (around 1.5 milliseconds) a leading inhibitory input is capable of tuning the

coincidence detection provided a lead of at least 0.4 milliseconds8 (Chapter 3, Figure 4).

However, it was also found that the contralateral inhibition alone is indeed not sufficient

to generate large enough shifts to explain in vivo data of MSO ITD sensitivity. Instead it

was observed that IPSGs arriving at the same time or slightly after (0 to 0.2

milliseconds) the EPSGs are capable of creating a larger shift of the net EPSP peak

compared to leading inhibition. Hence, a slightly lagging ipsilateral inhibitory input

would strongly facilitate the preference of positive (contra-leading) ITDs, and thus,

together with the contralateral (leading) inhibition, would be capable of generating the

best ITD shift witnessed in vivo. Regarding the results in Chapter 3 we conclude that

albeit the ipsilateral inhibition already has been a part of the original inhibition model

(Grothe, 2003), its importance for the tuning of coincidence detection was

underestimated so far. A very recent study provided the first thorough assessment of the

intrinsic physiology of LNTB neurons showing that they indeed are capable of

providing rapid and precise inhibition to the MSO, which corroborates our result

assigning a key role of ipsilateral inhibition in coincidence detection (Roberts et al.,

2014).

8 This number depends on the decay time constant of the excitatory inputs. Using fiber stimulation a

diversity of EPSP kinetics with decay time constants ranging from 0.2 to 0.5 milliseconds was

observed (Chapter 3, Supplementary Figure 1).
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Up to this point in time, the very most of studies investigating the physiology and the

synaptic inputs of MSO neurons have been performed in vitro. Only recently, using a

ventral approach to the low-frequency part of the MSO, van der Heijden et al. (2013)

were able to perform the first in vivo whole-cell recordings of (three) MSO neurons.

Furthermore, several MSO neurons were recorded with a loose-patch (juxtacellular)

setting. Examining raw traces obtained in both recording modes no evidence for a well-

timed inhibition was found (van der Heijden et al., 2013). It was concluded that

inhibition does not play a role in tuning MSO coincidence detection because it could not

be detected. In Chapter 2 we used naturalistic synaptic input trains to drive our MSO

model. And indeed, due to the comparably slow time course of IPSPs, inhibitory inputs

are hardly noticable in somatic membrane potential traces (Chapter 2, Figure 1E).

Similarly, in Chapter 3, conductance trains of up to 800 Hz were used to assess the

maintenance of inhibition efficacy in ongoing stimulation regimes. Especially during

high frequency input trains, inhibitory timing was impossible to assess, hinting why

inhibitory events might be hard to distinguish in vivo. However, in both, simulations

and in vitro dynamic clamp experiments, inhibitory events still substantially modulated

the net EPSP peak timing (Chapter 3, Figure 6) and best ITD (Chapter 2, Figure 8),

despite being hard to detect. Furthermore, simulating synaptic jitter in  dynamic-clamp

experiments, a putative lowered precision of synaptic timing showed to facilitate peak

shifts (Chapter 3, Figure 5), instead of impeding them as has been suggested before

(Roberts et al., 2013; van der Heijden et al., 2013). Finally, a very recent study

performing whole-cell recordings of MSO cells in vivo was published challenging

(among other models) the role of glycinergic inhibition in the tuning of ITD sensitivity

(Franken et al., 2015). In this study, Franken et al. (2015) hypothesize that the

application of strychnine using iontophoresis generates unwanted side-effects and can

not be used to find specific effects of the blocking of inhibitory inputs only. Although

Franken et al. also observe ITD peak shifts along with a raise in firing rate, when

reproducing the experiments of Brand et al. (2002) and Pecka et al. (2008), they report

that this effect changed over time after strychnine application, eventually leading to an

overall decrease of firing rate and even loss of ITD sensitivity of the cell. The loss of

ITD sensitivity was attributed to a steady build up of strychnine levels (caused by the

iontophoretic application of the drug) up to a point where unspecific effects manifest.
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To prevent this, pressure application of a much smaller dose of strychnine (2 µM for 18

minutes) was used (compared to 10 mM used in iontophoresis), which showed the same

amount of firing rate increase. In this setup, however, no significant shift of ITD

sensitivity could be observed. As a consequence, Franken et al. (2015) conclude, that

glycinergic inhibition can not account for the tuning of coincidence detection in MSO

neurons. Following the argument of Franken et al. (2015), that a build up of strychnine

over time to harmful levels ensues when applying the drug using iontophoresis, as well

as considering their own results, that during the time window of increased firing rate a

shift of ITD sensitivity was observed, this conclusion is somewhat surprising.

Nonetheless, the inhibitory model does show limitations to explain in vivo best ITD

data. Both, the computational modeling approach as well as the electrophysiological

experiments performed in Chapter 2 and 3, demonstrated that phase-locked inhibitory

inputs are capable of tuning coincidence detection of MSO neurons for low and medium

frequency inputs. For higher frequency inputs (> 600 Hz) the induced phase shifts of the

net EPSP peaks are substantial, although not large enough to enforce best ITD outside

of the physiological range. Therefore, it is possible that to explain in vivo results for

frequencies around 800-1500 Hz, an interaction of phase-locked inhibition with other

mechanisms is necessary.

Summary

A well-timed glycinergic inhibition to MSO neurons has shown to be capable of

explaining in vivo ITD sensitivity data, as well as the generation and plasticity of non-

zero CPs found in MSO neurons and their direct targets, the neurons of the DNLL.

Despite constituting a plausible, theoretically and experimentally corroborated model,

the role of glycinergic inhibition in the MSO is a topic of intense debate. The main

points of criticism, such as (1) the inhibitory inputs being temporally not precise

enough, (2) IPSPs mostly being undetectable in traces, and (3) IPSPs being too slow to

account for a sufficient shift, are opposed by a variety of electrophysiological,

anatomical and theoretical results demonstrating (1) the exceptional temporal accuracy

of the inhibitory pathway, (2) the efficacy of well-timed inhibition tuning the ITD
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sensitivity despite being hard to detect in the trace (shown in Chapter 2 and 3), and (3)

the underestimated importance of the ipsilateral inhibition (shown in Chapter 3). For

high-frequencies (> 600 Hz), the inhibition model, however, shows its limitations,

suggesting that an interaction of well-timed inhibition and other mechanisms could be

necessary to explain in vivo data. In conclusion, the developments of the past few years,

including our article in Chapter 3, demonstrate that the debate on how ITD sensitivity is

tuned in MSO neurons in general, and in particular on the role of well-timed inhibition,

is still in full swing and ready for another round.

5.4. Concluding remarks and outlook

In this thesis we gained new insights on biophysical, physiological and functional

properties of MSO neurons. In three peer-reviewed articles, the author of this thesis

performed computational modeling of MSO neurons to gain the major proportion of the

results (Chapter 2) or to aid answering experimentally-intractible questions in

electrophysiological studies (Chapter 3 and 4). This last section is dedicated to briefly

review the yet unanswered questions in the context of these three articles.

In Chapter 2, using a multi-compartment model of an MSO neuron and its axon we

show that despite the extraordinarily leaky MSO soma the axon maintains the

excitability of the neuron. We found that, unlike the general assumption of the AIS

being the singular AP initiation site in central neurons, APs were also initiated in more

distal axonal site, such as the first nodes of Ranvier, especially at threshold and for

high-frequency inputs. Even though the model was morphologically and physiologically

well-constrained, this is purely a theoretical result and thus can merely yield a

prediction concerning MSO cell firing. To test the predictions made regarding the AP

initiation site in MSO neurons, as a next step, in vitro recordings and the usage of

voltage-sensitive dye (VSD) combined with fast imaging would be desirable. This

method was already successfully employed to investigate the AP initiation site in

pyramidal and Purkinje neurons (Palmer et al., 2006; Foust et al., 2010; Palmer et al.,

2010; Popovic et al., 2011; also see Section 5.1). Following the results in our theoretical

study, the hypothesis should be tested in situations in which we found the highest
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prevalence of distal AP initiation, with a particular focus on mimicking strong (and

high-frequency) synaptic bombardment. Our study also raises the question of whether

the predictions are restricted to MSO neurons only. Although the site of AP initiation

has been scrutinized in other neuronal types using VSD, mostly only singular current

pulses or low-frequency trains of current pulses were used to stimulate the neuron.

Using VSD in another neuronal type, such as Purkinje neurons or layer 5 pyramidal

cells, combined with mimicking naturalistic synaptic activity at an up-state (Shu et al.,

2007) and evaluating the initiation site for every single AP generated could possibly

show similar effects as proposed in our study.

Conducting dynamic-clamp recordings in MSO slices, in Chapter 3 it was demonstrated

that a well-timed inhibition can account for the best ITD bias towards contra-leading

stimuli observed in MSO neurons (Brand et al., 2002; Pecka et al., 2008; Leibold, 2010;

van der Heijden et al., 2013). Following the result of the study, we extended the existing

inhibition model (Grothe, 2003) by strongly emphasizing the importance of the

ipsilateral inhibition, as well as presenting timing conditions for the inhibitory inputs

that provide highest efficacy in tuning the ITD sensitivity. The relative timing of

inhibitory inputs with respect to the excitatory inputs from the same side in vivo, is,

however, still elusive. Although first in vivo whole-cell recordings of MSO neurons

were established (van der Heijden et al., 2013; Franken et al., 2015), it is very hard to

separate excitatory and inhibitory events to measure latencies, and thus remains a hard,

nonetheless important, problem to solve in the future. 

Finally, in the paper in Chapter 4, performing in vitro patch-clamp recordings, it was

found that the properties of HCN currents (Ih) systematically change along the

tonotopical (dorsoventral) axis of the MSO. In the putative high-frequency (ventral) part

Ih is larger and faster than in the low-frequency (dorsal) part of the MSO. Using a

computational model of an MSO neuron we show that the larger Ih facilitates the

processing of high-frequency inputs in ventral neurons. As ventral neurons showed to

have a substantially lower input resistance and time constant, but a similar resting

potential in vitro, we had to adjust the Kv1 conductance in the model accordingly to the

HCN gradient as a counterbalance. Consequently, as a future study it would be of

interest to test our assumption of a Kv1 gradient along the dorsoventral axis of the

MSO.
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AP action potential
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CCD charge-coupled device

CD characteristic delay
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CP characteristic phase
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DNLL dorsal nucleus of the lateral lemniscus
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EI excitatory-inhibitory

EPSG excitatory postsynaptic conductance

EPSP excitatory postsynaptic potential
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ILD interaural level difference
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NL nucleus laminaris
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