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1 General Introduction and Literature Review  

 

1.1 Historical background of dental resin composites 

Dental resin composites are composed of at least two different materials, an organic resin 

matrix and inorganic fillers. They were first introduced by Raphael L. Bowen in 1962 with 

the synthesis of a Bis-GMA monomer formulation filled with finely ground quartz (Bowen, 

1962; 1963). Composites were preceded by unfilled acrylic resin and epoxy resins as direct 

restorative materials for the use in the anterior regions (Bowen, 1956). At about the same 

time, Michael G. Buonocore worked on acid etching and dentin conditioning targeting to 

bond unfilled acrylic resin to tooth structure (Buonocore, 1955; Buonocore et al., 1956). 

From this point onward, research on resin composites and bonding materials and techniques 

has been continuously conducted to improve the performance and longevity of these 

restorations.  

1.2 Composition of dental resin composites 

A resin composite is composed of four major components: organic polymer matrix, 

inorganic filler particles, coupling agent, and the initiator-accelerator system.  

1.2.1 Polymer matrix 

The organic polymer matrix in most commercial composites is a cross-linked matrix of 

dimethacrylate monomers typically selected from Bis-GMA (bisphenol A-glycidyl-

dimethacrylate), BisEMA (ethoxylated bisphenol A-dimethacrylate) and/or UDMA 

(urethane dimethacrylate). Bis-GMA is one of the most frequently used monomers, only in 

small amounts, as it has an affinity for water absorption that leads to swelling and 

discoloration. UDMA has the advantage of being less viscous than Bis-GMA, so it can be 

used undiluted, and having no hydroxyl groups (OH-groups), therefore, exhibiting less water 

sorption (Sakaguchi and Powers, 2012; Scientific Documentation Tetric EvoCeram® Bulk 

Fill, 2013). TEGDMA (triethylene glycol dimethacrylate), a low-viscosity reactive diluent, 

is used to lower the viscosity of the resin and enable sufficient filler incorporation (Figure 

1). Although it increases conversion, the modulus is decreased and finally polymerization 

shrinkage and stress are increased (Cramer et al., 2011). 
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The most common monomers are aromatic dimethacrylates that undergo polymerization by 

free-radical initiation via the double bonds at the end of the molecules that results in 2-6% 

shrinkage (Sakaguchi and Powers, 2012). The reduction of the polymerization shrinkage is 

the main aim of manufacturers and clinicians as the contraction brings with it many adverse 

effects like microleakage, marginal gaps and postoperative hypersensitivity which can all 

lead to failure of the restoration. Therefore, manufacturers have attempted to reduce the 

shrinkage by synthesizing new blends of fillers and monomers, while on the clinical part, 

researchers try to reduce the shrinkage effects by clinical restorative techniques as for 

example incremental filling, slow start polymerization (Lee et al., 2005).  

More recently, siloranes, low-shrink composites, have been introduced that contain 

monomers with epoxy (oxirane) functional groups. The polymerization of these monomers 

is initiated by cations and proceeds by the ring-opening mechanism resulting in lower 

shrinkage values even <1 vol% by the bonded-disc method (Filtek™ Silorane, Silorane 

System Adhesive, Technical Product Profile, 2007; Sakaguchi and Powers, 2012; 

Weinmann et al., 2005).  

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 
 

Figure 1 The chemical structure of Bis-GMA (A), UDMA (B), TEGDMA (C) and Bis-

EMA6 (D). 
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Table 1 Classification of composites according to the functional group determining 

their cure (Kunzelmann, 2008) 

Matrix according 

to the functional 

group 

Chemical system Properties of 

composites with 

this matrix 

Examples  

Pure 

methacrylates 

 

 

 

Classical dental 

matrix, e.g. Bis-

GMA, UDMA, 

TEGDMA 

Polarity of the 

matrix varies 

depending on the 

composition 

High strength 

Tetric 

Ceram/Vivadent, 

Charisma/Kulzer, 

P60/3M , Z100/3M, 

250/3M, TPH-

Spektrum/Dentsply, 

Pertac II/Espe 

Classical ormocers, 

differ from classical 

monomers in the non-

reactive part (Si-O-

network) 

Hydrophobic 

Low elution of 

monomers 

Definite/Degussa 

Acid modified 

methacrylates 

Compared with the 

classical dental matrix 

it has more 

hydrophilic monomer 

components e.g. polar 

side groups 

(COOH=compomers) 

More hydrophilic 

than the pure 

methacrylate 

matrix 

Dyract AP/Dentsply, 

Compoglass 

F/Vivadent, 

Hytac/Espe 

Ormocers with 

carboxylic function 

Low elution of 

monomers 

Admira/Voco 

Ring opening 

epoxides 

oxirane Low shrinkage 

High strength 

Not available 

commercially 

Silorane (siloxane 

with oxirane function) 

Low shrinkage 

High strength 

hydrophobic 

P90 Silorane/3M 

ESPE  
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1.2.2 Fillers  

Fillers constitute the major portion of the composite by weight. They are added to the resin 

matrix to reduce polymerization shrinkage and stress, to reinforce the resin matrix, and to 

provide an appropriate degree of translucency. The fillers consist of inorganic material such 

as finely ground quartz or glass, sol-gel derived ceramics, microfine silica, or nanoparticles. 

Most glasses contain heavy-metal oxides such as barium, zinc, yttrium fluoride, or 

ytterbiumtrifluoride for radiopacity. Fillers are usually silanized to bond to the organic 

matrix and transfer the stresses to the fillers. However, some researchers kept fillers 

nonbonded for stress reduction (Condon and Ferracane, 1998). 

Composites are classified according to the filler system. Fillers influence the materials’ 

properties through even minute addition of separate components. Therefore, mixtures of 

large and small fillers are used in order to incorporate as many fillers as possible. Small 

fillers are located in the spaces between larger ones. Some fillers are added for radioopacity, 

for example ytterbium fluoride, Table 2 (Kunzelmann, 2008).   

 

Table 2 Kunzelmann’s classification of composites according to filler system 

(Kunzelmann, 2008) 

Filler system Examples  

SiO2 Isosit, Vivadent 

SiO2 Durafill, Kulzer; Silux Plus, 3M 

Quartz + SiO2 Pertac II, Espe 

Compact glasses + SiO2 TPH Spektrum, Dentsply; Charisma, 

Kulzer, etc. 

Compact glasses + SiO2 + spherical, 

sintered mixed oxides 

Tetric Ceram, Vivadent 

Porous glasses + compact glasses + SiO2 Solitaire, Kulzer; Solitaire 2 , Kulzer 

Fibres + compact glasses + SiO2 Alert, Jeneric Pentron 

Ion-releasing fillers + compact glasses + 

SiO2 

Ariston, Vivadent 

Compact glasses + SiO2 + spherical, 

sintered mixed oxides + prepolymerized 

fillers with [compact glasses + SiO2 + 

spherical, sintered mixed oxides] 

Tetric EvoCeram, Vivadent 

Multimodal, spherical fillers prepared 

according to the sol-gel-method 

Palcifique Estelite, Tokuyama Dental; P60, 

3M; Z100, 3M; Z250, 3M 

Nanofiller-primary-particle + calcinied 

nanofiller agglomerates 

Filtek Supreme (XT), 3M-Espe 

Nanofiller-primary-particle + compact 

glasses  

Grandio, Voco 
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Composites are classified according to the particle size, shape, and the particle-size 

distribution of the filler into macrofilled, hybrid and microhybrid composites, nanofill and 

nanohybrid composites, Table 3, (Sakaguchi and Powers, 2012).  

 

Table 3 Traditional classification of resin composites (Sakaguchi and Powers, 2012) 

Type of composite  Filler size 

Macrofilled (early composites) average filler diameter of 20-30 μm 

Hybrid  two types of fillers blended together:  

1) fine particles of average particle size 2-4 

μm and  

2) 5-15% of microfine particles, usually 

silica, of particle size 0.04-0.2 μm 

Microhybrid  

(60-70% filler by volume translates into  

77- 84% by weight) 

1) fine particles of a lower average particle 

size 0.04-1 μm are blended with microfine 

silica  

2) The fine particles may be obtained by 

grinding glass (borosilicate glass, lithium or 

barium aluminum silicate glass, strontium 

or zinc glass), quartz, or ceramic materials 

and have irregular shapes 

Nanofill  nanometer sized particles 1-100 nm 

Nanohybrid  1) these consist of large particles 0.4-5 μm 

with added nanometer sized particles 

2) they are hybrid materials, not true 

nanofilled composites 

 

1.2.3 Coupling agent 

The manufacturers surface-treat the fillers by a silane coupling agent to form a bond between 

the inorganic and organic phases of the composite. One end of the molecule, that contains 

functional groups, hydrolyzes to generate hydroxyl groups and then reacts with the hydroxyl 

groups on the surface of the filler through condensation reaction. The other end has a 

methacrylate double bond that compolymerizes with the monomers during curing of the 

composite (Figure 2). The coupling agent strongly binds the filler to the resin matrix, thereby 

enhancing the mechanical properties of the composite by transferring the stresses from the 

mechanically weak matrix to the stronger filler in addition to providing a hydrophobic 

environment that minimizes water absorption. A typical silane coupling agent is 3-

methacryloxypropyltrimethoxysilane (MPTS), while in the low-shrink silorane composite, 
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an epoxy functionalized coupling agent, 3-glycidoxypropyltrimethoxysliane, is used to bond 

the filler to the oxirane matrix (Sakaguchi and Powers, 2012). 

        

 

Figure 2 The silane coupling agent. 

 

1.2.4 Initiator-accelerator system 

The function of the initiator-accelerator system is to initialize the network forming 

polymerization. The polymerization reaction can be started by light-activation, chemical 

activation, and dual curing which is chemical and light-curing together. Light activation is 

usually achieved with blue light at a peak wavelength of 470 nm, that is absorbed by a 

photosensitive agent, most commonly camphorquinone 0.1-1.0%. The free radical reaction 

is accelerated in the presence of an organic amine. The disadvantage of camphorquinone is 

its yellowish tint and the toxicity concerns over the amine co-initiator that is used with 

camphorquinone (Cramer et al., 2011). In the silorane composite, camphorquinone, 

iodonium salts and electron donors generate cations that start the ring opening 

polymerization process (Sakaguchi and Powers, 2012).  

Alternatives to camphorquinone/amine systems are the phosphine oxide initiators. They 

initiate through a cleavage mechanism that does not require a co-initiator. They absorb in 

the visible range, however exhibit little absorption beyond 420 nm and are therefore not ideal 

for use in dental applications, as dental curing lamps are designed to match the absorbance 

spectrum of camphorquinone at 470 nm. On the other hand, Lucirin TPO is an acyl 

phosphine oxide that bleaches out after polymerization, therefore it can be used for 

composite bleach shades or colorless protective varnishes. Another initiation system is based 

on benzoylgermanium derivatives that undergoes photodecomposition to form radicals 
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without the need for a co-initiator. Recently introduced bulk fill composites are intended for 

use in increments up to 4 mm, which is achieved by a combination of camphorquinone, 

phosphine oxide and a germanium based photoinitiator as Ivocerin. It allows curing in large 

increments with ans absorption maximum in the blue light range around 370-460 nm. It is 

more reactive than camphorquinone or Lucirin TPO resulting in more rapid polymerization 

with greater depth of cure (Cramer et al., 2011; Scientific Documentation Tetric EvoCeram® 

Bulk Fill, 2013). 

1.2.5 Polymerization kinetics 

The free monomer molecules are loosely bonded by weak van der Waals force and upon 

polymerization, the monomers are tightly linked by covalent bonds in a polymer with a 

smaller distance between the molecules leading to polymerization shrinkage.  

Polymerization contraction strain is time-dependent and proceeds in two stages: pre-gelation 

and post-gelation, or rigid contraction (Bausch et al., 1982). Two macroscopic demarcations 

occur during polymerization: the gel point conversion at which an incipient gel is formed. 

The second macroscale demarcation is the vitrification point which represents the conversion 

at which the polymer becomes glassy, accompanied by an increase in modulus. These 

polymer networks are extremely heterogenous which grow from microgels arising near sites 

of initiation (Cramer et al., 2011). Plastic flow occurs during the initial phase and internal 

stresses within the material undergo stress-relaxation, while stress development occurs 

beyond the gel point and its magnitude depends on the elastic modulus (Braem et al., 1987).  

Hardness is taken as an indirect measure for the degree of cure, and is measured in a 

longitudinally sectioned specimen from the top of restoration until the bottom, with 

decreasing hardness values denoting decreasing degree of conversion with increased 

thickness and distance from the light source (Cho et al., 2011; Onose et al., 1985). Over 20 

years ago, the question about anisotropy of the cure pattern was raised with possible variation 

of shrinkage patterns within the material, relative to the initiating light source, with respect 

to material thickness and surface area. In cases where material specimens are imperfectly 

cured, the measured shrinkage will be correspondingly reduced (Onose et al., 1985; Watts 

et al., 1984; Watts and Cash, 1991).  

Recent studies investigated light beam profiles and their effect on the polymerization of the 

composites. Irradiance values calculated by conventional methods assume power uniformity 

within the light beam but do not describe the distribution of the irradiance delivered. Beam 

profilers investigated the optically active emitting area, the mean irradiance, the irradiance 
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distribution and the top hat factor with differences among various light curing units. This 

could propose improper curing of deeper parts of a restoration due to beam inhomogeneity 

(Price et al., 2010e; Price et al., 2011). 

1.3 Polymerization shrinkage 

Since the use of resin composites as restorative materials, a lot of research has been 

conducted in the field of polymerization and its effects as shrinkage and stress. In vivo tests 

focused on indirect evaluation of gap formation by resin replica technique (Opdam et al., 

1998; Qualtrough et al., 1991; Roulet et al., 1991). In vitro test methods investigate the resin 

composite in form of a material sample or applied within a cavity prepared in human teeth 

(Chiang et al., 2010) or other material such as resin composite or ceramic block (Cho et al., 

2011; Li et al., 2011).  

Composites undergo volumetric shrinkage of 2-6% upon setting, which creates 5-15 MPa 

contraction stresses (Feilzer et al., 1987) between the composite and the tooth, straining the 

interfacial bond, leading to debonding, microgaps and cuspal deflection. This stress can even  

exceed enamel’s tensile strength and result in stress cracking and enamel fractures along the 

interfaces. Restorative failures as hypersensitivity, pulpitis and secondary caries may occur 

(Ferracane, 2005; 2008; Kleverlaan and Feilzer, 2005; Labella et al., 1999).  

 

 

Figure 3 Failures that may occur after application of a composite restoration, modified after 

Tantbirojn et al., 2004 (Tantbirojn et al., 2004) 
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The greater the volumetric shrinkage is, the greater is the shrinkage stress for a comparable 

elastic modulus. The development of shrinkage stress depends on the volumetric shrinkage 

strain and the stiffness of the composite at the time of shrinkage; even low-shrinkage 

composites might exhibit high stress when having a high elastic modulus. A 2 mm 

incremental application of composite and polymerizing each increment independently is 

usually advised to ensure a full depth of cure and to reduce the net effect of polymerization 

shrinkage. Net shrinkage stress is assumed to be less because a smaller volume of composite 

is allowed to shrink before successive additions. (Sakaguchi and Powers, 2012). On the other 

hand, Versluis et al., 1996 showed that the incremental application combined with a well-

established bond to the tooth increased the deformation of the restored tooth and in turn the 

stress level within the tooth-restoration complex (Versluis et al., 1996).  

Feilzer et al., 1987, showed that the stress development in a bonded composite restoration 

depends on the restoration geometry, in that the pregelation flow of the material is inhibited 

when the ratio of the bonded surface exceeds a certain limit; the magnitude of stress can be 

estimated through the C-factor (configuration factor) which is the ratio of bonded to 

unbonded areas. The higher the C-factor, the greater the stress level. This observation is 

related to the description of shrinkage as a vector, having both magnitude and direction 

(Feilzer et al., 1987). Other studies criticized that the C-factor does not take into account the 

volume of the applied composite and Braga et al., 2006, related shrinkage stress to 

microleakage in restorations of larger size (Braga et al., 2006; Watts and Satterthwaite, 

2008). 

1.4 Methods for measuring polymerization shrinkage stress  

Early shrinkage stress measurements were performed by Bowen (Bowen, 1967; Bowen et 

al., 1983) and Hegdahl (Hegdahl and Gjerdet, 1977) using a Universal Testing (Instron) 

machine (UTM), while a servo-hydraulic UTM was used by the ACTA group of Davidson, 

Feilzer, de Gee and Alster who achieved major insights and developments, including the 

effect of C-factor on the stress magnitudes and eliminating the effect of system compliance. 

Unfortunately this approach was expensive and complex, in addition to the basic limitation 

of eliminating compliance for load measurement systems as they imply finite compliance. 

(Alster et al., 1997; Davidson and de Gee, 1984; Davidson and Feilzer, 1997; Feilzer et al., 

1988; 1989; 1990; Watts et al., 2003). An apparatus with a controlled compliance to measure 

contraction stress was developed by Sakaguchi et al., 2004, in which the composite specimen 
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was located between a glass plate and a steel rod that measured the developed force upon 

curing (Sakaguchi et al., 2004a). 

Polymerization shrinkage stress was also determined by a tensilometer (Davidson and de 

Gee, 1984; Davidson et al., 1984; Feilzer et al., 1987) and strain gauges (Sakaguchi et al., 

1992). A stress-strain-analyzer testing machine was developed by Dullin, 1998, during 

his master’s thesis under the supervision of Kunzelmann and Stockhausen (Dullin, 1998) 

and used for the shrinkage stress measurement with and without compliance (Chen et al., 

2001; Chen et al., 2003).  

 

 

Figure 4 stress-strain analyzer machine designed by Dullin, modified after Chen et al., 2001 

(Chen et al., 2001; Chen et al., 2003; Dullin, 1998).  

  

Photo-elastic and Moire methods are based on optical fringes (Ernst et al., 2004; Kinomoto 

and Torii, 1998; Kinomoto et al., 1999; 2000; Oliveira et al., 2012; Rullmann et al., 2012). 

Another method is the finite element modeling (FEA) which consists of a computer based 

model that determines the type and location of stresses in the model structures (Ausiello et 

al., 2002; Rodrigues et al., 2012). Shrinkage strain-rate and stress was measured during 

polymerization with a tensometer which is based on the cantilever beam deflection theory 

(Lu et al., 2004a; b; Sun et al., 2009b).  

The “ring-slitting method” was used to evaluate residual shrinkage stresses in composite. 

Ring-shaped specimens were cured and slit for the evaluation of the gap distance due to 
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stress release and gap measurements were evaluated with an image analyzer program (Park 

and Ferracane, 2005; Park and Ferracane, 2006).   

The Bioman shrinkage-stress instrument was designed and constructed at the University 

of Manchester to overcome the difficulties encountered with the servo-hydraulic UTM and 

its function is based on the fixed beam compliance (Watts et al., 2003; Watts and 

Satterthwaite, 2008).  

 

 

Figure 5 The Bioman shrinkage-stress instrument, modified after Watts et al., 2003 (Watts 

et al., 2003). 

 

Variations in final stress values are found in the literature which can be attributed to the 

various testing techniques and system compliances. In order to obtain data that can be related 

to the clinical situation, the instrument compliance should preferably be similar to that of the 

prepared tooth (Schneider et al., 2010).   

Polymerization shrinkage stresses are also evaluated by FEA. Among the advantages of FEA 

are the rapidity of work and the ability to vary the conditions ranging from perfect to 

unfavourable. None or only a few teeth specimen are needed as one tooth is enough for 

generating a tooth model which can then be manipulated to host different conditions. A 

detailed stress analysis is possible which makes it attractive for use. Nevertheless, FEA 

models need direct experimental validation and they do not consider that biological systems 
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have a high degree of variability between specimens (Morin et al., 1988). In the early 70s of 

the last century, stresses in biological structures were analyzed (Brekelmans et al., 1972), in 

human teeth (Thresher and Saito, 1973), restored molar (Farah et al., 1973), then in teeth 

under different loading conditions (Takahashi et al., 1980).  

Versluis et al., 2004, investigated shrinkage stresses associated with tooth deformations upon 

restoration by FEA, and they used reported strain gauge measurements and occlusal 

deformation patterns for validation. It was concluded that shrinkage stresses depend on the 

location as well as properties of the tooth and restoration, the geometry, constraints and the 

restorative procedures; stresses were in the tooth rather than the restoration or the tooth-

restoration interface (Versluis et al., 2004b). Rodrigues et al., 2009, explained in detail the 

workflow for generating such model and analyzed class I restoration with different boundary 

conditions and found stress concentrations in the vicinity of the tooth-restoration interface 

(Rodrigues et al., 2009)  One study evaluated the effect of the C-factor on the shrinkage 

stresses, but the stress peaks did not increase with increasing C-factor (Rodrigues et al., 

2012), while it was stated that not only the C-factor but also the longitudinal compliance and 

the elastic modulus of the substrate play a role in the stress generation (Meira et al., 2007). 

Another study investigated the correlation between C-factor, shrinkage stress and volumetric 

shrinkage both experimentally and by FEA (Pabis et al., 2012).  
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1.5 Methods for measuring polymerization shrinkage 

Various devices have been used for measuring polymerization shrinkage in terms of 

volumetric and linear shrinkage, cuspal displacements, indirect techniques as microleakage, 

finite element analysis and through the use of micro-CT-data sets (Figure 6).  

 

 

Figure 6 Overview of the methods for measuring the polymerization shrinkage strain. 

 

1.5.1 Volumetric shrinkage measurement 

Volumetric shrinkage can be measured in a mercury dilatometer by determining the linear 

height changes of a column of fluid connected to a reservoir surrounding the sample. The 

capillary tube is read like a thermometer (Bekkedahl, 1949; Rodriguez et al., 2006; Smith 

and Schoonover, 1953). The disadvantages of this method are the potential for errors due to 
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small temperature changes by composite polymerization which can affect the liquid volume; 

tedious specimen preparation is needed and flowables cannot be measured (de Gee et al., 

1981; Kullmann, 1989; Penn, 1986). Access of the light source and opacity of the mercury 

were difficulties with light-cured dental materials (Watts and Cash, 1991). Due to the 

potential for environmental mercury contamination and toxic mercury vapors, water filled 

dilatometers were used for polymerization shrinkage measurement. However, the most 

critical factor for the successful application was maintaining a constant temperature 

environment for the dilatometer during shrinkage test (Lai and Johnson, 1993; Rees and 

Jacobsen, 1989). The heat from the light source in addition to the heat of the exothermic 

polymerization reaction contribute to an unavoidable increase in temperature upon curing. 

Yamamoto et al., 2007, measured the polymerization shrinkage of flowables in a water-filled 

dilatometer and with speckle contrast measurement. The flowable composite was condensed 

into a glass tube, irradiated, and the laser-speckle field was recorded in a digital frame 

(Yamamoto et al., 2007). The water-filled dilatometer is also indicated for shrinkage 

measurement of other types of composites, not only flowables. 

Measuring the density change of composites before and after polymerization can be done 

by a gas pycnometer that determines the volume of samples before and after polymerization 

without contact, and the difference in volume is calculated (Cook et al., 1999) or by 

measuring the specific gravity differences between cured and uncured composite test 

specimens using a modified version of ASTM method D792 "Specific Gravity and Density 

of Plastics by Displacement" (Puckett and Smith, 1992). Buoyancy (density in water) 

measurements were used to evaluate the volumetric polymerization shrinkage of composites 

in real time by measuring the buoyancy change of the specimen in distilled water (Lee et al., 

2005). The Archimedes method measures the actual shrinkage in volume according to the 

buoyant force principle (Weinmann et al., 2005). The Archimedes method was recently 

developed into a German Standard (DIN 13907/2005) (Filtek LS, Technical Product Profile, 

2007; Soltesz et al., 1986; Watts and Marouf, 2000). When testing hydrophilic materials, 

e.g. compomer or flowables, water sorption is a disadvantage with the Archimedes method 

that can be overcome by the use of an alternative medium to water, such as oil or mercury. 

Naoum et al., 2012, measured polymerization shrinkage with an electromagnetic balance 

that recorded changes in the composite buoyancy during polymerization which permitted 

real time volumetric shrinkage measurements at small intervals (Naoum et al., 2012). 

Volumetric shrinkage was obtained by video imaging using AcuVol (Bisco Inc., 
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Schaumburg IL, USA) and sample imaging by a digital video-camera (Labella et al., 1999; 

Sharp et al., 2003). 

It was stated that the volumetric shrinkage is approximately equal to three times the linear 

shrinkage provided the shrinkage occurs identically in all directions as derived from the 

formula:  

γp= 1
3-(1-αp)

3=3αp-3αp
2+αp

3 (γp, volume shrinkage; αp, linear shrinkage strain), where αp is 

very small (Lee et al., 2005; Lee et al., 2012). Isotropic shrinkage is shrinkage equal in all 

directions, which is hardly the case in a restorative material applied into a tooth cavity, as it 

is confined by the cavity’s boundaries and boundary conditions.   

1.5.2 Linear shrinkage measurement 

Early measurements of linear shrinkage were determined on a cylinder of material using a 

dilatometer, and the % shrinkage =
∆L

L
x100 where ΔL = change in length and L = uncured 

length (Lee et al., 1969).  

 

 

Figure 7 Measurement of the linear polymerization shrinkage of a composite cylinder. 

 

The most common measurement for polymerization shrinkage is the bonded-disc method 

by Watts and Cash, also referred to as the “Watts method” (Watts and Cash, 1991). Earlier 

precursor was described by Wilson (Wilson, 1978) and Bausch (Bausch et al., 1982). Linear 
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shrinkage measurements are performed with linear displacement transducers such as LVDT 

(linear variable differential transformer) and the bonded-disc method has been 

internationally adopted by a number of academic and industrial research laboratories (Watts 

and Cash, 1991; Watts and Hindi, 1999; Watts and Marouf, 2000): a disc-shaped specimen 

of uncured composite is positioned at the center of a ring attached to a glass slide and covered 

by a flexible microscope coverslip on which the LVDT probe is placed for measuring the 

plate deflection; the material is light cured and data are recorded over time by a computer. 

The bonded-disc method results in lower shrinkage values because only the linear shrinkage 

of a bonded composite disc is measured and then converted into volume percent. However, 

the Archimedes method measures the actual volumetric shrinkage according to the buoyant 

force principle, with both methods showing a high correlation (Weinmann et al., 2005). 

Advantages of the bonded-disc method include the adjustment of a defined C-factor, the 

shrinkage direction is governed by the configuration rather than the direction of light 

application, axial shrinkage strain corresponds to volumetric shrinkage, specimen diameter 

matchs that of the light guide tip, complete cure of the specimen due to low thickness, and 

lastly ease and convenience of use (Watts and Hindi, 1999).  

 

 

Figure 8 The bonded-disc method for measurement of the linear polymerization shrinkage, 

also referred to as “Watts method”, modified after Watts and Cash, 1991 (Watts and Cash, 

1991). 
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Various techniques for linear polymerization measurements include strain gauges 

(Sakaguchi et al., 1991; Sakaguchi et al., 1992; Sakaguchi et al., 1997), the use of a 

microscope (Davidson and Feilzer, 1997) and the linometer whose results were in agreement 

with those obtained with the mercury dilatometer (de Gee et al., 1993). When a direct contact 

displacement transducer such as a strain gauge is used, some mechanical resistance must be 

overcome to produce deformation of the gauge. Consequently, the polymerization shrinkage 

before the gel-point is compensated by flow of resin and only post-gel contraction is 

measured (Sakaguchi et al., 1991). 

 

 

Figure 9 Linometer for the measurement of linear polymerization shrinkage, modified after 

de Gee et al., 1993 (de Gee et al., 1993). 

 

A scanning laser beam was used to measure linear polymerization shrinkage of light-cured 

composites. The advantages of this method are: the sample is unaffected by the measurement 

technique and small samples could be analyzed with great accuracy (Fano et al., 1997). A 

laser interferometric method consisted of a low power Helium-Neon laser, a Michelson 

interferometer, amplified photodiode detectors, and a computer data acquisition system. The 

method measured linear polymerization shrinkage in dental restoratives and evaluated as the 

percent linear contraction (Fogleman et al., 2002). 
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The 2D particle tracking method measured the linear polymerization shrinkage of 

composites by an optical instrument without directly contacting the specimen and the images 

were processed by a custom made software for image processing and analysis (IMAQ Vision 

and Labview 7.0, National Instrument, Austin, TX, USA). An update of that method 

involved the fluorescent particle tracking method with computer vision during curing and a 

software for multi-particle tracking. (Kweon et al., 2013; Lee et al., 2012). Another study 

determined polymerization shrinkage using a video-imaging device (Simon et al., 2008; 

Yamamoto et al., 2012). 

1.5.3 Cuspal deflection measurement 

The previously mentioned methods measure the gross shrinkage of resin composite samples 

as such, but they do not represent or consider the boundary conditions that occur in a tooth 

cavity, and in turn do not predict clinical performance. The measurement of cuspal deflection 

is indicative of the measurement of polymerization shrinkage of bonded resin composite 

inside a tooth cavity, in an attempt to correlate to the clinical situation. Polymerization 

shrinkage was greater when measured by a dilatometer than cuspal movement where the 

composite was restricted by being bonded to the  cavity walls (Suliman et al., 1994) and it 

was previously confirmed that shrinkage strains changed with the boundary conditions 

(Sakaguchi et al., 2004b). 

Cuspal deflection has been thoroughly investigated for class II cavities restored with resin 

composites using a variety of techniques including photography/microscopy (microscope 

with a micrometer stage) (Gonzalez-Lopez et al., 2004; Rees et al., 2004; Suliman et al., 

1993b), Michelson interferometry (Suliman et al., 1993a), strain gauges (Alomari et al., 

2001; Donly et al., 1989; Morin et al., 1988; Taha et al., 2009; Versluis et al., 2004a), linear 

variable differential transformers (LVDT) (Lee et al., 2007; Meredith and Setchell, 1997; 

Pearson and Hegarty, 1989), contact stylus profilometry together with computer graphics 

(DeLong et al., 1985; Tantbirojn et al., 2004), digital-image-correlation (DIC or texture 

correlation) (Chuang et al., 2011a; b) or electronic speckle pattern interferometry 

(Bouillaguet et al., 2006; Lang et al., 2004). DIC method analyzes an object’s displacement 

based on the comparison of two similar speckled images; one before deformation and one 

after. Images are recorded using a CCD camera through an optical microscope, and the local 

displacements between the images are found out (Chuang et al., 2008; Chuang et al., 2011b; 

Huang et al., 2005; Li et al., 2009). 
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The measured cuspal deflections averaged 15 µm up to 50 µm, but varied according to the 

technique used. Absence of standardization of tooth size, cavity preparation and restoration 

technique renders comparison of results difficult, since contraction of cusps depends on the 

remaining tooth structure. Some studies combined cuspal deflection with microleakage 

analysis (Moorthy et al., 2012) or shrinkage stress determination (Kwon et al., 2012).  

The methods used are not standardized among the various testing labs. For this reason 

comparisons of the results should be done with caution. One group of researchers have 

performed various investigations with standardized cavity configurations that allow the 

comparison of the results among their studies (Abbas et al., 2003; Cara et al., 2007; Fleming 

et al., 2005; Fleming et al., 2007a; Fleming et al., 2007b; Moorthy et al., 2012; Palin et al., 

2005). Another difficulty of the interpretation of the results is when partial debonding of the 

restoration happens, because it would decrease the cuspal movement, while the bond has 

failed, thus, giving misleading results.  

1.5.4 Measurement of adverse effects of polymerization shrinkage  

A traditional method of determining the adverse effects of polymerization shrinkage includes 

in vitro assessments of interfacial adaptation based on dye penetration, or quantitative 

marginal gap analysis by the replica technique and SEM (Lutz et al., 1977; Qvist and Qvist, 

1985; Roulet et al., 1991; van Dijken et al., 1985). Bond strength tests are also used to 

evaluate the composite-dentin-bonding-agent-complex. There are various tests like the 

shear, the tensile bond strength test, as well as the micro-shear and microtensile bond 

strength tests (Armstrong et al., 2010; Braga et al., 2010). Data from labs worldwide using 

various tests on the same material achieve different results, even microtests could not 

eliminate the high degree of variations among results (Scherrer et al., 2010). Other in vitro 

phenomena are used to evaluate the effects of polymerization shrinkage such as 

microleakage, nanoleakage, structure and mechanical properties of the bonding interface. 

These can also be related to bond strength values, but they do not necessarily correlate with 

results of microleakge tests or gap formation at the cavity margin, whereas nanoleakage tests 

and morphological and chemical characteristics of the bonding interface could be indicative 

of future dentin bond durability (Tagami et al., 2010). 

However, the clinical reliability of these tests were considerably questioned. It was 

suggested to develop more appropriate bond test and analysis of in vitro phenomena (Tagami 

et al., 2010), while others suggested to use an interfacial fracture mechanics approach for the 

analysis of the dentin-adhesive bond for better agreement of test results (Scherrer et al., 
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2010). In this regards, it was reported that the use of hydrophilic DBAs the dye penetration 

method bore some difficulties in differentiating between the stained bonding agent and true 

gaps. Furthermore, the accuracy of the replica technique was found to depend largely on the 

quality of both the impression and replica for the margin analysis. In addition, it gives 

information on the length but not the depth of defect, same applies to SEM (Chiang et al., 

2009).    

1.5.5 Finite element analysis (FEA)  

Polymerization shrinkage is also analyzed by methods like the finite element analysis. A 

well known study is presented by Versluis et al., 1998, in which they questioned that 

composites shrink toward the light. They proposed a cylindrical cavity with different 

boundary conditions that were simulated by FEA and which stated that the shrinkage 

direction of light cured dental composites depends on the boundary conditions, specially the 

bonding between the restoration and the tooth rather than the light source (Versluis et al., 

1998). In an attempt to predict shrinkage stresses volumetric shrinkage was measured and 

related to the C-factor; the stress peak correlated with the volumetric shrinkage but not with 

the C-factor (Pabis et al., 2012). 

1.5.6 Methods employing micro-CT data for the evaluation of polymerization 

shrinkage 

The microcomputed tomography is a cone beam tomography producing 3-dimensional 

images of high resolution up to 6 µm. The micro-CT scans have been extensively used for 

bone density investigation (Bouxsein et al., 2010; Wagner et al., 2011), mineral content 

assessment in caries research (Clementino-Luedemann et al., 2006; Clementino-Luedemann 

and Kunzelmann, 2006; Huang et al., 2007; Schwass et al., 2009; Zou et al., 2009), and tooth 

modeling in finite element analysis (Magne, 2007). 

Data acquisition for the evaluation of polymerization shrinkage has been performed by 

different researchers and could be divided into two distinct parts: on one hand the assessment 

of volumetric changes and resulting gap analysis or detachment of the restorative material 

from the cavity interface, and on the other hand the shrinkage vector calculations by the use 

of particle tracing before and after polymerization. 

1.5.6.1 Volumetric evaluation of polymerization shrinkage 

Non-destructive investigation of the marginal adaptation and the adhesive interface were 

performed (De Santis et al., 2005; Kakaboura et al., 2007; Meleo et al., 2012), in addition to 
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the evaluation of the internal adaptation of adhesive restorations (Kwon and Park, 2012). 

The research group at the ADA Foundation in Gaithersburg, USA, published studies on 

volume loss of resin composites (Sun and Lin-Gibson, 2008; Sun et al., 2009a; Zeiger et al., 

2009) and volume loss in association with direct non-destructive microleakage investigation 

(Sun et al., 2009a; Sun et al., 2009b). The disadvantage of this method is that gaps are 

detectable at x 2.5 voxel size which is a rather insensitive method. Currently a typical micro-

CT resolves 6-8 µm which corresponds to a detectable gap size of 25-30 µm. 

1.5.6.2 Methods utilizing the shrinkage vectors methods 

The visualization of polymerization shrinkage in form of shrinkage vectors is a technique 

that has been introduced and improved by the research group at the Tokyo University, Japan 

(Cho et al., 2011; Inai et al., 2002). The basic concept of this technique has been adopted 

and furtherly developed by the research group at the Ludwig-Maximilians-Universität 

(LMU) in Munich, Germany (Chiang et al., 2009; Chiang et al., 2010; Rösch et al., 2009). 

Medical image registration  

The use of radiological images has increased in medical research and healthcare. Generally, 

image registration can be used for combining images of one subject, therefore compensating 

for example for motion between scans. This is performed by registration algorithms that 

automatically register images by a rigid body transformation. On the other hand, non-rigid 

registration algorithms compensate for tissue deformation or align images from different 

subjects (Fischer and Modersitzki, 2008; Hill et al., 2001).  

Medical image registration methods are important in brain tumor studies for tumor 

visualization and observation (Bauer et al., 2013). In dentistry, Kunzelmann, 1996, was one 

of the first to visualize 3D data for wear analysis and quantification of filling materials in 

vitro and in vivo (Kunzelmann, 1996). Swennen et al., 2007, have applied the rigid 

registration method for detailed visualization of the interocclusal relationship in the course 

of 3D virtual planning of orthognathic surgery. They designed a 3D splint with the double 

CT scan procedure to obtain an anatomic 3D virtual augmented model of the skull with 

detailed dental surface (Swennen et al., 2007). Sandholzer et al., 2013, used quantitative 

micro-CT data for studying the 3D shrinkage and shape preservation of human teeth upon 

heating which is relevant information for forensic investigators (Sandholzer et al., 2013). 
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Methods for acquiring polymerization shrinkage vectors 

Shrinkage vectors represent the magnitude and direction in which shrinkage occurs (Watts 

and Cash, 1991). The Tokyo-group invented the filler-tracing-method for visualization of 

polymerization shrinkage by obtaining real polymerization shrinkage vectors. They 

embedded radioopaque zirconia fillers into a resin composite, scanned the restoration before 

and after light-curing, identified the fillers manually in both scans and calculated the 

movement 2-dimensionally (Inai et al., 2002). 

The first automated process was conducted by the Munich-group in which micro-CT 

datasets were combined with the images registration approach to determine and visualize the 

direction and amount of polymerization shrinkage vectors 2-dimensionally then 3-

dimensionally. Radiolucent glass fillers were embedded into a flowable resin-composite to 

avoid reconstruction artifacts in the micro-CT, then scanned with a micro-CT before and 

after light-curing, and traced.  

In the 2D-study the displacement vector field was calculated with an elastic registration 

algorithm using vector-spline regularization combined with B-spline based elastic 

registration (Arganda-Carreras et al., 2006; Chiang et al., 2008; Chiang et al., 2009; Kybic 

and Unser, 2003; Sorzano et al., 2005). The basic idea of the elastic registration is the 

application of a grid to both pre-and-post-polymerization scan images, where the regular 

grid is applied to the pre-polymerization situation, and the deformed grid to the post-

polymerization. The grid itself is elastic and its deformation costs energy; with larger 

deformations requiring more energy. One of the images is the elastically deformed version 

of the other. The main goal of elastic registration is fitting the grid to the new position by 

using the least possible energy, where the points of grid deformation are identical to the 

tracer markers. To register two images, it was assumed that one the images, the source image, 

is an elastically deformed version of the other, the target image; elastic fields can be 

expressed in terms of B-splines. Image registration can be carried out using landmark-based 

or landmark-independent registration algorithms, the latter being superior when the image 

exhibits major deformations or when the information is unevenly distributed. The grid is fit 

to the tracer markers that constitute landmarks that are identical to the points where the grid 

is deformed and being fit to new position based on tracer markers by elastic registration. 

However, tracer markers are not evenly distributed in every 2D section of the 3D scan and 

the missing deformations are assumed. Consequently, the elastic registration based on B-

splines regularization is highly dependent on its parameter values and in case of improper 
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assumptions might lead to incorrect results. For visualization purposes, the shrinkage vectors 

were displayed as glyphs (Chiang et al., 2008; Chiang et al., 2009).   

 

(A) 

 

(B) 

 

Figure 10 The image processing of the 2D shrinkage vector evaluation: (A) the original 

source image of the uncured resin composite with the deformation grid. (B) The 

displacement field obtained from the elastic registration is superimposed to the output 

source-target image of the registered target image. The vector field displays the deformation 

due to the mass movement of the polymerization shrinkage and the dotted line marks the 

deformed shape after light-curing of the composite (Chiang et al., 2009). Reuse of the images 

is with written permission by Dr Yu-Chih Chiang (2014).  

 

Moreover, they analyzed 3D shrinkage vectors using the same experimental flowable 

composite, but implementing a different method of image registration based on a block-

matching algorithm. It consisted of a three-step approach: first, the subimage selection from 

the micro-CT scans with the software InsightSNAP (www.itksnap.org), second, the sphere 

segmentation, which is the identification and separation of glass spheres from the rest of the 

restoration in the uncured image, depending on the grey value, and third, the registration of 

the individual spheres through local rigid registration (the block-matching) to determine the 

segmented spheres’ displacement during the polymerization process. They visualized the 

deformation 3-dimensionally field using VTK (www.vtk.org) and vector lengths were 

obtained (Chiang et al., 2009; Chiang et al., 2010; Rösch et al., 2009).   

http://www.itksnap.org/
http://www.vtk.org/
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Figure 11 The 3D deformation field by Chiang et al., 2009 (Chiang et al., 2009). Reuse of 

the images is with written permission by Dr Yu-Chih Chiang (2014).  

 

The results of the Munich-group in the 2D investigation were in agreement with those of 

the 3D analysis. The composite was applied in a cylindrical class I cavity. In the unbonded 

group, composite adhered to one side and pulled from the other wall, thereby forming a 

compensatory gap. In the bonded group, cavities with equal enamel thickness at both 

margins the displacement vectors showed upward shrinkage, with small vectors near the 

enamel and a translucent area was detected at the bottom. In the bonded group with unequal 

enamel margins the main orientation of the displacement vector field was toward the bottom 

of the cavity and to the side with greater amount of enamel with a compensatory mass 

movement at the top of the restoration. In a further study, they applied the composite in a 

trapezoidal class I cavity with dentin walls only to study the effect of different self-etch 

bonding systems on the polymerization shrinkage direction. The displacement vector fields 

and vector lengths varied depending on the bonding agent used. With ClearFil SE Bond and 

OptiBond the vectors moved downward, while with Xeno V it was the opposite (Chiang et 

al., 2009; Chiang et al., 2010). 

In the second study of the Tokyo-group, they imported the micro-CT-scan data of the 

composite restorations before and after polymerization into a custom made software, the 3D-

BON software (Ratoc Systems Engineering, Tokyo, Japan) and used a cluster-labeling 

algorithm to extract the fillers and perform the pairing procedure as has been introduced 

earlier by the Munich-group (Chiang et al., 2008; Cho et al., 2011; Rösch et al., 2009). 

Images were reconstructed from the data by a 3D data visualization tool Avizo 6.2 
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(Visualization Sciences Group, Burlington, MA). The movement distance of each filler after 

polymerization was obtained 3-dimensionally. However, the analysis of filler movement was 

limited to the axial direction, i.e. in relation to the light source, by dividing filler movement 

data into 165 regions within the restoration. In the bonded condition, their findings showed 

downward shrinkage at the superficial part (1 mm), and an upward shrinkage, toward light, 

in the deeper part of the restoration, whereas the unbonded restorative material completely 

shrunk upward, toward light, (Cho et al., 2011). One drawback of this method is the 

radioopacity of the zirconium dioxide fillers introducing reconstruction artifacts in the 

micro-CT.  

 

 

Figure 12 The 3D image obtained by superimposing micro-CT scans from the composite 

before and after polymerization. The three slices are representative of the 165 slices that 

were analyzed for the filler movement in the axial direction by Cho et al., 2011 (Cho et al., 

2011). Reuse of the images is with written permission by Elsevier/RightsLink (2014). 
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Figure 13 The 3D vector field image represents the filler movement direction in the bonded 

group by Cho et al., 2011 (Cho et al., 2011). Reuse of the images is with written permission 

by Elsevier/RightsLink (2014). 

 

 

Polymerization shrinkage is generally related to the material’s properties, the light source 

and the boundary conditions. Flowable resin composites have a lower modulus of elasticity 

and exhibit greater amounts of volumetric shrinkage, thus, facilitating the visualization of 

shrinkage vectors. A more flexible material generates less shrinkage stresses at the tooth-

restoration-interface than a stiffer one as the pre-gelation flow compensates for the 

shrinkage. Moreover, the polymerization is affected by aspects related to the light source. 

The power output varies among light-curing units, the distance between the light-guide and 

the restoration should be as small as possible so that more photons reach the full depth of 

the restoration (Price et al., 2010b; Price et al., 2010e; Price et al., 2011). Also, the direction 

of light application might have an influence on the shrinkage. In the presented studies the 

light was applied perpendicular to the long axis of the tooth, while Versluis et al., 1998, have 

added a 45 degree angulation which resulted in only small changes of the shrinkage direction 

in their FEA evaluation (Versluis et al., 1998).  

The available data on the shrinkage vectors give insight into the shrinkage direction of light-

cured composites using micro-CT data sets. Only few aspects of boundary conditions were 
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reported such as bonded and unbonded restorations, the use of various self-etch adhesives 

and the effect of unequal enamel margins on the shrinkage direction (Chiang et al., 2009; 

Chiang et al., 2010; Cho et al., 2011). Yet, further investigations are needed to clarify the 

effect of the boundary conditions on the shrinkage vectors.  
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2 Aim of the study 

 

The 3D evaluation method of shrinkage vectors in light-cured composites was proposed by 

Rösch et al., 2009, and employed by Chiang et al., 2009, 2010 (Chiang et al., 2009; Chiang 

et al., 2010; Rösch et al., 2009). It is an accurate tool for the quantification of polymerization 

shrinkage vectors and it displays the internal movements within the restoration that could 

not be seen otherwise. Therefore, the aim of this study was to investigate the effect of 

boundary conditions on the polymerization shrinkage of a light-initiated resin composite in 

form of displacement vector fields. Polymerization shrinkage was visualized 3-

dimensionally and shrinkage vectors were also analyzed in the axial direction. Boundary 

conditions consisted of the cavity configuration, the bonding condition and the bonding 

substrate (Figure 14). 

Each chapter addressed a certain topic related to the boundary conditions. In Chapter 3 the 

specific aim was to study the effect of different cavity configurations on the shrinkage 

vectors which is of clinical relevance. The prepared cavities could be standardized, while 

human teeth could not. For this reason, Chapter 4 was proposed to study the shrinkage 

vectors with the least possible influence by the substrate in etched and silanized ceramic 

cavities with and without a dentin bonding agent. In contrast, Chapter 5 aimed at evaluating 

the effect of a nonbonded boundary condition on the shrinkage in a non-adhesive Teflon 

mold. Here, only the cavity configuration played a role, independent of the adhesion. 

“Bonding to enamel is stronger than bonding to dentin”. How does this statement translate 

into the shrinkage behavior of composites upon light-curing? To find out, the effect of the 

tooth’s coronal bonding substrates, enamel and dentin, was studied by using an experimental 

cavity model where enamel was located at the cavity floor in opposition to the traditional 

cavity with enamel at the cavity margins, Chapter 6. Additionally, the effect of a self-etch 

versus a total-etch adhesive was analyzed. Figure 15 summarizes the specific objectives of 

the current study. 
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Figure 14 The investigations of the current study were based on the boundary conditions 

which include the cavity configuration, the bonding condition and the bonding substrate. 

 

 

Figure 15 Overview of the different study parts. 

 

Hypothesis  

The hypothesis of the current work is that the shrinkage direction in the form of shrinkage 

vectors is influenced by the restoration’s boundary conditions rather than the light source. 

Boundary conditions can be divided into the cavity form, the bonding condition and the 

bonding substrate, as displayed in Figure 14.   
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3 Shrinkage Vectors in Different Cavity Configurations 

 

3.1 Abstract 

Objectives: To detect the effect of different cavity configurations on the shrinkage direction 

in relation to the light source and to visualize polymerization shrinkage of a light-initiated 

resin composite in form of displacement vector fields. 

Methods: 27 human teeth were equally divided into three groups and labeled according to 

the cavity-configuration as “adhesive”, “diverging“ and “cylindrical”. All class I cavities 

were axially symmetric and 3 mm deep. The “adhesive” cavity configuration represented 

beveled enamel-margins, occlusally converging walls and a floor-diameter of 6 mm, the 

“diverging” cavity had a floor-diameter of 5 mm and a margin-diameter of 7 mm, and the 

“cylindrical” group had cylindrical walls (diameter 6 mm). 2 wt% traceable glassbeads were 

added to a commercial composite (Tetric EvoFlow, Ivoclar Vivadent) and bonded with a 

self-etch one-step adhesive (Adper Easy Bond, 3M ESPE). Two micro-CT scans were 

performed of each specimen (uncured, cured), subjected to image segmentation for 

extraction of glass beads followed by a registration process (rigid registration and subsequent 

block-matching algorithm). The resulting displacement vector fields obtained by tracing the 

movement of the tracer beads elucidated the distribution of shrinkage vectors three-

dimensionally. Furthermore, the shrinkage vector components regarding the vertical 

dimension, i.e. in relation to the light source, were quantitatively evaluated, too. 

Results: Mean vector lengths were computed irrespective of their direction, where the 

“adhesive” showed highest vector lengths (31.1 ± 10.9 μm), followed by the “diverging” 

(27.4 ± 12.1 μm) and were least in the “cylindrical” group (23.3 ± 11.1 μm), displaying 

significant differences between all pairs of groups (one-way ANOVA with Tamhane’s T2). 

To investigate the composite shrinkage direction the filler movement was analyzed along 

the z-direction. Negative values denoted shrinkage towards the light-source (upward 

movement), while positive ones indicated downward shrinkage. Greatest mean filler 

movement was observed in “adhesive” (-13.7 ± 12.1 μm), followed by “diverging” (-5.7 ± 

17.2 μm), while “cylindrical” showed the least mean filler movement (-3.7 ± 13.6 μm) 

toward the light source; all pairs of groups showed significant differences (one-way ANOVA 

with Tamhane’s T2). 
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Conclusion: Shrinkage amount and direction varied according to cavity configuration, 

where the upper part of all restorations showed downward shrinkage away from light and 

the lower part shrank upward with variable degrees. Bond disruption occurred at different 

sites: in the “adhesive” group at the floor, in the “diverging” group at the enamel margin, 

and in the “cylindrical” group at one side of enamel margin and the floor. 

3.2 Introduction 

For many decades, an important assumption in dentistry has been that chemically-cured 

composites shrink to the center of mass, while light-cured resin composites shrink toward 

the light source. Based upon this hypothesis, methods and techniques like the use of light-

reflecting wedges and curing light application from different sides for guiding the shrinkage 

towards the cavity walls have been recommended (Ciamponi et al., 1994; Lutz et al., 1986). 

However, an obvious scientific proof confirming this hypothesis was long missing.  

Shrinkage vectors represent the amount and direction of composite mass movement due to 

polymerization shrinkage (Watts and Cash, 1991). Polymerization shrinkage depends on the 

chemical composition, degree of conversion as well as boundary conditions such as cavity 

configuration and bonding conditions, and the light intensity and its distribution (Braga and 

Ferracane, 2002; Ferracane, 2008; Price et al., 2004; Price et al., 2010b; Price et al., 2010c; 

Price et al., 2010d; Price et al., 2010e; Price et al., 2011; Price et al., 2013; Versluis et al., 

1998). The shrinkage effects are indirectly determined by marginal adaptation, gap 

formation, microleakage and bond strength tests for evaluation and comparison of restorative 

systems formed of tooth structure, composite and adhesive bonding systems.  

The cavity design proposed for adhesive restorations features beveled enamel margins and 

rounded dentin walls. Lutz et al., 1976, observed polymerization shrinkage of an adhesive 

restoration toward the light source and assumed it could be attributed to the curing light itself 

(Lutz et al., 1976; Porte et al., 1984). They referred to Lambert-Beer's law which states that 

light attenuates as it travels through matter. The presence of a higher photon density at the 

surface of the materials leads to a better polymerization. With increasing distance to the 

surface, the light intensity is attenuated. The reduced light intensity is associated with less 

photons and therefore less polymerization initiating sites, resulting in delayed gelation and 

build-up of the mechanical properties. As a consequence, the mass movement is directed 

toward the surface of the cavity. 
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Versluis et al., 1998, conducted a finite element analysis (FEA) and claimed that shrinkage 

was not necessarily toward the light source, but was rather affected by the bonding of the 

restoration and free surfaces, in other words, by the boundary conditions (Versluis et al., 

1998). FEA is a good predictor but FEA is only as accurate as the parameters and 

assumptions based upon. Shrinkage usually is simulated in FEA with a heat transfer 

approach. The volume which represents the composite material is cooled in the simulation 

to cause a contraction. The consequences of this contraction are assumed to be similar to the 

consequences of curing contractions. This approach does not include light attenuation as a 

function of the distance to the light source. In addition, the boundary conditions usually are 

assumed to be constant during the loading phase. Only recently the analysis of crack 

propagation was added to the finite element models for contraction stress analysis but for a 

different topic (Yamamoto et al., 2009). Even with refined FEA models the outcome always 

has to be validated with adequate experiments. 

The first real visualization of polymerization shrinkage was demonstrated by Inai et al., 

2002, who embedded radioopaque zirconia fillers into a resin composite and scanned the 

restoration before and after light-curing. The fillers in both scans were identified manually 

and the movement was calculated 2-dimensionally (Inai et al., 2002). Chiang et al., (2009) 

were the first to investigate the polymerization shrinkage direction with an automated 

process first 2-dimensionally and later even 3-dimensionally, based on a block-matching 

algorithm. They used radiolucent glass fillers which were embedded into a flowable resin-

composite, scanned with a micro-CT before and after light-curing, and then the movement 

of each individual particle was traced. The shrinkage vectors were displayed as glyphs 

(Chiang et al., 2009; Chiang et al., 2010). The radiolucent glass fillers are advantageous, as 

they do not result in reconstruction artefacts. Due to the high radiopacity the zirconia fillers 

cause extensive scattering which affects the reconstruction negatively. 

Do composites shrink toward the light? Is the shrinkage direction influenced by the 

attenuation of light as it travels through matter or does the beveling hinder the composite 

from moving downward? The boundary conditions depend on several variables as for 

example the shape of the cavity (= cavity configuration), the bonding conditions and the 

bonding substrates. In order to clarify whether the adhesive cavity design influences the 

shrinkage direction, two other cavity configurations were proposed. The “diverging” cavity 

(cone trunk shaped) represented no configurational influence if composite would shrink 

towards light, while the “cylindrical” cavity could have frictional effects upon composite 

shrinkage, but is neutral regarding any possible movement in axial direction. 
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3.3 Aim of the study 

The aim of this study was to analyze the effect of different cavity configurations on the 

shrinkage direction in relation to the light-source, to visualize the polymerization shrinkage 

of a light-initiated resin composite qualitatively in the form of displacement vector fields 3-

dimensionally and to analyze the axial filler movement quantitatively. 

3.4 Materials and Methods 

The experimental composite and the self-etch adhesive listed in Table 4 were used for the 

restorative procedure. The extracted teeth were collected and stored in sodium azide in the 

dark. The experimental procedures were approved by the ethics committee of the medical 

faculty of the Ludwig Maximilians University, Munich, Germany. 

3.4.1 Specimen preparation 

27 human teeth were divided into three groups which will be labeled in the following text as  

"adhesive", "diverging" and “cylindrical” cavities. All samples were 3 mm deep class I 

cavities. Outside the cavity without contact to the cavity margin the occlusal cups of the teeth 

were slightly flattened for easier perpendicular light application. 

The "adhesive cavity" design, as proposed by Lutz, displayed narrow beveled occlusal 

margins as indicated for the adhesive restorations and the dentin walls of the cavity were 

rounded (Lutz et al., 1976). The "diverging" cavity had occlusally diverging walls, with the 

outer cavity margin 7 mm in diameter and the cavity floor 5 mm in diameter. This cavity 

design was included to allow for unimpeded upward movement of the composite in case it 

would shrink toward the light source. The "cylindrical" cavity was prepared according to 

Chiang with parallel walls, being neutral to any direction of shrinkage (Chiang et al., 2009; 

Chiang et al., 2010; Versluis et al., 1998).   

The teeth were embedded in an acrylic resin (Technovit 4000, Heraeus Kulzer, Germany) 

and fixed to the sample holder with composite to prevent any movement during the scanning 

procedure. 

3.4.2 Preparation of the experimental traceable resin composite 

A flowable resin composite (Tetric EvoFlow, Ivoclar Vivadent, Schaan Liechtenstein), was 

mixed with 2 wt% silanized radiolucent glass fillers with an average particle size of 40-70 

µm (Sigmund Lindner GmbH, Warmensteinach, Germany). Silanization of the glass fillers 
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was performed to ensure a durable bond between the fillers and the resin matrix (Liu et al., 

2001). 

Adper Easy Bond, 3M ESPE, a self-etch one step bonding agent was applied for 20 s, air 

thinned for 5 s and light cured for 20 s using the light-curing unit Elipar FreeLight2, 3M 

ESPE (power output 1200 mW/cm2 according to the manufacturer, checked for constant 

light intensity once/week with a dental radiometer). The composite was applied into the 

prepared cavity and remained uncured. There was no specific reason for the selection of 

Tetric EvoFlow or Adper Easy Bond. The flowable was used to ensure a good marginal 

adaptation. The depth of cure at 3 mm was confirmed by Lindberg et al., 2004 (Lindberg et 

al., 2004). We used a modified commercial composite instead of a self-mixed model 

composite to ensure a constant quality and allow the comparison of the results of studies by 

Chiang et al. (Chiang et al., 2009; Chiang et al., 2010). In addition to that Tetric EvoFlow 

has by accident the perfect radioopacity for the segmentation of the glass beads. 

3.4.3 X-ray micro-computed tomography measurements  

A high resolution micro-computed tomography apparatus (Micro-CT 40, Scanco Medical 

AG, Switzerland) was used for scanning the samples (Figure 16). The settings for the micro-

CT were: acceleration voltage 70 kVp and cathode current 114 μA. The samples were 

scanned with high (83 μm3) resolution using an integration time of 600 ms. A few drops of 

water were added to the sample holder to prevent dehydration and subsequent cracking of 

the tooth during tooth scanning. The sample holder was covered with a radiolucent and dark 

cap to avoid premature polymerization of the uncured resin composite material during the 

scanning procedure, and placed inside the micro-CT machine for the first micro-CT scan. 

Then the composite was light-cured for 40 s and the sample was scanned again using the 

same parameters as before (Figure 17). During the whole process the sample remained in the 

sample holder to avoid a gross displacement of the tooth to facilitate and speed up the 

subsequent registration of the datasets. After the raw micro-CT scans were reconstructed and 

saved a 16-bit datasets of the attenuation coefficient per voxel. Each dataset was 

approximately 3.9 GB large. Details of the workflow are presented in the scheme below 

(Figure 18). 
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Figure 16 The high resolution micro-computed tomography, µCT 40, Scanco Medical AG, 

Switzerland, was used for the 3D scanning procedure of the restorations. 

 

 

 

(A)  

 

(B)  

 

(C)  

 

Figure 17 The prepared and filled tooth in the sample holder in the micro-CT (A), covered 

with a radiolucent and dark cap to avoid premature polymerization during the first scan (B). 

Light curing (20 s) of the composite was performed while the sample remained in the micro-

CT machine (C).  
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Figure 18 Scheme of the workflow for obtaining the digital 3D-data sets from the micro-CT. 
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3.4.4 Data processing  

The basic idea was to identify each individual embedded glass sphere and follow the position 

change of the glass spheres due to polymerization shrinkage in both scans. Data processing 

was performed in different steps consisting of a rigid registration, followed by sphere 

segmentation and registration of each individual sphere based on a block-matching 

algorithm, as shown in Figure 19 (Chiang et al., 2008; Chiang et al., 2009; Chiang et al., 

2010; Rösch et al., 2009). 

3.4.4.1 Rigid registration 

Rigid registration was first performed to perfectly match the pre- and post-polymerization 

scans via the outer tooth contours of each sample. The enamel shell and the dentino-enamel 

junction served as references which ensured the exact matching of both scans. 

Implementation was based on the Insight Toolkit, ITK (www.itk.org). 

3.4.4.2 Sphere segmentation and sphere registration 

This step was performed to detect the change in position of each glass filler that occurred  

due to the polymerization shrinkage. Data were prepared for calculations using Fiji 

(http://fiji.sc/Fiji).  

Sphere segmentation was performed for the extraction of glass fillers based on the 

greyvalues of the micro-CT scans. Glass beads have a characteristic diameter of 40-70 µm 

and they can be identified via the tensor of inertia. Only those glass fillers were registered 

that have been distinctly identified. Each identified spherical structure (glass filler) was 

labeled and traced in both scans of each sample, where non-spherical structures were 

discarded.   

Sphere registration involved the identification of fillers and the location of each filler in both 

corresponding scans was calculated.  

Starting with the larger glass fillers of the pre-polymerization scans, the search proceeds in 

the neighboring areas of the post-polymerization scans as the larger glass fillers are assumed 

to be located in close proximity. This gives a clue about the change in position of the glass 

fillers due to the contraction movement. Thus, if glass fillers overlap in the pre- and post-

polymerization scans, they are assumed to form a “pair”. Taking the orientation of the larger 

glass filler, smaller ones are searched for by the same method on the basis of the tensor of 

inertia of each glass filler. The center of each glass filler is determined in the pre-

polymerization scan and its corresponding center in the post-polymerization scan. The 

http://fiji.sc/Fiji
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Euclidian distance of both centers constitutes the shrinkage vector. These calculations are  

based on the block-matching algorithm. 

3.4.4.3 Visualization of shrinkage vectors 

The displacement vector fields were visualized using VTK (www.vtk.org), where each 

vector was represented graphically in form of a glyph pointing in the direction of shrinkage. 

All vectors together formed the displacement vector field. For better visibility of the 

displacement vector fields, the vectors were scaled by the factor 5. The displacement vector 

fields were analyzed visually for shrinkage patterns. 

3.4.4.4 Values of shrinkage vectors  

The output of the registration process was in form of a text file that contained the location 

of each identified filler, defined by the xyz-coordinates, in the pre-polymerization scan as 

well as in the post-polymerization scan. Absolute values of the displacement vectors were 

calculated as the Euclidean distance of the centers of gravity of each segmented individual 

sphere before and after curing:  

v = √(xpostpolym − xprepolym)2 + (ypostpolym − yprepolym)2 + (zpostpolym − zprepolym)2 

Analysis of shrinkage in relation to the light source was performed by examining only the z-

component of vectors denoting the filler movement along the z-axis: 

vz−component = zpostpolym − zprepolym  

3.4.4.5 Statistical analysis 

The mean vector lengths were computed and subjected to one-way ANOVA with post-hoc 

pairwise comparisons using Tamhane’s T2 (using IBM SPSS Statistics 20). 

3.4.5 Scanning electron microscopy  

One sample per group was critically point dried, sectioned longitudinally and examined for 

internal adaptation with a scanning electron microscope (ZEISS GEMINI® FESEM, 

SUPRA™ 55VP, Carl Zeiss SMT AG, Oberkochen, Germany) at x200 magnification (Figure 

66). 
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Table 4 Composition of the experimental resin composite and the self-etch adhesive 

Brand name  Composition Batch No. Manufacturer 

Tetric EvoFlow  

(nano-optimized 

flowable 

composite) 

Bis-GMA, and  urethane 

dimethacrylates (38 wt%) 

Barium glass filler, 

ytterbiumtrifluoride, 

highly dispersed silica, mixed 

oxide and prepolymers (62 

wt%) 

Particle sizes of the inorganic 

fillers:40-3000 nm 

R36640 Ivoclar Vivadent, 

Schaan, 

Liechtenstein 

Glass beads 

(radiolucent 

spheres, used as 

traceable markers) 

 

SiO2 (72.50 wt%),  

Na2O (13.00 wt%),  

CaO (9.06 wt%), 

MgO (4.22 wt%),  

Al2O3 (0.58 wt%) 

Diameter: 40-70 μm 

Art. No.: 

5211 

Sigmund Lindner 

GmbH, 

Warmensteinach, 

Germany 

 

Adper Easy Bond 

(bonding agent) 

2-hydroxyethyl methacrylate 

(HEMA) 

Bis-GMA 

Methacrylated phosphoric 

esters 

1,6 hexanediol dimethacrylate 

Methacrylate functionalized 

Polyalkenoic acid (Vitrebond™ 

Copolymer) 

Finely dispersed bonded silica 

filler with 7 nm primary particle 

size 

Ethanol 

Water 

Initiators based on 

camphorquinone 

Stabilizers 

R461191 3M ESPE, Seefeld, 

Germany 
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3.5 Results  

3.5.1 Qualitative presentation of polymerization shrinkage: Visualization of 

shrinkage vectors in the displacement vector fields and SEM 

The glass fillers were identified, labeled and extracted from the matrix by sphere 

segmentation. Then the segmented spheres were registered and shrinkage vectors were 

computed (Figure 19).   

 

(A) 

 

(B) 

 

Figure 19 Sphere segmentation and sphere registration based on a block-matching algorithm. 

Sphere segmentation: set of all identified and extracted glass fillers in a same sample from 

the “adhesive” group (A), Sphere registration: both scans of one sample (here: "adhesive 

group") were superimposed. The identified glass fillers in the first scan were simply 

radiolucent and colorless while the corresponding glass fillers from the second scan were 

superimposed and color coded (B). Sphere registration was performed based on a block-

matching algorithm to determine the displacement of the segmented spheres due to 

polymerization shrinkage. 
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3.5.1.1 The displacement vector field in the "adhesive cavity" 

The displacement vector field in the “adhesive” cavity showed for all samples an extensive 

upward movement in the lower part of the restoration with predominantly large vectors, 

while the upper part exhibited fewer shrinkage vectors with a minimal downward shrinkage 

(Figure 20). The SEM-images of the arbitrarily selected sample showed a defective and 

cracked bond at the floor, while an intact bond at the enamel margin was seen (Figure 21). 

3.5.1.2 The displacement vector field in the “diverging cavity” 

In the “diverging cavity”, the displacement vector field showed in the upper part of the 

restoration large shrinkage vectors with great downward shrinkage, while the lower part of 

the restoration had many small vectors with an upward shrinkage (Figure 22). The SEM-

images displayed a detached bond at the enamel margin, and an intact bond at the bottom 

(Figure 23).    

3.5.1.3 The displacement vector field in the “cylindrical” cavity 

All teeth in the „cylindrical” cavity group showed a considerable amount of shrinkage 

vectors in the lower third of the cavity point upwards. The average length of these vectors 

was 16.7 µm. In contrast to this uniform appearance of the lower part of the cavity, the upper 

part of the cavity had only a few(er) vectors pointing downwards in the upper third of the 

cavity for six teeth. The average length of these vectors was 24.5 µm. Three teeth exhibited 

more shrinkage vectors in the upper third of the cavity pointing downwards with an average 

size of 34.4 µm. The density of the identified vectors was the same in both groups. The 

fillers’ density in the lower third was greater than in the upper third. Three teeth revealed a 

greater number of shrinkage vectors leading downward in the upper part of the restoration 

(Figure 24). 

SEM images showed an intact bond at the enamel margin at one side only and a defective 

bond at the floor. The atypical shrinkage pattern differed that the upper part showed great 

downward shrinkage in addition to the great upward shrinkage at the lower part (Figure 25). 

The thickness of the adhesive layer varied in the different cavity forms at different locations: 

in the adhesive form, it was thickest below the enamel margin, while in the diverging, it was 

thickest at the enamel margin. None of these variations in thickness was observed in the 

“cylindrical” cavity. 
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(A) 

 

(B) 

 

Figure 20 The displacement vector field of the "adhesive" restoration, with the x-plane (A) 

and the z-plane (B) of the micro-CT scan in the background. Glyphs were scaled by a factor 

of 5 to enhance visibility. Large shrinkage vectors are seen at the lower restoration part 

pointing upwards. 

 

(A) 

 

(B) 

 

Figure 21 SEM image (x200) of the “adhesive” restoration showing an intact bond at the 

enamel margin (A) and a defective bond “defect” at the floor of the restoration (B). One 

traceable glass filler is marked by the star *. 
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(A) 

 

(B) 

 

Figure 22 The displacement vector field of the “diverging” restoration, with the x-plane (A) 

and z-plane (B) of the micro-CT scan in the background. Glyphs were scaled by a factor of 

5 to enhance visibility. Large shrinkage vectors point downward near the free surface, and 

small shrinkage vectors point upward from the restoration floor. 

 

(A) 

 

(B) 

 

Figure 23 SEM image (x200) of the “diverging" restoration, displaying a defective bond at 

the enamel margin (A) and an intact bond at the floor of the restoration (B). One traceable 

glass filler is marked by the star *. 
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(A) 

 
(B) 

 
(C)  

 
(D) 

 

Figure 24 The displacement vector field in the “cylindrical” group with a predominant 

shrinkage pattern with the x-plane (A) and z-plane (B) of the micro-CT scan in the 

background showed more vectors in the lower part, while the atypical shrinkage pattern in 

the “cylindrical” cavity additionally displayed large vectors in the upper restoration part. The 

x-plane (C) and z-plane (D) of the micro-CT scan displayed in the background. Glyphs were 

scaled by a factor of 5 to enhance visibility. 
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(A) 

 

(B) 

 

Figure 25 SEM image (x200) of the “cylindrical” restoration showing an intact bond at the 

enamel margin at one side (A) and a defective bond at the floor of the restoration (B). One 

traceable glass filler is marked by the star *. 
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3.5.2 Quantitative presentation of polymerization shrinkage: values of shrinkage 

vectors and statistical analysis 

3.5.2.1 Quantitative non-directional analysis: Probability density function of the 

vector length values 

The results of the mean vector lengths are summarized in Table 3. The "adhesive” cavity 

had the highest vector length values (31.1 ± 10.9 μm), followed by the “diverging” (27.4 ± 

12.1 μm). The " cylindrical” cavity configuration had the least overall vector lengths (23.3 

± 11.1 μm). The probability density function of the vector length values for all groups is 

displayed in Figure 26. Small vector lengths were most frequent in the “cylindrical” cavity, 

followed by the “diverging cavity” and large vectors were more often present in the 

“adhesive cavity”. 

One-way ANOVA revealed significant differences (F=179.848; Df=2,4370; p<0.001) and 

the post-hoc pairwise comparison using Tamhane’s T2 test showed significant differences 

between all groups. 

In summary, the “adhesive cavity” form had the greatest 3D-shrinkage, the greatest upward 

and the minute downward movement. In the “diverging cavity”, the 3D-shrinkage was 

intermediate and downward shrinkage was greatest. The “cylindrical” cavity showed the 

smallest 3D-vectors and the least upward shrinkage. 

 

 

Table 5 Mean vector length values and mean filler movement in the z-direction in the 

different cavity configurations 

Group Vector length (µm) Filler movement in the z-

direction (µm) 

“adhesive” cavity design 31.1 ± 10.9 -13.7 ± 12.1 

“diverging” cavity design 27.4 ± 12.1 -5.7 ± 17.2 

“cylindrical” cavity design 23.3 ± 11.1 -3.7 ± 13.6 
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Figure 26 The probability density function of the vector lengths in the “adhesive”, 

“diverging” and “cylindrical” groups. The “adhesive” group had two maxima above 25 µm 

and a large vectors were more numerous than in the other groups. The “diverging” group 

had its maximum at about 25 µm which means that the majority of vectors were in that range. 

The “cylindrical” group had its peak at about 15 µm which means that the greatest frequency 

of vectors had that value.  
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3.5.2.2 Quantitative directional analysis: Probability density function of the z-

component of the vectors (Filler Movement in z-direction): 

The z-component of the vectors denoting the filler movement was analyzed to investigate 

whether the composite shrinks towards light or not. Negative values denoted shrinkage 

towards the light-source (upward movement), while positive ones exhibited downward 

shrinkage away from light. Greatest mean filler movement towards the light were in the 

“adhesive cavity” form (-13.7 ± 12.1 μm), followed by the “diverging” cavity (-5.7 ± 17.2 

μm), while the „cylindrical” cavity showed the least mean filler movement (-3.7 ± 13.6 μm) 

toward the light source (Figure 27).  

The relative likelyhood for the z-component to take on a given value can be described with 

the probability density function. The area below the curve describes the probability of a z-

component having a value in the interval which limits the area to the left and to the right. 

Considering the interval from negative infinity to zero (equivalent to movement towards the 

light) the “adhesive cavity” has a higher probability of movement towards the light than by 

the “parallel cavity”. The “diverging cavity” showed least upward filler movement in z-

direction, while its probability of downwards movement was the greatest. 

Levene’s test proved equality of variances of the three cavity configurations. The subsequent 

ANOVA revealed significant differences between the three groups (F=216.839; Df=2,4380; 

p<0.001). The pairwise comparison with Tamhane’sT2 showed statistically significant 

differences between all groups.  
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Figure 27 The probability density function of the filler movements in the z-direction in the 

“adhesive”, “diverging” and “cylindrical” groups. The “adhesive” group showed many 

peaks which related to the presence of many vectors of that value. The curve is shifted in the 

negative range that relates to the upward shrinkage movement at the cavity floor. The 

“diverging” group had a shallower curve with two maxima; the first is in the range of -20 

µm that relates to the upward shrinkage at the cavity floor, while the second maximum is 

located at about 15 µm which can be related to the downward shrinkage seen at the free 

surface. The curve of the “cylindrical” cavity also has two peaks, but they are close to each 

other near the zero value. The first peak can be attributed to the upward movement at the 

lower cavity part and the second peak is related to the downward movement at the free 

surface. 
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3.6 Discussion 

The computation of polymerization shrinkage vectors of dental resin composites is a 

relatively recent method. The first attempts were in the form of 2-dimensional shrinkage 

analysis (Chiang et al., 2009; Inai et al., 2002), then 3-dimensional investigations were 

developed  (Chiang et al., 2009; Chiang et al., 2010; Cho et al., 2011). The evaluation 

methods have fundamental differences because each is based on a specific mathematical 

principle. 

The 2D displacement vector field calculations of Chiang et al., 2009, were based on an elastic 

registration algorithm using B-spline regularization (Arganda-Carreras et al., 2006; Chiang 

et al., 2008; Chiang et al., 2009; Kybic and Unser, 2003; Sorzano et al., 2005). Yet, B-splines 

regularizations restrict possible deformations, whereas tracing separate fillers in the current 

study did not have implicit constraints or marginal conditions regarding possible 

deformations. 

Cho et al., 2011, used a cluster-labeling algorithm to extract the fillers and perform the 

pairing procedure. They obtained the 3D movement distance of each filler after 

polymerization, but their analysis of filler movement was limited to the axial direction in 

relation to the light source (Cho et al., 2011).  

The 3-dimensional shrinkage analysis of Chiang et al., 2009, 2010, was based on a block-

matching method that was previously described in detail (Chiang et al., 2009; Chiang et al., 

2010; Rösch et al., 2009). The current study implemented the same method of image 

registration performed through sphere segmentation and subsequent registration. Sphere 

segmentation is the identification and separation of glass spheres from the rest of the 

restoration in the uncured image which depends on the grayvalue of the micro-CT scan. The 

scan resolution was limited to 83 µm3, but it was sufficient for the shrinkage analysis. 

Registration of the individual spheres was performed by a local rigid registration, the block-

matching, to determine the segmented spheres’ displacement during the polymerization 

process. Accordingly, each identifiable filler pair before and after curing was represented by 

a displacement vector which presented the actual movement and was the method’s main 

advantage.  

The flowable composite was chosen because the glass fillers were easily added to it. 

Additionally, it exhibits a greater degree of shrinkage and greater shrinkage vector values 

are easier to visualize. The use of glass fillers was advantageous as they were silanized for 

proper chemical bonding and movement with the resinous mass upon polymerization, as 
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well as avoiding reconstruction artifacts in the micro-CT scans that could occur with 

zirconium dioxide fillers. The 2 wt% embedded glass fillers were plenty enough to trace the 

material’s movement throughout the restoration and hardly affected the polymerization. 

However, the flowable composite is not comparable to a hybrid composite regarding the 

application in posterior teeth as it exhibits greater shrinkage and has a lower modulus of 

elasticity.  

Three cavity designs were proposed to detect their effect on the polymerization shrinkage. 

The “adhesive cavity” configuration is defect-oriented. It is of clinical relevance, as it is 

conforming to the spread of pit-and-fissure caries that expands as it penetrates into the 

enamel passing through the dentino-enamel junction and extending laterally into dentin 

(Roberson, 2006a). It evolved in a time when there were no dentin bonding agents and with 

this design, the cavity could be sealed well through bonding to enamel. An enamel bevel was 

prepared for cutting enamel prisms and to increase the surface area for bonding leading to a 

tight marginal seal. On the other hand, for many years, adhesive restorations are bonded to 

tooth structure, although the bond strength to dentin is weaker than to enamel. Consequently, 

a detachment from the cavity floor would occur resulting in postoperative complains. The 

“diverging” cavity was proposed as it has no frictional effects in the direction of light, 

whereas the “cylindrical” does, but the “cylindrical” cavity is neutral regarding the shrinkage 

movement in axial direction. In case there should be a Lambert-Beer dependence of the 

composite, the free surface of the “diverging” cavity would harden first and pull the material 

upward, Figure 28. To settle this query, the “cylindrical” cavity was proposed which could 

be related and compared to previous experiments (Chiang et al., 2009; Chiang et al., 2010; 

Versluis et al., 1998). 

 

 

Figure 28 Possible shrinkage directions in the “diverging” cavity configuration: (A) upward 

shrinkage as composite at the free surface hardens first and pulls the composite upwards as 

soon as the adhesive bond interface to the tooth is disrupted, or (B) downward shrinkage of 

the free surface.  
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It was attempted to choose teeth of similar size and to prepare cavities of alike volumes even 

though their configuration differed according to each group. However, the “adhesive” group 

had a mean restoration volume of 72 mm3, whereas the volume of the “diverging” group was 

smallest with only 52 mm3 and the cylindrical was 58 mm3. Largest vectors were found in 

the “adhesive” group, followed by the “diverging” and smallest in the “cylindrical” group, 

also the axial movement was in this sequence. It can be assumed that the direction of 

shrinkage vectors is not directly related to the volume of the restoration, but rather to the 

cavity configuration. 

The “free shrinkage” is the case when composites are allowed to shrink freely and they will 

tend to shrink toward the center. This applies only in case there is no contact to a surface. 

Once the composite contacts a surface, the shrinkage will be directed toward this surface, 

Figure 29. Whenever composites are bonded, their contraction movement is governed by 

their boundary conditions such as the cavity configuration, the C-factor, the bonding 

condition and the bonding substrate. Accordingly, this shrinkage is termed the “effective 

shrinkage” (Asmussen and Jorgensen, 1972; Hansen, 1982a).  

 

 

Figure 29 The shrinkage of a floating specimen having no contact with any surface exhibits 

“free shrinkage” (A), but a specimen in contact with a surface shrinks towards it (B).  

 

All cavity forms showed downward shrinkage, away from the light source, in the upper parts, 

though to different extents. A fictional zero-line is where downward and upward shrinkage 

meet and constitutes a range of almost no axial shrinkage. It was located close to the surface 

in the “adhesive form”, almost in the middle in the “cylindrical restoration” and at the 

junction between middle and lower one third in the “diverging cavity”. Similar observations 

were made by FEA in the case presented with perfect bond to enamel and no bond to dentin 

(Versluis et al., 1998) and in the bonded restoration showing downward shrinkage in the 
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upper 1 mm, while the remaining fillers shrank upward (Cho et al., 2011). A resin composite 

has the tendency to shrink toward the center which is limited by a strong bond to the tooth 

structure. The fictional zero-line can be formed due to the antagonistic movements. The 

strong bond of the composite to the enamel bevel in the “adhesive” cavity hindered the 

downward movement, while the large free surface in the “diverging” cavity moved 

downward and broke the bond with the enamel margin which in turn allowed for even more 

downward shrinkage that pushed the fictional zero-line to a lower level. Greater 

discrepancies existed between the boundary conditions of the free surface, the enamel 

margin and the dentin floor, whereas the bonding conditions and subsequent variations of 

bond strength values at the cavity walls were more balanced and less prone to great 

variations. Consequently, axial movements were stronger related to the bonding conditions 

than movements at the cavity walls.  

The main reason for the downward shrinkage can be the large unbonded surface of the 

restoration. Shrinkage occurs even after the post-gel point due to elastic deformations and in 

the “diverging” cavity the downward shrinkage was greatest. Beam profile analysis showed 

that the light intensity is not homogenous throughout the diameter of the light guide which 

could affect the degree of cure (Price et al., 2011).  

In a future study, the polymerization profile analysis and the beam profile analysis could 

highlight unknown issues in the polymerization process. Many curing lights produce a non-

uniform light output that affects microhardness which is a measure for the degree of 

conversion. Inhomogeneity of light output causes inhomogenous polymerization across the 

composite restoration. Laser beam analyzers determine the homogeneity within a light beam 

which characterizes the degree of spatial and spectral uniformity of curing light power 

distribution. Practical tips for proper curing include placing the light guide tip perpendicular 

and closest possible to the restoration to optimize light transmission in depth (Leprince et 

al., 2013; Naoum et al., 2012; Price et al., 2010a; Price et al., 2011; Price et al., 2013). In the 

current study, the composite was cured at the closest possible distance to ensure best 

polymerization. 

The light source in relation to the different cavity configurations was presented in Figure 30. 

A cross-sectional view of the “adhesive cavity” elucidated that light could not directly reach 

the resin composite below the enamel margin in proximity of the dentin walls. This could 

have affected the polymerization process and might have left the composite less cured there. 

Stronger bonding to enamel, anchoring through the enamel bevel and more profoundly cured 
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composite near the surface might be the reasons for the greater shrinkage in the lower cavity 

part.  

 

 

Figure 30 The light source in relation to the “adhesive” (A), “diverging” (B) and 

“cylindrical” (C) cavity configurations. In the “adhesive” cavity, light did not directly reach 

the resin composite below the enamel margin. In the “diverging” and “cylindrical” cavities, 

there was no configurational impedance to the curing-light.   

 

The degree of cure of the composite below the enamel bevel can be related to the enamel 

translucency and in part to the dentin translucency. The translucency of enamel can be 

expressed as as transmission coefficient tc that is dependent on the light wavelength. Tc of 

enamel is higher at longer wavelengths of light in the visible range and decreases with 

decreasing wavelengths due to increase in the light scattering as indicated by the Rayleigh 

scattering equation. Dehydration also reduces the translucency values due to an increased 

difference in refractive indices between enamel prisms and surrounding medium when water 

is replaced by air (Brodbelt et al., 1981).  

In the current study teeth were dry while manipulation for the bonding procedure and 

composite application. Few drops of water were added to the sample holder to avoid tooth 

cracking during the scanning procedure, but did not touch the occlusal surface not to interfere 

with the filling material. Upon air drying enamel, the relative translucency of enamel 

decreases to about 80% after only 10 s (Brodbelt et al., 1981), while the scanning procedure 

lasted 1.5 h. Resultingly, the enamel translucency of the scanned specimen was for sure 

decreased than in the normal hydrated state, which could explain a possible lesser degree of 

cure in the undercut area below the bevel. On the other hand, the translucency parameters of 
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only few high translucent composites are similar to those of enamel and dentin of the same 

thickness (Yu et al., 2009), meaning that the translucency parameters of tooth structure is 

usually greater than that of composites. Hence, the undercut area has no impaired access to 

the curing-light.    

Light emission is not homogenously distributed throughout the light beam as there is a light 

focus that differs from one curing light to another. The light focus of the used curing light, 

Elipar FreeLight2, 3M ESPE, in relation to the cylindrical cavity is presented in Figure 31. 

It shows more intense light in the center and less intense light at the peripheries. 

 

 

Figure 31 The light focus of Elipar FreeLight2, 3M ESPE, in relation to the “cylindrical” 

cavity. 

 

The direction of the light curing has been very important in the 70s and 80s of the last 

century, when curing lamps were less intense, but today, there are enough photons within 

the cavity. Despite of the light attenuation there are sufficient photons at a depth of 2 mm 

for photo initiators to start the polymerization reaction (Kramer et al., 2008; Lindberg et al., 

2004). For this reason, the direction of light application was not investigated in the current 

study, though the light was applied perpendicular to the tooth long axis. Until today, this 

might be critical with increments greater than 2 mm where some studies show the decrease 

of hardness with increased depth which can be explained by a changed network density. 

Clinically, Tetric EvoFlow should not be used in increments greater than 2 mm, although 

the depth of cure of 3 mm was previously confirmed (Lindberg et al., 2004). Further 

investigations are needed with bulk-fill materials in deeper cavities and with incrementally 

applied composites.  
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The enamel bevel in the “adhesive” cavity was prepared so that enamel prisms were almost 

cut perpendicular yielding higher bond strength values (Swanson et al., 2008). The bonded 

surface area to enamel was greater in the “adhesive” cavity due to the bevel than in the 

“diverging”, therefore, restricting the movement in the upper part of the “adhesive” cavity. 

Additionally, the margins in the “diverging” cavity were furthest away from the mass center 

of the restoration followed by a decrease of bond strength in their periphery (de la Macorra 

and Cabrera, 2012).  

The course of enamel prisms and the direction of cutting are of great importance for marginal 

integrity. In the “diverging” cavity a defective bond to the enamel margin was observed 

which was an unusual finding considering that bonding to enamel is stronger than bonding 

to dentin. However, the direction of cutting the enamel prisms was almost parallel and 

according to Ikeda et al., could lead to contraction gaps and/or enamel microcracks (Ikeda 

et al., 2002; Lutz and Phillips, 1983; Phillips et al., 1983). On the other hand, cutting 

perpendicular to enamel prisms leads to higher bond strength values (Ikeda et al., 2002) 

which is in accordance with the statement that margin beveling has a greater effect in 

minimizing microleakage due to increased bond strength than the type of the adhesive. 

Therefore, a bevel should be cut as the shrinkage direction is exclusively governed by the 

bonding (Swanson et al., 2008).   

The shrinkage pattern of the “adhesive“ cavity resembled that of the „cylindrical” in the 

“predominant mode” where the filling was attached at the enamel margins and separated 

from the floor. The “atypical pattern” showed detachment from enamel at one side resulting 

in less stress at the floor. If composite detached from one site, then the unbonded surface 

area is increased which in turn decreases the polymerization shrinkage stresses of the 

remaining bonded surface area. In the “adhesive” and „cylindrical” cavities a defect was 

observed that could be either adhesive failure or cohesive failure in composite at the cavity 

floor due to upward movement.  

Axial shrinkage constituted only part of the overall shrinkage and should not be taken as the 

sole measure. In the “adhesive” cavity, numerous vectors were located at the rounded area 

between floor and walls reflecting deformation in the area of undercut where light was not 

directly accessible and its intensity was more attenuated than in other areas. The 

displacement vector field of the „cylindrical” cavity differed from results obtained by Chiang 

et al., 2009, 2010, while it was in agreement with that obtained by Cho et al., 2011. Shrinkage 

patterns might be associated with volumetric changes or distribution within each cavity 

form; greater shrinkage occurred at the area of greater volume in each group.  
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The “cylindrical” cavity form had no volumetric variation within the cavity, nonetheless 

detachment happened at one enamel margin which was assumably the point of first 

detachment (Chiang et al., 2009; Chiang et al., 2010). Earlier, it was observed that 

contraction due to polymerization is not equal in all directions; in initial stages of setting, 

the material would adhere to cavity walls and shrinkage occurs exclusively at the free surface 

until stresses in the material exceed the adhesion. Then the material looses its grip on the 

cavity wall and a crescent-shaped gap is produced (Asmussen and Jorgensen, 1972). Zeiger 

et al., 2009, have measured the volumetric polymerization shrinkage and associated leakage 

in two cavities of equal volume but with different dimensions. They have claimed that 

neither overall shrinkage nor its spatial distribution are affected by cavity geometry or C-

factor (Zeiger et al., 2009). In this study, however, a clear difference in shrinkage direction 

and vector lengths between the three cavity forms was obvious. Cavities with different C-

factors should be investigated in the future. 

Flattening of the occlusal surface for obtaining the closest distance for light curing did bear 

some problems: when removing too much enamel, some dentin was exposed at the cusp tips, 

and the cavity margins were not fully located in enamel. Acquiring adequate cavity depth 

caused pulp exposure. In an attempt to avoid these problems, grinding of the occlusal table 

and removing as little as possible enamel maintained some fissures into which some bonding 

agent or resin composite material would flow into, possibly interlocking at the surface and 

affecting the shrinkage direction. The occlusal surface was flattened to ensure the exact 

location of the focus of the light source. Cusp tips were flattened but the enamel at the cavity 

margins has not been prepared. 

 

Figure 32 Cusp tips were flattened to allow for light-curing as close as possible to the 

restoration. Cavity margins were mostly located in enamel. 
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The thickness of enamel at the cavity margins and cavity walls was not perfectly uniform 

neither within one sample, nor throughout all samples. Nevertheless, a specific shrinkage 

pattern for each group could be identified and related to the cavity form. The sample size 

was sufficiently large (n=9) to report this observation as the resultant shrinkage pattern or in 

other words, the displacement vector field. Previous observations reported that thick enamel 

margins promote better adhesion, while thin enamel margins favour detachment and gap 

formation (Chiang et al., 2009; Chiang et al., 2010). However, this finding was not 

confirmed in our study. Nevertheless, it might be related to differences in the bonding agents 

used, or the discrepancies in thickness of enamel margins themselves. 

A radiolucent area between the tooth and restoration was observed in some samples of the 

adhesive and diverging groups which could either be a gap or the adhesive layer in greater 

thickness. It was seen in both pre- and post-polymerization scans and consequently assumed 

to be the adhesive, confirmed by SEM. Its thickness varied in the different cavity forms at 

different locations: in the “adhesive” form, it was thickest below the enamel margin, while 

in the “diverging”, it was thickest at the enamel margin. In the “adhesive” cavity, it might 

be explained by an impaired escape of excessive adhesive with an increased tendency 

towards pooling of the adhesive upon air thinning in comparison with the „cylindrical” and 

“diverging” cavity forms which have a greater occlusal access and therefore, greater way of 

escape. Furthermore, shrinkage is greatly determined by the bonding condition (Versluis et 

al., 1998) which needs more investigations. 

To sum up, this investigation could display that the proposed cavity configurations exhibited 

various displacement vector fields. Also the direction of the shrinkage vectors varied 

according to the cavity configuration. More research is needed to find out how to best apply 

composite to avoid the formation of gaps at the cavity floor or the margins. 
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Conclusions 

Within the limitations of this study, the following can be concluded: 

1. The shrinkage amount and direction varied according to the cavity configuration, 

with greatest shrinkage vectors in the “adhesive” cavity, followed by the “diverging” 

and it was least in the “cylindrical”.  

2. Lutz was right in his observation that shrinkage occurred upward in the “adhesive” 

cavity which was confirmed by the quantitative directional shrinkage analysis. 

3. The “diverging” cavity showed large downward movement at the free surface, and 

in the “cylindrical” cavity, upward and downward shrinkage were seen in the lower 

and upper restoration parts. 

4. Detachment occurred at the areas of greatest shrinkage in each cavity configuration; 

in the “adhesive” at the cavity floor, in the “diverging” at the cavity margin, in the 

“parallel” at both floor and one margin. 

5. The enamel bevel in the “adhesive” cavity had a strong influence on the shrinkage 

direction: bevel at great angulation to the long axis of the tooth; enamel prisms should 

be cut perpendicular to yield higher bond strength values.  

6. More investigations on the effect of the light source on the shrinkage vectors are 

needed.  

7. The claim that composites shrink toward the light source is disproved.   
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4 Composite Shrinkage Vectors in Ceramic Cavities with 

Different Boundary Conditions 

 

4.1 Abstract  

Objectives: Ceramic serves as a homogenous substrate for a cavity model and provides for 

optimal bonding conditions which stands in contrast to the heterogeneity of enamel and 

dentin. The objective of this study was to visualize the polymerization shrinkage of a 

composite in form of displacement vector fields and to detect the shrinkage direction and 

patterns, in relation to the light source in a silanized ceramic-cavity with different boundary 

conditions. 

Methods:  18 ceramic specimens (IPS Empress CAD, Ivoclar Vivadent) were prepared with 

a cylindrical cavity (diameter 6 mm, depth 3 mm) and divided into two groups according to  

the surface treatment into “ceramic+HF+silane” group and “ceramic+HF+silane+DBA” 

group. In “ceramic+HF+silane”, the cavity was etched (hydrofluoric-acid 5%), silanized 

(ESPE Sil, 3M ESPE) and filled with a composite (Tetric EvoFlow, Ivoclar Vivadent) to 

which 2 wt% traceable glass beads were added. In “ceramic+HF+silane+DBA”, in addition 

a layer of dentin bonding agent (OptiBond FL, Kerr) was applied before the composite 

application. Two micro-CT scans were performed of each specimen (uncured, cured), 

subjected to image segmentation and registration based on a block-matching algorithm. The 

displacement vector field exhibited the distribution of shrinkage vectors three-dimensionally 

and  shrinkage vectors were analyzed in the axial dimension and for any shrinkage patterns.    

Results: In “ceramic+HF+silane”, two shrinkage patterns were identified: in “Pattern-1” 

shrinkage vectors in the upper one third of the restoration were directed downward, then 

deviated to one side; “Pattern-2” displayed vectors in the upper one third moving downward, 

then represented a horizontal swirling in the whole lower two thirds of the restoration. 

Shrinkage vectors were significantly greater in the “ceramic+HF+silane+DBA” (41.6 ± 18.9 

μm) than in the “ceramic+HF+silane” (30.5 ± 14.4 μm). Both groups showed downward 

movement away from the light, which was greater in the bonding (19.2 ± 16.0 μm) than the 

silane group (8.4 ± 15.6 μm), with statistically significant difference by the Independent 

Samples T-test.   
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Conclusion: Displacement vector fields in both groups stated the obvious movement away 

from the light source, possibly due to the strong bond with silanized ceramic. Identification 

of two patterns in “ceramic+HF+silane” presented that shrinkage could happen differently 

even under similar conditions, while the layer of bonding agent produced a more uniform 

shrinkage pattern. Boundary conditions seem to play an important role in polymerization 

shrinkage.  

4.2 Introduction 

The crown of human teeth is composed of an enamel shell covering the underlying dentin. 

Any defect such as caries, will track its way through enamel into dentin and consequently, a 

restoration will have an interface with both tissues (Roberson, 2006a). Bonding to enamel is 

stronger and less technique sensitive than bonding to dentin which is due to the 

compositional differences between the two substrates (Roberson, 2006b) and it can be 

assumed that bonding to substrates with different qualities and bond strengths affects the 

direction of polymerization shrinkage.  

Versluis et al., 1998, have investigated this topic in a finite element analysis (FEA). They 

analyzed the effect of boundary conditions on the polymerization shrinkage direction by 

changing the bonding conditions in their model, a cylindrical cavity with two substrates 

representing enamel and dentin. Three conditions were simulated: without any bond, with 

bond to enamel only and perfect bonding to both enamel and dentin, each condition resulting 

in a different shrinkage pattern. In the unbounded condition composite shrank to the center; 

with enamel bond only it shrank downward at the upper restoration part and upward at the 

lower part, and when bonded to enamel and dentin, it shrank all the way downward, away 

from the light source. They concluded that shrinkage is not necessarily directed toward the 

light source, but it is affected by bonding of the restoration and the presence of free surfaces 

(Versluis et al., 1998).  

Chiang et al., 2009, 2010, were the first to visualize the polymerization shrinkage vectors 

three-dimensionally and to show how the shrinkage direction was affected by the presence 

of enamel and dentin as different bonding substrates. They used two micro-CT scans of 

uncured and cured composite in human teeth, subjected them to image registration based on 

a block-matching algorithm for the calculation of 3D shrinkage vectors (Rösch et al., 2009). 

The influence of enamel on the shrinkage direction was seen: in cavities, with margins of 

equal enamel thickness, composite detached from the cavity floor and shrank toward the 

light source. On the other hand, in cavities with margins of unequal enamel thickness 
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composite shrank toward the thicker enamel margin, while it detached from the opposite side 

of the cavity (Chiang et al., 2009; Chiang et al., 2010).  

Previous studies have substituted human teeth by an artificial material to avoid the 

inhomogeneity of substrate and the variations of size and properties among teeth. A glass 

model cavity was used to assess the shrinkage stress in dental composites (Li et al., 2011), 

while in another study, a block made of resin composite with a standardized cavity served 

as the bonding substrate for the evaluation of  resin composite polymerization by micro-CT 

imaging (Cho et al., 2011). The inner surface of glass ceramic restorations such as inlay, 

onlays, veneers and crowns are indicated for etching by 5-10% hydrofluoric acid and 

subsequent silanization for obtaining an optimal bond between the restoration and the tooth 

structure (IPS Empress CAD,Technical Product Profile, 2007). Silane, though not an 

adhesive, improves adhesion by promoting a chemical bond between the inorganic ceramic 

material and the organic resin matrix of the composite. 

The specific physical properties of enamel and dentin have an impact on the bond quality 

and consequently might influence the shrinkage direction. In the Chapter 3 human teeth were 

used for the shrinkage investigations. It was observed that the direction of cutting the enamel 

prisms influenced the bond quality and subsequent gap formation. Also the thickness of 

enamel at the cavity margins varied and might affect the resultant shrinkage direction. 

Ceramic can provide for an optimanl bond with a dental resin composite. Therefore, 

selecting an alternative substrate serving as a model cavity system could be a good option 

when trying to understand the effect of boundary conditions on the shrinkage direction.  

4.3 Aim of the study 

The aim of this study was to investigate the polymerization shrinkage of a model light 

initiated resin composite with the least possible influence by the substrate. Therefore, 

bonding to ceramic instead of enamel and dentin was investigated, to detect the shrinkage 

direction in relation to the light source in etched and silanized ceramic cavities with and 

without a bonding agent and to visualize the shrinkage in form of displacement vector fields. 

The bonding agent served as a stress breaker and to evaluate if the mean vector length values 

were influenced by the layer of bonding agent. 

4.4 Materials and Methods 

The experimental resin composite, Table 4, p.39, and the materials listed in Table 6, p.64, 

were used in this study.  
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4.4.1 Specimen preparation 

A total of 18 ceramic specimens were cut from ceramic blocks (IPS Empress CAD, Ivoclar 

Vivadent) and cylindrical cavities with parallel walls (diameter 6 mm, depth 3 mm, n=9) 

were prepared (Chiang et al., 2009; Chiang et al., 2010; Versluis et al., 1998). The outer 

surface of the ceramic was trimmed to fit into the micro-CT sample holder and flowable 

composite was applied and light-cured all around to obtain a reference mark that simulates 

enamel. This procedure was important for the process of rigid registration (overlay of both 

scans) at a later step; identification of different substrates depends on the corresponding 

greyvalue. The specimen was fixed into the sample holder with composite to avoid its 

movement during scanning.  

 

(A) 

 

(B) 

 

Figure 33 The ceramic block (A) was cut into three slices into which a cylindrical cavity was 

prepared. The outer margin was trimmed to fit into the micro-CT sample holder and flowable 

composite was added as a reference landmark for the rigid registration (B). 

 

 

Figure 34 Schematic drawing of the ceramic model. 

 

Specimens were divided into two groups: in the “ceramic+HF+silane” group, the cavity was 

etched by 5% hydrofluoric acid (VITA CERAMICS ETCH, Vita Zahnfabrik)  for 1 min, 

thoroughly rinsed with water for 1 min, air dried, and silane coupling agent (ESPE Sil, 3M 

ESPE) was applied and air dried for 5 min. In the “ceramic+HF+silane+DBA” group, 
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additionally, a layer of dentin bonding agent (OptiBond FL, Kerr) was applied, air thinned 

for 5 s and light-cured for 20 s using Elipar FreeLight2, 3M ESPE prior to the application of 

the experimental composite (power output 1200mW/cm2 according to the manufacturer, 

checked for constant light intensity once/week with a dental radiometer). OptiBond FL forms 

a thick film of adhesive and has good mechanical properties, thus, a good bond is expected. 

From this point onward the methodology was following the same protocol as described in 

Chapter 3. It included the preparation of the experimental composite, the micro-CT 

measurements, the data processing, polymerization shrinkage evaluation and the SEM 

analysis. 

4.4.2 Statistical analysis 

Mean vector lengths were computed and subjected to the Independent Samples T-test (using 

IBM SPSS Statistics 20). 

 

 

Table 6 Composition of the ceramic block, hydrofluoric acid, silane coupling agent 

and the total-etch adhesive 

Brand name  Composition Batch No. Manufacturer 

IPS Empress CAD, 

A3 

Ceramic block for 

CEREC and Inlab 

SiO2 

Additional contents: Al2O3, 

K2O, Na2O, CaO, and other 

oxides, pigments 

Ref# 

602522 

N57913 

N52287 

Ivoclar Vivadent, 

Schaan, 

Liechtenstein 

VITA CERAMICS 

ETCH  

(In-lab ceramic 

etchant) 

Hydrofluoric acid 5% 14060 VITA 

Zahnfabrik, Bad 

Saeckingen, 

Germany 

ESPETM Sil (Silane 

Coupling Agent) 

3-methacryloxy-propyl-

trimethoxy-silane (3-MPTS) 

424203 3M ESPE AG, 

Seefeld, 

Germany 

OptiBond FL 

(Prime/Adhesive) 

(Total-etch 

Adhesive) 

Adhesive: 

HydroxyEthylMethAcrylate 

(HEMA) 15-20% 

Disodium Hexafluorosilicate 

1-2% 

Methacrylate Ester Monomers 

and inert fillers 

Primer: 

HydroxyEthylMethAcrylate 

(HEMA) 25-30% 

Ethyl Alcohol 20-25% 

4462783 

(Prime) 

4462763 

(Adhesive) 

Kerr, Italy 
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4.5 Results  

4.5.1 Qualitative presentation of polymerization shrinkage: Visualization of 

shrinkage vectors in displacement vector fields and SEM  

The qualitative presentation of the polymerization shrinkage was in form of displacement 

vector fields which showed the three-dimensional distribution of the shrinkage vectors. SEM 

images were added for more details of the effect of polymerization shrinkage on the bond 

integrity. 

4.5.1.1 The displacement vector field in the “ceramic+HF+silane” group 

Generally, the shrinkage vectors pointed downwards, while two shrinkage patterns were 

identified caused by detachment from cavity walls: in “Pattern-1” the shrinkage vectors in 

the upper one-third of the restoration were directed downwards, then deviated to one side of 

the restoration. “Pattern-2” displayed shrinkage vectors in the upper one-third moving 

downwards, as in “Pattern-1”, then a horizontal swirling movement in the whole lower two-

third of the restoration became obvious (Figure 35). The SEM images showed an intact bond 

at all interfaces (Figure 37).  

4.5.1.2 The displacement vector field in the “ceramic+HF+silane+DBA” group 

Large shrinkage vectors in the upper part of the restoration were directed downwards, then 

deviated to one side of the restoration in the lower part. The vectors there were smaller than 

in Pattern-1 of group “ceramic+HF+silane” (Figure 38). This shrinkage pattern was similar 

to “Pattern-1” in the “ceramic+HF+silane” group. SEM images showed intact bond with all 

interfaces (Figure 39). 
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(A) 

 
(B) 

 

Figure 35 The displacement vector field in the “ceramic+HF+silane” group with “Shrinkage 

Pattern-1”: downward shrinkage at the upper part of the restoration and deviation of the 

shrinkage vectors toward one side at the lower part, with the y-plane (A) and the z-plane (B) 

of the micro-CT scan in the background. Glyphs were scaled by a factor of 5 to enhance 

visibility. 
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(A) 

 
(B) 

 

Figure 36 The displacement vector field in the “ceramic+HF+silane” group exhibited 

“Shrinkage Pattern-2”: downward shrinkage in the upper part of the restoration, while the 

lower part exhibited horizontal swirling, with the y-plane (A) and the z-plane (B) of the 

micro-CT scan in the background. Glyphs were scaled by a factor of 5 to enhance visibility. 

 

 

(A) 

 

(B) 

 

Figure 37 SEM images (x200) of the “ceramic+HF+silane” group of the restoration margin 

(A) and the floor (B) showing close adaptation. One traceable glass filler is marked by the 

star *. 
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(A) 

 
(B) 

 

Figure 38 The displacement vector field in the “ceramic+HF+silane+DBA” group with 

downward shrinkage at the upper part of the restoration and deviation of the shrinkage 

vectors toward one side at the lower part, same as “Shrinkage Pattern-1” in the 

“ceramic+HF+silane” group, with the y-plane (A) and the z-plane (B) of the micro-CT scan 

in the background. Glyphs were scaled by a factor of 5 to enhance visibility. 

 

(A) 

 

(B) 

 

Figure 39 SEM images (x200) of the “ceramic+HF+silane+DBA” group of the restoration 

margin (A) and floor (B) showing close adaptation. One traceable glass filler is marked by 

the star *. 

  



69 

 

4.5.2 Quantitative presentation of polymerization shrinkage: values of shrinkage 

vectors and statistical analysis 

4.5.2.1 Quantitative non-directional analysis: Probability density function of the 

vector length values 

Mean vector lengths were computed irrespective of their direction, where the 

“ceramic+HF+silane+DBA” group showed higher vector lengths values (41.6 ± 18.9 μm) 

than the “ceramic+HF+silane” group (30.5 ± 14.4 μm), (Table 7). Independent samples Test 

was used for statistical analysis and the two groups differed significantly (t=-14.139; 

df=1558.861; p<0.001). 

In the “ceramic+HF+silane” group, the greatest frequency of vectors was seen in the range 

of smaller values, while for the “ceramic+HF+silane+DBA” group, larger values were more 

frequent (Figure 40). 

 

 

Table 7 Mean vector length values and mean filler movement in the z-direction of the 

“ceramic+HF+silane” and “ceramic+HF+silane+DBA” groups  

Group Vector length (µm) Filler movement in the z-

direction (µm) 

“ceramic+HF+silane” 30.5 ± 14.4 8.4 ± 15.6 

“ceramic+HF+silane+DBA” 41.6 ± 18.9 19.2  ± 16.0 
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Figure 40 The probability density function of the vector lengths in the groups 

“ceramic+HF+silane” and “ceramic+HF+silane+DBA” shows the frequency of vector 

length values in the groups. In the “ceramic+HF+silane” group the maximum was located at 

about 20 µm which can be related to the smaller vectors located majorly in the lower part of 

the restoration and near the cavity walls. Yet, a considerable amount of vectors was in the 

range below 50 µm which can be associated with the larger vectors directing downwards in 

the upper part of the cavity. In the “ceramic+HF+silane+DBA” group the distribution of 

vector lengths values was over a larger range than in the first group. The first maximum at 

20 µm could be related to small vectors of the lower third of the restoration near the cavity 

floor. The second maximum had most vectors at about 45 µm that were attributed to the 

large downward movement at the free surface. 
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4.5.2.2 Quantitative directional analysis: Probability density function of the vector z-

component (Filler Movement in z-direction): 

For analysis of the axial shrinkage, the z-component of the vectors was analyzed, as it 

denotes the filler movement in the z-direction. Both groups shrank downwards and away 

from the light source.  

The axial movement in the “ceramic+HF+silane+DBA” group displayed larger values (19.2 

± 16.0 μm) than the “ceramic+HF+silane” group (8.4 ± 15.6 μm) (Table 7). The two groups 

showed a statistically significant difference (t=-14.762; df=1867; p<0.001) using 

Independent samples Test. The frequency of filler movement in z-direction of both groups 

is displayed in the density plot below. Positive values were more frequent in the 

“ceramic+HF+silane+DBA” group (Figure 41). 

 

 

Figure 41 The probability density function of the filler movements in the z-direction in the 

groups “ceramic+HF+Silane” and “ceramic+HF+Silane+DBA” displays the frequency of 

the axial filler movement values in the groups. In the “ceramic+HF+Silane” group the 

maximum was located at about -10 µm which means that the greatest frequency of axial 

filler movement was very small and denotes upward movement. The overall quantity of axial 

filler movement was in the positive range which stands for downward movement. The 

“ceramic+HF+silane+DBA” group displays a maximum at about 13 µm that represents a 

greater axial downward movement than in the “ceramic+HF+silane” group. Both curves 

look similar to the previous group, but the “ceramic+HF+silane+DBA” group was shifted to 

the right into the positive range that stands for greater downward movement.   
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4.6 Discussion 

The ceramic material was chosen as a model cavity system for several reasons. It has a 

similar compliance to that of the natural tooth (Li et al., 2011) and it offers a homogenous 

substrate, thereby overcoming the difference in bonding between enamel and dentin. 

Moreover, silanes are very effective in promoting adhesion for silica-based materials, thus, 

provide optimal adhesion (Lung and Matinlinna, 2012). Although the cavity in a ceramic 

model does not represent the clinical situation, it was proposed to overcome the limitations 

encountered when human teeth are used as they are formed of enamel and dentin at the crown 

portion. 

The obvious downward shrinkage movement away from the light source, was possibly due 

to the strong bond with silanized ceramic, and the free surface allowed the composite to bend 

downward. Similar observations were made by other studies as well. Cho et al., 2002, 

measured earlier the free surface depression by a profilometer and the interfacial gap by a 

scanning electron microscope in order to relate the shrinkage direction to the interfacial bond 

quality. They found that smaller interfacial gaps related to a greater free surface depression 

concluding that the establishment of a good bond could direct the shrinkage close to the 

bonded surface (Cho et al., 2002). Suh and Wang, 2001, investigated the direction of 

shrinkage through changes of the surface contours for different bonding configurations in a 

glass model. In the case where composite in a class I cavity was bonded, a great downward 

shrinkage was obvious at the free surface, similar in appearance to our results (Suh and 

Wang, 2001). Although their results were related to the outer surface only, they confirmed 

the findings of the current study. The advantage of the present method was the actual tracing 

of the internal movement of the embedded glass fillers, thereby, presenting the actual 

shrinkage vectors. 

Hydrofluoric acid etching and silanisation provided optimal bonding conditions that cannot 

be obtained in natural teeth due to the compositional differences and surface properties of 

the bonding substrates. Nevertheless, even hydrofluoric acid etching and silane could not 

resist the contraction forces of the low modulus flowable, as the curing contraction caused 

disruption of the adhesion to the cavity walls and floor. This was seen by small vectors in 

the displacement vector fields near the cavity floor and walls. Furthermore, it was also shown 

in the density plot of the filler movement in the z-direction that was denoted by the negative 

values which were attributed to the upward movement. Unfortunately, it was not possible to 

identify the disruption in the micro-CT scans due to limitations of the resolution (83 µm3), 



73 

 

and in the SEM images no detachments were seen in the cut-planes. Nonetheless, they could 

be situated at other locations within the cavity.    

If detachment happened in a perfect cavity regarding the design and the adhesion, it is likely 

to occur in bulk-filled cavities in teeth as well. Nevertheless, bulk-fill materials differ in their 

composition and properties from a traditional composite. There are various bulk-fill 

composite systems and to ensure sufficient cure at full depth (4 mm), either an increased 

amount of initiator or a more reactive initiator is added. High polymerization shrinkage 

stresses that develop could be decreased in some bulk-fill materials by adding a 

polymerization modulator. Some manufacturers of the bulk-fill composites claim that the 

modified methacrylate-resin has a slow polymerization rate through the use of a 

polymerization modulator, which can possibly render a more favorable polymerization 

shrinkage (Cramer et al., 2011; Moorthy et al., 2012). At the time the current study has been 

started, there were no bulk-fill materials available. Still, these experiments can be repeated 

with bulk-fill composites in order to visualize their shrinkage patterns. On the other hand, 

the results can be compared to previous studies from Chiang et al., 2009, and Versluis et al., 

1998 because the same experimental composite and cavity dimensions were used (Chiang et 

al., 2009; Chiang et al., 2010; Versluis et al., 1998) 

The occurrence of two shrinkage patterns in the “Ceramic+HF+silane” group could be 

attributed to different methods or types of detachments from the cavity walls: in “Pattern-1” 

the shrinkage in lateral direction was greater at one side which is possibly the site of least 

resistance; here, the composite must have predominantly detached in the form of a large 

patch. On the other hand, in “Pattern-2” the horizontal swirling was probably caused by 

mainly detaching at many separate small sites or spots at the cavity bottom and lower part 

of walls. The SEM images did not display any bond discontinuity in neither shrinkage 

patterns, where the cut-planes were arbitrarily selected. The gap or detachment might have 

been at any other location within the restoration. The variation of shrinkage patterns could 

be in part related to the inhomogeneity of the curing light, as stated by the beam profile 

analysis (Price et al., 2011), although for all experiments, the same light-curing unit has been 

used. Another reason could be the distraction of the light by the embedded glass beads. 

Likewise, it is difficult to explain why two shrinkage patterns have formed within the 

“Ceramic+HF+silane” group. On the other hand, it points out the advantage of using micro-

CT scans and the current shrinkage vector evaluation method. Such fine differences in results 

could not be explored with FEA because it is based on idealized conditions and does not 

include the possible variations of outcome.  
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Previous studies used micro-CT scans of uncured and cured composite for volumetric 

shrinkage and leakage analysis. They showed that debonding or leakage occurred in the form 

of a large area or patch that showed at its peripheries many separate small spots that passed 

into the non-detached areas (Sun et al., 2009a; Sun et al., 2009b; Zeiger et al., 2009). 

Although they calculated the volumetric shrinkage by subtracting the pre-cure from the after-

cure volume and detected the sites of potential leakage, they neither calculated shrinkage 

vectors nor visualized internal movements or displacement vector fields.  

The layer of the bonding agent produced a more uniform and reproducible shrinkage pattern 

in the “ceramic+HF+silane+DBA” group because all displacement vector fields exhibited 

only “Pattern-1” and no swirl could be detected. The presence of the bonding agent rendered 

greater vector length values and allowed greater axial movement in comparison to the 

“ceramic+HF+silane” group which might lead to a decrease in the shrinkage stresses. A 

previous study concluded that an unfilled adhesive applied in thick layers (Kemp-Scholte 

and Davidson, 1990) or an intermediate layer of flowable under composite could reduce 

stress significantly (Cara et al., 2007). Results from a FEA study on the adhesive layer 

properties showed that its thickness and rigidity are important factors regarding the 

mechanical behavior on the restored tooth playing an important role in attenuation of the 

polymerization and occlusal loading stresses (Ausiello et al., 2002). Another study pointed 

out that with increasing adhesive layer thickness contraction stresses and microleakage 

decreased (Choi et al., 2000). However, the adhesive layer could neither be identified in the 

micro-CT scans nor in the SEM images, assuming that it was very thin and its role of 

reducing stresses unknown.  

The displacement vector fields in “Pattern-1” in the “ceramic+HF+silane” group and 

“ceramic+HF+silane+DBA” group are in agreement with the FEA results reported by 

Versluis et al., 1998, for the situation with perfect bond to both enamel and dentin. They 

provided more information on pre-gel and post-gel shrinkage separately which could not be 

seen in our evaluation due to 1.5 h scanning time per scan (Versluis et al., 1998). These 

findings were opposed by Chiang’s findings where in a heterogenous cavity the shrinkage 

was governed by the presence of enamel and dentin and their bonding properties (Chiang et 

al., 2009; Chiang et al., 2010). Thus, in a heterogenous cavity, as in human teeth, shrinkage 

is directed toward the part providing better bonding and being present in greater quantity, 

while in a homogenous cavity, the adhesive is more important, that is to say, it is the decisive 

factor. Boundary conditions, in this case, the bonding substrate and adhesion or the bond 

quality to it, seem to play an important role in the behavior of polymerization shrinkage.   



75 

 

Conclusions 

Within the limitations of this study, the following can be concluded: 

1. The ceramic model did provide optimal bonding conditions that could not be 

obtained with natural teeth due to their heterogeneity. 

2. The shrinkage movement was directed downwards and away from the light source 

which was attributed to the strong bond with the etched and silanized ceramic cavity 

model. 

3. Nevertheless, detachment happened either in form of a large area when composite 

deviated towards one side or in the form of many small patches when swirling of 

shrinkage vectors was detected at the lower restoration part. 

4. SEM images could not show any detachments or defects at the restoration-ceramic-

interface. 

5. The direction of shrinkage vectors mainly relates to the bonding condition which 

depends to a large extent on the bonding substrate itself.  
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5 Composite Shrinkage Vector Patterns In Non-Adhesive 

Teflon Cavities  

 

5.1 Abstract  

Objectives: Shrinkage vectors of self-cured composites are supposed to be directed toward 

the center of the mass, while light-cured composites are believed to shrink toward the light 

source. The aim of this study is to visualize the polymerization shrinkage of a light-initiated 

flowable resin composite in form of displacement vector fields and to detect the shrinkage 

direction in a non-adhesive cavity in relation to the light-source. This bonding condition was 

chosen to investigate the effect of cavity geometry without adhesion on the shrinkage 

direction.  

Methods: A cylindrical cavity (diameter 6 mm, depth 3 mm, n=9) was prepared into a Teflon 

block and filled with a model resin composite (Tetric EvoFlow, Ivoclar Vivadent) to which 

2 wt% traceable glassbeads were added. Two micro-CT scans were performed of each 

specimen (uncured, cured), subjected to image segmentation for extraction of glass beads 

and followed by registration based on a block-matching algorithm. The displacement vector 

fields exhibited the distribution of shrinkage vectors three-dimensionally. Additionally, 

shrinkage vectors were analyzed in the vertical dimension.  

Results: The mean vector lengths (23.5 ± 5.3 μm) were computed irrespective of their 

direction. To analyze the shrinkage direction in relation to the light-source, the filler 

movement was investigated in the z-direction only, where negative values denoted an 

upward movement towards the light-source and positive ones meant downward shrinkage. 

The mean filler movement (-0.5 ± 10.9 μm) moved minimally upward. The displacement 

vector field clearly showed shrinkage to the center, while the lateral movement was slightly 

deviated toward one side.  

Conclusion: The composite shrank centrally, although it was a light-cured type, concluding 

that this pattern was related to the fact that it was unbonded. Shrinkage in lateral direction 

was greater at one side, which is possibly the site of least resistance to adaptation and first 

detachment due to shrinkage. Shrinkage pattern is related to bonding conditions and not type 

of activation. 
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5.2 Introduction 

The general belief in dentistry is that self-cured resin-based composites shrink toward the 

center of the mass, while light-cured composites shrink toward the light source. Studies on 

the boundary conditions influencing the shrinkage direction of composite restorations have 

questioned this (Chiang et al., 2009; Cho et al., 2011; Suh and Wang, 2001; Versluis et al., 

1998).  

Chiang et al., 2009, 2010, found out that the thickness of enamel margins did influence the 

shrinkage direction of composite: it detached from thin enamel margins and moved toward 

the thicker ones (Chiang et al., 2009; Chiang et al., 2010; Rösch et al., 2009). In the previous 

chapter, the shrinkage vectors were analyzed in a ceramic cavity with optimal adhesion to 

eliminate any inhomogeneity of the bonding substrate, as it is the case in human teeth due to 

the presence of enamel and dentin. Asmussen and Jorgensen, referred to the shrinkage inside 

a cavity as the “effective shrinkage” while shrinkage per se is the “net shrinkage” or the “free 

shrinkage” (Hansen, 1982a; b). The “effective shrinkage” is related to the cavity boundary 

which implies that the composite adapts to the cavity walls even without the use of a bonding 

agent (Asmussen and Jorgensen, 1972). Cavity boundaries are related to the cavity outlines 

on one hand and the bonding substrates with associated bonding conditions on the other 

hand.  

The unbonded condition of composite inside a prepared cavity can be presented in different 

ways: when human teeth are used, the composite is directly applied without prior surface 

treatment of the cavity nor the application of an adhesive (Chiang et al., 2010; Takahashi et 

al., 2010). If the cavity is prepared in an artificial model such as composite or glass, then 

either no bonding agent is applied or a layer Vaseline is used as a separating agent (Cho et 

al., 2011). 

An excellent non-adhesive substrate is Teflon (polytetrafluoroethylene). Teflon is slippery, 

thus, rendering it the non-adhesive property, in addition, it has high temperature resistance, 

little reaction to most chemicals, and reduced stress cracking and corrosion. Therefore, 

Teflon has important applications in cookware, and in the chemical and steel industries, just 

to mention some (Toefco Engineered Coating Systems, 2013). 

In dentistry, Teflon is not being used in dental applications, neither by the dentist, nor by the 

dental lab technician, although in research, it is commonly used as an adjunctive material in 

form of Teflon tape where non-bonded contact is desirable (Cheetham et al., 2014; 

Dionysopoulos et al., 2013; Lee et al., 2012; Tornavoi et al., 2013), as well as Teflon molds 
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for the fabrication of specimen discs of composites (Badole et al., 2013; de Melo Monteiro 

et al., 2011; Guven et al., 2013; Miletic et al., 2011; Mungara et al., 2013). Teflon is also 

used in machines as a Teflon spacer (Davidson et al., 1984) or as a pedestal in the AcuVol 

machine for volumetric polymerization shrinkage measurements (Labella et al., 1999). In 

the periodontal and bone research Teflon is now used as coating, scaffold material or 

membrane, in addition to its use in bacterial research (Cheng et al., 2013; Hayashi et al., 

2013; Kapferer et al., 2013; Lopes et al., 2013; Schweikl et al., 2013; Suzuki et al., 2014). 

Cavities prepared in Teflon blocks were used for testing bulk-fill composites for their 

temperature changes (Chang et al., 2013). Recent studies employed Teflon molds for gap 

analysis (Pereira et al., 2008; Takahashi et al., 2010), volumetric analysis (de Melo Monteiro 

et al., 2011) and image analysis of composites to detect discrepancies due to shrinkage 

(Miletic et al., 2011). The unbonded situation in a non-adhesive Teflon cavity is just one of 

many possibilities of a non-adhesive situation.  

5.3 Aim of the study  

The aim of this study was to visualize the polymerization shrinkage vectors of a light-cured 

composite three-dimensionally and axially when applied in a non-adhesive Teflon mold in 

order to observe the effect of a nonbonded boundary condition on the shrinkage pattern. 

5.4 Materials and Methods 

The composition of the experimental composite was listed in Table 4, p.39.  

5.4.1 Specimen preparation 

A Teflon cylinder (diameter 11 mm, height 15 mm)  was cut from a block of Teflon, into 

which a cylindrical cavity (diameter 6 mm, depth 3 mm, n=9) was prepared (Chiang et al., 

2009; Chiang et al., 2010; Versluis et al., 1998). Flowable composite was applied to the outer 

surface of the Teflon cylinder and light cured all around to obtain a reference mark that 

simulates enamel (Figure 42). This procedure was significant for the process of rigid 

registration (overlay of both micro-CT-scans) at a later step. Identification of different 

substrates depends on the corresponding greyvalue. The specimen was fixed into the sample 

holder with composite to avoid its movement during scanning. The experimental composite 

was applied into the prepared cavity of the Teflon model without the use of any adhesive. 

Attachment to cavity walls was through secondary van der Waals forces only. 
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When the pilot studies have been conducted, one composite sample (n=1) was scanned on a 

flat Teflon disc with the aim of visualizing shrinkage vectors upon polymerization when in 

contact with just one surface.  

The steps for the preparation of the experimental composite, the micro-CT measurements, 

the data processing and the polymerization shrinkage evaluation were described in Chapter 

3. After the first scan of uncured material, the composite was light-cured for 40 s 

perpendicular to the long axis of the tooth.  

 

 

Figure 42 The Teflon cylinder serving as a cavity model. Flowable composite was applied 

to the outer contour simulating enamel in order to serve as a reference point for the rigid 

registration. 

 

 

Figure 43 Schematic drawing of the Teflon model. 
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5.5 Results  

5.5.1 Qualitative presentation of polymerization shrinkage: Visualization of 

shrinkage vectors in the displacement vector field  

The qualitative presentation of the polymerization shrinkage was in form of displacement 

vector fields which clearly showed shrinkage to the center of the restoration three-

dimensionally. All samples exhibited the same shrinkage pattern through detachment from 

all cavity walls and the cavity floor as well. Lateral movement was slightly deviated toward 

one side due to detachment from the site of least resistance (Figure 44).   

(A) 

 
 

 

(B) 

 

Figure 44 The displacement vector field in a non-adhesive “Teflon” cavity with the x-plane 

of the micro-CT scan in the background with two different views (A) and (B). Glyphs were 

scaled by a factor of 5 to enhance visibility. Polymerization shrinkage vectors pointed to the 

center, with lateral movement greater at one side denoting the site of first detachment from 

the cavity walls. 
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5.5.2 Quantitative presentation of polymerization shrinkage: values of shrinkage 

vectors and statistical analysis 

5.5.2.1 Quantitative non-directional analysis: Probability density function of the 

vector length values 

Vectors were computed 3-dimensionally and the mean vector length was 23.5 ± 5.3 μm 

irrespective of the direction (Figure 45, Table 8).  

 

Table 8 Mean vector length values and mean filler movement in the z-direction of the 

“Teflon” group 

Group Vector length (µm) Filler movement in the    

z-direction (µm) 

“Teflon” 23.5 ± 5.3 -0.5 ± 10.9 

 

 

 

Figure 45 The probability density function of the vector lengths in the “Teflon” group shows 

a multimodal distribution of the values. The first peak relates to the very small vectors that 

can be found close to the center of the restoration, the second peak can be linked to the small 

vectors at the restoration side with less movement, while the third peak stands for the main 

quantity of shrinkage vectors in the “Teflon” group that are directed towards the center of 

the restoration. 
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5.5.2.2 Quantitative directional analysis: Probability density function of the vector z-

component (Filler Movement in the z-direction): 

The mean filler movement in the z-direction was -0.5 ± 10.9 μm which related to minimal 

upward movement toward the light source (Figure 46, Table 8).  

 

 

Figure 46 The probability density function of the filler movements in the z-direction in the 

“Teflon” group shows a multimodal distribution with 4 peaks (grey color). The areas below 

the separate peaks are joined into one area (pink color). The first and second peaks conform 

to upward shrinkage movement that was found at the cavity floor and the lower restoration 

part. The third peak constitutes the large quantity of small axial movement with slight 

downward shrinkage which can be related to the middle part of the restoration where the 

glass beads moved mainly in horizontal direction toward the restoration center. The last peak 

can be linked to the downward movement of glass beads at the free surface of the restoration.  
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5.6 Discussion 

The Teflon block did provide a satisfactory model for the cavity without problems neither 

with the composite application, nor the micro-CT scanning procedure, nor in the evaluation 

phase. As an inherently non-adhesive substrate it is superior to the use of a separating agent 

as seen in other studies (Cho et al., 2011). The limitation of this cavity model with regards 

clinical application is the fact that Teflon as a bonding substrate is not comparable to the 

natural tooth structure, but it was the purpose of this study to obtain the ultimate nonbonded 

condition.  

The three-dimensional shrinkage toward the center of the restoration stands in contrast to the 

longlasting belief that light-cured composites shrink toward the light. Shrinkage in the lateral 

direction was greater at one side, which was possibly the site of least resistance to adaptation 

and first detachment due to shrinkage; this finding is in agreement with (Asmussen and 

Jorgensen, 1972). Resin composites can adapt to cavity walls due to weak secondary forces 

even if no bonding agent is applied. Therefore, it was concluded that this specific three-

dimensional shrinkage pattern was related to the unbonded boundary condition rather than 

the type of activation. Similar findings were previously reported when a nonbonded 

composite was investigated for its surface depression and marginal gaps (Suh and Wang, 

2001). 

An earlier study employing micro-CT scans for the volumetric analysis of polymerization 

shrinkage showed volume loss at one side of the cylindrical cavity, although data on the 

internal contraction behaviour were not available (Sun et al., 2009b). Interestingly, their 

observation can be related to the lateral movement by the shrinkage vectors. Our results also 

coincided with the FEA simulation regarding the unbonded condition (Versluis et al., 1998), 

which confirmed the presence of uniform boundary conditions in our case. On the other 

hand, our results varied from those reported by Chiang et al., 2010, in their unbonded 

condition in teeth where shrinkage vectors pointed toward one side of the cavity (Chiang et 

al., 2009; Chiang et al., 2010) and the unbonded condition in a composite model reported by 

Cho et al., that showed upward movement of the shrinkage vectors (Cho et al., 2011). 

The mean axial movement was almost zero micrometer due to negation of upward and 

downward movements. The downward contraction can be explained by the composite’s free 

surface and the upward shrinkage by the detachment from the non-adhesive interface with 

Teflon. This shrinkage pattern is in clear contrast to that seen in the ceramic cavities that 

were perfectly bonded and showed downward movement toward the floor due to the strong 
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bond by the silane coupling agent. The axial movement was similar to that observed in the 

“cylindrical cavity” in the Chapter 3, though in the Teflon group a greater horizontal 

movement was detected due to lack of bonding to the cavity walls. Cho’s unbonded 

condition in a composite mold differed from our results in the Teflon mold by displaying 

only upward movement and no movement toward the center. On the other hand, their bonded 

condition was in agreement with those of the “cylindrical cavity” in teeth where downward 

shrinkage from the free surface met the upward shrinkage from the lower part in a fictional 

zero-line, a line where no axial movement was spotted (Cho et al., 2011).  

How would a light-cured composite shrink if simply laid down on a Teflon disc without any 

constraining cavity walls? If the surface was absolutely smooth, it would have shrunk from 

all free surfaces, even at the margins between the composite and the flat surface. In the “free 

shrinkage” it shrank toward the center from all contactfree sides, but in the lower part in 

contact with the Teflon disc (0.5 mm) almost no shrinkage was detectable with the sample 

being light-cured from above (Figure 47). Therefore, the Teflon surface is assumed to be 

incompletely smooth with some degree of roughness or physical adhesion unlike the dental 

adhesion. Certainly, such contraction movement is related to its boundary condition, because 

there is just a flat surface and no cavity walls to detach from. This leads to the need to 

investigate polymerization shrinkage, not only under different boundary conditions in terms 

of the bonding situation, but also in cavities with different C-factors and classes.  

Teflon represents the most extreme unbonded condition that cannot be surpassed. The 

current results give an insight into the shrinkage behavior under such condition which leads 

to a basic understanding on how boundary conditions affect the shrinkage pattern. Human 

tooth structures and bonding agents offer many factors resulting in variations in bonding 

quality which in turn affect the shrinkage vectors’ direction and magnitude. The wide variety 

of dentin-bonding agents, both self-etch and total-etch systems, have great differences in 

their bond strength values. This topic needs further research that will be addressed in the 

next chapter. 
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(A) 

 
 

 

(B) 

 

Figure 47 The experimental composite was placed on a Teflon disc and exhibited the “free 

shrinkage” and light was applied from above. Shrinkage vectors pointed toward the center 

of the composite and the y-plane (A) and z-plane (B) of the micro-CT scan were seen in the 

background. The composite in contact with the Teflon disc displayed almost no shrinkage 

vectors. Glyphs were scaled by a factor of 5 to enhance visibility.  
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Figure 48 Schematic drawing of composite before (A) and after (B) light-curing on the 

Teflon disc. A completely smooth surface would even allow for shrinkage movement on the 

Teflon disc surface toward the center.  
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Conclusions 

Within the limitations of this study the following can be concluded: 

1. The Teflon cavity model served well as a non-adhesive cavity.  

2. The composite shrank toward the center, although it was a light-cured type. 

3. It can be concluded that this shrinkage pattern was related to the fact that composite 

was unbonded.  

4. Shrinkage in lateral direction was greater at one side, which is possibly the site of 

least resistance to adaptation and first detachment due to shrinkage.  

5. The shrinkage pattern is related to the bonding conditions and not the type of 

activation. 

6. The results of this study can be transferred to weak bonding agents or dental 

substrates with unfavorable bonding properties. 
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6 Shrinkage Vectors in an Experimental Cavity with Enamel 

Floor 

 

6.1 Abstract  

Objectives: As bonding to enamel is stronger than bonding to dentin, the aim of this study 

was to determine the role of enamel or its influence on the direction of shrinkage vectors. 

Methods: 36 human teeth were divided into 4 groups (n=9); first, according to the cavity 

form into “experimental” and “cylindrical” groups, then subdivided according to the bonding 

agent into “self-etch” and “total-etch” groups. In the “experimental” group teeth were 

embedded upside down in the acrylic resin, the roots removed and cylindrical class I cavities 

were prepared (6 mm diameter, 3 mm deep) into dentin with enamel at the cavity floor with 

the purpose to evaluate enamel’s influence on the shrinkage direction. In the “cylindrical” 

group teeth were embedded with their roots in the acrylic resin followed by the cylindrical 

cavity preparation. Then 2 wt% traceable glass beads were added to the composite (Tetric 

EvoFlow, Ivoclar Vivadent) and bonded with self-etch-adhesive (Adper Easy Bond, 3M 

ESPE) or a total-etch-adhesive (OptiBond FL, Kerr). Two micro-CT scans were performed 

of each specimen (uncured, cured), subjected to image segmentation for extraction of glass 

beads and followed by registration based on a block-matching algorithm. The resulting 

displacement vector field showed shrinkage vectors three-dimensionally and shrinkage 

vectors were analyzed regarding the vertical dimension as well.  

Results: Mean vector lengths were computed irrespective of their direction, where the 

“experimental-self-etch” showed longer vectors (31.8 ± 14.3 μm) than “cylindrical-total-

etch” (25.8 ± 11.0 μm), “experimental-total-etch” (25.5 ± 14.7 μm) and “cylindrical-self-

etch” (23.3 ± 11.1 μm) using one-way ANOVA (F=100.7 , Df=3,5960; p<0.001) and post-

hoc pairwise comparison using Tamhane’s T2 test showed significant differences between 

all groups except for “experimental-total-etch” and “cylindrical-total-etch” groups 

(p=0.991). Analyzing the glass bead movement in the z-direction only displayed downward 

movement in “experimental-self-etch” (7.6 ± 15.9 μm) and “experimental-total-etch” (4.5 ± 

13.2 μm) groups, while in “cylindrical-self-etch (-3.7 ± 13.6 μm) and “cylindrical-total-etch” 

(-5.2 ± 13.4 μm) the tracer particles moved upward. One-way ANOVA revealed significant 

differences (F=271.5 , Df=3,5982; p<0.001) and the post-hoc pairwise comparison using 

Tamhane’s T2 test showed significant differences between all groups (p<0.05).  
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Additionally, the vector lengths were analyzed using the univariate ANOVA: the dependent 

variable was the vector length, the independent variables were the cavity form and the 

bonding agent each with 2 levels: the “experimental” and the “cylindrical” cavities, and the 

self-etch and the total-etch adhesives. The same investigation was applied to the filler 

movements in the z-direction using IBM SPSS Statistics 20. This investigation aimed at 

analyzing the effect of each the cavity and the bonding agent.  

Conclusion: The enamel influenced the direction of the shrinkage vectors. The shrinkage 

vectors were always directed towards the enamel substrate. The bonding agents caused 

variations in the magnitude of the shrinkage vectors.  

6.2 Introduction 

Bonding to enamel is stronger than bonding to dentin (Swift et al., 1995). Presently, there 

has been little information on how enamel influences the shrinkage direction of bonded resin 

composites. Data on the displacement vectors in human teeth are available from Chiang et 

al., (Chiang et al., 2009; Chiang et al., 2010) and from the first part of this study. Chiang et 

al., illustrated that unequal amounts of enamel lead to changes in the displacement vector 

fields: in cavities with margins of unequal enamel thickness showed shrinkage towards the 

thick enamel margin, while in cavities (Chiang et al., 2009; Chiang et al., 2010). Different 

cavity configurations implied that enamel margins which were cut at various angles also 

resulted in alterations of the displacement vector fields.  

Referring to the fact that bonding to enamel is assumed to be stronger than bonding to dentin 

(Van Meerbeek et al., 2003), it is possible that the adhesion to enamel pulls the bonded 

composite away from dentin. Thus, in a traditional class I cavity prepared for an adhesive 

restoration, the shrinkage vectors should point upwards towards enamel (Chapter 3). This 

has been interpreted earlier as “shrinkage toward the light source” (Porte et al., 1984). 

The preparation of an experimental cavity with enamel at the cavity floor may clarify the 

influence of enamel in terms of the bonding substrate on the shrinkage direction. According 

to the “traditional” hypothesis in dentistry, the composite should be shrinking toward the 

light source. However, we hypothesize adhesion is more important than the direction of the 

light. Therefore, we would assume that the composite shrinkage vectors should be directed 

towards the enamel areas inside the cavity.  
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6.3 Aim of the study 

How strong is the influence of enamel on the shrinkage direction? In the “experimental” 

group a cylindrical cavity with enamel at the cavity floor was prepared and compared to the 

“cylindrical” group of Chapter 3. Moreover, the cylindrical cavities can be associated with 

previous studies (Chiang et al., 2009; Chiang et al., 2010; Versluis et al., 1998). The aim of 

this study was to analyze the effect of the bonding substrates enamel and dentin and two 

bonding conditions on the polymerization shrinkage in form of shrinkage vectors. The results 

could contribute to a more profound understanding of the effect of boundary conditions on 

the shrinkage direction.  

6.4 Materials and Methods 

The compositions of the experimental composite and the self-etch adhesive were listed in 

Table 4, p.39, and the total-etch adhesive was listed in Table 6, p.64.  

6.4.1 Specimen preparation 

A total of 36 teeth were divided into 4 groups (n=9). First, teeth were divided into two groups 

according to the bonding substrate into “experimental” and “cylindrical”, then subdivided 

according to the bonding agent (bonding condition) into “self-etch” and “total-etch” groups. 

In the “experimental” group, the teeth were embedded in acrylic resin (Technovit 4000, 

Heraeus Kulzer, Germany) upside down, with the crown inside the acrylic resin. Then the 

roots were removed using a slow speed water-cooled diamond saw (Isomet, Beuhler, Illinois, 

USA), (Figure 49, Figure 67), and a cylindrical class I cavity (3 mm deep and 6 mm in 

diameter) was prepared from the pulpal side with cavity margins in the dentin and the floor 

of the cavity in enamel. This experimental cavity model was intended to analyze the effect 

of having a cavity floor of enamel offering stronger bonding properties than dentin. In the 

“cylindrical” group, teeth were embedded in acrylic resin below the cement-enamel junction 

and the occlusal surface flattened for easy perpendicular light application (Figure 49, Figure 

68).  

The “cylindrical” cavity was prepared according to Chiang et al., with cylindrical walls 

(Chiang et al., 2009; Chiang et al., 2010; Versluis et al., 1998). The samples were fixed to 

the sample holder with composite to prevent any movement during the scanning procedure.  
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The details of the preparation of the experimental composite, the micro-CT measurements, 

the data processing, polymerization shrinkage evaluation and the SEM analysis were 

described in Chapter 3. 

Shrinkage vectors were analyzed both qualitatively in the form of displacement vector fields 

and quantitatively in the form of shrinkage vector values. These were analyzed non-

directional by evaluating the 3-dimensional vector length values irrespective of their 

direction and directional by analyzing the movement of the glass beads in the axial direction 

only. 

6.4.2 Statistical analysis 

The mean vector lengths were computed and subjected to one-way ANOVA with post-hoc 

pairwise comparisons using Tamhane’s T2  to detect significant differences between the four 

groups (using IBM SPSS Statistics 20). In addition, the vector lengths were analyzed using 

the univariate ANOVA: the dependent variable was the vector length, the independent 

variables were the cavity form and the bonding agent each with 2 levels: the “experimental” 

and the “cylindrical” cavities, and the self-etch and the total-etch adhesives. The same 

investigation was applied to the filler movements in the z-direction using IBM SPSS 

Statistics 20. This investigation aimed at analyzing the effect of each the cavity and the 

bonding agent. 

6.4.3 Scanning electron microscopy  

One sample per group was critically point dried in alcohol, sectioned longitudinally and 

examined for marginal adaptation with a scanning electron microscope (ZEISS GEMINI® 

FESEM, SUPRA™ 55VP, Carl Zeiss SMT AG, Oberkochen, Germany) at x200 

magnification after sputter coating. 
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Figure 49 Diagrammatic presentation of the “experimental” cavity with enamel at the cavity 

floor and dentin margins to study the effect of the bonding substrate on the shrinkage 

direction (A) and the “cylindrical” cavity that represents a cylindrical class I cavity (B). 
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6.5 Results  

6.5.1 Qualitative presentation of polymerization shrinkage: Visualization of 

shrinkage vectors in the displacement vector field and SEM 

6.5.1.1 Displacement vector field in the “experimental-self-etch” cavity  

The displacement vector field in the “experimental-self-etch” group showed great downward 

shrinkage in the upper half of the restoration. In the lower one third of the restoration, vectors 

were small and indicated upward shrinkage. Many small vectors were found along the dentin 

walls resulting in the general tendency of shrinkage direction toward the center (Figure 50). 

The SEM images showed a defective bond at the dentin margin, but an intact bond at the 

enamel floor (Figure 51). 

6.5.1.2 Displacement vector field in the “experimental-total-etch” cavity 

In the “experimental-total-etch” group the displacement vector field showed great downward 

shrinkage in the upper half, then deviated toward one side with smaller vectors which met 

small vectors that pointed form the floor upward in the lower one fourth. Almost no 

shrinkage vectors were detected near the dentin walls (Figure 52). The SEM images showed 

an intact bond along cavity margins and the enamel floor (Figure 53). 

6.5.1.3 Displacement vector field in the “cylindrical-self-etch” cavity 

The displacement vector field of the “cylindrical-self-etch” group showed downward 

shrinkage in the upper half of the restoration, while in the lower part the vectors pointed 

upward (Figure 24, p.44). In the SEM images one cavity margin was intact, while the other 

cavity margin and the floor were defective (Figure 25, p.45). 

6.5.1.4 Displacement vector field in the “cylindrical-total-etch” cavity 

In the “cylindrical-total-etch” group the displacement vector field displayed was similar to 

that in the “cylindrical-self-etch” group (Figure 54). Here, in contrast to the previous group, 

cavity margins were intact, but the floor presented a defective bond (Figure 55). 
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(A) 

 

(B) 

 

Figure 50 The displacement vector field of the “experimental-self-etch” cavity, with the x-

plane (A) and the z-plane (B) of the micro-CT scan in the background. Glyphs were scaled 

by a factor of 5 to enhance visibility. Large shrinkage vectors were detected in the upper 

restoration part and small vectors pointed away from cavity walls. 

 

(A) 

 

(B) 

 

Figure 51 SEM images (x200) of the “experimental-self-etch” group with a defective dentin 

margin (A) and an intact bond at the enamel floor (B). One traceable glass filler is marked 

by the star *. 
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(A) 

 

(B) 

 

Figure 52 The displacement vector field of the “experimental-total-etch” cavity with the x-

plane (A) and the z-plane (B) of the micro-CT scan in the background. It showed downward 

shrinkage at the upper part of the restoration and deviation of the shrinkage vectors toward 

one side; at the lower part (quarter) small vectors pointed upward. Glyphs were scaled by a 

factor of 5 to enhance visibility. 

 

(A) 

 

(B) 

 

Figure 53 SEM images (x200) of the “experimental-total-etch” group with both an intact 

dentin margin (A) and an intact bond at the enamel floor (B). One traceable glass filler is 

marked by the star *. 
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 (A) 

 

(B) 

 

Figure 54 The displacement vector field of the “cylindrical-total-etch” cavity, with the x-

plane (A) and the z-plane (B) of the micro-CT scan in the background. Glyphs were scaled 

by a factor of 5 to enhance visibility. Downward shrinkage at the upper restoration part and 

smaller shrinkage upward pointing upward at the cavity floor. 

 

(A) 

 

(B) 

 

Figure 55 SEM images (x200) of the “cylindrical-total-etch” cavity displaying an intact bond 

at the enamel margin (A), while the bond with the dentin floor was defective (B). One 

traceable glass filler is marked by the star *. 
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6.5.2 Quantitative presentation of polymerization shrinkage: values of shrinkage 

vectors and statistical analysis 

5.6.1.1 Quantitative non-directional analysis: Probability density function of the 

vector length values  

The longest shrinkage vectors were found in the “experimental-self-etch” group (31.8 ± 14.3 

µm), followed by the “cylindrical-total-etch” group (25.8 ± 11.0 µm), the “experimental-

total-etch” group (25.5 ± 14.7 µm) and least in the “cylindrical-self-etch” group (23.3 ± 11.1 

µm) (Table 9, Figure 56).  

One-way ANOVA revealed significant differences (F=100.7, Df=3,5960; p<0.001) and the 

post-hoc pairwise comparison using Tamhane’s T2 test showed significant differences 

between all groups except for “experimental-total-etch” and “cylindrical -total-etch” groups 

(p=0.991).  

The univariate ANOVA revealed that the cavity forms had highly significant differences 

(F=138.531; df=1, 5960; p<0.001) and the bonding agent as well (F=31.181; df=1, 5960; 

p<0.001). The interaction between the cavity form and the bonding agent was also significant 

(F=157.793; df=1, 5960; p<0.001). The R-squared is 0.048 implying that 4.8% of the 

observed variance of the vector lengths can be explained by the 2 factor model, that is cavity 

and bonding agent. 

 

Table 9 Mean vector length values and mean filler movement in the z-direction of the 

in the 4 study groups 

Group Mean vector length (µm) Filler movement in the    

z-direction (µm) 

“experimental-self-etch” 31.8 ± 14.3 7.6 ± 15.9 

“experimental-total-etch” 25.5 ± 14.7 4.5 ± 13.2 

“cylindrical-self-etch” 23.3 ± 11.1 -3.7 ± 13.6 

“cylindrical-total-etch” 25.8 ± 11.0 -5.2 ± 13.4 
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Figure 56 The probability density function of the vector lengths in the four groups. The peaks 

of the vector length values of all groups are located in the range below 30 µm. The 

“experimental-total-etch” (lila) and the “cylindrical-self-etch” (orange) groups have a 

similar curve with greatest frequency of vectors at about 20 µm. The “cylindrical-total-etch” 

(green) has its peak at a lower level, but with more vectors and larger vector length values. 

The “experimental-self-etch” (turquoise) has the peak at about 15 µm and large vectors also 

in a similar distribution as in the other groups. 
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6.5.2.1 Quantitative directional analysis: Probability density function of the vector z-

component (Filler Movement in the z-direction): 

In the “experimental” group tracer beads generally moved downward and away from the 

light source. The movement in the “experimental-self-etch” group was greater (7.6 ± 15.9 

µm) than in the “experimental-total-etch” group (4.5 ± 13.2 µm). On the contrary, in the 

“cylindrical” groups the tracers moved upward and toward the light source with greater 

values in the “cylindrical-total-etch” group (-5.2 ± 13.4 µm) than in “cylindrical-self-etch” 

group (-3.7 ± 13.6 µm) (Table 9, Figure 57).  

One-way ANOVA revealed significant differences (F=271.5, Df=3,5982; p<0.001) and the 

post-hoc pairwise comparison using Tamhane’s T2 test showed significant differences 

between all groups (p<0.05).  

The univariate ANOVA revealed that the cavity forms had highly significant differences 

(F=810.167; df=1, 5982; p<0.001) and the bonding agent as well (F=39.535; df=1, 5982; 

p<0.001). The interaction between cavity and the bonding agent was also significant 

(F=4.420; df=1, 5982; p<0.001). The R-squared is 0.12 implying that 12% of the observed 

variance of the filler movement in the z-direction can be explained by the 2 factor model, 

that is the cavity and the bonding agent. 
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Figure 57 The probability density function of the filler movements in the z-direction in the 

four groups. 3 Groups have a multimodal distribution of the axial filler movement values. 

The “experimental-self-etch” group (turquoise) has the first peak in the negative range of 

small movements related to upward shrinkage found at the cavity floor, while the second 

peak is located in the positive range that can be attributed to the downward shrinkage of the 

free surface. The “experimental-total-etch” group (lila) has only one peak that is located in 

the negative range at about -15 µm which relates to the upward shrinkage; yet, another large 

portion of the values are in the positive range that conforms to the downward movement of 

the free restoration surface. In the “cylindrical-self-etch” group (orange) the two peaks are 

situated in the negative range denoting upward shrinkage. In the “cylindrical-total-etch” 

group (green) one peak was located in the negative values but the majority of vectors are in 

the positive range which indicate downward shrinkage. 
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6.6 Discussion 

This study demonstrated that the bonding substrate significantly influenced the 

polymerization shrinkage direction. The filler movement in the z-direction showed marked 

differences between the “experimental” and the “cylindrical” groups. On the other hand, 

varying the bonding condition (self-etch versus total-etch) did not affect the shrinkage 

direction, but rather produced alterations in the magnitude of the vector lengths. The self-

etch adhesive was more prone to variations and vector lengths differed significantly between 

the “experimental-self-etch” and “cylindrical-self-etch” groups. The vector lengths in the 

“total-etch” groups showed no significant difference. Equal vector length values could be 

related to the increased film thickness of the total-etch adhesive which balances local 

variations, thus, decreases detachment from the cavity walls. 

The fictional zero-line was a plane where shrinkage vectors of opposite directions met; 

shrinkage vectors from the free surface moved downward, while shrinkage vectors from the 

lower restoration part moved upward to join in a region of no horizontal movement. In all 

groups, except for the “experimental-total-etch”, the fictional zero-line was located midway 

between the cavity floor and the free surface. However, the net axial shrinkage direction 

differed depending on the bonding substrate. Yet, in the “experimental-total-etch” group, the 

fictional zero-line was located at the lower quarter. Moreover, the displacement vector field 

of the “experimental-total-etch” group resembled that of the ceramic cavities with optimal 

adhesion (Chapter 4). For this reason, it can be assumed that the bond between the composite 

and specially the cavity floor was stronger than in the other groups. This strong bond could 

be attributed to both the presence of enamel at the cavity floor, acid etched enamel and the 

use of the total-etch adhesive. 

The cylindrical cavity with parallel walls was the cavity configuration of choice as it was 

free of any configurational variations. In addition, it can be compared to previous studies 

(Chiang et al., 2009; Versluis et al., 1998) and the results presented in Chapter 3-5 as well. 

On the other hand, the C-factor of the cylindrical class I cavities was the most unfavorable 

resulting in greater shrinkage stresses that can lead to subsequent debonding or detachment 

from the cavity floor and/or margins. Detachments were seen in the “experimental” group at 

dentin cavity margins, maybe due to greater downward shrinkage of the free surface or 

because the bond with the dentin margin was weaker than the bond with the enamel margin. 

Or in other words, debonding of the composite from the dentin cavity margins occurred and 

in turn composite could move downward. On the contrary, detachments in the “cylindrical” 
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groups were rather seen at the cavity floor that consisted of dentin as in the clinical situation. 

The detachments were in agreement with the larger shrinkage vectors: in the “experimental” 

large vectors were seen in the upper restoration part near the free surface, while in the 

“cylindrical” cavities the large shrinkage vectors were located at the lower restoration part.  

However, information on the topic of shrinkage vectors is scarce. The results of this study 

varied from findings of Chiang et al., 2009, with regards to the displacement vector field. 

This could be related to the quantity of enamel at the margins as well as the applied bonding 

agent which was in their case a weak self-etch adhesive. Shrinkage vectors point upward in 

a cavity with equal enamel margins and point toward one side in a cavity with unequal 

enamel margins (Chiang et al., 2009; Chiang et al., 2010). The self-etch adhesive of the 

current study was stronger and the cavities did not show noticeable variations in the amount 

of enamel at the cavity margins. Consequently, the displacement vector fields were similar 

even with the use of self-etch and total-etch adhesives.  

The “experimental” cavity with the enamel floor is clinically not relevant or possible, but 

the results are useful for learning more about the effect of the bonding substrates on the 

shrinkage direction. It highlighted that the location of enamel is able to change the direction 

of shrinkage vectors when all other boundary conditions are constant. This is in agreement 

with findings of Chiang et al., 2009, that showed that variation of enamel margin’s thickness 

led to change in direction of shrinkage vectors (Chiang et al., 2009; Chiang et al., 2010), 

though in the current study the enamel was located at the cavity floor. Moreover, the 

“cylindrical” group did not have these variations of enamel margin thickness. In the 

“experimental” group the cavity floor was not always completely located in enamel because 

the presence and amount of enamel is related to the shape of the dentin-enamel junction and 

the enamel cap. Accordingly, some cavities had a cavity floor with only a central area of 

enamel surrounded by dentin, while other cavity floors were completely formed of enamel. 

Nevertheless, the enamel floor pulled the composite, especially in the “total-etch” group. In 

the “self-etch” group, this effect was less pronounced which may be attributed to the lower 

bond strength values of self-etch adhesives compared with total-etch adhesives (Goracci et 

al., 2004; Inoue et al., 2001), even more, when bonding to enamel without previous acid 

etching. Indeed, it proved in a tooth model that shrinkage was related to the bonding substrate 

and not the light source. 

Another study investigating shrinkage vectors used an artificial mold of composite instead 

of human teeth (Cho et al., 2011), likewise a glass model cavity was used for shrinkage stress 

assessment (Li et al., 2011). Other studies used Teflon molds for gap analysis (Pereira et al., 
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2008; Takahashi et al., 2010), volumetric analysis (de Melo Monteiro et al., 2011) and 

composite shrinkage by image analysis (Miletic et al., 2011). As the results from this study 

and Chapter 4-5 show, the boundary conditions do have a great influence on the shrinkage 

direction and the resulting displacement vector fields. Therefore, the comparison of 

displacement vector fields of restorations applied into artificial molds should be viewed 

cautiously, as they do not perfectly mimic the clinical situation. Nevertheless, they do 

contribute valuable information for the understanding of the shrinkage patterns with 

boundary conditions other than in the human teeth. In the etched and silanized ceramic 

cavities of Chapter 4, an optimal bond was obtained and shrinkage vectors were directed 

downward. In the ceramic cavities, where a layer of bonding agent was applied, the 

shrinkage pattern was more uniform and reproducible. This is in agreement with the 

shrinkage pattern of the “experimental-total-etch” group. On the contrary, non-adhesive 

Teflon cavities in Chapter 5 presented a displacement vector field with different shrinkage 

pattern: shrinkage vectors from the free surface, the cavity walls and the cavity floor were 

all directed toward the center of the restoration. Even though ceramic and Teflon model 

cavities do not relate to the clinical situation, the results emphasized on the importance of 

the bonding substrate and related bonding conditions.  

The inherent uncontrollable variable when using human teeth is the variation in quality and 

quantity of enamel and dentin within a single tooth and among teeth in general. In addition, 

the cavity preparation depends on factors including the caries extension into hard dental 

tissues, or replacing an old restoration, while the choice of the bonding agent varies from 

one clinical situation to another, even the type of cavity preparation, bevel and bevel length, 

instrumentation, cooling and preparation at high or low speed.  

The shrinkage vectors were obtained in the form of 3D displacement vector fields that could 

be evaluated, rotated, zoomed in and out on the computer screen, but only 2D images can be 

presented here. Furthermore, the coordinate numbers denoting the position of the glass beads 

were available from the output file of the evaluation process from which the vectors were 

computed. Hence, two types of data analyses were performed. First, the qualitative analysis 

by the visualization of the displacement vector fields, and second, the quantitative analysis 

which is two-fold; non-directional and directional. The non-directional analysis evaluated 

vector length values índependent of their direction, while the directional analysis 

investigated the movement of the glass beads in the z-direction only in order to relate to the 

hypothesis whether composites shrink towards light or not. This evaluation was confirmed 

by the statistical analysis using the univariate ANOVA that analyzed the effect of the cavity 
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independent of the effect of the bonding agent and hereby confirmed the qualitative 

shrinkage vector analysis of the displacement vector fields. The qualitative and quantitative 

evaluations complement each other and are well supported by the SEM images. 

Therefore, the specific displacement vector field for each restoration cannot be fully 

predicted. However, the pieces of information gained through this study can be considered 

when restoring a tooth defect. The detrimental fact about the polymerization shrinkage is the 

generation of shrinkage stresses that lead to detachment of the composite restoration from 

the tooth structure. Once debonding occurred, shrinkage is directed away from the detached 

part. The critical question is how to manage the detachment at the cavity floor and how to 

manage gap formation at the cavity margin. Taking into consideration that the experimental 

resin composite, Tetric EvoFlow with added glass beads, is not recommended for application 

in bulk, more investigations are needed with bulk-fill composites. The used composite was 

fair enough for the evaluation procedure and bulk-fill composites were available only after 

the start of the experiments. The composite was sufficiently cured even at a depth of 3 mm 

(Lindberg et al., 2004).  

Scientists need to reevaluate current restorative techniques and adapt them in the light of 

these results. It was suggested that the filling technique and the composite type might have 

a strong influence on the adhesion of composite, especially with high C-factor (Van Ende et 

al., 2013). More information is needed on the traditional layering technique and its effect on 

the direction of shrinkage vectors. Also, reducing the C-factor could help in preserving a 

stable bond. In cavities with a high C-factor, oblique composite application could reduce the 

C-factor, and perhaps lead to better marginal integrity. Finally, shrinkage vectors can give 

answers to these questions.  
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Conclusions 

From the results of this study, the following can be concluded: 

1. The knowledge gained from this study confirmed that the strong bond to enamel was 

the decisive factor in pulling the composite. Thereby, the general assumption that 

composites shrink toward light can be disproved. 

2. In the “experimental” group with enamel at the cavity floor, detachment occurred 

with both the self-etch and the total-etch adhesives at the dentin margin, and no 

detachment at the cavity floor. 

3. In the “cylindrical” cavities detachment always occurred at the cavity floor, whether 

self-etch or total-etch adhesives were used. 

4. It can be concluded that shallow cavities in dentin that reach only beyond the dentin-

enamel junction will have a good bond with the cavity floor and margins, especially 

when a total-etch adhesive is used.  

5. In deep cavities of 3 mm depth usually debonding happens at the cavity floor and 

sometimes at the margin, with both self-etch and total-etch adhesives. Therefore, 

composite should preferably not be applied in bulk unless it is a bulk-fill material. 

Still, no information on the shrinkage patterns of bulk-fill materials and 

incrementally applied composites is available.    
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7 Summary 

 

Tooth-colored resin composite restorations are nowadays the material of choice for filling 

tooth-defects. Unfortunately, polymerization is accompanied by volumetric shrinkage 

leading to marginal gaps at the tooth-restoration interface. In dentistry, it is assumed that 

light-cured composites shrink toward the light source. However, this hypothesis lacks 

scientific proof. Recently, research groups in Munich and Tokyo have developed methods 

employing micro-CT scans of the uncured and cured composite restorations with embedded 

tracer fillers. The current method employed sphere registration and segmentation based on a 

block-matching algorithm (Chiang et al., 2009; Chiang et al., 2010; Rösch et al., 2009). The 

glass beads were traced and shrinkage vectors were computed. 

This study investigated the effect of boundary conditions on the polymerization shrinkage 

vectors of light-initiated dental resin composites. Boundary conditions include cavity 

configurations, bonding conditions (DBA) and bonding substrates. 

The first part of this study (Chapter 3) investigated the effect of different cavity 

configurations on the shrinkage vectors. In the “adhesive” cavity (beveled margin, 

undermining preparation) which is proposed for composite restorations shrinkage vectors 

pointed upward, but it had a tight marginal seal. In our samples, detachment was detected at 

the cavity floor, which can cause postoperative pain due to a pumping effect on dentinal 

fluid. In contrast, the “diverging” cavity displayed great downward shrinkage, while the 

„cylindrical” cavity had smallest vectors that moved toward the center. Shrinkage vectors in 

the “adhesive” cavity matched the assumption, that is not because composites shrink toward 

the light, but rather due to the strong bond to enamel. The shrinkage patterns of the 

“diverging” and „cylindrical” cavities proved that shrinkage was not related to the light 

source, but to the cavity configurations.  

In the clinical situation, the “adhesive” cavity design should only be applied to remove 

carious tissue, otherwise, undercuts should not be prepared on purpose. An enamel bevel cut 

perpendicular to the enamel prisms can enhance the marginal integrity but also influence the 

shrinkage direction. The “adhesive” cavity can clinically be prepared in rather small to 

medium sized cavities, but not in very large ones, therefore, the correct bevel preparation is 

not always granted. Further investigations are needed to find out how to manage or avoid 
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the gap formation by an incremental application technique and the use of dentin bonding 

agents.   

In the following study parts (Chapter 4-6) the effect of other boundary conditions were 

investigated. As the bonding condition is related to a great extent to the bonding substrate, 

specific aspects were addressed. In the second part (Chapter 4), shrinkage vectors in ceramic 

cavities with different boundary conditions were analyzed. The etched and silanized surface 

provided optimal adhesion. Furthermore, the ceramic served as a homogenous cavity model 

in contrast to the heterogenous tooth structure. This validated our assumption that enamel 

influences the direction of the shrinkage vectors and that it is not only a possible detachment 

of the composite from the dentin due to a weak bonding agent. The displacement vector field 

demonstrated a clear downward shrinkage in the whole restoration that was attributed to the 

strong bond. However, in the lower two third of the restoration two shrinkage patterns could 

be distinguished: pattern-1 showed a deviation of shrinkage vectors toward one side, while 

pattern-2 displayed swirling of vectors in the whole lower restoration part. The use of an 

intermediate bonding agent in the ceramic cavities resulted in a more uniform and 

reproducible shrinkage pattern. Nevertheless, the two shrinkage patterns generally indicate 

that detachment has occurred, but the area of detachment was rather by coincidence. It is not 

clear, if this can be related to the unfavourable C-factor or the application of composite in 

bulk. The use of a bulk-fill material has greater modulus of elasticity than the flowable which 

can lead to greater shrinkage stresses at the tooth-restoration interface. 

In contrast to the optimal bonding condition, a non-adhesive Teflon cavity was used in the 

third study part (Chapter 5) with only the influence of cavity geometry on the shrinkage. 

Shrinkage vectors pointed toward the center of the restoration, although the contraction 

movement was greater at one side. The region with larger vectors was thought to be the site 

of first detachment. 

To investigate the influence of enamel as a bonding substrate on the shrinkage direction, an 

“experimental “cavity with an enamel floor was proposed (Chapter 6) and compared to the 

“cylindrical” cavity from the first part (Chapter 3). In the “experimental” cavity, enamel at 

the cavity floor pulled the composite and shrinkage was directed downward, similar to the 

shrinkage pattern found in the “ceramic” cavities. On the other hand, in the “cylindrical” 

cavity the composite shrank toward the midplane of the restoration. Variation of the bonding 

condition was achieved by the use of a self-etch versus a total-etch adhesive. This resulted 

only in small variations in magnitude. It can be concluded that the bonding substrate plays a 
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major role in determining the shrinkage direction, while the bonding condition plays a minor 

role. Nevertheless, the bonding condition depends on the bonding substrate to a great degree. 

Although the basic investigations of Chapter 4-6 cannot be applied in the clinical situation, 

they were important to identify each factor’s role with regard to the polymerization shrinkage 

direction. More studies are needed to investigate the effect of the C-factor on the shrinkage 

direction, as well as analyzing shrinkage patterns in incrementally applied and bulk-fill 

composite restorations. Additionally, more realistic cavity designs instead of cylindrical 

class I cavities need to be prepared, as well as class II cavities. More investigations are 

needed on the effect of the curing-light source on the shrinkage vectors. 

Finally, the results of this study enable researchers to understand some factors affecting 

polymerization shrinkage and utilize this knowledge to reevaluate current application 

techniques and to suggest adjustments for common drawbacks. For these reasons, every 

patient receiving a composite restoration will benefit from this research.  
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Conclusions 

Within the limitations of the current study, the following can be concluded regarding the 

effect of the boundary conditions on the polymerization shrinkage vectors of light-cured 

dental resin composites: 

1. The shrinkage amount and direction varied according to the cavity configuration, 

with greatest shrinkage vectors in the “adhesive” cavity, followed by the “diverging” 

and it was least in the “cylindrical”.  

2. The “adhesive” versus the “cylindrical” cavity showed that the cavity margin 

influenced the shrinkage direction and the gap formation. 

3. In the ceramic model the dentin bonding agent acted as a stress breaker that allowed 

for more movement, therefore, the mechanical properties of bonding agents are 

important as the influence the polymerization shrinkage direction.  

4. In the Teflon group shrinkage in lateral direction was greater at one side, which is 

possibly the site of least resistance to adaptation and first detachment due to 

shrinkage.  

5. The knowledge gained from the study with the “experimental” and “cylindrical” 

cavities confirmed that the boundary conditions influenced the shrinkage direction 

of light-cured dental resin composites. 

6. The claim that composites shrink toward the light source is disproved. 

 

Recommendations for future research 

1. Further studies are needed to evaluate different types of self-etch and total-etch 

adhesives and investigate the relation between bond strength values and the 

shrinkage direction.  

2. More clinically relevant cavity designs are also needed to relate to the clinical 

situation such as the classical cross-shaped occlusal cavity, MO/MOD-cavities, 

cervical cavities and others.  

3. Moreover, more types of restorative materials should be investigated to explore the 

shrinkage patterns in incrementally applied and bulk-fill composites, in order to give 

insight into more clinically relevant information.  
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8 Zusammenfassung 

 

Kompositfüllungen werden heutzutage routinemäßig gelegt, um Zahndefekte zu beheben. 

Der große Nachteil der Kompositfüllungen ist deren Schrumpfung, welche zum Randspalt 

führen kann. In der Zahnmedizin wird angenommen, dass lichthärtende Komposite zur 

Lichtquelle hin schrumpfen, wobei es für diese Hypothese aber keinen wissenschaftlichen 

Beweis gibt. Erst in den letzten Jahren ist es Forschungsgruppen aus Tokio und München 

gelungen, eine Methode zu entwickeln, die Micro-CT-scans von ungehärtetem und 

lichtgehärtetem Komposit mit eingebetteten Glasfüllkörpern verwenden, um 

Schrumpfungsvektoren darzustellen. Die in der vorliegenden Studie angewendete Methode 

basiert auf der Sphärenregistrierung und –segmentierung durch einen Block-matching 

Algorithmus (Chiang et al., 2009; Chiang et al., 2010; Rösch et al., 2009). Die Füllkörper 

wurden in beiden Scans verfolgt und die Schrumpfungsvektoren berechnet und graphisch 

dargestellt. 

Diese Studie untersuchte den Einfluss der Rahmenbedingungen auf die 

Schrumpfungsvektoren in lichthärtenden dentalen Kompositen. Die Rahmenbedingungen 

beinhalten die Kavitätskonfigurationen, Haftungsbedingungen und Haftsubstanzen.  

Im ersten Teil dieser Studie (Kapitel 3) wurde der Einfluss der Kavitätskonfigurationen auf 

die Schrumpfungsvektoren untersucht. In der „adhäsiven“ Kavität, die für adhäsive 

Füllungen indiziert ist, haben die Vektoren nach oben, in Richtung der Lichtquelle gezeigt. 

Im Gegensatz dazu, zeigten die Schrumpfungsvektoren der „divergierenden“ Kavität nach 

unten, wobei sie in der „zylindrischen“ Kavität insgesamt am kleinsten waren und zur Mitte 

zeigten. Die Vektoren der „adhäsiven“ Kavität bestätigten die Annahme; dabei geschah dies 

nicht, weil Komposit zur Lichtquelle hin schrumpft, sondern wegen seiner starken Haftung 

am Schmelz. Die Schrumpfungsmuster der „divergierenden“ und „zylindrischen“ Kavitäten 

bewiesen, dass die Schrumpfung nicht von der Lichtquelle abhängig war, sondern von der 

Kavitätskonfiguration. In der Praxis sollte die „adhäsive“ Kavität nur präpariert werden, um 

kariöse Zahnsubstanz zu entfernen, aber Unterschnitte sollten nicht absichtlich präpariert 

werden.  Eine Schmelzanschrägung sollte senkrecht auf die Schmelzprismen erfolgen, um 

die Randintegrität zu fördern, die jedoch auch die Schrumpfungsrichtung beeinflussen. 

In den übrigen Abschnitten (Kapitel 4-6) wurden die Einflüsse der weiteren 

Rahmenbedingungen untersucht. Da die Haftungsbedingungen zum großen Teil von den 
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Haftsubstanzen abhängen, wurden bestimmte Aspekte untersucht. Im zweiten Teil (Kapitel 

4) wurden die Schrumpfungsvektoren in Keramikkavitäten mit unterschiedlichen 

Rahmenbedingungen untersucht. Die geätzte und silanisierte Keramikoberfläche stellte 

optimale Haftungsbedingungen dar. Außerdem funktionierte die Keramik als homogenes 

Material für das Kavitätenmodell im Gegensatz zum heterogenen natürlichen Zahn. Das 

Vektorenfeld zeigte eine klare Schrumpfung nach unten, die der starken Haftung zu Grunde 

lag. Andererseits konnten zwei unterschiedliche Schrumpfungsmuster im unteren Teil der 

Füllung erkannt werden: in Muster-1 schrumpften die Vektoren zu einer Seite hin, wobei sie 

in Muster-2 quer durcheinanderwirbelten. Die Anwendung eines Dentinadhäsivs führte zu 

einem ebenmäßigeren Erscheinungsbild der Vektoren. 

Im dritten Teil der vorliegenden Arbeit (Kapitel 5) wurde nun im Kontrast zur optimalen 

Haftung eine nicht-haftende Teflon-Kavität verarbeitet. Die Schrumpfungsvektoren zeigten 

zur Mitte der Füllung, auch wenn die Vektoren auf der einen Seite grösser waren. Dies 

scheint der Bereich zu sein, von dem sich das Material als erstes von der Wand ablöst.  

Wie stark beeinflusst der Schmelz als Haftsubstanz die Schrumpfungsrichtung? Um dies 

herauszufinden, wurde eine Kavität mit einem Schmelzboden improvisiert (Kapitel 6) und 

mit der „zylindrischen“ Kavität verglichen (Kapitel 3). In der improvisierten Kavität hat der 

Schmelz das Komposit nach unten gezogen, ähnlich wie bei der Keramikkavität. 

Andererseits schrumpfte das Komposit in der „zylindrischen“ Kavität zur Mitte der 

Restauration.   

Variationen der Haftbedingungen wurden durch die Anwendung von einem Self-etch- und 

einem Total-etch-Adhäsivs erzielt. Dies führte nur zu kleinen Unterschieden in der Länge 

der Vektoren, beeinflusste aber nicht die Schrumpfungsrichtung. Daraus kann man 

schließen, dass die Haftsubstanz eine große Rolle bezüglich der Schrumpfungsrichtung 

spielt, die Haftungsbedingungen jedoch nur eine kleine, wobei diese jedoch weitgehend vom 

Haftungssubstrat abhängig sind.  

Obwohl die Untersuchungen aus den vorherigen Kapiteln 4-6 nicht in der Praxis angewendet 

werden können, waren sie wichtig, um zu erkennen, welche Rolle jeder Faktor bezüglich der 

Schrumpfungsrichtung spielt. Es werden noch weitere Studien benötigt, um sowohl den 

Einfluss des C-Faktors zu untersuchen, als auch die Schrumpfungsmuster in schichtgelegten 

Füllungen und in Bulk-fill-Kompositen. Zusätzlich dazu müssten realistischere 

Kavitätsformen und Klasse II Kavitäten untersucht werden anstelle der hier untersuchten 
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zylindrischen Klasse I Kavitäten. Außerdem könnte der Einfluss der Lichtquelle auf die 

Schrumpfungsrichtung noch erforscht werden.    

Somit führen die Ergebnisse dieser Studie zum Verständnis einiger Faktoren, welche die 

Schrumpfung beeinflussen. Dieses Wissen kann wiederum angewendet werden, um gängige 

Anwendungsmethoden zu beurteilen und Verbesserungen vorzuschlagen. Aus diesen 

Gründen profitiert jeder Patient, der eine Kompositfüllung erhält, von dieser 

Forschungsarbeit. 
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7.2 Protocol for the silanization of the traceable glass beads 

 

 

Step 1: Glass beads 40-70 µm (Sigmund 

Lindner GmbH, Warmensteinach, 

Germany) 

 

15 g of glass beads equal 10 ml volume 

 

Step 2: Ethanol (99.9% purity) and Sil 

Silane Coupling Agent (3-

methacryloyloxy-

propyltrimethoxysilane), 3M ESPE 
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Solution mixture composed of 97 ml 

ethanol + 3 ml silane coupling agent 

 

Step 3: Glass beads are added to the 

solution mixture, automatic stirring at 

room temperature for 30 min followed by 

stirring at 60ºC for another 30 min 

 

Step 4: Glass beads in solution are 

centrifuged for 10 min at 4000 rpm speed  
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Step 5: Silanized glass beads are washed 

by acetone (20 ml) three times 

 

Step 6: Silanized glass beads are left to 

dry overnight 

 

Step 7: Dry powder of silanized glass 

beads 

 

Step 8:  Powder of silanized glass beads 

is stored in a glass container  
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