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AcOH acetic acid IR Infra red
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1. Introduction

1. Introduction

More than one hundred years ago, Gomberg described triphenyl methyl radical, the first
carbon-centered radical.! After this discovery it was believed that radicals are too reactive
be used in synthesis. In the 1970s data of structure and reactivity of radicals was obtained,
so that controlled radical reactions became possible. This was the beginning of modern
radical chemistry.%*

1.1. Tin hydrides

Tin hydrides like BuzSnH (1a), PhzSnH (1b) or Me3SnH (1c) represent the most prominent
class of hydrogen atom donors. These compounds are cheap and very effective in terms of
H-transfer.® ® A large number of applications in synthesis is known with tin hydrides.!”!
However, all organic tin compounds have one major problem, which is their toxicity.®
Furthermore, the separation of traces of tin-containing side products from pharmaceutically
active products is also a big problem, diminishing the field of applications dramatically.
Hence, there is a big ambition to solve this “tin problem” by finding alterative compounds.®

1.2. Silanes as radical reductants

Trialkyl silanes such as Et;SiH (1d) are in comparison to tributyl tin hydride (1a) nontoxic.
Yet, these compounds turned out to be rather ineffective reducing agents in radical chain
reactions."!? Silyl radicals have the property to generate carbon-centered radicals from a
large number of precursers. However, the transfer of a hydrogen atom from a silane to a
carbon-centered radical is very inefficient.™ The reason for this is the higher bond
dissociation energy (BDE). Tributyl tin hydride (1a) has a BDE of 329 kJ/mol, whereas the
BDE for triethyl silane (1d) is 377 kJ/mol.** 13 I A slight improvement can be achieved by
phenyl-substituted silanes, where the resulting silyl radicals are stabilized by the phenyl
groups by about 42 kJ/mol.*® However, they are still unsuitable for radical chain
reactions™® " and so their main application is in the Barton-McCombie reaction.'® A
weakening of the Si-H bond can be achieved by replacement of the alkyl (or phenyl) groups
by trimethyl silyl groups.® **1n 1965 Gilman described tris(timethylsilyl) silane (1e, TTMSS)
for the first time.?? Finally, it was Chatgilialoglu, who rediscovered the compound as a good
reducing agent.'® > #4 The bond dissociation energy of 352 kJ/mol is still higher than the
BDE of BusSnH (1a)."? However, TTMSS (1e) has a wide scope of applications. A general
scheme for reductions with 1e and AIBN (2a) as initiator is shown in Figure 1.
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Figure 1: Versatile applications of TTMSS (1e) in radical chemistry. % 23 2425, 26,27, 28]
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1.3. Further common hydrogen atom donors in radical chemistry

Germanium hydrides combine the properties of tin hydrides and silanes. The BDE of Bu;GeH
(1f, 369 kJ/mol) is between the tin and silicon analogue.? (Me;Ge);GeH (1g) was
synthesized by Chatgilialoglu and turned out to be an even faster H-atom donor than tributyl
tin hydride (1a). Reductions were carried out with yields of over 95 %.%" Due to its high cost,
applications for germanium hydrides are rather rare.

Reductions of reactive carbon-centered radicals with weak C-H bonds are also known in
literature. One of the most prominent examples is the Bergman cyclisation.?” In this reaction,
radicals, which come from 3-en-1,5-diynes, are reduced with 1,4-cyclohexadiene (11, CHD).
Thus, doubly substituted benzene derivatives can be synthesized (Figure 2a). The Bergman
cyclisation is of special interest in the mechanism of action of some natural products, which
show cytotoxic activity. As an example calicheamycine (12) is shown in Figure 2b. This
enediyne antibiotic can form the diradical under physiological conditions.”"

+

o] =2

NHCO,Me

HO!
(b) — >
sugar
] (12
S-sSMe

DNA radicals

N\
sugar l 0,

Double-strand cleavage of DNA

Figure 2: (a) General scheme of a Bergman cyclisation. (b) Example of a Bergman
cyclisation on the basis of calicheamycine (12).
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Furthermore, thiols are used as catalysts in radical chemistry.®? The use of dialkyl
phosphites as well as the application of hypophosphonic acids has been reported in the
literature.®* 3 From the group of pnictides diazenes are known, which can form a
carbon-centered radical after N, elimination.® Yet, none of these substances has such a
wide area of applications as tributyl tin hydride (1a). The research and development for a
nontoxic, cheap and nevertheless efficient alternative still remains a big challenge for organic
chemistry.

1.4. Borane complexes as hydrogen atom donors

Borane complexes with different Lewis-bases (L-BH3) were first studied by Roberts (L = NR3,
PR; or SR,).** 3 He observed that oxygen- and carbon-centered radicals could be reduced
by borane complexes to the corresponding alcohols or hydrocarbons. Yet, nucleophilic C-
radicals could not be effectively trapped in this way. Thus, the use of boranes seemed not
very promising in the beginning, although boron-centered radicals (L-BH,¢) show a reactivity
which is comparable to silyl or tin radicals.®® Synthetic uses of borane complexes were
found by Lucarini,®¥ Roberts!*® and Barton*?. In all cases, the boron species had to be used
in an eight to ten fold excess. Much more promising results were achieved by Curran. In
initial studies he used nitrogen-containing, heterocyclic carbene complexes (NHC boranes)
for the radical reduction of xanthates with yields up to 70 %. Furthermore, Zipse showed,
based on quantum chemical calculations, that the bond dissociation energies (BDE) of such
compounds are similar to the BDE of BusSnH (1a, 328.9 kJ/mol) (Figure 3).14* 42

— =N
Ph \ A
\/N\@(S N\@%N\Ph N\@%N
©BHj, © BH,4 © BH,4
(13a) (13b) (13c)
309.6 kJ/mol 330.5 kJ/mol 334.7 kJ/mol

Figure 3: Examples for NHC boranes 13a, 13b and 13c studied by Curran and Zipse and
their calculated BDE.

Based on these calculations, several “first-generation radical reductions” were conducted
with NHC boranes. For these initial studies, Curran used secondary xanthates and Et;B
(2b)/O, or AIBN (2a, 80 °C) as initiation systems. In these studies, he obtained good yields of
the deoxygenated products for precursors, which would either undergo a cyclopropyl ring

opening (Figure 4a) or a 5-exo-trig cyclisation (Figure 4b)."3
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Figure 4: First generation radical reductions of xanthates (a) 14a and (b) 14c with NHC
boranes by Curran.”?!

R= (CH2)5OBn

For good conversions of the xanthates, usually large amounts of the initiator were necessary
(50 - 100 %).“¥ An improvement was made with the development of the “second-generation-
reagents”.") These NHC boranes are better hydrogen atom donors and their derived
radicals are not persistent.”*®! With this new class of hydrogen atom donors, it was possible to
improve the yields of xanthate reductions, while decreasing the reaction time and lowering

the amount of initiator (Figure 5 and Table 1).1% *®

S SMe

o> 1 W _
/‘/O O—OH NHC-BH; O OH H
o) AIBN, 80 °C, benzene
(@]

OY 2a H 0
14e 14f \f//

Y
©)

[~ =N
©BHs OBH,
13e 13f

"second-generation-reagents”

Figure 5: Reduction of xanthate 14e with “second-generation-reagents® 13e and 13f by
Curran.[3 48
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Table 1: Results for the reaction shown in Figure 5. 43 !

NHC-BH; edg. AIBN (2a) time [h] yield [%)]
13d 2 1.0 eq. 16 75
13e 1 10 mol% 2 89
13f 1 10 mol% 2 88

Furthermore it was possible to reduce some classes of halides which carried electron
withdrawing groups close to the corresponding halide with different initiation methods (Figure
6 and Table 2).14"

o] H
/‘/O oH benzene 0) o oH H
o NHC-BHs, initiator /‘/
0

X OY N %/

X =1 (149): yields shown in Table 2
X = Br (14h): comparable yields

Figure 6: Reduction of halides with electron withdrawing groups.

Table 2: Results for the reactions (X = I) shown in Figure 6.

NHC-BH; initiator temperature yield [%)]
13e Et;B (2b)/O, rt. 77 %
13e AIBN (2a) 80 °C 63 %
13f (tBuO), (2¢) 60 °C 75 %

Up to that, radical reductions with NHC boranes were possible for xanthates, but for halides
like iodides or bromides it was always necessary to have an electron withdrawing group next
to the halide.”® * However, reductions of substrates like adamantyl halides or aryl halides
were not possible with NHC boranes.* In case of slow hydrogen transfer reactions of
silanes, the addition of a “polarity reversal catalyst” such as a thiol or selenide could solve
this problem.®® Recently, Curran showed, that the addition of a thiol as catalyst can also
improve radical reactions based on NHC boranes.®  The proposed mechanism by Curran is
shown in Figure 7.5Y The use of a thiol as catalyst now made it possible to reduce halides,
which did not undergo a reaction under the former conditions. So, adamantyl bromide (7c)
could be reduced to adamantane (7b) (97 %) with thiophenol (15a) and tert-butyl hyponitrite
(2d, TBHN) as initiator (Figure 8a), as well as aryl bromide (14j) with tert-dodecanethiol (15b,
TDT) as catalyst (Figure 8b).
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NHC-BH3 R-H R-S- NHC-BH3
standard chain PRC chain
NHC-BH, R- R1-SH NHC-BH,

Figure 7. General mechanism of the uncatalyzed and PRC catalyzed radical chain reaction
by Curran.!*!

Br
2d 15a

[T\ TBHN (0.2 eq.), PhSH (5 mol%)
(a) + —N@N- > 0
(97 %)
\( benzene, 4 h, 80 °C
O BH;4

Tc (1eq.) 7b
13e

2d 15b
Br /—\ TBHN (0.2 eq.), TDT (5 mol%)
(b) + NN~ -~ (96 %)
benzene, 3 h, 80 °C
© BHj

. 14k
14 (1eq.)

13e

Figure 8: Examples for TDT (15) catalyzed radical reactions by Curran. (a) Reduction of
adamantyl bromide (7c). (b) Reduction of aryl bromide 14j.5"

1.5. Objectives

The high toxicity of tin hydrides makes these compounds unsuitable for pharmaceutical
applications. Based on the results described before and theoretical studies by Zipse and
Hioe?, the suitability of different borane complexes as hydrogen atom donors in radical
reactions is the main goal. Furthermore, detailed studies on the reaction mechanisms shall
help to understand the complex chemistry of heterocyclic borane complexes. The versatile
structural possibilities of the borane complex itself, the initiator and the initiation conditions
have to be exactly synchronized for a successful reaction outcome, which will be
demonstrated and discussed in detail in this work.
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2. Radical reactions

2.1. Uncatalyzed reactions
2.1.1. Substrate screening

A scheme of initially performed reactions with different substrates, reductants and initiators is
shown in Figure 9. As reference reactions, three typical substrates (xanthate 18b, iodide 18d
and bromide 18a) were tested with tributyltin hydride (1a) as reducing agent. As initiation
system BEt; (2b)/ O, was chosen and the reactions were conducted at room temperature. In
all three cases quantitative conversions to the corresponding alkane 16a were achieved
(Table 3, entry 1 - 3). However, the exchange of the H-atom source by the newly synthesized
borane complex 17a led to a decrease of conversion for all three substrates under different
conditions. In case of l1l-bromododecane (18a) no conversion was observed for low
temperature initiation (BEts; (2b)/ O, at 0 °C) and initiation at 80 °C with AIBN (2a, entry 4 and
5). For xanthate 18b room temperature initiation (BEt; (2b)/ O,) led to 8 % dodecane (16a)
although the reaction time was increased to 14 hours (entry 6). Almost the same result was
observed for xanthate 18c when initiating at room temperature. Here 9 % conversion to the
desired alkane 16a was detected after 22.5 hours (entry 7b). For 1l-iodododecane (18d) no
reaction was observed for high temperature initiation (AIBN (2a), 80 °C) (entry 8). Initiation at
room temperature (BEt; (2b)/ O,) lead to 4 % dodecane (16a) after two hours and 16 % after
14 hours (entry 9a and 9b). However, when lowering the reaction temperature to 0 °C, 13 %
of 1-iodododecane (18d) were reduced to dodecane (16a) after one hour, thus making a
temperature dependence most promising (entry 10).

benzene,
substrate (1.0 eq.) + reductant(1.0eq.) —— > dodecane
initiator 16a
Br S.__OEt O _SMe I
substrates: \9 \9 \ﬂ/ \9 \ﬂ/ \9/
11 1§ 1§ 11
18a 18b 18¢c 18d
OBH,
N
reductant:  BusSnH \>_
1a @O
17a

initiators: AIBN (0.5 eq.) BEt; (1.0 eq.)
2a 2b

Figure 9: Reduction of dodecyl xanthates (18b and 18c), bromide 18a and iodide 18d with
BusSnH (1a) and the synthesized borane complex 17a.
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Table 3: Conditions and results for the reactions shown in Figure 9.

entry substrate reductant initiatior temp. time [h] dodecane (16a) [%]

1 18b la 2b rt. 2 > 99

2 18d la 2b rt. 2 > 99

3 18a la 2b rt. 2 98

4 18a 17a 2b o°Cc 2 no reaction
5 18a 17a 2a 80°C 2 no reaction
6 18b 17a 2b rt. 14 8

7a 18c 17a 2b rt. 2 <1

7b 18c 17a 2b rt 22.5 9

8 18d 17a 2a 80°C 2 no reaction
9a 18d 17a 2b rt. 2 4

9 18d 17a 2b rt. 14 16

10 18d 17a 2b o°C 1 13

Subsequently the reduction of l-iodododecane (18d) with complex 17a under aerobic
conditions with BEt; (2b) at 0 °C was examined in more detail. By elongation of the reaction
time from one to two hours, followed by renewed addition of triethyl borane (2b), 26 % of
dodecane (16a) had formed. GC/MS analysis of the final product mixture also showed the
formation of small amounts of tetradecane (16b) and tetracosane (16c) (Figure 10a). The
latter ones being formed due to radical recombination reactions of dodecyl radical with itself
and with ethyl radicals formed during the initiation. A further recombination of two ethyl
radicals could also be taken into account, however the resulting butane (16d) would not be
detectable in the GC/MS (Figure 10b).

BH3 2b
@) I ) benzene, BEt; (1 eq.)/ O,, 0 °C, 2 h 16a 16b 16¢c
\9/ @E dodecane tetradecane tetracosane
1 BEt3(1 eq.)) O,,0°C,1h
18d (1eq) 17a 26 % 3% <1%

10
(b) BEts +Et*+ ————— tetradecane (16b)

2b ) o tetracosane (16c) <———— ﬁ/
butane (16d)

Figure 10: (a) Reduction of 1l-iodododecane (18d) with borane complex 17a at O °C.
(b) Formation of recombination products.

As the increase of BEt; (2b) led to a higher yield of dodecane (16a), the reaction was
repeated with a total amount of six equivalents of triethyl borane (2b). The addition of
initiation agent over five hours by a syringe pump vyielded 71 % dodecane (16a)
accompanied by the formation of traces of tetradecane (16b) and tetracosane (16c) (Figure
11a). A similar result was achieved when adding six equivalents of triethyl borane (2b) right
from the beginning and running the reaction over two hours at 0 °C. In this case the yield of
dodecane (16a) was slightly lower than before (60 %), whereas tetradecane (16b) had

9



2. Radical reactions

increased to 10 % (Figure 11b). This effect can be attributed to the higher concentration of
BEt; (2b) and the resulting higher recombination process. Finally, the reaction was
performed without the borane complex 17a (Figure 11c). Here, l-iodododecane (18d) was
also reduced to dodecane (16a, 33 %), tetradecane (16b, 30 %) and tetracosane (16c, 3 %).
This result shows that a reduction of primary alkyl iodides under aerobic conditions is also
possible when adding triethyl borane (2b) in excess. The distinct higher formation of
tetradecane (16b) indicates a higher level of a recombination process, due to the absence of
borane complex 17a. Finally borane 17a seems to take part in the reduction process, yet the
reaction requires a large excess of initiator.

o

® ,BH3 2b
@) I N 1) benzene, BEt; (1 eq.)/ O,,0°C,2h 16a 16b 16¢c
* \>_ dodecane tetradecane tetracosane
" o 2) BEt; (5 eq.)/ Oy, 0 °C, over 5 h with
’ ’ 71 % 4 % 1%
18d (1eq) 17a 2b  syringe pump ° ° °
®,BH3
) | ON benzene, 16a 16b 16¢c
+ \>— dodecane tetradecane tetracosane
i o BEt; (6 €q.)/ O5,0°C, 2 h 60 % 10 % 1%
18d (1eq.) 17a 2b
benzene, 16a 16b 16¢c
© \®/| dodecane tetradecane tetracosane
11 BEt; (6 eq.)) O, 0°C,2h 33 % 30 % 3%

18d 2b

Figure 11: Reduction of 1-iodododecane (18d) with an excess of BEt; (2b).

2.1.2. Borane screening

In order to investigate whether a systematic improvement of the results for borane 17a is
possible, the next step was the synthesis of a variety of borane complexes. Therefore,
borane complexes of different heterocyclic substance classes were synthesized,
characterized and, if possible, crystallized to obtain X-ray structures. For the design of the
borane complexes electronic effects were also taken into account.

2.1.2.1. Synthesis and characterization of borane complexes

Besides commercially available heterocyclic compounds, several substances were
synthesized. Figure 12 shows a general synthetic route for the synthesis of precursors and
borane complexes used here. In case of functionalized benzimidazoles in 2-position, a
condensation of ortho-phenylene diamines with a carboxylic acid at high temperatures
(2160 °C) led to the desired precursors (Figure 12a). These reactions were carried out under
microwave irradiation either in toluene or neat. Pure products were obtained by column
chromatography on silica or by recrystallization. For N-methylated imidazoles, the starting
compounds were first deprotonated with a strong base (usually n-butyllithium) and afterwards
reacted with methyl iodide (Figure 12b). In most cases the N-methylated compounds were
obtained in good quality right after an aqueous workup followed by extraction. If necessary,
the crude products were recrystallized or purified by column chromatography on silica. In

10
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order to obtain borane complexes of excellent quality, it is valuable to mention, that the
precursors should be of high purity, as most of the complexes decompose on column
chromatographic workup. Subsequently, the complexes were synthesized by the
complexation of BH; to a heterocyclic nucleophile (Figure 12c). It turned out, that the most
effective workup is precipitation from isohexane, whereby the borane complexes were
obtained in good yields and quality.

NH,
A N

@ [ +re-coon (L=
NHR, -2 H0 N

R4
THF, 0 °C,
o ©:N\>_R 1) nBuLi (1.1 eq) ©:N\>_R
N 2) Mel (1.1 eq.) N\
() Nuc mrore, - Hi’?—ﬁuc

1) Me,S-BH;3 (1.1 eq.)

Figure 12: General routes for the synthesis of benzimidazole derivatives and borane
complexes used in this work.

An overview over all heterocyclic borane complexes used for this screening is shown in
Figure 13. Aside from complex 17v and 17w, which were commercially available, all
complexes and precursors were synthesized according to the procedure outlined in
Figure 12.

11
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OBH, OBH, ©BH, OBH,
N N N ®y
@[ > @[ —Ph @[ H— @[ Y—ci Oxazoles and Thiazoles
o o S S
17a 17b 17¢ 17d
OBH, OBH, OBH, Oah
@\ O\ @, ®rs
N N N N
A\ N S— .
@EN> N> N @E,?‘C' (Benz)imidazoles
H \ H
17e 17f 179 17
© © © © © BH
BHj BHj BHj BH, BH3 ik
N N SN Oy Ph._ Oy N
\
Chy Ol CLFO-E T B
N N N N pr” N N
17i 17 Ph 17eh Y171 17m 17n
S
BH;  OMe SeH,
ON SN
@E N\ OMe \>—©7F
N N
\ OMe \
170 17p
| X
7 7 7 > 'NT]
A <) ey Pyridines
®N N ®oN © BH,4
©BH;  OBH, OBH;
17q 17r 17s 17t
© /
BH ® / @
@N' 3 ® O ® 6 [N\>_(§H [N\>_(98H
N Me3N—BH -
@E N el PR B L Ry T Others
N 17v 17w \ \
\ nBu
17u 17x 17y

Figure 13: Borane complexes used for radical experiments.

Subsequently, all complexes were characterized by NMR (*H, **C, 'B and ™F if necessary),
IR, mass spectrometry and elemental analysis. Furthermore, decomposition points rather
than melting points were determined for all non-liquid complexes. Three compounds turned
out to be colorless ionic liquids (171, 17t and 17x). For the NHC borane complex 17x a
melting point of —63 to —65 °C was determined. In some cases crystals of suitable quality for
X-ray measurements could be grown by recrystallization from DCM. Table 4 shows the most
characteristic analytical data for all complexes. If not differently indicated, NMR
measurements were done in CDCl;. For the corresponding imidazole, oxazole, thiazole and
triazole borane complexes the 'B NMR shifts are in a narrow region of -19.7 to —23.2 ppm.
Chemical shifts for pyridine-derived borane complexes were found in the region of -12.2 to
-14.2 ppm, whereas the shift region of NHC boranes is between —-37.4 and -38.4 ppm. All
substances show a (sometimes broad) quartet in the *'B NMR, indicating the BH; group. The
B-H vibrations can also be seen in the IR spectrum as three characteristic bands in the

12
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region of 2400 to 2210 cm™. For complexes which could be crystallized, B-N distances were
determined by X-ray crystallography. Independent of the substance class, these distances
are all in a typical range of 1.571 A to 1.596 A.

Table 4: Characteristic analytical data for synthesized borane complexes.

complex B NMR shift [ppm] #(B-H) [cm™] r(B-N) [A]
17a -23.20 2400° 1.584
17b -21.80 2254° n.a.
17c -20.43 2402, 2298, 2256 n.a.
17d -19.08 2548, 2501, 2430 n.a.
17e -20.13% 2352, 2291, 2244 1.575
17f -22.31 2340, 2289, 2254 1.571
179 -21.80 2400, 2290, 2240 1.571
17h -21.82 2351, 2309, 2263 n.a.
17i -20.62 2383, 2349, 2273 n.a.
17j -20.48 2381, 2359, 2273 n.a.
17k -22.45 2356, 2313, 2265 n.a.
17 -19.74 2357, 2309° n.a.
17m -19.68 2372, 2306, 2261 1.589
17n -20.06° 2349, 2296, 2253 n.a.
170 -22.06 2361, 2342, 2265 n.a.
17p -21.79 2365, 2306, 2261 n.a.
17q -12.75% 2358, 2283, 2245 1.596
17r -14.00 2343, 2298, 2246 1.590
17s -14.15 2349, 2291, 2249 n.a.
17t -12.22 2360, 2310, 2281 n.a.
17u -20.01 2356°, 2263 1.578
17x -38.34 2335¢, 2275 n.a.
17y -37.49 2270, 2214 n.a.

3 Measured in DMSO-ds. ° With two shoulders. ¢ With one shoulder.

The X-ray structure of 17g reveals a certain unexpected property which is characteristic for
all investigated boranes (Figure 14a). In this case the distance between the nitrogen-bound
proton and the closest boron-bound hydride is with 1.755 A rather short. This NH-H"
hydrogen bridge was found in no other complex and is due to the cell ordering (Figure 14b).
The molecules are stacked in almost perfectly parallel lying layers, which makes this short
contact possible, as the BH; moieties point to the NH groups. In comparison the X-ray
structure of benzimidazole borane (17e) is shown in Figure 15. Here the shortest NH-HB
distance is 5.784 A and the molecules are not stacked in parallel layers (Figure 15b). The
molecules are rather sorted in two types of layers in which the NH and BH; groups point
away from each other. Thus, a hydrogen bond as in 179 is not formed.

13
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Figure 14: (a) X-ray structure of borane complex 17g and its short N-H-H™ distance of
1.755 A. (b) Cell unit of 17g.

14
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(a)
HN. ~N-~BH,
17e

Figure 15: (a) X-ray structure of benzimidazole borane 17e and its N-H-H™ distance of
5.784 A. (b) Cell unit of 17e.

2.1.2.2. Low temperature initiation experiments with BEt; (2b)

A screening of the different substance classes was made in order to check their suitability in
radical reactions. As initiation system triethyl borane (2b) was used under aerobic conditions
and l-iodododecane (18d) or 1-bromododecane (18a) were used as substrates (Figure 16).
The reaction was carried out either at room temperature or at 0 °C for two hours. Table 5
summarizes the results of the tested borane complexes. Most of the analyzed borane
complexes did not lead to any conversion at all. Only some of the tested reactions showed

15
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traces of the desired product dodecane (16a), which makes triethyl borane (2b) an
inconvenient initiator for the tested reactions.

X ®0 benzene,
Nuc-BH3 > dodecane 16a

11 BEt; (1 eq.), T(°C), 2 h

2b
X = | (18d), Br (18a)

Figure 16: General reaction scheme for the reduction of 1-iodododecane (18d) and
1-bromododecane (18a) with BEt; (2b) as initiator.

Table 5: Results for the reactions shown in Figure 16.

entry X @O T dodecane (16a) [%]
Nuc-BH3

1 I 17a rt 4 (16 % after 14 h)
2 I 17a 0°C 13
3 Br 17a 0°C -

4 Br 17b 0°C -

5 I 17b 0°C 3

6 Br 17¢ 0°C -

7 Br 17d 0°C -

8 Br 17e 0°C <1
9 Br 17f 0°C -
10 I 17f 0°C 3
11 Br 17h 0°C -
12 I 17i rt -
13 Br 17i 0°C -
14 I 17] rt -
15 I 17k rt 3
16 Br 171 0°C -
17 Br 17m 0°C -
18 Br 17q 0°C -
19 Br 17r 0°C -
20 Br 17s 0°C 3
21 I 17u rt -
22 Br 17v 0°C -
23 Br 17w 0°C -
24 Br 17x rt 3
25 Br 17x° 0°C -

@ THF/benzene (1:1) was used as solvent.
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2.1.2.3. Thermally initiated reactions with AIBN (2a)

The very small conversions with triethyl borane (2b) suggested, that a successful outcome of
the reactions could be influenced by the initiation system and its initiation temperature.
Therefore, some of the reactions were repeated under thermal initiation with AIBN (2a) at
80 °C (Figure 17). The results of the experiments are summarized in Table 6. Aside from
carbene borane 17x, all tested borane complexes showed no conversion under the
described conditions (entry 8). Similar NHC boranes compounds had also been used by
Curran et al. for radical reactions.® Finally, thermal initiation with AIBN (2a) did not lead to a
successful reduction in all cases and therefore the reaction conditions had to be changed,
which will be the main focus in the next section.

X ©O benzene,
Nuc-BH; > dodecane 16a
11 AIBN (0.5eq.),80°C,2h
2a

X =1(18d), Br (18a)

Figure 17: General reaction scheme for the reduction of 1-iodododecane (18d) and
1-bromododecane (18a) with AIBN (2a) as initiator.

Table 6: Results for the reactions shown in Figure 17.

entry X @0 dodecane (16a) [%0]
Nuc-BH3
1 I 17a -
2 Br 17a -
3 Br 17b -
4 I 17b -
5 Br 17f -
6 Br 17i -
7 Br 17m -
8 Br 17x? 14
4 0.1 eq. AIBN (2a) was used with a reaction time of 5 h.

2.2. Tert-dodecanethiol (TDT, 15b)-catalyzed reactions

As neither the high temperature initiation with AIBN (2a) nor the low temperature initiation
with BEt; (2b)/ O, led to significant conversions, another initiation system which had been
successfully used by Curran et al.®™ was chosen. Curran et al. had shown that NHC boranes
become good H donors for radical reactions, when combined with a thiol as catalyst.™"

2.2.1. Tert-butylhyponitrite (TBHN, 2d) as initiator

It is worth mentioning, that also the initiator seems to have a big influence on radical
reactions promoted by borane complexes. Therefore, tert-butylhyponitrite (2d, TBHN), which
had also been used by Curran et al.,® was synthesized as radical starter. The synthesis of
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TBHN (2d) is shown in Figure 18. To a solution of tert-butylboromide (19a, 10 eq.) and zinc
chloride (19b, 1 ™ in Et;0O, 1.1 eq.), sodium hyponitrite (19c) was added at 0 °C. The
suspension was strirred for 90 minutes at that temperature. Inorganic salts were removed
and the pure hyponitrite (2d) was obtained by recrystallisation from pentane in 35 % vyield. As
the compound already decomposes slowly at room temperature, the whole reaction and
workup has to be done carefully at low temperature. The compound can be stored at =18 °C
over months, but should not be exposed to room temperature over a longer period.

g 19
\i/ ZnCl, in Et,0 (1.1 eq.), 0 °C >Lo\
- N=N

19a NaONNONa, (1.0 eq.), 0 °C, 90 min be) 35 %

(10 eq.) 19¢ (2d, TBHN)

Figure 18: Synthesis of TBHN (2d).

2.2.2. Borane screening

Afterwards imidazole-, oxazole-, thiazole- and pyridine-based borane complexes such as a
NHC borane complex, which had been used by Curran et al.,*™ were tested under the new
conditions (Figure 19). 1-lodododecane (18d) was chosen as substrate and a borane
complex was added in slight excess (1.1 eq.). The reaction was conducted in benzene with
1-methylundecan-2-thiol (15b, tert-dodecylthiol, TDT) as catalyst with a loading of 5 mol%.
For initiation of the reaction TBHN (2d) was added and the reaction mixture was heated up to
80 °C for two hours.

benzene
SH (TDT, 15b) (5 mol%)
borane | 8
(11eq) 7 \H dodecane (yields shown in Table 7)
., TBHN (2d) (20 mol%) 16a
18d 2 h, 80 °C
©) ©) o o
o BHs o s BH, BH;  OMe OaH
N N oy oy 0 2
N
% @E > [ \>—< N OMe N F
\ N N N N
H \ OMe \
17 17e 17n 170 17p

Ya ()
SN N
BH
\> \> ®N ﬁj [ >_ 3
@E @E © BH3
BH3
17a 17t 17q 17y

Figure 19: Reduction of 1-iodododecane (18d) with different borane complexes with TBHN
(2d) and TDT (15b) at 80 °C.
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Table 7 summarizes the results of the tested reactions for the TBHN (2d)/ TDT (15b)
initiation system. NHC borane 17y leads to a quantitative conversion of 1-iodododecane
(18d) to dodecane (16a). This result is not surprising as the compound had already been
successfully used under the same conditions but for different substrates by Curran et al..*
All other investigated substance classes show no or moderate vyields, except
4-dimethylaminopyridine borane (17q) which leads to 69 % dodecane (16a). The fact, that
pyridine borane (17t) leads to no conversion, shows the importance of the right design of the
reducing agent. The more electron rich DMAP borane (17q) seems to be able to reduce the
substrate under these conditions, although full conversion was not achieved.

Table 7: Results for the reactions shown in Figure 19.

borane dodecane (16a) [%]
17f 27
17e 0
17n 9
170 0
17p 0
17a 10
17c 0
17t 0
17q 69
17y >99

2.2.3. Screening of initiation systems with DMAP borane (17q) as H atom donor

As DMAP borane (17q) led to the most promising result for the TBHN (2d)/ TDT (15b)
method, the influence of different radical initiation was studied. Aside from some
commercially available radical starters, a second representative of the hyponitrite class was
also of interest, as TBHN (2d) already had shown the potential of these compounds. Thus,
dibenzylhyponitrite (2e, DBHN) was chosen. The synthesis of DBHN (2e) is shown in Figure
20. The first step of the synthesis was carried out under light exclusion. Sodium hyponitrite
(19c) was dissolved in water. After the addition of an aqueous silver nitrate (20a, 2.2 eq.)
solution yellow silver hyponitrite (20b) precipitated, which was washed with water and
ethanol. Solvents were removed and the crude silver hyponitrite (20b) was obtained as
yellow solid (48 %), which was used without further purification for the following step.
Afterwards the silver hyponitrite (20b) was added to a solution of benzyl bromide (20c,
2.0eq.) in DCM at 0 °C. The solution was stirred for three hours at that temperature. After
removal of salts the pure dibenzylhyponitrite (2e) was obtained by recrystallisation from
pentane as white crystals (39 %). As for the synthesis of TBHN (2d) it is important to keep
the substance cold during all steps. DBHN (2e) can be stored at =78 °C over a longer period.
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2. Radical reactions

20a Ph
H,0, AgNO; (2.2 eq.) DCM, 0 °C, o
NaONNONa > AgONNOAg 48 % N=N 39 %
19¢ 10 min, rt, (dark) 20b BnBr (2.0 eq.),0°C, 3 h 0—
20c 2e Ph

Figure 20: Synthesis of DBHN (2e).

Afterwards different initiators were screened by their suitability for the DMAP borane (17q)/
TDT (15b) system. The reactions were carried out in benzene for two hours and
1-iodododecane (18d) was used as substrate (Figure 21).

\N/
benzene
fj | TDT (15b) (5 mol%)
N/ + \@ —> dodecane (yields shown in Table 8)
®

A initiator 16a
©BHj3 18d 2h,T°C

17q
(1.1 eq.)

Figure 21: Reduction of 1-iodododecane (18d) with DMAP borane (17q), TDT (15b) in the
presence of different initiators.

The results for the screening of initiators are shown in Table 8. As shown before, the
initiation with BEt; (2b)/ O, led to low conversion (13 % dodecane (16a)). Di-tert-butyl
peroxide (2c) as well as dicumyl peroxide (2f, DCPO) did not lead to the formation of 16a at
an initiation temperature of 80 °C. For AIBN (2a) a yield of 30 % was obtained. With respect
to the class of hyponitrites, surprisingly DBHN (2e) turned out to be much less effective than
TBHN (2d) under the described conditions. For DBHN (2e) a yield of only 17 % was
obtained, whereas TBHN (2d) lead to 69 % of dodecane (16a).

Table 8: Results of the initiator screening as shown in Figure 21.

Initiator temperature T [°C] yield [%0]
DTBP (2c) (20 mol%) 80 0
DCPQO? (2f) (20 mol%) 80 0

BEt; (2b) (50 mol%) rt 13
AIBN (2a) (20 mol%) 80 30
DBHN® (2e) (20 mol%) 80 17
TBHN (2d) (20 mol%) 80 69

2Toluene was used instead of benzene.

2.2.4. Dibenzylhyponitrite (DBHN, 2e) as initiator

In order to understand the difference in the initiation between TBHN (2d) and DBHN (2e), the
decomposition of the two compounds under thermal conditions was investigated in the
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2. Radical reactions

absence of any other substrate. For DBHN (2e) a half life time of t;, = 170 seconds at 60 °C
was determined by *H NMR spectroscopy. In order to slow the decay of the substance down,
the measurement was repeated at 40 °C and followed over 70 minutes. The mechanism of
the decay of DBHN (2e) at 40 °C is shown in Figure 22. While releasing nitrogen, DBHN (2e)
decomposes into two benzyloxy radicals. These may either undergo a cleavage reaction to
form benzaldehyde (21a) or recombine to dibenzyl peroxide (21b). What is rather surprising
is the fact that no H atom trapping by the benzyloxy radicals is observed, what would lead to
benzyl alcohol (21c). A section of the *"H NMR measurement after 30 minutes is shown in
Figure 23. The upper part shows benzyl alcohol (21c) as reference (also measured in CgDg).
The lower part shows remaining DBHN (2e) as well as the two products 21a and 21b, but no
formation of benzyl alcohol (21c¢) is apparent.

Ph
\—0OH
21c
Ph\_ + [H]
C CgDe, 40 °C Ph recombination Ph—
N=N, - 2 o - 0-0
O_\Ph N2 215 P
2e l
Ph
\:O + H
21a

Figure 22: Mechanism of the thermal decay of DBHN (2e) at 40 °C.

21c
(in C¢Dg)

OJPh 4.0 5 3 1Section of the
N=N 3 /—Ph H NMR
Phsrd PhJOfO after 30 minutes
2e 5
(b) 21a 21b

M artefact S no benzyl alcohol (21¢)

4

i et { J‘

11 10 9 8 7 6 5 4 3 2 1
ppm

Figure 23: (a) Benzyl alcohol (21c). (b) Section of the 'H NMR measurement of the decay of
DBHN (2e) after 30 minutes.
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2. Radical reactions

The time-conversion plot of the decomposition of DBHN (2e) at 40 °C to benzaldehyde (21a)
and dibenzyl peroxide (21b) is shown in Figure 24. The relatively high decomposition rate of
DBHN (2e) even at low temperatures indicates that the yield of only 17 % dodecane (16a) in
the reduction of 1-iodododecane (18d) may be due to the fast decay of the initiator.
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Figure 24: Decay of DBHN (2e) at 40 °C.

The fast decomposition of DBHN (2e) suggested to repeat the radical reaction at a lower
temperature (Figure 25). Hence, the reaction was conducted at room temperature for
two hours. 1,3,5-Trimethoxybenzene (22, TMB) was added as internal NMR standard. The
desired reduction product 16a was found in 2 % vyield. The reaction mixture was also
analyzed by GC/MS to detect possible side products. Tetracosane (16c) as the
recombination product of two dodecyl radicals was found in traces (< 1%), the possible
recombination product 23 of a benzyloxy radical with a dodecyl radical was not observed. For
the low conversion two possibilities may be discussed. One obvious reason may be the bad
solubility of DMAP borane (17q) at low temperature in nonpolar solvents such as benzene.
Furthermore, it might also be possible, that higher temperatures are needed for the
propagation steps of the reaction. However, as higher temperatures would again accelerate
the decomposition of DBHN (2e), another solution was needed.
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tetracosane < 1%

N,
N 16¢
X | CeDs,
| _ + W + BnONNOBN (20 mol%) + TDT (5 mol%) + TMB — > dodecane 2%
oN » 2e 15b 22 2h, rt 16a
©BHs 18d
179 Ph” 0

(1.1eq.) 11
23 (not formed)

Figure 25: Reduction of 1l-iodododecane (18d) with DMAP borane (17q), TDT (15b) and
DBHN (2e) as initiator at room temperature.

2.2.5. Diethylaminopyridine borane (17z) as hydrogen atom donor

In order to increase the solubility of the borane complex, its structure was slightly modified.
Therefore, 4-diethylaminopyridine borane (17z, DEAP borane) was synthesized in two steps
(Figure 26). The first step was the formation of the free base 24 (DEAP). Para-aminopyridine
(24a) was deprotonated stepwise with nBuLi (1.15 eq.) and afterwards alkylated with ethyl
iodide (1.15 eq.) in THF at room temperature. This step was repeated. After quenching with
water followed by extraction with chloroform, the crude product was purified by washing with
isohexane and ethyl acetate. 4-diethylaminopyridine (24, DEAP) was obtained as slightly
yellow wax (29 %). DEAP (24) was dissolved in THF at 0 °C and reacted with a Me,S-BH;
solution (1.10 eq.) for 10 minutes. Finally the pure DEAP borane (17z) was precipitated with
isohexane as a white solid (59 %). This compound was found to be soluble in toluene as well
as in benzene at room temperature, thus showing suitable properties for the low temperature
radical reaction with DBHN (2e).

THF
NH ’ PN
2 1) nBuLi (1.15 eq.), 30 min, rt N NS
Xy, 2)Etl (1.15 eq.), 20 min, rt N THF, 0 °C, N
| | 29% | ] 59%
N~ 3)nBuLi (1.15 eq.), 20 min, rt NG Me,S-BH3 (1.10 eq.), 10 min, 0 °C N
24a  4)Etl(1.15eq.), 15 min, rt 24 ®
oBH3
17z

Figure 26: Synthesis of DEAP borane (17z).

The radical test reaction was repeated with DEAP borane (17z) in the same way as before
with DMAP borane (17q) and is shown in Figure 27. However, the result turned out to be the
same as before, despite the improved solubility of the reducing agent. Once again almost no
conversion (2 %) to dodecane (16a) was observed. The solubility seems not to affect the
reaction outcome very much. It is much more likely, that higher temperatures are required for
a successful reduction with N-alkylated pyridine borane complexes, what makes DBHN (2e)
an unsuitable initiator for this purpose.
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/\N/\
X | CeDs,
| _ + H/ + BnONNOBnN (20 mol%) + TDT (5 mol%) + TMB — > dodecane 2 %
ON » 2e 15b 22 2h, rt 16a
oBHs 18d
17z

(1.1eq.)

Figure 27: Reduction of 1-iodododecane (18d) with DEAP borane (17z), TDT (15b) and
DBHN (2e) as initiator at room temperature.

2.3. Mechanistic aspects of the radical reduction of 1-iodododecane (18d) with
dialkylaminopyridine boranes

2.3.1. Thermal decay of TBHN (2d)

The thermal decay of TBHN (2d) was investigated, as the compound had already shown
promising results as initiator. The mechanism of the decomposition of TBHN (2d) at 80 °C is
shown in Figure 28. Under release of nitrogen, the hyponitrite 2d forms two tert-butoxy
radicals. These may undergo either a recombination reaction to form di-tert-butylperoxide
(2c) or a cleavage reaction which forms acetone (25a) and a methyl radical. As no further
methylated products could be detected, these methyl radicals may now trap an H atom (e. g.
from the solvent) or recombine to ethane (16€). A third pathway, which leads to tert-butanol
(25b) by H atom trapping, was also observed. This finding is in contrast to DBHN (2e), where
the formation of the corresponding alcohol was not detected.

O
+ - ——— no methylated products
25a )J\ CH3 y p

——> [H] methane
] recombination: ethane

toluene-dg, 80°C [H]
>LONNO 2 O- OH

- N2 25b

recombination
Yool
2c

Figure 28: Mechanism of the decay of TBHN (2d) at 80 °C.

2d
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2. Radical reactions

Figure 29 shows a section of the *H NMR spectrum taken during of the decay of TBHN (2d).
The formation of the three products tert-butanol (25b), acetone (25a), and di-tert-butylberoxid
(2c) such as remaining TBHN (2d) can be clearly seen. The chemical shifts in the mixture
were compared to NMR spectra of the pure substances.

Section of the - 1
H NMR spectrum

OMe 1
2 2

—&a0
208
182
L1z

Tetas
~=tid

1MeO 2 OMe 1

standard (23)

2 {BUOH (25b)

_ tBUONNOtBu (2d)
tBuOOtBu (2c)

acetone
| toluene-Me

8 7 6 5 4 3 2 1 0
ppm

Figure 29: *H NMR spectrum of the decay of TBHN (2d).

The time-conversion plot of the decay of TBHN (2d) at 80 °C in toluene-dg is depicted in
Figure 30 and was monitored by *H NMR spectroscopy. The half-life time of TBHN (2d) at
80 °C was assigned as tj, = 520 seconds. After the measurement the ratio of the three
products was determined as tert-butanol (25b) : acetone (25a) : di-tert-butylperoxide (2c) =
73 : 25 : 2. This shows, that the H trapping product is mainly formed here, whereas the
recombination product plays only a minor role.
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Figure 30: Time-conversion plot of the decay of TBHN (2d) at 80 °C in toluene-ds.

2.3.2. Thermally induced decomposition of TBHN (2d) in the presence of DEAP
borane (17z)

In order to understand the mechanism of the reduction of 1-iodododecane (18d), the reaction
of the borane complex and the initiator was investigated. Therefore, DEAP borane (17z) was
used, due to the better solubility in toluene, compared to DMAP borane (17q).

2.3.2.1. Mechanism

As in the previous radical experiments 20 mol% of TBHN (2d) was used and the reaction of
the thermally activated initiator and the borane complex 17z was monitored by 'H and
"B NMR spectroscopy in toluene-dg as solvent (Figure 31). The first step is again the
formation of tert-butoxy radicals under evolution of nitrogen. These oxygen-centered radicals
now can abstract an H atom from the borane complex to form boryl radical 25c¢ and tert-
butanol (25b). A recombination of two tert-butoxy radicals or a cleavage reaction was not
observed. Boryl radical 25¢ now undergoes either a recombination with another tert-butoxy
radical or attacks the oxygen of free TBHN (2d). This step forms borane complex 25d, which
could not be detected by NMR measurements. Thus, a fast decay of complex 25d must be
the following step. The reaction with tert-butanol (25b) leads to di-tert-butoxy borane (25e)
and the free base DEAP (24). At that stage of the ongoing reaction the borane is not
complexed any more to the base. Furthermore, hydrogen gas is released, which is also
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2. Radical reactions

detected in the *H NMR spectrum. As a final step, di-tert-butoxy borane (25e) reacts one
more time with tert-butanol (25b) to form tert-butoxy borate (25f) as the final reaction

product.

%ONNO%
2d

20mol%

SN

X

—
N
© BH;4

17z

B(OtBu);
25f

toluene-dg, 80°C 17z
2 >LO . 5 | X
— —
N, SN

BH(OtBu),
25e

SN

X

| )24

N

25b
tBuOH

_H2

|:| = NMR ('H or''B) detectable substances.

" , = NMR undetectable substances or intermediates.

SN

25¢c © éHz

Von

25b

ON
© BH,OtBu

Figure 31: Mechanism of the decomposition of TBHN (2d) in presence of DEAP borane

(17z) at 80 °C.

2.3.2.2. NMR studies

Figure 32a shows an example of a time dependent B NMR study, where the formation of
25e is detected. Figure 32b shows a section of the *'B NMR measurement. Remaining DEAP
borane (17z, quartet), which was used in excess, and di-tert-butoxy borane (25e, doublet)
are detected. The final tert-butoxy borate (25f) has only formed to a small part at that stage

of the reaction.
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Figure 32: (a) Example of a time dependent *'B NMR measurement of the decay of TBHN

(2d) in the presence of DEAP-BH; (17z). (b) Section of the measurement after 30 minutes.

A time-conversion plot of the reaction between DEAP borane (17z) and the initiator could not
be obtained, due to the complexity of the *H NMR spectrum, which did not allow an exact
integration of the signals. A part of the *"H NMR spectrum taken after ten minutes is shown in
Figure 33. DEAP borane (17z) and the free corresponding base DEAP (24) are represented
by the signals 1 to 8. Further substances (tert-butanol (25b, 1.06 ppm), TBHN (2d,
1.21 ppm), di-tert-butoxy borane (25e,1.24 ppm)) were identified by the NMR shift of their
methyl groups, which was proven by independent measurements of the pure substances.
The absence of the recombination product di-tert-butyl peroxide (2c, 1.18 ppm) as well as

acetone (25a, 1.62 ppm) as the cleavage product is also obvious.
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Figure 33: Products of the reaction of TBHN (2d) and DEAP borane (17z) at 80 °C in
toluene-ds. (*H NMR measurement after 10 minutes.)

2.3.2.3. Independent control experiments

The versatile products of the thermal decomposition of TBHN (2d) and the reaction between
DEAP borane (17z) and the initiator might also lead to side reactions. Therefore possible
side reactions were checked independently (Figure 34). A reaction of DEAP borane (172)
with tert-butanol (25b) and acetone (25a) at 80 °C in toluene respectively could be excluded
(Figure 34a and Figure 34b). Furthermore, di-tert-butoxy borane (25e) was synthesized by
the reaction of Me,S-BH; and tert-butanol (25b, 2 eq.) and immediately reacted with DEAP
24, Figure 34c). The same was done with tert-butoxy borate (25f) and 24 (Figure 34d). In
both cases no complexation was observed (determined by *'B NMR). This finding indicates,
that during the radical reaction a dissociation of the base and the borane occurs. A possible
reaction between di-tert-butyl peroxide (2¢) and the dissociated boron species 25e and 25f
was also shown not to happen (Figure 34e and Figure 34f)
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SOSNTN
X toluene, 80°C,
@ U OH ' -
®N 30 min, microwave
! 25b
©BHj4 (1 eq.)
17z
SOSNTN
b X O toluene, 80°C,
(b) » P / -
®N 30 min, microwave
I 25a
©BH;4 (1 eq.)
17z
Me,S-BH3 (1.0 eq.), DEAP (24)
(c) >AOH > HB(OtBu), > no complexation
o5b chloroform, 30 min, rt 25e chloroform, 1h, rt
(2 eq.) -Hz
DEAP (24)
(d) B(OtBu)3 > no complexation
25f chloroform, 1h, rt
toluene-dg,
e -
©) 0-Q + HB(OtBu)y, ———#—>
2c 25e 80°C,1.5h
B toluene-ds,
M 0-0 + B(OtBu)y ———FA#—>
2c 25f 80°C,1.5h

Figure 34: Independent investigation of possible side reactions, which could occur during the
reaction of TBHN (2d) and DEAP borane (172).

2.3.3. Closer analysis of the initiation with TBHN (2d) in the presence of DEAP borane
(172)

While the recombination product di-tert-butyl peroxide (2¢) was formed in small amounts
during the decay of TBHN (2d), for the reaction between initiator and borane this compound
did not show up. Therefore, further studies on the initiation step were necessary, which will
be discussed next.
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2.3.3.1. Comparison with di-tert-butyl peroxide (2c)

In an independent test reaction it could be shown, that di-tert-butyl peroxide (2c, which is
also a commercially available initiator) does not react with DEAP borane (17z) at 80 °C in
toluene-dg over 1.5 hours (Figure 35). Subsequently this reaction can be excluded to happen
during the initiation step with TBHN (2d). It is rather likely that an oxygen-centered radical is
needed to abstract an H atom from the borane complex to generate boryl radical 25c.

/\N/\
X

I:> No formation of | P
N

NN H,B 9

EO—O toluene- dg 25e
80 °C,1.5h
20 mol%
2c o BH3 . DEAP-BH,
17z — \{/0 (172) X
— |

is necessary ®N

Figure 35: Investigation on the reaction of di-tert-butyl peroxide (2c) and DEAP borane (17z)
at 80 °C in toluene-ds.

2.3.3.2. Comparison with AIBN (2a)

The question came up, whether boryl radical 25c is also able to attack on the oxygen of
TBHN (2d) or eventually even on the nitrogen. Therefore the borane complex was reacted
with the initiator AIBN (2a) at 80 °C in toluene-dg for 90 minutes and the reaction monitored
by *H and B NMR (Figure 36). Beside the decay of AIBN (2a) there was no reaction with
the borane complex evident. This fact indicates, that the H abstraction from the borane
complex by carbon-centered radicals is not very efficient, so that the boryl radical 25¢c may
not be formed unter these conditions.

4
tol DEAP-BH
N= s d8 i (172) 3 no efficient H abstraction
80 °C,1.5h CN ———#— from borane by carbon
centered radicals
(AIBN
30mol% @ BH3
2a 17z

Figure 36: Reaction of AIBN (2a) and DEAP borane (17z) at 80 °C in toluene-ds.
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2.3.3.3. Competition experiment of TBHN (2d) and AIBN (2a)

In order to repeat the reaction in the presence of boryl radicals, TBHN (2d) was added
(Figure 37). The decay of TBHN (2d) and the following reaction forms boryl radical 25c. After
90 minutes, only the free base 24 as well as di-tert-butoxy borane (25e) and tert-butoxy
borate (25f) was detected. No further reaction with AIBN (2a) or a recombination product
from boryl radical 25c and a carbon-centered radical was apparent. This finding supports the
hypothesis, that boryl radical 25¢c may attack the oxygen of TBHN (2d) but not on the
nitrogen. Also a recombination of boryl radical 25c with a non-oxygen-centered radical is
very unlikely.

CN PN no reaction with

+ N
AIBN (2a) apparent
> / ONNO é ﬁj toluene- ds | N /

80°C,1.5h Pz
N

® |
(AIBN (TBHN) @ BH3 © BH, \
0,
3%£nol% 202ré10I % 172 25¢ \ SN
A
| 24

=

N

+ HB(OtBu), + B(OfBu)j
25e 25f

Figure 37: Investigation on the reaction of AIBN (2a) and DEAP borane (17z) in presence of
TBHN (2d) at 80 °C in toluene-ds.

2.3.3.4. Initiation in the presence of TBHN (2d) and di-tert-butyl peroxide (2¢)

In order to determine if an attack of the boryl radical 25¢ on the oxygen of the starter is
possible, di-tert-butyl peroxide (2c, 30 mol%), TBHN (2d, 20 mol%) and DEAP borane (17z)
were reacted at 80 °C in toluene-ds and monitored by *H NMR spectroscopy over 70 minutes
(Figure 38).

PN
toluene- dg + tBuOH 25b
X
%OO‘% >LONN04€ | + HB(OtBu), 25e
80 °C 70 min N/ + B(OtBu); 25f
0 o 24
30 mol% 20 mol% @ BH3

17z

Figure 38: Reaction of di-tert-butyl peroxide (2c) and DEAP borane (17z) in the presence of
TBHN (2d) at 80 °C in toluene-ds.

The result of the experiment is shown in Figure 39 as a time-conversion plot. The most
important result of this measurement is the complete decay of di-tert-butyl peroxide (2c)
within ten minutes. This fact shows obviously, that once the boryl radical 25c is formed, it
reacts with the oxygen atoms of both initiators. In the absence of these radicals di-tert-butyl
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peroxide (2c) had shown no reaction with DEAP borane (17z) under the same conditions.
Thus, TBHN (2d) is capable for the formation of the boryl radical 25c. Once it is formed also
a peroxide, which usually would initiate at higher temperatures (t;,(141 °C) = 60 min)®? can
be involved in the reaction. Furthermore a fast rise of tert-butanol (25b) in the first
ten minutes is detected, which than decreases as it may react with di-tert-butoxy borane
(25e€) or also undergo a reaction with the boryl radical 25c.
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Figure 39: Time-conversion plot of the reaction of di-tert-butyl peroxide (2c) and DEAP
borane (17z) in presence of TBHN (2d) at 80 °C in toluene-ds.

The mechanism of the reaction of TBHN (2d) with DEAP borane (17z) in the presence of di-
tert-butyl peroxide (2c) at 80 °C is shown in Figure 40. The decomposition of TBHN (2d)
delivers two oxygen-centered radicals, whereas di-tert-butyl peroxide (2c) does not initiate at
that temperature. The oxygen-centered radical abstracts an H atom from the borane complex
17z to form boryl radical 25c and tert-butanol (25b). At that stage three possible pathways
can be discussed. The boryl radical may react with one of the oxygens of the hyponitrite 2d
or the peroxide 2c. Another plausible pathway, which should be considered as a side
reaction, is the recombination of a tert-butoxy radical with boryl radical 25c. All steps lead to
the formation of borane complex 25d, which then leads to the free base 24 and the final
boron species 25e and 25f.
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Figure 40: Mechanism of the reaction of di-tert-butyl peroxide (2c¢) and DEAP borane (17z)
in presence of TBHN (2d) at 80 °C.

2.3.3.5. Comparison with di-tert-butyl peroxide (2c) and dicumyl peroxide (2f) as high
temperature initiatiors

The results described above suggest that the much cheaper di-tert-butyl peroxide (2c) can
also be a useful initiator, as it produces two oxygen-centered radicals during thermal
initiation. Based on the previous results, it seemed obvious, that the formation of an
oxygen-centered radical was the key step for a successful outcome of the radical reaction.
So, the initial reduction of 1-iodododecane (18d) was repeated with DTBP (2c, 20 mol%) at
100 °C and 110 °C without success (Figure 41). The explanation for this result seems to be
the too low initiation temperature for this radical starter. With half-life times of DTBP (2c) of
t12(141 °C) = 60 min and t;»(121 °C) = 10 h, the temperature of 110 °C is just too low for a
sufficient initiation. Furthermore a thermal initiation at higher temperatures is not possible as
the borane complex 17z undergoes a fast ionic reduction of alkyl halides at temperatures
above 110 °C, which will be discussed in a later section. Subsequently dicumyl peroxide (2f),
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which initiates at slightly lower temperatures, was chosen (t12(132°C) = 60 min,
t12(112 °C) = 10 h). The thermal initiated reduction of 1-iodododecane (18d) was tried again
at 110 °C with dicumyl peroxide (2f, 20 mol%) as initiator with the same result as before
(Figure 41). Although initiation with dicumyl peroxide (2f) takes place at moderate lower
temperatures compared to di-tert-butyl peroxide (2c), the formation of oxygen-centered
radicals at 110 °C seems not to be efficient enough.

\N/
toluene,
| N . \6/) TDT (15b) (5 mol%)
— 4 >
@N initiator (20 mol%)

|
| 11
O BHs 18d 2h, 100 °C or 110 °C
17q

(1.1eq.) Xph

0-0
initiator = DTPO (2¢), phf 2f

Figure 41: Reduction of 1-iodododecane (18d) with DMAP borane (17q) and TDT (15b) with
the high temperature initiating peroxides 2c and 2f.

2.3.3.6. Comparison with initiation on irradiation

As DTBP (2c) and dicumyl peroxide (2f) are also known to decompose on irradiation, this
kind of initiation method was tried next. Therefore the solvent was changed, as the
absorption of toluene or benzene below 290 nm would compensate the UV light. Dicumyl
peroxide (2f) was dissolved in CDCl; and put under an UV lamp (254 nm) for one hour and
the decomposition checked by *H NMR (Figure 42a). After one hour acetophenone (26a,
19 %) as the cleavage product and 2-phenyl-2-propanol (26b, 11 %) as the H trapping
product had formed. The *H NMR analysis of the reaction is shown in Figure 42b. The
formation of the products as well as remaining dicumyl peroxide (2f) is obvious and can be
characterized by the NMR shifts of the corresponding methyl groups.
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Figure 42: Decay of dicumyl peroxide (2f) by irradiation (254 nm) after one hour at room
temperature in CDCls.

With this result in hand, the reduction of 1-iodododecane (18d) by irradiation of the initiator
was performed again in CDCl; at room temperature (Figure 43a). As no formation of
dodecane (16a) was detected, the reaction was repeated at a higher temperature. Previous
studies with TBHN (2d) and DBHN (2e) had also shown temperature dependence for the
reduction of 1-iodododecane (18d). As the reaction was performed in an open vessel, in
order to irradiate the mixture with an UV lamp from above, chloroform (bp. 61 °C) was
replaced by 1,4-dioxane (bp. 101 °C) and the reaction was repeated at 80 °C (Figure 43Db).
However, even at 80°C no formation of dodecane (16a) was apparent. Finally,
1-iodododecane (18d) was replaced by xanthate 18c (Figure 43c), which usually is also very
potent for TBHN (2d) initiation at 80 °C (which will be discussed later). Yet, no reduction of
the xanthate was observed.
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Figure 43: Reduction reactions with DMAP borane (17qg) and dicumyl peroxide (2f) by UV-
irradiation (254 nm). (a) In CDCl; at room temperature. (b) In 1,4-dioxane at 80 °C. (c) With
xanthate 18c in 1,4-dioxane at 80 °C.

In order to find a reason for the unsatisfactory reaction outcome, DMAP borane (17qg) was
dissolved in CDCl; and irradiated for one hour (254 nm) at room temperature. Surprisingly,
44 % of borane complex 17g had decomposed to form DMAP (27) and BH; (28, Figure 44).
The formation of the free base was monitored by *H NMR spectroscopy. Subsequently, the
release of BH; (28) leads to the formation of boric acid (28a) by reaction with air humidity,
which can be seen as a white precipitate from the former clear CDCIl; solution. This indirectly
proves the formation of gaseous BH; (28), which was not detected spectroscopically. The
outcome of this experiment clearly indicates, why dicumyl peroxide (2f) is not a suitable
initiator upon irradiation. The decomposition of the borane complex seems to compete with
the decay of the radical starter. Thus, the rise of temperature to 80 °C does also speed up
the decay of the complex, no reduction of the alkyl halide being the consequence.
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Figure 44: Decomplexation of DMAP borane (17q) at room temperature by irradiation
(254 nm) after 1 h.

2.3.4. Reduction of l-iodododecane (18d) with DEAP borane (17z) and TBHN (2d)

All the results up to that point indicate that the choice of the initiator, as well as the right
condition is very important for a successful reduction with pyridine-derived borane
complexes. The formation of an oxygen-centered radical during the initiation step seems
essential and limits possible initiation systems. Beside hyponitrites, peroxides or peresters
may deliver these radicals. However, only the formation of an oxygen-centered radical does
not automatically grant success, what DBHN (2e) and dicumyl peroxide (2f) have shown. At
too low temperature, the reduction becomes inefficient, despite the presence of oxygen-
centered radicals (compare DBHN (2€)). The same unsatisfying result is achieved if the
initiator is decomposing too fast at higher temperatures (DBHN (2e)). Yet, temperatures
above 120 °C lead to an undesired ionic reduction of the alkyl halide (which will be discussed
later), resulting in the exclusion of high temperature initiators such as dicumyl peroxide (2f).
Furthermore, irradiation (at the wavelength of 254 nm applied here) leads to decomplexation
of the borane faster than any effective initiation could occur. All these findings demonstrate,
that there is only a very small region, in which the borane complex is compatible with the
radical starter.

2.3.4.1. Mechanism

Subsequently, the promising system of DEAP borane (17z) and TBHN (2d, 20 mol%),
together with 1-iodododecane (18d) as substrate, was analyzed in more detail at 80 °C. The
yield of dodecane (16a) was 45 % under these conditions. The complex mechanism was
clarified by 'H and **B NMR spectroscopy and is shown in Figure 45.

The initiation step is the thermal decomposition of TBHN (2d), which leads to tert-butoxy
radicals. These react with DEAP borane (17z) to the boryl radical 25c¢ and tert-butanol (25b).
Two chain reactions may be considered for the mechanism. The first chain reaction is the
reaction of radical 25c with the initiator, which leads to a tert-butoxy radical and borane
complex 25d. The tert-butoxy radical is reinvolved in the chain reaction, whereas borane
complex 25d leads to versatile ionic side reactions. The second chain reaction is the halide-
abstraction by boryl radical 25c, leading to a dodecyl radical and borane complex 25h. The
desired product dodecane (16a) is formed by a hydrogen transfer from DEAP borane (17z) to
the dodecyl radical, which regenerates boryl radical 25c. As termination step, the
recombination of an oxygen-centered radical with boryl radical 25c seems most plausible.
Other recombination reactions (for example the recombination of two dodecyl radicals) may
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also be taken into account. However, no other recombination products could be detected by
NMR spectroscopy and GC/MS analysis. Problematic for the moderate yield of only 45 % of
16a are the versatile side reactions, especially the formation of the bispyridyl borane complex
25i. Borane complex 25h as well as the free base DEAP (24) could not be detected during
the reaction, thus these species must undergo fast side reactions, one of them leading
directly to the bispyridyl borane complex 25i. The formation of free diethylaminopyridine (24)
is attributed to the decomplexation of the borane species 25d and 25g. Furthermore, borane
complex 25h reacts fast with tert-butanol (25b), leading to the instable tert-butoxy borane
(25n) and DEAP hydroiodide (25j). The hydroiodide species 25j can now react with DEAP
borane (17z) and build up bispyridyl borane complex 25i. The side reactions, which lead to
the bispyridyl species 25i, will be looked at in detail in the next section.

Finally, tert-butoxy borane (25n) may either disproportionate or react with tert-butanol (25b)
and/or acetone (25a), which comes from the cleavage reaction of the tert-butoxy radical. The
final products are disubstituted and trisubstitutet boron species (25e, 25f, 25k, 25| and 25m),
which show small differences in their *'B NMR shifts, which will be shown later. It should be
mentioned, that the formation of elemental hydrogen can also be detected by ‘H NMR
spectroscopy (singlet at 4.50 ppm in toluene-dg). The large number of possible side reactions
seems to be a plausible explanation for the yield of only 45 % of dodecane (16a).
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Figure 45: Mechanism of the reduction of 1-iodododecane (18d) with DEAP borane (17z)
and TBHN (2d) at 80 °C in toluene-ds.
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2.3.4.2. NMR studies

In order understand the complexity of the proposed mechanism better, the time-dependent
"B NMR is shown in Figure 46. The reaction was monitored over 90 minutes (Figure 46, y-
axis). It is obvious, that the main part of the reaction takes place in the first 30 minutes. The
decay of the borane complex 17z, which leads to the formation of borane complex 25d and
the mixed tert-butoxy and iso-propoxy borane species, is the main reaction during these first
30 minutes. The fact, that most of the starting borane 17z is consumed after 30 minutes is
consistent with the decay of TBHN (2d) after that time (Figure 30, page 26). The formation of
the borane species 25g as well as the appearance of the final mixed borate species is much
slower. Nevertheless, the reaction between DEAP borane (17z) and the initiator TBHN (2d)
seems to compete against a successful hydrogen atom transfer to the dodecyl radical.

x =1 (251), ]
2 (25m), 3 (25f)]

=] BH(OBu), (25¢)
= BH(OtBu)(OiPr) (25k) -

e ]

Figure 46: Time-dependent B NMR measurement of the reduction of 1-iodododecane
(18d) with DEAP (17z) borane and TBHN (2d) at 80 °C in toluene-ds.

Results from the *'B NMR measurements after 60 minutes reaction time are shown in Figure
47. Figure 47a shows the *H coupled measurement after 60 minutes, Figure 47b displaying
the {*H} B NMR measurement. The comparison of both spectra is necessary to prove the
number and kind of species with the help of their multiplets. The presence of the three
borane complexes 25d, 25g and DEAP borane (17z) can be detected as a doublet, a triplet
and a quartet. The two mixed borane species 25e and 25k show up as two doublets (two
singlets in the {*H} B NMR measurement). The final mixed borate species 25f, 25| and 25m

are reflected by singlets in both spectra.
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Figure 47: ™B NMR product analysis of the reduction of 1-iodododecane (18d) with DEAP
borane (17z) and TBHN (2d) at 80 °C in toluene-ds.

2.3.4.3. Formation of a bispyridyl borane complex

Bispyridyl borane complex 25i cannot be detected at all during *'B NMR the measurements.
This is due to precipitation of 25i as a white solid during the reactions. This precipitate could
be recrystallized from toluene/DCM through slow evaporation of DCM yielding crystals
suitable for X-ray analysis. The X-ray structure of bispyridyl borane complex 25i is shown in
Figure 48. The BN distance of 1.576 A of this complex is slightly shorter than the BN
distance in DMAP-BH; (17¢, 1.596 A). This might be due to electronic effects by attaching a
second pyridine ligand to the boron atom.

42



2. Radical reactions

Figure 48: X-ray structure of bispyridyl borane complex 25i (d(BN) = 1.576 A,
d(Bl) = 4.757 A).

As complex 25i is completely unsoluble in toluene, it did never show up during NMR
measurements of the radical reaction. However, by dissolving the substance in DMSO-dg,

NMR spectra of bispyridyl borane complex 25i could be obtained. The *H and "B NMR
spectra are shown in Figure 49.
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Figure 49: (a) '"H NMR and (b) *'B NMR measurements of bispyridyl borane complex 25i in
DMSO-ds.

As expected, the *H NMR spectrum shows the two ethyl groups and the aromatic protons of
complex 25i. The BH, moiety does not show up as a sharp signal. It is very likely, that the
signal is just too broad, to be integrated properly. Surprisingly, for the *'B NMR, only one
sharp signal in the *H coupled and {*H} measurement was found at +1.00 ppm. The question
why the 'H coupled measurement does not show a triplet is not yet answered.
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2.3.4.4. Independent control experiments

As the mechanism of the radical reduction of 1l-iodododecane (18d) would also allow further
side reactions, possible reactions were performed as an independent proof for the depicted
reaction scheme (Figure 50). The reaction of DMAP (27) and l-iodododecane (18d) at 80 °C
leads to the pyridinium iodide 29a, which can be detected by 'H NMR spectroscopy in
toluene-dg (Figure 50a). A reaction of this iodide salt with DMAP borane (17q), which could
form the bispyridyl borane species 29b and dodecane (16a) was not found at 80 °C. In terms
of the radical reaction, no reaction between the free base and the substrate was detected.
Subsequently, the free base reacts much faster to the bispyridyl species then with the
substrate 1-iodododecane (18d). This reaction will be discussed in a later section. Figure 50b
shows that there is also no reaction between DMAP borane (17q) and the substrate 18d at
80 °C. Finally, a reaction of the initiator 2d and the alkyl iodide 18d could also be excluded
(Figure 50c). In this case only the decay of TBHN (2d) was found. With these findings,
undesired side reactions of 1-iodododecane (18d) could be ruled out.
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Figure 50: Independent check of possible side reactions, which could occur during the
reduction of 1-iodododecane (18d) with DEAP borane (17z) and TBHN (2d) at 80 °C.

In order to obtain analytical data for possible iodoborane complexes, DMAP borane (17q)
was reacted with different amounts of elemental iodine for ten minutes at room temperature
in CDCl; (Figure 51). With the resulting B NMR measurements the three iodoborane
complexes (29c, 29d and 29e) could be clearly characterized. There is no doubt, that none
of the complexes appears in a detectable concentration during the radical reaction.
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Figure 51: Synthesis of iodoborane complexes 29c, 29d and 29e.

Bispyridyl borane complex 29b can be synthesized in two different ways (Figure 52). The
reaction of DMAP (27) with an aqueous solution of HI in excess lead to DMAP hydroiodide
(29f). By addition of DMAP borane (17q), this salt could be turned over into bispyridyl borane
complex 29b. Furthermore the reaction of iodoborane 29¢c and DMAP (27) caused the same
result. Both reactions are very fast as the bispyridyl complex 29b precipitates immediately
from a THF/chloroform (1:1) solution. The reason why neiter the free base 27, nor the
iodoborane species 29¢ was found during the radical experiment must subsequently lie in
the fast precipitation of complex 29b. Moreover this compound seems to be very stable, as it
can be handled without inert gas atmosphere. It is even not decomposing in the presence of
water, indicated by *H NMR spectroscopy.
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Figure 52: Different synthetic routs for the bispyridyl borane complex 29b.
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The attempt to exchange the anion with potassium tert-butanolate at 90 °C in THF (closed
vessel, microwave) did not lead to the desired result (Figure 53). Bispyridyl borane complex
29b was recovered unchanged after 30 minutes.
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Figure 53: Attempt of an anion exchange of bispyridyl species 29b.

The fact, that iodoborane complexes were not detected during the radical reaction can also
be attributed to the reaction with tert-butanol (25b). The reaction of iodoborane 25h with tert-
butanol (25b) is shown in Figure 54. Here, the possible oxidized form 250 of the complex
was not found. The reaction with the alcohol leads to the hydroiodide 25] and tert-butoxy
borane (25e), which rapidly decomposes. It is assumed, that borane complex 25d is formed
in a first step, which decomplexes rapidly and recomplexes with HI. This is also an important
information with regard to the mechanism of the radical reaction. As shown in Figure 52, the
hydroiodide salt reacts very fast with DMAP borane (17q), which leads to the formation of the
bispyridyl species 29b. Thus, it seems very clear on which pathways the precipitating
complex 25i may be formed and why some species just do not show up in NMR

measurements.
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Figure 54: Reaction of iodoborane 25h and tert-butanol (25b).
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The oxidized borane complex 29g, which appears in the radical experiment, could be
generated form the reaction of iodoborane 29¢ and potassium tert-butanolate (Figure 55a).
B NMR analysis of the compound proves the existence of the oxidized species 29g. As a
comparison, a section of the "B NMR measurement of the radical reaction is shown in
Figure 55b. The corresponding signal in the 11B NMR measurement is shifted by 3.58 ppm.
This may be caused by the different solvent (CDCl; vs. toluene-dg), the temperature
difference (rt vs. 80 °C) or the difference in the Lewis-base itself (DMAP vs. DEAP).
Nevertheless, it seems very unlikely that the signal at —1.74 ppm can be attributed to another
species than 25d.
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Figure 55: (a) Synthesis of the oxidized borane complex 29g and the corresponding
"B NMR measurements. (b) Comparison with complex 25d formed during the radical
reaction.

These control experiments help to confirm and understand the complex mechanism of the
radical reaction. It seems reasonable, that the conversion of 1-iodododecane (18d) is limited
to 45 %, due to numerous side reactions of the borane with the radical starter. Furthermore,
the consumption of the borane complex, which leads to the bispyridyl species 25i, also
affects the reaction outcome.

2.3.5. Reduction of 1-iodododecane (18d) with DEAP borane (17z), TBHN (2d) and the
catalyst TDT (15b)

In order to improve the yield of dodecane (16a), the reaction was repeated under the same
conditions as before, with the addition of the thiol TDT (15b, 5 mol%) as catalyst. The yield of
dodecane (16a) increased to 65 % in this case.
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2.3.5.1. Mechanism

The mechanism of the thiol-catalyzed reaction is shown in Figure 56. The addition of TDT
(15b) leads to a catalytic cycle, which is involved in chain 2. A hydrogen transfer from the
thiol to the dodecyl radical leads to dodecane and a thiyl radical, which then abstracts a H
atom from DEAP borane (17z). This leads to an increased formation of the desired product
dodecane (16a). The oxidized borane 25d is formed slower than before, which can be seen
based on B NMR studies and will be shown in the next section. This decreased formation of
25d shows that the recombination process of boryl radical 25¢ and the tert-butoxy radical is
reduced, lowering the termination process. The addition of TDT also accelerates the
formation of tert-butanol (25b) from the tert-butoxy radical, which is involved in chain 1. This
has two effects on the reaction. On the one hand, less tert-butoxy radicals can undergo a
recombination, avoiding to the termination step. On the other hand, more tert-butanol (25b)
leads to an increased formation of borane complex 25g, which can undergo a
decomplexation, leading to di-tert-butoxy borane (25e) and free DEAP (24). A *'B NMR study
on these effects will be shown later.
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Figure 56: Mechanism of the reduction of 1-iodododecane (18d) with DEAP borane (17z)
and TBHN (2d) in presence of the catalyst TDT (15b) at 80 °C in toluene-ds.
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2.3.5.2. NMR studies

A comparison between the 'B NMR measurements of the uncatalyzed and the catalyzed
reaction is shown in Figure 57. Figure 57a shows the uncatalyzed reaction after 60 minutes,
Figure 57b displays the catalyzed reaction after 30 minutes, where the precipitation of
bispyridyl borane 25i occurs also faster. The increase of the borane species 25g, 25e and
25k as well as the decrease of the oxidized borane 25d is obvious. The comparison of the
B NMR measurements is absolutely in line with the mechanism shown before, as the
decrease and increase of the species clearly reflect the pathways of the reaction. The
addition of thiol as catalyst improves the yield of the reaction by 20 %. However, there are
still versatile side reactions which prohibit a better yield.

= Is less formed by the addition of thiol.

D = Increases faster than without thiol.
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Figure 57: Comparison of B NMR measurements. (a) Uncatalyzed reduction of
1-iodododecane (18d). (b) TDT (15b)-catalyzed reduction.
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2.3.6. Solubility of dialkylaminopyridine boranes

A main problem of the moderate yield of the reduction product seems to be the solubility of
the borane complex. Whereas DMAP borane (17q) is almost insoluble in toluene at room
temperature, DEAP borane (17z) is soluble. However, the solubility of the precipitating
bispyridyl borane species 25i in toluene is very low, even at 80 °C. This fact, that not even
traces of the complex could be detected during NMR studies proves the poor solubility. The
hypothetic effect a better soluble bispyridyl borane species is shown in Figure 58. If it would
be possible to abstract an H atom from the bispyridyl species, the radical reaction could in
principle proceed in the same way as described before. The abstraction of the iodide would
lead to an alkyl radical, which then would undergo an H atom transfer from the thiol.

N/
®
ﬁ/ . _to ©1 25 R=Et
10 H ?@H ' R =
o 29b: R = Me
o’

Figure 58: Hypothetic involvement of a bispyridyl borane complex into the radical reaction.

2.3.6.1. Synthesis of dihexylaminopyridine borane (DHAP borane, 30f)

For the improvement of the solubility of the bispyridyl borane species, a new borane complex
was synthesized (Figure 59). The reaction was carried out under an inert gas atmosphere.
Step 1 describes the synthesis of the free base 30a. Therefore, para-aminopyridine (30b)
was deprotonated with n-butyllithium (2.2 eq.) and subsequently alkylated with n-hexyl
iodide. Afterwards, the side products decane (30c), the mono alkylated base (30d) and
remaining starting material were removed by column chromatography. The remaining
pyridinium iodide salt 30e was precipitated with isohexane and the final product 30f obtained
as a yellow oil (24 %). In the next step the complex was generated by addition of a Me,S-BH3
solution (1.01 eq.), followed by removal of all volatiles. 4-Dihexylaminopyridine borane (30f,
DHAP-BH;) was obtained in quantitative yield as a colorless oil, soluble in isohexane, which
already demonstrates the improved solubility in nonpolar solvents.
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Figure 59: Synthesis of DHAP borane (30f).

2.3.6.2. DHAP borane (30f) as hydrogen atom donor

After this, the radical experiment was repeated under the same conditions as before with
DHAP borane (30f) as H atom donor (Figure 60, entry 1). With a yield of 60 % of dodecane
(16a), the result is quite similar to the reduction with DEAP borane (17z, 65 %). However, in
this case, no precipitation of any compound was observed. Subsequently, the bispyridyl
borane species does not influence the radical reaction, neither in solution nor as precipitate.
In order to find out if a higher quantity of reducing agent could affect the reaction, the
experiment was redone with an increased amount of DHAP borane (30f, 2.0 eq., Figure 60,
entry 2). The slight increase of 17 % product formation shows, that even doubling the amount
of the hydrogen atom donor improves the reaction outcome only slightly.

NHex,
X toluene-dg, 80°C, 2h
@ || ] « \gl +TDT +TBHN + TMB dodecane 60 %
®N 15b 2d 22 16a
S I_|3>H3 18:11 (5 mol%) (20 mol%) (standard)
3o0f
(1.1eq.)
NHex2
X toluene-dg, 80°C, 2h
®) || + | +TDT  +TBHN + TMB dodecane 77 %
SN~ 15b 2d 22 16a
| 1M o, o,
© BH,4 184 (5 mol%) (20 mol%) (standard)
3of
(2.0 eq.)

Figure 60: Reduction reactions of 1-iodododecane (18d) with DHAP borane (30f), TDT (15b)
and TBHN (2d) at 80 °C in toluene-ds.
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The corresponding *'B NMR measurement of the reduction with 1.1 eq. DEAP borane (17z)
is shown in Figure 61. The formation of bispyridyl borane 30g, which now stays in solution
(+2.88 ppm) can be identified. Furthermore, the amount of the final borates is higher, as the
measurement was done 24 hours after the reaction. This is due to the fact, that the borane
species (25e and 25k) may react with remaining tert-butanol (25b) or acetone (25a) over that
period. A small amount of remaining DHAP borane (30f) is still present. All findings are
consistent with the experiment with DEAP borane (17z) and thus demonstrate, that once the
bispyridyl borane species is formed no subsequent step will occur.

B(O1BU),(O/Pr)3.
x =1 (251),
2 (25m), 3 (25f)

4

(pajdnoo H,) Aep| Jeye YAIN 9,

BH(OtBu), (25e)
BH(OtBu)(OiPr) (25k)

{J

35 30 25 20 15 10 5 0 5 -10 -15 20 -25 -30
ppm
Figure 61: *'B NMR product analysis of the reduction of 1-iodododecane (18d) with DHAP
borane (30f).

2.3.7. Optimization of the TDT (15b) catalyzed reduction of 1-iodododecane (18d) with
DEAP borane (17z) and TBHN (2d)

The only possibility to improve the yield and to minimize side reactions was to reduce the
amount of the initiator. Therefore, the amount of TBHN (2d) was reduced by half (Figure 62).
In this case a full conversion to dodecane (16a) was achieved. This reflects the importance
of the right amount of the initiator in order to minimize undesired reactions.

SN

X toluene-dg, 80°C, 2h
| o+ \é%/l +TDT +TBHN + TMB dodecane quantitative
®N 15b 2d 22 16a yield
S éHs 18:11 (5 mol%) (10 mol%) (standard)
17z
(1.1eq.)
Figure 62: Quantitative reduction of l-iodododecane (18d) with DEAP borane (17z), TDT

(15b) and TBHN (2d) at 80 °C.
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2.3.8. Proof of the initiation concept

Finally, there are three main factors which determine the reaction outcome. First, the starter
must generate an oxygen-centered radical. Second, the initiation temperature should be in
the region of 80 °C — 110 °C and the radical starter should not decompose too fast at that
temperature. A half-life time of about 10 minutes at the relevant temperature seems to be a
good compromise. Lastly, the amount of starter can also affect the reaction.

2.3.8.1. Synthesis of tert-butyl peroxypivalate (TBPP, 31a)

To proove this concept, a second initiation system, showing similar properties as TBHN (2d),
was needed. Therefore tert-butyl peroxypivalate (31a, TBPP) was synthesized (Figure 63).
The reaction was carried out under a nitrogen atmosphere. A commercially available solution
of tert-butyl hydroperoxide (31b, 5.5 M in decane) was mixed with pentane and cooled to
—-20 °C. Afterwards, n-butyllithium (1.0 eq.) was slowly added. After five minutes pivaloyl
chloride (31c, 1.0 eq.) was added and brought to room temperature. After aqueous
extraction, pentane was removed under reduced pressure (over five minutes) and a colorless
tert-butyl peroxypivalate (31a) solution in decane was obtained (quantitative). The amount of
31a in the solution was determined by *H NMR spectroscopy.

pentane, —20 °C,

O
{BUOOH 1) nBuLi (1.0 eq.), 5 min R \{)J\O/O\{/ quantitative
31b O 31a
2) \{)J\Cl (1.0 eq.), 5 min
31c

Figure 63: Synthesis of tert-butyl peroxypivalate (31a, TBPP).

2.3.8.2. TBPP (31a) as thermal initiation system

The decay of TBPP (31a) was monitored by *H NMR spectroscopy in toluene-dgs at 90 °C.
The mechanism for this decay is shown in Figure 64. In an initial step, TBPP (31a) generates
two oxygen-centered radicals. The pivaloyl radical afterwards eliminates CO, to form a
tert-butyl radical. This radical may now trap a hydrogen atom which leads to iso-butane (31d)
or undergo a recombination reaction with another alkyl radical to form 31le or 31f.
Furthermore, the formation of the tert-butoxy radical is the more important part in terms of the
reduction with a borane complex. The following steps are the same as in the case of TBHN
(2d).
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(0]
+ +CH3 — no methylated products
25a )J\ ——> [H] methane
T recombination: ethane
o toluene-dg, 90 °C o ]
/O —— .O
ooy o ofr e Yo
31a 25
L_COZ recombination
\1/ recombination J<
. o.
with-CH3 Y 0
f O
: 2c
l[H]

31d
Figure 64: Mechanism of the thermal decomposition of TBPP (31a) at 90 °C in toluene-ds.

The decomposition of TBPP (31a) at 90 °C is shown in Figure 65. The half-life time
t12(90 °C) = 390 s makes the compound a promising initiator (compare TBHN (2d):
t1/2(80 °C) =520 s). The final decomposition products tert-butanol (25b), acetone (25a) and
DTBP (2c¢) which result from the tert-butoxy radical are the same as for TBHN (2d). Only the
amount of DTBP (2c) as recombination product is slightly higher.
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Figure 65: Time-conversion plot of the thermal decomposition of TBPP (31a) at 90 °C in
toluene-ds.
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2.3.8.3. Thermal decay of TBPP (31a) in the presence of DMAP borane (17q)

The decay of TBPP (31a, 0.5 eq.) in the presence of DMAP borane (17q) at 90 °C is shown
in Figure 66. The rate increase indicates a reaction between the borane complex and the
initiator, as already shown for the system TBHN (2d)/ DEAP borane (17z). After 10 minutes
the consumption of the perester is completed. In contrast to other systems like AIBN (2a)/
DMAP borane (17q), where no reaction of the complex with the starter is observed, the

shown system undergoes a fast reaction, which seems promising for the reduction of an alkyl
iodide.
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Figure 66: Time-conversion plot of the thermal decomposition of TBPP (31a) in the presence
of DMAP borane (17q) at 90 °C in toluene-ds.

2.3.8.4. Radical reduction of 1-iodododecane (18d) with TBPP (31a) as initiator

The radical reduction of 1-iodododecane (18d) was repeated with TBPP (31a, 20 mol%) as
radical starter (Figure 67a). In order to generate a comparable amount of tert-butoxy radicals
as with TBHN (2d), 20 mol% of TBPP (31a) were added. The reaction was monitored by
'H NMR spectroscopy at 90°C. After only two minutes no further conversion of
1-iodododecane (18d) into dodecane (16a) was detected (Figure 67b). As the reaction of
DMAP borane (17q) and TBPP (31a) is also very fast, the missing 12 % of conversion have
to be attributed to this side reaction. Surprisingly, no conversion was found in the absence of
TDT (15b), which reflects the importance of the catalyst for the system. With tert-butyl
peroxypivalate (31a), an initiator with similar properties as TBHN (2d) was found. The big

advantage of TBPP (31a) over TBHN (2d) is the easy synthesis from cheap commercially
available compounds.
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Figure 67: (a) Reduction of 1-iodododecane (18d) with DMAP borane (17q), TDT (15b) and
TBPP (31a) as initiator at 90 °C in toluene-ds. (b) Time-conversion plot of the reduction.

2.3.8.5. Reactions with TBPP (31a) as initiator - a substrate screening

In order to check how effective the TBPP (31a)/ DMAP borane (17q) system is, two other
substrates were investigated (Figure 68). A reduction of 1-bromododecane (18a) to the
corresponding alkane was not successful. However, when going to the class of xanthates, a
comparably fast reaction as for 1-iodododecane (18d) was observed (Figure 68b). The yield
of dodecane (16a) was 85 % after 10 minutes. The time-conversion curve of the reaction is
shown in Figure 68c and displays the fast reduction of the xanthate. Furthermore, it is
remarkable, that for the reduction of the xanthate no addition of a thiol as catalyst is
necessary, whereas the alkyl iodide is not reduced in the absence of a thiol. Finally, alkyl

iodides as well as xanthates can be reduced by DMAP borane (17qg) and a suitable initiator,
such as TBHN (2d) or TBPP (31a).
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Figure 68: (a) Reduction of alkyl bromide 18a and (b) xanthate 18c with DMAP borane (17q)

and TBPP (31a) as initiator at 90 °C in toluene-dg. (c) Time-conversion plot of the
uncatalyzed reduction of xanthate 18c.

2.4. High temperature initiation experiments with 1-bromododecane (18a)

The final question was why alkyl iodides would undergo such a fast reaction, whereas alkyl
bromides seemed to be inert under the chosen conditions. As the C-lI bond strength of
218 kJ/mol is lower than the C-Br bond strength of 285 kJ/mol, a cleavage of the C-Br bond
is less favored.®® In order to see how a rise of reaction temperature could affect the C-Br
cleavage, another initiator was necessary, as TBHN (2d) and TBPP (31a) would decompose
too fast at temperatures over 90 °C. The requirement of the radical starter was to form an
oxygen-centered radical during the initiation and to have a similar half-life time as TBHN (2d)
at 80 °C (520 s). Thus, two commercially available high temperature initiators were chosen
for this purpose. In order to cover a wide range of initiation temperatures, tert-butyl
peroxybenzoate (29, t12(142 °C) = 360 s) and dicumyl peroxide (2f, t12(154 °C) = 360 s),
which are commercially available, were chosen. Initiation temperatures higher than 154 °C
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were excluded, as DMAP borane (17q) decomposes at temperatures over 169 °C.
Subsequently, the reactions were carried out in toluene-dg under the relevant conditions
(Figure 69a and b). For both radical starters no conversion was observed. The reason for this
becomes obvious, when looking at the *'B NMR measurement (Figure 69c, which was taken
1 day after the reaction with dicumyl peroxide (2f)). The decay of the initiator and its reaction
with DMAP borane (17q) to the final boranes becomes clear. As in the cases before, two
borane species (31j and 31k) are present, which arise from the decay of the initiator to the
corresponding alcohol (H trapping) and the ketone (cleavage). However, the rise in
temperature only seems to accelerate the reaction of the radical starter with the borane
complex 17q. Thus, a C-Br cleavage does not occur.

\N/
D O toluene-dg, 142 °C, 40 min
@ L J o+ ger or o o O g _toluene-ds, 142 C, 40 min
® 'Tj 11 15b 29 22 microwave
©BH; 18a  (Bmol%) (20 mol%) (standard)
17q
(1.1 eq.)
\N/
D Ph toluene-dg, 154 °C, 40 min,
® [ - \QBr +TDT  + TMB
oN 1 15b microwave
© BH3 18a (5 mol%) (20 mol% (standard)
17q

Aep| Jaye HINN 4,

32 28 24 20 16 12 8 4 0 -4 8 -12 -16 20 24 -28
ppm
Figure 69: Reduction of 1-bromododecane (18a) with the high temperature initiatiors (a)
tert-butyl peroxybenzoate (2g) and (b) dicumyl peroxide (2f). (c) *'B NMR measurement of

the reduction with dicumyl peroxide (2f) at 154 °C.
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2.5. Radical reductions of xanthates

Two very effective initiation systems have been found. TBHN (2d)/ DMAP borane (17q) as
well as TBPP (31a)/ DMAP-BH; (17q) can reduce alkyl iodides and xanthates efficiently. The
importance of the formation of an oxygen-centered radical, as well as the right initiation
temperature (80 °C for TBHN (2d), 90 °C for TBPP (31a)), has been documented. The strong
oxophilicity of the boron atom leads to versatile side products and is also the reason why a
reduction of alkyl bromides does not take place. Here, the C-Br cleavage is competing
against the formation of a B-O bond and even at higher temperatures, the B-O formation is
strongly favored. The addition of a thiol as catalyst is necessary in the case of iodides,
whereas xanthates are reduced without catalyst. This behavior is surprising, as the reactivity
of xanthates in radical reactions is usually similar to bromides, whereas iodides react much
faster. As the reduction of dodecyl xanthate (18c) with DMAP borane (17q) and TBPP (31a)
turned out to be fast and gave a good yield (85 %), the radical reduction of xanthates will be
adressed in the following section. Therefore, the standard setup, used for the reductions of
l-iodododecane (18d) was again employed for xanthate 18c. The reaction was followed by
'H NMR spectroscopy at 80 °C. Full conversion to the corresponding alkane was observed
after 4 minutes (Figure 70).

\N/
toluene-dg,
%\/} SO +TDT +TBHN + TMB dodecane quantitative

15b 2d 22 80°C, 4 min 16a yield
@ BH3 18c (5 mol%) (20 mol%) (standard)

17q
(1.1 eq.)

Figure 70: Reduction of xanthate 18c with DMAP borane (17q), TDT (15b) and TBHN (2d)
as initiator at 80 °C in toluene-ds.

2.5.1. Variation of reaction conditions

As a consequence of the fast reduction of xanthate 18c, the reaction conditions were varied.

2.5.1.1. Variations of the initiation system

Surprisingly, even in absence of the thiol catalyst and by lowering the amount of initiator to
2 mol%, 92 % dodecane (16a) were formed (Figure 7l1a). Hence, the use of AIBN (2a)
instead of TBHN (2d) did not lead to a reduction of xanthate 18c (Figure 71b). These two
results show, that the formation of an oxygen-centered radical from the starter is also
essential for the reduction of a xanthate. However, the influence of the catalyst seems to be
not as strong as in the reduction of l-iodododecane (18d). A time-conversion for the
reduction of xanthate 18c with TBHN (2d, 2 mol%) was measured by *H NMR spectroscopy
at 80 °C and is shown in Figure 71a. The time-conversion plot shows the fast reduction of
xanthate 18c (ty, = 445 s) with only 2 mol% initiator.
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Figure 71: Radical reactions of xanthate 18c with (a) TBHN (2d) and (b) AIBN (2a) as
initiators. (c) Time-conversion plot for reaction (a).

2.5.1.2. Variations of DMAP borane (17q) as hydrogen atom donor

As the DMAP borane (17q) had turned out to be a good reducing agent for xanthate 18c, the
guestion came up, how atom efficient the borane species would be. Therefore the amount of
borane 17q was successively reduced (Figure 72a). It is obvious, that more than one
hydrogen atom is transferred in this reaction. The diagram in Figure 72b shows the
measured values compared with an idealized 1 : 1 reduction curve. The slope of the line
reflects the number of hydrogen atoms transferred by DMAP borane (17q). However, the
intercept of the measured line can be discussed. As only three data points are available, it is
not clear how the curve progression below 0.33 equivalents would look like. For a rough
estimation the origin (0 eq. = 0 % conversion) as a fourth data point was also taken into
account (blue dotted line). In summary it can be stated, that DMAP borane (17q) delivers
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between 1.29 and 1.52 hydrogen atoms in this reaction. For a more exact statement, further
data points would be necessary.
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Figure 72: (a) Reduction of xanthate 18c with different amounts of DMAP borane (17q).
(b) Comparison of the measured values with an idealized 1 : 1 reduction curve.

2.5.2. NMR studies

The reason for this non-stoichiometric transfer of hydrogen atoms becomes more evident
when looking at the reaction in more detail. Precipitation of an off-white solid during the
reaction may lead to this incompleted hydrogen atom transfer. Figure 73 shows the !B NMR
measurements after the reaction with 0.33 eq. DMAP borane (17q). The triplet (-6.97 ppm)
indicates the major borane species 29i, formed during the reduction. The minor borane
species 29h shows a doublet (-2.01 ppm) in the "B NMR measurement. The solubility of
both compounds in toluene is rather low, as indicated by the noisy baseline in the *'B NMR
measurement. Thus, the reason why the second hydrogen atom is not completely transferred
during the radical reaction can be attributed to the poor solubility of the borane species 29i. A
third hypothetic borane complex with three substituted hydrogens was not detected.
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179 completely

consumed!ﬂ

ppm

Figure 73: "B NMR measurement of the two borane species 29h and 29i, formed during the
reduction of xanthate 18c with DMAP borane (17q, 0.33 eq.) in toluene-ds.

2.5.3. Independent control experiments

In order to exclude eventual side reactions, which could influence the radical reaction, a set
of control experiments was performed (Figure 74). A reaction of DMAP borane (17q) in
excess and xanthate 18c at 80 °C was not observed (Figure 74a). As xanthates usually
undergo pyrolysis at higher temperatures, the reaction temperature was increased to 120 °C
and the xanthate exposed to this temperature in the microwave cavity (closed vessel) for
30 minutes (Figure 74b). As no reaction did take place, a pyrolysis reaction at 80 °C could
also be excluded. Finally, a reaction of xanthate 18c and the radical initiator TBHN (2d) was
also not observed at 80 °C (Figure 74c).

N

O._S_ toluene-ds,

®N 1 g 80 °C, 30 min
O BHs 18¢

toluene-dsg,
(b) %\%O SO — 2

18 120 °C, 30 min
18¢ (microwave)
O S toluene-ds,
© \9 \”/ ~ TBHN -+ TMB —H8—> no reaction between
"s 2 22 g5oc,30min  TBHN (2d) and xanthate (18c)
18¢ (10 mol%) (standard)

Figure 74: Control reactions for the reduction of xanthate 18c with DMAP borane (17Q).
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Furthermore, as an independent proof for the existence of the boryl species 29h, a closely
similar compound was designed (Figure 75a). Therefore boryl iodide 29c was generated
from DMAP borane (17q) and iodine in CDCl; solution. Afterwards sodium ethyl xanthate
(21d) was added in excess to the solution and stirred for 15 minutes. After removal of salts,
the desired borane 29j was precipitated with isohexane (73 %). The *'B NMR measurements
are shown in Figure 75b. The triplet at -6.87 ppm provides strong support for the assignment
of 29i formed during the radical reaction (with 5(*'B) = —6.97 ppm).

s ~\

SK OEt A
N CDCl3, 10 min, rt. | Y (21d,1.5eq.), [T%J
— —

+051, 2
N H, eN" cHer, HeB—H
@BHs G)BH2I 15 min, rt. S
17q 29¢

OFEt
29j

compare:

(b)

OMe
29i
"B NMR: —6.97 ppm

1 -1 -3 -5 -7 -9 -11
pm

Figure 75: (a) Synthesis of borane 29j. (b) B NMR measurement of 29j in CDCls.

2.5.4. Mechanism for the radical reduction of xanthate 18c with DMAP borane (17q)
and TBHN (2d)

With these results in hand a mechanism for the reduction of xanthate 18c can be proposed
(Figure 76). With respect to the initiation, the formation of an oxygen-centered radical (from
TBHN (2d)) is of major importance. This radical reacts with DMAP borane (17q) and leads to
the boryl radical 29k. Acetone (25a) and methane as minor side products from the decay of
the starter could also be detected in the *H NMR measurements. However, there is one main
difference in the reduction of xanthate 18c compared to l-iodododecane (18d). The
recombination of two tert-butoxy radicals leads to di-tert-butyl peroxide (2c). In the case of
the reduction of 1-iodododecane (18d) the formation of the peroxide is not observed, thus
meaning, that DMAP borane (17q) reacts with the peroxide as shown in Figure 40 (page 34).
This is not the case for the reduction of xanthate 18c. Here, the formation of di-tert-butyl
peroxide (2c) is observed. The most plausible explanation for this is that boryl radical 29k
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reacts faster with xanthate 18c than with the peroxide species 2c. The formation of borane
29g is not detected by B NMR spectroscopy in this case, whereas it was found for the
reduction of l-iodododecane (18d). This shows, that a reaction of boryl radical 29k with
TBHN (2d) as well as a recombination of 29k and a tert-butoxy radical is very unlikely. Thus,
ionic side reactions are avoided and the main processes are two radical chain reactions,
which lead effectively to the desired product dodecane (16a). The reaction of 29k with
xanthate 18c is the first step of chain 1. The so formed boryl radical 29I collapses in the
following step into a dodecyl radical and the borane complex 29i (which was detected by
"B NMR measurements). The same steps can now be repeated for the newly formed
complex 29i (H abstraction, followed by reaction with xanthate 18c), which leads again to a
dodecyl radical and borane complex 29h in chain 2. Finally, a hydrogen atom is transferred
to the dodecyl radical by DMAP borane (17q), which leads to the final product dodecane
(16a) regenerating the boryl radical 29k. As there are much less side reactions (as compared
to l-iodododecane (18d)) and two possible chain reactions which both regenerate boryl
radical 29k, the reduction of xanthate 18c works much more efficiently than the reduction of
l-iodododecane (18d). For the xanthate not even a thiol as catalyst is necessary. As both
borane complexes (29h and 29i) are precipitating during the reaction, this is the reason, why
the second H atom is not completely transferred in this reaction. This precipitation might also
be the reason, why the transfer of all three hydrogen atoms was not found.
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Figure 76: Proposed mechanism for the TBHN (2d)-initiated radical reduction of xanthate
18c with DMAP borane (17q).

2.5.5. Reduction of xanthate 18b

As the reduction of xanthate 18c had shown the formation of dodecane (16a), the
expectation for the reduction of xanthate 18b is the formation of ethane (16e), when
systematically reducing the oxygen-attached moiety of the xanthate (Figure 77a). The
formation of ethane (16e) was proven by *H NMR measurement (Figure 77b).
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Figure 77: (a) Reduction of xanthate 18b. (b) Section of the *H NMR spectrum taken during
the reduction of 18b in toluene-ds.

2.5.5.1. Differences in the reduction of xanthate 18b

However, when analyzing the reaction mixture by GC/MS, also the formation of dodecane
(16a) became apparent. This finding shows that for xanthate 18b not only the oxygen side of
the xanthate is reduced during the radical reaction, but also the sulfur attached moiety.
Furthermore, the X-ray structure shown in Figure 78a was obtained from the radical reaction
of xanthate 18b. The bispyridyl species 29n was obtained by crystallizing the compound from
the crude reaction mixture in toluene. This bispyridyl borane is structurally similar to the
bispyridyl borane 25i, formed during the radical reduction of 1-iodododecane (18d). The
formation of this compound suggests that free DMAP (27) must also be involved at some
stage of the radical reaction. A very probable formation of bispyridyl species 29n (similar to
bispyridyl borane 25i) is shown in Figure 78b.

68



2. Radical reactions

(a)

N,
. N
- \N/
N AN
D
d N Pz
Dy
: 27 2
"o — X O oEt

T
wn-o
®I

(0]
O

N\

9n

Figure 78: (a) X-ray structure of bispyridyl borane 29n. (b) Tentative mechanism for the
formation of 29n.

As in the radical reduction of 1-iodododecane (18d), the decomplexation of the final borane
species from the base may lead to free DMAP (27, Figure 79a). Hence, in the case of
xanthate reduction another mechanism may be discussed (Figure 79b).

~,
\N/ \N/ N
decomplexation X
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s — N/
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Figure 79: (a) Formation of DMAP (27) by decomplexation. (b) Formation of DMAP (27) from
borane 29j at 80 °C.

2.5.5.2. *C NMR study

The degradation of borane complex 29j at 80 °C was monitored by **C NMR measurements.
A section of the **C NMR of borane 29j is shown in Figure 80 (spectrum 1). Due to the poor
solubility of the compound in toluene, the background noise is rather significant. In the middle
of Figure 80, reference NMR spectrum of CS, (spectrum 2) and DMAP (27, spectrum 3) in
toluene-dg are shown. Spectrum 4 of Figure 80 shows the *C NMR measurement after the
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exposition of borane complex 29j to 80 °C for 30 minutes. The formation of CS, and DMAP
(27) as well as the disappearance of 29j can be observed (Figure 79b).
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Figure 80: *C NMR measurements in toluene-ds. Reference spectrum of borane 29j
(spectrum 1), CS, (spectrum 2), DMAP (27, spectrum 3) and borane complex 29j after
30 minutes at 80 °C (spectrum 4).

2.5.5.3. Reaction of DMAP borane (17q) with carbon disulfide

However, during the radical reduction of xanthate 18b with DMAP borane (17q), CS, was not
observed spectroscopically. Subsequently there must be a process which consumes the
carbon disulfide. Therefore, the reaction of DMAP borane (17q) with CS, in toluene-dg at
80 °C was monitored by *'B and *H NMR (Figure 81). The "B NMR measurement shows a
triplet (-6.82 ppm, J = 116.4 Hz) which can be assigned to the borane species 290 (Figure
81b). To prove the formation of this compound *H MNR measurements were also taken into
account as shown in Figure 81c. Thus, the formation of borane species 290 can be proven
by the appearance of a sharp singlet at 12.12 ppm, in accordance with a sulfur analogue of
formate.
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Figure 81: (a) Reaction of DMAP borane (17q) with CS, at 80 °C. (b) B NMR measurement
of the reaction in toluene-dg at 80 °C after 4 minutes. (c) 'H NMR measurement of the
reaction in toluene-dg at 80 °C after 1 minute.

2.5.5.4. GC/MS analysis

For further investigations of the reduction of xanthate 18b, the radical reaction was repeated.
After the reaction had cooled down to room temperature, pentane was added in order to
precipitate all borane species as well as free DMAP (27). The absence of borane species
was proven by **B NMR. This clear pentane solution was used for GC/MS analysis (Figure
82). (To make sure, that xanthate 18b would not decompose during the GC/MS analysis, the
pure starting material was also checked and no traces of decomposition were found.) The
main product of the reaction is dodecane (16a). Ethane (16e), which is also formed, is not
detectable by GC/MS. Besides a large signal from the starting material 18b, there are minor
side products. How these side products are formed will be discussed in the following
paragraph.
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Figure 82: GC/MS analysis of the radical reduction of xanthate 18b.

Xanthate 18b generates a comparatively broad signal in the GC/MS spectrum. Therefore the
sample was successively diluted with pentane and reanalyzed by GC/MS analysis. At
approximately 50-fold dilution, the broad signal of the starting material splits up into two
separate signals with a difference in the retention time of only 5 seconds (Figure 83a). When
looking at the fragmentation patterns of the two compounds, it becomes clear that both are
very similar (Figure 83b and c). The MS fragmentation pattern of xanthate 18b (Figure 83b)
was compared with the pure starting material before the reaction and is identical. The only
meaningful explanation for the second structure is the exchange of an oxygen atom and a

sulfur atom, leading to the carbodithioate 33f.
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2.5.5.5. Mechanism for the formation of carbodithioate 33f

The formation of carbodithioate 33f during the radical reaction is explained in Figure 87. The
attack of an ethyl radical at the sulfur of xanthate 18b leads to a new radical (33g). This may
now collapse to release an ethyl radical as well as the carbodithioate 33f. Further side
products can be explained by the reaction of xanthate 18b with a dodecyl or an ethyl radical,
which leads to the radicals 33ha and 33hb. Subsequently both compounds can form either a
thiyl radical or an oxygen-centered radical under the release of 33hc, 33hd, 33c and 33e.
Due to recombination reactions thioether 33b and the ether 33d are formed, whereas a thiyl
radical can trap a hydrogen atom to form 1-dodecanethiol (33a). This result explains
impressively, why no external catalyst (like TDT (15b)) is necessary for the xanthate
reduction. Here the system creates its own catalyst.

R1= M'%Z R2=Et

Ro<

33f

R OR,
33c

|:| Structures found by GCMS analysis

Figure 84: Formation of carbodithioate 33f and side reactions.
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2.5.5.6. Reduction of xanthate 18e - A comparison

In order to make a more quantitative statement of the reaction, a new xanthate was
synthesized, as ethane (16e) is too volatile to be detected (Figure 85). Therefore, 1-decanol
(21g) was first deprotonated with nBuLi. After addition of CS, and 1l-iodododecane (18d),
xanthate 18e was purified by column chromatography and yielded 55 % of a yellow oil.

1) THF, nBuLi (1.2 eq.), 10 min
OH 2)CS,(1.4eq.),1h
: . MY °
(219) 3) 1-lodododecane (1.6 eq.), 20 min 1 g 9
1
(18) (18e)

Figure 85: Synthesis of xanthate 18e.

Subsequently, the radical reduction was repeated with xanthate 18e and the reaction
outcome was analyzed by GC/MS. To get a better overview of how side reactions would take
place, the reaction was done with 0.75 and 0.50 eq. of DMAP borane (17q). The reactions
with possible products are shown in Figure 86. The results for the reactions are summarized
in Table 9. As each xanthate (18e) molecule can be reduced either at the oxygen side or at
the sulfur side, the yields correspond to a full equivalent on each side. When looking at
reaction 1 (0.75 eq. DMAP borane (17q)), a full conversion of xanthate 18e is observed.
Dodecane (16a) is with 75 % the main product, whereas decane (30c) is only formed in 15 %
yield. However, as shown before, there is a side reaction leading to 25 % of 1-dodecanethiol
(33a), which can catalyze the reaction. All other products are only formed in traces. In
reaction 2 (0.5 eq. DMAP borane (17q)) no full conversion is achieved. The exact amount of
remaining xanthate 18e and the carbodithioate 34a cannot be determined as there is no
signal separation due to their structural similarity. The yield of dodecane (16a) drops down to
54 %, decane (30c) to 11 %. Hence, the yield of 1-dodecanethiol (33a, 27 %) is even slightly
higher as before, which is also the case for thioether 34c (2 %). This result indicates that the
radical reaction is still running once the H atom donor (DMAP borane (17q)) is consumed,
leading to different side products. Furthermore, the product distribution of 16a : 30c (reaction
1 = 5.00; reaction 2 = 4.91) shows, that the formation of dodecane (16a), which is the sulfur
side product, is roughly 5 times larger in both cases.
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Figure 86: Radical reduction of xanthate 18e and possible products.

Table 9: Results for the reactions shown in Figure 86.

decane dodecane Ratio 33a 34c 34d, 18e+34a
(30c) (16a) 16a: 30c 34e 34f
Reactionl 15% 75 % 5.00 25% traces traces none
Reaction2 11 % 54 % 4.91 27% 2% traces 17 %

2.5.5.7. Mechanism for the reduction of xanthate 18b

Finally, a plausible reaction mechanism is shown in Figure 87. Similar to the reduction of
l-iodododecane (18d), the formation of the boryl radical 29k from an oxygen-centered
radical is essential. This can now react with the xanthate 18b to form the new radical 29p.
There are two main steps, which lead either to a cleavage on the oxygen side or a cleavage
on the sulfur side of the xanthate. Thus (in the shown case) an ethyl radical and a dodecyl
radical are formed. Considering main step 2, the ethyl radical can now trap a hydrogen atom
to form ethane (16e). (This is shown simplified in Figure 87.) However, the ethyl radical may
also attack at the sulfur of the xanthate, leading to radical 33g. This reaction seems to
happen mainly when an insufficient amount of the H atom donor (DMAP borane (17Q)) is
present. The reaction of xanthate 18b with either an ethyl radical or a dodecyl radical can
also lead to 33ha and 33hb, which subsequently leads to 33a, 33b, 33c, 33d and 33e. This
process is also shown simplified here. (For more detailed information compare Figure 84.)
The so formed thiol 33a is involved in the H atom transfer from DMAP borane (17q) as
catalyst. When looking at main step 1, the dodecyl radical can also catch a H atom (either
catalyzed by a thiol or by direct transfer), which leads to dodecane (16a). Borane complex
29j decomposes at 80 °C to CS, and in following steps to DMAP (27) and the final borates.
The formed carbon disulfide however can react with DMAP borane (17q) to form the borane
species 290. The free base DMAP (27) will also react with the borane species 29j, which
leads to the bispyridyl borane 29n. Yet, borane 29j can also act as a hydrogen atom donor.
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By reaction of the resulting boryl radical 29g with the xanthate, borane species 29r is formed
The transfer of a third hydrogen atom was not observed.
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Figure 87: Reaction mechanism for the TBHN (2d)-initiated radical reduction of xanthate

18b with DMAP borane (17q).
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It seems obvious, that the structure of the xanthate has a big influence on the product
distribution of the reduction. Xanthates, which have methyl groups attached to the sulfur,
seem to form exclusively the “oxygen side” product, which was shown for xanthate 18c which
leads to a full conversion into dodecane (16a). The formation of methane could also be
discussed in this case, as traces of methane were found in the *H NMR spectra. However, it
seems more likely that these traces of methane are formed by the cleavage reaction of
tert-butoxy radicals (which come from TBHN (2d)), as acetone could also be detected. Yet,
the full conversion into dodecane (16a) could be proven by the use of an internal NMR
standard (TMB (22)). For xanthates bearing a longer alkyl chain at the sulfur, the reactivity
changes. In the previous studies two xanthates with a dodecyl moiety attached to the sulfur
were used. For both xanthates a large amount of dodecane (16a) was found and so favoring
the “sulfur side” product. This behavior seems not to be influenced by the length of the alkyl
group attached to the oxygen (here: an ethyl or a dodecyl group), as the formation of
dodecane (16a) is the main product in both cases. An interesting question for future studies
could be the correlation of chain length and reactivity of xanthates in radical reductions with
DMAP borane (17q).

2.5.6. Reduction of a secondary xanthate

In order to prove the behavior of S-methylated xanthates, compound 18f was synthesized
from 2-decanol (35a) under standard conditions for Barton-McCombie xanthates (Figure
88a). After column chromatography xanthate 18f was obtained as a yellow oil (78 %). This
compound was used for the radical reduction with DMAP borane (17q) and led to a
guantitative yield of decane (30c) (Figure 88b). This result confirms the formation of the
“oxygen side” product of S-methylated xanthates. Furthermore it shows, that the reduction of
secondary xanthates is also possible under the used conditions.

OH 1) THF, nBuLi (1.1 eq.), 20 min OJ\S/
(a) 2)CS,(1.3eq.),1h
= 78 %
35a7 3) Mel (1.5 eq.), 20 min 18f7
N
~ e . < a0
oluene-dg, 7
(b) J 7 +TBHN + TMB 8 docele
®N 2d 22 - e
©BHj,4 7 (20 mol%) (standard) 80 °C, 30 min quantitative yield
17q 18f

(1.1 eq.)

Figure 88: (a) Synthesis of xanthate 18f. (b) Radical reduction of xanthate 18f with DMAP
borane (17q).
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2.5.7. Reduction of atertiary xanthate

For a systematic completion, a tertiary xanthate was also taken into account. Therefore,
adamantyl xanthate 18g was synthesized (Figure 89a) from 1l-adamantanol (35b). However,
when trying to convert the tertiary xanthate 18g to adamantane (7b) in a radical reaction with
DMAP borane (17q), only traces of the desired product were found (Figure 89b). Hence, a
radical reduction with DMAP borane (17q) seems to be limited to primary and secondary
xanthates.

S
HO O/U\S/
1) THF, NaH (1.3 eq.), 30 min
(a) 2)CS,(1.5eq.),3.5h
> 43 %
(35b) 3) Mel (1.7 eq.), 30 min (18g)
S
~p
N M
® toluene-d
oluene-dg,

®) @N/ ’ ! TE;;N * Tzl\gB —— . adamantane (7b)

© I|3H3 (20 mol%) (standard) 80 °C, 30 min only traces

17q 18g

Figure 89: (a) Synthesis of xanthate 18g. (b) Attempt of a radical reduction of xanthate 18g
with DMAP borane (17q).

2.5.8. Reduction of a benzylic xanthate

As the reaction with primary xanthates has shown quite fast reactions and good yields, the
guestion came up, how reactive a benzylic xanthate would be under the tested conditions.
Thus, xanthate 18h was synthesized from naphthylmethanol (Figure 90) and isolated as
viscous yellow oil (26 %) after column chromatography.

OH O S
1) THF, nBuLi (1.2 eq.), 10 min S

OO 2)CS, (1.4 eq.), 1h OO
g 26 %

(35¢) 3) Mel (1.6 eq.), 20 min (18h)

Figure 90: Synthesis of xanthate 18h.

The reduction of xanthate 18h was conducted under the same conditions as before and
yielded 10 % 1-methylnaphthalene (35d, Figure 91a). Further side products were not
present. The "B NMR measurements after the reaction (Figure 91b) show that only one
hydrogen atom was transferred from DMAP borane (17Q).
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~

\

N O S\
L

X
| . +TBHN + TMB toluene-dg, .
(@) N7 2d 22 — 10 %
® 80°C, 40 min

| (5 mol%) (standard)

17q (1.00 eq.)
(0.75 eq.)

EEEEEEEEEEE,
Figure 91: (a) Reduction of xanthate 18h with DMAP borane (17q) and TBHN (2d) as

initiator. (b) **'B NMR measurements after the reaction.

The result of this reaction is easily understood, when looking at the mechanism (Figure 92).
After boryl radical 29k is formed, it reacts with xanthate 18h. The so formed boryl radical 29s
collapses into 1-methylnaphthyl radical and the final borane species 29i. However, there is
no radical chain, as the benzylic radical is just too stable. After trapping a hydrogen atom, the
reaction is over. In this way, the yield of 10 % can also be understood, as 5 mol% TBHN (2d)
were used. These 5 mol% can deliver 10 mol% of tert-butoxy radicals, which act more like a
reagent than a starter in this case. A possible recombination product is not detected in this

case. ©} DMAP
60 °C O BH, ®DMAP
TBHN 2 BuO- 17q ©) BH2 + tggbOH
2d N, 29k

O__S._
T

oe

SBH - ©BH;
“ “ gDMfAP “ o) DMAP

35da 29ij
Flgure 92: Reaction mechanism of the reduction of xanthate 18h.
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2.6. Xanthate vs. alkyl iodide — A selectivity study with different hydrogen
atom donors

As a final study, the selectivity of radical reductions with different hydrogen atom donors was
investigated. Therefore 1-iodododecane (18d) and xanthate 18c were used in a 1:1 ratio
(one equivalent each), and reacted with 0.75 eq. borane complex. The decay of the

substrates as well as the decay of the complex was then monitored by *H NMR spectroscopy
in toluene-dg at 80 °C.

2.6.1. DEAP borane (17z)

In order to follow the decay of the borane complex, DEAP borane (17z) was chosen for initial
measurements due to its better solubility in toluene (Figure 93a). As in previous *H NMR
measurements the CH,-l signal of l-iodododecane (18d) can be used to determine the
decay of the alkyl iodide. However as the *H NMR signals of the alkyl groups of DEAP
borane (17z) overlap with the CH,-I signal of 1-iodododecane (18d), the decay of the alkyl
halide could not be determined in this way (Figure 93b). After 8 minutes the consumption of
DEAP borane (17z) is complete and the overall conversion of xanthate 18c is 78 %.

NEt,

@ ﬁj \9 \6/) S\ + TBHN + TMB (Standard) T NMR
@ BH3 18d (2d) (22) in toluene-dg at 80°C
(172) (18d) 18c)
(0.75eq.) (1eq.) (1eq.) (5 mol%)
100 + -+
S - o . Xanthate 18c
90 - |
' DEAP borane (172)
80 - \
$
— 70 - '
S \
g 60 - “
- \
» 50 - !
= <
b (0]
® = \ %\/) NEt,
(@]
O 30 - ‘\‘ \n/ (180 X
20 "’**—o-._oo-o-o-o-oo,a—o-o-o-o-.—o-..o-o..*0~o04-.-¢-¢ | _
4 @N
10 - @BH3
. / _(72)
1 A sy sssspeses L —
0 5 10 15 20 25 30 35 40 45

Time [minutes]

Figure 93: (a) Competition reaction of 1-iodododecane (18d) and xanthate 18c in a radical
reduction with DEAP borane (17z). (b) Time-conversion plot of the reaction.
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2.6.2. DMAP borane (17q)

Yet, to make a statement on the conversion ratio of 1-iodododecane (18d) against xanthate
18c, the reaction was repeated by replacing DEAP borane (17z) by DMAP borane (17q)
(Figure 94a). The CH,-1 signal of l-iodododecane (18d) does now not overlap with other
signals. Due to the poor solubility of DMAP borane (17q) in toluene, the decay of the borane
complex could not be followed in this case. As shown in previous studies it is assumed, that
the reactivity of DEAP borane (17z) and DMAP borane (17q) is very similar. This is
supported by the time-conversion plot of the reaction with DMAP borane (17q) (Figure 94b).
The decay of xanthate 18c is the same as in the previous case with DEAP borane (17z) and
its conversion ends at 78 %. The overall conversion of 1-iodododecane (18d) stops at 18 %.
Hence, the conversion ratio of 1-iodododecane (18d) : xanthate 18c is 1 : 4.33. This finding
is very surprising, as usually primary iodides react much faster than xanthates in radical
reactions. In case of the reduction with DMAP borane (17q) the reaction with the xanthate is
favored.

0o__S
+
ﬁj \6/) \ﬂ/ ~ + TBHN + TMB (Standard) [1 \vR

@ BH3 1S (2d) (22) in toluene-dg at 80°C

(179) (1 8d) (18c)
(0.75eq.) (1eq.) (1eq.) (5 mol%)

100 -
90 - ' \6/) (18d)
- -~
80 v Se - - Ve N et Y

70 A

(b) >0 1 —-w- 1l-iodododecane (18d)

40 - xanthate 18c

Conversion [%]

20 -

10

O T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45

Time [minutes]

Figure 94: (a) Competition reaction of 1-iodododecane (18d) and xanthate (18c) in a radical
reduction with DMAP borane (17q). (b) Time-conversion plot of the reaction.
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2.6.3. NHC borane 17y

To compare this behavior of DMAP borane (17qg) towards xanthates with other options, the
competition experiment was repeated under the same conditions with NHC borane 17y
(Figure 95a). When omitting TDT (15b) as catalyst, the reaction is slightly slower than with
DMAP borane (17q). In this case no change in the conversion is observed after 15 minutes
(Figure 95b). However, only l-iodododecane (18d) is reacting with a final conversion of
25 %. No reaction with xanthate 18c was observed at all. The formation of iodoborane 36a
as the only product from NHC borane 17y is shown in terms of the "B NMR after the
reaction (Figure 95b). The reaction was repeated with the addition of thiol 15b (5 mol%) as
catalyst. As in the case of DMAP borane (17q), the reaction is finished after 8 minutes
(Figure 95c). Another effect achieved by TDT (15b) is a slight rise in the conversion of
1-iodododecane (18d) to 45 %. Yet, there is no reaction with xanthate 18c. This result shows
impressively the special behavior of DMAP borane (17q) with respect to the reduction of
xanthates.
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/
@N o
(a) [ D—BH; + %v}' . %\/)O\”/S\ +TBHN +TMB + TDT ['qnwmR
N\ 11 1 g (2d)  (standard)  (15b) |y toluene-dg at 80°C
(17y) (18d) (18c) (22) (x Mol%)
(0.75 eq.) (1eq.) (1eq.) (5 mol%) Reaction 1: x = 0
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Figure 95: (a) Competition reactions of 1-iodododecane (18d) and xanthate (18c) in a
radical reductions with NHC borane 17y. Time-conversion plots of the reaction (b) in the
absence and (c) in the presence of TDT (15b).
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2.6.4. BusSnH (la)

As a reference reaction, BusSnH (1a) was used as hydrogen atom donor in the competition
experiment (Figure 96). The reaction was finished after 20 minutes. As expected, the
reduction of 1-iodododecane (18d) was favored over the xanthate 18c in a ratio of 2.75.
Furthermore, 0.75 eq. of BusSnH (1a) are completely consumed under these conditions,
leading to 20 % dodecane (16a, from the xanthate) and 55 % dodecane (16a, from the alkyl
iodide).

after 20 minutes:

BusSnH + {\/)' + %\/)O\H/S\ + TBHN + TMB toluene-dg 20 % conversion
_— of xanthate 18c
(1a) " s (2d) (st(azr;(;ard) 80 °C 55 % conversion
(18d) (18¢c) of 1-iodododecane 18d
(0.75eq.) (1eq.) (1eq.) (5 mol%)

Figure 96: Competition reaction of 1-iodododecane (18d) and xanthate (18c) in a radical
reductions with BuzSnH (1a).

2.6.5. Summary

Table 10 summarizes the results of the competition experiments. Whereas NHC borane 17y
leads to a moderate conversion of 45% (when using TDT (15b) as catalyst) of
l-iodododecane (18d), its selectivity seems to be completely on the side of the iodide. In
case of BusSnH (1a), the reduction of 1-iodododecane (18d) is also favored, but not the only
product. For synthetic purposes DMAP borane (17q) could be of a big interest. Here, the
selectivity for the reduction of the xanthate is about 12 times larger than with BusSnH (1a).
For synthetic purposes, where selectively one substrate should be reduced, the combination
of NHC borane 17y (for iodides) and DMAP borane (17q) for xanthates are a much better
(and less toxic) alternative than BusSnH (1a).

Table 10: Summary of the results for the competition experiments of xanthate 18c (1 eq.)
and 1-iodododecane (18d, leq.) with different H atom donors (0.75 eq.).

H atom donor reactiontime TDT (15b) Conversion ratio  Overall conversion
(0.75 eq.) [min] lodide : xanthate (iodide+xanthate)
DMAP borane 8 1:4.33 96 %

(17q)

NHC borane 17y 15 1:0 25 %

NHC borane 17y 8 5 mol% 1:0 45 %

BusSnH (1a) 20 1:0.36 75 %
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3. lonic Reactions

3.1. Introduction

Reduction reactions with inorganic reductants are well known and widely used in organic
chemistry. One of the most prominent compounds, which can reduce a large number of
functional groups, is lithium aluminumhydride. A general overview of reductions with LiAIH, is
shown in Figure 97. Thus, lithium aluminumhydride can reduce aldehydes, acid chlorides,
anhydrides, acids and esters to the corresponding primary alcohols, whereas ketones are
reduced to the secondary alcohols.> *® 5" %8 Amjides, oximes, nitro compounds, nitriles and
azides are reduced to amines by lithium aluminumhydride, alkyl halides to the corresponding
alkanes.®® ©0 &4

J
R OH
H 1
R
\ ! o
AY O
NH»>
Ry X !
\ R1/ R1) o)
N Br, Cl 1
R{ 2 ‘ P
1 R1
R NH o o
1 2~ CN )J\ L
Ry 1 R TO" "Ry
1 ™
LiAIH, (in THF or Et,0) 5
R(NOZ/ aqueous workup (Hz0%)| )J\
—
Ry il S
_OH R;
J i
R
/R1 R1)J\O 2
o o N\, OH
A~
R1 NH2 R1 NH2
/ R1)J\R2 Ri
R NH,

Figure 97: General scheme for reductions with LiAIH,.

3.1.1. Sodium borohydride as reductant

Although LiAIH, is a powerful reductant, its use is limited. On the one hand it can only be
used with ethers as solvents, as it is insoluble in nonpolar solvents. On the other hand the
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reductive potential towards such a large number of functional groups can also be a
hindrance, when it comes to selective reductions. Sodium borohydride is, compared to
LiAlH,4, a relatively mild reductant. It is widely used for reductions of aldehydes or ketones to
alcohols. The addition of metal salts like CeCl; can make the reduction selective for ketones
(Luche reduction, Figure 98a and b).[°% 63 64.65.681 Eyen 3 selective reduction of esters can be
achieved when employing cobalt(ll) chloride as catalyst in combination with NaBH,.[*”
Furthermore, several reductions of imines are known with sodium borohydride, an example is
shown in Figure 98c.[% % 7°)

0] O

|
(@) NaBH,, -78 °
a 45 78 C, NaBH4, CeCI3,
MeOH,,Dy - W\H,

OQ/\@/\/\?\ i/\@/\/ot
14m 14n CeCl
0 o 3
via l !
o NaBH,, CeCl OH
45 3
() /\)J\ X
140 MeOH 14p
NaBH,4 (1.1 eq.),
() R1AN’R2 RN Rq = Ar, alkenyl, alkynyl
MeOH, 0 °C, 20 min 1 H R, = alkyl, allyl, benzyl

Figure 98: Examples for reductions with sodium borohydride.

3.1.2. The Corey-Bakshi-Shibata reduction

Beside these inorganic salts, “BH3” (in form of THF-BH; or Me,S-BH; solutions) can also be
applied for reductions of carbonyl compounds. However, reductions of ketones with “BH3” are
rather slow. A good example for a fast and enantioselective reduction of ketones with “BH;”
is the CBS reduction (Figure 99)."! The mechanism shows that an attack of the hydride is
only possible from one side of the ketone, as long as the two groups (R; and Ry) differ in
size. The regeneration of the CBS catalyst and the complexation of “BH3” grant a fast and
effective reduction.
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)J\ CBS catalyst H R >R,

SN R =H, alkyl
Re THF-BH,4 Ri™ R

HCI, MeOH

14r

Figure 99: Enantioselective CBS reduction of ketones.

3.1.3. NHC boranes in hydroborations

Another example for the synthetic use of “BH3” is the hydroboration, developed by H. C.
Brown."? In the last years, the use of NHC boranes in radical chemistry as well as in ionic
reactions documented a versatile field of applications. Although these NHC boranes do not
react with alkenes or alkynes™ " ™ a recent study by D. P. Curran showed that
hydroborations of in situ generated arynes are possible with NHC boranes (Figure 100)./"®!
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R, R, H
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Figure 100: General scheme for the hydroboration of arynes with NHC boranes.

3.1.4. Versatile applications of NHC boranes

Further examples for the versatile use of NHC boranes are shown in Figure 101. A thermal
conversion of alkyl halides to the corresponding alkanes is possible (Figure 101a).[’”
Furthermore, imines can be reduced in the presence of acetic acid by NHC boranes (Figure
101b).I"® A direct one pot reductive amination from an aldehyde and aniline in presence of
acetic acid is also possible.l”® A silica gel promoted reduction of ketons and aldehydes was
also reported by Curran (Figure 101c)."? Those versatile applications of borane complexes
show their potential for future studies. In the following section, the focus is on heterocyclic
borane complexes in ionic reactions.

A (110 - 180 °C)

(a) R—X + NHC-borane R{—H
X=1,Br, Cl
-Ro DCM, HOAG, rt. -Ro
(b) )Nl + NHC-borane HN
R; R
0 )O\H
R1)J\R2 silica, R Re
(c) or + NHC-borane - or
various solvents
0 rt., 30 min - 2 h )OH
A R

Figure 101: Versatile applications of NHC boranes in ionic reductions.

3.2. lonic reductions of carbonyl compounds

The class of imidazole and benzimidazole borane complexes shows very unique properties
compared to all other borane complexes used in this work. This special behavior was
discovered, when trying to recrystallize benzimidazole borane (17e) from acetone, where an
immediate strongly exothermic reduction occurred, while most of the used borane complexes
could be stored in acetone over hours.
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3.2.1. Borane screening

Borane complexes of N-heterocycles have been synthesized through BH; exchange reaction
between the respective heterocycle (in the following abbreviated as "Nuc") and Hz;B*SMe, in
THF at 0 °C (Figure 102). After precipitation with isohexane and recrystallization from DCM
the complexes were obtained analytically pure as crystalline material. X-ray crystal structure
analysis could be performed successfully on most of these compounds, showing monomeric
borane complexes in all cases. This is also in agreement with all other analytical data shown
in Table 4 (page 13). Furthermore, the complexes used for the following studies are shown in
Figure 102.

THF, 0 °C, o ®
Nuc > H3B—Nuc

1) Me,S-BH3 (1.1 €q.), 10 min

S)
OB, @@/BHS g, o B
@N N @ON N
S > Seom L
3
N N N N
\ \ \
H CHg H H
17e 17f 179 17aa
@ \N/
o ®//\
N H C’N\ N\nBu ~
3
@ Y—cH, T »
N ©BH; ®N
CHg ©BH3
17ab 17x 17q

Figure 102: Synthesis and structures of borane complexes. Complex 17x was synthesized
according to the literature.®

3.2.1.1. Comparison of X-ray structures

Although the reactivity of 17e and 17f towards carbonyl compounds differs greatly, the
structural differences are quite small (Figure 103). The B-N bond length, which shows a
difference of only 0.003 A, has thus apparently little influence on the hydride donor ability
towards electrophiles.
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(a)

_-
1.574 A
1.310 A
-
e 1.335A

e

Figure 103: X-ray structures of borane complexes (a) 17e and (b) 17f.

3.2.1.2. Reduction of dibenzylketone (37a)

1.571 A

1.316 A

1.340 A

1.450 A

For an initial screening of the reactivity of different borane complexes dibenzylketone (37a)
was chosen as a substrate (Figure 104). In all cases the reaction was performed with and
without addition of an external acid. Due to the solubility of the borane complexes, THF was
chosen as solvent. After 5 minutes THF was removed and the crude product was checked by
GC/MS, thus leading directly to the alcohol 38a via a transesterification of initially formed

borates (Table 11).

o0®
1) THF, H3B-Nuc (1.1 eq.)
O 2) AcOH (0, 1 or 3 eq.),

Bn”™ 'Bn 3yt 5min, removing solvent
37a 4) MeOH, silica, 5min
5) GC/MS analysis

(@]
PN 0®
OH | H3B-Nuc
o® MeOH OH
_B—Nuc €
O"H, - Bn)\Bn
Bn Bn 38a
H

® 0O
+ MeOBH,-Nuc

Figure 104: Initial reactivity screening with various borane complexes.

+ B(OMe); + Nuc

MeOH
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Table 11: Substrate screening for the reaction of dibenzylketone (37a) with various borane
complexes.

entry  borane addition conversion
of AcOH [eq.]

1 17e - full
2 17e 1 full
3 17e 3 full
4 179 - full
5 179 1 full
6 179 3 full
7 17aa - full
8 17aa 1 full
9 17aa 3 full
10 17f - no reaction
11 17f 1 14 %
12 17f 3 no reaction
13 17ab - no reaction
14 17ab 1 no reaction
15 17x - no reaction
16 17x 1 no reaction
17 17q — no reaction
18 17q 1 17 %
19 17q 3 no reaction

Table 11 shows that full conversion of ketone 37a is achieved by using the borane
complexes 17e, 17g and 17aa which have a free NH moiety (entries 1-9). Also the addition
of acetic acid does not affect the reaction in all three cases. However, the N-methylated
complex 17f shows no conversion after the indicated time (entry 10). The addition of one
equivalent of external acid leads only to a conversion of 14 % (entry 11). Addition of acid in
excess again leads to no conversion (entry 12). In case of the N-methylated complex 17ab,
no reaction was observed with and without addition of acetic acid (entry 13 and 14). Thus,
the free NH moiety seems to be significant for a successful reduction rather than the proton
on the C2 position. This fact is proven by the complexes 17x and 17q. In both compounds
the NH moiety is absent, subsequently no reaction could be observed (entry 15 and 17).
Addition of acid to NHC-borane (17x) does not result in any reduction (entry 16), while in the
case of complex 17q a conversion of 17 % can be achieved with one equivalent of external
acid (entry 18). When adding acid in excess, no conversion was observed for compound 17q
(entry 19). In conclusion, the addition of an external acid does not influence the reduction of
ketone 37a with boranes containing a NH moiety. For all other boranes, the addition of one
equivalent of acid can lead to low conversions of ketone 37a.

3.2.2. Substrate screening with benzimidazole borane (17e) as reductant

After an initial borane screening which reavealed the importance of the NH moiety, a
substrate screening was conducted (Figure 105).
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@ BHs THF, 5 min., rt.

/
N .
X removing solvent .
\
1 2 ” MeOH + silica, 5 min T ?

column chromatography

17e
X, y see Table 12

Figure 105: General procedure for a substrate screening with benzimidazole borane (17e).

In a typical setup the borane complex was added to a 0.5 M solution of the substrate in THF
and stirred for 5 minutes. Afterwards the solvent was removed, and the crude product was
further stirred for 5 minutes with methanol and silica. After column chromatography the
isolated product was analyzed by NMR spectroscopy. The results are shown in Table 12.

Table 12: Reduction reactions with benzimidazole borane (17e) with a reaction time of
5 minutes.

entry reactant product R; R, CX yeq. isolated yield
1 37b 38b pCl-Ph  Me C=0 1.0 99%

2 37b 38b pCl-Ph  Me C=0 0.67 88%

3 37b 38b pCl-Ph  Me C=0 0.33 50%

4 37c 38c pMe-Ph Me C=0O 1.0 88%

5 26a 26¢ Ph Me C=0 10 75%

6 37a 38a Bn Bh C=0 10 99%

7 37e - tBu tBu C=0O 1.0 no reaction
8 37f 38f pCl-Ph H C=0 10 88%

9 379 38¢g pMe-Ph H C=0 10 93%

10 37h 38h Ph H C=0 10 86%

11 37i - pCl-Ph  OEt C=O 1.0 no reaction
12 37j - pMe-Ph OEt C=0O 1.0 no reaction
13 37k - Ph OEt C=0 1.0 no reaction
14 371 - pCl-Ph - CN 1.0 noreaction
15 37m - pMe-Ph - CN 1.0 noreaction
16 37n - Ph - CN 1.0 no reaction
17 370 - Ph OH C=0 1.0 no reaction
18 37p - Ph NH, C=0 1.0 no reaction
19 xanthate 18c - 1.0 no reaction
20 ﬁ?r 18a - 1.0  no reaction
21 37q - 1.0 no reaction
22 styrene (37r) - 1.0 noreaction
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Entries 1 to 6 show the reductions of differently substituted ketones to the corresponding
alcohols. Consequently lowering the amount of reducing agent by 1/3 (entry 1-3) leads from
full conversion to only 50 %. This fact is reasonable considering the fact of hydrogen
elimination (see mechanism, Figure 108, page 96). Entries 4 to 6 show that good to excellent
yields can be achieved with various substituted ketones. In the case of the sterically hindered
ketone 37e (entry 7), no reduction to the corresponding alcohol was observed after
5 minutes. For the reduction of aldehydes (entries 8-10) also good yields were achieved for
differently substituted substrates. All other functional groups like esters (entries 11-13),
nitriles (entries 14-16), acids (entry 17), amides (entry 18), xanthates (entry 19), bromides
(entry 20) or alkenes (entries 21 and 22) did not react with benzimidazole borane (17¢€).

In order to study the influence of the reaction time for the unreactive substrates, three
substrate classes were chosen and the same reactions were repeated over a period of three
weeks (Table 13). Ester 37] and nitrile 37m showed no reaction again (entry 1 and 2).
Surprisingly, a reduction of ketone 37e to the alcohol 38e had taken place with a yield of
79 %. Finally it can be stated that benzimidazole borane (17e) is an effective reducing
reagent for ketones and aldehydes.

Table 13: Reduction reactions with benzimidazole borane (17e) with a reaction time of 3
weeks.

entry educt product R R> CX y eq. yield

1 37] - pMe-Ph OEt Cc=0 1.0 no reaction
2 37m - pMe-Ph - CN 1.0 no reaction
3 37e 38e tBu tBu Cc=0 1.0 79% @

@ Yield was determined by "H NMR.

3.2.3. Workup optimization

With regard to the reaction of acetophenone (26a) with benzimidazole borane (17€), which
yielded only 75 % of 26¢c after the workup (Table 12, entry 5, page 93), it was tried to
improve and simplify the workup procedure. The reaction was repeated under the same
conditions as before and THF was removed after 5 minutes. Afterwards the crude product
was stirred for 5 minutes with 2 equivalents of 2 M aq. HCI and the same volume of
chloroform. This step separates the alcohol (organic layer) and benzimidazolium
hydrochloride (39a) as well as water-soluble boron salts (aqueous layer). After extraction
with chloroform, drying with anhydrous MgSO, and removal of the solvent, pure alcohol 26¢
was obtained in quantitative yield (Figure 106). As benzimidazole borane (17e) is stable in
methanol for at least 24 hours, the same reaction was repeated in methanol as solvent with a
yield of 97 %. The importance of the removal of the solvent was proven by a control
experiment. Here, THF was used as solvent and the reaction was performed as before. After
5 minutes, aqueous HCI was directly added to the reaction mixture. In this case only 48 % of
alcohol 26¢c was obtained, the rest being starting material 26a. This implies that a significant
part of the reaction process takes place while removing the solvent through rotatory
evaporation.
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chloroform extraction H
26a 17e e
Oci +B(OH),
N
H
39a

Figure 106: Reduction of 26a in THF or MeOH with improved workup.

3.2.4. Solvent effects

It should be mentioned that the solubility of the complexes 17e, 17g and 17aa is poor in
apolar solvents like toluene or benzene. However, the use of more polar, oxygen-containing
solvents increases the solubility strongly, but also lowers the reactivity of the borane
complexes significantly. In these cases *H NMR studies showed a distinctive broadening of
the NH-signal due to the formation of hydrogen bonds with the solvent (R",N---H---OR5), thus
demonstrating the acidic character of the NH moiety. Nevertheless, oxygen-containing
solvents may be used for synthetic applications as long as the solvent is removed before the
final workup, thus increasing the concentration of the borane-substrate mixture. In terms of
mechanistic NMR studies, toluene-dg or CDCl; were chosen as solvents to avoid interactions
between the complexes and the solvent. In both cases the initial borane complex
suspensions became clear solutions during the reaction. Furthermore, the use of toluene-dg
as solvent offered the possibility of high-temperature NMR studies. Results from B NMR
measurements will be shown in a later section as important experiments for the elucidation of
the mechanism. It should be mentioned, that the solubility in apolar solvents can be improved
by attaching a long aliphatic chain at the C2 position of the imidazole ring. Complex 17ac,
which is soluble in benzene and toluene, was produced by a two-step synthesis and thus
offered the possibility to conduct reductions in apolar solvents (Figure 107).

NH

©: 2 O 1) 200 OC, neat, 10 min @EN THF 0 oC

+ \>_é/: > ( j
NH; g 2)3times destillation H 8 M928 BH3,

35 £ 250 ° 102 mb 10 min
35e at 250 °C, 5x10™ mbar 32ac (18 %) 17ac (96 %)

Figure 107: Synthesis of complex 17ac, which is soluble in benzene and toluene.

3.2.5. Mechanistic aspects of ketone reductions with imidazole borane (17aa)

In order to clarify the mechanism of ketone reductions, imidazole borane (17aa) was chosen
as reductant and acetone as the ketone. The mechanism, which will be discussed afterwards
in detall, is depicted in Figure 108. The elucidation of the mechanism was performed by
several independent NMR measurements and ESI-MS spectrometry which will be described
in the following sections.
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3.2.5.1. Mechanism

The mechanism for the reduction of acetone with imidazole borane (17aa) is shown in Figure
108.

o o o
@ BH -0 0 /<
®|\iBH3 ®l\i i ®H’2\lB >/ )J\ i 8O N
\ \ \ ~~_  ©CB . [ » + HB(OWPr),
N N N [ S H 40h
H L H \
17aa ' 40a H
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HsB —Hy -H o/ \( N
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N N oo e
N A .
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H
40b 40c
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Figure 108: General mechanism of the ketone reduction with imidazole borane (17aa).
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The formation of the monomeric alkoxyborinate-complex 40a is the key step for the reaction.
It is assumed that this species can only be formed when the carbonyl group is activated by
the NH moiety of the initial borane-complex (17aa). Thus, a reduction with N-methylated
complexes, e.g. l-methyl-benzimidazole borane (17f), was never observed. Also the
formation of an alkoxyborinate-species was never observed when using N-methylated
compounds.Three potentional pathways may be discussed. The borinate-complex 40a now
can either react with 17aa or react with itself, leading to the dimeric structures 40b and 40c,
which undergo polymerization. Finally polymers containing fragments A and B are formed.
Both pathways lead to the evolution of hydrogen gas, which is observed during the reaction
and is also detected when following the reaction by *H NMR spectroscopy. Fragment B can
be converted to fragment A by the reaction with acetone. Fragment A, bearing only one
hydride, may subsequently react with the ketone, forming fragment C. A third pathway
leading to fragment C is also possible, in which a dialkoxyborane-complex 40d is generated
from the reaction of acetone and borinate-complex 40a. Polymerization of this
dialkoxyborane-complex 40d with any other chain or monomer also leads to fragment C. A
final disproportionation of fragment C to borate 40e and 40f is also possible.

3.2.5.2. Control experiments

As independent reference experiments, borate 40g was exposed to imidazole, imidazole-
borane (17aa), alcohol 26¢c and acetophenone (26a) and monitored by *H and B NMR
(Figure 109a). In all cases no reaction could be observed, thus confirming that no further
reaction takes place, once a trialkoxyborate is formed. The same set of control experiments
was performed with dialkoxyborane 40h (Figure 109b). No reaction was detected in the
cases of acetophenone (26a) and imidazole borane (17aa). The reaction of alcohol 26¢
leads to trialkoxyborate 40g. The addition of free imidazole to borane 40h causes
polymerization, leading to polymer 40i which shows a broad singlet in the *'B NMR spectra at
ca. +1.5 ppm. The same fact was found when adding imidazole and acetophenone (26a) at
the same time to borane 40h.
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(a) @@/BH3
N N
[ \> [ \> 17aa
N 409g H Ph
no reaction B(OR")3 > no reaction R'= 7771)\
26c R’V \ac;:ztophenone (26a)
no reaction no reaction
(b)
Q@
BH
C) I|3H(OR’)2 o @. 3

S ] o HB(OR’), no reaction
B(OR), 2 H
®N X
[ \> acetophenone (26a)
N
H  40i 26c [ S
acetophenone (26a) ROH N
H
no reaction no reaction

40 ’
9 B(OR"); with ketone, only polymer 40i

Figure 109: Control experiments of various borane species analyzed by *H and 'B NMR
spectroscopy in toluene-ds.

3.2.5.3. ESI-MS spectrometry

The strong tendency to form oligomers could be determined by ESI-MS spectrometry and will
be described next. Therefore a 1: 1 mixture of imidazole borane (17aa) and acetone was
prepared in CDCI; under inert gas atmosphere and stirred for 15 minutes. All volatiles were
then removed under reduced pressure and the crude reaction mixture was taken up in dry
THF under nitrogen. Afterwards the clear solution was immediately used for ESI
spectrometry. The negative and the positive ESI spectra are shown in Figure 110.
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Figure 110: ESI-MS spectra of the reduction of acetone with imidazole borane (17aa).

It is obvious that the fragmentation patterns are rather complex. In order to assign all signals
from both spectra, a spectrum for each signal was first simulated and then compared to the
measurements. The isotope ratio of boron (*°B : !B = 19.9 : 80.1) was taken into account in
order to determine the number of boron atoms in each species. An example for the analysis
of the ESI-MS spectra is shown in Figure 111. Figure 111la shows an example for a
negatively charged fragment containing one boron atom. An example for a positively charged
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fragment which contains three boron atoms is shown in Figure 111b. The whole assignment
of all signals can be found in the experimental section of this work.

219,1583
CgHi7 OMN4B2

Relative Abundance

Relative Abundance

calculated spectrum

2181619
CgH17 0Ny 10BB

217,1656
CgHi7ONg10B,

2191584
measured ESI (-)-MS spectrum

2181630

217,1666

2201617
Cg13CHi; ONgB2

|

2201628

100
a0
80
70
60
50
40
30
20

100
a0
80
70
60
50
40
30
20

436,3130 4373093
CigH33 Oz Ng10BE; Ci1sH3302MNsBy

calculated spectrum

4353166
C1gH3z 02N 1"B2 B3

434,3202
CiaHaz Oz Mg 19B5 B

|

4363133

437 3097
Cyg 13 Haa Mg 1985 B

measured ESI (+)-MS spectrum

4353170

4343206

4333135

L

4383127

I 438.3160
L

m/z=437.3093

4383131

o

T T T
433 434 435

438,3166
T T

T
439

Figure 111: Examples for the analysis of the ESI-MS spectra of (a) negatively and (b)
positively charged species.
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By assigning the signals of the ESI-MS measurement, two complex fragmentation pathways
of polymer species are obtained. The fragmentation pathway of a polymeric species in the
ESI (-)-MS spectra is shown in Figure 112, the pathway for the ESI (+)-MS spectra is shown
in Figure 113. Both polymers are generated in a systematic way. With respect to the reaction
mechanism (Figure 108, page 96), the formation of the three fragments (A, B and C), as well
as the corresponding terminal groups, is visible in the ESI-MS measurements.
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Figure 113: Fragmentation pathway of oligomeric imidazolyl boranes in the positive ion
ESI (+)-MS spectra.

However, some signals in the ESI (+)-MS spectra could not be assigned assuring the linear
imidazolyl borane polymers shown in Figure 113. In order to finally asign the remaining
signals, the presence of traces of water during the measurement must be taken into account.
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The resulting cyclic, polymeric structures subsequently explain all missing signals in the
measurement. The formation of these cyclic structures is shown in Figure 114.

Figure 114: Formation of cyclic oligomeric species in the presence of water.

The fragmentation pathway of these cyclic oligomeric species in the ESI (+)-MS spectra is
shown in Figure 115. The ring structures differ in size, but show the same systematic
composition as the “linear” structures that were discussed before.
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Figure 115: Fragmentation pathway of cyclic oligomeric species in the ESI (+)-MS spectra.
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An example of two cyclic species with different ring sizes is shown in
Figure 116. The whole assignment of all cyclic, polymeric species can be found in the
experimental section.
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Figure 116: Examples for two cyclic oligomeric species.
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3.2.5.4. "B NMR analysis

In order to confirm the results obtained by ESI-MS spectrometry, the reduction of acetone
with imidazole borane (17aa) was repeated and monitored by B NMR spectroscopy in
DCM-d, as solvent at room temperature (Figure 117). The *'B NMR measurement reveals a
fast consumption of the initial borane 17aa. Yet, the resulting signals during the
measurement were rather broad, so that an exact assignment of multiplets was not possible
(Figure 117, section after 2 minutes).

S
BH3
@,\j o) Following the reaction by
[ > ot L 1B NMR
N
H
17aa
(1eq.) (3eq.)

)

__/u/f,,/ l\\\_/\r._‘/ S

30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30

Figure 117: "B NMR monitoring of the reduction of acetone with imidazole borane (17aa).

Due to the poor resolution of the 1B NMR measurements, the solvent was removed after the
reaction and the crude reaction mixture was taken up in toluene-ds, to yield a suspension of
various products. This suspension was used for a new series of *'B NMR measurements in
which the temperature was successively increased (Figure 118). While raising the
temperature up to 100 °C, the resolution of the signals improved significantly. In order to
assign the resulting multiplets, {"H} "B NMR measurements at 100 °C were taken
additionally.
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Figure 118: High-temperature *B NMR experiment.

The high-temperature *'B NMR measurement taken at 100 °C is shown separately in Figure
119. The formation of different fragments becomes clear by assigning the multiplets, thus
supporting the analysis from the ESI-MS spectrometry. In order to exclude a thermal
decomposition to monomers at 100 °C, the sample was again cooled to 27 °C. The same
signal broadening as before was observed in the final *'B NMR. Therefore it is strongly
assumed that the polymer stays intact during the heat up procedure.
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Figure 119: High-temperature B NMR measurement at 100 °C in toluene-ds.

Imidazole borane (17aa) can be stored in solution over a period of several days without
oligomerisation. However, when heating a suspension of imidazole borane (17aa) in
toluene-dg to 100 °C, a second species appears in the *'B NMR spectrum (Figure 120). This
species is the oligomerisation product of the initial borane complex, showing the “BH,” moiety
as a triplet in the ™B NMR measurement. The signals of the “BH;” end group (of the
oligomer) and the “BH;” moiety of 17aa overlap in the B NMR. Yet, in the {*H} 'B NMR
measurement, a small shoulder may indicate the presence of two different “BH3” groups. This
experiment again shows the tendency of imidazole borane complexes to form oligomers.
Furthermore, the structural similarity of the “BH3” groups of monomeric and oligomeric
species can be detected by *'B NMR.
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Figure 120: High-temperature *'B NMR measurement of imidazole borane (17aa) at 100 °C
in toluene-dg after 10 minutes.

3.2.6. Mechanistic aspects of ketone reductions with benzimidazole borane (17¢)

As benzimidazole borane (17e) has been used for a large number of reductions, the question
arose, whether this complex would undergo the same oligomerisation as imidazole borane
(17aa). Therefore, the same reaction setup for an ESI-MS measurement was chosen. A 1: 1
mixture of benzimidazole borane (17e) and acetone was prepared in CDCI; under inert gas
atmosphere and stirred for 15 minutes. All volatiles were removed under reduced pressure
and the crude reaction mixture was taken up in dry THF under nitrogen. Afterwards the clear
solution was immediately used for ESI spectrometry. The ESI (-)-MS spectrum is shown in
Figure 121. The decreased number of signals in the measurement already indicates that the
aggregation is less dominant in the case of benzimidazole borane (17e) as compared to
imidazole borane (17aa).
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Figure 121: ESI (-)-MS spectrum of the reduction of acetone with benzimidazole borane

(17e).

The analysis of the ESI-MS spectrometry was performed in the same way as before and can
be found in the experimental section. As an example, the smallest detected anion is shown in

Figure 122.
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Figure 122: Example for the analysis of the ESI-MS spectrometry.
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Figure 123 shows the fragmentation pathway of a polymer species in the ESI (-)-MS spectra.
In comparison to the scheme shown for imidazole (Figure 112, page 101), the longest chain
found consists only of two fragments. The reactivity of benzimidazole borane (17e) towards
acetone is very similar to that of imidazole borane (17aa). The main difference is the size of
oligomers and the absence of cyclic structures for benzimidazole borane (17¢€).
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Figure 123: Fragmentation pathway of oligomeric benzimidazolyl boranes in the ESI (-)-MS

spectra.

3.2.7. Mechanistic aspects of ketone reductions with N-methylimidazole borane (17aj)

As a further proof of the depicted mechanism, the use of N-methylimidazole borane (17aj)
leads to no apparent reaction with one equivalent of acetone after 15 minutes. This changes
when using acetone in large excess and monitoring the reaction over a period of several

days.

3.2.7.1. ESI-MS spectrometry

N-methylimidazole borane (17aj) was stirred in acetone-ds for five days and the ongoing
reaction was monitored by ESI-MS spectrometry as well as by NMR measurements. Figure
124 shows the ESI-MS spectrometry after five days.
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Figure 124: ESI-MS spectra of the reduction of acetone-ds with N-methylimidazole borane
(174aj).

The assignment of the signals is shown in Figure 125 (for further information and predicted
spectra see experimental part). The excessive formation of boroxines in this case can be
explained by the presence of water in the experimental setup.
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Figure 125: Most probable structure assignments for the ESI-MS measurement shown in
Figure 124.

3.2.7.2. 'H NMR analysis

For further investigations, the reaction outcome after 24 hours and after 5 days was
compared via 'H NMR spectroscopy (Figure 126). In comparison to the reaction after
24 hours, a strong decay of N-methylimidazole borane (17aj) was observed after 5 days
(signals a, b, c and d), accompanied by the formation of free N-methylimidazole (signals 1, 2,
3 and 4). Furthermore the evolution of hydrogen was detected. A set of 4 new signals (A, B,
C and D) was also observed, thus indicating the formation of a new N-methylimidazole
species. The downfield shift of signal A led to the assumption that a protonation of the
imidazole had taken place (compare signal | of N-methylimidazolium hydrochloride (42)).
This downfield shift is typical for protonated imidazoles. By taking the results of the ESI-
spectrometry into account, the protonation of the free imidazole by some boroxine species
seems plausible, hence forming N-methylimidazolium boroxinates. This finding is also in
accordance with signal E, which shows the isopropoxy-groups of the boroxinate species.
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Signal F was assigned to be triisopropylborate, which was proved by an independent

measurement and also can be seen in the B NMR spectra.
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Figure 126: (a) 'HNMR study in acetone-ds. Spectrum A: N-methylimidazole (41aj).

Spectrum B: N-methylimidazolium hydrochloride (42). Spectrum C: 17aj after 24 h in
acetone-dg. Spectrum D: 17aj after 24 h in acetone-ds. (b) Formation of N-methylimidazolium
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boroxinates.

3.2.7.3. "B NMR analysis
Further support for these assignments was obtained from 'B NMR studies (Figure 127).

Therefore a {*H} B NMR (spectrum A) and "B NMR (spectrum B) was measured after
24 hours and compared with corresponding NMR measurements after 5 days (spectrum C

and D). The results are in accordance with the initial findings, showing the formation of
triisopropylborate (40e) and diisopropylborane (40h) after 24 hours. After 5 days no
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diisopropylborane (40h) could be detected and the formation of several boroxine species
was found.

40e
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Figure 127: B NMR measurements of 17aj in acetone-dg after 24 h and after 5 days.

Finally, ketone reductions with borane complexes of imidazole derivatives bearing a free NH
moiety proceed quite fast and effective. Reductions with the corresponding N-methylated
complexes are very slow and may only work when using the substrate in large excess.

3.2.8. Reductions with imidazole-derived boranes in DMSO as solvent

When trying to conduct reductions with benzimidazole borane (17e) in DMSO, colorless
needles began to precipitate after a few seconds. A X-ray structure of this compound could
be obtained after recrystallization from chloroform/ isohexane and is shown in Figure 128.
This DMSO benzimidazole borane adduct (17ad) has a B-N bond length of 1.580 A, which is
only slightly longer than that of benzimidazole borane (17e, 1.575 A).
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Figure 128: X-ray structure of DMSO benzimidazole borane adduct (17ad).

3.2.8.1. Differences of ketone reductions in DMSO

Despite of some minor structural differences between the borane and its DMSO adduct, the
reactivity of benzimidazole borane (17e) in DMSO seems to be completely different than in
other solvents. Usually ketons can be reduced fast and effective with benzimidazole borane
(17e). However, when conducting the reaction in DMSO, no ketone reduction was observed
after 30 minutes, but a fast formation of the DMSO borane adduct (17ad) occurred (Figure
129).

C) Q
O!BH3 C>BH3
N .
0 j\ ©: \> DMSO, 30 min, rt ©:N\>
or + (1eq.) - *DMSO
/JL\ Bn~ "Bn ” N
H
25a 37a 17e

17ad
Figure 129: Formation of the DMSO benzimidazole borane adduct (17ad) in the presence of
ketones.

3.2.8.2. Imine reductions

At first glance the DMSO benzimidazole borane adduct (17ad) seems not to be of any
synthetic purpose. Yet, when trying to reduce imines, this complex proved to be a powerful
reducing agent. The reduction of N-benzylideneaniline (37s) in DMSO with benzimidazole
borane (17e) led to full conversion to the corresponding amine after 15 minutes. Therefore,
the reaction was repeated in DMSO-ds with addition of an internal standard (1,4-dioxane)
and monitored by *H NMR spectroscopy (Figure 130). The half-life time t;;, = 106 seconds
shows that the DMSO benzimidalole borane adduct (17ad) is able to quickly reduce imines,
while the reduction of ketones does not take place.
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Figure 130: (a) Reduction of N-benzylideneaniline (37s) with benzimidazole borane (17e) in
DMSO-ds. (b) Time-conversion plot of the reaction.

In order to understand how different substituents will influence the reactivity of the borane
complex in the imine reduction, the half-life times were determined for several complexes by
'H NMR spectroscopy in DMSO-dg with N-benzylideneaniline (37s) as substrate (Figure 131
and Table 14). As benzimidazole borane (17e, entry 9) reacts ca. 9 times faster than
imidazole borane (17aa, entry 7), benzimidazole borane derivatives were checked at a
concentration of 0.0625 mmol/ ml, whereas imidazole derivatives were reacted at
0.25 mmol/ml. Compared to benzimidazole borane (17e, entry 2), the addition of a methyl
group in C2-position leads to a slight slowdown (entry 1), yet a phenyl group accelerates the
reaction slightly (entry 4). Addition of three methoxy groups to the phenyl ring has almost no
effect (entry 3). The fastest reaction was observed for the fluorinated complex 17af (entry 5).
As mentioned above, the reaction with imidazole borane (17aa, entry 7) is 9 times slower
than with benzimidazole borane (17e, entry 9). The addition of a methyl group shows the
same effect as before and slows the reaction down (entry 6), whereas two phenyl groups in
C4 and C5-position accelerate the reduction (entry 8). In summary, the reduction of imine
37s with (benz)imidazole borane derivatives is fast for all tested complexes. However,
benzimidazoles react distinctly faster than their imidazole analogues.
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Figure 131: Borane screening for the reduction of N-benzylideneaniline (37s) as substrate.

Table 14: Results (half-life times) for the reduction of imine 37s shown in Figure 131.

entry borane complex ¢ [mmol/ mi] ty2 [sec.]
1 179 0.0625 171

2 17e 0.0625 106

3 17ag 0.0625 90

4 17ae 0.0625 85

5 17af 0.0625 66

6 17ah 0.25 517

7 17aa 0.25 223

8 17ai 0.25 53

9 17e 0.25 25

3.2.8.3. Selectivity of imine reductions

The formation of DMSO (benz)imidazole borane adducts, which can reduce imines but not
ketones, can potetially be of big synthetic relevance. An example of a selective reduction of
an imine in presence of a ketone is shown in Figure 132. A one pot mixture of imine 37s,
ketone 37a and benzimidazole borane (17e) in DMSO-d¢ leads to the amine 38s as the
single reduction product after 15 minutes. Another big advantage of this chemoselective
reduction is that the borane complex can even be used in excess without reducing the
ketone, as the formation of the DMSO adduct seems to occur much faster than the ketone
reduction.
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Figure 132: Selective reduction of imine 37s in the presence of ketone 37a with
benzimidazole borane (17€) in DMSO-de.

3.2.9. Influencing factors for effective reductions

In order to measure the decay of acetophenone (26a) during the reduction with
benzimidazole borane derivatives, toluene-dg was chosen as solvent. Due to the low
solubility of benzimidazole borane (17€) in toluene, 2-nonylbenzimidazole borane (17ac) was
also taken into account. This compound is soluble in toluene at room temperature.

3.2.9.1. Influence of the solubility of borane complexes

The reactants were used in 0.25 M solutions with an internal standard for the NMR
measurements (Figure 133). The reduction with benzimidazole borane (17e) shows an
induction phase for about 100 minutes. It is strongly assumed that this due to the low
solubility of the complex, as this induction is not found for the better soluble complex 17ac.
After this period (presumeably when enough dimer is formed), polymerization occurs and the
complete consumption of the ketone is observed after ca. 300 minutes. Surprisingly, the
reduction with the much better soluble borane complex 17ac does not occur faster. This fact
suggests that the influence of the solubility of the complex is not as big as assumed. It rather
seems that borane complexes with a low solubility show a more distinct induction phase,
before the polymerization takes place. However, the consumption of acetophenone is
complete after ca. 700 minutes. One explanation, why the reduction with
2-nonylbenzimidazole borane (17ac) is slower, may be steric hindrance due to the aliphatic
chain in C2 position. Furthermore, the fact that C2-alkylated benzimidazole boranes react
slower has also been shown for the reduction of imines (compare Table 14, entry 1 and 2,
page 118). Hence, the use of the better soluble borane complex allows tracing the decay of
the complex during the reaction. The consumption of the complex stops at ca. 30 % and thus
indicates that more than one hydride is transferred, although a distinct stoichiometry could
not be found.
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Figure 133: Time-conversion plot of the reduction of acetophenone (26a) in toluene-dg at

room temperature with (a) benzimidazole borane (17e) and (b) with 2-nonylbenzimidazole
borane (17ac).

3.2.9.2. Influence of the temperature

With respect to the relatively slow reaction in toluene at room temperature, the same setup
(0.25 ™ solution in CsDg) was used and the decay of acetophenone (26a) was monitored at
60 °C by H NMR spectroscopy (Figure 134). As in previous investigations, an induction
period at the beginning of the reaction shows up. This may be caused due to the formation of
the dimer species. As the reaction is carried out in a NMR tube, a heatup delay, in which the
temperature of the reaction tube is risen to 60 °C, can also be taken into account. However,
the complete consumption of acetophenone (26a) takes ca. 700 seconds. This finding may
offer an attractive method for fast ketone reductions in apolar solvents at ambient
temperature using a cheap reductant.
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Figure 134: Time-conversion plot of the reduction of acetophenone (26a) with benzimidazole
borane (17e€) in C¢Dg at 60 °C.

3.3. lonic reductions of alkyl halides

Up to that point, dialkylaminopyridine boranes had shown good properties as H atom donors
in radical reactions, whereas (benz)imidazole boranes turned out to be effective reductants
for ketones, imines and aldehydes. However, an ionic reduction of alkyl halides had not been
observed with any of the tested borane complexes.

3.3.1. Reductions of dodecyl halides

For exclusion of an ionic side reaction during the radical reaction, DHAP borane (30f) had
been reacted with 1l-iodododecane (18d) at 80 °C, where no formation of dodecane (16a)
was observed (Figure 135).

NHeXZ

X | toluene, 80 °C
| o+ \9/ us > no dodecane (16a)
®N 411 microwave, 30 min

S) éH?, 18d
3o0f
(1.0 eq.)

Figure 135: Attempt to react DHAP borane (30f) with 1-iodododecane (18d) at 80 °C.

3.3.1.1. Reaction optimization with 1-iodododecane (18d)

When increasing the temperature to 120 °C, formation of dodecane (16a) is observed. Based
on this finding, an initial screening (Figure 136) of the presumed ionic reduction of
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1-iodododecane (18d) was carried out under microwave conditions (closed vessel).
Preliminary experiments had shown that the use of an inert gas atmosphere is not
necessary, so the reaction vials were prepared under ambient atmosphere. The results for
the reductions of 1l-iodododecane (18d) are shown in Table 15. At 80 °C and 100 °C, no
reaction with DHAP borane (30f) is observed, even when using the borane in excess (entry 1
and 2). The reduction of l-iodododecane (18d) obviously requires higher temperatures. At
120 °C the amount of borane complex was successively increased (entry 3, 4 and 5), which
leads to 92 % dodecane (16a) with 3 equivalents of the reductant. The use of DMAP borane
(17qg) at 120 °C leads to similar results (entry 6, 8 and 9), although the yields are slightly
lower than with DHAP borane (30f). In order to see if solvent effects might influence the
reaction, the reduction with DMAP borane (17q) was compared in toluene, chloroform and
THF (compare entry 6 and 7 and compare entries 9, 10 and 11). The results for different
solvents are very similar, therefore solvent effects seem not to influence the reduction. A
further increase of the complex to 4 equivalents does not improve the yield (entry 12). Also
the extension of the reaction time to 120 minutes increases the yield only slightly (entry 14),
whereas already after 1 minute 9 % dodecane (16a) were detected (entry 13). Elevating the
reaction temperature to 160 °C does not provide a higher yield (entry 15) as well as the use
of DEAP borane (17z, entry 16). In summary, the use of 3 equivalents of cheap DMAP
borane (17q) in toluene at 120 °C seems to be a good base for further investigations.

R. _R
N
X y toluene, T[°C] DMAP-BH; (R=Me, 17q) } unsoluble in toluene
| Jo* {\/} > dodecane (16a) DEAP-BH; (R=Et, 17z) } soluble i toluene
®N 11 microwave, t [min] DHAP-BH3; (R=nHex, 30f)

|
©BH; Y-=1,Br, Cl
(xeq.)
Figure 136: General scheme for the reduction of alkyl halides with dialkylaminopyridines.

Table 15: Results for the reductions of 1-iodododecane (18d) according to Figure 136.

entry borane xeq. TI[°C] t [min] yield [%0]
1 DHAP-BH; (30f) 1 80 30 -
2 DHAP-BH; (30f) 3 100 60 -

3 DHAP-BH,(30f) 1 120 30 43
4 DHAP-BH; (30f) 2 120 30 67
5 DHAP-BH; (30f) 3 120 30 92
6 DMAP-BH; (17q) 1 120 30 32
7 UDMAP-BH; (17q) 1 120 30 32
8 DMAP-BH; (17q) 2 120 30 57
9 DMAP-BH; (17q) 3 120 30 75
10 UDMAP-BH; (17q) 3 120 30 82
11 @DMAP-BH; (17q) 3 120 30 71
12 DMAP-BH; (17q) 4 120 30 76
13 DMAP-BH; (17q) 3 120 1 9
14 DMAP-BH; (17q) 3 120 120 83
15 DMAP-BH; (17q) 3 160 30 76
16 DEAP-BH; (172) 3 120 30 46

@ Chloroform was used instead of toluene. ® THF was used instead of toluene.
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3.3.1.2. Reaction optimization with 1-bromododecane (18a) and 1-chlorododecane
(18i)

Based on the results for the reduction of l-iodododecane (18d), the substrate was
exchanged and the conditions optimized (Table 16). The reaction of 1-bromododecane (18a)
with DMAP borane (17q, 3 eq.) yields only 12 % dodecane (16a) after 30 minutes. Therefore,
the temperature was elevated (entry 2 and 3), which leads to 88 % dodecane (16a). Finally,
when conducting the reaction for 120 minutes at 200 °C, full conversion is achieved.

Table 16: Results for the reductions of 1-bromododecane (18a) with DMAP borane (17q)
according to Figure 136.

entry xeq. TI[°C] t [min] yield [%0]
1 3 120 30 12
2 3 160 30 69
3 3 200 30 88
4 3 200 120 99

In order to complete the alkyl halide reductions, 1-chlorododecane was reacted (Table 17). In
this case 33 % dodecane (16a) is formed after 120 minutes at 200 °C (entry 1). The yield can
be moderately improved to 54 % by elongation of the reaction time to 18 hours (entry 2). For
exclusion of a thermal decomposition of the alkyl halides, the pure substances in toluene
were exposed to 200 °C in the microwave and no formation of dodecane (16a) was detected.
As a preliminary result it can be stated that 1-iodododecane (18d) can be reduced at 120 °C
with DMAP borane (17q), whereas 200 °C and longer reaction times are needed for the
bromo and chloro analogues.

Table 17: Results for the reductions of 1-chlorododecane (18i) with DMAP borane (17q)
according to Figure 136.

entry xeq. T[°C] t [min] yield [%0]
1 3 200 120 33
2 3 200 1080 (18 h) 54

3.3.1.3. Independent control experiments

In order to exclude a radical mechanism for the reaction, the reduction was repeated with
addition of 30 mol% TEMPO as radical scavenger (Figure 137). After 30 minutes 75 %
dodecane (16a) are detected. The same yield is achieved when omitting TEMPO (Table 15,
entry 9, page 122), thus proving an ionic mechanism.
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Figure 137: Reduction of 1-iodododecane (18d) with DMAP borane (17q) in the presence of
TEMPO.

As benzimidazole borane (17e) had been used successfully in different ionic reductions, the
compound was also taken into account for the alkyl halide reductions (Figure 138). However,
no reduction of 1-iodododecane (18d) was observed for benzimidazole borane (17e). Other
complexes were not tested in this study.

toluene, 120 °C
\> ﬂ
microwave, 30 min
17e
(3eq.)

Y

Figure 138: Attempt to reduce 1-iodododecane (18d) with benzimidazole borane (17e).

3.3.1.4. Mechanistic aspects

All reductions with DMAP borane (17q) in toluene led to suspensions after the reactions were
finished. When analyzing these mixtures by *'B NMR, only traces of the unreacted starting
complex were found. Hence, it seemed obvious that some boron-containing compound had
precipitated during the reaction, and that this substance was completely insoluble in toluene.

3.3.1.4.1. X-ray structures

After several attempts to crystallize some boron containing compound from the crude
reaction mixtures, crystals of suitable quality were obtained for the reduction of
1-iodododecane (18d) and 1-bromododecane (18a). These crystals were grown by addition
of DCM to the crude toluene suspension until a clear, saturated solution had formed. DCM
was afterwards slowly removed, which led to colorless needles. The X-ray structures of the
two compounds are shown in Figure 139. These kinds of bispyridyl borane species had
already been found as products for the radical reduction of 1-iodododecane (18d, Figure 48,
page 43) and for the radical reduction of xanthates (Figure 78, page 77). Further attempts to
crystallize the chloro analogue from the reduction of 1-chlorododecane (18i) failed, but it is
strongly assumed that also in this case a bispyridyl species is formed.
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Figure 139: X-ray structures of the bispyridyl borane species 29b and 29t.

3.3.1.4.2. "B NMR analysis

To ensure, that the bispyridyl borane complex is the only boron-containing product, the
reduction was repeated with the better soluble DHAP borane (30f) and 1l-iodobutane (18j) as
substrate (Figure 140a). A clear solution was obtained after 30 minutes thus ensuring to
detect all non-volatile boron species in the following *'B NMR measurement (Figure 140b).
Beside DHAP borane (30f), the bispyridyl borane complex 30g was found as the only boron
containing compound.
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Figure 140: (a) Reduction of 1-iodobutane (18j) with DHAP borane (30f). (b) B NMR
measurement after the reaction.
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3.3.1.4.3. Mechanism

The suggested mechanism for the reduction of alkyl halides with dialkylaminopyridine
boranes is depicted in Figure 141. As the reaction is conducted at higher temperatures, the
initial borane complex may be in equilibrium with the free base and “BH3”. The reaction of the
borane complex with an alkyl halide leads to the iodoborane complex and an alkane. This
iodoborane now removes the free base from the quilibrium to form the bispyridyl borane
complex. The liberated “BHj;” finally may form the volatile diborane (boiling point: -93 °C).

NR,
X
A | — NR;
—
/ N X
NR, +BHz | »
e o
| X . \QX I H—LID)éH X
_ ®
®N 11 X\ NR; N |
© BH; @ NN
“ NR
®N ?
O BH,X
X = halide + dodecane (16a)

Figure 141: Suggested mechanism for the reduction of alkyl halides with
dialkylaminopyridine boranes.

3.3.1.4.4. *H NMR studies

The *H NMR spectrum of pure iodoborane 29¢ in CDCl; is shown in Figure 142b (below).
When successively adding DMAP borane (17q) to the solution, the signals in the *H NMR
stay unaltered and do not show a second distinguished species. This study shows on the
one hand, that the bispyridyl borane species 29b is not formed by the reaction of DMAP
borane (17q) with iodoborane 29c. On the other hand, a very fast exchange of the “BH;” and
the “BH.,I” group seems plausible, as only one set of signals is found, when both compounds
are present.
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Figure 142: 'H NMR study in CDCly: Successive addition of DMAP borane (17q) to
iodoborane 29c.

A 'H NMR study on the successive addition of DMAP (27) to iodoborane 29c¢ is shown in
Figure 143. The bispyridyl borane complex 29b is formed instantly by the addition of DMAP
(27). Subsequently, a 1:1 mixture of iodoborane 29c and DMAP (27) leads to full conversion
to the bispyridyl borane species 29b. By addition of DMAP (27) in excess, the free base can
also be seen in the 'H NMR measurement. Finally, the shown 'H NMR studies strongly
support the suggested mechanism (Figure 141, page 126). The formation of the bispyridyl
borane complex occurs by the reaction of free DMAP (27) and a halogenated borane
complex.
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Figure 143: *H NMR study in CDCls;: Successive addition of DMAP (27) to iodoborane 29c.

3.3.1.5. Time-conversion measurement

A time-conversion plot for the reduction of 1-iodododecane (18d) with DMAP borane (17q) at
120 °C could not be directly followed by *H NMR due to the boiling point of toluene (111 °C)
and at 100 °C no reaction was apparent. Further attempts to run the reaction at 120 °C in
DMSO (boiling point: 189 °C) also failed due to a reaction of the substrate with the solvent
(Figure 144).
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Figure 144: Reaction of alkyl halides with DMSO.

Therefore, a separate experiment was set up for each point of the time-conversion study.
The borane comlex (3 eq.), 1l-iodododecane (18d) and 0.5 ml toluene were added into a
microwave vial with a magnetic stirring bar and closed with a cap. Afterwards the suspension
was heated to 120 °C. The delay for the heat up from room temperature to the desired
temperature was about 20 to 30 seconds and was neglected in this study. The reaction was
run for a defined time and then quickly cooled down by a nitrogen flow induced by the
microwave. The cooldown from 120 °C to 100 °C (where no further reaction should occur)
was about 5 seconds and was also neglected. After cooling to room temperature, the solvent
was removed under reduced pressure and the residue dissolved in CDCls. The resulting
clear solution was used for *H NMR measurements. Figure 145 shows the so obtained time-
conversion plot, in which each set of three points displays a separate experiment. Full
conversion was obtained after a reaction time of 10 hours. Furthermore only two equivalents
of DMAP borane (17q) are consumed, leading to one equivalent of the bispyridyl borane
29b. These findings fit perfectly to the mechanism (Figure 141, page 126).
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Figure 145: Time-conversion plot for the reduction of 1-iodododecane (18d) with DMAP
borane (17qg) at 120 °C in toluene.
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3.3.2. Reduction of chloroform

When trying to repeat the time-conversion study with 1-iodododecane (18d) from an initially
prepared stock solution in CDCl3, a reaction between the solvent and the borane complex
was noticed (at 120 °C).

3.3.2.1. NMR studies

The reaction of DMAP borane (17q) with CDCl; at 120 °C was investigated. When exposing
DMAP borane (17q) for 16 hours to 120 °C in CDCl;, the borane complex is completely
consumed. The *H and **B NMR measurements after 16 hours are shown in Figure 146. The
formation of three new dimethylaminopyridine borane species (29u, 29v and 29w) can be
nicely seen in the measurements. Furthermore a triplet (3J = 1.10 Hz) shows up in the
'H NMR measurement at 5.23 ppm (see inlet). This signal could be assigned to DCM-d;.
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Figure 146: NMR study of the reaction of DMAP borane (17q) in CDCl; at 120 °C after

16 hours.
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3.3.2.2. Mechanism

The depicted NMR measurements lead to a supposed mechanism (Figure 147), which is
slightly different as the mechanism shown before (Figure 141, page 126). DMAP borane
(17q) reacts with CDCl; to form cloroborane 29u and CDHCI,. This monochlorinated borane
can then either react with CDClI3, leading to the dichlorinated borane 29v and CDHCI,, or
react with free DMAP (27), which leads to the bispyridyl borane 29w. The main difference to
other reactions is that CDCI; is reactant and solvent at the same time. Therefore, the
formation of the bispyridyl borane species seems only to occur in traces, as CDCl; is present
in large excess.

cDCl
DMAP-BH, %~ DMAP-BH,CI + CDHC,
17q A 29u
A
AN\_ CDCls
DMAP
27
N DMAP-BHCI, + CDHCI,
BHsT | 29v
®DMAP
©BH, oc
® DMAP
29w

Figure 147: Suggested mechanism for the reaction of DMAP borane (17q) with CDClI; at
120 °C.

3.3.2.3. Time-conversion measurement

Finally, also for this reaction a time-conversion plot was measured by *H NMR spectroscopy.
As in the study of the reduction of 1-iodododecane (18d) a separate experiment was applied
for each point of the measurement. Therefore, a stock solution of DMAP borane (17q) in
CDCl; was used and 0.6 mL of this solution were exposed to 120 °C under microwave
irradiation (closed vessel) for a defined time. The delays for heating up (ca. 20 seconds) as
well as for the cool down (ca. 5 seconds) were neglected. The resulting time-conversion plot
is shown in Figure 148. The formation of DCM-d; was not included in the plot, due to its low
boiling point. The decay of DMAP borane (17q) is completed after 16 hours. The formation of
the monochlorinated borane complex 29u represents the main process. The consumption of
this species can be nicely seen, leading to the dichlorinated borane complex 29v and the
bispyridyl borane 29w as a side product.
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Figure 148: Time-conversion plot for the reaction of DMAP borane (17q) in CDCl; at 120 °C.
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4. Conclusion and outlook

A general scheme of applications for borane complexes used in this work is shown in Figure
149.
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Figure 149: Applications of borane complexes used in this work: General scheme for radical
and ionic reactions.

An initial screening of different classes of heterocyclic borane complexes had shown that
dialkylaminopyridine boranes are suitable as hydrogen atom donors in radical chemistry,
when used under the right conditions. The importance of the radical starter has been studied
in detail. All tested standard initiators like AIBN (2a) or BEt; (2b)/O, turned out not to work in
combination with dialkylaminopyridine boranes. The reason for this is that the formation of an
oxygen-centered radical is indispensable. However commercial sources like
di-tert-butylperoxide (2c¢) or dicumylperoxide (2f) could not be used for this purpose. Thermal
initiation with these high temperature initiators was impossible, as the borane complexes did
undergo an ionic reaction with the substrate (alkyl halides) at temperatures over 120 °C.
Initiation on irradiation also failed due to decomplexation of the borane. TBHN (2d) which
showed a half-life time of ty, = 520 seconds at 80 °C led to a successful initiation, generating
two tert-butoxy radicals by release of nitrogen. DBHN (2e) as low temperature initiating
hyponitrite was also taken into account. However these experiments failed, showing the
temperature dependence beside the formation of an oxygen-centered radical. As a proof of
concept, TBPP (31a, half-life time t;, = 390 seconds at 90 °C) was synthesized and also
successful applied as initiator. The choice of the right starter, the right borane and a
convenient temperature led to a moderate yield of dodecane (16a, 45 %) with respect to the
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radical reduction of 1-iodododecane (18d). By addition of a thiol as catalyst (TDT (15b)) a
guantitative conversion could be achieved.

Radical reductions of xanthates showed quite fast and very effective reactions with
dialkylaminopyridine boranes. A full conversion of xanthate 18c to dodecane (16a) could be
achieved within 4 minutes. Even the use of TDT (15b) as catalyst is not necessary in terms
of xanthate reductions, which was shown on the basis of several examples and a detailed
mechanistic study. Also for the secondary xanthate 18f an effective reduction to decane
(30c, quantitave yield after 30 minutes) was observed. However, the structure of the
xanthate seems to influence the reaction outcome. Reactions with xanthate 18c, which bears
a methyl group on the sulfur, led exclusively to dodecane (16a) as the product. Various
experiments with xanthates having a longer chain attached to the S-atom (here a dodecyl
group) showed a different product distribution. In these cases, the sulfur side of the xanthate
was mainly reduced. Furthermore, studies on the selectivity between the reduction of
xanthate 18c and l-iodododecane (18d) in one pot reactions have been conducted with
different hydrogen atom donors. The results of these preliminary studies may be of high
synthetic interest. BuzSnH (1a) showed a reduction ratio of 1 : 0.36 (iodide : xanthate),
whereas NHC borane 17y exclusively reduced the iodide. Hence, for the reduction with
DMAP borane (17q) a high selectivity for the xanthate 18c was observed
(iodide : xanthate = 1 : 4.33).

With respect to ionic reductions the use of dialkylaminopyridine boranes as well as
imidazole-derived borane complexes were studied. Primary alkyl halides could be reduced
with DMAP borane (17q) to the corresponding alkane when exposing them to higher
temperatures in toluene. The reductions were conducted in a microwave (closed vessel) and
led to full conversions for 1l-iodododecane (18d, after ten hours at 120°C) and
1-bromododecane (18a, after two hours at 200 °C). 1-Chlorododecane (18i) yielded 54 %
dodecane (16a) after 18 hours at 200 °C. It should be mentioned that in all cases the
formation of bispyridyl borane species was observed.

Reductions of ketones and aldehydes were performed with imidazole-derived borane
complexes in THF, methanol, toluene or benzene and led to the corresponding alcohols in
high yields after workup. A borane screening had shown the importance of the free NH-
moiety of the imidazole-derived borane complex, which is strongly assumed to activate the
carbonyl group of the substrate. The complex formation of borane polymers during the
reduction was studied in detail, based on ESI-MS and NMR experiments. As benzimidazole
borane (17e) is a cheap compound that is easy to handle and can be stored under air over
month, synthetic advantages of this compound are obvieous. Reductions of ketons, imines or
aldehydes can be conducted at room temperature within five minutes in THF or methanol. An
improved aqueous workup, followed by extraction offers a very easy and highly effective
route of pure reduction products in almost quantitative yields. Another advantage is the
reduction in apolar solvents like toluene or benzene and may be of high interest for synthetic
purposes. As an example, the reduction of acetophenone (26a) with benzimidazole borane
(17e) was shown, which led to a full conversion after 700 seconds at a moderate
temperature of 60 °C in benzene.

When conducting reductions with benzimidazole borane (17e) in DMSO, the formation of the
DMSO borane adduct (17ad) was observed. It is strongly assumed that due to the formation
of this adduct a reduction of ketones in DMSO does not take place, whereas fast reductions
of imines are possible.
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Outlook:

The various studies presented in this work offer the fundament for further studies on
heterocyclic borane complexes in radical and ionic reactions. Good results for the radical
reduction of 1l-iodododecane (18d) with dialkylaminopyridine boranes have been reported in
this work, however attempts to reduce 1-bromododecane (18a) failed. Attempts to reduce
l-iodododecane (18d) with pyridine borane (17t), which also failed, strongly suggest the
importance of electronic effects for an effective hydrogen atom donor. A hypothetical
example for an “ultra-electron-rich” pyridine derived borane complex is shown in Figure 150,
which could be a future project for an effective hydrogen atom donor.
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Figure 150: Hypothetic “ultra-electron-rich” borane complex.

Furthermore, the scope of substrates could be extended to secondary or tertiary alkyl
halides. As the reduction of xanthates had shown very promising and effective results, a wide
field of applications in this direction is also possible. One promising project could be the
optimization of reaction conditions towards the selectivity in the reduction of xanthates in the
presence of alkyl iodides. As the reactivity of xanthates with dialkylaminopyridine boranes
seems relatively high, a lower initiation temperature (eventually by use of another radical
starter) may improve the selectivity for the xanthate over the iodide (Figure 151).
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Figure 151: Improvement of the selectivity: A possible future project.
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Radical reductions of xanthate 18c led to dodecane (16a) and thus imply that the oxygen-
bound alkyl group was reduced. Yet, xanthates with a dodecyl group on the sulfur were
mainly reduced on the “sulfur-side”. Further studies on this finding may also give a more
detailed insight in the reduction of xanthates. One possible idea could be the systematic
elongation of the “sulfur-side” alkyl chain, followed by a product analysis after the reduction
(Figure 152).
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Figure 152: Systematic elongation of the “sulfur-side” alkyl chain of xanthates.

The combination of radical and ionic chemistry of a dialkylaminopyridine boranes could also
offer interesting synthetic options. In a one pot reaction a xanthate could first be reduced
under radical conditions at 80 °C (or eventually lower) and afterwards the iodide by just
increasing the temperature to 120 °C (Figure 153, path a). This concept could also be
applied the other way around on a radical pathway. With the use of an NHC borane the
iodide could be reduced first and after addition of a dialkylaminopyridine borane, the xanthate
could be reduced afterwards (Figure 153, path b).
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Figure 153: Selective reductions of a xanthate and an iodide.

One could also think about chiral borane complexes for enantioselective reductions. With the
help of this work, very important basic investigations on reaction mechanisms were made.
The high potential of the shown borane complexes in versatile reactions opens new ways
and strategies for future studies.
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5. Experimental details

5.1. General working techiques

All reactions were carried out according to the standard procedure in organic chemistry and,
if air or moistire sensitive, under nitrogen atmosphere. Glassware was dried with a heat gun
prior to use. Syringes, which were used to transfer anhydrous solvents or reagents, were
purged three times with nitrogen.

5.1.1. Reagents and solvents

All chemicals were purchased at Sigma-Aldrich, Fluka, Acros, Merck KGaA or ABCR and, if
not indicated, used without further purification. Tributyl tinhydride (1a), CS, and benzyl
bromide (20c) were distilled prior to use. Ortho-phenylenediamine (35e) was recrystallized
from chloroform/ isohexane prior to use. Solvents for column chromatography were of
technical grade and obtained by the chemical supply of the faculty. These solvents were
distilled (rotary evaporator). Solvents for reactions were either used in HPLC grade (sealed
with a septum) or were dried according to standard procedures by distillation or drying
agents.

CH_Cl,, CHCI; and CDCI; were predried over CaCl, and distilled from CaH, under nitrogen.
THF, benzene and toluene were continuously refluxed and freshly distilled from sodium/

benzophenone under nitrogen.

5.1.2. Chromatography

Thin layer chromatography (TLC) was performed using SiO, pre-coated aluminium plates
(Merck TLC Silica gel 60 Fs4). Analysis of TLCs was performed by 254 nm UV irradiation, by
incubating the plates in an iodine chamber and/or by staining of the TLC plate with one of the
reagents given below followed by heating with a heat gun:

KMnQO, (3.0 g), conc. H,SO, (5 drops) in water (300 mL).

Hanessian stain: (NH4)sM070,4x4H,0 (5.0 g), 1 g Ce(S0O,),, conc. H,SO4 (10 mL) in water
(90 mL)

Flash column chromatography was performed with SiO, (0.040 — 0.063 mm) from Merck.
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5.2. Analytical methods
5.2.1. NMR spectroscopy

'H NMR and **C NMR spectra were recorded on VARIAN Mercury 200, BRUKER ARX 300,
VARIAN VXR 400 S and BRUKER AMX 600 instruments. *B NMR spectra were recorded
on a Jeol GSX-270 machine. All measurements were done in standard NMR glass tubes
(diameter: 5 mm). Chemical shifts are reported as d-values inppm relative to
tetramethylsilane.®”

CDCl3 (6 3H =7.26 ppm; 6 C = 77.16 ppm).

DMSO-ds (6 6 H = 2.50 ppm; 6 C = 39.52 ppm).

CsDs (6 6 H=7.16 ppm; 6 6 C = 128.06).

Toluene-dg (6 8 H = 2.08, 6.97, 7.01 and 7.09 ppm; 6 7 C = 137.48, 128.87, 127.96, 125.13
and 20.43 ppm).

The following abbreviations were used to characterize signal multiplicities: s (singlet),
d (doublet), t (triplet), g (quartet), m (multiplet) as well as br (broadened).

5.2.2. Mass spectrometry

High resolution (HRMS) and low resolution (MS) spectra were recorded on a FINNIGAN MAT
95Q mass spectrometer. Electron impact ionization (EI) was conducted with an ionization
energy of 70 eV. Gas chromatograms were recorded with a Varian 3400 GC instrument with
a CS-Supreme-5 capillary column. Mass numbers m/z are reported in atomic units (u).
Furthermore, the relative intensities of molecular fragments (> 10 %) and, if possible, the
fragmentations are reported. For high resolution spectra, the formula and the exact mass is
also shown.

GC/MS
For coupled gas chromatography/mass spectrometry, a HEWLETT-PACKARD HP
6890/MSD 5973 GC/MS system was used.

ESI-MS spectrometry

Electrospray ionization measurements were recorded on a “Thermo Finnigan LTQ Ultra”
FT-ICR mass spectrometer. Spectra were recorded from 100 to 800 u. The spray capillary
tension was 4 kV, with a temperature of the heater capillary of 250 °C. For injections a
Suveyor MS pump was used at a rate of 100 ul/min. Standard samples were measured in
water/ acetonitrile (20:80). For water-sensitive substances dry solvents (eg. THF) were used
and the injection was done manually by a standard Hamilton syringe. The injection volume
was 1 — 10 pl.
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5.2.3. IR spectroscopy

Infrared spectra (IR) were recorded from 4500 cm™ to 650 cm™ on a PERKIN ELMER
Spectrum BX-59343 instrument. For detection a SMITHS DETECTION DuraSampliR I
Diamond ATR sensor was used. Wavenumbers are reported in cm™. The intensities of the
transmissions is indicated by the abbreviations vs (very strong), s (strong), m (medium),
w (weak), vw (very weak) as well as br (broadened).

5.2.4. Elemental analysis

Elemental analyses were conducted with a Heraeus Elementar Vario El instrument in the
micro analytical lab of the department. The content of C, H, N and S was determined.

5.2.5. Melting points

Melting points (mp) were determined on a BUCHI B-540 melting point machine and are
uncorrected. Compounds decomposing upon melting are indicated.

5.2.6. X-ray analysis

X-ray analyses were recorded in the structure analytical lab of the department on a
KappaCCD or a XCalibur instrument. Measurements were conducted with a Stoe-IPDS area
detector (MoK,-radiation, A = 0.71073 A, graphite monochromator). Temperature control was
granted by constant nitrogen flow. Final structures were obtained by the programs
SHELXS-97 and SIR97.

5.3. Procedures and analytical data

5.3.1. Synthesis of hyponitrites

Di-tert-butyl-hyponitrite (TBHN, 2d )& 82 &l

In a Schlenk flask under N, atmosphere, tert-butyloromide (5.30 mL, 47.17 mmol, 10.00 eq.)
and zinc chloride (19b, 1 ™M in Et,O, 5.20 mL, 5.19 mmol, 1.10 eq.) were added. This
suspension was stirred for 5 minutes at 0 °C. Afterwards, sodium hyponitrite (19¢, 0.50 g,
4.72 mmol, 1.00 eq.) was added in portions over 5 minutes to the mixture and stirred for
90 minutes at 0 °C. After that, the solvent was removed under reduced pressure. Therefore it
is worth mentioning that the temperature of the reaction flask should not exceed 20 °C. The
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residue was suspended in DCM whereat a precipitate was formed. The solid was filtered off,
the solvent of the remaining solution removed while not exceeding 20 °C and the crude
product was vigorously stirred with pentane (50 mL) for 3 minutes. At that point a brownish
tar began to deposit at the bottom of the flask. The clear and colorless pentane phase was
removed from this deposit and the solvent was removed at below 20 °C. Finally 2d was
obtained as a white solid (0.29 g, 1.64 mmol, 35 %). The compound can be stored at -18 °C
over months, but should not be kept at room temperature over a longer period.

'H NMR (300 MHz, CDCl;) § = 1.38 (s, 18H, H;-C1, Hs-C2, H3-C3, H5-C4, Hs-C5 and Hs-
C6) ppm.

13C NMR (75 MHz, CDCl3) § = 81.09 (C7 and C8), 27.71 (C1, C2, C3, C4, C5 and C6) ppm.

IR (ATR) ¥ (cm™): 2975 (m), 2935 (w), 2871 (w), 1476 (w), 1457 (w), 1391 (w), 1364 (s),
1267 (m), 1246 (m), 1186 (m), 1035 (w), 985 (vs), 926 (m), 859 (m), 761 (m), 720 (vw), 594
(s), 561 (vw), 555 (vw).

Elemental analysis [CgH1gN,O5]
Calc. (%): C 55.15, H 10.41, N 16.08.

Found (%): C 54.98, H 10.24, N 16.07.

Di-benzyl-hyponitrite (DBHN, 2e)®*

In order to protect the reaction from light, all flasks were wrapped in aluminum foil. All steps
were carried out in the dark. Sodium hyponitrite (19c, 2.11 g, 19.91 mmol, 1.00 eq.) was
dissolved in distilled water (15 mL). In a second flask a silver nitrate solution (20a, 7.44 g,
43.80 mmol, 2.20 eq. in 50 mL distilled water) was prepared. Afterwards the silver nitrate
solution was added over ten minutes to the hyponitrite solution and a yellow solid
precipitated immediately. After the addition, the yellow solid was filtered off, washed two
times with distilled water (50 mL) and twice with ethanol (30 mL). Residues of solvent were
removed under reduced pressure and silver hyponitrite (20b) was obtained as a yellow solid
(2.60 g, 9.50 mmol, 48 %). The substance was used for the following steps without further
purification.
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The reaction mixture of 2e should be kept cold at any time, as 2e already decomposes slowly
at room temperature. A solution of freshly distilled benzyl bromide (20c, 1.32 mL,
11.14 mmol, 2.00 eqg. in 8 mL DCM) was cooled to 0 °C under a nitrogen atmosphere.
Afterwards silver hyponitrite (20b, 1.53 g, 5.57 mmol, 1.00 eq.) was added in portions over
five minutes. In order to optimize the reaction time, the reaction progress was checked by
GC/MS until no decrease of benzyl bromide was detectable. After three hours the reaction
mixture was filtered off and the solvent was removed under reduced pressure (without
heating). The crude product was dissolved in pentane (20 mL). The flask was sealed with a
rubber cap and slightly cooled with liquid nitrogen (external cooling) until white crystals
began to precipitate. The crystals were filtered off (this should be done fast to avoid
condensation from air humidity). Finally, residual solvent was removed under reduced
pressure (without heating) and 2e was obtained as white crystals (0.53 g, 2.19 mmol, 39 %).
The substance can be stored at —=78 °C over a longer period.

'H NMR (300 MHz, CDCl3) 6 = 7.43 — 7.31 (m, 10H, Haomaic), 5.27 (s, 4H, H,-C1 and H,-
C8) ppm.

Tert-butyl peroxypivalate (TBPP, 31a)

10 6
2 5
\{7)81\0/0\{9/

3 4
The reaction was carried out under a nitrogen atmosphere. A commercially available solution
of tert-butyl hydroperoxide (31b, 5.5 m in decane, 1.00 mL, 5.50 mmol, 1.00 eq.) was mixed
with pentane (10 mL) and cooled to —-20 °C. Afterwards, n-butyllithium (2.5 M in hexane,
2.20 mL, 5.50 mmol, 1.00 eqg.) was slowly added. After five minutes pivaloyl chloride (31c,
0.68 mL, 5.50 mmol, 1.00 eq.) was added and brought to room temperature. Distilled water
(10 mL) was added, the organic layer removed and dried over MgSO,. Pentane was
removed under reduced pressure (300 mbar, 40 °C) by rotary evaporation for five minutes.
Remaining decane was not removed and a tert-butyl peroxypivalate (31a) solution in decane
was obtained (quantitative). For determination of the content of 31a in solution, 10.00 mg of
the solution were weighed into an NMR tube and 20.00 mg of TMB (22) were added as

internal standard. The amount of 31a (0.003 mmol/mg) in the solution was determined by
'H NMR spectroscopy.

'H NMR (300 MHz, CDCl3) § = 1.31 (s, 9H, Hs-C4, H;-C5 and H3-C6), 1.24 (s, 9H, Hs-C1,
H;-C2 and H;-C3) ppm.

13C NMR (75 MHz, CDCl;) § = 174.99 (C8), 83.31 (C9), 38.82 (C7), 27.21 (C4, C5 and C8),
26.07 (C1, C2 and C3) ppm.
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5.3.2. Synthesis of borane complexes and corresponding precursors

General procedure A: Synthesis of Lewis base (LB) borane complexes (LB-BHj3):

All reactions were done under a nitrogen atmosphere. A saturated solution of a Lewis base in
dry THF was cooled to 0 °C with an ice bath. Afterwards 1.10 eq. of BH; (5 M solution of
Hs;B*SMe; in Et,0) were added slowly at 0 °C and stirred for 10 min. At that point isohexane
was added (usually 5-10 fold excess) until no further precipitation of solids was visible
anymore. Stirring vigorously during the precipitation leads to the best results. The solid was
then filtered off (frit N4) and washed three times with isohexane. This step does not require
any cooling and inert gas atmosphere. The remaining solvent was removed under reduced
pressure to give the pure LB-BH; complexes in good to excellent yields.

For recrystallization a saturated solution of the borane-complex in chloroform at 60 °C was
prepared. Afterwards 5-10 mL of this solution were filtered into a small flask, which was
allowed to stand open until the solvent had evaporated. Thus, crystals of suitable quality for
X-ray measurements were grown.

2-Methylbenzoxazole borane (17a)
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17a was prepared according to general procedure A. 2-Methylbenzoxazole (41a, 1.00 g,
7.51 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a HsB*SMe, solution (5 M in Et,O, 1.65 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17a was obtained as a white solid (1.08 g, 7.36 mmol, 98 %).

Decomposition point: 115.2 — 115.7 °C.

'H NMR (300 MHz, CDCl3) & = 7.93 -7.89 (m, 1H, H-C2), 7.56 — 7.53 (m, 1H, H-C5), 7.49 —
7.44 (m, 2H, H-C3 and H-C4), 2.87 (s, 3H, Hs-C8), 2.65 — 1.79 (broad, g, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCls) § = 165.2 (C7), 148.7 (C6), 135.5 (C1), 126.8 (C3), 126.2 (C4),
118.0 (C2), 110.9 (C5), 13.3 (C8) ppm.

{*H} "'B NMR (270 MHz, CDCl3) § = -23.2 (S) ppm.

B NMR (270 MHz, CDCl3) § = -23.2 (broad, q) ppm.

142



5. Experimental details

IR (ATR) ¥ (cm™): 3019 (s), 2400 (m), 1591 (w), 1522 (w), 1477 (w), 1461 (m), 1424 (w),
1346 (vw), 1329 (vw), 1216 (s), 1003 (vw), 929 (w), 791 (s), 671 (vs), 627 (W).

MS (70 eV, El) m/z (%): 147 (IM]*, 11), 146 ([M-H]*, 100), 145 ([M-2H]", 35), 144 ([M-3H[",
12), 133 ([M-BHa]", 66), 104 (17), 77 (14), 76 (12), 64 (12), 63 (16).

HRMS (70 eV, EI): CgH;0BNO calc. 147.0861 g/mol [M]*, found 147.0778 g/mol.
Elemental analysis [CgH10BNO]
Calc. (%): C 65.37, H 6.86, N 9.53.

Found (%): C 63.95, H 6.71, N 9.29.

2-Phenylbenzoxazole borane (17b)

17b was prepared according to general procedure A. 2-Phenylbenzoxazole (41b, 1.00 g,
5.12 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a HsB*SMe, solution (5 M in Et,O, 1.13 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17b was obtained as a white solid (0.58 g, 2.77 mmol, 54 %).

Decomposition point: 104.5—-104.9 °C.

'H NMR (300 MHz, CDCl3) § = 8.54 — 8.47 (m, 2H, H-C2 and H-C5), 8.25 (dd, J = 6.90 Hz,
2.89 Hz, 1H, H-C3), 8.13 (dd, J = 5.99 Hz, 3.41 Hz, 1H, H-C4), 7.71 -7.30 (m, 5H, H-C9, H-
C10, H-C11, H-C12 and H-C13) 3.19 — 1.77 (broad, g, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCl;) § = 162.3 (C7), 148.5 (C6), 137.2 (C1), 133.4 (C8), 131.2 (C10
and C12), 128.9 (C11), 128.7 (C9 and C13), 127.3 (C3), 126.4 (C4), 119.1 (C2), 111.0

(C5) ppm.
{*H} B NMR (270 MHz, CDCl3) § = -21.8 (s) ppm.

B NMR (270 MHz, CDCl3) § = -21.8 (broad, q) ppm.

IR (ATR) ¥ (cm™): 3155 (w), 2985 (W), 2254 (s), 1794 (w), 1642 (w), 1470 (m), 1382 (m),
1216 (vw), 1167 (vw), 1096 (w), 924 (s), 902 (s), 891 (s), 763 (s), 704 (s), 647 (S), 625 (W),
543 (vw), 462 (w).
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MS (70 eV, El) miz (%): 209 ([M]*, 2), 206 ([M-3H]", 19), 196 ([M-BH,]*, 13), 195 ([M-BH[",
100), 167 (10), 63 (11).

HRMS (70 eV, El): C33H;,BNO calc. 209.1012 g/mol [M]*, found 209.0994 g/mol.
Elemental analysis [C13H1,:BNO]
Calc. (%): C 74.69, H 5.79, N 6.70.

Found (%): C 74.13, H5.74, N 6.43.

2-Methylbenzothiazole borane (17c)
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17c was prepared according to general procedure A. 2-Methylbenzothiazole (41c, 1.07 g,
7.17 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et;O, 1.58 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17c was obtained as a white solid (0.90 g, 6.61 mmol, 92 %).

Decomposition point: 123.2 — 123.8 °C.

'H NMR (300 MHz, CDCl5) § = 8.41 (d, J = 8.5 Hz, 1H, H-C2), 7.80 (ddd, J = 8.0 Hz, 1.3 Hz,
0.6 Hz, 1H, H-C5), 7.60 (ddd, J = 8.5 Hz, 7.3 Hz, 1.3 Hz, 1H, H-C3), 7.50 (ddd, J = 8.0 Hz,
7.3 Hz, 1.3 Hz, 1H, H-C4), 3.01 (s, 3H, H5-C8), 2.84 — 1.92 (broad, g, 3H, Hs-B). ppm.

3C NMR (75 MHz, CDCly) & = 170.91 (C7), 147.57 (C6), 129.99 (C1), 127.67 (C3 or C4),
126.84 (C3 or C4), 121.75 (C2 or C5), 121.53 (C2 or C5), 19.05 (C8) ppm.

{*H} "'B NMR (270 MHz, CDCl3) § = -20.43 (S) ppm.
B NMR (270 MHz, CDCl;) § = -20.45 (q, J = 97.4 Hz) ppm.

IR (ATR) ¥ (cm™): 3068 (vw), 2402 (m), 2298 (s), 2256 (m), 1955 (w), 1920 (w), 1794 (w),
1699 (w), 1610(w), 1572 (w), 1504 (w), 1457 (m), 1436 (s), 1372 (m), 1323 (m), 1287 (w),
1268 (m), 1203 (s), 1147 (s), 1130 (s), 1040 (m), 1012 (m), 957 (m), 943 (m), 925 (m), 884
(w), 852 (w), 755 (s), 726 (s), 710 (m), 660 (m).

MS (70 eV, El) m/z (%): 163 ([M]", 9), 162 ([M-H]*, 74), 161 ([M-2H]", 33), 160 ([M-3H]", 20),
150 (13), 149 ([M-BH.]*, 100), 148 ([M-Me]*, 23), 120 (16), 108 (27), 69 (16).
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HRMS (70 eV, EI): CgH;0BNS calc. 163,0627 g/mol [M], found 163.0567 g/mol.
Elemental analysis [CgH1iBNS]
Calc. (%): C 58.93, H 6.18, N 8.59.

Found (%): C 58.93, H 6.10, N 8.61.

2-Chlorobenzothiazole borane(17d)
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17d was prepared according to general procedure A. 2-Chlorobenzothiazole (41d, 1.07 g,
6.31 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H3B+SMe, solution (5 M in Et,O, 1.39 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17d was obtained as a slightly yellow solid (0.85 g, 4.63 mmol,
73 %).

Decomposition point: 93.0 — 93.8 °C.

'H NMR (300 MHz, CDCl5) & = 8.43 (d, J = 8.2 Hz, 1H, H-C2), 7.82 (d, J = 7.9, 1H, H-C5),
7.69 — 7.64 (m, 1H, H-C3), 7.62 — 7.57 (m, 1H, H-C4), 2.99 — 1.98 (broad, g, 3H, Hs-B) ppm.

13C NMR (75 MHz, CDCl;) 6 = 158.74 (C7), 145.75 (C6), 130.39 (C1), 128.45 (C3 or C4),
127.98 (C3 or C4), 122.53 (C2 or C5), 121.41 (C2 or C5) ppm.

{*H} "B NMR (270 MHz, CDCl;) § = —-19.08 (S) ppm.
B NMR (270 MHz, CDCl;) § = -19.08 (g, J = 98.8 Hz) ppm.

IR (ATR) ¥ (cm™): 3113 (w), 2548 (m), 2501 (m), 2430 (m), 1588 (w), 1574 (w), 1478 (m),
1466 (m), 1416 (m), 1405 (m), 1380 (m), 1355 (m), 1344 (m), 1327 (m), 1299 (s), 1272 (m),
1255 (m), 1209 (m), 1198 (m), 1161 (m), 1126 (m), 1088 (s), 1052 (m), 1020 (s), 994 (m),
978 (s), 947 (m), 923 (m), 894 (m), 855 (w), 846 (w), 832 (m), 774 (m), 756 (s), 722 (s), 706
(m), 687 (M), 668 (s), 650 (s), 600 (s), 614 (M), 572 (S).

MS (70 eV, El) m/z (%): 182 (IM-HJ, 64), 181 ((M-2H]*, 20), 172 ([M-BJ, 10), 171 ([M-BH[",
100), 154 (14), 134 (43), 108 (72), 77 (11), 63 (21), 58 (10), 54 (10), 50 (12).

HRMS (70 eV, EI): C;H;BCINS calc. 181.9997 g/mol [M-H]", found 181.9919 g/mol.
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Elemental analysis [C;H;BCINS]
Calc. (%): C 45.83, H 3.85, N 7.63.

Found (%): C 44.95, H 3.76, N 7.51.

Benzimidazole borane (17€)

17e was prepared according to general procedure A. Benzimidazole (4le, 1.00g,
8.46 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a HsB*SMe, solution (5 M in Et,O, 1.86 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17e was obtained as a white solid (0.82 g, 6.18 mmol, 73 %).

Decomposition point: 127.1 — 128.7 °C.

'H NMR (300 MHz, DMSO-dg) & = 13.77-13.49 (broad, s, 1H, H-N), 8.83 (s, 1H, H-C1), 7.76-
7.71 (m, 1H, H-C3), 7.66-7.62 (m, 1H, H-C6), 7.43-7.38 (m, 2H, H-C4 and H-C5), 2.82-1.75
(broad, q, 3H, Hs-B) ppm.

3C NMR (75 MHz, DMSO-d¢) § = 142.54 (C1), 136.64 (C2), 132.18 (C7), 124.95 (C4 or C5),
124.30 (C4 or C5), 116.24 (C3), 113.50 (C6) ppm.

{*H} B NMR (270 MHz, DMSO-d¢) § = —20.40 (s) ppm.
B NMR (270 MHz, DMSO-d¢) § = —20.13 (broad, q) ppm.

IR (ATR) ¥ (cm™): 3276 (vs), 3129 (m), 3045 (w), 2913 (w), 2837 (w), 2352 (s), 2291 (S),
2244 (s), 1915 (w), 1789 (w), 1762 (m), 1626 (m), 1603 (m), 1532 (s), 1497 (w), 1466 (m),
1420 (s), 1368 (w), 1321 (s), 1254 (m), 1186 (vs), 1157 (s), 1140 (m), 1115 (m), 1039 (m),
1001 (m), 966 (m), 944 (m,), 884 (s), 850 (w), 760 (vs), 753 (vs), 677 (vs), 665 (vs).

MS (70 eV, El) miz (%): . 132 (M]*, 37), 131 (([M-H]*, 100), 130 (([M-2H]", 37), 129 (([M-
3HJ*, 18), 119 ((M-BH,]*, 10), 118 (([M-BH4]", 97), 103 (21), 102 (13), 91 (24), 72 (19), 71
(17), 63 (10), 44 (12), 43 (10), 42 (44), 41 (21), 39 (10).

HRMS (70 eV, El): C;H¢BN, calc. 132.0859 g/mol [M]", found 132.0860 g/mol.

Elemental analysis [C;HsBN]
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Calc. (%): C 63.71, H 6.87, N 21.23.

Found (%): C 63.67, H 6.89, N 21.17.

1-Methylbenzimidazole borane (17f)
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17f was prepared according to general procedure A. 1-Methylbenzimidazole (41f, 1.00 g,
7.57 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a HsB+*SMe, solution (5 M in Et,O, 1.67 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17f was obtained as a white solid (1.02 g, 6.96 mmol, 92 %).

Decomposition point: 118.5 - 118.9 °C.

'H NMR (300 MHz, CDCls) & = 8.15 (s, 1H, H-C1), 7.96 — 7.92 (m, 1H, H-C3), 7.47 — 7.43
(m, 3H, H-C4, H-C5, H-C6), 3.90 (s, 3H, Hs-C8), 3.06 — 1.69 (broad, g, 3H, Ha-B) ppm.

13C NMR (75 MHz, CDCl,) & = 142.12 (C1), 137.08 (C2), 132.91 (C7), 125.09 (C4 or C5),
124.69 (C4 or C5), 117.30 (C3), 110.38 (C6), 32.16 (C8) ppm.

{*H} "'B NMR (270 MHz, CDCl;) § = -22.39 (s) ppm.
B NMR (270 MHz, CDCl;) § = —22.31 (broad, q) ppm.

IR (ATR) & (cm™): 3121 (w), 3062 (w), 2945 (w), 2340 (m), 2289 (s), 2254 (s), 1760 (w),
1621 (w), 1600 (w), 1576 (w), 1543 (s), 1477 (w), 1464 (m), 1416 (w), 1385 (m), 1344 (m),
1314 (m), 1259 (m), 1209 (w), 1159 (vs), 1127 (s), 1117 (m), 1078 (m), 1004 (m), 979 (m),
939 (m), 882 (w), 872 (m), 850 (w), 771 (m), 752 (vs), 734 (vs).

MS (70 eV, El) miz (%): 146 ([M], 9), 145 ([M-H]*, 100), 144 ([M-2H]", 34), 132 ([M-BH3]",
98), 131 ([M-BHs-HJ*, 40), 117 ([M-BHs-CHs]*, 20), 116 ([M-BHs-CHs-H]*, 22), 104 (20), 77
(21), 63 (14).

HRMS (70 eV, El): CgH1.BN, calc. 146.1015 g/mol [M]*, found 146.0985 g/mol.
Elemental analysis [CgH11BN]
Calc. (%): C 65.81, H 7.59, N 19.19.

Found (%): C 65.32, H 7.57, N 18.94.
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2-Methylbenzimidazole borane (17g)
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17g was prepared according to general procedure A. 2-Methylbenzimidazole (1.00 g,
7.57 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et,O, 1.67 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17g was obtained as a white solid (0.86 g, 5.90 mmol, 78 %).

Decomposition point: 180.0 — 182.0 °C.

'H NMR (300 MHz, DMSO-d¢) § = 13.50-13.24 (broad, 1H, H-N), 7.70-7.66 (m, 1H, H-C3),
7.56-7.51 (m, 1H, H-C6), 7.34-7.29 (m, 2H, H-C4, H-C5), 2.61 (s, 3H, Hs-C8), 2.43-1.72
(broad, g, 3H, Hs-B) ppm.

13C NMR (75 MHz, DMSO-d¢) § = 151.79 (C1), 137.47 (C2), 131.47 (C7), 124.26 (C4 or C5),
123.62 (C4 or C5), 116.06 (C3), 112.44 (C6), 13.00 (C8) ppm.

{*H} "B NMR (270 MHz, DMSO-d¢) § = —-21.81 ppm.
B NMR (270 MHz, DMSO-d¢) § = -21.80 (broad, q) ppm.

IR (ATR) ¥ (cm™): 3275 (s), 3095 (w), 2400 (s), 2290 (s), 2240 (s), 1937 (w), 1756 (w), 1628
(m), 1605 (w), 1580 (w), 1549 (s), 1507 (m), 1475 (m), 1458 (s), 1419 (m), 1395 (w), 1318
(w), 1291 (w), 1256 (w), 1244 (w), 1225 (w), 1197 (m), 1163 (s), 1152 (s), 1142 (s), 1120
(m), 1102 (m), 1069 (w), 1041 (w), 1019 (w), 1006 (m), 962 (w), 949 (m), 923 (w), 891 (w),
831 (w), 753 (m), 737 (vs), 693 (w), 659 (s).

MS (70 eV, El) m/z (%): 146 (M, 9), 145 ([M-H], 100), 144 ([M-2H]", 49), 143 ([M-3H]",
22), 132 ([M-BH3]", 32), 131 (17), 103 (18), 102 (10).

HRMS (70 eV, EIl): CgH1.BN, calc. 146.1015 g/mol [M]*, found 146.1017 g/mol.
Elemental analysis [CgH11BN]
Calc. (%): C 65.81, H 7.59, N 19.19.

Found (%): C 65.51, H 7.53, N 19.05.

148



5. Experimental details

2-Chloro-1-methylbenzimidazole (41h)
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In a Schlenk flask under N, atmosphere 2-chlorobenzimidazole (41ha, 2.29 g, 15.04 mmol,
1.00 eq.) was dissolved in THF (40 mL) and cooled to 0 °C. Afterwards n-butyllithium (2.5 m
solution in hexane, 6.60 mL, 16.54 mmol, 1.10 eq.) was added, the external cooling
removed and the solution stirred for 10 minutes. Thereafter methyl iodide (1.03 mL,
16.54 mmol, 1.10 eq.) was added and the solution was stirred for 20 minutes. Distilled water
(30 mL) was added, the aqueous phase was three times extracted with DCM, the combined
extracts dried over MgSO, and the solvent was removed under reduced pressure. The
resulting solid was washed two times with isohexane (20 mL). 41h was obtained as white
solid (1.50 g, 9.00 mmol, 60 %).

Melting point: 103.4 — 103.6 °C.

'H NMR (300 MHz, CDCls) & = 7.68 (ddd, J = 6.6 Hz, 3.1 Hz , 1.4 Hz, 1H, H-C2), 7.29 — 7.23
(m, 3H, H-C3, H-C4 and H-C5), 3.74 (s, 3H, H3-C8) ppm.

3C NMR (75 MHz, CDCl3) & = 141.55 (C1), 140.91 (C7), 135.57 (C6), 123.12 (C3 or C4),
122.68 (C3 or C4), 119.28 (C2), 109.24 (C5), 30.46 (C8) ppm.

IR (ATR) ¥ (cm™): 3057 (vw), 1617 (w), 1476 (s), 1466 (m), 1427 (m), 1372 (m), 1349 (m),
1329 (m), 1286 (m), 1157 (m), 1114 (w), 1006 (m), 931 (w), 896 (w), 824 (w), 762 (m), 733
(vs),656 (w).

MS (70 eV, El) m/z (%): 166 ([M]*, 44), 165 ([M-H]*, 11), 154 (33), 152 (100), 117 (10), 90
(25), 63 (10).

HRMS (70 eV, El): CgH,CIN, calc. 166.0298 g/mol [M]", found 166.0288 g/mol.
Elemental analysis [CgH;CIN,]
Calc. (%): C57.67, H 4.24, N 16.81.

Found (%): C 57.60, H 4.53, N 16.68.
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5. Experimental details

2-Chloro-1-methylbenzimidazole borane (17h)
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le was prepared according to general procedure A. 2-Chloro-1-methylbenzimidazole (41h,
0.77 g, 4.59 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution
was cooled to 0 °C and a HzB*SMe, solution (5 M in Et,O, 1.01 mL, 1.10 eq.) was added.
After 10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17h was obtained as a white solid (0.71 g, 3.94 mmol, 83 %).

Decomposition point: 128.8 —129.0 °C.

'H NMR (300 MHz, CDCl;) 6§ = 8.05 — 7.90 (m, 1H, H-C2), 7.49 — 7.32 (m, 3H, H-C3, H-C4
and H-C5), 3.88 (s, 3H, H5-C8), 2.77 — 1.87 (broad, q, 3H, Hs-B) ppm.

13C NMR (75 MHz, CDCl,) § = 140.57 (C7), 136.36 (C1), 132.55 (C6), 125.44 (C3 or C4),
125.05 (C3 or C4), 117.62 (C2), 109.96 (C5), 31.39 (C8) ppm.

{*H} "B NMR (270 MHz, CDCl;) § = —-21.82 (S) ppm.
B NMR (270 MHz, CDCl;) § = -21.83 (broad, q) ppm.

IR (ATR) ¥ (cm™): 2351 (m), 2309 (m), 2263 (m), 1735 (w), 1509 (m), 1482 (m), 1432 (m),
1394 (m), 1343 (w), 1300 (w), 1248 (w), 1161 (s), 1143 (m), 1125 (m), 1008 (w), 940 (m),
772 (m), 750 (vs).

MS (70 eV, El) m/z (%): 180 (M, 6), 179 ([M-HJ*, 39), 168 ([M-BH]", 32), 167 ([M-BH,J",
17), 166 ([M-BH,]", 100), 165 ([M-Me]", 32), 145 ([M-CIJ*, 19), 132 (99), 131 (57), 129 (16),
104 (30), 90 (16), 77 (21), 63 (10).

HRMS (70 eV, El): CgH1oBCIN, calc. 180.0626 g/mol [M]", found 180.0505 g/mol.
Elemental analysis [CgH10BCIN]
Calc. (%): C 53.25, H 5.59, N 15.53.

Found (%): C 53.03, H 5.47, N 15.49.
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5. Experimental details

2-(Trifluoromethyl)-benzimidazole (41ia)
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Ortho-phenylenediamine (35e, 2.00 g, 18.50 mmol, 1.00 eq.), trifluoroacetic acid (1.71 mL,
22.19 mmol, 1.20 eq.), toluene (30 mL) and distilled water (6 mL) were poured into a 80 mL
microwave vessel under ambient atmosphere. The reaction was conducted in a microwave
(closed vessel) at 160 °C for 60 minutes. After cooling down, light blue needles had grown in
the toluene layer. The solid was filtered off and washed twice with toluene. After removal of
all volatiles under reduced pressure, 4lia was obtained in form of pale blue needles (2.75 g,
14.79 mmol, 80 %).

Melting point: 207.9 — 208.2 °C.

'H NMR (300 MHz, DMSO-d¢) § = 14.00 — 13.64 (broad, s, 1H, H-N), 7.83 — 7.55 (m, 1H, H-
C2), 7.44 — 7.25 (m, 3H, H-C3, H-C4 and H-C5) ppm.

3C NMR (75 MHz, DMSO-d¢) 6 = 142.23 (C1), 140.45 (q, 2J(C,F) = 39.4 Hz, C7), 134.22
(C6), 125.42 (C3 or C4), 123.60 (C3 or C4), 120.84 (C2), 119.50 (q, *J(C,F) = 270.4 Hz, C8),
113.18 (C5) ppm.

9F NMR (376 MHz, DMSO-dg) & = -62.83 ppm.

IR (ATR) ¥ (cm™): 2969 (w), 2911 (w), 2873 (w), 2758 (w, br), 2655 (w), 1625 (w), 1594 (w),
1551(m), 1500 (m), 1462 (m), 1444 (w), 1400 (m), 1317 (m), 1287 (s), 1266 (w), 1232 (m),
1191 (s), 1168 (vs), 1141 (vs), 1129 (vs), 1117 (s), 1007 (w), 980 (s), 958 (m), 938 (w), 907
(w), 875 (w), 814 (w), 768 (w), 750 (s), 740 (vs).

MS (70 eV, El) m/z (%): 186 ([M]*, 100), 178 (53), 166 ([M-F-HJ*, 43), 161 (22), 128 ([M-3F-
HJ*, 33), 109 (23), 69 (16), 57 (15), 44 (38), 43 (14), 42 (28), 41 (19).

HRMS (70 eV, El): CgHsF3N, calc. 186.0405 g/mol [M]*, found 186.0406 g/mol.
Elemental analysis [CgHsF3N3]
Calc. (%): C 51.62, H 2.71, N 15.05.

Found (%): C 51.63, H 2.71, N 14.96.
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5. Experimental details

1-Methyl-2-(trifluoromethyl)-benzimidazole (41ib)
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In a Schlenk flask under N, atmosphere 2-(trifluoromethyl)-benzimidazole (41lia, 2.68 g,
14.42 mmol, 1.00 eq.) was dissolved in THF (40 mL) and cooled to 0 °C. Afterwards
n-butyllithium (2.45 M solution in hexane, 7.06 mL, 17.30 mmol, 1.20 eq.) was added, the
external cooling removed and the solution stirred for 10 minutes. Thereafter methyl iodide
(2.35mL, 21.62 mmol, 1.50 eq.) was added and the solution was stirred for 20 minutes.
Distilled water (30 mL) was added, the aqueous phase was three times extracted with DCM,
the combined extracts dried over MgSO, and the solvent was removed under reduced
pressure. The resulting solid was washed two times with isohexane (20 mL). 41ib was
obtained as pale yellow plates (2.20 g, 11.00 mmol, 76 %).

Melting point: 92.2 — 93.0 °C.

'H NMR (300 MHz, CDCl;) & = 7.88 — 7.83 (m, 1H, H-C2), 7.44 — 7.30 (m, 3H, H-C3, H-C4
and H-C5), 3.93 — 3.91 (broad, g, 3H, H3-C7) ppm.

3C NMR (75 MHz, CDCl3) § = 140.96 (C1), 140.80 (g, 2J(C,F) = 38.5 Hz, C7), 135.99 (C6),
125.27 (C3 or C4), 123.55 (C3 or C4), 121.51 (C2), 119.10 (q, “J(C,F) = 271.2 Hz, C8),
110.02 (C5), 30.70 (g, “J(C,F) = 2.2 Hz, C9) ppm.

F NMR (376 MHz, CDCl3) § = -62.63 ppm.

IR (ATR) & (cm™): 3055 (vw), 1944 (vw), 1906 (vw), 1818 (vw), 1780 (vw), 1682 (vw), 1617
(vw), 1588 (w), 1553 (vw), 1517 (m), 1485 (m), 1405 (m), 1341 (w), 1335 (w), 1320 (vw),
1291 (w), 1263 (s), 1231 (s), 1179 (s), 1151 (m), 1138 (s), 1120 (s), 1088 (s), 1005 (m), 973
(w), 951 (w), 934 (w), 902 (m), 846 (w), 827 (w), 764 (m), 745 (s), 726 (s), 616 (M), 592 (M),
581 (m), 570 (w), 560 (w).

MS (70 eV, EI) m/z (%): 200 ([M]*, 100), 199 ([M-H]*, 28).

HRMS (70 eV, El): CgH;F3N; calc. 200.0561 g/mol [M]", found 200.0546 g/mol.
Elemental analysis [CoH;F3N;]

Calc. (%): C54.01, H 3.53, N 14.00.

Found (%): C 53.09, H 3.53, N 13.75.
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5. Experimental details

1-Methyl-2-(trifluoromethyl)-benzimidazole borane (17i)
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171 was prepared according to general procedure A. 1-Methyl-2-(trifluoromethyl)-
benzimidazole (41lib, 0.18 g, 0.90 mmol, 1.00 eq.) was dissolved in 5 mL THF under N,
atmosphere. The solution was cooled to 0 °C and a H3B+*SMe; solution (5 M in Et,0, 0.20 mL,
1.10 eq.) was added. After 10 minutes the external cooling was removed and 50 mL
isohexane were added while stirring vigorously. Within 5 minutes a white precititate had
formed. The precipitate was filtered off and washed three times with isohexane. After
removing all residues of solvent under reduced pressure, 17i was obtained as a white solid
(0.17 g, 0.79 mmol, 88 %).

Decomposition point: 99.0 — 100.0 °C.

'H NMR (300 MHz, CDCl3) & = 8.27 — 8.22 (m, 1H, H-C2), 7.64 — 7.52 (m, 3H, H-C3, H-C4
and H-C5), 4.09 (g, J = 1.7 Hz, 3H, Hs-C9), 3.01 — 1.94 (broad, g, 3H, Ha-B) ppm.

13C NMR (75 MHz, CDCl3) § = 137.00 (C1), 133.08 (C7), 127.52 (C6), 126.42 (C3 and C4),
119.47 (C2), 118.03 (q, *J(C,F) = 274.8 Hz, C8), 110.78 (C5), 32.86 (q, “J(C,F) = 4.0 Hz,
C9) ppm.

{*H} "B NMR (270 MHz, CDCl;) § = -20.62 (s) ppm.
B NMR (270 MHz, CDCl;) § = —20.62 (broad, q) ppm.
F NMR (376 MHz, CDCl;) § = -56.96 ppm.

IR (ATR) # (cm™): 3059 (vw), 2383 (w), 2349 (w), 2273 (w), 1604 (w), 1502 (m), 1488 (m),
1469 (m), 1409 (m), 1302 (m), 1286 (m), 1261 (m), 1239 (m), 1142 (s), 1126 (s), 1102 (s),
1017 (m), 982 (W), 942 (m), 847 (W), 822 (W), 777 (M), 746 (S).

MS (70 eV, El) m/z (%): 213 ([M-HJ", 5), 201 ([M-BH,]*, 11), 200 ([M-BH,], 100), 199 ([M-
Me]*, 27), 181 (15).

HRMS (70 eV, El): CgH;0BF3N; calc. 213.0805 g/mol [M-H]*, found 213.0818 g/mol.
Elemental analysis [CoH10BF3N,]
Calc. (%): C50.51, H 4.71, N 13.09.

Found (%): C 48.05, H 4.34, N 12.37.
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5. Experimental details

1-Phenyl-2-(trifluoromethyl)-benzimidazole (41j)
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N-phenyl-o-phenylenediamine (0.71 g, 3.87 mmol, 1.00 eq.), trifluoroacetic acid (0.30 mL,
3.87 mmol, 1.10 eq.) and toluene (4 mL) were poured into a 10 mL microwave vessel under
ambient atmosphere. The reaction was conducted in a microwave (closed vessel) at 160 °C
for 30 minutes. After cooling down, the solvent was removed under reduced pressure. The
crude product was purified on a column chromatography on silica (0.035-0.070 mm,
60 A/ ethyl acetate : isohexane = 1 : 2; R=0.85). This gave the pure product 41j as a pale
yellow oil (0.52 g, 1.98 mmol, 51 %).

'H NMR (300 MHz, CDCl3) 6 = 7.98 — 7.89 (m, 1H, H-C2), 7.62 — 7.52 (m, 3H, aromatic),
7.46 — 7.32 (m, 4H, aromatic), 7.19 — 7.09 (m, 1H, aromatic) ppm.

13C NMR (75 MHz, CDCl3) § = 140.84 (g, 2J(C,F) = 38.5 Hz, C7), 140.69 (C1), 137.23 (C9),
134.44 (C6), 129.89 (C10 or C14), 129.75 (C10 or C14), 127.41 and 127.40 (C11 and C13),
125.79 (C12), 124.01 (C3 and C4), 121.39 (C2), 118.87 (q, *J(C,F) = 271.9 Hz, C8), 111.18
(C5) ppm.

F NMR (376 MHz, CDCl3) § = -60.55 ppm.

IR (ATR) & (cm™): 3059 (vw), 1616 (w), 1596 (m), 1525 (m), 1499 (s), 1451 (m), 1417 (m),
1334 (w), 1312 (vw), 1290 (m), 1264 (s), 1205 (s), 1160 (s), 1127 (vs), 1075 (m), 1030 (m),
1004 (m), 982 (m), 928 (w), 906 (m), 839 (w), 763 (m), 744 (s), 739 (s), 712 (m), 694 (s), 665
().

MS (70 eV, EI) m/z (%): 262 ([M]", 100), 193 ([M-CF4]*, 20), 192 (11), 166 (10), 77 (10).
HRMS (70 eV, El): C14HgF3N, calc. 262.0718 g/mol [M]", found 262.0704 g/mol.
Elemental analysis [C14HoF3N3]

Calc. (%): C 64.12, H 3.46, N 10.68.

Found (%): C 63.95, H 3.53, N 11.15.
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5. Experimental details

1-phenyl-2-(trifluoromethyl)-benzimidazole borane (17j)
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17 was prepared according to general procedure A. 1-Phenyl-2-(trifluoromethyl)-
benzimidazole (41j, 0.25g, 0.97 mmol, 1.00 eq.) was dissolved in 5mL THF under N,
atmosphere. The solution was cooled to 0 °C and a H3B+*SMe; solution (5 M in Et,0, 0.21 mL,
1.10 eq.) was added. After 10 minutes the external cooling was removed and 50 mL
isohexane were added while stirring vigorously. Within 5 minutes a white precititate had
formed. The precipitate was filtered off and washed three times with isohexane. After
removing all residues of solvent under reduced pressure, 17j was obtained as a white solid
(0.14 g, 0.51 mmol, 53 %).

Decomposition point: 127.0 —128.0 °C.

'H NMR (300 MHz, CDCl3) § =8.32 (d, J = 8.4 Hz, 1H, H-C2), 7.70 — 7.70 (m, 4H, aromatic),
7.56 — 7.48 (m, 1H, aromatic), 7.44 — 7.38 (m, 2H, aromatic), 7.14 (d, J = 8.3 Hz, 1H,
aromatic), 3.05 — 2.00 (broad, g, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCl3) § = 136.76 (C9), 134.40 (C7), 133.56 (C1), 131.05 (C6), 130.28
(C10 and C14), 127.93 (C12), 126.97 (C11 and C13), 126.74 (C3 and C4), 119.25 (C2),
117.59 (g, *J(C,F) = 275.6 Hz, C8), 112.00 (C5) ppm.

{*H} "B NMR (270 MHz, CDCl;) & = -20.48 (s) ppm.
B NMR (270 MHz, CDCl;) § = —20.48 (broad, q) ppm.
F NMR (376 MHz, CDCl;) § = -55.99 ppm.

IR (ATR) & (cm™): 3062 (vw), 2381 (W), 2359 (w), 2273 (w), 1595 (w), 1519 (m), 1500 (m),
1470 (m), 1456 (m), 1417 (m), 1300 (m), 1289 (m), 1267 (m), 1232 (m), 1202 (s), 1180 (s),
1148 (s), 1130 (s), 1118 (s), 1074 (m), 1040 (m), 1019 (m), 1004 (m), 983 (m), 946 (W), 928
(m), 854 (w), 840 (m), 762 (s), 747 (s), 715 (m), 692 (s), 665 (M), 653 (M).

MS (70 eV, El) m/z (%): 275 ([M-H]", 1), 262 ([M-BHs]*, 100), 193 (16), 84 (13), 83 (20).
HRMS (70 eV, El): C14H1,BF3N, calc. 275.0962 g/mol [M-H]*, found 275.0949 g/mol.
Elemental analysis [C14H12BF3N3]

Calc. (%): C 60.91, H 4.38, N 10.15.

Found (%): C 60.08, H 4.22, N 10.00.
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5. Experimental details

2-(4-Fluorophenyl)-1-phenylbenzimidazole (41k)
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N-phenyl-o-phenylenediamine (1.47 g, 7.95mmol, 1.00eq.), para-fluorobenzaldehyde
(.11 g, 7.95mmol, 1.00 eq.), triphenyl phosphite (2.50 mL, 9.54 mmol, 1.20eqg.) and
pyridine (10 mL) were poured into a 80 mL microwave vessel under ambient atmosphere.
The reaction was conducted in a microwave (closed vessel) at 200 °C for 40 minutes. After
cooling down, the solvent was removed under reduced pressure. Afterwards distilled water
(10 mL) were added, the reaction mixture was three times extracted with ethyl acetate, the
combined organic phases dried over MgSO, and the solvent removed under reduced
pressure. The crude product was purified by column chromatography on silica
(0.035-0.070 mm, 60 A/ ethyl acetate : isohexane = 1 : 2; R=0.85). As the product still
showed traces of impurities, the column chromatography was repeated. This lead to the pure
product 41k as a white solid (0.53 g, 1.84 mmol, 23 %).

Decomposition point: 100.5 - 101.0 °C.

'H NMR (300 MHz, CDCls) 6 = 7.91 — 7.83 (m, 1H, H-C2), 7.61 — 7.43 (m, 5H, aromatic),
7.38 — 7.18 (m, 5H, aromatic), 7.02 — 6.93 (m, 2H, aromatic) ppm.

13C NMR (75 MHz, CDCl3) § = 163.35 (d, 'J(C,F) = 250.5 Hz, C11), 151.40 (C7), 142.91
(C1), 137.18 (C14), 136.82 (C6), 131.39 (d, *J(C,F) = 8.5 Hz, C9 and C13), 129.94 (C15 and
C19), 128.68 (C17), 127.38 (C16 and C18), 126.17 (d, “J(C,F) = 3.3 Hz, C8), 123.40 (C3 or
C4), 123.05 (C3 or C4), 119.80 (C2), 115.46 (d, 2J(C,F) = 21.8 Hz, C10 and C12), 110.43

(C5) ppm.

F NMR (376 MHz, CDCl3) § = -110.82 ppm.

IR (ATR) # (cm™): 3051 (w), 1894 (vw), 1600 (m), 1536 (w), 1498 (m), 1480 (m), 1456 (m),
1413 (m), 1383 (m), 1324 (m), 1311 (w), 1292 (w), 1280 (m), 1260 (m), 1237 (w), 1214 (s),
1194 (m), 1172 (w), 1160 (m), 1117 (w), 1098 (w), 1075 (w), 1018 (w), 1010 (w), 978 (w),
966 (w), 924 (w), 907 (w), 856 (m), 847 (s), 822 (m), 800 (m), 763 (s), 744 (s), 733 (M), 722
(m), 696 (s).

MS (70 eV, El) m/z (%): 288 ([M]*, 77), 287 ([M-H]*, 100), 144 (10), 77 (20), 51 (18).
HRMS (70 eV, El): Cy9H13FN, calc. 288.1063 g/mol [M]*, found 288.1052 g/mol.
Elemental analysis [C1gH13FN]

Calc. (%): C 79.15, H 4.54, N 9.72.

Found (%): C 78.87, H 4.56, N 9.58.
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5. Experimental details

2-(4-Fluorophenyl)-1-phenyl-benzimidazole borane (17k)

17k was prepared according to general procedure A. 2-(4-Fluorophenyl)-1-
phenylbenzimidazole (41k, 0.41 g, 1.43 mmol, 1.00 eq.) was dissolved in 5 mL THF under N,
atmosphere. The solution was cooled to 0 °C and a H3B+*SMe; solution (5 M in Et,0, 0.31 mL,
1.10 eq.) was added. After 10 minutes the external cooling was removed and 50 mL
isohexane were added while stirring vigorously. Within 5 minutes a white precititate had
formed. The precipitate was filtered off and washed three times with isohexane. After
removing all residues of solvent under reduced pressure, 17k was obtained as a white solid
(0.36 g, 1.20 mmol, 84 %).

Decomposition point: 186.2 — 187.3 °C.

'H NMR (300 MHz, CDCls) § =8.21 (d, J = 8.2 Hz, 1H, H-C2), 7.62 — 7.35 (m, 7H, aromatic),
7.31 — 7.15 (m, 3H, aromatic), 7.09 — 6.97 (m, 2H, aromatic), 3.07 — 2.00 (broad, g, 3H, Hs-
B) ppm.

13C NMR (75 MHz, CDCl;) § = 163.87 (d, 'J(C,F) = 252.9 Hz, C11), 150.12 (C7), 137.33
(C14), 134.38 (C1), 133.75 (C6), 133.71 (d, *J(C,F) = 8.9 Hz, C9 and C13), 130.12 (C15 and
C19), 129.68 (C17), 127.36 (C16 and C18), 125.63 (C3 or C4), 125.18 (C3 or C4), 121.23 (d,
*J(C,F) = 3.5 Hz, C8), 118.25 (C2), 115.39 (d, “J(C,F) = 22.2 Hz, C10 and C12), 111.04
(C5) ppm.

{*H} "'B NMR (270 MHz, CDCl;) § = -22.45 (s) ppm.
B NMR (270 MHz, CDCl3) § = -22.46 (broad, q) ppm.
F NMR (376 MHz, CDCl3) § = -107.89 ppm.

IR (ATR) ¥ (cm™): 3058 (vw), 2356 (m), 2313 (m), 2265 (M), 1894 (vw), 1610 (m), 1596 (w),
1549 (w), 1499 (m), 1480 (m), 1458 (s), 1435 (s), 1346 (m), 1300 (w), 1288 (w), 1260 (w),
1232 (s), 1173 (s), 1160 (s), 1128 (m), 1116 (m), 1096 (m), 1075 (w), 1017 (m), 1004 (w),
973 (w), 950 (w), 849 (m), 836 (s), 803 (s), 766 (s), 758 (s), 750 (s), 698 (s), 662 (W).

MS (70 eV, El) miz (%): 302 (IM]*, 5), 289 ([M-BH,]", 16), 288 ([M-BHj]", 75) 287 ([M-H-
BHa]*, 100), 286 ([M-2H-BH,]*, 11), 83 (10).

HRMS (70 eV, El): Cy9H16BFN, calc. 302.1391 g/mol [M]*, found 302.1374 g/mol.
Elemental analysis [C19H:16BFN3]

Calc. (%): C 75.53, H 5.34, N 9.27.

Found (%): C 73.57, H 5.30, N 8.86.
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5. Experimental details

2-Isopropyl-1-methylimidazole (41l)

In a Schlenk flask under N, atmosphere 2-isopropylimidazole (41lla, 2.13 g, 19.31 mmol,
1.00 eq.) was dissolved in THF (50 mL) and cooled to 0 °C. n-Butyllithium (2.5 M solution in
hexane, 8.50 mL, 21.24 mmol, 1.10 eq.) was then added, the external cooling removed and
the solution stirred for 10 minutes. Thereafter methyl iodide (1.32 mL, 21.24 mmol, 1.10 eq.)
was added and the solution was stirred for 20 minutes. Distilled water (30 mL) was added,
the aqueous phase was three times extracted with DCM, the combined extracts dried over
MgSO, and the solvent was removed under reduced pressure. 411 was obtained as colorless
oil (1.43 g, 11.52 mmol, 60 %).

'H NMR (300 MHz, CDCl;) 6 = 6.78 (d, J = 1.3 Hz, 1H, H-C2), 6.64 (d, J = 1.3 Hz, 1H, H-
C1), 3.46 (s, 3H, H;3-C7), 2.90 (septett, J = 6.8 Hz, 1H, H-C5), 1.18 (d, J = 6.9 Hz, 6H, H;-C4
and H3-C6) ppm.

3C NMR (75 MHz, CDCl3) § = 152.83 (C3), 126.49 (C1), 120.18 (C2), 32.29 (C7), 25.75
(C5), 21.21 (C4 and C6) ppm.

IR (ATR) & (cm™): 3103 (vw), 2968 (m), 2930 (m), 2870 (W), 1522 (w), 1494 (s), 1472 (m),
1458 (m), 1380 (m), 1363 (m), 1318 (w), 1153 (m), 1134 (m), 1103 (m), 1070 (s), 922 (m),
836 (W), 746 (M), 717 (S), 665 (W).

MS (70 eV, El) m/z (%): 124 ([M[*, 34), 123 ((M-H]*, 29), 110 ([M-CH,]", 14), 109 ([M-Me]",
100), 96 (22), 95 (19), 81 (11), 68 (12),43 (15), 42 (20).

HRMS (70 eV, El): C;H1,N, calc. 124.1000 g/mol [M]", found 124.0995 g/mol.
Elemental analysis [C7H1,N5]
Calc. (%): C 67.70, H 9.74, N 22.56.

Found (%): C 67.69, H 9.23, N 22.26.
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5. Experimental details

2-Isopropyl-1-methylimidazole borane (171)
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171 was prepared according to general procedure A. 2-Isopropyl-1-methylimidazole (41,
0.83 g, 6.65 mmol, 1.00 eq.) was dissolved in 5 mL THF under N, atmosphere. The solution
was cooled to 0 °C and a H3zB*SMe, solution (5 M in Et,O, 1.46 mL, 1.10 eq.) was added.
After 10 minutes the external cooling was removed and 50 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 171 was obtained as a white solid (0.69 g, 5.00 mmol, 75 %).

Decomposition point: 82.0 — 83.0 °C.

'H NMR (300 MHz, CDCl3) § = 6.89 (d, J = 1.7 Hz, 1H, H-C2), 6.68 (d, J = 1.7 Hz, 1H, H-
C1), 3.97 (s, 3H, Hs-C7), 3.84 (sept, J = 7.4 Hz, 1H, H-C5), 1.34 (d, J = 7.3 Hz, 6H, H;-C4
and Hs-C6), 2.79-1.44 (broad, q, 3H, H3-B) ppm.

3C NMR (75 MHz, CDCl3) § = 150.38 (C3), 126.74 (C1), 120.08 (C2), 35.04 (C7), 25.36
(C5), 18.66 (C4 and C6) ppm.

{*H} "B NMR (270 MHz, CDCl;) § = —-19.74 (S) ppm.
B NMR (270 MHz, CDCl;) § = —-19.76 (broad, q) ppm.

IR (ATR) ¥ (cm™): 3128 (w), 3054 (m), 2974 (w), 2357 (m), 2309 (m), 1691 (vw), 1626 (vw),
1583 (w), 1564 (vw), 1552 (vw), 1527 (w), 1504 (m), 1452 (m), 1432 (m), 1384 (m), 1366
(m), 1300 (M), 1252 (w), 1166 (s), 1120 (m), 1096 (s), 938 (M), 859 (W), 799 (m), 768 (vs),
730 (s).

MS (70 eV, El) m/z (%): 138 ([M]*, 3), 137 (IM-HJ", 42), 136 ((M-2H]*, 20), 135 ([M-3H]", 100),
134 ([M-4H]", 27), 133 ([M-5H]*, 34), 124 ([M-BH,]*, 15), 120 (11), 119 (16), 109 (64), 96
(12).

HRMS (70 eV, El): C;H:5sBN, calc. 138.1328 g/mol [M]", found 138.1266 g/mol.
Elemental analysis [C;H15sBN]
Calc. (%): C 60.92, H 10.95, N 20.30.

Found (%):C 58.14, H 10.33, N 19.13.
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5. Experimental details

1-Methyl-4,5-diphenylimidazole borane (17m)

17m was prepared according to general procedure A. 1-Methyl-4,5-diphenylimidazole (41m,
1.00 g, 4.27 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution
was cooled to 0 °C and a H3zB*SMe, solution (5 M in Et,O, 0.94 mL, 1.10 eq.) was added.
After 10 minutes the external cooling was removed and 50 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17m was obtained as a white solid (0.86 g, 3.46 mmol, 81 %).

Decomposition point: 187.2 —187.9 °C.

'H NMR (300 MHz, CDCls3) 6 = 7.98 (s, 1H, H-C3), 7.54 — 7.30 (m, 5H, aromatic), 7.29 - 7.22
(m, 3H, aromatic), 7.21 — 7.13 (m, 2H, aromatic), 3.55 (s, J=4.6, 3H, H3-C4), 2.89-1.54
(broad, g, 3H, H3-B) ppm.

13C NMR (75 MHz, CDCls) § = 137.41 (C3), 136.11 (C2), 130.93 (C5), 130.57 (C7 and C9),
130.54 (C13 and C15), 129.37 (C11), 129.26 (C8), 128.93 (C6 and C10), 128.15 (C14),
127.73 (C12 and C16), 127.48 (C1), 33.49 (C4) ppm.

{*H} "B NMR (270 MHz, CDCl;) § = -19.67 (S) ppm.
B NMR (270 MHz, CDCl;) § = —-19.68 (broad, q) ppm.

IR (ATR) ¥ (cm™): 3132 (w), 3059 (w), 2372 (m), 2306 (m), 2261 (m), 1711 (vw), 1602 (w),
1539 (m) 1492 (w), 1444 (m), 1390 (w), 1334 (w), 1273 (w), 1184 (s), 1166 (s), 1151 (s),
1090 (w), 1072 (m), 1046 (w), 1020 (w), 1009 (w), 953 (w), 918 (w), 848 (m), 805 (m), 772
(m), 748 (s), 719 (w), 695 (vs).

MS (70 eV, El) miz (%): 248 (M]*, 2), 245 ([M-3H]", 29), 235 ([M-BH,]", 18), 234 ([M-BH[",
100), 233 ([M-Me]*, 61), 218 (16), 165 (39).

HRMS (70 eV, El): Ci¢H17BN; calc. 248.1485 g/mol [M]*, found 248.1484 g/mol.
Elemental analysis [C1sH17BN,]
Calc. (%): C 77.45, H 6.91, N 11.29.

Found (%): C 76.23, H 6.80, N 11.04.
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5. Experimental details

2-Isopropylimidazole borane (17n)
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17n was prepared according to general procedure A. 2-lIsopropylimidazole (41n, 1.25 g,
11.36 mmol, 1.00 eq.) was dissolved in 15 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et,O, 2.50 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was

filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17n was obtained as a white solid (0.85 g, 6.86 mmol, 60 %).

Decomposition point: 50.2 —50.9 °C.

'H NMR (300 MHz, DMSO-dg) § = 10.32 — 9.83 (broad, s, 1H, H-N), 6.86 (s, 1H, H-C2), 6.81
(s, 1H, H-C1), 3.59 — 3.44 (m, 1H, H-C5), 2.77 — 1.75 (broad, q, 3H, Hs-B), 1.24 (d, J = 6.1,
6H, H3-C4 and H;-C6) ppm.

13C NMR (75 MHz, DMSO-dg) § = 152.29 (C3), 126.88 (C1), 115.01 (C2), 25.83 (C5), 20.20
(C4 and C6) ppm.

{*H} "B NMR (270 MHz, DMSO-dg) § = —20.06 (S) ppm.
B NMR (270 MHz, DMSO-dg) 6 = -20.07 (broad, q) ppm.

IR (ATR) & (cm™): 3286 (m), 3176 (W), 3165 (w), 3154 (w), 3141 (w), 2939 (m), 2975 (w),
2877 (W), 2349 (M), 2296 (s), 2253 (s), 1619 (W), 1604 (w), 1576 (m), 1491 (s), 1465 (m),
1393 (m), 1367 (m), 1316 (w), 1285 (m), 1196 (s), 1174 (s), 1163 (s), 1136 (m), 1097 (s),
1069 (s), 957 (M), 942 (m), 929 (M), 883 (), 855 (W), 850 (M), 765 (s), 755 (S), 707 (S).

MS (70 eV, El) miz (%): 124 (IM], 3), 123 ([M-H]", 53), 122 ([M-2H]", 19), 121 ([M-3H]", 100),
120 ([M-4H]", 27), 118 (IM-6H]", 11), 110 ([M-BH.]", 8), 105 (19), 95 (39), 55 (10).

HRMS (70 eV, EIl): CgH13BN, calc. 124.1172 g/mol [M]", found 124,1100 g/mol.
Elemental analysis [C¢H13BN]
Calc. (%): C58.12, H 10.57, N 22.59.

Found (%): C 56.32, H 10.13, N 22.26.
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5. Experimental details

2-(3,4,5-Trimethoxyphenyl)-benzimidazole (410a)
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Under a N, atmosphere ortho-phenylenediamine (35e, 7.46 g, 69.02 mmol, 1.00 eq.) and
3,4,5-trimethoxybenzaldehyde (14.90 g, 75.92 mmol, 1.10 eq.) were stirred at 115 °C for
60 minutes without solvent. Acetone (200 mL) then was added which led to the precipitation
of the crude product which was filtered off. Subsequently the solid was recrystallized from
acetone/ethanol (1:1) to give the pure product 4loa as colorless needles (3.92g,
19.62 mmol, 20 %).

Melting point: 263.5 — 263.8 °C.

IH NMR (300 MHz, DMSO-ds) § = 12.84 (s, 1H, H-N), 7.64 (d, J = 6.7, 1H, H-C2), 7.52 (s,
2H, H-C9 and H-C13), 7.22 — 7.12 (m, 3H, H-C3, H-C4 and H-C5), 3.87 (s, 6H, Hy-C14 and
Ha-C16), 3.71 (s, 3H, H3-C15) ppm.

13C NMR (75 MHz, DMSO-de) § = 153.67 (C10 and C12), 151.68 (C7), 144.20 (C11), 139.37
(C1), 135.41 (C6), 125.92 (C8), 122.85 (C3 or C4), 122.06 (C3 or C4), 119.12 (C2), 111.57
(C5), 104.28 (C9 and C13), 60.56 (C15), 56.45 (C14 and C16) ppm.

IR (ATR) % (cm™): 2959 (w), 2835 (w, br), 1586 (m), 1548 (w), 1536 (W), 1513 (w), 1495 (m),
1480 (m), 1468 (m), 1455 (m), 1443 (m), 1424 (s), 1373 (m), 1334 (w), 1294 (w), 1271 (m),
1231 (s), 1180 (m), 1152 (w), 1124 (vs), 1009 (m), 993 (s), 931 (m), 902 (m), 880 (M), 842
(s), 822 (m), 790 (w), 768 (W), 747 (s), 673 (m).

MS (70 eV, EI) m/z (%): 284 ((M]*, 100), 283 ([M-H]*, 10), 270 ([M-CH,]", 11), 269 ([M-Me]",
59), 241 (15), 226 (13), 211 (20), 155 (16), 142 (14), 127 (10).

HRMS (70 eV, El): C16H16N,05 calc. 284.1161 g/mol [M]", found 284.1145 g/mol.
Elemental analysis [C1gH1sN2O3]
Calc. (%): C 67.59, H 5.67, N 9.85.

Found (%):C 67.38, H 5.69, N 9.77.
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5. Experimental details

1-Methyl-2-(3,4,5-trimethoxyphenyl)-benzimidazole (410b)

In a Schlenk flask under N, atmosphere 2-(3,4,5-trimethoxyphenyl)-benzimidazole (4loa,
1.18 g, 4.13 mmol, 1.00 eq.) was dissolved in THF (100 mL). Afterwards n-butyllithium (2.5 m
solution in hexane, 1.73 mL, 4.33 mmol, 1.05 eq.) was added at room temperature and the
solution stirred for 20 minutes. Methyl iodide (1.00 mL, 16.06 mmol, 3.89 eq.) was then
added and the solution was stirred for 20 minutes. Afterwards all volatiles were removed
under reduced pressure. Distilled water (20 mL) was added, the aqueous phase was
extracted three times with DCM, the combined extracts dried over MgSO, and the solvent
was removed under reduced pressure. The crude product was dissolved in DCM (3 mL) and
isohexane (50 mL) was added while stirring vigorously for two minutes. The cloudy
isohexane layer was filtered off. In this clear solution the product began to grow immediately
as white needles. After five minutes the needles were filtered off. Thus, 41ob was obtained
as white, crystalline needles (0.42 g, 1.41 mmol, 34 %).

Melting point: 126.5-127.0 °C.

'H NMR (300 MHz, CDCl;) § = 7.80 (ddd, J = 5.0 Hz, 2.9 Hz, 0.7 Hz, 1H, H-C2), 7.38 — 7.26
(m, 3H, H-C3, H-C4 and H-C5), 6.94 (s, 2H, H-C10 and H-C14), 3.91 (s, 9H, H3-C8, H;-C15
and Hs-C17), 3.84 (s, 3H, Hs-C16) ppm.

3C NMR (75 MHz, CDCl;) § = 153.68 (C7), 153.36 (C11 and C13), 142.81 (C12), 139.54
(C1), 136.55 (C6), 125.54 (C9), 122.77 (C3 or C4), 122.44 (C3 or C4), 119.72 (C2), 109.56
(C5), 106.91 (C10 and C14), 60.95 (C16), 56.36 (C15 and C17), 31.70 (C8) ppm.

IR (ATR) & (cm™): 3101 (w), 3008 (vw), 2990 (W), 2969 (W), 2929 (W), 2822 (w), 1942 (w),
1897 (w), 1682 (w), 1603 (w), 1584 (m), 1525 (w), 1484 (m), 1463 (m), 1446 (m), 1436 (m),
1430 (m), 1412 (m), 1384 (m), 1319 (m), 1278 (m), 1244 (s) 1232 (m), 1189 (w), 1168 (m),
1154 (w), 1120 (vs), 1100 (s), 1030 (w), 1010 (s), 1004 (m), 930 (w), 910 (m), 892 (m), 846
(m), 837 (m), 790 (m), 762 (M), 754 (s), 746 (s), 729 (M), 666 (M), 625 (M), 593 (M), 575 (W),
561 (m).

MS (70 eV, El) miz (%): 298 ([M]*, 100), 297 ([M-HJ*, 34), 283 ([M-Me]", 44), 253 ([M-OMe-
Me]*, 12), 252 ([M-OMe-Me-HJ*, 10), 225 (23), 197 (11), 169 (16), 149 (11), 44 (15).

HRMS (70 eV, El): C37H15N,05 calc. 298.1317 g/mol [M]", found 298.1315 g/mol.
Elemental analysis [C;7H1gN,O3]
Calc. (%): C 68.44, H 6.08, N 9.39.

Found (%): C 68.34, H5.92, N 9.47.
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5. Experimental details

1-Methyl-2-(3,4,5-trimethoxyphenyl)-benzimidazole borane (170)

170 was prepared according to general procedure A. 1-Methyl-2-(3,4,5-trimethoxyphenyl)-
benzimidazole (41ob, 1.00 g, 3.35 mmol, 1.00 eqg.) was dissolved in 10 mL THF under N,
atmosphere. The solution was cooled to 0 °C and a HzB*SMe, solution (5 M in Et,O, 0.74 mL,
1.10 eq.) was added. After 10 minutes the external cooling was removed and 100 mL
isohexane were added while stirring vigorously. Within 5 minutes a white precititate had
formed. The precipitate was filtered off and washed three times with isohexane. After
removing all residues of solvent under reduced pressure, 170 was obtained as a white solid
(0.89 g, 2.85 mmol, 85 %).

Decomposition point: 154.8 — 155.4 °C.

IH NMR (300 MHz, CDCl3) § = 8.15 — 8.04 (m, 2H, H-C2 and H-C5), 7.47 (dd, J=6.8 Hz,
J=3.1 Hz, 2H, H-C3 and H-C4), 6.82 (s, 2H, H-C10 and H-C14), 3.95 (s, 3H, Hs-C8), 3.89 (s,
6H, Hy-C15 and Hy-C17), 3.78 (s, 3H, Hy-C16), 2.97-1.63 (broad, g, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCl3) § = 153.23 (C11 and C13), 151.61 (C7), 140.30 (C12), 137.17
(C1), 133.03 (C6), 125.00 (C3 or C4), 124.75 (C3 or C4), 120.15 (C9), 118.05 (C2), 110.04
(C5), 108.31 (C10 and C14), 60.96 (C16), 56.42 (C15 and C17), 31.86 (C8) ppm.

{*H} "'B NMR (270 MHz, CDCl;) § = -22.07 (S) ppm.
B NMR (270 MHz, CDCl;) § = —22.06 (broad, q) ppm.

IR (ATR) ¥ (cm™): 2939 (w), 2361 (m), 2342 (m),2265 (w), 1586 (m), 1492 (m), 1479 (s),
1458 (s), 1430 (m), 1413 (m), 1322 (m), 1244 (s), 1161 (m), 1127 (vs), 998 (m), 958 (w), 891
(w), 847 (m), 791 (w), 742 (s), 668 (w).

MS (70 eV, El) miz (%): 312 (IM]", 6), 309 ([M-3H]", 11), 299 ([M-BH,]*, 20), 298 (IM-BH]",
100) 297 ([M-Me]", 35), 283 (48), 253 (12), 252 (13), 225 (24), 197 (11), 181 (15), 169 (19),
149 (11), 77 (11).

HRMS (70 eV, El): C,7H,:BN,O5 calc. 312.1645 g/mol [M]", found 312.1709 g/mol.
Elemental analysis [C;7H2:BN,O;]
Calc. (%): C 65.41, H 6.78, N 8.97.

Found (%): C 63.28, H 6.50, N 8.68.
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5. Experimental details

2-(4-Fluorophenyl)-benzimidazole (41pa)

Under a N, atmosphere ortho-phenylenediamine (35e, 8.43 g, 77.97 mmol, 1.00 eq.) and
para-fluorobenzaldehyde (10.65g, 85.77 mmol, 1.10eq.) were stirred at 115°C for
60 minutes without solvent. Afterwards 200 mL acetone were added which leaded to the
precipitation of the crude product which was filtered off. Subsequently the solid was
recrystallized from acetone/ethanol (1:1) to give the pure product 41pa as colorless needles
(2.32 g, 16.55 mmol, 14 %).

Melting point: 256.5 — 257.2 °C.

'H NMR (300 MHz, DMSO-d¢) § = 12.93 (broad, s, 1H, H-N), 8.28 — 8.20 (m, 2H, H-C9 and
H-C13), 7.66-7.55 (m, 2H, H-C2 and H-C5), 7.45 — 7.35 (m, 2H, H-C10 and H-C12), 7.25 —
7.16 (m, 2H, H-C3 and H-C4) ppm.

13C NMR (75 MHz, DMSO-dg) & = 163.54 (d, “J(C,F) = 247.3 Hz, C11), 150.88 (C7), 144.16
(C1), 135.54 (C6), 129.20 (d, J(C,F) = 8.6 Hz, C9 and C13), 127.29 (d, “J(C,F) = 3.0 Hz,
C8), 122.63 (C3 and C4), 119.25 (C2), 116.46 (d, 2J(C,F) = 21.9 Hz, C10 and C12), 111.80
(C5) ppm.

F NMR (376 MHz, DMSO-d¢) § = -111.12 ppm.

IR (ATR) ¥ (cm™): 2913 (W), 2661 (w, br) 2362 (w), 1623 (w) 1602 (m), 1590 (w), 1496 (m),
1475 (m), 1451 (m), 1430 (s), 1397 (m), 1372 (m), 1320 (m), 1276 (m), 1227 (s), 1155 (m),
1110 (m), 1095 (m), 1011 (m), 966 (m), 925 (w), 903 (w), 879 (w), 836 (vs), 808 (w), 794 (m),
766 (M), 744 (vs), 696 (m).

MS (70 eV, EI) m/z (%): 212 ([M]*, 100), 211 ([M-H]*, 14).

HRMS (70 eV, El): C13HgFN, calc. 212.0750 g/mol [M]*, found 212.0742 g/mol.
Elemental analysis [CisHgFN;]

Calc. (%): C 73.57, H 4.27, N 13.20.

Found (%): C 73.34, H 4.28, N 13.15.

165



5. Experimental details

2-(4-Fluorophenyl)-1-methylbenzimidazole (41pb)
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In a Schlenk flask under N, atmosphere 2-(4-fluorophenyl)-benzimidazole (41pa, 0.55 g,
2.58 mmol, 1.00 eq.) was dissolved in THF (20 mL) and cooled to 0 °C. Afterwards n-
butyllithium (2.5 M solution in hexane, 1.13 mL, 2.84 mmol, 1.10eq.) was added, the
external cooling removed and the solution stirred for 10 minutes. Methyl iodide (0.18 mL,
2.84 mmol, 1.10 eqg.) was then added and the solution was stirred for 20 minutes. Distilled
water (10 mL) was added, the aqueous phase was extracted three times with DCM, the
combined extracts dried over MgSO, and the solvent was removed under reduced pressure.
The resulting solid was washed two times with isohexane (10 mL). 41pb was obtained as
white solid (0.45 g, 1.97 mmol, 76 %).

Melting point: 95.9 —96.1 °C.

'H NMR (300 MHz, CDCl;) § = 7.81 (ddd, J = 5.8 Hz, 3.2 Hz, 0.8 Hz, 1H, H-C2), 7.76 — 7.69
(m, 2H, aromatic), 7.37 — 7.27 (m, 3H, aromatic), 7.23 — 7.15 (m, 2H, aromatic), 3.79 (s, 3H,
Hs-C8) ppm.

3C NMR (75 MHz, CDCl;) § = 163.57 (d, *J(C,F) = 250.4 Hz, C12), 152.75 (C7), 142.84
(C1), 136.51 (C6), 131.35 (d, 3J(C,F) = 8.5 Hz, C10 and C14), 126.37 (d, *J(C,F) = 3.4 Hz,
C9), 122.85 (C3 or C4), 122.50 (C3 or C4), 119.76 (C2), 115.83 (d, 2J(C,F) = 21.9 Hz, C11
and C13), 109.63 (C5), 31.59 (C8) ppm.

F NMR (376 MHz, CDCl3) § = -110.61 ppm.

IR (ATR) # (cm™): 2924 (vw), 1605 (m), 1530 (m), 1462 (s), 1437 (m), 1408 (m), 1376 (m),
1324 (m), 1291 (w), 1277 (w), 1222 (s), 1157 (m), 1127 (w), 1096 (m), 1051 (w), 1007 (m),
925 (), 900 (W), 844 (s), 795 (s), 765 (M), 752 (s), 742 (vs), 732 (S).

MS (70 eV, EI) m/z (%): 226 ([M]", 78), 225 ([M-H]", 100), 224 ([M-2H]*, 10).
HRMS (70 eV, EIl): Cy4H1:FN, calc. 226.0906 g/mol [M]*, found 226.0910 g/mol.
Elemental analysis [C14H11FNy]

Calc. (%): C 74.32, H 4.90, N 12.38.

Found (%): C 74.35, H 4.99, N 12.08.
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5. Experimental details

2-(4-Fluorophenyl)-1-methylbenzimidazole borane (17p)
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17p was prepared according to general procedure A. 2-(4-Fluorophenyl)-1-
methylbenzimidazole (41pb, 0.30 g, 1.31 mmol, 1.00 eq.) was dissolved in 5 mL THF under
N, atmosphere. The solution was cooled to 0 °C and a H3B*SMe, solution (5 M in Et,0,
0.29 mL, 1.10 eq.) was added. After 10 minutes the external cooling was removed and
50 mL isohexane were added while stirring vigorously. Within 5 minutes a white precititate
had formed. The precipitate was filtered off and washed three times with isohexane. After
removing all residues of solvent under reduced pressure, 17p was obtained as a white solid
(0.22 g, 0.92 mmol, 70 %).

Decomposition point: 160.2 — 161.0 °C.

'H NMR (300 MHz, CDCls) § = 8.03 (dd, J = 6.2 Hz, 1.9 Hz, 1H, H-C2), 7.56 — 7.51 (m, 2H,
Haromatic), 7-44 — 7.36 (M, 3H, Haomaic), 7.22 — 7.16 (M, 2H, Haromaic), 3.68 (s, 3H, H3-C8), 2.68
— 1.68 (broad, g, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCl;) § = 164.25 (d, 'J(C,F) = 252.9 Hz, C12), 150.74 (C7), 137.21
(C1), 133.15 (d, *J(C,F) = 8.9 Hz, C10 and C14), 133.07 (C6), 125.17 (C3 or C4), 124.86 (C3
or C4), 121.26 (d, “J(C,F) = 3.5 Hz, C9), 118.07 (C2), 115.96 (d, 2J(C,F) = 22.2 Hz, C11 and
C13), 110.22 (C5), 31.85 (C8) ppm.

{*H} "'B NMR (270 MHz, CDCl;) § = -21.79 (S) ppm.
"B NMR (270 MHz, CDCl;) § = -21.77 (broad, q) ppm.
F NMR (376 MHz, CDCl3) § = -107.57 ppm.

IR (ATR) ¥ (cm™): 2365 (m), 2306 (m), 2261 (m), 1607 (m), 1543 (w), 1478 (s), 1452 (s),
1414 (m), 1398 (m), 1340 (w), 1298 (m), 1249 (w), 1220 (s), 1158 (s), 1126 (s), 1098 (m),
1072 (w), 1013 (m), 986 (w), 939 (m), 845 (s), 793 (s), 780 (w), 759 (s), 734 (w), 708 (w).

MS (70 eV, EI) m/z (%): 240 ([M[*, 1), 237 ([M-3H]", 14), 227 ([M-BH,]*, 10), 226 ([M-BH]",
67), 225 ([M-Me]", 100), 82 (11).

HRMS (70 eV, El): C14H14BFN, calc. 240.1234 g/mol [M]*, found 240.1222 g/mol.
Elemental analysis [C14H14BFN,]
Calc. (%): C 70.04, H 5.88, N 11.67.

Found (%): C 69.75, H 5.87, N 11.54.
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5. Experimental details
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4-dimethylaminopyridine borane (DMAP borane, 17q)
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17q was prepared according to general procedure A. 4-Dimethylaminopyridine (27, 1.00 g,
8.18 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a HsB*SMe, solution (5 M in Et,O, 1.80 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent

under reduced pressure, 17q was obtained as a white solid (0.90 g, 6.63 mmol, 81 %).

Decomposition point: 168.7 — 170.2 °C.

IH NMR (300 MHz, DMSO-dg) § = 7.91-7.89 (m, 2H, H-C2 and H-C3), 6.70-6.67 (m, 2H, H-

C1, H-C4), 3.02 (s, 6H, H3-C5 and H3-C6), 2.44-1.91 (broad, g, 3H, Hs-B) ppm.

3C NMR (75 MHz, DMSO-ds) & = 154.84 (C7), 146.46 (C2 and C3), 107.22 (C1 and C4),

39.42 (C5 and C6) ppm.
{*H} "B NMR (270 MHz, DMSO-d¢) § = -13.02 ppm.

B NMR (270 MHz, DMSO-d¢) 6 = -13.01 (broad, q) ppm.

IR (ATR) ¥ (em™): 3076 (w), 2922 (w), 2835 (W), 2611 (w), 2358 (m), 2326 (m), 2283 (s),
2245 (s), 1820 (W), 1629 (s), 1531 (vs), 1477 (m), 1459 (m), 1440 (m), 1389 (m), 1341 (m),
1306 (m), 1225 (s), 1172 (s), 1128 (m), 1098 (s), 1067 (s), 1039 (m), 945 (m), 824 (m), 812

(vs), 780 (w), 722 (w).

MS (70 eV, El) m/z (%): 136 ([M]*, 8), 135 ([M-HJ*, 100), 134 ([M-2H]", 43), 122 ([M-BH3]",

14), 121 (18), 119 (10), 107 (16).

HRMS (70 eV, El): C;H:3BN, calc. 136.1172 g/mol [M]", found 136.1173 g/mol.

Elemental analysis [C7H13BN]
Calc. (%): C 61.82, H 9.63, N 20.60.

Found (%): C 61.78, H 9.48, N 20.55.
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5. Experimental details

4-Pyrrolidinopyridine borane (17r)

[ee]
~

17r was prepared according to general procedure A. 4-Pyrrolidinopyridine (41r, 2.53 g,
17.07 mmol, 1.00 eq.) was dissolved in 25 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et,O, 3.76 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 200 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17r was obtained as a white solid (1.70 g, 10.49 mmol, 61 %).

Decomposition point: 167.0 — 167.7 °C.

'H NMR (300 MHz, CDCl3) § = 7.95 (d, J = 7.3 Hz, 2H, H-C1 and H-C5), 6.33 (d, J = 7.3 Hz,
2H, H-C2 and H-C4), 3.38 — 3.27 (m, 4H, H,-C6 and H,-C9), 2.09 — 1.97 (m, 4H, H,-C7 and
H,-C8), 3.02-1.70 (broad, q, 3H, H3-B) ppm.

13C NMR (75 MHz, CDCl;) & = 152.01 (C3), 146.56 (C1 and C5), 106.83 (C2 and C4), 47.51
(C6 and C9), 25.22 (C7 and C8) ppm.

{*H} "B NMR (270 MHz, CDCl;) § = -14.01 (S) ppm.
B NMR (270 MHz, CDCl3) § = —14.00 (broad, q) ppm.

IR (ATR) # (cm™): 2968 (w), 2868 (W) 2575 (vw), 2343 (m), 2298 (m), 2246 (m), 2081 (w)
1741 (w), 1633 (s), 1534 (s), 1483 (m), 1462 (m), 1414 (m), 1350 (m), 1328 (m), 1301 (w),
1288 (m), 1254 (w), 1232 (w), 1212 (w), 1167 (s), 1156 (s), 1117 (m), 1092 (s), 1030 (m),
978 (m), 965 (m), 930 (m), 862 (M), 807 (vs), 718 (M), 662 ().

MS (70 eV, EI) m/z (%): 162 (IM]", 11), 161 ([M-H]*, 100), 160 ([M-2H]", 39), 148 ([M-BH,]",
25), 147 (32), 133 (21), 119 (13), 78 (10).

HRMS (70 eV, El): CgH15BN, calc. 162.1328 g/mol [M]", found 162.1272 g/mol.
Elemental analysis [CgH15BN]
Calc. (%): C66.71, H 9.33, N 17.29.

Found (%): C 66.52, H 9.14, N 17.33.
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5. Experimental details

9-Azajulolidine borane (17s)

17s was prepared according to general procedure A. 9-Azajulolidine (41s, 1.30g,
7.46 mmol, 1.00 eq.) was dissolved in 15 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a HsB*SMe, solution (5 M in Et,O, 1.64 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17s was obtained as a white solid (0.96 g, 5.10 mmol, 68 %).

Decomposition point: 143.5 — 144.5 °C.

'H NMR (300 MHz, CDCl3) § = 7.63 (s, 2H, H-C1 and H-C5), 3.30 (t, J = 5.7 Hz, 4H, H,-C9
and H,-C8), 2.62 (t, J = 6.2 Hz, 4H, H,-C6 and H,-C11), 1.92 (tt, J = 6.1 Hz, J = 5.7 Hz, 4H,
H,-C7 and H,-C10), 3.06-1.63 (broad, g, 3H, Hs-B) ppm.

13C NMR (75 MHz, CDCl5) § = 148.53 (C3), 143.35 (C1 and C5), 115.52 (C2 and C4), 49.25
(C8 and C9), 24.12 (C6 and C11), 20.26 (C7 and C10) ppm.

{*H} "B NMR (270 MHz, CDCl;) § = -14.15 (s) ppm.
B NMR (270 MHz, CDCls) § = -14.15 (broad, q) ppm.

IR (ATR) ¥ (cm™): 2945 (w), 2848 (w), 2349 (m), 2291 (m), 2249 (m), 1632 (s), 1564 (W),
1539 (s), 1502 (w), 1464 (m), 1444 (m), 1434 (m), 1413 (m), 1358 (w), 1325 (s), 1278 (m),
1206 (w), 1176 (m), 1138 (vs), 1074 (m), 1053 (m), 941 (m), 909 (s), 891 (s), 846 (m), 745
(m).

MS (70 eV, El) m/z (%): 188 ([M]", 4), 187 ([M-H]", 26), 186 ([M-2H]", 10), 174 ([M-BH,]", 67),
173 ([M-H-BH3]*, 100), 145 (11), 83 (16).

HRMS (70 eV, El): C1;H,7BN; calc. 188.1485 g/mol [M]*, found 188.1386 g/mol.
Elemental analysis [C11H17BN,]
Calc. (%): C 70.25, H 9.11, N 14.89.

Found (%):C 68.73, H 8.97, N 14.30.
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5. Experimental details

Pyridine borane (17t)®
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Pyridine (0.95 g, 12.01 mmol, 1.00 eq.) was dissolved in 5 mL THF under N, atmosphere.
The solution was cooled to 0 °C and a H;B+*SMe, solution (5 M in Et,0, 2.64 mL, 1.10 eq.)
was added. After 10 minutes the external cooling was removed and 50 mL isohexane were
added while stirring vigorously. At the bottom of the flask a second layer of the liquid crude
product had formed. The upper solvent phase was removed and the crude product was
washed twice with isohexane. After removing all residues of solvent under reduced pressure,
17t was obtained as a colorless oil (0.40 g, 4.30 mmol, 36 %).

'H NMR (300 MHz, CDCls) § = 8.47 (d, J = 5.5 Hz, 1H, H-C3), 7.90 — 7.85 (m, 2H, H-C1 and
H-C5), 7.48 — 7.42 (m, 2H, H-C2 and H-C4) 2.98 — 2.05 (broad, g, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCl3) § = 147.30 (C3), 139.40 (C1 and C5), 125.54 (C2 and C4) ppm.
{*H} "'B NMR (270 MHz, CDCl;) § = -12.22 (S) ppm.
B NMR (270 MHz, CDCl;) § = -12.22 (g, J = 96.9 Hz) ppm.

IR (ATR) ¥ (cm™): 3068 (vw), 2360 (s), 2310 (s), 2281 (m), 2086 (w), 1855 (w), 1621 (m),
1576 (w), 1486 (m), 1475 (s), 1401 (vw), 1344 (w), 1254 (w), 1167 (s), 1090 (s), 1060 (m),
1023 (m), 967 (W), 925 (m), 751 (s), 705 (W), 684 (S).

MS (70 eV, El) m/z (%): 93 ([M]*, 6), 92 ([M-H]*, 100), 91 ([M-2HJ", 46), 90 ([M-3HJ", 34), 79
(IM-BHg]", 28), 65 (12), 64 (14), 63 (14), 52 (15).

HRMS (70 eV, El): CsHgBN calc. 93.0750 g/mol [M]*, found 93.0703 g/mol.
Elemental analysis [CsHgBN]
Calc. (%): C 64.62, H 8.68, N 15.07.

Found (%): C 64.38, H 8.53, N 16.07.
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5. Experimental details

1-Methylbenzotriazole borane (17u)

17u was prepared according to general procedure A. 1-Methylbenzotriazole (41u, 0.66 g,
5.00 mmol, 1.00 eq.) was dissolved in 15 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a HzB+*SMe; solution (5 M in Et,O, 1.10 mL, 1.10 eq.) was added. A white
precipitate is forming immediately. After 10 minutes the external cooling was removed and
100 mL isohexane were added while stirring vigorously. The precipitate was filtered off and
washed three times with isohexane. After removing all residues of solvent under reduced
pressure, 17u was obtained as a white solid (0.71 g, 4.81 mmol, 97 %).

Decomposition point: 199.3 — 199.8 °C.

'H NMR (300 MHz, CDCl3) § = 8.15 (m, 1H, H-C2), 7.72 — 7.53 (m, 3H, H-C3, H-C4 and H-
C5), 4.37 (s, 3H, H3-C7), 3.30-1.90 (broad, q, 3H, H3-B) ppm.

3C NMR (75 MHz, CDCls) § = 139.71 (C1), 134.06 (C6), 129.28 (C3), 127.28 (C4), 117.96
(C2), 110.19 (C5), 35.72 (C7) ppm.

{*H} "B NMR (270 MHz, CDCl3) § = —20.00 (S) ppm.
B NMR (270 MHz, CDCl;) § = —20.01 (broad, q) ppm.

IR (ATR) ¥ (cm™): 3203 (w), 2356 (s), 2263 (m), 1602 (w), 1559 (vw), 1497 (w), 1464 (m),
1431 (w), 1332 (w), 1314 (w), 1285 (w), 1246 (w), 1152 (s), 1125 (m), 1064 (w), 996 (w), 977
(w), 920 (m), 847 (vw), 775 (m), 749 (vs), 668 (w).

MS (70 eV, EI) m/z (%): 147 (M]*, 7) 146 ([M-H]", 83), 145 ([M-2H]", 31), 133 ([M-BH.]", 93),
116 (17), 105 (100), 104 (31), 102 (38), 90 (57), 78 (25), 77 (53), 76 (17), 75 (17), 64 (23), 63
(38), 51 (18), 50 (14).

HRMS (70 eV, El): C;H,,BN; calc. 147.0968 g/mol [M]", found 147.0906 g/mol.
Elemental analysis [C7H10BN3]
Calc. (%): C 57.20, H 6.86, N 28.59.

Found (%): C 55.34, H 6.67, N 27.77.
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5. Experimental details
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1-Butyl-3-methylimidazol-2-ylidene borane (17x)!
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NaHMDS (1 m in THF, 54.96 ml, 54.96 mmol, 1.2 eq.) was added to a suspension of 1-butyl-
3-methylimidazolium chloride (8.00 g, 45.80 mmol, 1.0 eq.) in dry THF (120 ml) at -78 °C.
The resulting mixture was stirred at —=78 °C for 1 h then warmed to room temperature.
Trimethylamine-borane (3.27 g, 44.88 mmol, 0.98 eq.) was added and the solution was
refluxed for 2 h and concentrated in vacuo. The crude product was purified by column
chromatography on silica (0.035-0.070 mm, 60 A/ DCM; R=0.55). We obtained 17x (5.75g,
37.84 mmol, 84 %) as a colorless liquid.

Melting point: —-65 to -63 °C.

'H NMR (300 MHz, CDCl;) 6 = 6.80 (s, 2H, H-C2 and H-C3), 4.10 — 4.05 (m, 2H, H,-C7),
3.70 (s, 3H, H3-C8), 1.78 — 1.68 (m, 2H, H»-C6), 1.39 — 1.27 (m, 2H, H,-C5), 0.92 (t, *J = 7.32
Hz, 3H, Hs-C4), 1.42 — 0.56 (broad, q, 3H, Hs-B) ppm.

13C NMR (75 MHz, CDCls) & = 13.59 (C4), 19.65 (C5), 32.15 (C8), 35.75 (C6), 48.52 (C7),
118.74 (C2/3), 119.95 (C2/3).

{*H} "B NMR (270 MHz, CDCl;) § = -38.34 (s) ppm.
B NMR (270 MHz, CDCl;) § = -38.34 (q) ppm.

IR (ATR) ¥ (cm™): 3128 (w), 2958 (m), 2934 (m), 2874 (m), 2335 (s), 2275 (vs), 1572 (w),
1474 (vs), 1411 (m), 1379 (m), 1290 (w), 1238 (s), 1214 (w), 1179 (m), 1125 (vs), 1058 (w),
946 (w), 864 (m), 724 (vs), 680 (w).

MS (70 eV, El) m/z (%): 152 ([M[*, 4), 151 ([M-HJ*, 23), 150 ([M-2H]", 16), 149 ([M-3H[*, 100),
148 ([M-4H]", 31), 147 ((M-5H]", 11), 133 (13), 121 (67), 120 (19), 119 (16), 109 (10), 95
(23), 66 (16), 45 (18), 42 (14), 41 (11).

HRMS (70 eV, El): CgH1,BN, calc. 152.1485 g/mol [M]*, found 152.1422 g/mol.
Elemental analysis [CgH17BN]
Calc. (%): C 63.20, H 11.27, N 18.42.

Found (%): C 62.66, H 11.48, N 18.42.
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1,3-Dimethylimidazol-2-ylidene-borane (17y)"
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A vacuum dried, N, atmosphere Schlenk flask fitted with a reflux condenser was prepared
and 1,3- dimethylimidazolium dimethyl phosphate salt (5.40 g, 24.30 mmol, 1.00 eq.) was
dissolved in THF. A acetone/dry ice bath was used to cool the flask to -78 °C before the
addition of sodium bis(trimethylsilyl)amide (5.32 g, 29.01 mmol, 1.20 eq.). The mixture was
then left to stir for 1 hour. After an hour had passed the acetone/dry ice bath was removed
and the borane-ammonia complex (0.74 g, 23.81 mmol, 0.98 eq.) added. An oil bath was
introduced at this point and the flask heated to 70 °C. The reaction mixture was then left to
reflux for two hours. Afterwards the solvent was removed under reduced pressure. This left
an orange solid along with some fine crystals. Column chromatography on silica
(0.035-0.070 mm, 60 A/ DCM; R=0.7) led to the pure product 17y as a white solid (1.12 g,
10.21 mmol, 42 %).

Melting point: 133.5 - 134.5 °C.

'H NMR (300 MHz, CDCl3) § = 6.78 (s, 2H, H-C1, H-C2), 3.70 (s, 6H, H3-C4, H;-C5), 1.41-
0.55 (broad, q, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCl;) § = 119.91 (C1 and C2), 35.88 (C4 and C5) ppm.
{*H} "'B NMR (270 MHz, CDCl;) § = -37.49 (s) ppm.
B NMR (270 MHz, CDCl;) § = -37.49 (g, J = 86.5 Hz) ppm.

IR (ATR) % (cm™): 3167 (W), 3132 (m), 2942 (w), 2270 (s), 2214 (m), 1574 (m), 1477 (s),
1445 (m), 1424 (m), 1412 (m), 1356 (m), 1334 (w), 1238 (s), 1187 (w), 1117 (s), 1096 (s),
1031 (m), 858 (m), 736 (s), 657 (M).

MS (70 eV, El) miz (%): 109 ([M-H]*, 84), 108 ([M-2H]", 50), 107 ([M-3HJ", 23), 97 (11), 96
([M-BH]", 21), 93 (13), 92 (45), 91 (23), 85 (11), 83 (13), 81 (23), 79 ([M-2Me-HJ*, 100), 78
(15), 69 (14), 66 (19), 65 (11), 57 (27), 56 (12), 55 (18), 52 (44), 51 (22), 50 (18), 44 (49), 43
(11), 42 (17), 41 (18).

HRMS (70 eV, EIl): CsH1.BN, calc. 109.0932 g/mol [M-H]", found 109.0935 g/mol.
Elemental analysis [CsH11BN]
Calc. (%): C 54.61, H 10.08, N 25.47.

Found (%):C 54.31, H 9.89, N 24.57.
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5. Experimental details

4-Diethylaminopyridine (DEAP, 24)

Under a N, atmosphere, para-aminopyridine (3.00 g, 31.88 mmol, 1.00 eq.) was dissolved in
200 mL THF. Afterwards n-butyllithium (1.6 M in hexane, 22.90 mL, 36.66 mmol, 1.15 eq.)
was slowly added at room temperature. A chewy precipitate was formed, which was
vigorously stirred for 30 minutes until a homogenious suspension had formed. Afterwards
ethyl iodide (2.95 mL, 36.66 mmol, 1.15 eq.) was added at room temperature and the mixture
was stirred until a clear yellow solution had formed (ca. 20 minutes). Subsequently n-
butyllithium (1.6 M in hexane, 22.90 mL, 36.66 mmol, 1.15 eq.) was again slowly added at
room temperature. The red brown clear solution was stirred for 20 minutes, followed by the
addition of ethyl iodide (2.95 mL, 36.66 mmol, 1.15 eq.). After stirring for 15 minutes, distilled
water (30 mL) was added, the aqueous phase was three times extracted with chloroform, the
organic layer was dried over MgSO, and the solvent was removed under reduced pressure.
To the brown oily crude product isohexane (10 mL) was added and vigorously stirred for one
minute. Over an unsoluble oil at the bottom of the flask, a cloudy isohexane phase had
formed. The upper hazy isohexane layer was wasted and the procedure repeated.
Afterwards the residues of solvent were removed under reduced pressure and ethyl acetate
(30 mL) was added to the crude product. After stirring for one minute a brown tar had
deposited at the bottom of the flask and the organic layer above had become cloudy due to
precipitation of pyridinium salts. This suspension was filtered off and all volatiles of the clear
yellow solution were removed under reduced pressure. 24 was obtained as a slightly yellow
wax (1.39 g, 9.25 mmol, 29 %).

'H NMR (300 MHz, CDCl3) 6 = 8.10 (dd, J = 5.0 Hz, 1.6 Hz, 2H, H-C1 and H-C5), 6.39 (dd,
J =5.0 Hz, 1.6 Hz, 2H, H-C2 and H-C4), 3.29 (q, J = 7.1 Hz, 4H, H,-C7 and H,-C8), 1.11 (t,
J=7.1Hz, 6H, Hs-C6 and Hs-C9) ppm.

13C NMR (75 MHz, CDCl3) § = 152.01 (C3), 149.64 (C1 and C5), 106.18 (C2 and C4), 43.69
(C7 and C8), 12.22 (C6 and C9) ppm.

IR (ATR) # (cm™): 3251 (w), 3092 (w), 2972 (m), 2932 (w), 2873 (w), 2508 (vw), 1643 (W),
1594 (vs), 1536 (m), 1516 (s), 1482 (w), 1469 (m), 1449 (m), 1410 (m), 1377 (m), 1356 (m),
1278 (m), 1256 (w),1229 (m), 1216 (m), 1192 (m), 1164 (w), 1107 (m), 1094 (m), 1077 (m),
1013 (m), 984 (s), 907 (w), 802 (s), 724 (m).

MS (70 eV, El) m/z (%): 150 ([M]*, 34), 136 ([M-CH,]", 11), 135 ([M-Me]*, 100), 107 (70), 78
(18), 51 (15).

HRMS (70 eV, El): CgH14N, calc. 150.1157 g/mol [M]", found 150.1150 g/mol.
Elemental analysis [CoH14N;]
Calc. (%): C 71.96, H 9.39, N 18.65.

Found (%): C 71.15, H 8.96, N 18.63.
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5. Experimental details

4-Diethylaminopyridine (DEAP borane, 172)

4-Diethylaminopyridine (24, 1.50 g, 9.96 mmol, 1.00 eq.) was dissolved in 4 mL THF under
N, atmosphere. The solution was cooled to 0 °C and a H3B*SMe, solution (5 M in Et,0,
2.19mL, 1.10 eq.) was added. After 10 minutes the external cooling was removed and
20 mL isohexane were added while stirring vigorously. Within 5 minutes a white precititate
had formed. The precipitate was filtered off and washed three times with isohexane. The
crude product (1.27 g) was dissolved in benzene (10 mL), where an unsoluble precipitate
forms. This solid was filtered off and wasted. Benzene was removed under reduced pressure
from the crude product. After recrystallisation from benzene (4 mL), 17z was obtained as a
white solid (0.96 g, 5.88 mmol, 59 %).

Melting point: 114.5 — 115.0 °C.

'H NMR (300 MHz, C¢Ds) & = 7.94 (d, J = 7.4 Hz, 2H, H-C1 and H-C5), 5.66 (d, J = 7.5 Hz,
2H, H-C2 and H-C4), 2.51 (g, J = 7.1 Hz, 4H, H,-C7 and H,-C8), 0.55 (t, J = 7.1 Hz, 6H, Ha-
C6 and H3-C9), 3.93-2.98 (broad, g, 3H, Ha-B) ppm.

13C NMR (75 MHz, C¢D¢) 6 = 152.04 (C3), 146.78 (C1 and C5), 105.81 (C2 and C4), 43.62
(C7 and C8), 11.46 (C6 and C9) ppm.

{*H} "'B NMR (270 MHz, C¢D¢) & = -12.28 (S) ppm.
B NMR (270 MHz, C¢Dg) 6 = -12.27 (broad, q) ppm.

IR (ATR) # (cm™): 3253 (w), 3135 (w), 2975 (m), 2930 (w), 2359 (m), 2298 (m), 2252 (m),
1631 (vs), 1540 (s), 1530 (s), 1476 (m), 1446 (m), 1416 (m), 1379 (m), 1348 (m), 1328 (m),
1307 (m), 1284 (m), 1217 (w), 1167 (s), 1127 (m), 1093 (s), 1074 (s), 1034 (s), 933 (m), 815
(s), 796 (s), 756 (m), 668 (M).

MS (70 eV, El) m/z (%): 164 ((M]*, 9), 163 ([M-HJ*, 89), 162 ([M-2H]", 31), 150 ([M-BH]*, 33),
136 (10), 135 ([M-Et]*, 100), 119 (14), 107 (62), 78 (17).

HRMS (70 eV, El): CgH17BN, calc. 164.1485 g/mol [M]", found 164.1420 g/mol.
Elemental analysis [CgH17BN;]
Calc. (%): C 65.89, H 10.45, N 17.08.

Found (%): C 63.62, H 9.93, N 16.47.
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5. Experimental details

Imidazole borane (17aa)

17aa was prepared according to general procedure A. Imidazole (1.00 g, 14.69 mmol,
1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was cooled to 0 °C
and a H3;B*SMe, solution (5 M in Et,0, 3.23 mL, 1.10 eq.) was added. After 10 minutes the
external cooling was removed and 100 mL isohexane were added while stirring vigorously.
Within 5 minutes a white precititate had formed. The precipitate was filtered off and washed
three times with isohexane. After removing all residues of solvent under reduced pressure,
17aa was obtained as a white solid (1.17 g, 14.25 mmol, 97 %).

Decomposition point: 90.9 —91.2 °C.

'H-NMR (300 MHz, DMSO-d) & = 13.17-12.78 (broad, 1H, H-N), 8.19 (s, 1H, H-C1), 7.29 (t,
J =1.52 Hz, 1H, H-C2), 7.00 (t, J = 1.52 Hz, 1H, H-C3), 2.58-1.55 (broad, g, 3H, Hs-B) ppm.

13C-NMR (75 MHz, DMSO-dg) § = 136.12 (C1), 126.36 (C2), 118.46 (C3) ppm.
{*H} "'B-NMR (270 MHz, DMSO-d¢) § = -18.65 ppm.
“B-NMR (270 MHz, DMSO-ds) & = —18.66 (broad, g) ppm.

IR (ATR) ¥ (cm™): 3282 (vs), 3136 (s), 3070 (w), 2990 (w), 2867 (w), 2580 (w), 2305 (vs),
2260 (vs), 1713 (w), 1698 (w), 1620 (m), 1559 (s), 1526 (m), 1488 (w), 1439 (m), 1349 (m),
1283 (w), 1195 (s), 1140 (s), 1103 (s), 1076 (s), 992 (m), 957 (M), 915 (w), 847 (vs), 772 (s),
761 (s), 701 (vs).

MS (70 eV, El) m/z (%): 82 ([M]*, 4), 81 ([M-HJ*, 100), 80 ([M-2H]", 42), 79 ([M-3H]", 10), 68
(IM-BHg]", 16), 53 (21), 52 (24).

HRMS (70 eV, El): CsH;BN,calc. 82.0702 g/mol [M]", found 82.0703 g/mol.
Elemental analysis [C3H;BNj]
Calc. (%): C 43.99, H 8.61, N 34.20.

Found (%): C 43.36, H 8.07, N 33.78.
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5. Experimental details

1,2-Dimethylbenzimidazole borane (17ab)
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17ab was prepared according to general procedure A. 2-Methylbenzimidazole (1.00 g,
6.84 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a HsB*SMe, solution (5 M in Et,O, 1.50 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. In this case further impurities had to be
removed by again precipitating the solid with isohexane from a saturated DCM solution. As
the product still showed small traces of impurity (*H-NMR), a column chromatography on
silica (0.035-0.070 mm, 60 A/ ethyl acetate : DCM : Et;N = 10 : 1 : 1; R=0.57) lead to the
pure product 17ab as a white solid (0.20 g, 1.23 mmol, 18 %).

Decomposition point: 147.5 — 147.8 °C.

IH-NMR (300 MHz, CDCls) & = 8.02 — 7.98 (m, 1H, H-C3), 7.44 — 7.33 (m, 3H, H-C4, H-C5
and H-C6), 3.79 (s, 3H, Ha-C8), 2.76 (s, 3H, H3-C9), 2.94 - 1.69 (broad, g, 3H, Hs-B) ppm.

3C-NMR (75 MHz, CDCls) & = 150.89 (C1), 136.79 (C2), 132.65 (C7), 124.30 (C4 or C5),
124.15 (C4 or C5), 117.30 (C3), 109.52 (C6), 30.50 (C8), 11.38 (C9) ppm.

{*H} "'B-NMR (270 MHz, CDCl3) § = -23.76 (s) ppm.
B-NMR (270 MHz, CDCls) § = -23.85 (broad, q) ppm.

IR (ATR) ) # (cm™): 3068 (w), 2952 (W), 2377 (m), 2313 (m), 2270 (m), 2093 (W), 1941 (vw),
1901 (vw), 1782 (vw), 1683 (vw), 1621 (w), 1596 (w), 1521 (m), 1482 (m), 1460 (s), 1419
(m), 1382 (m), 1344 (m), 1304 (m), 1248 (m), 1208 (vw), 1164 (vs), 1124 (m), 1041 (m),
1006 (m), 982 (M), 936 (M), 846 (W), 761 (M), 740 (vs), 686 (M).

MS (70 eV, El) miz (%): 160 ([M]", 8), 159 ([M-HJ*, 100), 158 ([M-2H]*, 40), 157 ([M-3H[*, 16),
146 ([M-BH3[*, 42), 145 (IM-BHs-HJ*, 21), 131 ([M-BHs-CHg]*, 18), 116 ([M-BHs-CHs-CHaJ",
11), 77 (14).

HRMS (70 eV, El): C1oH13BN, calc. 160.1172 g/mol [M]”, found 160.1131 g/mol.
Elemental analysis [C19H13BN,]
Calc. (%): C 67.55, H 8.19, N 17.51.

Found (%): C 67.49, H 8.22, N 17.43.
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5. Experimental details

2-Nonyl-benzimidazole (32ac)

Ortho-phenylenediamine (35e, 5.00 g, 46.30 mmol, 1.00 eq.) and decanal (35f, 7.24 g,
46.30 mmol, 1.00 eq.) were combined in a 250 mL flask under ambient air and stirred for
10 minutes at 200 °C without solvent. The crude product was cooled to room temperature
and washed with 20 mL isohexane to remove remaining aldehyde. The residue was distilled
under a nitrogen atmosphere at 5x10% mbar and 200 °C to remove unreacted diamine.
Afterwards the distillation temperature was raised to 250 °C (same pressure) which delivers
the desired product as a pale yellow wax (when cooled down). The distillation process was
three times repeated, which yielded 1.99 g 2-nonyl-benzimidazole (32ac, 8.12 mmol, 18 %)
as pale yellow wax.

Melting point: 120.7 — 121.4 °C.

'H-NMR (300 MHz, CDCl;) § = 12.43 — 11.93 (broad, s, 1H, H-N), 7.57 (dd, J = 6.0 Hz, 3.2
Hz, 2H, H-C2 and H-C5), 7.22 (dd, J = 6.0 Hz, 3.2 Hz, 2H, H-C3 and H-C4), 2.98 (t, J = 7.8
Hz, 2H, H,-C8), 1.94 — 1.83 (m, 2H, H,-C9), 1.42 — 1.13 (m, 12H, H,-C10, H,-C11, H,-C12,
H,-C13, H,-C14 and H,-C15), 0.85 (t, J = 6.8 Hz, 3H, Hs-C16) ppm.

BC-NMR (75 MHz, CDCl;) & = 155.79 (C7), 138.63 (C1 and C6), 121.98 (C3 and C4),
114.57 (C2 and C5), 31.81 (C14), 29.43 (Caliphatic): 29.41 (Caliphatic)i 29.40 (Ca”phatic), 29.34
(Caliphatic), 29.24 (Caliphatic)’ 28.48 (Cg), 22.62 (C15), 14.06 (C16) ppm.

IR (ATR) # (cm™): 3087 (w), 3051 (w), 2951 (m), 2922 (s), 2851 (s)2743 (m), 2633 (m), 1621
(W), 1590 (w), 1539 (m), 1482 (w), 1453 (s), 1419 (s), 1377 (w), 1349 (w), 1340 (w), 1321
(W), 1271 (s), 1238 (w), 1217 (m), 1197 (m), 1154 (w), 1110 (w), 1027 (m), 1004 (m), 965
(W), 928 (m), 907 (m), 872 (m), 775 (w), 767 (w), 749 (s), 740 (s), 724 (S).

MS (70 eV, El) m/z (%): 244 ([M]", 16), 201 ([M-C3H,]*, 12), 187 ([M-C4H,]", 19), 146 ([M-
C;Hu]", 17), 145 ([M-C;Hys]*, 50), 133 ([M-CgHis]", 10), 132 ([M-CgHyg]*, 100), 131 ([M-
CgHy]", 14).

HRMS (70 eV, El): CyH,4N; calc. 244.1939 g/mol [M]", found 244.1941 g/mol.

Elemental analysis [C1sH24N5]
Calc. (%): C 78.64, H 9.90, N 11.46.

Found (%): C 78.73, H 9.89, N 11.41.

179



5. Experimental details

2-Nonyl-benzimidazole borane (17ac)

17ac was prepared according to general procedure A. 2-nonyl-benzimidazole (32ac, 1.00 g,
4.09 mmol, 1.00 eq.) was dissolved in 5 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et;O, 0.90 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 50 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17ac was obtained as a white solid (1.01 g, 0.93 mmol, 96 %).

Melting point: 69.8 — 70.2 °C.

'H-NMR (300 MHz, C¢D¢) & = 9.41 (broad, s, 1H, H-N), 8.18 (d, J = 8.2 Hz, 1H, H-C2), 7.19
(d, J = 8.2 Hz, 1H, H-C5), 7.10 - 7.00 (m, 2H, H-C3 and H-C4), 3.72 — 2.67 (broad, g, 3H, Ha-
B), 2.90 (t, J = 7.9, 2H, H,-C8), 1.66 — 1.51 (m, 2H, H,-C9), 1.32 — 1.02 (m, 12H, H,-C10, H-
C11, H,-C12, H,-C13, H,-C14 and H,-C15), 0.85 (t, J = 7.0 Hz, 3H, Hs-C16) ppm.

B3C-NMR (75 MHz, C¢Dg) & = 153.96 (C7), 137.85 (C1), 130.72 (C6), 124.14 (C3 or C4),
123.75 (C3 or C4), 117.07 (C2), 111.31 (C5), 31.86 (C14), 29.41 (Cajpnaic), 29-28 (Caiphatic):
29.24 (Caliphatic)v 29.19 (Caliphatic)a 27.05 (Caliphatic)a 26.58 (Caliphatic)a 22.67 (C15), 13.95
(C16) ppm.

{*H} "B-NMR (270 MHz, Cg¢Dg) & = -21.01 (s) ppm.
"B-NMR (270 MHz, C¢Dg) & = -21.03 (broad, g) ppm.

IR (ATR) ¥ (cm™): 3262 (W), 2953 (m), 1921 (s), 2852 (m), 2434 (m), 2376 (W), 2302 (W),
2261 (W), 1610 (w), 1543 (w), 1454 (s), 1378 (w), 1300 (m), 1242 (w), 1194 (m), 1140 (s),
1123 (s), 1099 (s), 1047 (m), 1014 (m), 961 (m), 933 (M), 859 (W), 738 (s), 723 (S), 667 (M).

MS (70 eV, El) m/z (%): 258 ([M]*, 5), 257 ([M-H]", 16), 255 ([M-3H]", 10), 244 ([M-BH;]", 18),
201 ([M-BH3-C5H]*, 12), 187 ([M-BH5-C,Hq]", 21), 171 (17), 159 (10), 157 (11), 146 (18), 145
(58), 133 (12), 132 ([M-BH3-CgHa¢]", 100), 131 (19).

HRMS (70 eV, El): CyH,7BN, calc. 258.2267 g/mol [M]", found 258.2267 g/mol.

Elemental analysis [C1sH27BN,]
Calc. (%): C74.42 H 10.54 N 10.84.

Found (%): C 74.24 H9.63 N 10.44.
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5. Experimental details

2-Phenylbenzimidazole borane (17ae)

17ae was prepared according to general procedure A. 2-Phenylbenzimidazole (1.00 g,
5.15 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et;O, 1.13 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17ae was obtained as a white solid (1.01 g, 4.84 mmol, 94 %).

Decomposition point: 244.5 -245.1 °C.

'H NMR (300 MHz, DMSO-d¢) § = 13.87 (broad, s, 1H, H-N), 8.03 — 7.96 (m, 2H, H-C9 and
H-C13), 7.92 — 7.94 (m, 1H, aromatic), 7.68 — 7.56 (m, 4H, aromatic), 7.46 — 7.38 (m, 2H, H
aromatic), 2.74 — 1.85 (broad, q, 3H, Hs-B) ppm.

¥C NMR (75 MHz, DMSO-d¢) § = 151.02 (C7), 138.40 (C1), 132.14 (C6), 131.55 (C8),
130.78 (C9 and C13), 129.36 (C11), 128.67 (C10 and C12), 125.19 (C3 or C4), 124.31 (C3
or C4), 117.20 (C2), 112.91 (C5) ppm.

{*H} B NMR (270 MHz, DMSO-d¢) § = -20.11 (s) ppm.
B NMR (270 MHz, DMSO-d¢) § = —20.11 (broad, q) ppm.

IR (ATR) ¥ (cm™): 3288 (m), 3062 (w), 2926 (w), 2863 (W), 2363 (m), 2299 (m), 2251 (m),
1762 (vw), 1624 (w), 1604 (w), 1544 (m), 1498 (m), 1484 (m), 1466 (m), 1453 (s), 1427 (m),
1377 (w), 1323 (m), 1288 (w), 1244 (w), 1186 (s), 1156 (s), 1143 (s), 1077 (w), 1024 (m),
1007 (m), 990 (W), 969 (w), 944 (w), 927 (w), 895 (w), 808 (w), 772 (m), 753 (m), 741 (vs),
697 (s), 690 (s), 670 ().

MS (70 eV, El) m/z (%): 207 ([M-H]*, 7), 205 ([M-3H]*, 21), 204 (10), 194 ([M-BHs]", 100).
HRMS (70 eV, El): C13H13BN, calc. 208.1172 g/mol [M-H]", found 207.1078 g/mol.
Elemental analysis [C13H13BN,]

Calc. (%): C 75.04, H 6.30, N 13.46.

Found (%): C 74.98, H 6.36, N 13.19.
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5. Experimental details

2-(4-Fluorophenyl)-benzimidazole borane (17af)
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17af was prepared according to general procedure A. 2-(4-Fluorophenyl)-benzimidazole
(41pa, 1.00 g, 4.71 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The
solution was cooled to 0 °C and a HzB*SMe; solution (5 M in Et,0, 1.04 mL, 1.10 eqg.) was
added. After 10 minutes the external cooling was removed and 100 mL isohexane were
added while stirring vigorously. Within 5 minutes a white precititate had formed. The
precipitate was filtered off and washed three times with isohexane. After removing all
residues of solvent under reduced pressure, 17af was obtained as a white solid (0.93 g,
4.08 mmol, 87 %).

Decomposition point: 203.8 — 204.3 °C.

'H NMR (300 MHz, DMSO-dg) § = 13.90 (broad, s, 1H, H-N), 8.23 — 8.16 (m, 1H, aromatic),
8.11 — 8.03 (m, 1H, aromatic), 7.90 — 7.84 (m, 1H, aromatic), 7.68 — 7.61 (m, 1H, aromatic),
7.60 — 7.54 (m, 1H, aromatic), 7.52 — 7.33 (m, 3H, aromatic), 7.22 — 7.14 (m, 1H, aromatic),
2.71 —1.83 (broad, q, 3H, Hs-B) ppm.

13C NMR (75 MHz, DMSO-dg) & = 164.07 (d, 'J(C,F) = 249.8 Hz, C11), 150.11 (C7), 138.34
(C1), 133.43 (d, *J(C,F) = 9.1 Hz, C9 and C13), 132.11 (C6), 125.22 (C3 or C4), 124.33 (C3
or C4), 123.19 (d, *J(C,F) = 3.2 Hz, C8), 117.18 (C2), 115.86 (d,’J(C,F) = 22.1 Hz, C10 and
C12), 112.92 (C5) ppm.

{*H} "B NMR (270 MHz, DMSO-dg) § = -21.24 (s) ppm.
B NMR (270 MHz, DMSO-d¢) § = —21.24 (broad, q) ppm.
F NMR (376 MHz, DMSO-d¢) 6= -108.66 ppm.

IR (ATR) ¥ (cm™): 3243 (m), 2941 (w), 2862 (w), 2789 (w), 2334 (m), 2312 (m), 2276 (m),
1769 (W), 1746 (), 1624 (w), 1606 (m), 1557 (w), 1493 (s), 1456 (s), 1405 (w), 1371 (w),
1325 (w), 1283 (w), 1235 (s), 1202 (s), 1189 (s), 1160 (s), 1116 (w), 1101 (m), 1056 (w),
1013 (m), 1006 (m), 984 (w), 950 (w), 940 (W), 924 (w), 898 (w), 843 (vs), 824 (w), 793 (m),
766 (W), 755 (W), 739 (s), 728 (s), 707 (W).

MS (70 eV, El) m/z (%): 213 ([M-BH,]", 16), 212 ([M-BH]", 100), 211 ([M-BH3-H]", 14).
HRMS (70 eV, El): C13H1,BFN, calc. 226.1078 g/mol [M-BH;]", found 212.0735 g/mol.
Elemental analysis [C13H:2BFN,]

Calc. (%): C 69.07, H 5.35, N 12.39.

Found (%): C 68.92, H 5.24, N 12.48.
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5. Experimental details

2-(3,4,5-Trimethoxyphenyl)-benzimidazole borane (17ag)

17ag was prepared according to general procedure A. 2-(3,4,5-Trimethoxyphenyl)-
benzimidazole (41oa, 1.00 g, 3.52 mmol, 1.00 eq.) was dissolved in 10 mL THF under N,
atmosphere. The solution was cooled to 0 °C and a HzB*SMe, solution (5 M in Et,O, 0.77 mL,
1.10 eq.) was added. After 10 minutes the external cooling was removed and 100 mL
isohexane were added while stirring vigorously. Within 5 minutes a white precititate had
formed. The precipitate was filtered off and washed three times with isohexane. After
removing all residues of solvent under reduced pressure, 17ag was obtained as a white solid
(0.94 g, 3.17 mmol, 90 %).

Decomposition point: 155.2 — 155.9 °C.

'H NMR (300 MHz, CDCls) § = 11.33 — 10.35 (broad, s, H-N), 8.05 (d, J = 8.0 Hz, 1H, H-C2),
7.47 — 7.35 (m, 3H, H-C3, H-C4 and H-C5), 7.13 (s, 2H, H-C9 and H-C13), 3.91 (s, 3H, Hs-
C15), 3.75 (s, 6H, H3-C14 and H3-C16), 2.55 (broad, s, 3H, H3-B) ppm.

3C NMR (75 MHz, CDCl3) § = 152.82 (C10 and C12), 150.40 (C7), 139.74 (C11), 138.54
(C1), 131.15 (C6), 125.18 (C3 or C4), 124.46 (C3 or C4), 121.49 (C8), 117.78 (C2), 111.57
(C5), 107.54 (C9 and C13), 61.00 (C15), 56.16 (C14 and C16) ppm.

{*H} "'B NMR (270 MHz, CDCl;) § = -23.54 (s) ppm.
B NMR (270 MHz, CDCl;) § = —23.53 (broad, q) ppm.

IR (ATR) & (cm™): 3294 (m), 2938 (w), 2855 (W), 2402 (m), 2321 (m), 2239 (m), 1763 (w),
1746 (w), 1587 (m), 1546 (w), 1491 (m), 1468 (m), 1455 (m), 1443 (m), 1429 (m), 1405 (m),
1377 (w), 1365 (w), 1339 (m), 1307 (w), 1288 (w), 1248 (s), 1223 (m), 1182 (m), 1163 (m),
1154 (m), 1124 (vs), 1069 (m), 1030 (m), 997 (s), 965 (m), 918 (w), 894 (w), 885 (m), 843
(m), 833 (m), 789 (W), 760 (s), 753 (M), 735 (W), 724 (W), 695 (w).

MS (70 eV, EI) miz (%): 298 ([M]*, 100), 297 ([M-H]*, 32), 284 ([M-BH.]*, 37), 283 ([M-BHa-
H]*, 53), 269 ([M-BHs-CH]", 18), 225 (22), 197 (10), 146 (22), 145 (23).

HRMS (70 eV, El): C16H19BN,O; calc. 298.1489 g/mol [M]", found 298.1367 g/mol.
Elemental analysis [C1gH19BN2O3]
Calc. (%): C 64.46, H 6.42, N 9.40.

Found (%): C 64.28, H 6.38, N 9.27.
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5. Experimental details

2-Methylimidazole borane (17ah)
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17ah was prepared according to general procedure A. 2-Methylimidazole (1.00 g,
12.19 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et;O, 2.68 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17ah was obtained as a white solid (1.09 g, 11.34 mmol, 93 %).

Decomposition point: 83.2 —83.7 °C.

IH NMR (300 MHz, CDCls) § = 9.62 (broad, s, 1H, H-N), 6.94 (d, J = 1.8 Hz, 1H, H-C2), 6.86
(d, J = 1.8 Hz, 1H, H-C3), 2.49 (s, 3H, H-C4), 2.78 — 1.70 (broad, g, 3H, Hs-B) ppm.

®C NMR (75 MHz, CDCl3) § = 144.36 (C1), 126.88 (C2), 114.91 (C3), 11.89 (C4) ppm.
{*H} "'B NMR (270 MHz, CDCl;) § = -20.42 (S) ppm.
B NMR (270 MHz, CDCl3,) § = —20.44 (broad, g) ppm.

IR (ATR) ¥ (cm™): 3285 (m), 2944 (w), 2863 (w), 2378 (m), 2283 (m), 2249 (s), 1762 (w),
1746 (w), 1585 (m), 1515 (m), 1436 (w), 1406 (w), 1321 (w), 1294 (m), 1199 (m), 1170 (m),
1153 (vs), 1101 (m), 1058 (m), 1044 (m), 990 (m), 962 (m), 943 (m), 919 (m), 842 (w), 824
(w), 766 (w), 747 (s), 698 (s), 660 (S).

MS (70 eV, El) m/z (%): 96 ([M], 5), 95 ([M-H]", 81), 94 ([M-2H]", 24), 93 ([M-3H]", 11), 82
([M-BH]*, 100), 81 ([M-BHa-H]", 49), 54 (35), 53 (11), 52 (15), 42 (15), 41 (12).

HRMS (70 eV, EIl): C4HsBN, calc. 96.0859 g/mol [M]*, found 96.0800 g/mol.
Elemental analysis [C4HsBN]
Calc. (%): C 50.08, H 9.46, N 29.20.

Found (%): C 49.17, H 9.17, N 29.38.
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5. Experimental details

4.5-Diphenylimidazole borane (17ai)

17ai was prepared according to general procedure A. 4,5-Diphenylimidazole (1.00 g,
4.54 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et,O, 1.00 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed and 100 mL isohexane were added while
stirring vigorously. Within 5 minutes a white precititate had formed. The precipitate was
filtered off and washed three times with isohexane. After removing all residues of solvent
under reduced pressure, 17ai was obtained as a white solid (0.95 g, 4.04 mmol, 89 %).

Decomposition point: 149.0 — 149.5 °C.

'H NMR (300 MHz, CDCl;) § = 7.87 (s, 1H, H-C3), 7.39 — 7.36 (m, 2H, aromatic), 7.32 —
7.26 (m, 3H, aromatic), 7.22 — 7.17 (m, 3H, aromatic), 7.13 — 7.08 (m, 2H, aromatic), 2.73 —
1.86 (broad, q, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCl3) § = 135.14 (C3), 134.49 (C2), 130.85 (C6 and C8), 129.55 (C4),
128.94 (C12 and C14), 128.80 (C10), 128.58 (C7), 128.51 (C8), 128.32 (C1), 128.28 (C5
and C9), 127.13 (C11 and C15) ppm.

{*H} B NMR (270 MHz, CDCls) 5 = -18.96 (s) ppm.
"B NMR (270 MHz, CDCl3) § = -18.95 (broad, q) ppm.

IR (ATR) ¥ (cm™): 3123 (m), 2936 (m), 2861 (w), 2791 (w), 2304 (m), 2265 (m), 1762 (w),
1746 (w), 1603 (m), 1591 (m), 1522 (m), 1492 (m), 1433 (m), 1406 (m), 1281 (w), 1188 (s),
1163 (m), 1133 (s), 1097 (m), 1073 (m), 1056 (w), 1011 (m), 960 (m), 919 (m), 892 (m), 828
(m), 775 (m), 767 (s), 749 (w), 724 (m), 697 (vs), 670 (m).

MS (70 eV, El) m/z (%): 232 ([M-2H]", 8), 231 ([M-3H]", 19), 230 ([M-4H]*, 42), 229 (39), 221
(12), 220 ([M-BH.]*, 100), 165 (47), 89 (11).

HRMS (70 eV, El): Cy5H15BN, calc. 234.1328 g/mol [M-2H]", found 232.1222 g/mol.
Elemental analysis [CisH15BN,]
Calc. (%): C 76.96, H 6.46, N 11.97.

Found (%): C 76.75, H 6.71, N 11.66.
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5. Experimental details

N-methylimidazole borane (17aj)

17aj was prepared according to general procedure A. N-Methylimidazole (41aj, 1.00 g,
12.19 mmol, 1.00 eq.) was dissolved in 10 mL THF under N, atmosphere. The solution was
cooled to 0 °C and a H;B*SMe; solution (5 M in Et;O, 2.68 mL, 1.10 eq.) was added. After
10 minutes the external cooling was removed. The reaction mixture was washed three times
with isohexane. After each washing step, the isohexane phase (upper layer) was wasted.
Finally all volatiles were removed from the crude oil under reduced pressure and 17aj was
obtained as colorless oil (0.92 g, 11.21 mmol, 92 %).

'H NMR (300 MHz, CDCl3) § = 7.68 (s, 1H, H-C1), 6.99 (d, J = 1.65 Hz, 1H, H-C2), 6.85 (d,
J = 1.65 Hz, 1H, H-C3), 3.71 (s, 3H, Hy-C4), 2.61 — 1.51 (broad, g, 3H, Hs-B) ppm.

3C NMR (75 MHz, CDCls) § = 136.82 (C1), 127.73 (C2), 121.02 (C3), 34.84 (C4) ppm.
{*H} B NMR (270 MHz, CDCls) & = -20.51 (s) ppm.
"B NMR (270 MHz, CDCl3) § = -20.51 (broad, q) ppm.

IR (ATR) # (cm™): 3153 (s), 3082 (W), 2953 (m), 2254 (vs), 2101 (w), 1794 (m), 1645 (w),
1589 (m), 1550 (s), 1470 (m), 1425 (m), 1382 (m), 1303 (s), 1252 (m), 1173 (s), 1099 (s),
1129 (s), 1025 (m), 998 (m), 907 (vs), 826 (S).

MS (70 eV, EI) m/z (%): 96 ([M]*, 6), 95 ([M-H]*, 100), 94 ([M-2H]", 36), 82 ([M-BH]", 32), 67
([M-BH3-CHa]*, 17), 66 (IM-BH3-CHa-HJ", 17), 41 (11).

HRMS (70 eV, El): C,HsBN, calc. 96.0859 g/mol [M]*, 96.0857 found g/mol.
Elemental analysis [C4HsBN]
Calc. (%): C 50.08, H 9.46, N 29.20.

Found (%): C 49.56, H 9.11, N 28.52.
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Dihydrobis(4-dimethylaminopyridine)boron(1+) iodide (29b)

4-Dimethylaminopyridine borane (17q) (0.519g, 3.74 mmol, 1.00 eq.) was dissolved in
chloroform (20 mL) under a N, atmosphere. Afterwards iodine (0.47 g, 1.87 mmol, 0.5 eq.)
was added in small portions. It should be mentioned that the solution should stay colorless
and no precipitate should be formed during the addition of iodine. As soon as no elemental
iodine was visible, 4-dimethylaminopyridine (27) (0.46 mg, 3.74 mmol, 1.00 eq.) was added
and stirred for 5 minutes. 10 mL of 2mM NaOH were added, the organic phase was removed,
dried over MgSO, and the solvent removed under reduced pressure. The white crude
product was washed twice with boiling THF (20 mL). Residues of solvent were removed and
29b was obtained as a white solid (0.24 g, 0.63 mmol, 17 %).

Melting point: 196.0 — 196.7 °C.

'H NMR (300 MHz, CDCl3) 6 =8.05 (d, J = 7.6 Hz, 4H, H-C1, H-C5, H-C8 and H-C12), 6.75
(d, J = 7.6 Hz, 4H, H-C2, H-C4, H-C9, H-C11), 3.15 (s, 12H, Hs-C6, Hs-C7, Hs-C13, Hs-
C14) ppm.

3C NMR (75 MHz, CDCl3) & = 155.96 (C3 and C10), 145.76 (C1, C5, C8 and C12), 107.87
(C2, C4, C9 and C11), 40.18 (C6, C7, C13 and C14) ppm.

{*H} "B NMR (270 MHz, CDCl3) § = +0.22 ppm.
B NMR (270 MHz, CDCl;) § = +0.22 (s) ppm.

IR (ATR) # (cm™): 3468 (w), 3056 (W), 2927 (W), 2630 (w), 2415 (w), 2359 (W), 2293 (W),
1628 (vs), 1556 (s), 1530 (m), 1487 (w), 1443 (w), 1398 (m), 1345 (m), 1317 (w), 1227 (m),
1190 (w), 1154 (s), 1125 (m), 1092 (vs), 1034 (m), 1012 (m), 965 (w), 945 (w), 890 (w), 841
(W), 819 (s), 808 (s), 788 (M), 744 (m), 672 (M), 658 (W).

HRMS (ESI+): [C14H2:BN,]" calc. 257.1932 g/mol [M]*, found 257.1934 g/mol.
HRMS (ESI-): [I] calc. 126.9050 g/mol [M]*, found 126.9050 g/mol.
Elemental analysis [C14H2BIN]

Calc. (%): C 43.78, H5.77, N 14.59.

Found (%):C 43.84, H 5.82, N 14.60.
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Dihydrobis(4-dimethylaminopyridine)boron(1+) bromide (29t)

4-Dimethylaminopyridine borane (17q) (1.01g, 7.43 mmol, 1.00 eq.) was dissolved in
chloroform (30 mL) under a N, atmosphere. Afterwards bromine (0.19 mL, 3.71 mmol,
0.5eq.) was slowly added (caution: violent reaction). It should be mentioned that no
precipitate should be formed during the addition of bromine. Afterwards, 4-
dimethylaminopyridine (27) (0.91 mg, 7.43 mmol, 1.00 eq.) was added to the slightly yellow
solution and stirred for 5 minutes. For purification, 15 mL of 2m NaOH were added, the
organic phase was removed, dried over MgSO, and the solvent removed under reduced
pressure. The crude product was washed twice with boiling THF (20 mL). As 'H NMR
analysis still showed some impurities (mainly from 4-dimethylaminopyridine-hydrobromide),
the purification steps were repeated. Thus, 29t was obtained as a slightly green solid (0.69 g,
2.03 mmol, 27 %).

Melting point: 139.8 — 140.5 °C.

'H-NMR (300 MHz, CDCl3) § = 8.03 (d, J = 7.6 Hz, 4H, H-C1, H-C5, H-C8 and H-C12), 6.74
(d, J = 7.6 Hz, 4H, H-C2, H-C4, H-C9, H-C11), 3.12 (s, 12H, Hs-C6, Hs-C7, Hs-C13, Hs-
C14) ppm.

13C-NMR (75 MHz, CDCl3) § = 155.98 (C3 and C10), 145.71 (C1, C5, C8 and C12), 107.76
(C2, C4, C9 and C11), 39.99 (C6, C7, C13 and C14) ppm.

{*H} "'B-NMR (270 MHz, CDCl3) § = +0.74 ppm.
“B-NMR (270 MHz, CDCl3) & = +0.74 (s) ppm.

IR (ATR) v(cm™): 3447 (w), 3384 (w), 3050 (vw), 2391 (w), 2352 (w), 2307 (vw), 1633 (vs),
1562 (s), 1530 (m), 1481 (w), 1444 (w), 1403 (m), 1340 (w), 1324 (w), 1307 (w), 1226 (w),
1196 (m), 1161 (s), 1136 (s), 1116 (m), 1089 (vs), 1035 (m), 995 (m), 972 (w), 949 (m), 841
(m), 826 (s), 820 (s), 734 (w), 705 (w), 659 (w).

HRMS (ESI+): [C14H2:BN,]" calc. 257.1932 g/mol [M]*, found 257.1934 g/mol.
HRMS (ESI-): [Br] calc. 80.9168 g/mol [M], found 80.9168 g/mol.

Elemental analysis [C14H2,BBrNy]

Calc. (%): C 49.89, H 6.58, N 16.62.

Found (%): C 48.19, H 6.85, N 16.09.
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4-Dihexylaminopyridine (DHAP, 30a)

Under a N, atmosphere, para-aminopyridine (30b, 4.00 g, 42.50 mmol, 1.00 eq.) was
dissolved in 200 mL THF. Afterwards n-butyllithium (2.5 M in hexane, 37.40 mL, 93.50 mmol,
2.20 eq.) was slowly added at room temperature. A chewy precipitate was formed, which
was vigorously stirred for 30 minutes. Afterwards n-hexyl iodide (13.80 mL, 93.5 mmol,
2.20 eq.) was added and the reaction mixture several times slightly warmed until a clear
solution had arised (ca. 30 minutes). Afterwards distilled water (30 mL) was added and the
aqueous phase was three times extracted with DCM. The organic layer was dried over
MgSO, and the solvent removed under reduced pressure. *H NMR and GC/MS analysis of
the reaction outcome showed a mixture of the desired product, mono alkylated
aminopyridine, aminopyridinum hexyl iodide salts and unreacted hexyl iodide. A column
chromatography on silica (0.035-0.070 mm, 60 A/ DCM : Et;N = 10 : 1; R=0.55) lead to the
crude product. 'HNMR analysis revealed this product to be a mixture of
4-dihexylaminopyridine (30a) and 4-dihexylaminopyridinium hexyl iodide (30e). In order to
get rid of the iodide salt, isohexane (50 mL) was added to the mixture, whereas the salt
precipitated. The solid was filtered off and the solvent of the liquid phase was removed under
reduced pressure. This yielded 30a as a yellow oil (2.68 g, 10.20 mmol, 24 %).

IH NMR (300 MHz, CDCls) § = 8.15 (dd, J = 5.0 Hz, J = 1.6 Hz, 2H, H-C1 and H-C5), 6.40
(dd, J = 5.0 Hz, J = 1.6 Hz, 2H, H-C2 and H-C4), 3.25 (t, J = 7.6 Hz, 4H, H,-C11 and H.-
C12), 1.63-1.49 (m, 4H, H,-C10 and H,-C13), 1.40-1.24 (m, 12H, H,-C7, H,-C8, H,-C9, H,-
C14, H,-C15 and H,-C16), 0.88 (t, J=6.6 Hz, 6H, H3-C6 and Hy-C17) ppm.

13C NMR (75 MHz, CDCl3) § = 152.36 (C3), 149.88 (C1 and C5), 106.29 (C2 and C4), 50.14
(C11 and C12), 31.60 (C8 and C15), 26.91 (C10 and C13), 26.66 (C9 and C14), 22.60 (C7
and C17), 13.97 (C6 and C17) ppm.

IR (ATR) & (cm™): 3090 (W), 2954 (m), 2926 (m), 2857 (m), 1593 (vs), 1538 (m), 1512 (s),
1466 (m), 1408 (m), 1370 (m), 1298 (w), 1258 (w), 1227 (w), 1205 (m), 1172 (w), 1104 (m),
985 (s), 887 (W), 799 (s), 768 (W), 724 (m).

MS (70 eV, El) m/z (%): 262 (IM]", 17), 192 (16), 191 ([M-Pent]", 100), 121 (62), 107 (33).
HRMS (70 eV, El): C,7H30N, calc. 262.2409 g/mol [M]*, found 262.2400 g/mol.

Elemental analysis [C17H30N3]

Calc. (%): C 77.80, H 11.52, N 10.67.

Found (%): C 76.87, H 11.39, N 11.50.
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4-dihexylaminopyridine borane (DHAP borane, 30f)

4-Dihexylaminopyridine (30a, 1.01 g, 3.83 mmol, 1.00 eq.) was dissolved in 5 mL THF under
N, atmosphere. The solution was cooled to 0 °C and a H3B*SMe, solution (5 M in Et,0,
0.77 mL, 1.01 eq.) was added. After 10 minutes the external cooling was removed. After
removing all residues of solvent under reduced pressure, 30f was obtained as a colorless oil
(1.06 g, 3.83 mmol, 100 %).

IH NMR (300 MHz, CDCls) & = 7.99 (d, J = 7.4 Hz, 2H, H-C1 and H-C5), 6.41 (d, J = 7.5 Hz,
2H, H-C2 and H-C4), 3.31 (t, J = 7.7 Hz, 4H, H,-C11 and H,-C12), 1.70 — 1.45 (m, 4H, H,-
C10 and H,-C13), 1.44 — 1.11 (m, 12H, H,-C7, H,-C8, H,-C9, H,-C14, H,-C15 and H,-C16),
0.89 (t, J = 6.7 Hz, 6H, Hs-C6 and H,-C17) 3.04-1.85 (broad, g, 3H, H-B) ppm.

3C NMR (75 MHz, CDCl3) § = 153.12 (C3), 146.87 (C1 and C5), 106.24 (C2 and C4), 50.66
(C11 and C12), 31.48 (C8 and C15), 26.74 (C10 and C13), 26.52 (C9 and C14), 22.53 (C7
and C17), 13.93 (C6 and C17) ppm.

{*H} "B NMR (270 MHz, CDCl;) § = -13.87 (s) ppm.
B-NMR (270 MHz, CDCls) § = -13.87 (broad, q) ppm.

IR (ATR) ¥ (cm™): 2955 (m), 2928 (m), 2857 (m), 2355 (M), 2294 (m), 2249 (m), 1632 (s),
1534 (vw), 1532 (s), 1502 (vw), 1466 (m), 1416 (m),1371 (m), 1338 (w), 1301 (w), 1262 (w),
1224 (w), 1168 (s), 1098 (s), 1038 (M), 982 (w), 929 (w), 888 (W), 809 (S), 724 (W), 665 (VW).

MS (70 eV, EI) miz (%): 276 (IM]*, 2), 262 ([M-BHJ]*, 16), 192 (15), 191 ([M-Hex]*, 100), 121
(64), 107 (34).

HRMS (70 eV, El): C17H33BN, calc. 276.2737 g/mol [M]*, found 276.2736 g/mol.
Elemental analysis [C17H33BN,]
Calc. (%): C 73.91, H 12.04, N 10.14.

Found (%): C 72.49, H 11.66, N 11.06.
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5.3.3. Synthesis of substrates

S-dodecyl O-ethyl carbonodithioate (18b)

2 4 6 8 10 12 14
AN NN
3)1]3\0/\15

1 3 5 7 9 M

1-lodododecane (18d, 5.00 mL, 20.27 mmol, 1.00 eq.) was dissolved in acetone (50 ml).
Afterwards potassium ethyl xantogenate (3.90 g, 24.33 mmol, 1.20 eq.) was slowly added.
The suspension was stirred for 15 minutes while a white solid (KI) precipitated. The solvent
was removed under reduced pressure. Column chromatography on silica (0.035-0.070 mm,
60 A/ isohexane; R=0.70) led to the pure product 18b which was isolated as pale yellow oil
(5.13 g, 17.67 mmol, 87 %).

'H NMR (300 MHz, CDCl3) § = 4.57 (g, J = 7.1 Hz, 2H, H,-C14), 3.03 (t, J = 7.5 Hz, 2H, H,-
C12), 1.65 — 1.55 (m, 2H, H,-C11), 1.34 (t, J = 7.1 Hz, 3H, Hs-C15), 1.35 - 1.14 (m, 18H, H,-
C2, H,-C3, H,-C4, H,-C5, H,-C6, H,-C7, H,-C8, H,-C9 and H,-C10), 0.80 (t, J = 6.9 Hz, 3H,
H3-C1) ppm.

¥C NMR (75 MHz, CDCl3) § = 215.21 (C13), 69.66 (C14), 35.95 (C12), 31.94 (C11), 29.67
(Caliphatic), 29.65 (Caliphatic)v 29.60 (Caliphatic)v 29.50 (Caliphatic)a 29.37 (Caliphatic)’ 29.16 (Caliphatic)’
28.93 (Caiphatic): 28.39 (Caiphatic), 22.71 (C2), 14.13 (C1), 13.81 (C15) ppm.

IR (ATR) ¥ (cm™): 2955 (w), 2922 (s), 2853 (m), 1465 (w), 1365 (w), 1292 (w), 1208 (s),
1145 (w), 1111 (s), 1047 (s), 1007 (w), 856 (w), 810 (w), 721 (w). MS (70 eV, El) m/z (%):
290 ([M]", 4), 257 (24), 201 (14), 123 (68), 122 ([M-C1,H,,]", 100), 89 (26), 83 (10), 69 (18),
61 (11), 57 (18), 55 (24), 43 (18), 40 (17).

HRMS (70 eV, El): C15H3,0S; calc. 290.1738 g/mol [M]", found 290.1737 g/mol.
Elemental analysis [CisH300S;]
Calc. (%): C 62.01, H 10.41, S 22.07.

Found (%): C 62.25, H 10.36, S 22.62.

O-dodecyl S-methyl carbonodithioate (18c¢)

S
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The reaction was carried out under a nitrogen atmosphere. 1-Dodecanol (5.00 mL,
22.35 mmol, 1.00 eq.) was dissolved in 200 mL THF and the solution cooled to O °C.
Afterwards sodium hydride (60 % suspension in mineral oils, 1.16 g, 29.06 mmol, 1.30 eq.)

191



5. Experimental details

was added and stirred at 0 °C for 30 minutes, followed by the addition of CS, (2.02 mL,
33.53 mmol, 1.5 eq.). The external cooling was removed and the reaction mixture stirred for
one hour. Subsequently methyl iodide (2.38 mL, 38.00 mmol, 1.7 eq.) was added and stirred
for 20 minutes. The crude mixture was quenched with distilled water (30 mL) and three times
extracted with chloroform. The combined organic phases were dried over MgSO, and the
solvent was removed under reduced pressure. Column chromatography on silica
(0.035-0.070 mm, 60 A/ isohexane; R=0.70) led to the pure product 18c which was isolated
as pale yellow oil (5.19 g, 18.74 mmol, 84 %).

'H-NMR (300 MHz, CDCl3) § = 4.51 (t, J = 6.7 Hz, 2H, H,-C12), 2.48 (s, 3H, Hs-C14), 1.78 —
1.66 (M, 2H, H,-C11), 1.40 — 1.10 (m, 18H, H,-C2, H,-C3, H,-C4, H,-C5, H,-C6, H,-C7, Ha-
C8, H,-C9 and H,-C10), 0.81 (t, J = 6.9 Hz, 3H, H3-C1) ppm.

3C-NMR (75 MHz, CDCl;) § = 215.95 (C13), 74.28 (C12), 31.94 (C3), 29.66 (Caiphatic), 29.65
(Caliphatic), 29.58 (Caliphatic)v 29.51 (Caliphatic)v 29.37 (Caliphatic)a 29.25 (Caliphatic)1 28.27 (Cll)a 25.91
(C10), 22.71 (C2), 18.91 (C14), 14.14 (C1) ppm.

IR (ATR) & (cm™): 2921 (s), 2853 (m), 1456 (w), 1378 (w), 1216 (s), 1127 (w), 1056 (s), 965
(m), 722 ().

MS (70 eV, El) m/z (%): 276 (IM]", 2), 243 (10), 216 (16), 201 (12), 168 ([M-OCS,CHa-H]J",
50), 111 (18), 98 (13), 97 (33), 91 (20), 85 (27), 84 (21), 83 (34), 82 (10), 75 (20), 71 (53), 70
(26), 69 (39), 57 ([M-C1oH1s0S,]", 100), 56 (25), 55 (52), 43 (83), 42 (11), 41 (47).

HRMS (70 eV, El): C14H,50S; calc. 276.1582 g/mol [M]", found 276.1578 g/mol.

Elemental analysis [C14H250S;]
Calc. (%): C 60.82, H 10.21, S 23.19.

Found (%):C 60.89, H 10.40, S 22.51.

O-decyl S-dodecyl carbonodithioate (18e)
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The reaction was carried out under a nitrogen atmosphere. 1-Decanol (1.66 mL, 10.46 mmol,
1.00 eq.) was dissolved in 50 mL THF and the solution cooled to 0 °C. Afterwards
n-butyllithium (2.5 M solution in hexane, 5.00 mL, 12.56 mmol, 1.20 eq.) was added and
stirred at 0 °C for 10 minutes, followed by the addition of CS, (0.88 mL, 14.65 mmol, 1.4 eq.).
The external cooling was removed and the reaction mixture stirred for one hour.
Subsequently 1-iodododecane (18d, 4.13 mL, 16.74 mmol, 1.6 eq.) was added and stirred
for 30 minutes. The crude mixture was quenched with distilled water (20 mL) and three times
extracted with chloroform. The combined organic phases were dried over MgSO, and the
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solvent was removed under reduced pressure. Column chromatography on silica (0.035-
0.070 mm, 60 A/ isohexane; R=0.70) led to the pure product 18e which was isolated as pale
yellow oil (2.30 g, 5.71 mmol, 55 %).

'H-NMR (300 MHz, CDCl3) § = 4.50 (t, J = 6.7 Hz, 2H, H,-C10), 3.02 (t, J = 7.5 Hz, 2H, H,-
C12), 1.76 — 1.68 (m, 2H, H,-C9), 1.65 — 1.57 (m, 2H, H,-C13), 1.39 — 1.13 (m, 32H, H,-C2,
H,-C3, H,-C4, H,-C5, H,-C6, H,-C7, Hp-C8, Hp-C14, Hp-C15, H,-C16, H,-C17, Hp-C18, H,-
C19, H,-C20, H,-C21 and H,-C22)), 0.81 (dd, J=7.1, 6.5, 6H, Hy-C1 and Hs-C23) ppm.

BBC-NMR (75 MHz, CDCl,) § = 215.29 (C11), 74.00 (C10), 35.86 (C12), 31.94 (C3 or C13),
31.91 (C3 or C13), 29.67 (Caiphaic), 29.65 (Caiphaic)s 29.60 (Caiphaic): 29.54 (Caiphaic), 29.52
(Caliphatic), 29.50 (Caliphatic)v 29.37 (Caliphatic)v 29.32 (Caliphatic)a 29.25 (Caliphatic); 29.16 (Caliphatic);
28.95 (Caiphaic): 28.49 (Caiphaic), 28.27 (C9), 25.96 (C8), 22.71 (C2 or C22), 22.70 (C2 or
C22), 14.13 (C1 or C23), 14.12 (C1 or C23) ppm.

IR (ATR) ¥ (cm™): 2922 (s), 2853 (m), 1465 (m), 1378 (w), 1212 (s), 1125 (w), 1053 (s), 721
(m).
MS (70 eV, El) m/z (%): 402 (IM]*, 5), 369 (25), 342 (23), 341 (10), 285 (17), 265 (13), 264

(19), 263 ([M-CioH1g]", 100), 258 (13), 229 (29), 201 (44), 173 (12), 169 (16), 168 (10), 151
(13).

HRMS (70 eV, El): C,3H40S, calc. 402.2990 g/mol [M]*, found 402.2987 g/mol.

Elemental analysis [CasH460S,]
Calc. (%): C 68.59 H11.51 S 15.92.

Found (%): C 68.24 H11.54 S 16.37.

O-(decan-2-yl) S-methyl carbonodithioate (18f)

The reaction was carried out under a nitrogen atmosphere. 2-Decanol (35a, 2.49 g,
13.38 mmol, 1.00 eq.) was dissolved in 100 mL THF and the solution cooled to O °C.
Afterwards n-butyllithium (2.5 M solution in hexane, 5.90 mL, 14.72 mmol, 1.10 eq.) was
added and stirred at 0 °C for 20 minutes, followed by the addition of CS, (1.00 mL,
17.39 mmol, 1.3 eq.). The external cooling was removed and the reaction mixture stirred for
one hour. Finally methyl iodide (1.30 mL, 20.07 mmol, 1.5 eq.) was added and stirred for
20 minutes. The crude mixture was quenched with distilled water (30 mL) and three times
extracted with chloroform. The combined organic phases were dried over MgSO, and the

193



5. Experimental details

solvent was removed under reduced pressure. Column chromatography on silica
(0.035-0.070 mm, 60 A/ isohexane; R=0.60) led to the pure product 18f which was isolated
as pale yellow oil (2.59 g, 10.44 mmol, 78 %).

'H-NMR (300 MHz, CDCl;) § = 5.68 — 5.55 (m, 1H, H-C9), 2.47 (s, 3H, Hs-C12), 1.77 — 1.48
(m, 2H, H,-C8), 1.28 (d, J = 6.2 Hz, 3H, H3-C10), 1.35 - 1.12 (m, 14H, H,-C2, H,-C3, H,-C4,
H,-C5, H,-C6 and H,-C7), 0.80 (t, J = 6.9 Hz, 3H, H3-C1) ppm.

BC-NMR (75 MHz, CDCly) § = 215.43 (C11), 81.43 (C9), 35.60 (C8), 31.86 (C3), 29.45
(Ca“phaﬂc), 29.41 (Cahphaﬂc), 29.22 (Ca“phaﬂc), 25.26 (C?), 22.67 (C:Z)7 19.27 (ClO), 18.77 (C12),
14.12 (C1) ppm.

IR (ATR) # (cm™%): 2923 (m), 2854 (m), 1464 (w), 1378 (w), 1318 (vw), 1222 (s), 1115 (m),
1043 (s), 963 (M), 905 (W), 823 (W), 722 (W).

MS (70 eV, El) m/z (%): 248 (IM]*, 1), 140 ([M-OCS,CHa-H]", 60), 91 ([M-C1oH»:0]", 13), 85
([M-CeH1,0S,]*, 46), 71 ([M-C,H130S,]*, 46), 70 ([M-C;H130S,-H]*, 10), 69 ([M-C;H1;0S,-
2H]*, 12), 57 ([M-CgH1s0S,]*, 100), 56 ([M-CgH1s0S,-H]*, 14), 55 ([M-CgH150S,-2H]*, 30), 43
(90), 42 (10), 40 (39).

HRMS (70 eV, El): C1,H,,0S, calc. 248.1269 g/mol [M]*, found 248.1237 g/mol.

Elemental analysis [C1,H240S;]
Calc. (%): C58.01 H9.74 S 25.81.

Found (%): C 58.03 H 9.82 S 25.64.

O-((3s,5s,7s)-adamantan-1-yl) S-methyl carbonodithioate (189)

The reaction was carried out under a nitrogen atmosphere. 1-Adamantanol (35b, 3.00 g,
19.71 mmol, 1.00 eq.) was dissolved in 200 mL THF and the solution cooled to O °C.
Afterwards sodium hydride (60 % suspension in mineral oils, 1.02 g, 25.62 mmol, 1.30 eq.)
was added, the external cooling was removed and the mixture stirred for 30 minutes,
followed by the addition of CS, (1.78 mL, 29.56 mmol, 1.5 eq.). The suspension was warmed
up to 40 °C and stirred for 3.5 hours. Subsequently methyl iodide (2.09 mL, 33.50 mmol,
1.7 eq.) was added and stirred for 30 minutes at room temperature. All solids were filtered off
and the solvent was removed from the crude product under reduced pressure. The residue
was mixed with warm isohexane, whereas the xanthate dissolves, but not the remaining
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alcohol. The solid is filtered off and the pure xanthate begins to grow as yellow needles from
the clear isohexane solution by cooling down. The pure product was filtered off, remaining
solvent was removed in vacuo and xanthate 18g was obtained as yellow needles (2.06 g,
8.51 mmol, 43 %).

Melting point: 107.5 - 107.8 °C.

'H-NMR (300 MHz, CDCl3) & = 2.44 (s, 3H, H5-C12), 2.43 — 2.41 (m, 6H, H,-C7, H,-C8 and
H»-C9), 2.26 — 2.20 (m, 6H, H,-C2, H,-C4 and H,-C6), 1.70 — 1.65 (m, 3H, H-C1, H-3 and H-
C5) ppm.

BBC-NMR (75 MHz, CDCls) § = 212.58 (C11), 91.24 (C10), 41.11 (C7, C8 and C9), 36.06
(C2, C4 and C6), 31.42 (C1, C3 and C5), 19.08 (C12) ppm.

IR (ATR) & (cm™%): 2910 (m), 2848 (m), 1456 (w), 1409 (w), 1368 (w), 1354 (w), 1316 (w),
1304 (w), 1291 (w), 1275 (w), 1220 (s), 1185 (m), 1146 (w), 1105 (m), 1046 (m), 1021 (s),
984 (m), 954 (s), 858 (M), 814 (M), 714 (M), 665 (W).

MS (70 eV, EI) m/z (%): 242 ([M]*, 1), 136 ([M-OCS,CH,]*, 11), 135 ([M-OCS,CHs]*, 100), 93
(17), 79 (16).

HRMS (70 eV, El): C3,H150S, calc. 242.0799 g/mol [M]*, found 242.0797 g/mol.

Elemental analysis [C1,H50S;]
Calc. (%): C 59.46 H 7.49 S 26.45.

Found (%): C59.72 H7.51 S 26.42.

S-methyl O-(naphthalen-1-yImethyl) carbonodithioate (18h)

12
11 O\ﬂ/S\‘KS
6 10 s
| Oe 9
2 8

3 7

The reaction was carried out under a nitrogen atmosphere. 1-Naphthylmethanol (35c, 1.65 g,
10.41 mmol, 1.00 eq.) was dissolved in 50 mL THF and the solution cooled to 0 °C. Then,
n-butyllithium (2.5 M solution in hexane, 5.00 mL, 12.49 mmol, 1.20 eq.) was added and
stirred at 0 °C for 10 minutes, followed by the addition of CS, (0.94 mL, 15.62 mmol, 1.5 eq.).
The external cooling was removed and the solution stirred for one hour. Afterwards, methyl
iodide (1.11 mL, 17.70 mmol, 1.7 eq.) was added and stirred for 15 minutes. The crude
reaction mixture was quenched with distilled water (15 mL) and three times extracted with
chloroform. The combined organic phases were dried over MgSO, and the solvent was
removed under reduced pressure. Column chromatography on silica (0.035-0.070 mm,
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60 A/ isohexane; R=0.75) led to the pure product 18h which was isolated as viscous yellow
oil (0.66 g, 2.66 mmol, 26 %).

'H-NMR (300 MHz, CDCl3) & = 7.93 (d, J = 8.2 Hz, 1H, H-C6), 7.87 — 7.81 (m, 2H, H-C3 and
H-C7), 7.57 — 7.46 (m, 3H, H-C1, H-C2, H-C8), 7.42 (dd, J = 8.2 Hz, 7.1 Hz, 1H, H-C9), 6.02
(s, 2H, H,-C11), 2.50 (s, 3H, Hs-C13). ppm.

3C-NMR (75 MHz, CDCl;) § = 215.65 (C12), 133.79 (C10), 131.84 (C4), 130.38 (C5),
129.92 (C3), 128.82 (C9), 128.39 (C7), 126.88 (C1), 126.17 (C2), 125.27 (C8), 123.62 (C6),
73.80 (C11), 19.16 (C13) ppm.

IR (ATR) ¥ (cm™): 3046 (w), 2918 (w), 1643 (w), 1598 (w), 1511 (m), 1459 (w), 1422 (w),
1368 (vw), 1349 (vw), 1317 (w), 1195 (s), 1160 (m), 1082 (m), 1063 (s), 1047 (s), 963 (m),
920 (m), 899 (m), 881 (m), 856 (m), 800 (m), 791 (s), 773 (s), 727 (m), 677 (M).

MS (70 eV, EI) m/z (%): 248 (IM]*, 4), 142 (IM-OCS,CH,]*, 13), 141 ([M-OCS,CH,]*, 100),
115 (13).

HRMS (70 eV, El): C13H1,0S, calc. 248.0330 g/mol [M]", found 248.0327 g/mol.

Elemental analysis [C13H,0S;]
Calc. (%): C 62.87 H 4.87 S 25.82.

Found (%): C 63.16 H 4.98 S 25.99.
4-(Dimethylamino)pyridin-1-ium iodide (29f)

|

5 = 4
N

@H l@

A solution of 4-Dimethylaminopyridine (27, 1.50 g, 12.28 mmol, 1.00 eq.) in chloroform
(10 mL) was prepared. Afterwards HI (57 % in water, 3.00 mL) was added in excess and the
resulting reaction mixture was stirred for five minutes. The solution was poured into THF
(250 mL), whereas a white precipitate appeared. The crude product was filtered off and
washed twice with THF (100 mL). After removal of residues of solvent, 29f was obtained as
white solid (2.05 g, 8.21 mmol, 67 %).

Melting point: 202.5 — 203.0 °C.

'H NMR (300 MHz, CDCl3) § =8.13 (d, J = 7.4 Hz, 2H, H-C1 and H-C5), 6.88 (d, J = 7.4 Hz,
2H, H-C2 and H-C4), 3.28 (s, 6H, Hs-C6 and Hs-C7) ppm.
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13C NMR (75 MHz, CDCl3) § = 157.55 (C3), 138.23 (C1 and C5), 107.07 (C2 and C4), 40.71
(C6 and C7) ppm.

IR (ATR) # (cm™): 3167 (w), 3020 (w), 2929 (m), 2825 (w), 2807 (w), 1644 (m), 1579 (m),
1563 (s), 1522 (m), 1460 (w), 1436 (m), 1401 (m), 1236 (vw), 1210 (s), 1131 (w), 1104 (w),
1072 (m), 1054 (vw), 994 (s), 941 (w), 839 (w), 788 (s), 746 (m), 708 (w).

Elemental analysis [C7H11IN,]
Calc. (%): C 33.62, H 4.43, N 11.20.

Found (%): C 33.53, H 4.45, N 11.16.

5.3.4. Radical experiments
General procedure B: Setup for radical experiments:

Stock solutions for radical starters were prepared under a nitrogen atmosphere. A typical
setup is explained for TBHN (2d) as initiator, but was conducted similarly with other starters
like AIBN (2a). A 0.20 m solution of TBHN (2d) in toluene-dg was prepared. This solution was
stored under nitrogen at —18 °C. For quality control, ‘"H NMR measurements of this solution
were done regularly. At that temperature, the solution can be kept for several weeks.
Nevertheless it seemed advisable not keep larger amounts than 1 mL. A second stock
solution for the thiol (TDT (15b), 0.1 M in toluene-dg) was prepared similarly and stored at
room temperature.

Under an inert gas atmosphere 0.10 mmol of the substrate (eg. 1l-iodododecane (18d) or a
xanthate) was put into a flask (or microwave vessel). Afterwards, the desired equivalents of a
borane complex and a defined amount of internal standard (TMB (22), usually 0.1 to
0.15 mmol) were added. If desired, the thiol was added by a Hamilton syringe from the stock
solution. The same was done for the radical starter. Finally, the flask was filled with
toluene-dg to a total volume of 0.60 mL and the solution was stirred until all solids had
dissolved. This solution was subsequently reacted (in an oil bath or in the microwave as
closed vessel) or transferred to an NMR tube, to do the reaction directly in the NMR
machine.

For NMR experiments with DMAP borane (which is not soluble at room temperature), the
entire preparation was done directly in a NMR tube, as the crude reaction suspension could
not be transferred without loss of solid.

Furthermore it should be mentioned, that all NMR experiments were conducted in NMR
tubes, which were only closed with a standard plastic cap, as gas evolution during the
reactions is present.

The reaction outcome was determined by integrating the decay of starting materials (or
evolution of products) against the internal standard and by GC/MS analysis.
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5.3.5. Reductions of carbonyl compounds

5.3.5.1. General procedures

General procedure C: Reductions with borane-complexes; column workup:

All reactions can be performed at room temperature and without inert gas atmosphere. The
obtained results are similar compared to reactions carried out under N, atmosphere.

1.5 mmol of a substrate (ketone or aldehyde) was dissolved in 3 ml THF. Afterwards a
borane-complex (1.0 eq.) was added to this solution and stirred for 5 minutes. Subsequently
the solvent was removed under reduced pressure. 2 mL methanol and 200 mg silica were
added and again stirred for 2 minutes. After evaporation of methanol the crude product on
silica was put to a column chromatography (silica 0.035-0.070 mm, 60 A/ EtOAc:Isohexane =
5:1, Ry= 0.7-0.8). To obtain the pure alcohols in high vyields, the solvents were removed
under reduced pressure. The final products were analyzed by 'H NMR spectroscopy and
GC/MS. 'H NMR measurements were compared with the literature.

General procedure D: Reductions with borane-complexes; extraction workup:

All reactions can be performed at room temperature and without inert gas atmosphere. The
obtained results are similar compared to reactions carried out under N, atmosphere.

1.5 mmol of a substrate (ketone or aldehyde) was dissolved in 3 ml THF or MeOH.
Afterwards a borane-complex (1.0 eq.) was added to this solution and stirred for 5 minutes.
Subsequently the solvent was removed under reduced pressure. 3 mL chloroform and 3 mL
2 M aqueous HCI (2.0 eg.) were added and again stirred for 5 minutes. The phases were
separated and the aqueous layer washed once with 5 mL chloroform. Subsequently, the
organic phase was dried over anhydrous MgSO,. To obtain the pure alcohols in high yields,
the solvents were removed under reduced pressure. The final products were analyzed by
'H NMR spectroscopy and GC/MS. 'HNMR measurements were compared with the
literature.

198



5. Experimental details

5.3.5.2. Analytical data of products

1,3-diphenylpropan-2-ol (38a)®®"!

12 7
11 13 OH 8 6
10 5
2
9 1 3 4

'H-NMR (300 MHz, CDCly) & = 7.39-7.24 (m, 10H, H-C4, H-C5, H-C6, H-C7, H-C8, H-C9, H-
C10, H-C11, H-C12 and H-C13), 4.09 (tt, J = 8.04 Hz, J = 4.78, Hz, 1H, H-C2), 2.84 (ddd,
J =21.69 Hz, J = 13.65 Hz, J = 6.40, 4H, H,-C1, H,-C3), 1.81 (s, 1H, H-O) Hz ppm.

1-(4-Chlorophenyl)ethanol (38b)®#

3
Cl 6

5

'H-NMR (300 MHz, CDCl;) § = 7.37-7.22 (m, 4H, H-C3, H-C4, H-C5 and H-C6), 4.85 (q,
J = 6.45 Hz, 1H, H-C2), 2.43-2.17 (broad, s, 1H, H-0), 1.45 (d, J = 6.29 Hz, 3H, Hs-C1) ppm.

1-(p-tolyl)ethanol (38c)®

3
7 6
5

'H-NMR (300 MHz, CDCls) § = 7.29-7.15 (m, 4H, H-C3, H-C4, H-C5 and H-C6), 4.85 (q,
J =6.45 Hz, 1H, H-C2), 2.36 (s, 3H, Hs-C7), 2.10 (s, 1H, H-O), 1.48 (dd, J = 6.45 Hz, J =
0.43 Hz, 3H, Hy-C1) ppm.

1-Phenylethanol (26¢)*
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'H-NMR (300 MHz, CDCls) § = 7.39-7.23 (m, 5H, H-C3, H-C4, H-C5, H-C6 and H-C7), 4.86
(g, J = 6.45 Hz, 1H, H-C2), 2.36 (s, 1H, H-0), 1.48 (d, J = 6.46 Hz, 3H, Hs-C1) ppm.

(4-chlorophenyl)methanol (38f)!
2
J©) |
Cl 5
4

'H-NMR (300 MHz, CDCl3) & = 7.37-7.24 (m, 4H, H-C2, H-C3, H-C4 and H-C5), 4.63 (s, 2H,
H,-C1), 2.09 (broad, s, 1H, H-O) ppm.

p-tolylmethanol (38g)"*?

'H-NMR (300 MHz, CDCls) & = 7.26-7.16 (m, 4H, H-C2, H-C3, H-C4 and H-C5), 4.63 (s, 2H,
H,-C1), 2.74 (broad, s, 1H, H-0O), 2.36 (s, 3H, Hs-C6) ppm.

Phenylmethanol (38h)1%

'H-NMR (300 MHz, CDCl3) § = 7.38-7.26 (m, 5H, H-C2, H-C3, H-C4, H-C5 and H-C6), 4.67
(d, J = 1.36 Hz, 2H, H,-C1), 2.29-2.01 (broad, s, 1H, H-O) ppm.

2,2,4,4-Tetramethylpentan-3-ol (38e)*

'H-NMR (300 MHz, CDCl3) § = 2.92 (d, J = 6.0 Hz, 1H, H-C1), 1.47 (d, J=6.0, 1H, H-O), 0.95
(s, 18H, Hs-C2, H3-C3, Ha-C4, Hs-C5, Ha-C6 and Hs-C7) ppm.
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95]

N-benzylaniline (38s)!

IH-NMR (300 MHz, CDCly) § = 7.43 — 7.28 (m, 5H, H-C1, H-C2, H-C3, H-C4 and H-C6),
7.25 — 7.19 (m, 2H, H-C10 and H-C12), 6.80 — 6.73 (m, 1H, H-C11), 6.70 — 6.65 (m, 2H, H-
C9 and H-C13), 4.36 (s, 2H, H,-C7), 4.05 (broad, s, 1H, H-N).

5.3.5.3. ESI-MS spectrometry experiments

5.3.5.3.1. Imidazole borane (17aa)

All preparation steps were carried out under a nitrogen atmosphere. A suspension of
imidazole-borane (17aa, 0.200 g, 2.442 mmol) in destilled CDCl; (1 ml) was prepared.
Afterwards acetone (0.180 ml, 2.442 mmol, 1 eq.) was added and stirred for 15 minutes at
room temperature. All volatiles were then removed under reduced pressure. The colorless
viscous substance was taken up in dry THF (1 ml) and a diluted solution (10 drops in 2 ml
dry THF) was immediately used for ESI-MS spectrometry.
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Relative Abundance

Relative Abundance

1005

[ S e R M << B (]
o O o O O o O O
b bl b b e b

o

1470837

c. s, 8 Predicted spectrum

146,0873
CgHg Mg 10B

148,0870
Cs13CHaNg B

147 0847

1460883

148,0881

Measured ESI (-)-MS spectrum

m/z=147.0848

—

100
90
80
70
60
50
40
30
20

142 143 144 145 146 147 148

miz
161,1164

CaHi Ng B2

Predicted spectrum

160,1201
CgHiyNg10BB
168,1237

CaHi1Ng10B;z

Measured ESI (-)-MS spectrum

160,121

159,1249

181,1175

162,1198
Cs13CH11 NsBa

{

162,1209

154 155 156

202



5. Experimental details

Relative Abundance

Relative Abundance
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Relative Abundance

Relative Abundance
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Relative Abundance

Relative Abundance

100
0
S0
70
60
50
a0
30
20

w

100
90
80
70
60

40

30
20

100

[ N B =) e BT (=]
o o0 o O O o O O
vl e lne bl

Predicted spectrum

N
[
53

2841837
C1aH1gONg 1B B

2851801
CizHaONs B2

286,1835

2831874 C1113CH19aONgB2
N CyaH1g O Mg 1B 3
& [ H |
N. 7/ H |Measured ESI (-)-MS spectrum 25,1512
®B
S
N
[ )
N
284,1848
\ m/z=285.1812/
86,1845
283,‘188?
CU b0 ae25 2830 2835 2840 2845 2850 | 2865 2860 2865 28
miz
2092129
CizH220Ng B3
Predicted spectrum
208,2165
CiaHa ONg 10B B2 /ﬁ
©)
/BH3
W
2972201 N
C12H22 ONg 1082 B 300,2162 (OR /O
C1113CH220 NgBa -Bo
H™ ™\
. N
299.2140 E » H
Measured ESI (-)-MS spectrum g\é/H
VAC)
2982176 N
[
N
\ m/z=299.214(Q/
2972212
300,2174
T i " ods "0 Tan al Taz | 3
miz

205



5. Experimental details

Relative Abundance

Relative Abundance
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Relative Abundance
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Relative Abundance
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Relative Abundance
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5. Experimental details
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Relative Abundance
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Relative Abundance
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5. Experimental details

Relative Abundance
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Relative Abundance
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Relative Abundance
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Relative Abundance

@
=t

[
=)

I
[=}

[
(=}
il

=
o O
vl

Predicted spectrum

5884004

Cz4Haz 04N 1082 By

5984131
CaaHaz O4Nig B3B3

597 4167
CasHyaOs Mg 19B4 B2
L

Measured ESI (+)-MS spectrum

5994098

5984124

5974183

6004058
Ca24H43 04 Mo 1B Bs

6014022
C24Haz 04 N1oBg

6004061

6014027

6024055

6024057

603 4089
L

597 598 598

.

.

m/z=601.4022

234
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Relative Abundance
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Relative Abundance
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Relative Abundance
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Relative Abundance
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Relative Abundance
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5. Experimental details

Relative Abundance
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5. Experimental details

Relative Abundance
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5. Experimental details

5.3.5.3.2. Benzimidazole borane (17e)

All preparation steps were carried out under a nitrogen atmosphere. A suspension of
benzimidazole borane (17e, 0.200 g, 1.515 mmol) in destilled CDCI; (1 ml) was prepared.
Afterwards acetone (0.111 ml, 1.515 mmol, 1 eq.) was added and stirred for 15 minutes at
room temperature. All volatiles were then removed under reduced pressure. The colorless
solid was taken up in dry THF (1 ml) and a diluted solution (10 drops in 2 ml dry THF) was
immediately used for ESI-MS spectrometry.
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5. Experimental details

Relative Abundance

Relative Abundance
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5. Experimental details

Relative Abundance

Relative Abundance
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5. Experimental details

Relative Abundance
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5. Experimental details

5.3.5.3.3. N-methylimidazole (17aj)

All preparation steps were carried out under a nitrogen atmosphere. N-methylimidazole-
borane (17aj, 79 mg) was stirred in acetone-dgs (1 ml) for 5 days. Afterwards 0.1 ml of the
solution was diluted with acetone-ds (2 ml) and used for ESI-MS spectrometry.
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5. Experimental details

Relative Abundance

Relative Abundance
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5. Experimental details

Relative Abundance

Relative Abundance
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5. Experimental details

The following scheme shows the fragments found in the ESI (-)-MS spectra. Despite some minor

signals, all signals could be assigned.
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5. Experimental details

Relative Abundance

Relative Abundance
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5. Experimental details

Relative Abundance
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5. Experimental details

Relative Abundance

100 314 2003
7] Predicted spectrum 3151987
N CaH42H120410B5
80t
60—
] 31322040
40-
20 312 2076
1 316.2001
0 L
97 u d ESI (-)-MS spect e
] easure (-)- spectrum 3151971
80—
BUt
i 3132045
40+
207 3122082
] 316 2007
U_ L 1 L
T T T 1 T T T T 1 T T T T T T T T T T T T 1
312 313 314 315 316
miz
T e )
CD
o [y
: { @
B B«
0" 0”07 cp;
_B<
9
HO (@) OH

m/z= 314.2003

253



5. Experimental details

Realative Abundance
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5. Experimental details

Relative Abundance
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5. Experimental details

5.3.6. Reductions of alkyl halides

General procedure E: Setup for reductions of alkyl halides with dialkylaminopyridine
boranes.

An alkyl halide (18a, 18d or 18i, 0.10 mmol) was transferred into a microwave vessel under
ambient air by a Hamilton syringe. Afterwards, TMB (22, 0.10 to 0.15 mmol) was added as
internal NMR standard as well as a dialkylaminopyridine borane complex (0.10 to 0.30 mmol,;
1.00 to 3.00 eq.). Finally, 0.60 mL toluene-dg were added, the vessel was closed and reacted
in the microwave at the desired temperature and time, depending on the experiment.
Afterwards the vial was allowed to cool down to room temperature, followed by a *H NMR
analysis. For quantification of the product formation, the decay of the starting alkyl halide was
considered, as the corresponding alkane (here dodecane (16a)) is formed exclusively.
Therefore, a *H NMR signal from the substrate was integrated against the internal standard.
For GC/MS analysis, a small sample of the reaction mixture (usually 0.10 mL) was diluted
with benzene (1.00 mL), solids were filtered off and the clear solution was analyzed.
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5. Experimental details

5.4. Crystallographic data

Table 18: X-ray structure of 17a.

net formula
M,/g mol™

crystal size/mm
T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/®

B/

y/°

VIA®

Z

calc. density/g
cm™

p/mm™*

CsH10BNO
146.982

0.31 x 0.21 x 0.08
173(2)

MoKa

'Oxford XCalibur'
monoclinic

P2./c

8.2509(6)
12.3121(7)
7.9124(5)

90

90.849(6)

90

803.70(9)

4

1.21475(14)

0.078

absorption correction

transmission factor
range

refls. measured
Rint

mean o(l)/I

0 range

observed refls.

X, y (weighting scheme)
hydrogen refinement

refls in refinement
parameters
restraints
R(Fobs)
Rw(F?)

S
shift/erroray
max electron
density/e A=
min electron
density/e A=

'multi-scan’
0.95714-1.00000

5772
0.0254
0.0307
4.19-26.35
1143
0.0701, 0
constr
1629

102

0

0.0390
0.1135
0.990
0.001
0.155

-0.211
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5. Experimental details

Table 19: X-ray structure of 17e.

net formula
M,/g mol™

crystal size/mm
T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

al’

B/

y/°

VIA®

z

calc. density/g
cm™®

p/mm™

C7HyBN;
131.971

0.37 x 0.25 x 0.03
173(2)

MoKa

'Oxford XCalibur'
monoclinic

P2./n
8.6874(15)
6.6993(13)
13.119(3)

90

106.851(19)

90

730.7(3)

4

1.1996(5)

0.072

absorption correction

transmission factor
range

refls. measured
Rint

mean o(l)/I

0 range

observed refls.

X, Y (weighting scheme)
hydrogen refinement

refls in refinement
parameters
restraints
R(Fobs)
Rw(F?)

S
shift/errormay
max electron
density/e A
min electron
density/e A7

'multi-scan'
0.63119-1.00000

2487
0.0236
0.0448
4.45-26.37
1135
0.0470, 0.0877
mixed
1482

96

0

0.0473
0.1222
1.065
0.001
0.129

-0.148
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5. Experimental details

Table 20: X-ray structure of 17f.

net formula
M,/g mol™

crystal size/mm
T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

al®

B/

y/°

VIA®

z

calc. density/g
cm™®

p/mm™

CsH1BN,
145.997

0.28 x 0.16 x 0.04
173(2)

MoKa

'Oxford XCalibur'
monoclinic

P2./c

7.1199(6)
14.9271(10)
8.5528(8)

90

114.535(10)

90

826.91(14)

4

1.17274(17)

0.070

absorption correction

transmission factor
range

refls. measured
Rint

mean o(l)/I

0 range

observed refls.

X, ¥ (weighting scheme)
hydrogen refinement

refls in refinement
parameters
restraints
R(Fobs)
Ruw(F?)

S
shift/errormay
max electron
density/e A=
min electron
density/e A7

'multi-scan’
0.82398-1.00000

6463
0.0525
0.0705
4.17-26.33
1127
0.0443,0
constr
1719

103

0

0.0399
0.0943
0.887
0.001
0.171

-0.154
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5. Experimental details

Table 21: X-ray structure of 17g.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

al®

B/

y/°

VIA?

VA

calc. density/g
cm™®

p/mm™

CsH1BN,
145.997

0.337 x 0.172 x
0.096

100(2)

MoKa

'Oxford XCalibur'
monoclinic
P2./c

7.2225(5)
6.6630(6)
17.4495(13)

90

111.762(5)

90

779.89(11)

4

1.24345(18)

0.074

absorption correction
transmission factor
range

refls. measured

Rint

mean o(l)/I

0 range
observed refls.

X, Y (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F%)

S

shift/errormay

max electron
density/e A=

min electron
density/e A=

'multi-scan’
0.83612-1.00000

2438

0.0172
0.0337
4.31-25.34
1163
0.0494, 0.2251
mixed

1407

107

0

0.0394
0.1038
1.026
0.001
0.198

—-0.245
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5. Experimental details

Table 22: X-ray structure of 17m.

net formula
M,/g mol™

crystal size/mm
T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/°

B/°

y/°

VIA®

Z

calc. density/g
cm™

p/mm™

Ci6H17BN>
248.131

0.42 x 0.27 x 0.12
173(2)

MoKa

'Oxford XCalibur'
monoclinic

P2,/c
13.2179(18)
8.5461(10)
12.2286(15)

90

91.051(11)

90

1381.1(3)

4

1.1934(3)

0.070

absorption correction
transmission factor
range

refls. measured

Rin'[

mean o(l)/I

0 range

observed refls.

X, y (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F?)

S

shift/erroray

max electron
density/e A=

min electron
density/e A=

'multi-scan’
0.40858-1.00000

7231
0.0424
0.0469
4.22-26.37
2155
0.0679, 0.1673
constr
2811

174

0

0.0477
0.1424
1.047
0.001
0.220

-0.208
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5. Experimental details

Table 23: X-ray structure of 17q.

net formula
M,/g mol™

crystal size/mm
TIK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/®

B/

y/°

VIA?

VA

calc. density/g
cm™

p/mm™*

C7H13BN:
136.003

0.49x0.41x0.11
173(2)

MoKa

'Oxford XCalibur'
orthorhombic
Pbca
10.3969(5)
7.7088(5)
20.1359(11)

90

90

90

1613.84(16)

8

1.11952(11)

0.067

absorption correction
transmission factor
range

refls. measured

Rint

mean o(l)/I

0 range

observed refls.

X, ¥ (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Ru(F)

S

shift/errormay

max electron
density/e A=

min electron
density/e A=

‘multi-scan'
0.91755-1.00000

3826
0.0189
0.0394
4.41-26.33
992
0.0483, 0
mixed
1629

112

0

0.0372
0.0881
0.859
0.001
0.124

-0.190
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5. Experimental details

Table 24: X-ray structure of 17r.

%ﬁ; |

net formula
M,/g mol™
crystal size/mm
T/IK

radiation
diffractometer
crystal system
space group
a/A

b/A

c/A

a/°

B/°

y/°

VIA®

Z

calc. density/g

cm™3

CoH1sBN;
162.040
0.24 x 0.16 x 0.12
200(2)
MoKa
'KappaCCD'
monoclinic
P2,/c
10.2505(2)
18.5747(4)
9.9369(2)
90
90.0450(13)
90
1891.98(7)
8
1.13776(4)

p/mm™*

absorption correction
refls. measured

Rin'[

mean o(l)/I

0 range

observed refls.

X, y (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Ru(F)

S

shift/erroray

max electron
density/e A=

min electron
density/e A=

0.067

none
15208
0.0227
0.0215
3.60-27.48
3526
0.0639, 0.5499
constr
4315

219

0

0.0465
0.1342
1.039
0.001
0.242

-0.198
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5. Experimental details

Table 25: X-ray structure of 17u.

net formula
M,/g mol™

crystal size/mm
TIK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/®

B/

y/°

VIA?

VA

calc. density/g
cm™

p/mm™

C7H10BN3
146.986

0.36 x 0.19 x 0.10
103(2)

MoKa

'Oxford XCalibur'
triclinic

Plbar

8.1249(6)
8.2968(6)
11.9199(7)
93.776(5)
103.426(5)
94.779(6)
775.84(9)

4

1.25840(15)

0.078

absorption correction
transmission factor
range

refls. measured

Rint

mean o(l)/I

0 range

observed refls.

X, ¥ (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F?)

S

shift/errormay

max electron
density/e A=

min electron
density/e A=

‘multi-scan'
0.97578-1.00000

5531
0.0146
0.0383
4.48-26.31
2168
0.0673, 0
constr
3124

203

0

0.0401
0.1152
0.994
0.001
0.233

-0.218

264



5. Experimental details

Table 26: X-ray structure of 17aa.

net formula

M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

o

o/
B/

y/°

VIA®

z

calc. density/g
cm™

p/mm™

C3H/BN;
81.912

0.153 x 0.061 x
0.047

123(2)

'Mo Ka

'‘Bruker D8Venture'
orthorhombic
Pbca
5.3376(2)
12.4830(5)
14.3227(6)

90

90

90

954.31(7)

8

1.14026(8)

0.071

absorption correction
transmission factor
range

refls. measured

Rin'[
mean o(l)/I
0 range

observed refls.

X, y (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F?)

S

shift/errormax

max electron
density/e A=

min electron
density/e A=

multi-scan
0.9247-0.9585

16412

0.0526
0.0185
3.26-26.46
795
0.0459, 0.3075
mixed

973

71

0

0.0372
0.0973
1.060
0.001
0.210

-0.169

265



5. Experimental details

Table 27: X-ray structure of 17ad.

net formula

M,/g mol™

crystal size/mm

T/K

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/®

B/

y/°

VIA®

Z

calc. density/g
cm™

p/mm™

C16H24B2N,OS
342.076

0.178 x 0.115 x
0.088

173(2)

'Mo Ka

'‘Bruker D8Venture'
monoclinic
C2/c
15.2805(8)
8.3809(5)
16.0399(9)

90

111.546(3)

90

1910.60(19)

4

1.18924(12)

0.179

absorption correction

transmission factor
range

refls. measured

Rint
mean o(l)/I
0 range

observed refls.

X, y (weighting scheme)

hydrogen refinement

refls in refinement
parameters
restraints
R(Fobs)
Ru(F%)

S
shift/errormax
max electron
density/e A=
min electron
density/e A=

multi-scan
0.8355-0.8621

18674

0.0371
0.0239
2.87-27.59
1778
0.0715, 1.2191
mixed
2206

133

0

0.0466
0.1392
1.055
0.001
0.249

-0.234

266



5. Experimental details

Table 28: X-ray structure of 17af.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/°

B/

y/°

VIA?

Z

calc. density/g
cm™

p/mm™*

CisH1.BFN;
226.057

0.118 x 0.063 x
0.049

123(2)

'Mo Ka

'‘Bruker D8Venture'
monoclinic
C2/c

24.099(3)
13.4697(13)
7.2558(8)

90

105.675(4)

90

2267.7(4)

8

1.3243(2)

0.090

absorption correction
transmission factor
range

refls. measured

Rin'[

mean o(l)/I

0 range

observed refls.

X, y (weighting scheme)
hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F?)

S

shift/errormax

max electron
density/e A=

min electron
density/e A=

multi-scan
0.8956-0.9579

6511

0.0412
0.0409
3.02-25.01
1607
0.0447, 3.4775
mixed
1991

170

0

0.0461
0.1221
1.083
0.001
0.197

-0.202

267



5. Experimental details

Table 29: X-ray structure of 17ag.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/°

B/°

v/°

VIA®

Z

calc. density/g
cm™®

p/mm™*

C16H10BN2O;
298.145

0.242 x 0.027 x
0.021

123(2)

'Mo Ka

'‘Bruker D8Venture'
monoclinic
P2./c

6.9403(6)
28.139(3)
7.6612(8)

90

96.032(3)

90

1487.9(2)

4

1.33097(18)

0.091

absorption correction
transmission factor
range

refls. measured

Rint

mean o(l)/I

0 range

observed refls.

X, ¥ (weighting scheme)
hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Ru(F)

S

shift/errormay

max electron
density/e A=

min electron
density/e A=

multi-scan
0.9032-0.9580

22020

0.0788
0.0554
3.04-25.36
1980
0.0283, 1.3854
mixed
2707

218

0

0.0553
0.1167
1.116
0.001
0.230

-0.199

268



5. Experimental details

Table 30: X-ray structure of 17ah.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

al®

B/

y/°

VIA?

VA

calc. density/g
cm™3

p/mm™

C4H9BN,
95.939

0.219 x 0.184 x
0.117

100(2)

MoKa

'Oxford XCalibur'
orthorhombic
Pnma
11.7314(10)
6.6939(5)
7.5679(6)

90

90

90

594.30(8)

4

1.07227(14)

0.066

absorption correction
transmission factor
range

refls. measured

Rin'[

mean o(l)/I

0 range

observed refls.

X, ¥ (weighting scheme)
hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F?)

S

shift/errormay

max electron
density/e A=

min electron
density/e A=

'multi-scan’
0.89865-1.00000

2147

0.0307
0.0348
4.40-28.43
570
0.0438, 0.0750
mixed

743

58

0

0.0430
0.1060
1.054
0.001
0.168

-0.188

269



5. Experimental details

Table 31: X-ray structure of 18g.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/®

B/

y/°

VIA®

Z

calc. density/g
cm™

p/mm™*

C12H150S;
242.403

0.194 x 0.123 x
0.119

173(2)

'Mo Ka

'‘Bruker D8Quest'
monoclinic
P2,/c

6.7781(4)
18.7053(10)
9.4522(6)

90

93.3091(19)

90

1196.41(12)

4

1.34578(13)

0.416

absorption correction
transmission factor
range

refls. measured

Rint

mean o(l)/I

0 range
observed refls.

X, Yy (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F?)

S

shift/erroray

max electron
density/e A=

min electron
density/e A=

multi-scan
0.8757-0.9585

20348

0.0595
0.0375
2.42-26.38
1904
0.0380, 0.3479
constr
2452

137

0

0.0375
0.0823
1.058
0.001
0.301

-0.280

270



5. Experimental details

Table 32: X-ray structure of 25i.

net formula
M,/g mol™

crystal size/mm
T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

al®

B/

y/°

VIA?

z

calc. density/g
cm™

p/mm™*

Ci18Hz0BIN,
440.173

0.25x0.12 x 0.10
173(2)

MoKa

'Oxford XCalibur'
monoclinic

P2./c

11.2557(6)
10.7537(4)
17.3884(7)

90

90.071(4)

90

2104.68(15)

4

1.38916(10)

1.528

absorption correction
transmission factor
range

refls. measured

Rin'[

mean o(l)/I

0 range

observed refls.

X, ¥ (weighting scheme)
hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F?)

S

shift/errormay

max electron
density/e A=

min electron
density/e A=

'multi-scan’
0.92190-1.00000

11966
0.0382
0.0519
4.20-27.94
3276
0.0237,0
mixed
4450

222

0

0.0362
0.0751
1.048
0.001
0.900

-0.496

271



5. Experimental details

Table 33: X-ray structure of 29b.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/°

B/°

v/°

VIA®

Z

calc. density/g
cm™®

p/mm™

C14H22BIN,
384.067

0.090 x 0.060 x
0.040

173(2)

'Mo Ka

'‘Bruker D8Venture'
monoclinic
P2./c
14.7515(6)
14.9918(6)
7.8341(3)

90
102.6340(10)
90

1690.57(12)

4

1.50900(11)

1.890

absorption correction
transmission factor
range

refls. measured

Rint

mean o(l)/I

0 range

observed refls.

X, ¥ (weighting scheme)
hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Ru(F)

S

shift/erroray

max electron
density/e A™

min electron
density/e A=

multi-scan
0.6976-0.7454

40152

0.0378
0.0177
2.99-26.43
2903
0.0233, 0.8178
mixed
3464

193

0

0.0221
0.0503
1.037
0.002
0.467

-0.271

272



5. Experimental details

Table 34: X-ray structure of 29f.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
a/A

b/A

c/A

al®

B/°

y/°

VIA®

Z

calc. density/g
cm™

p/mm™*

CgH12Cl5IN,
369.457

0.080 x 0.050 x
0.030

173(2)

'Mo Ka

'‘Bruker D8Venture'
triclinic

Plbar
6.9788(3)
8.6745(4)
11.4980(5)
104.7330(12)
99.4295(13)
91.1512(13)
662.69(5)

2

1.85156(14)

2.989

absorption correction

transmission factor
range
refls. measured

Rint

mean o(1)/I

0 range
observed refls.

X, ¥ (weighting scheme)
hydrogen refinement

refls in refinement
parameters
restraints
R(Fobs)
Ru(F?)

S
shift/erroray
max electron
density/e A
min electron
density/e A=

multi-scan
0.7784-0.8621

21644

0.0296
0.0179
2.96-27.48
2735
0.0169, 0.4110
constr
3049

129

0

0.0191
0.0431
1.088
0.001
0.476

-0.269

273



5. Experimental details

Table 35: X-ray structure of 29n.

net formula
M,/g mol™
crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/°

B/

y/°

VIA?

z

calc. density/g

cm™

C11He2B2NgO,S,
848.84

0.120 x 0.070 x
0.020

100(2)

MoKa

'‘Bruker D8Venture'
monoclinic

'C 2/c'
18.0525(10)
8.4999(4)
30.0560(17)

90
105.7399(16)
90

4439.0(4)

4

1.270

p/mm™*

absorption correction
transmission factor
range

refls. measured
mean o(l)/I

0 range

observed refls.

X, y (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Rw(F?)

S

shift/errormay

max electron
density/e A=

min electron
density/e A=

0.259
multi-scan
0.8020-0.9281

1019

0.0328
2.839-25.40
2904
0.0796, 25.0388
mixed

3264

266

0

0.0562
0.1699
1.085

0.001

0.405

-0.383

274



5. Experimental details

Table 36: X-ray structure of 29t.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/°

B/°

v/°

VIA3

Z

calc. density/g
cm™

p/mm™*

C14H24BBrN,O
355.082

0.100 x 0.080 x
0.060

173(2)

'Mo Ka

'‘Bruker D8Venture'
triclinic

Plbar
8.4039(4)
9.7687(4)
11.5059(5)
83.4698(12)
75.7506(13)
64.8600(11)
828.75(6)

2

1.42295(10)

2.484

absorption correction
transmission factor
range

refls. measured

Rint

mean o(l)/I

0 range

observed refls.

X, Y (weighting scheme)
hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Ru(F%)

S

shift/errormay

max electron
density/e A

min electron
density/e A=

multi-scan
0.6028-0.6468

24338

0.0273
0.0206
2.92-27.50
3306
0.0545, 0.8466
mixed
3799

210

2

0.0354
0.1013
1.073
0.001
0.515

-0.337

275



5. Experimental details

Table 37: X-ray structure of 410a.

net formula
M,/g mol™

crystal size/mm

T/IK

radiation
diffractometer
crystal system
space group
alA

b/A

c/A

a/°

B/°

v/°

VIA®

Z

calc. density/g
cm™

p/mm™*

C16H16N20s
284.310

0.342 x 0.135 %
0.120

100(2)

MoKa

'Oxford XCalibur'
orthorhombic
Pbca
8.1452(5)
9.3977(6)
36.820(3)

90

90

90

2818.4(3)

8

1.34009(14)

0.094

absorption correction
transmission factor
range

refls. measured

Rint

mean o(l)/I

0 range
observed refls.

X, ¥ (weighting scheme)

hydrogen refinement
refls in refinement
parameters
restraints

R(Fobs)

Ru(F)

S

shift/errormay

max electron
density/e A=

min electron
density/e A=

'multi-scan’
0.97550-1.00000

14980

0.0638
0.0549
4.16-26.37
2147
0.0253, 1.2524
mixed
2879

197

0

0.0451
0.0984
1.060
0.001
0.253

-0.220

276
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