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Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit S-Supergravitation, einer zehn-dimensionalen
Theorie mit nicht-geometrischen Fliissen. Zunéchst wird eine Einfithrung in Verallgemein-
erte Geometrie und Doppelfeldtheorie gegeben, welche Reformulierungen von iiblichen
Supergravitationstheorien erlauben. Letztere ist versehen mit einer starken Zwangsbe-
dingung, welche mittels einer unter T-Dualitét invarianten zwei-dimensionalen konformen
Feldtheorie untersucht wird. Aufbauend auf fritheren Ergebnissen wird S-Supergravitation
in Bezug auf beide Theorien eingeordnet und das Studium des NSNS Sektors ermoglicht
dann die nicht-geometrischen Q- und R-Fliisse exakt zu identifizieren. Unter Verwendung
des Verallgemeinerten Geometrie Formalismus wird der Lagrangian reproduziert und die
Bewegungsgleichungen abgeleitet. Interessanterweise tauchen dabei neue Strukturen auf
und der ()-Fluss geht in eine Nachbildung des Levi-Civita-Zusammenhangs, welcher die
Definition eines zweiten Kriimmungsskalar ermoglicht, ein. Dies macht S-Supergravitation
zu einem vielversprechenden Anhebungskandidaten fiir einige vier-dimensionale geeichte
Supergravitationstheorien.

Geometrische Hintergriinde mit nicht-geometrischen Fliissen sind offensichtlich ein An-
wendungsgebiet fiir S-Supergravitation. Hier zeigt die Besprechung von T-dualen, torus-
formigen Hintergriinden ein konsistentes Supergravitationslimit fiir die nicht-geometrische
Konfiguration auf. Und die Symmetrien, insbesondere 8 Eichtransformationen, berechti-
gen die Einfithrung eines verallgemeinerten kotangential Biindels. Allerdings kann eine
konsistente Klasse von Vakua, welche nicht-geometrisch fiir gewohnliche Supergravitation
ist, nur mittels S-Transformationen, die eine Symmetrie des Lagrangian unter Isometrien
darstellen, definiert werden. Weiter liegen diese in einem geometrischen Orbit unter T-
Dualitét. AnschlieBende Untersuchungen iiberpriifen die Existenz von zehn-dimensionalen
Losungen der Bewegungsgleichungen, welche auf den NSNS Sektor beschrankt sind.

Eine interessante Anwendung findet S-Supergravitation in der Beschreibung von NS-
Branen und Bianchi Identitaten fiir NSNS (nicht)-geometrische Fliisse. Dazu gehoren die
NS5-Brane, der Kaluza-Klein Monopol und die exotische 53- bzw. Q-Brane. Insbesondere
erhalten auf zehn Dimensionen verallgemeinerte Bianchi Identitdten Korrekturen durch
Quellterme von einzelnen NS-Branen. In Abwesenheit von Quellen, konnen diese Bianchi
Identitaten mittels eines nilpotenten Spin(D, D) x R* Dirac Operators erzeugt werden.

[B-Supergravitation erlaubt es weiter zehn-dimensionale supersymmetrische Vakua mit
NSNS nicht-geometrischen Fliissen zu studieren. Hier konnen die internen Killing Spinor
Gleichungen, welche die Supersymmetriebedingungen festlegen, mittels sogenannter ein-
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facher Spinoren, welche eine SU(3) x SU(3) Struktur in Verallgemeinerter Komplexer Ge-
ometrie definieren, umformuliert werden. Der verallgemeinerte Dirac Operator D, welcher
von nicht-geometrischen Fliissen abhéngt und den tiblichen Operator d — H A ersetzt, spielt
dabei eine entscheidende Rolle. Ein allgemeiner Ausdruck fiir ein Superpotential schliefit
ebenfalls diesen Operator mit ein und wird mit der Literatur verglichen. Abschlieend er-
folgt eine geometrische Charakterisierung von Hintergriinden, welche die Supersymmetrie
erhalten.



Abstract

In this thesis ten-dimensional theory, named [-supergravity, is presented that contains
non-geometric fluxes. Being inspired by Generalized Geometry and Double Field Theory, a
review of both is given with regard to a reformulation of standard supergravities. The latter
has to be equipped with the so-called strong constraint that we trace in a two-dimensional
T-duality invariant conformal field theory. Building on earlier work, [g-supergravity is
classified with respect to the two former theories and study its NSNS sector, where the
non-geometric ()- and R-fluxes are precisely identified. Using the Generalized Geometry
formalism, the Lagrangian is reproduced and its equations of motion are derived. Interest-
ingly, new structures appear and the @)-flux is captured in an analogue of the Levi-Civita
spin connection that gives rise to a second curvature scalar. This makes -supergravity a
promising candidate for uplifting some four-dimensional gauged supergravities.

Evidently, geometric backgrounds with non-geometric fluxes are an interesting field of
applying S-supergravity. Reviewing the toroidal example a consistent supergravity limit for
non-geometric configuration is recovered. The study of the symmetries of S-supergravity,
in particular § gauge transformations, introduces the notion of a generalized cotangent
bundle. However, only p-transforms being a manifest symmetry of the Lagrangian with
isometries allow to determine a well-defined class of vacua that are non-geometric in stan-
dard supergravity, but lie on a geometric T-duality orbit. Further investigations are related
to ten-dimensional purely NSNS solution solving the equations of motion.

An interesting area of application of S-supergravity are NS-branes, including the NS5-
brane, the Kaluza-Klein monopole and the exotic 53- or Q-brane, together with Bianchi
identities for NSNS (non)-geometric fluxes. Four-dimensional Bianchi identities are gen-
eralized to ten dimensions with non-constant fluxes and introduce corrections by source
terms in presence of an NS-brane. In the absence of sources, our Bianchi identities are
recovered by squaring a nilpotent Spin(D, D) x R* Dirac operator.

[B-supergravity further allows to study ten-dimensional supersymmetric vacua with
NSNS non-geometric fluxes. Specifying a compactification ansatz, internal Killing spinor
equations providing supersymmetry conditions are reformulated in terms of pure spinors
defining an SU(3) x SU(3) structure in Generalized Complex Geometry. This involves the
generalized Dirac operator D depending on non-geometric fluxes and replacing the stan-
dard d — H A acting on pure spinors. A proposed general expression for the superpotential
also involves D and is verified to agree with formulas of the literature. Finally preserving
supersymmetry, a geometrical characterization of backgrounds is presented.
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Chapter 1

Introduction

The perception of space and time moves people in astonishing ways. Throughout history
the modeling determined the faith of man. Whereas for the earliest cultures it was mainly
a question of observing and predicting the movement of celestial objects, already in ancient
Greece astronomy evolved as an independent field of mathematics by adopting geometri-
cal principles. However, it was not before Kepler that physics attributed mathematical
predictions to a cause. The concepts for space and time in which Newton formulated the
law of universal gravitation preceded by the measurements of gravitational acceleration
by Galilei are to the moment under severe discussion. Abandoning absolute space and a
uniformly passing time the concept of an inertial reference frame in special relativity, in
which the laws of physics are invariant and the speed of light is the same for all observers,
introduces the notion of an intertwined space-time. Finally, Einstein’s theory of general
relativity transforms space-time into a dynamical object itself. Matter and energy content
affect the shape and curvature of it and vice versa the motion of a free-falling object follows
a geodesic line in a curved space-time. Interestingly, black holes experience in the form
of the Schwarzschild solution to the classical Einstein field equations a singularity at the
origin that infringes the well-definedness of space-time. This is a first hint at a missing
understanding of space and time.

The elementary particles building up the matter content of the universe are governed
by the electromagnetic, the weak and the strong force described in the Standard Model
of particle physics, a quantum field theory. Its particular gauge group gives rise to the
electroweak theory unifying the photon with the W*- and Z%bosons and to Quantum
Chromodynamics governing quarks and gluons. It allows to predict high energy scattering
processes with a high accuracy up to around 100 GeV .

Only recently, the observation of the Higgs particldl] at the Large Hadron Collider
(LHC) at Cern completed the Standard Model. The necessity of a scalar boson is provided
by the Higgs mechanism spontaneously inducing electroweak symmetry breaking at a scale
Meyw = 246 GeV'. This gives rise to masses for gauge fields of the weak force and the different
types of matter particles observed in nature due to a nontrivial vacuum expectation value

'The detection of a new particle with mass mpy = 126 GeV was published by the ATLAS collaboration
in[I].
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of the Higgs field. An open question concerning the quantum correction to the mass of
the Higgs boson is known by the name of Higgs hierarchy problem. In principle, these
corrections which result from fermions running in the loop are of the same order as the
experimentally measured Higgs mass unless an important fine-tuning takes place.

In the same way as the electromagnetic and the weak force are unified in the Stan-
dard Model it is believed that at an energy scale around mgyr = 10* GeV the coupling
strength of the strong force joins the one of the electroweak . Theories favoring this kind of
behavior of the coupling constants are called Grand Unified Theories (GUTs) and embed
the Standard Model gauge group into a larger group like SU(5) or SO(10). Supersym-
metry (SUSY) extends the symmetries of these kinds of theories even further and relates
fermions and bosons which then can be arranged in so-called multiplets containing par-
ticles of different spin. Besides enforcing the coupling constants of the Standard Model
to coincide SUSY is favored for naturally extending the Poincaré group and resolving the
Higgs hierarchy problem. There is hope that the idea of SUSY can be verified at the LHC
in the near future, because the breaking scale of SUSY should not be much higher than
the scale of the Standard Model in order to solve the Higgs hierarchy problem. Following
the scheme of unification it is certainly desirable to find a Theory of Everything (ToE) in
an even higher energy regime that allows the gravitational force to join in.

Yet, gravity is in certain ways different from the three fundamental forces of nature
which might have severe consequence for our understanding of the geometry of space-time.
First, Einstein’s theory of gravity is a classical field theory valid at large distances. Its
coupling strength, the Newton constant G, is 10** times weaker than the Fermi constant
G'r being responsible for the weak interaction. This certainly explains why gravity plays no
role in the subatomic processes described by the Standard Model. However, for phenomena
like the Planck epoch of the early universe or the vicinity of black hole singularities with
energies up to the Planck scale mp = 10 GeV gravity becomes relevant. Here, high cur-
vatures appear in very small regions of space demanding for a proper quantum description
of gravity. On the experimental side energies around the Planck scale are out of range of
any present or future collider experiment and recent excitement about measured imprints
of quantum gravityﬂ in the observed microwave background predicted by inflation models
turned out to be premature. Unfortunately, also the theoretical access to a quantum the-
ory of gravity is obscure since a consistent quantization method for general relativity has
not been found so far due to its non-renormalisability. Speaking loosely, this has to do
with the modeling of space-time at very tiny length scales. It is commonly believed that a
shift in the perception of space and time might resolve the issue of the incompatibility of
Quantum Mechanics and Einstein gravity at the Planck scale.

Interestingly, standard cosmology as defined by recent experiments holds another puzzle
related to the faith of space-time in our universe. Cosmological measurements of the
expansion of the observed universe indicate that it is actually of de Sitter type with a

2The detection of a B-mode polarization in the BICEP2 experiment arising in inflation models due to
primordial gravitational waves was published in [2]. Yet the signal was traced back to cosmic dust in our
galaxy with new data from the Planck experiment [3] 4].
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positive cosmological constant A of mass scale my = VA ~ 1072 GeV. This so-called
cosmological constant problem has to be clearly addressed in any quantum theory modeling
the gravitational force. Moreover, the Standard Model is certainly not able to describe the
nature of the corresponding dark energy and the discrepancies in energy scales with regard
to the Planck scale or even that of the other three distinct forces.

There are several ways to try to accomplish a consistent theory of quantum gravity.
Besides string theory, which we are going to pursue in this thesis, loop quantum gravity,
non-commutative geometry, group field theory or asymptotic safety are favored alternative
approaches. They all teach us of new physics beyond the Standard Model. Distinct from
mentioned features, like SUSY or extended gauge symmetries, additional space-time dimen-
sions and a possible non-commutative structure of the space-time directions themselves,
only to name a few, tell us to stay open minded when thinking about the fundamental
geometry of nature.

1.1 String theory

A promising candidate for a quantum theory of gravity is string theory. Its advent was
in the late 1960s when theoretical physicists were looking for a theory describing the
interaction of hadrons. With the rapid success of Quantum Chromodynamics describing
the strong nuclear force string theory was more and more examined with regard to being
a candidate for a quantum theory of gravity. The reason for this is a spin-2 state in the
spectrum of the string which can be identified with the graviton. Hence, string theory
contains gravity. Further, string theory can incorporate some important properties of the
Standard Model, like gauge interactions, chirality and symmetry breaking. It also naturally
includes the idea of SUSY as an extension of the Standard Model. The underlying idea
of string theory is to develop a quantum description of one-dimensional objects, so-called
strings. This ansatz stands in sharp contrast to usual field theories which consider point-like
particles. Observing space-time through one-dimensional probes will turn out to contribute
to a completely different perception of the fundamental structure of nature.

Bosonic string theory

Moving strings sweep out a two-dimensional surface, known as the world-sheet, embedded
in some bigger space-time, called target space. Their coordinates X™ (o, 7) in target space
can be interpreted as fields living on the world-sheet and provide a map between these two
concepts. An appropriate action, called the Nambu-Goto action, is found by generalizing
the world-line of a relativistic point-particle to a one-dimensional string

S=-T f do*v/—deth  with hag = 0aX™ 05X | (1.1.1)

where 0® = (o, 7) denotes the two-dimensional world-sheet coordinates and & is the induced
metric by the pullback of the Minkowski metric n in target space to the world-sheet. We
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further use the abbreviation d, = 80%. T denotes the string tension which is historically

related to the Regge slope a' by
1

T = -
2T

(1.1.2)

A dimensional analysis shows that we can associate with o’ the string scale I, by 12 = o’
Since we later are going to identify some excitation of the string with the graviton, the
natural energy scale of string theory should be around the Planck scale mp.

The Nambu-Goto action can be rewritten in the more convenient form of the
Polyakov action

T
5= f Aoy = et K dn X 05X . (1.1.3)

experiencing conformal symmetry. Therefore, the use of two-dimensional conformal field
theory (CFT) techniques is important for observing the string from the world-sheet per-
spective. Now, h is an independent variable determined by its own equation of motion.
Variation of the action with respect to the string coordinates leads to the equations of
motion for X™ with additional boundary conditions for the bosonic string

0a0°X™ =0,  0,X"0Xu|720"" =0. (1.1.4)

In addition, we have to consider the variation of the metric h,g on the world-sheet. It fol-
lows that the stress-energy tensor, which we obtain in this way, imposes further constraints
on the string coordinates

1
Top = Nmn0a X0 X" — ina/gnp"nmnﬁpXmé’aX" =0. (1.1.5)

First, we focus on the closed string coordinate with the two ends of the string being

identified
X"(o,7) = X"(0 + 27, 7). (1.1.6)

The boundary condition ([1.1.4)) is satisfied trivially. The solution to the free wave equation
(1.1.4) can be expressed by a factorization of the string coordinate into a left- and right-
moving part

)(m i T 1A:m j/ i 7_ [ § —1 O'+)

1 1
Xm(J—T)Zix —§ap (0 —7)+iA] — Zl aretitlo=T)

1#0

where " and @;" denote the oscillator modes at level [ respectively. The center of mass
position and momentum are given by z™ and p™. We have yet to impose the constraint
(1.1.5) to obtain a classical solution of the string. This constraint is more conveniently
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expressed in the form of vanishing Fourier modes L, and L,

1
Ln :iZanfl - O,
ez (1.1.8)

~ 1
Ln 25 Zdn—l : dla
leZ

where the zero modes of' and &' are identified with the momentum p™. Of particular
interest is the following constraint at level 0

Lo=1Lo=0. (1.1.9)

Sometimes called level-matching condition for relating left- and right-moving oscillators, it
allows to write down an expression for the effective mass of the string in terms of excited
oscillation modes 1 4
M2:7/ a_j - = — @—l'&l . 1.1.10
- ;) - ; (1.1.10)
Next, we take a look at the open bosonic string. Locally, the open string is also governed
by the Polyakov action , but now we have to consider the two endpoints of the string
separately
X"™(o,7), ato=0,m. (1.1.11)

Varying the action ((1.1.3]) with respect to the string coordinate we observe the boundary
term ({1.1.4]), which vanishes for the closed string upon identification of the endpoints. For
the open string this leads to two possible boundary conditions:

e Neumann boundary conditions
0,X™ =0, ato=0,m. (1.1.12)
Here, the endpoints of the string are allowed to move freely at the speed of light.

e Dirichlet boundary conditions
0Xm =0, ato=0,m. (1.1.13)
Here, the endpoints of the string lie at a constant position X™ = ¢™ in space.

Having Neumann boundary and Dirichlet boundary conditions together the endpoints of
the open string are fixed to some hypersurface of a certain dimension, also known as D-
brane. There are hints that D-branes should be considered as independent dynamic objects
in string theory. The first excited states of the open string describe massless oscillations
within and transversal to the brane. In particular, it is a U(1) gauge theory that one obtains
on a single brane whereas in certain scenarios the Standard Model arises by placing several
stacks of branes in some directions of the target space.
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Superstring theory

Up to now the formulation of the string only includes bosonic coordinates and does not
account for the existence of fermions in target space. Furthermore, the existence of a
tachyonic ground state in bosonic string theory is a major drawback as it points towards
instabilities of the theory. Superstring theory addresses both questions simultaneously
introducing additional fermionic fields on the world-sheet. The action for the superstring
in superconformal gauge then takes the form

T /=
=3 J A0 N (00 X0 X™ + 0 10 Y0, ™) (1.1.14)

in Minkowski space-time, where W* are two-component Majorana spinors on the world-
sheet and p® are 2x2-Dirac matrices. However, introducing SUSY on the world-sheet by
adding fermionic degrees of freedom does not right away answer the question of whether
or not we observe fermionic states or SUSY in target space. The equations of motion for
the fermionic string take the form of the two-dimensional Dirac equation and has to be
supplemented by a corresponding boundary condition

PO =0, WTOW,, — WU, [T =0 (1.1.15)

The two components of the Majorana spinor U™ correspond to left- and right-moving
fermionic coordinates U7 and W,

We leave out the discussion of the open string and focus on the case of the closed
string. Now, the two possible boundary conditions for the left- and right-moving part of
the fermionic string are given by

U (o,7) =¥ (0 +2m,7) and VY3 (o,7) = +tVR(o+2m, 7). (1.1.16)

Since the boundary conditions can be chosen independently one distinguishes the four
sectors RR, RNS, NSR and NSNS by a periodic Ramond (R) boundary condition, or
anti-periodic Neveu-Schwarz (NS) boundary condition.

Considering the mode expansion of the fermionic string in detail allows to access the
spectrum in the different sectors. It turns out that the ground state in the R sector is
degenerated and lives in the spinor representation of SO(1,9). Whereas in the NS sector
we observe a unique tachyonic ground state. Moreover, it appears that the spectrum is
not supersymmetric at first. The proper way to address these problems is a consistent
truncation of the spectrum by the GSO-projection. Fixing a definite chirality in the R
sector then amounts to establishing SUSY in target space which is not obvious, but can
be tracked at every mass level. The spectrum is constructed by tensoring states of the
respective sectors chosen for the left- and right-moving coordinate of the string. The
NSNS sector contains a scalar field called the dilaton ¢, an antisymmetric two-form b,,,,
and a symmetric traceless rank-two tensor g,,,. The RNS and NSR sectors in each case
contain a spin 3/2 gravitino and the spin 1/2 dilatino. The RR sector yields a set of
antisymmetric p-forms C,,.
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Depending on choosing the left- and right-moving ground state to be of the opposite or
same chirality in the R sector one distinguishes string theory of type IIA and respectively
type IIB. There exist three more consistent types of string theory. Type I is a string theory
of unoriented strings sweeping out world-sheets such as the Mébius band for open strings
or the Klein bottle in the case of closed strings. Heterotic String theories including the
gauge groups Eg x Eg or SO(32) are constructed by allowing only the right-moving string
coordinate to involve fermions.

There are important constraints on these string theories imposed by consistency of the
quantum description. Lifting classical symmetries to the quantum level so-called anomalies
occur. The absence of the Weyl anomaly for example fixes the space-time dimensions to
10 for superstring theories and to 26 for bosonic string theory. This so-called critical
dimension of the string raises questions about the interpretation of the extra dimensions
and the identification of our four dimensional space-time. Also, rather remarkably, dualities
between the distinct string theories and new symmetries can be found.

Stringy symmetries and dualities

String theory provides a variety of new symmetries. T- and S-duality are only two of several
dualities encountered in string theory that form an intricate web between the 5 different
types of string theory. T-duality identifies certain backgrounds which are indistinguishable
for the string. Whereas S-duality relates theories at weak and strong string coupling
constant. These are all signs for an eleven-dimensional non-perturbative theory, called
M-Theory, where branes play the role of the fundamental objects.

type I

wpera k\s

T M-theory  het SO(32)

ANy,

het FEg x Eg

Figure 1.1: Web of dualities between string theories.

In this thesis we are particularly interested in T-duality relating string theories defined
on certain distinguished backgrounds. The fact that T-duality is a stringy symmetry, only
present when probing space-time with a string, is due to the string being an extended
object. Nontrivial winding effects of the string around compactified directions give rise to
this new duality.
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The study of the spectrum of one bosonic string coordinate on a circle of radius R
elucidates the role of the duality transformation§’]] The compactification of one bosonic
string coordinate to a circle leads to the periodic identification X = X + 27 Rm, with
m € Z. A consistent mode expansion, respecting (1.1.5)), then yields

’ ’ 1 )
Xp(o+71) =2+ \/%pL(U +7) + 14/ %Z 7&16_”(””) :

1#0

(1.1.17)
/ ’ 1 )
Xr(oc—7) =z —1/ ng(a —T) + A/ ZZ —ogetileTT)
2 2 10 l
The center of mass is * = g + x; and the momenta p;,, pr read
1 o R 1 o R
= (—n+—m), = (—n——m). 1.1.18
pL \f( R n \/gm) Pr \/§< R n \/gm) ( )

In addition to the momentum in the compact direction taking integer values n € Z, the
winding number m € Z accounts for the possibility of the string winding around the circle.

Having a formula for the left- and right-moving momenta at hand we can add 25 non-
compact string coordinates to match with the critical dimension of bosonic string theory.
The mass shell condition ((1.1.10]) in the compactified theory is then written as

TL2 m2 R2

2 _
My =Tt —om

2 -
+ S (N+N-2), (1.1.19)

where N and N are the number operators counting oscillation modes. The duality sym-
metry can be seen thanks to the following exchange

> — N m. (1.1.20)

Therefore, T-duality is most easily observed as an exchange of momentum modes with
winding modes of the string. However, the statement that string theory defined on a circle
of radius R is equivalent to defining it on a circle of inverse radius a' /R is more familiar.
Hence, physics at small scales cannot be distinguished from physics at large scales. One
interpretation of this is that string theory implements a natural minimal length scale
Roim = Vo

Based on the work by Narain, the Zs-symmetry which inverts the radius R was recog-
nized to sit inside a larger group for a d-dimensional toroidal background. The 2d vector
(pL, pr) then spans an even self-dual lattice, called Narain lattice. All even self-dual lattices
are related by transformations h forming the group O(d, d,R)

hinh =n with 7= (2 é) . (1.1.21)

3 An exhaustive review on T-duality can be found in [5].
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Furthermore, there exist a subgroup O(d,R) x O(d,R) providing a symmetry of the trun-
cated Hamiltonian
Ho = 4+ 1% (1122

The moduli space is then given by the coset manifold O(d, d,R)/O(d,R) x O(d,R). Finally,
the discrete duality subgroup O(d, d,Z) leads to physically identical theories. This group
is known as the T-duality group in string theory and corresponds to the enlargement of
the Zo-symmetry. Whereas O(d, d, R) is the respective symmetry group appearing in low-
energy effective theories of string theory. Analyzing O(d,d,R) the following elements are
symmetry generators

1 ("‘) A 0 1—61' €;
geo = (0 1) y 9A = (0 (At)—l) y 9p; = ( e; 1—62) ) (1123)

where ©;; is a antisymmetric d x d-matrix taking constant values, A € GL(d,R) and e; is
a d x d-matrix where the ii-th entry is one and all other entries are zero. The last element
can be identified with a radial inversion in the ¢-th toroidal direction.

T-duality can also be derived from a world-sheet approach using a non-linear g-model.
Buscher showed, see [6] and [7], that T-duality is a symmetry of the path integral if there
exists an abelian isometry in a compactified dimension. The rules for calculating the T-
dual background are known by the name of Buscher rules. This provides a shortcut for
generating new string backgrounds.

The starting point is a o-model for the string propagating in curved space with an
abelian isometry in one direction, denoted by 6,

5= 47rlo/ Jd% i <(ha59mn(X)+ie“ﬂbmn(X)) (9aXm85X”+o/¢(X)R(2)) . (1.1.24)

where h,s is the world-sheet metric, gm,,(X) is the target space metric and b, (X) is
the B-field. The dilaton field ¢(X) is coupled to the scalar curvature R of the world-
sheet. Gauging the abelian isometry direction § by introducing a gauge field together with
a Lagrange multiplier, arranging for pure gauge and integrating out the gauge field in a
second step yields a dual o-model. Remarkably, the form of the original o-model can be
restored if the following substitutions are applied

- 1 ~ b@m 7 9om 7 1
Goo = o Jom = bom — Pt ¢—¢— 5 log goo
1.1.25
~ gomZGeon — bé’mben 7 g@mbﬁn - gGmbGn ( )
Imn — Gmn — ) bmn - bmn - .
Jos oo

These transformationd] and their generalizations to several isometries are called Buscher
rules. Given a string background described by (g,b, ¢) the dual background (g,b,¢) is

4The transformation of the dilaton ¢ has to be worked out separately by demanding invariance of the
partition function under T-duality.
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provided by the above fractional linear transformation. Later, the T-duality transformation
take a linear form in the O(d, d) framework.

A further symmetry directly related to the geometry of the internal space of the hidden
dimensions is mirror symmetry. According to this symmetry String theories of type II
should lead to equivalent effective field theories if two mirror Calabi-Yau (CY) manifolds
make up the additional space. In certain situations the transformation between mirror
pairs is a T-duality as stated by the SYZ-conjecture [g].

1.2 Low-energy effective theories

Despite huge progress in understanding the structure behind string theory a lot of open
questions and problems remain a major sign that string theory is one of the most complex
theories encountered in physics. One important direction to follow concerns the arising of
physics at low energies in the limit ' — 0 from string theory. In one way or another string
theory should incorporate the Standard Model of particle physics and gravity described by
general relativity. Hence, the infinite tower of states in the spectrum of the string should
be truncated to be identified with the finite particle spectrum observed in target space. A
natural choice is to keep the massless modes of the string since higher excitations come with
masses near the Planck scale mp and cannot be produced with current energies. Among
these, the graviton should give rise to Einstein’s theory of gravity. More generally, one could
ask: What are the imprints of string theory that could be observed in experiment? Is it
possible to see any sign for the existence of extra dimensions? Since SUSY is naturally
embedded in string theory we should further find a new scale mgygy, probably around
1 TeV, where it is spontaneously broken and above which new supersymmetric particles
should be observed. Moreover, the faith of symmetries only present in string theory is
not clear either. Are these in some form present in the low-energy effective theories? By
answering the last question one hope is to reveal a new framework underlying string theory
paving the way to explore novel regions of the vacuum structure of the string.

1.2.1 Supergravity

SUSY plays an important role in going beyond the Standard Model of elementary par-
ticles. Theoretically, this led to the Minimal Supersymmetric Standard Model (MSSM)
which ascribes to each particle a supersymmetric partner’] A favored characteristic of this
model is the unification of the three fundamental forces at high energies. But SUSY is
also interesting from the point of view of extending gravity theories in various dimensions.
Implementing SUSY as a local symmetry the corresponding theory, called supergravity
(SUGRA), inherits space-time diffeomorphism invariance by the supersymmetric extension
of the Poincaré algebra. Hence, people reflected about SUGRA theories totally indepen-
dent of string theory. The field content of such theories is arranged in supermultiplets,

5So far, SUSY has not been observed at LHC. Simplest natural versions have been ruled out, but more
evolved models have yet a chance.
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representations of the SUSY algebra, and depends on the number of supersymmetries N
and the dimension d.

Another view on SUGRA is based on taking superstring theory as the correct quantum
theory of gravity and considering SUGRA as a low-energy description of the string. In
other words, string theories provide ultraviolet completions of SUGRA theories. However,
a consistent method for integrating out the massive excitations as in conventional quantum
field theories is not an option in string theory. Nevertheless, any construction of the
corresponding SUGRA theory tries to reproduce the massless field content of a particular
superstring theory. Besides this correspondence of both spectra, another hint on the low-
energy effective action is to study string scattering amplitudes at low energies or calculating
the S-functions of string theory. Demanding conformal invariance on the world-sheet for the
non-linear o-model the S-functions have to vanish and coincide with the equations
of motion of SUGRA theories.

Surprisingly, eleven dimensions constitute an upper bound for consistent SUGRA the-
ories and additionally give rise to a single unique SUGRA believed to be the low-energy
effective description of M-theory. Of particular interest to us are the ten-dimensional
SUGRA theories of type II. Here, we present the bosonic sector of type ITA which should
be complemented with a fermionic action for the gravitini 11,2 and the dilatini p'?

Stia = Sns + Sk + Scs

1 B 1
Sks = g | A0y =ge (Rig) + aldof - |
K10 2
1 B 1.2.1
Sn = —“Jd”w—*gwﬁ +1EP) ey
K10
1

In these expressions R(g) is the standard Ricci scalar, the RR fields are denoted by C,
with the corresponding field strengths FpHﬂ the NS-NS field is By with corresponding
field strength H and a useful redefinition is F; = dC3 — C; A H3. The equations of motion
derived from this action are

mn 1 1 1 n
0= — 22 (R(g) + 4|dof — | Hsf? — ~e*| Rl — Se*|Fif?)
2 2 2 2

1
+ Ron = GtmH - tn H + 20mn (2| — V2¢) + 2V, V¢
1 1 — —
— §€2¢LmF2 . §€2¢LmF4 by, (1.2.2)
1

0=R(g) - §|H|2 +4(V2¢ — |dol)
0=d(e™ «H),
0 =d(+F,) .

6By Poincaré duality there are the field strengths Fy = %Fy and Fy = #F,. In principle, the field
strength Fyy = dCy can also be defined, but it does not carry propagating degrees of freedom.
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Conventions for the notation can be found in appendix [A.2] The equations of motion
should be supplemented with Bianchi identities (BIs) for the fluxes in the NSNS sector as
well as in the RR sector

dH =0, (d—H)AF,=0. (1.2.3)

A further important detail of any SUGRA theory are the SUSY variations connecting the
bosonic and fermionic sector. For type IIA and IIB standard SUGRA with two pairs of
chiral fermions the NSNS-flux contributions to their SUSY variations are

= (9 L)

] (1.2.4)

5p1’2 =1 (Vm F —Hpppl™ — 6m¢> eh?

24

where V,, is the standard covariant derivative, the I'"™ satisfy a Dirac algebra and e?

denotes the SUSY fermionic parameters, while the sign differs respectively for 1,2. The

SUSY variations of the bosonic field content are not considered in this thesis and therefore
left out.

Whereas type IIA can be derive in a dimensional reduction of eleven-dimensional
SUGRA the guidelines for constructing a SUGRA theory for string theory type IIB are
solely given by SUSY and gauge invariance. In the same way, it is possible to write down
SUGRA theories for the remaining heterotic and type I string theories. Of particular inter-
est to us is Sns, which coincides for all five string theories, and the corresponding equations
of motion.

The open string sector also allows for a low-energy effective description in target space
which is exact in o in contrast to the effective action for the closed string. The
so-called Dirac-Born-Infeld (DBI) actior[]

Sppr = _TPJ dp+1§e—¢(X)\/_ det (ga6<X) + QWQIFQB(X) + baﬂ(X» (1.2.5)

%

governs the abelian gauge field A,, with field strength F,,,, on a single D-brane and couples
it to the massless fields g, (X), bmn(X) and ¢(X) of the closed string. The coordinates
X" (&) embed the surface ¥ into ten-dimensional target space and define the pullbacks gz,
bos and Fig onto the D-brane, similar to. The DBI action is a non-linear extension
of Maxwell’s theory.

1.2.2 Compactification

Requiring extra dimensions for string theory to be anomaly free leaves us with the question
of identifying our four-dimensional space-time. There are two distinct ideas on the real-
ization of hidden dimensions adding up to the critical dimension of the string. The first

"In order to respect SUSY the DBI action is complemented by a Chern-Simons action Scs[C)p] con-
taining the corresponding RR p-form C,.
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scenario embeds space-time as a four-dimensional hypersurface in ten dimensions. The
second possibility is to consider the extra dimensions to be small enough that we have
not yet been able to observe them in experiment. The latter is known as compactification
where extra dimension coil up to form an additional space. Remarkably, the distinction
into extended and compact directions is to this moment obscure. Applying a simple com-
pactification ansatz by hand ten-dimensional space splits into four extended space-time
directions together with a compact internal manifold Mg for the extra dimensions

My =Ky x Mg . (1.2.6)

This idea is more commonly known under the name of Kaluza-Klein compactifications.
Typically for convenience, one chooses Minkowski space-time R? for the external part.
However, recent cosmological data demands a de Sitter space. More generally, the two
spaces could be connected by a warping meaning that the size of the inner manifold changes
with the position in the four-dimensional space-time. This choice causes ten-dimensional
fields, e.g. the metric g, to split into a four-dimensional part plus additional vector and
scalar degrees of freedom. In particular, the scalar fields in the lower dimensional theory,
known as moduli, are of certain interest because these specify the inner space. For example,
Kéhler moduli describe the size and complex structure moduli the shape of the internal
manifold. Unfortunately, a potential fixing a specific vacuum expectation value for these
moduli is missing. Therefore, important properties of the internal space are not fixed.
Hence, a vast number of distinguishable compact internal manifolds are allowed solutions.
This is known as the string landscape problem which reduces the predictivity of string
theory tremendously. A prefered choice for the internal space is a CY threefold defined
by preserving a certain number of SUSY when the external space is maximally symmetric.
Especially in heterotic string theory, this scenario [9] is able to provide prefered four-
dimensional NV = 1 vacuum configurations even if it demands the NS-flux H to vanish.

Despite the huge string landscape the only scalar field observed so far in four dimensions
is the Higgs fields. Therefore, a mechanism is needed that allows to stabilize the moduli.
Switching on non-vanishing vacuum expectation values for the NS-flux and for the fluxes
in the RR sector a scalar potential for the moduli in N' = 1 four-dimensional theories is
generated

V = e (K™D,,WD,W —3|W|?) , (1.2.7)

where W is the superpotential provided by the Gukov-Vafa-Witten formula [10] and con-
tains the standard fluxes. Moreover, K is the Kéhler potentia and K™ = 0,,0,, K denotes
the Kéhler metric. For the standard example of a type IIB compactification on a T°/Z,
orientifold with three identical 2-tori the superpotential does include H-flux and F3-flux
[11]

W = Py(1) + SPy(7) , (1.2.8)

8 Additional terms in the superpotential arise due to non-perturbative effects by D-brane instantons and
in the Kéhler potential due to world-sheet instantons.
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where 7 denotes the complex structure modulus, S the axion-dilaton and the polynomials
Py, P, are cubic in 7. The Kahler modulus U does not enter the superpotential and is
hence not stabilized. This opens up the wide field of flux compactifications; see [12] for
a review. In certain scenarios some or all moduli gain a nontrivial vacuum expectation
value and hence moduli stabilization is possible [13], 14 [15]. Restrictions to turning on
fluxes in compact spaces result from energy considerations of the configurations. Negative
tension sources, so-called orientifolds, are needed for compensating the positive contribu-
tions of fluxes. The Bls in the case of a geometric compactification with integrally
quantized fluxes impose further conditions. Of special interest to us are also conditions
from demanding a certain number of SUSY in the compactified theory. When fluxes are
switched on SUSY can be partially broken. Eventually, the lower-dimensional SUSY vari-
ations including the NSNS H-flux and the geometric f-flux have to be satisfied to
obtain a consistent compactification.

1.3 Non-geometry

Considering string theory as a two-dimensional CFT defined from some world-sheet into
some target space, a conventional geometric description of space-time is not obvious. The
mathematical tools of differential geometry in form of an underlying manifold structure
are not applicable in most cases. These kind of “non-geometric” vacua, however, should be
included in the string landscape if one hopes to achieve a deeper understanding of string
theory itself. Naturally, this brings along the task to identify situations where new effects
beyond standard geometry appear. First hints can of course be found when differential
geometry breaks down, but in the long run one hopes to develop a new appropriate frame-
work in which these new backgrounds fit in consistently. Symmetries only present in string
theory do play a major role in detecting non-geometric string vacua. Following the idea of
observing effects of the string with effective theories one immediately comes up with the
question: What happens to stringy symmetries at low energy? In the following we present
how T-duality applied to well-understood situations in low-energy effective theories gives
us a first handle on a tiny segment of non-geometric vacua in the vast string landscape.

1.3.1 Non-geometric fluxes and backgrounds

In the previous section we briefly mentioned the need for moduli stabilization in any
compactification and the fail of convenient CY manifolds without fluxes in regard to solving
the problem. Including fluxes in the compactification improves the situation, but still makes
it hard to derive models for string phenomenology within the standard set of ingredients.
The recent discovery of so-called non-geometric fluxes led to the observation of backgrounds
with full moduli stabilization [16, 17, 18]. In addition, (metastable) de Sitter solutions have
been found [19, 20), 21} 22, 23, 24, 25]. Finding a few particular backgrounds where also
the issue of stability is resolved remains of great interest. In general, having more freedom
should ease the way to constructing more realistic models imposing further constraints,
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e.g. a correct particle spectrum. A long these lines non-geometric fluxes provide additional
tools for finding phenomenologically interesting solutions. Before we draw the connection
of these non-standard fluxes to the breakdown of geometric concepts in certain backgrounds
we sketch their appearance in four-dimensional compactified theories.

Appearance in the superpotential and gauged supergravity

Although complex structure moduli experience moduli stabilization in a type IIB com-
pactification on a T°/Z, orientifold the volume of the inner manifold parametrized by the
Kéhler moduli is arbitrary. The situation in type ITA is slightly better. Here, applying an
additional “twisting” to the T° which is measured by the so-called geometric f—ﬂuxﬂ allows
to stabilize all moduli [27]. Then, the superpotential includes besides the NSNS H-flux
the even RR fluxes

W = P1(7)+SP2(T)+UP3(T) s (131)

where now also the Kahler modulus U enters, P is still cubic, but P 3 are linear. It is now
interesting to observe the effect of T-duality on this superpotential since there is an obvious
mismatch with the type IIB side (1.2.8). Eventually, declaring T-duality to be a symmetry
of the four-dimensional theory demands further terms in the superpotential which come
with coefficients representing new non-standard fluxes. The NSNS sector contains besides
the standard H- and f-flux two further non-geometric fluxes labeled () and R.

Closely related to flux compactification are so-called gauged SUGRA theoried | in lower
dimensions. These theories are based on gauging a subgroup of a global symmetry and
should arise in more complicated compactifications. A first example is SO(8) gauged
SUGRA which descends from eleven-dimensional SUGRA reduced on S7. Here, SO(8) is
considered to be embeded in E7 which is the global symmetry of the ungauged theory after
toroidal compactification. Non-standard fluxes then appear as structure constants in the
T-duality invariant extension of the gauging algebra of four-dimensional gauged SUGRAs
[27, 29, [30]

[Zav Zb] = Hupe X° + fcach
[Za, X" = = [10cX + Qu" 20 (1.3.2)
[Xa,Xb] _ Qcach o Rachc ,

where the symmetry generators X and Z are derived from ten-dimensional diffeomorphisms
and b-field gauge transformations. This further fixes the specific index positions on the
fluxes. More systematically, the embedding tensor encodes all possible gaugings consistent
with SUSY. Besides the standard geometric embeddings describing diffeomorphisms and p-
form gauge transformations other embeddings are possible. From the point of view of flux
compactifications, the embedding tensor allows to group standard fluxes and non-geometric

9Criteria for compactness in the presence of geometric fluxes can be found in the review [26].
10A review can be found in [28].
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fluxes corresponding to the later subset of embeddings consistently. These non-standard
embeddings do not seem to have an uplift to higher-dimensional SUGRA theories and
might indicate compactification on non-geometric backgrounds [31].

3-torus with H-flux and T-dual configurations

T-duality provides us with a way of generating new consistent string backgrounds from
yet discovered ones. On the level of SUGRA theories this is done by properly applying
Buscher’s rules . In the following we track the appearance of non-geometric fluxes
to inconsistencies arising for certain backgrounds. The standard toy model guiding our
intuition is the three-torus with H-flu"| and its T-dual versions [32} 33].

Starting with a rectangular flat three-torus T where the three directions ™ for m =
1,2,3 are periodically identified 2™ ~ 2™ + 1 and switching on a Kalb-Ramond b-field
linearly depending on a single direction leads to a flat metric ¢ and constant H-flux. In
particular, following the monodromies the metric g stays invariant and the shift in the
b-field can be absorbed by a gauge transformation.

The premise of an existing isometry for Buscher’s rules is certainly satisfied and the
transformation can even be applied twice for having two isometry directions. Performing
the transformation once one finds the so-called twisted torus. It is characterized by a
vanishing b-field and hence a zero H-flux. More importantly, the metric g is no longer flat,
but inherits a non-trivial dependency on the direction the b-field previously depended on.
This twist can be described using f-flux. The setup of the twisted torus is still geometric
in the sense that the monodromy of the metric ¢ is a simple diffeomorphism.

A second T-duality transformation in the remaining isometry direction does lead to
an inconsistent global description. Now, the metric g and the b-field both depend non-
trivially on one direction and the monodromies are no longer diffeomorphisms and gauge
transformations but local stringy T-duality transformations. Locally, the fields still de-
scribe a geometry but globally the geometric picture breaks down. Later, we show that
this background can be associated with Q-flux.

Even if there is no isometry left one can speculated about the existence of a third T-dual
version of the three-torus with H-flux. It is usually associated with having R-flux which
can be seen as an indication for the loss of a local geometric description [27].

This sequence of T-dual backgrounds with the corresponding geometric and non-geometric
fluxes can be conveniently summerized by the following T-duality chain of fluxes

Hape <L [, <L Q% Lo RO (1.3.3)

This chain also applies to a set of branes in the NSNS sector. Here, the origin is the NS5-
brane and T-duality transformations lead to dual branes with turned-on non-geometric
fluxes.

The lesson of the three-torus with H-flux and its T-dual versions is to put symmetries
only present in string theory on an equal footing with diffeomorphisms and gauge trans-
formations, when one wants to construct non-geometric backgrounds. More generally, this

1Tn order to provide a consistent string background further ingredients should be added.
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means that we should naturally glue string configurations described on local patches with
the help of stringy symmetries. On each of these patches a generic background consists
of a metric g, a two-form b-field and the dilaton ¢. In order to gain the global picture
transition functions are needed for patching local descriptions. Now, for a manifold M
the allowed transition functions are limited to diffeomorphisms and gauge transformations,
but when having a torus bundle with fiber T? stringy extensions become interesting. In
particular, it is interesting to do the gluing between fibers with transition functions lying
in the continuous T-duality group O(d,d,R). From this point of view, it is easy to un-
derstand that some string configurations look ill-defined. Transition functions gluing the
torus fibers when going around a loop in the base simply do no longer lie in the geometric
subgroup Gyeom = GL(d) x Ay = O(d, d,R). These kind of new backgrounds are known as
T-folds [34]. Certainly, the notion of a standard manifold is violated in this constructions
and for vanishing b-field one finds configurations that allow the patching of big circles to
small circles. At the level of the string such configurations generically cause a mixing of
momenta and winding numbers.

The observation of non-geometric fluxes and backgrounds is very much linked to start-
ing with a consistent geometric vacuum solution. However, a T-duality invariant superpo-
tential, an embedding tensor in the full T-duality group O(d,d) and transition functions
beyond diffeomorphisms and gauge transformations allow to directly construct configura-
tions where it has to be examined whether these arise from geometric ones by applying
T-duality transformations. In most cases this will not be the case and the question of
consistent uplifts to full string vacua is non-trivial to answer. Additional requirements for
a consistent string background are for example modular invariance at higher order in loops.
T-dual backgrounds of geometric configurations meet all these conditions. The string the-
ory perspective on this is that even if locally there exists a different o-model on each patch
with a distinct global target space geometry, these all represent one CFT describing the
perturbed string. T-duality may change the geometry of the target space from patch to
patch but it leaves the CFT invariant. Known examples for consistent non-geometric string
configurations are provided by asymmetric orbifolds [35], 36]. Monodromies in this kind of
spaces act asymmetrically on the left and right string coordinate. Besides T-duality, other
stringy symmetries like S-, U-duality and mirror symmetry could be used analogously to
construct even more classes of string backgrounds with exciting new features.

1.3.2 T-duality covariant formalisms

So far T-duality played an important role in the lower-dimensional theories. Non-geometric
fluxes arise solely after compactifying a certain SUGRA theory and demanding T-duality
invariance of the superpotential. Our understanding of them in terms of non-geometric
backgrounds is very limited. A most promising facilitation at this stage would be to have
a theory in ten dimensions that contains and provides expressions for the non-geometric
fluxes right from the beginning. A justified hope is to draw the connection from the ap-
pearance of four-dimensional fluxes to a yet to be determined compactification of this new
theory on certain backgrounds experiencing non-geometric features. In other words, trying
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to find a manifestly T-duality invariant theory is of great interest. Two such formalisms
trying to make use of stringy symmetries led to a fast developing field during the last
decade. Double Field Theory [37, [38] and Generalized Geometry [39] both provide frame-
works that make T-duality manifest and allow to tackle problems of non-geometry directly
in ten dimensions.

Generalized geometry

The idea of Generalized Geometry (GG) heavily relies on previous work in the field of
mathematics. Hitchin and Gualtieri explored generalizations of symplectic and complex
structures and unified these in the framework of Generalized Complex Geometry (GCG)
[40],]41]. Based on a new bundle structure over a standard manifold, called the generalized
tangent bundle, it is possible to deal with standard vectors and one-forms on an equal
footing. In such a framework the group O(d,d, R) arises naturally as the structure group
by the a bilinear product acting on generalized vectors consisting of a vector and a one-form
part.

Physical motivation for further studying GCG holds the field of supersymmetric flux
compactifications[] As pointed out before, switched on fluxes enter the SUSY variations
and lead to curved manifolds beyond the CY spaces. It turned out that GCG is valuable in
reformulating SUSY transformations and sometimes allows to solve the SUSY conditions
and Bls instead of the equations of motion when searching for background solutions. In
particular, the notion of a generalized Calabi-Yau condition (GCY) [40, 41] which is nec-
essary but not sufficient for realizing unbroken SUSY on manifolds with fluxes provides a
interesting new class of backgrounds.

However, it was only lately that an associated theory on the generalized tangent bundle
was proposed in [39]. It is a generalization of Einstein gravity based on Riemannian
geometry in the sense of providing a generalized connection in analogy to the Levi-Civita
connection and realizing the bigger structure group O(d,d,R) as its symmetry group.
Therefore, the framework of GG nicely unifies diffeomorphisms and gauge transformations
governing the field content of any SUGRA theory. The objects that transform under a
generalized Lie derivative associated with the Courant bracket are the so-called generalized
metric, encoding the standard metric and the Kalb-Ramond field, and a generalized dilaton
in the NSNS sector. Including the other sectors GG is able to provide a rewriting for
SUGRA theories of type ITA and type IIB. Eventually, it provides generalized curvature
quantities and allows to rewrite apart from SUSY transformations also the equations of
motion in a remarkable simple form.

Extensions of GG to different situation have recently appeared. In particular, its appli-
cation to the low-energy effective theories of M-theory in several dimensions was discussed
n [43]. Replacing the O(d,d,R) structure group on the generalized tangent bundle with
exceptional groups Fq(q)[44, 45] allows to implement U-duality as symmetry of the new the-
ory [46]. Further interesting work using GG was established with respect to backgrounds

12A review on GCG and its application in the context of supersymmetric flux compactifications can be
found in [42].
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of AdS type [47], preserving a certain amount of SUSY and allowing for generalized special
holonomy [48]. Latest developments try to find an appropriate bundle for treating higher
o' -corrections to SUGRA theories [49].

Double field theory

Even more inspired by the setup of string theory is Double Field Theory (DFT)P| [37, 54).
The existence of left- and right-moving string coordinates and the possibility of additional
winding in toroidal backgrounds makes it tempting to consider so-called doubled spaces on
which the T-duality group O(d, d) acts by exchanging to sets of coordinates. Loosing the
familiar notion of manifold, necessary for GG, DFT establishes a framework that allows
to learn something about so-called doubled geometries encoding a whole class of T-dual
backgrounds.

The gauge structure of DFT is analogously to GG governed by a bracket, generalizing
the Courant-bracket. The associated generalized Lie derivative now contains furthermore
a dual partial derivative related to a second set of coordinates corresponding to winding.
Therefore, the formalism of DFT is crucially linked to its field content, e.g. a generalized
metric, depending on two coordinate sets. Apart from the questions of how to define
a doubled space beyond the notion of a standard manifold the framework based on a
generalized connection and derived generalized curvature objects [55] matches the one of
GG.

DFT is equiped with a constraint that comes in different strengths and that has to be
imposed for consistency of the theory. The level-matching condition in string theory here
leads to the weak constraint. It is not sufficient for the consistency of DFT whereas the
strong constraint, equivalently called section condition for fixing a section in the doubled
space on which then the theory lives, does the job. In this sense DFT is not a truely dou-
bled theory and coincides with GG for a specific choice of the section. The gauge structure
of DFT, however, is consistent using a weaker form, called the closure constraint. This
triggered the development of the so-called flux formulation of DET [50] 51] where a gener-
alized flux encodes all standard and non-geometric fluxes present in the lower dimensional
theories. Practically, generalized Scherk-Schwarz compactiﬁcations{f] [56, 57, 58] provide
a method that allows to reach all gaugings in the embedding tensor of gauged SUGRAs
among which some configurations violate the strong constraint. It is believed that the
DFT flux formulation is able to capture some of the genuinely non-geometric backgrounds
that do not have a T-dual geometric description.

In recent years more and more attention was also paid to other stringy dualities with
regard to manifestly duality invariant formulations. Following earlier work on exceptional
symmetry groups [59], being related to M-theory and U-duality [34],[44], arising in compacti-
fications of eleven dimensional SUGRA on tori, manifestly U-duality covariant formulations
in various dimensions have been formulated and summarized under the name Exceptional

13Review papers can be found in [50} B1], 52 53]
1 Generalized Scherk-Schwarz compactifications are problematic on their own, since the construction of
the twist tensor on a doubled space is not rigorously defined.



20 1. Introduction

Field Theories (EFT) [60] 611 [62] 63, 64, [65]. Moreover, there has been progress in revealing
new tensor hierarchy structures for these kind of theories [66].

Finally, let us list some further interesting developments. Heterotic versions [67) [68]
of DFT and supersymmetric extensions [69, [70, [7I] have been formulated. There has
also been renewed interest in Kaluza-Klein compactification [72, [73] and Scherk-Schwarz
compactification [58] with respect to identifying lifts for some lower-dimensional gauged
SUGRA theories with non-geometric fluxes. And very recently DFT was extended to group
manifolds 74}, [75] for non-trivial backgrounds.

Both of these T-duality covariant formalisms are closely related to the authors work
and provide the background for the theory presented in this thesis.

1.4 [-supergravity

Apart from GG being a useful framework for generalizing various SUGRA theories it does
not tell much about the appearance of non-geometric fluxes and backgrounds. DFT was
in principle believed to provide the capacity to include non-geometric fluxes, however, it
was not clear at all in the beginning how non-geometric fluxes should appear in its frame-
work. Moreover, the loss of mathematical rigorousness accompanied with the drop of a
well-defined underlying manifold clearly limits its power in yielding consistent compactifi-
cations for the new class of non-geometric backgrounds. Hence, at that time the relation
between the four- and ten-dimensional perspectives on fluxes was not well established and
a ten-dimensional theory with a consistent mathematical basis relying explicitly on non-
geometric fluxes was a much prefered situation for compactification. This theory is now
known by the name of g-supergravity.

It is based on a ten-dimensional local reformulation of standard SUGRA which gives
non-geometric fluxes a manifest ten-dimensional origin. Even more interestingly, S-supergravity
allows to reformulate a non-geometric background of standard SUGRA into a geometric
one of (-supergravity for which then a consistent compactification method can be ap-
plied. In this way some vacua of four-dimensional gauged SUGRAs with non-geometric
fluxes thus get a clear ten-dimensional uplift. There is justified hope that ten-dimensional
backgrounds with non-geometric fluxes experience moduli stabilization.

A local field redefinition of standard supergravity fields

The main idea behind the appearance of non-geometric fluxes in S-supergravity is a specific
field redefinition inspired by GCG [76], 77, [7§]. In the NSNS sector the standard metric
g, the b-field and the dilaton ¢ are traded for a new set of fields, a new metric g, an
antisymmetric bivector 8 and a new dilaton ¢. In GCG terms, this field redefinition is a
reparametrization of the generalized metric ‘H

_(9-bg7'0 —bg7'\ _ [ G 9B
H‘( gl g )‘ (—ﬁg §/1—5§B> ' (141)
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Then, the field redefinition™| can be read off from the components

g =(9+b)glg—0)"
B=—(g+b)"b(g—b)"

e 2y/|gl = e /|g| = e

}‘:’(9+b)_ =@ +8), (1.4.2)

2d

and can be completed with a new dilaton ¢ preserving the measure which now includes
the absolute value of the determinant |g| of the metric g.

This in principle allows a direct rewriting of the standard SUGRA Lagrangian, but is
not very enlightening when it comes to making the non-geometric ()-flux and corresponding
geometric structures appear.

A generalized geometric framework

Instead of applying the field redefinition directly to standard SUGRA and afterwards ob-
serving what kind of new structures appear, GG reverses this procedure and provides the
mathematical tools right from the start. This framework proved successful in reformulat-
ing standard SUGRA theories before [39, 46]. Here, the concept of a generalized tangent
bundle on which the field redefinition can be stated as choosing an alternative generalized
vielbein including the bivector § plays an important role

£ = (S ;_@) . (1.4.3)

The standard vielbein for a Minkowski metric n is denoted by é. Trading the two-form
b for a bivector J results in changing the fibrational structure and should be related to a
generalized cotangent bundle Erps«

M — ET*
o, (1.4.4)
M

which should be supplemented with a cocycle condition on .
The standard vielbein € gives rise to the following definitions for standard and non-
geometric fluxes in flat indices, where the new bivector § enters the ()- and R-fluxes

Habc = 3V[atbbc] 5 fabc = 2é“m(9[bémc] ,

1.4.5
Qcab _ 6¢Bab o 26d[afb]cd : Rabc _ 3ﬁd[avdﬁbc] ) ( )

Both the geometric f-flux and the Q-flux are not tensorial and the definitions in flat indices,
which had to be deduced previously, appear naturally in this framework and match with
the literature 78, 56, [82].

15 An alternative field redefinition was proposed in [79,[80]. Both field redefinitions were then interpreted
in terms of local O(d, d) transformations and Lie algebroids in [81].
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The study of the O(d,d) x R* structure on Epx given by coupling generalized vectors
allows to identify associated covariant derivatives. In analogy to the standard Levi-Civita
spin connection, generalized metric compatibility and a generalized torsion constraint lead
to a partly unique generalized covariant derivative preserving an O(d — 1,1) x O(1,d — 1)
structure

Dowb = Vb — n,aVéuw® + Eadnes R w® — (60 Ae — naen?Ae)w*

Dy’ = Vow® =0V’ = S R w
Dzw® = Vawb + @6%}1’ — %mnchdbfwc
Db = Vol + 5 Vauw® + adlep R w® — L(65A: — Tenbe Ag)w®

(1.4.6)
The quantity A. is related to the dilaton and the latter has an interesting interpretation
as a conformal weight. More important, the non-geometric fluxes enter differently. The R-
flux simply replaces the former H-flux. However, the Q-flux appears inside a new covariant
derivative related to the bivector [

D, WB =

VOV, = =820,V — woV.  with  woh =

a

(Qabc+nadnceQedb+nadnbeQedc) ) (147)

N | —

The generalized covariant derivatives D 4 on spinors €* for a Spin(d—1,1) x Spin(1,d—1)
structure provide the Killing spinor equations governing a supersymmetric completion of
[-supergravity. Furthermore, they allow to compute a curvature scalar

Set = —4 (’YaDa”YbDb - WDEDE> e (1.4.8)

Analogue to standard SUGRA, S now gives rise to the Lagrangian of g-supergravity up
to a total derivative

Lg=e 2 (R(g) +4(00)* + 4(8%0 — T*)? + Rg — ;R“Cd fPeanap — ;RQ) . (1.4.9)

where 7 is related to the new dilaton ¢ and a new curvature scalar for the Q-flux mimics
the structure of the Ricci scalar

Rq = 2043 0awqh’ + Mewoilwqly — Mhewoi woy’
1

= 277abﬁadadchc - nchaachbd - Z (2nchachbad + nadnbenchachdeg) .

(1.4.10)

The Lagrangian of S-supergravity explicitly contains the @)- and R-fluxes and its similarity
with the four-dimensional scalar potential of gauged SUGRAs makes it a good candidate
to uplift four-dimensional gauged SUGRAs. We remark that g-supergravity can also be
derived from a DFT approach [56] 82 83, [50]. Imposing the condition ™0, = 0 and
0p8™ = 0 on the field content, L reduces to the Lagrangian obtained in [84].

The equations of motion for f-supergravity are also provided by the GG framework.

The vanishing of the scalar S in GG is related to the equation of motion for the dilaton.
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The equations of motion for the metric g and the field 5 follow from another generalized

curvature quantity
1

§Ra5”yae+ = [v*D,, Dgle" . (1.4.11)
The full set of equations of motion for S-supergravity follow then as
R +4(06)* + 4(8*°0p — T*)* + R — ;R“dfbcdnab — ;R2 =0 (1.4.12)
;Rba - ;ne o)y R + ;naenbgmfncdﬁ”gcli’df ‘ (1.4.13)
+Vy V. — ne )y VI(VED) = e(ailygVIT = 0,

inaenbgndfade‘fg - ;ne QU — L0 e + 1/a’gcacfdd Tl (14.14)

+- f edQ1a ™Ml + 177@ of "01aQi“nenn” + 77e of "5 Qn%

+le77bg77ae77c facQn — iﬂah@ddcfhab

_ne[avb](ﬁe&) - ne[avb]Te + ng[bﬁgva]é

_;naenbgnfcRgfeTc + inaenbgndfemﬁﬁd(e%)Rgfe) =0.
These provide the frame for identifying new vacua of S-supergravity.

Finally, S-supergravity can be related to four dimensional gauged SUGRAs by a dimen-
sional reduction of Eﬁ Extensions of L’g to a complete S-supergravity respecting SUSY
are expected. However, the simultaneous inclusion of H-flux seems to be only consistent
under some harsh restrictions.

Vacua of -supergravity

The study of possible backgrounds of S-supergravity in the NSNS sector is by its own
interesting. The toroidal example allows to obtain a first intuitive picture of the situation.
Using the field content of §, 3 and ¢ the non-geometric configuration after two T-dualities
can be expressed as a well-defined background of S-supergravity in the sense that it respects
the symmetries of the Lagrangian['% It is not surprising that this also restores a SUGRA
limit which is lost within the standard SUGRA formulation. Eventually, T-duality should
not alter physics. Another example of such a situation is the @-brane [85] which we will
address later.

The symmetries of the Lagrangians of standard SUGRA and (-supergravity coincide,
since the former only differ by a total derivative. The appearance of the symmetries how-
ever changes. Among standard diffeomorphisms S-supergravity contains so-called S gauge
transformations. Not surprisingly, these act on both new fields § and 3 as they are derived

16Formulated differently, a globally consistent configuration should be described by only one theory on
every patch [81].
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by the very same field redefinition. One possibility to observe well-defined backgrounds
is that the transition functions between patches are realized by this new class of gauge
transformation. However, the transformation behavior on the field § collides with the
interpretation of a consistent metric field, since the chances to compensate its transforma-
tion by a standard diffeomorphism are not too promissory. The second possibility includes
declaring a new symmetry of the Lagrangian of [-supergravity for a restricted subcase.
The appearance of the bivector 3 in the Lagrangian £~5 allows for the following symmetry

B > B+ M with ¥ m,p,q, @0 =0, 0uw? =0.  (14.15)

The constant shift w can be related to the S-transform of a generic T-duality and moreover
leaves the - and R-fluxes invariant. It turns out that this symmetry is equivalent to having
a certain number of isometries and can therefore be seen as a reminiscent of T-duality.
Now, this enables us to define geometric backgrounds of -supergravity to transform under
diffeomorphisms and S-transforms. Finally, we come up with a more general definition of
geometric and non-geometric backgrounds:

o A field configuration is geometric if the fields are globally defined on the manifold
considered so do not need to be glued, or if the transformations used to glue them
from one patch to the other are symmetries of the theory, and the metric, dilaton
and fluxes glue at most with diffeomorphisms.

e A field configuration is non-geometric if the transformations used to glue the fields
from one patch to the other are symmetries of the theory, and if the metric, dilaton
or fluxes glue with something else than diffeomorphisms.

Clearly, these definitions are theory dependent and bring forward the two biggest achieve-
ments of S-supergravity. As observed for the toroidal example [-supergravity allows to
restore a geometric target space description for non-geometric backgrounds of standard
SUGRA and provides a ten-dimensional uplift to some four-dimensional solutions of gauged
SUGRAs with non-geometric fluxes.

However, since T-duality is at the bottom of the motivation and construction of -
supergravity by generating non-geometric background of standard SUGRA it is a main
question to clarify the relation of (non)-geometric vacua of standard SUGRA and (non)-
geometric vacua of -supergravity. Eventually, geometric vacua of S-supergravity do only
give rise to non-geometric vacua of standard SUGRA which are related to geometric T-dual
ones. In other words, this class of vacua lies on a geometric T-duality orbit.

Finally, it is in principle a defined task to look for local solutions in S-supergravity. The
new set of equations of motion of S-supergravity have to be solved in a respective patch.
Naively, the non-geometric fluxes seem to provide more freedom in doing so. Unfortunately,
simple compactification ansitze for finding new backgrounds fail and can be traced back
to conceptional reasons. There is little hope that S-supergravity really holds new physics,
but it nicely restores geometry for some non-geometric examples.
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Bianchi identities and NS-branes

Using p-supergravity, one can now study backgrounds with non-geometric fluxes directly
in ten dimensions. Of particular interest are Bls for the NSNS fluxes bringing constraints
that have to be satisfied by the vacua in addition to the equations of motion. For specific
backgrounds corresponding to NS-branes the BI receive corrections indicating that these
branes actually source those fluxes.

For a vanishing H-flux and non-constant fluxes a ten-dimensional generalization of the
Bls observed in gauged SUGRAs can be written down in g-supergravity

Owfeay = flepf ey =0,

Q™ — 10 ea — SO o+ 20T e = 0
aR™e — 3300, 0 b 4 3Rl el 30l b — ¢ |
gelag, phed] ; Relabg edl _

1.4.16
1.4.17

( )
( )
(1.4.18)
(1.4.19)
Interestingly, the above identities were found computing the Lagrangian for g-supergravity

and precisely hold for the flux expressions ((1.4.5)). More systematically, BIs can be obtained
by the Jacobi identities of some algebra or the square of a nilpotent derivative D[]

D?* =0 « BI (.4.16) — (1.4.19) + scalar condition . (1.4.20)

For D to include also non-standard fluxes it is associated with the Spin(D, D) x R* covari-
ant derivative D 4 in GG [78, 87,39, 88, [89) [7T], 50]. Moreover, D turns out be a generalized
Dirac operator. It can be represented in terms of forms and contractions on a form A,
using a Clifford map

for standard supergravity: DA, = 2¢? (d — HA) (e_¢Ap)
=2(0p-€e"AN—fo—H A—donr) A4, ,

for B-supergravity: DA, = 2¢7 <d SV, + T v +R\/> (€—¢~>AP>
=2 <8a LN ALY 1y — fo—Qo+R v —do A +(6g§—7)v> A, ,

where a dot in the derivatives indicates an action only on the form coefficient in flat indices.
The convention for the action of fluxes is given in the appendix [A.3] Besides allowing to
derive the BI identities including non-geometric fluxes, the Dirac operator D later plays
an important role in the SUSY considerations of S-supergravity.

A set of backgrounds that provides corrections in terms of a source term to the above
Bls are NS-branes. Starting from the NS5-brane, a known vacuum of standard SUGRA,
T-dual backgrounds can be constructed in a two step mechanism of smearing and applying
a T-duality transformation in the gained isometry direction. In this process the Kaluza-
Klein (KK ) monopole and the 53-brane [90, 91T} [92], 50, 03], 94 [95], also called Q-brane [85]

1"The nilpotency of a “derivative” Dy built from constant fluxes [I6} [86] lead to sourceless Bls.
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were found. In standard SUGRA the latter appears to be a non-geometric background
[90, 92], but a geometric description is restored in f-supergravity [85] [50]. In analogy to
the NS5-brane, the Bls for the two derived backgrounds (see also [96]) get corrected by
source terms

C

KK-monopole : a[b]mcd] - .fae[bfecd] = ?K €31bcd €1|le nea (5(3) (7“5) , (1425)
(Q)-brane : (1.4.26)
1 C,
a[CCQd]ab - Be[aaefb]cd - iQeabfecd + 2C?[ce[a.]d)]d]e = 762 €21cd €2|lef Ueaﬁfb 5(2) (TQ) )

which boil down to Poisson equations on warp factors fx and fg
KK-monopole :  Agfx = cx 6@ (r3) , Q-brane :  Ayfg =co 0P (ry) . (1.4.27)

All respectively remaining Bls should be satisfied with a vanishing RHS.
In principle, there also exist an R-brane for which we determine the warp factor fg.
However, in this case a smearing process which has to be applied on the 3 is not established.

Aspects of supersymmetry

SUSY provides technical simplifications when searching for new vacua of a theory. Infor-
mation and constraints on the properties of possible vacua can be formulated geometrically.
For standard ten-dimensional type II SUGRA corresponding methods were illustrated in
[97,,26] to characterize new classes of vacua. Preservation of SUSY in the lower-dimensional
theory demands the fermionic SUSY variations to vanish with regard to a compactification
ansatz for a certain background. This leads to reformulated SUSY conditions [97], the
so-called pure spinors conditions, in terms of GCG [40, 4I]. In particular, the internal
six-dimensional manifold can be classified for a Minkowski SUSY vacuum. If further the
four-dimensional cosmological constant is zero the pure spinor conditions generalize the
CY condition for flux-less backgrounds to a twisted generalized Calabi-Yau condition in
the presence of fluxes.

The starting point when considering SUSY for f-supergravity are the SUSY variations
of the fermionic field content governed by the generalized covariant derivative D 4

~ 1
Syt =%, (Va + 90a V7 — Snadnbenchdebec> €’ (1.4.28)
- 1 . _
5p1,2 _ (Fava F Fanadvd + ﬂ77ad77b€nchdefFabc o Faaa¢ F Fanab(ﬁbcac¢ o Tb)> 61’2 7

where pl? = %12 — X2 and €? the SUSY fermionic parameters and upper/lower signs
refer to the indices 1,2. Then, analogous pure spinor conditions{l;g] for (-supergravity can

18Contrary to the standard pure spinor conditions the conditions (1.4.29) and ([1.4.30) are necessary but
not sufficient to preserve SUSY which is probably due to the absence of a RR contribution.
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be formulated using a specific compactification ansatz
1 ~
§D<I>1 +e 24 (d + V. La) (>N, = 2e e Re(®,) (1.4.29)

1 . o .
§D<I>2 + 724 (d + V. La> (62‘4)@2 = 3c e ilm(ad,) + e (d - V. La> (e, |
(1.4.30)

where D is precisely the generalized Dirac operator given in (|1.4.23]) and the other deriva-
tives act solely on the warp factor e?4 incorporated in the compactification. For type II
SUGRASs we list the following convention

MA: & =®, , ®y=®_,c=+1, 1B: & =d_, &=, , c=—1. (1.4.31)

& denote pure spinors in GCG, in particular O(6,6) spinors, but can be conveniently
interpreted as polyforms.

A geometrical characterization of the class of backgrounds in [-supergravity satisfy-
ing the above pure spinor_equations can be established to some extent. In the case of
Mink SUSY vacuum and V*-¢,A, = 0 the first pure spinor condition (1.4.29) provides
a [-twisted GCY condition. The second condition yields a [S-twisted generalized
Kahler condition in the absence of RR fluxes and a constant warp factor.

Finally, pure spinor conditions and the Dirac operator also govern the structure of
the superpotential W for N/ = 1 four-dimensional effective theories obtained from ten-
dimensional standard SUGRA in presence of an SU(3) x SU(3) structure. This leads us
to propose the following superpotential for S-supergravity with only NSNS contributions

- C -
Wys = 2f (e7®Y DIm dY) , (1.4.32)
M

Here, the Mukai product enters and the warp factor is taken to be constant. For an SU(3)
structure, the pure spinors are taken in the simple form

o) =™, =i, (1.4.33)
Typically, superpotentials for standard SUGRA theories are reproduced using the above
formula. However more interestingly, the formula ([1.4.32) allows to switch on non-geometric
fluxes in the scalar potential, possibly derived from [-supergravity, and agrees well with
expressions of [98, 86, 99] in type IIA and IIB, corresponding to an O6-plane and an O3-
or O7-plane. We even obtain new expressions in the O5- or O9-plane (or heterotic) case.

A completion of the above Lagrangian ZB to other sectors should be possible by further
reformulating standard SUGRA. However, it is has not been worked out and we comment
on it in the conclusion [7l

1.5 Structure of the thesis

This thesis is based on the papers [100] 101, 102, 103] where the focus lies on the last three.
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We start with a review of Generalized Geometry (GG) and Double Field Theory (DFT)
in chapter [2} Here, we are interested in providing the basic definitions and notations. We
layout the details on the reformulation of type II supergravities (SUGRAs) within GG
and in DFT using the generalized metric formalism. Finally, we present the results of a
T-duality invariant conformal field theory (CFT) with respect to determining the origin of
the strong constraint in DF'T.

Chapter [3| recapitulates earlier work on field redefinitions, inspired by GG and then
starts off presenting in detail the construction of g-supergravity following the GG formal-
ism. In this process new structures for the ()-flux are obtained in the form of a second
covariant derivative involving an analogue of the Levi-Civita connection. The worked out
formalism then features generalized covariant derivatives that enter the definitions of gen-
eralized curvature quantities which allow to compute the Lagrangian and the equations of
motion of S-supergravity.

At length, we provide a discussion on the relation of geometric and non-geometric
backgrounds within standard SUGRA and [-supergravity in chapter [l We present the
toroidal example, the symmetries of the Lagrangian and investigate a well-defined class of
geometric backgrounds in S-supergravity. Eventually, we turn to the study of the equations
of motion with respect to pure NSNS solutions.

An interesting set of backgrounds are provided by NS-branes in chapter [5 Alongside
the NS5-brane and the Kaluza-Klein (KK ) monopole, in particular the @-brane is studied
and the latter experiences a nice description in terms of the fields of S-supergravity. We also
introduce ten-dimensional Bianchi identities (Bls) involving non-constant (non)-geometric
fluxes that receive corrections from source terms generated by the respective NS-brane.
These Bls are then obtained from a generalized nilpotent Dirac operator.

In chapter 6| we investigate the supersymmetry (SUSY) conditions of S-supergravity us-
ing a generic compactification ansatz. Introducing pure spinors a reformulation is achieved
that makes use of the generalized Dirac operator. In a similar fashion, the pure spinors and
the Dirac operator lead to a generic expression for a superpotential that can be evaluate
for B-supergravity. We end with the proposal of a geometrical characterization, analogue
to a Calabi-Yau (CY) condition, for backgrounds preserving SUSY.

The conclusion [7| summarizes the standing of S-supergravity with respect to its capa-
bility to investigate genuinely non-geometric backgrounds and finishes with an outlook on
a complete supersymmetric version of S-supergravity.



Chapter 2

Generalized Geometry & Double
Field Theory

The development of O(d,d) covariant formalisms describing effects of the string within
low-energy effective theories on the target space has attracted quite some interest in recent
years. Mathematically motivated, Generalized Geometry (GG) has been studied in relation
to string theory and supergravity (SUGRA) theories with background fluxes. On the other
side, Double Field Theory (DFT) was directly constructed from considerations in string
field theory. Both formalisms treat generalized geometric quantities, e.g. a generalized
metric, and construct generalized curvatures by specifying a generalized connection. This
leads to two Lagrangians formulated in terms of these objects which coincide if DFT is
equipped with the strong constraint.ﬂ Their equivalence is also reflected in their agreement
with the standard Lngns up to a total derivative.

Beyond the level of the formalism several differences between the GG and DFT occur.
These mostly concern the geometry of the underlying space on which the two theories live.
GG is based on the mathematical concept of the generalized tangent bundle E7 defined
in Generalized Complex Geometry (GCG). A doubling in the fiber over a conventional
manifold by the sum of the tangent and cotangent bundle enables us to implement the
group O(d,d). In particular, the order of the fibration will be of interest to us when we
trade the standard b-field for a new field 3. In contrast, DFT introduces a truely doubled
space along two sets of coordinates (2™, Z,,). The notion of a doubled geometry extends
and contains previous examples of non-geometric backgrounds like the T-fold [34]. In some
cases an ordinary manifold of doubled dimension [30] is expected; however, recent work
[104, 105] indicates that the coordinate transformations are more subtle. Mathematical
investigations on these kind of spaces have been considered in [106, 107, 108]. In this thesis
we are mostly interested in the local formalisms of both T-duality covariant theories with
respect to providing background for constructing [-supergravity.

IThe strong constraint is a priori a local condition. For a global _equivalence of the two formalisms
the constraint should be solved on each patch in the same way, e.g. ¢ = 0. This is at least possible for
geometric backgrounds.
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2.1 Generalized Geometry

The foundation of GCG was laid by Hitchin [40] and Gualtieri [41]. The notion of a
generalized complex structure on the generalized tangent bundle allows to unify complex
and symplectic structures and presents an extension. Its relevance to theoretical physics
is based on the fact that the T-duality group O(d,d) naturally appears in this frame-
work. Moreover, supersymmetry (SUSY) can be naturally addressed by falling back on
pure spinors of GCG, which also provide a set of tools for flux compactifications. First
applications of GCG followed in the context of supersymmetric type IT backgrounds [42]
and string o-models. It was only later that the formalism was used in the reformulation
of SUGRA theories of type II [39], which triggered the investigation of further SUGRA
theories and extensions to M-theory.

The presence of the T-duality group raises hope that GG could shed light on the
realization of non-geometric string backgrounds [78] and further aspects of non-geometry
in general.

2.1.1 Structures on the generalized tangent bundle

GG observes basic structures on the generalized tangent bundle E
0->-T"M —>E—>TM—0, (2.1.1)

based on the idea of treating vectors and one-forms on an equal footing. The extension
of the conventional tangent bundle "M by the cotangent bundle 7% M leads usually to
the above fibration. Then, gluing conditions on the sections of E have to be specified for
moving from patch to patch. On an overlap U, n Ug, this is defined in the following way

Vo + &0 = vg + (fﬁ — ideAa[g) . (2.1.2)

Hence, v,() € TUyp) globally specifies a vector, while the one-form part {5 € T*Uys)
allows for two-form shifts dA. Mathematically more precise, one speaks of introducing a
gerbe on the manifold M which is related to the appearance of the b-field in physics terms.
The gerbe brings along a cocycle condition that is possibly curved by the two-form b and
further makes sure that patching around a non-trivial loop in the manifold M works.
Moreover, there is a natural action of one-forms on vectors and it is therefore reasonable
to define a symmetric bilinear form on the sections of the generalized tangent bundle £

(V. = (o + 6w 40 = 5(E(w) +(0)) (213)

A Lie algebra with T € o(d, d) respecting the symmetric bilinear form, given by a metric
7, encodes the symmetries of the bundle

T = <3 —iT) . = ((1) (1)) , (2.1.4)

where a € gl(d,R), wT = —w a two-form and 7 = —f a bivector. The symmetry
generators of the tangent bundle are then observed by exponentiation:
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o GL*(d,R)-transformations

e = (; (eag)l) : (2.1.5)

but more generally an element A of the full GL(d,R) can be embedded by

AH»G?A%). (2.1.6)

wzc)ﬁ, (2.1.7)

e B-transformations

where v 4+ & — v + (£ + i,w).

e [-transformations

o _ ((1] f) | (2.1.8)

Another interesting structure in GG is the O(d, d) Clifford algebra

where v + &£ — (v + 5(§)) + &.

{FA,FB} = 27IAB ) (219)

where 145 denotes the O(d, d) metric in flat generalized indices. Realizing the action of a
generalized vector on a polyform ¥ € A*T* M|y, locally, a natural representation is found

Vol = VAT, U = (g + &) W =iy U4 6y AT (2.1.10)

When we discuss SUSY we are going to make heavy use of the Clifford algebra and the
Clifford map relating pure spinors in GG to polyforms.

Next, we observe that GG replaces the GL(d) freedom to choose a basis in M by the
enlarged group O(d,d) x R* which acts on

E=L®FE, (2.1.11)

where the line bundle L takes care of the dilaton. We can fix a conformal frame {e=2dE 4}
of the generalized tangent bundle F that satisfies the following orthogonality condition

<‘cha éB> =148 , (2112)

where d denotes the generalized dilaton. These frames can be rotated into a distinct frame
{e724€,} by an element M € O(d,d) x R*

5’:4 = EsMP 4, since MCAMPgnep = o*nas | (2.1.13)
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for some scalar factor o.
A specific frame respecting the embedding of the tangent bundle into the generalized
tangent bundle, i.e. defining a map T™M — E, is provided by the conformal split frame

{€a}
—2d _ ,—2¢ b =
e g, = {e E,=e lg| (Cu + bape”) for A=ua (2.1.14)

e 2 g4 =720, /]g| e forA=a+d’

where {0,} is a basis for M and {e®} is the dual basis on T* M. In particular, O(d, d) x R*
gets broken and the class of conformal split frames is preserved by elements of the form

M — (det A) (i (1)) (‘5‘ AQT) | (2.1.15)

This group is known as the geometric subgroup G geom © O(d, d) x R* and contains exactly
the elements used for gluing generalized vectors along different patches of the generalized
tangent bundle F.
The symmetries of the generalized tangent bundle can be nicely packaged within a
generalized Lie derivative
LyW = Low + L,( — tydA (2.1.16)

for two generalized vectors V = v 4+ XA and W = w + (. It incorporates in contrast to the

standard Lie derivative also the b-field gauge transformations besides standard diffeomor-

phisms. The associate bracket for the generalized Lie derivative, the Courant bracket, is
provided by

[‘/7 W]Courant :;(LVW - LWV)

1 (2.1.17)

=[v, w]pie + L, — LyA — id(iv(’ — Q) .

In contrast to the standard Lie bracket it does not satisfy the Jacoby identity. We will
come upon the O(d, d) notation of these structures in DFT.

In analogy to Riemannian geometry one can introduce a generalized connections on the
generalized tangent bundle. The corresponding generalized covariant derivative acting on
generalized objects in frame indices is denoted by

Dy WA = 0 WA + QuAsWB . (2.1.18)

Compatibility with the O(d,d) x R* structure restricts the connection coefficients in the
following way

Qs = Qs — Ad?s (2.1.19)

where A takes care of the line bundle factor and ) satisfies

QP = Q54 . (2.1.20)
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GG also provides the notion of a generalized torsion defined by using the generalized
Lie derivative and the generalized covariant derivative

T(V)-a=Lla— Lya, (2.1.21)

where the index D denotes that the partial derivative has been replaced by the generalized
covariant one. Then in the frame {®~'€4}, the generalized torsion becomes

Tusc = —SQ[Agc] + QDDBT]AC - €4d<€72d éA, Lg-B (672(1 éc> . (2122)

The rescaling is due to the generalized Lie derivative encoding non-weighted gauge trans-
formations. Furthermore, we can observe a splitting of the generalized torsion

(TV) pmnp = — 3{2[/\/(/\/73] ; (2.1.23)
(To)m = —320%m
which are related to H-flux and the dilaton ¢ for the split frame
Ty =—4H, T, = —4d¢ . (2.1.24)
Remarkably, generalizing the definition of the Riemannian curvature tensor to
R(U,V,W) = [Dy, Dy|W — D)W, (2.1.25)

where now the Courant-bracket enters, does not provide a well-defined tensor. However,
we are going to see in the next section that generalized Ricci curvatures do exist.

2.1.2 Preserving an O(p,q) x O(q,p) structure

Differential geometry provides the concept of a Riemannian metric g on a manifold M.
In the presence of a metric g the choice of frame is reduced by local Lorentz symmetry
O(d) € GL(d,R). Further conditions, like metric compatibility and vanishing torsion,
allow to uniquely fix a connection on the tangent bundle 7'M, namely the Levi-Civita
connection. Together with the definition of the Ricci scalar, these are the ingredients for
Einstein gravity.

In GG the maximal compact subgroup we are interested in is O(p,q) x O(q,p) <
O(d,d) x R*. This local symmetry arises due to specifying a generalized metric H in
addition to the O(d, d) metric n. Its construction relies on splitting the generalized tangent
bundle into subbundles C'y on which 7 gains positive and respectively negative definiteness

H=mnle, —nle - (2.1.26)

The relation to the field content of standard gravity theories in terms of the metric g and
the b-field is then found by specifying a map from TM and T* M into C

— by —bg!
H = (g g,lgb gﬂ ) . (2.1.27)
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The generalized metric H is symmetric in its indices, squares to the identity, i.e. (nH)? =
1. Further, it has determinant one and is positive definite if g is. As in Riemannian
geometry the introduction of two sets of the standard vielbein e and their embedding
into a generalized frame &4 determine the local O(p,q) x O(q,p) structure, which can be
seen as a double Lorentz symmetry. The action of an element K € O(p, q) x O(q, p) provides
the transformations between these frames

1{0.+0_ 0,—-0._
K—2<O+_O o++0) . (2.1.28)

This specific embedding is later decisive in picking an O(p,q) < O(p,q) x O(q,p), done
by aligning the two vielbeine e/ = e, . The degrees of freedom then reduce to those of a
standard metric g and a b-field.

Having the generalized metric H at hand we are in the position to construct the analogue
of the Levi-Civita connection in GG. Generalized metric compatibility together with a
condition on the conformal part, related to the dilaton, have to be imposed

DH =0 and De?=0. (2.1.29)

These conditions are naturally satisfied by embedding the Levi-Civita connection V in the
following way

Vows for M =m ’ DX[W& _ ’
0 for M=m+d 0 for M=m+d
(2.1.30)
where w% and w® are related to a vector w € I'(T'M) in the basis e or e~. This generalized
connection is obviously compatible with an O(p,q) x O(q,p) structure. Unfortunately, it
turns out that the generalized covariant derivative DY, is not generalized torsion free. How-
ever, this can be corrected by adding a part which respects compatibility and compensates

for the generalized torsion

DY, W — { {Vmw‘_‘_ for M=m

DY =DV + %, where Ypa = —Zmars Dpah = — S - (2.1.31)

In this way, we certainly loose the uniqueness of the generalized analogue of the Levi-Civita
connection. Nevertheless, we observe that some parts are fully determined and allow to
define generalized curvature objects. For this we list the following covariant derivatives
respecting a Spin(p, q) x Spin(q,p) structure

" =(Va-— 1H&bc'}/bc) (2.1.32)
€ =(Va+ LH ;4" | (2.1.33)
Y Daet =(v "Va Habcy — Y 0,0)e" (2.1.34)
Ve Dae” =(7°VY + L Hopy™ — A%0a0)e” (2.1.35)
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involving Spin(p,q) spinors e* and respective gamma matrices v* and 7%, A general-
ized Ricci tensor can be defined by using the above determined parts of the generalized
connection

SRu"e" = ["Dy, Dilet  or  SRay“e =[v"Da, Dyl . (2.1.36)
Even more pleasant is the existence of a generalized curvature scalar
—1Set = (v*Dyy"Dy — D*Dy)et or  —1Sem = ('yaDa”yEDg —DD,)e”,  (2.1.37)
allowing for the formulation of an action principle in an Einstein-Hilbert like form

1
SNSNS = —= e 23 . (2138)

2K2

So far, we kept two sets of vielbeine e* respecting the O(p, q) x O(q, p), which we now align
to find the following curvature expressions in GG

Rab = Rab - iHacdeCd + 2vavb¢ + %62¢VC(6_2¢HC(LI)> y 21.39
S =R(g) +4V’¢p — 4(0¢)* — L H* | (2.1.39)
where R, is the standard Ricci tensor and R is the standard scalar curvature of Einstein
gravity. In this way, GG presents a reformulation of the NSNS sector of SUGRA of type II
up a total derivative. The equations of motion for the metric g, the b-field and the dilaton
¢ in this formalism are packaged into the vanishing of the generalized Ricci tensor and
generalized scalar curvature

R;=0, S=0. (2.1.40)

Additional findings regarding the SUSY variations involving the Spin(p,q) x Spin(q,p)
covariant derivative (2.1.35) or the RR sector are detailed in the section [6.1]

2.2 Double Field Theory

DFT is a promising low-energy effective candidate theory capturing stringy symmetries,
in particular T-duality, which was developed by Hull and Zwiebach in [37, [38] and later
refined in the work of Hohm. As stated in the Introduction there is hope that DFT provides
substantial extension to standard SUGRA theories and is able to cover all kind of features
of doubled and non-geometric backgrounds.

Earliest developments [109, [110] go back to Siegel who introduced a doubled formalism
for an enlarged group GL(d) x GL(d). New attention to T-duality covariant formalisms of
gravity theories came up when the framework of string field theory [IT1, 112] was used. In
numerous papers different forms of DFT were formulated until the most familiar version
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in terms of the generalized metric [54] arose. Further important formulations’] are based
on a background independent field £ = g + b [I15] combining the metric g and the b field
or the notion of a generalized flux [50, 5I] containing in addition to standard fluxes also
non-geometric ones. In the following we present the generalized metric formulation of DF'T
and later focus on an underlying geometric concept. Finally, we discuss the origin of the
strong constraint of DFT within a T-duality invariant conformal field theory (CFT).

2.2.1 Generalized metric formulation

This formulation is based on forming objects transforming under the group O(d, d)

XM = (i’;;) , Oy = (2:) , &M= (g:;;) : (2.2.1)

The doubling of the space is respected by introducing Z; usually taking into account the
possibility of the string to wind around some compact direction. Naturally, there is a
partial derivative ¢ associated to the winding coordinates. Moreover, we combine the
two gauge parameters &, and €™ to a generalized objects providing infinitesimal double
diffeomorphisms, the generalized gauge transformations in DFT.

The degrees of freedom of DFT are summerized in the generalized metric H and a
generalized dilaton d

— Prq — pn
HMN: (gmn bmpg bqn bmpg ) : d (222)

depending on the doubled coordinates X and transforming with the parameters éM.

The construction of an action in terms of # is based on building O(d, d) scalars out
of the generalized metric H, the dilaton d, the partial derivatives dpq and the O(d,d)
metric n by contracting all indices. The implementation of a discrete Z,-symmetry for the
b-field, which is not a T-duality transformation, rules out terms including the metric 7 or
derivatives with upper index 0*. Then, the action in terms of the generalized metric takes
the form

1 1
S = f dwd:’te*Qd(gﬂMN OMH o Hicr — §’HMN ONHE 0, Hoe 223
20 mdoNHMN 4 AHMN 6Md6Nd> ,

which is obviously invariant under global T-duality transformations and gauge-invariant
under the following transformations

OHMY = P opHMY + (PMep — ope MY + (Vep — op€HMT L (224)

2Stringy differential geometry introduced in [I13] [IT4] is a third formalism based on a projection-
compatible semi-covariant derivative. Its geometric objects coincide after projection with the corresponding
quantities in DF'T.
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if additionally the constraint
MAOMB =0, (2.2.5)

on fields A and B satisfying oMoy A = (MO B = 0 is imposed. This is the so-called
strong constraint derived by demanding that products of fields and gauge parameters of
the theory vanish under 0*d,,- = 0. It is related to the level-matching condition in string
theory and makes sure that the theory only depends on a section of half the dimension
in the doubled geometry. Therefore, the theory is not really doubled when applying the
strong constraint. In the next section, we clarify the origin of the strong constraint by
means of introducing a T-duality invariant CF'T.

The gauge transformation of the generalized metric motivates the introduction of a
generalized Lie derivative for DFT

LM = PopVM 4 (oMey — ape)V Y (2:2.6)

Remarkably, it leaves the O(d,d) metric n invariant which is not possible in standard
Riemannian geometry. Moreover, one finds that the transformed generalized metric H =
H + LH is again an element of O(d, d).

The generalized Lie derivative is connected to a bracket structure on the gauge pa-
rameters by calculating the commutator of two generalized Lie derivatives on a general
field [¢,, Le,] = Le,, with &3 = [&1,&]c ,where the C-bracket is the natural bracket on
generalized vector fields or here the Od, d) gauge parameter £

1
[0, &1 = € on&s' — o™ exgliongs (227)

It is interesting to observe that holds only upon using the constraint . How-
ever, the strong form is only sufficient and not necessary to achieve a closed gauge algebra.
There exist possible field configurations that violate the strong constraint [56, 57, 116].
These backgrounds satisfy the closure constraints, taking a weaker form in contrast to the
strong constraint, and are furthermore of truely doubled type.

Furthermore, in [52] it was shown that a weaker constraint can be achieved for the RR
fields of DF'T in the sense that in addition to the coordinate dependence on a totally null
subspace a linear dependence on coordinates of an orthogonal space is possible.

Rather surprising is the fact that one can identify a gauge parameter leaving all fields
invariant

M = MV y . (2.2.8)

We further stress that the Jacobi identity for the C-bracket is violated. Hence, this bracket
coincides in this feature with the Courant-bracket from GG and reduces to it when the
strong constraint is applied in the form ¢ = 0. Finally, the C-bracket as well as the
Courant-bracket do provide a symmetry algebra since the failure of the Jacobi identity is
precisely a transformation of the form ([2.2.§]).

A geometric framework underlying DFT can be traced back to the early work of Siegel
based on GL(d) x GL(d) structure [109, [110] and recent work [55]. In principle, the con-
struction of a connection and associated curvature objects follows the description laid out
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in the section for GG, except some minor technical differences regarding the doubling
of the coordinate space and the implementation of the strong constraint.

In the end, the action (2.2.3) of DFT is equivalent to a generalized Einstein-Hilbert
form

Sr = ded;z e R(H,d) , (2.2.9)
where the curvature scalar depends on both the generalized metric and the dilaton

R= AH"Vouond — OponHMN — AHMN 0 0dond + 40 H N Oped
1 1 2.2.10
+§HMN OmH E o i — §HMN ONHF 0 Houe - ( )

This quantity was earlier found to be the equation of motion for the dilaton d. In a similar
way, a generalized Ricci tensor encoding the equation of motion for the generalized metric
‘H can be constructed. Ongoing considerations concern the existence of a generalized
Riemann curvature tensor [I17]. So far, no successful construction is known in DFT for
the same reasons as in GG. However, efforts to include higher o'-corrections in DFT seem
to provide further insight into this topic.

2.2.2 T-duality invariant conformal field theory

A promising approach towards a'-corrections in DFT which in addition sheds light on the
origin of the strong constraint is a simple T-duality invariant CFT. Following Tseytlin
[118, 119], T-duality can be realized as a world-sheet symmetry. In particular, the left-
and right-moving components of the string are treated on an equal footing and T-duality
acts as a simple reflection on the right-moving degrees [120]. We present the basic concepts
of this CFT and use it to study the string theoretic origin of the strong constraint which
arises in DF'T from the level-matching condition only in the weak form. The relation of this
duality invariant CF'T to DFT is reinforced by comparing tree-level scattering amplitudes
of three massless states with the expanded action of DFT [38], reviewed in appendix

The free boson and T-duality

Recapitulating the world-sheet sigma model (|1.1.24)) presented in the Introduction, we are
in the following interested in the free bosonic string coordinate and hence

1 -
S =— | dzdz gyn(X) X" X", (2.2.11)
s

2o

where conformal gauge is fixed and the target space metric g is allowed to depend on
the string coordinate. Then following the reasoning in [I18, 119, the splitting of the
string coordinate into left- and right-moving components, given in (|1.1.17]) on a circle with
additional winding modes, should hold more generally for non-compact directions and not
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only in the case of toroidal compactiﬁcation.ﬂ This leads us to introduce the T-duality
invariant propagators for the standard and winding coordinates

/

= n = «a mn
(X™(21,21) X" (22, %)) = — 9" In |21,

2
X™ X" >, O/ mn 2
R ar 2R,y = = ™ 2212
AV & >, o mn Z
<Xm<21’21)X (22722)> = —Eg lnﬁ ,
212

where z;; = z; — z;. Manifest T-duality apparently follows from exchanging X and X )
because T-duality simply flips the sign of the right-moving component [120]

X™z,2) = XP(2) + X7p(z) <=2 Fmizz) = X7(2) — X7(3) . (2.2.13)

Next, we determine elementary properties of this theory in the absence of compactified
directions.

Vertex operators and descendants

We write down the manifest duality-invariant primary field, solely depending on X and X

‘/p,w<za 2) ::eimem(z,Z) eiwmf(m(z,,%): ) (2214)

For later reasons, it can be interpreted as a tachyonic state in this CFT. Its weight is
determined by

(h,h) = (4(p +w)’, (= w)““) (2.2.15)
and its mass given by
2 _
M? = _&(h +h) = —(p* +w?) . (2.2.16)

Interestingly, the operator product expansion of two such fields

Oé/

_ _ Vi . 212\ T (Prrwa+twi-p2)
Vv (21, 21) Vg (22, Za) =|219|® PrPetwres) <212> (2.2.17)
X ‘/;31+P2,w1+w2 (227 22) +...,

experiences a logarithmic branch point which vanishes under the quantization condition
o/ (pr-wy +wi -p2) €Z (2.2.18)

that is used to restore locality.
From ([2.2.14]), we can derive the first descendant states in this T-duality invariant CF'T":

3The resulting theory is no longer governed by the sigma model (2.2.11)).
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e The first excited level yields a form field A, ,, and its complex conjugate flp,w

Apu(#2) = A :0X7(2) V(2 2): (2.2.19)

Ap(2,2) = Ay :0X™(2) Vyuo(2, 2):
with A and A one-forms. Here, A is primary with conformal weight (h,h) = (1 +
2L(p+w)? % (p —w)?) if it is transversely polarized in the sense A,,(p™ + w™) = 0
Similarly, A is primary with (h, h) = (% (p+w)?, 1+ % (p—w)?) for A,,(p™ —w™) = 0.
These states lead to the well-known enhancement of the gauge group for heterotic
torus compactification.

At the next level one finds a (0, 2)-tensor field &, ,,

Ep(2,2) = By :0X™(2) 0X™(2) Vo (2, 2) - (2.2.20)
with the polarization E,,,. It is a primary field with (h, h) = (1+% (p+w)?, 1+ % (p—
w)?) for transverse polarization in the sense E,,,(p™ +w™) = 0 = E,,(p" —w"). It is
precisely the scattering amplitude of three (2.2.20]) that allows to relate this duality

invariant CFT to DFT, as shown in the appendix [B]

The Virasoro constraints, which are quantum analogues of the vanishing of the classical

energy momentum tensor, determine the physical states to be primary fields with conformal
weight (h,h) = (1,1). Consequently, level-matching is established if for the above states
additional constraints hold, as summarized in table 2.1 We see that both V., and the

state || level-matching primary mass
Vi p-w=0 — M? = -2
Apw | prw=—% A, (p" +w™) =0 M? = -2
Apvw p-wzé f_lm(pm—wm)z() M2=—%
Epw p-w =0 Epn(p™ 4+ w™) =0 = Epp(p” —w™) | M? =

Table 2.1: The physical state condition requires the operators to be level-matched primaries
of conformal weight (1,1). This fixes the mass of the states.

two states A,,, and A,, are tachyonic and that &,,, is the first massless state which
corresponds to the graviton, the b-field or the dilaton depending on the polarization.

Next, we will consider the one-loop partition function whose modular invariance imposes

additional constraints relating the holomorphic with the anti-holomorphic sector.

The one-loop partition function

We start by computing the torus partition function for the above CFT and analyze its
modular properties. On a torus parametrized by 7 we have

Z(7,7) = try (g~ % ghom ) (2.2.21)
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where the trace is over all states in the Hilbert space H and we denote ¢ = €2™7. As
usual, the trace splits into a trace over the oscillators and an integral over the continuous
momenta and windings

f(1,7)
[n(r)**

where the Dedekind eta function 7(7) keeps track of the oscillator part and

1 d? e d? s
f(r.7) = prulpw) 3 U Cri ) (f oI ) - (@23

Analyzing modular invariance for (2.2.22)), we note that |n(7)| is invariant under the mod-
ular T-transformation 7 — 7 + 1, but the integral for Im(7) > 0 is not. Therefore,
T-invariance yields the level matching condition

Z(1,7T) =

(2.2.22)

O[/

dp-wel Z(pi—p%-{)eZ, (2.2.24)

i.e. the two integrals are not independent. We can incorporate this constraint in the
integration by inserting the delta function §(p? — p% — 4m) in (2.2.23)). Evaluating the

Oél

remaining integral for Im(7) > 0, we obtain up to constant factors

' ddpL L I (d _ l) e271'im7'
7~ 62mm7J d-1 =o'} Tm(r) 2 - 2.2.25

This is now T-invariant, however modular invariance of (2.2.22)) under the S-transformation

T — — 2 is spoiled by the factor e*™ ™7 Im(7)*z". The absence of the former factor demands
the second integral to be

ddp —iZa' p%L T -\ _—iZa' p? T
[ o e 5k S ) = gty 5 (2.2.26)

This can be achieved by setting p? — p% = ém to zero and by introducing a relation
pr=Mpy with MeO(d) (2.2.27)

between the left- and right-moving momentum. The delta function is then §¢(pr — Mpy).
Altogether, the torus partition function, denoting (p, w|p, w) = Vg, reads

Va/2
vyt Tm(n)f [n(r)

Let us make some remarks on the results of this section. First, T-invariance only
required o/p - w € Z, whereas additional S-invariance finally led to the weak constraint
p-w = 0. We see from this, that the spectrum only contains states with matching number of

Z(1,T) =

(2.2.28)
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left- and right-oscillatorsf_f] Eventually, the strong constraint does not follow from modular
invariance and locality just implies o/ (p; - w; + w; - p;) € Z. In the next section, we will
analyze string diagrams containing momenta and winding of several states in contrast to
the one-loop partition function. In particular, we determine the strong constraint using
the scattering amplitude of four tachyons.

Tachyons scattering

The correlation function of N tachyon vertex operators Vp, u, (zi, z:) = Vi ( of the
T-duality invariant CFT is given by

<V1 o VN> — H |Zij|a’(pi-pj+wi-w1') (fﬂ) FOrutuin) <sz>5<2w2> . (2.2.29)

1<i<j<N “ij

The difference to the standard tachyon correlator is the = Zi_factorP| In particular, it is the
pole structure of the Virasoro-Shapiro amplitude that encodes the on-shell physical states
and provides further constraints.

The duality invariant Virasoro-Shapiro amplitude

The full string scattering amplitude of N tachyons is given by

N
A (pi, w;) = gév Cs2 fﬂ d*z Hizl 6(2 — Z?) 212213223

L1 (2.2.30)
X <\/'1...VN>(21,...2N) )

Here, the conformal group PSL(2,C) allowed to fix three of the N insertion points on the
sphere, i.e. 21 = 0, zp = 1 and 23 — 00. Moreover, the factor |25 293 213|% is related to
the correlator of three c-ghost vertices [{c(z1) c(z2) c(z3)>‘2. The prefactors are a factor
of the closed string coupling constant g. for every closed string vertex operator and Clg
accounting for various normalizations.ﬂ

The three-tachyon amplitude is given by

As(pi,wi) = g¢ Cs2 {(ceVi)(ceVa)(ceVs)) = g2 Cse (2.2.31)
where the d-distributions implementing momentum and winding conservation have to be

understood as implicit. The three-point amplitude is therefore identical to the standard
one for three tachyons without a winding dependence.

4 A, and its complex conjugate listed in table . do not contribute to the spectrum.
5SL(2,C)-invariance can be checked explicitly.
®More details on the conventions can be found in [121].
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With the help of (2.2.29)), the four-point amplitude reads

Aulprwy) = g Cio j Pz {(ceVi) (ceVa) (ceVa) Vi)

X |2] 1w (pa—wa) | _ Z|a'<p2—w2>-(p4—w4>} _

At this point, we introduce two sets of Mandelstam variables respectively for left- and
right-moving momenta

s = —(prs + pra)” 5 = —(prs + pra)”
t=—(pra+ pra)?, t=—(pro + pra)®, (2.2.33)
u=—(pr1 +pr1)*, u=—(pr2 +pra)’ .
Level-matching and the mass-shell condition further yield s +t+u=s+t+u= —L—(f and
the difference between these sets is given by an integer
4
(Pri + pry)* — (Dri + Prj)” = 4(pi - w; + w; - p;) € o Z . (2.2.34)
The amplitude can be conveniently rewritten using the function «a(s) = —1 — %s
IMNa(s)) I'a(t)) I'a(u
Ay(pi,wy) = 2m g, Cs2 (a(s) D(at)) Da(w) (2.2.35)

T (a(t) + a(w)) T(a(s) + aw) T(a(s) + a(t)

In order to be able to make a statement on the symmetries between the different channels
s,t and u, we use the relation (2.2.34) and a(s) = a(s) — ns4, where

ni; = o (pi - wj +w; - p;)  With nug 4+ 1m0 +nga =0, (2.2.36)

in order write the amplitude in terms of left-moving variables only

21 g2 Cs2 T'(au(s)) T(eu(t)) T (a(u))
T (a(t)+a(u)+nz) T(a(s)+a(u)+no) T(a(s)+alt)+nu)

Clearly, a similar expression in terms of right-moving variables exists.

Now, we recognize that channel duality for (2.2.37) requires m14 = ngy = ngy and
consequently implies n;; = 0 through (2.2.36)). We argue in the following more rigorously
that this constraint is identical to the strong constraint.

Pole structure and the strong constraint

We are now interested in the intermediate states of the four tachyon amplitude in the
different channels and the question whether these are physical. In particular, the poles of
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this amplitude determine where the physical states become on-shell and encode the mass
spectrum of the theory. For example, the n'® poleﬂ in the s-channel is located at

4 4
(n—1) < s=—Mn+ny—1). (2.2.38)
a

527/
(0%

Then, a physical intermediate state has mass and level-matching condition

. . . 4 . .
(M) = — (™) + (w™)?) = = (n+ % —1) and p™- w™ = n—?’,“ , o (22.39)
o o
where the momentum and winding of this state are determined by s = —(pr3 + pr4)? =

—(pF*)? and kffp = p™ + w™. Hence, the level-matching condition allows for asymmetri-
cally excited states which violate the condition ([2.2.27)), derived from modular invariance.
Including the ¢- and u-channel, the physical spectrum is required to satisfy n;; = 0 and we

derived the strong constraint

pi-w;+p-wi =0 Vi, j. (2.2.40)
The better known form ((2.2.5) [37, 115

Om fi O™ 5 4 O™ fi O f; = 0 (2.2.41)

arises by defining the functions f;(x,Z) = exp(ip; - © + iw; - T).

To summarize, while modular invariance of the partition function determined the phys-
ical spectrum, consistency with the pole structure of the Virasoro-Shapiro amplitude al-
lowed to derive the strong constraint. Let us now combine the condition with the
constraint (2.2.40). In terms of left- and right-moving momenta K; = (k;, kg;)" the strong
constraint reads (K;, K;)q = 0 Vi, j. Combining it with kg, = M;ky;, we obtain the joint
condition

ki (1 — MEM;)kr; =0 (2.2.42)

which for fixed 4, 7 must hold for all left-moving momenta. This implies M; = M, for all
1,7 so that both constraints can be summarized by the consistency condition

Constraints from torus compactifications

So far, we considered continuous momentum and winding in non-compact spaces which
yield the strong constraint. However, Scherk-Schwarz reductions of DFT [116] allow to
work with the weaker closure constraint. Here, momentum and winding are quantized

"The function I'(z) develops single poles at z = —n for n € N with residue (_nl!)n and has no zeros.
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due to compact directions. We summarize the results of the previous analysis for torus
compactification, detailed in [I00], in the following.

Modular invariance of the partition function under 7- and S-transformations demands
the lattices representing the toroidal compactification to be even and self-dual, which is
a well-known result [122]. Hence, the spectrum in the internal sector is less constrained.
For the external non-compact part left- and right-moving momenta have to be related by
and O(D — d) rotation. The analogue analysis of the pole structure is reducible to internal
and external components of momenta and winding since contractions do not mix. In the
external direction we derive the previous result of the strong constraint (2.2.40). However,
we find that asymmetric excitations in the internal directions are indeed valid.

One-loop modular invariance and the pole structure of the four tachyon amplitude do
clarify the need for the strong constraint in non-compact directions and are in agreement
with a weaker constraint in the internal sector, as proposed for Scherk-Schwarz reductionsﬁ
We recall that this T-duality invariant CFT matches with DFT at the two derivative level
which makes this theory interesting for studying possible higher o’-corrections to DFT.

8In the presence of fluxes additional constraints are required.
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Chapter 3
p-supergravity

In the following we present a ten-dimensional theory that contains non-geometric - and
R-fluxes. Motivations for constructing such a theory are laid out in the Introduction. This
theory can be thought of as a reformulation of the standard ten-dimensional supergravity
(SUGRA) theories and we name it [-supergravity for containing the new field variable
B. We are going to study here its NSNS sector, which is common to all standard ten-
dimensional SUGRA theories. Questions towards S-supergravity are posed with regard to
an underlying geometric framework and its capability to providing new insight into matters
of non-geometry. We start a general discussion on background solutions of S-supergravity
and their relations to non-geometric configurations in standard SUGRA in the next chapter
[l In particular, the set of NS5-branes, including the @)-brane, is chosen as an application
of the formalism of S-supergravity in the context of Bianchi identities (Bls) and possible
corrections to these when observing branes with non-geometric fluxes in chapter |5, Finally,
we use in chapter @ ideas present in Generalized Complex Geometry (GCG) to classify
vacua of B-supergravity by means of writing down the supersymmetry (SUSY) variations
in form of pure spinor conditions. This chapter focuses on earlier constructions using a field
redefinition that involves a bivector (3, the relation of the theory to Double Field Theory
(DFT) and presents a derivation of S-supergravity using the Generalized Geometry (GG)
formalism.

3.1 First steps towards (-supergravity

Inspired by [76] [77, [78], where GCG tools were used to study non-geometry, in [84] a spe-
cific field redefinition was considered which was performed on the standard NSNS fields.
The metric g,,,, the Kalb-Ramond field b,,,, and the dilaton ¢, get replaced by a new
set of fields, given by a new metric §,,,, an antisymmetric bivector ™", and a new dila-
ton ¢. This field redefinition is an O(2d — 2,2) transformation (more precisely here an
O(d—1,1) x O(1,d — 1), as detailed in appendix taking us from one generalized viel-
bein € to another one &, while preserving the generalized metric M, i.e. a change of
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generalized frame

_ e 0 = (e ef _(na O
5 - <€Tb €T> ) 5 - (0 éT) ) I= <0 ,rld—l) ) (311)

—bg b —bg! o ; -
H = (g g,lgb gf’l ) —T1E=ET1E= (_gﬁg glg_ﬂﬁgﬁ) . (3.1.2)

Here, the vielbeins e and € correspond to metrics ¢ = e’nze and § = é'ngé, where 1y
denotes the flat metric. The field redefinition| can be read from (3.1.2) and rewritten in

various manners, in particular

g l=(g+b)glg—b)"

B=—(g+b)"b(g—b)" } S+ =" +h). (3.13)

Additionally, the new dilaton ¢ is chosen such that the following measure is preserved
e/l = e/l = e (3.1.4)

where |g| denotes the absolute value of the determinant of the metric g.

The main idea was then to directly apply the field redefinition to the standard ten-
dimensional NSNS Lagrangian

Lxsns = e 7/[g] (R<g> +4(0)? - QH) , (3.15)

where R denotes the Ricci scalar corresponding to the Levi-Civita connection , the
H-flux is Hypp = 30bnp), and the squares are defined in . The actual computation
is rather involved and has been performed in two steps. To obtain the new Lagrangian £
two simplifying assumptions 7?0, = 0 and 0,77 = 0 were implemented in [84]. Then,
the final Lagrangian £ contains a Ricci scalar of the new metric R(g), a standard kinetic
term for the new dilaton gz;, and a square of the quantity 0,474, which was identified with
a ten-dimensional flux @),,P?. This specific identification was first motivated by the correct
index structure and secondly was able to generate the four-dimensional Q)-flux term in the
potential in a dimensional reduction. Later in section [£.1.1], the use of this formula on the
toroidal example will provide the expected value for the Q-flux. The full computation of £
without simplifying assumption was finally performed in [82) [83]. The direct computation,
starting from Lygns and applying the field redefinition results in a new Lagrangian denoted

! An alternative field redefinition was proposed in [79,80]. Both field redefinitions were then interpreted
in terms of local O(d, d) transformations and Lie algebroids in [81].
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here ﬁo which is equal to Lysns up to a total derivative

Lo = e 2\/]g]| (R(g) + 4(00)? — ;RQ (3.1.6)

+ 4Gn ST " 10pd Ogd — 20,d Oy (Grmn B B™)

1 ~  ~rs mn 1 m m
4gmpgm;g 0rBP 0" + gmn B 0y ”

+ gnq?]rsﬁnm (apﬁw amgps + apgqr amﬁps)

1 ~mmn mu Qnu ~qr ~PS
4gmpgnqgrs(6mﬁs”8ugpq Oug™" = 28™ B0, G 0, )>

= ENSNS - a ( (gmngpq(f)ngpq gmngpqangpq + an(gmn - gmn))) .

Indeed, the simplified Lagrangian of [84] is equal to the first two terms, and the first
term of the third line. Besides, several new terms appear, in particular the square of a
ten-dimensional R-flux

RMP = 35q[maqﬁnp] _ BBQ[quﬁnP] 7 (317)

as in [56]. Since V,, denotes the standard covariant derivative with Levi-Civita connection
defined in the R-flux above is a tensor. We come back to discuss the structure of
the terms involving [ two second order.

The Lagrangian (i3 can also be obtained from an alternative method [83], [82] which
relies on DFT [37, 38, 115, H4]. Tt is known that by applying the strong constraint in the
form ¢ = 0 to the Lagrangian Lppr allows to recover the standard NSNS Lagrangian Lxsns,
up to a total derivative. Hence, performing similar steps after applying the field redefinition
in terms of the reparametrization leads also to Lo, up to a total derivative. These
two methods are depicted by the two left columns and lines of the diagram . The
plain equalities of this diagram were established in [84] [83] [82] and the dashed ones have
been presented in [101].

Lorr(9,b,¢) == Lorr(3,5,6) == Lorr(R.R) +(...) +(...)
0=0 0=0 0=0 H (3-1-8)
Lxons +0() == Lo+ () ======== Ly +0(..)

The ten-dimensional theory given by the Lagrangian £, was also proposed to yield
an uplift to some four-dimensional gauged SUGRA theories. In particular in [82], a par-
tial dimensional reduction showed that the ()- and R-flux non-geometric terms of the
four-dimensional scalar potential could be reproduced. This cannot be achieved from the
standard Lysns. The precise identification of the fluxes is nevertheless unclear in this re-
duction. Observing the scalar potential being quadratic in the fluxes is not sufficient in
order to clarify the identification of fluxes. More information is usually provided by the
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superpotential. Fortunately, the R-flux term in the four-dimensional scalar potential only
resulted from the R? term in £y, which makes the above identification rather likely. On
the contrary, the structure of the last three lines of £, in does not allow for a simple
identification of ten-dimensional -flux and naive suggestions like V3 failed to produce a
squared expression for the Q)-flux.

Some progress in the structure of the Lagrangian was nevertheless obtained in [83]
82], at the level of DFT. Indeed, as depicted in the first line of the diagram ,
the DFT Lagrangian, expressed in terms of the new fields g, [, ¢, was reformulated in
a covariant manner with respect to the standard diffeomorphisms. The key ingredient of
this reformulation was a new covariant derivative vm involving the derivative 0™ — By,
and a connection Fm". It enters various DFT quantities, i.e. a Ricci-like tensor RN

and an associated scalar R. The latter appears in the reformulated DFT Lagrangian,
together with the standard Ricci scalar R(g). Applying the constraint ¢ = 0 on this last
DFT Lagrangian Lppr(R,R) a first expression of [',5 at the SUGRA level, which formally

inherits the structure of Lppr(R, ﬁ), was obtained
~ 5 ~ ~ (7 7 1 m 1 m
£ = A (R@) + Ra) + 4007 - 31+ 4005 -T") . (3.19)

The squares are defined in ({A.3.28]), and further objects involving the new covariant deriva-
tive V on a (co)-vector V are defined as

R — gmn’]\émn : Jmn _ _6pqaqf;nn + ﬁmqaqfwgn + f;nnfwgp _ fgmfgn : (3.1.10)
T 1. mra =n nra ~m rA ~mn ~ ~r(m n 1 mn

L= §gpq( B"0.g" — B 0,g™ + BT OG™") + Gpg 0,6 — 58135 , (3.1.11)
T" = an - apﬁnp B §6nm§pq8m§pq = vpﬂnp ) (3'1'12)
A e e N G N (A N (A (3.1.13)

As noticed in [83],[82], the trace 7" of the connection is hence obviously a tensor. Moreover,
the definition of V can be naturally extended for tensors with more indices The above
definitions enter in the derivation of the equations of motion from (|3 in curved indices,
which was done in[I0T].

By construction, ﬁg should be equal to L, and to Lnsns, up to total derivatives. This
is depicted in the second line of the diagram (|3 . The explicit verification can be found
in the appendix of [I0I]. A first advantage of the reformulated Ls compared to Ly is its
manifestly diffeomorphism covariance. In addition, as noticed already at the level of DF'T
in [82], R captures most of the terms of the last three lines of £, providing some structure
for the four-dimensional @)-flux terms. Still, this interesting repackaging does not allow
to identify directly the @Q-flux. In [83] [82] it was noticed that the 03 essentially appear
within the new connection I and thus the Q-flux was believed to be part of a connection
coefficient. We investigate the question of the @-flux not being a tensor in more detail in
the next section.
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3.2 (Generalized Geometry derivation

In order to compute the Lagrangian Eg we develop an underlying geometric concept with
corresponding quantities. We essentially follow the GG paper [39] that treats the gener-
alized vielbein £(e,b) in standard parameterization. An analogous DFT formalism with
similar objects was developed before in [55], and its relation to [39] has been established
in [69]. These three papers are, to some extent, based on the early work [109] 1T0]. Previ-
ous constructions of geometric objects in terms of generalized vielbeins can also be found
in [78, 114]. More recent related work for the O(d,d) covariant formalisms appeared in
[T17, 123] 124, 50, 125], where a specific form of the generalized connection is sometimes
chosen. Most of this recent work remains however at the generalized or doubled level,
without specifying a generalized vielbein for reasons of preserving O(d, d)E]

As explained, the field redefinition considered here corresponds to a change of general-
ized vielbein, from &(e,b) to £(¢,3). Such a change in the two above formalisms should
thus lead to £~5 . Although this result is already known for DFT as depicted in the
diagram , it has not been established in a formulation where one relies solely on
generalized geometric objects. Hence, in the following we show how choosing the gener-
alized vielbein £(&, 3) in the GG formalism leads to a scalar S = €** (L5 + 0(...)) that
allows us to identify the Lagrangian Zg. We explicitly construct the geometric objects
corresponding to the choice £ and enlighten the structures appearing. For instance, the
derivative V and the connection wg appear naturally. The role of the trace of the
connection 7™ (3.1.12]) gets clarified and finally we obtain specific derivatives on spinors
which will be useful in the study of SUSY in chapter [6]

3.2.1 The O(d,d) x R" structure

We start by considering a manifold M of dimension d. Then, associated with the tangent
space over each patch of the manifold comes a frame that we denote here 0, for convenience.
When going from one patch to the next, the frames transform into each other with elements
of GL(d,R) acting on the flat index a. Globally, the union of tangent spaces forms the
tangent bundle 7'M, whose structure group is then GL(d,R). It is common to introduce
a globally preserved metric 7y on these tangent spaces which then reduces the structure
group to O(d—1, 1)|’f] In GG a 2d-dimensional generalization of the tangent bundle, that we
call here generalized bundle E, mimics the standard construction with generalized frames
that transform according to the structure group O(d, d). The latter arises due to a 2d x 2d

metric .
0 1
Nu/d)y = 9 (1 0) ) (3.2.1)

with components denoted by 745, where we introduce a generalized flat index A. The
metric above also reflects the natural coupling of vectors and one-forms (J,, €*) leading to

20ne exception is [50] and we recover some of their generalized connection components.
3We use in this paper standard Minkowski signature for clarity, but there is actually no restriction on
it, as indicated in [39].
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O(d,d). A simple local realization of E is given by the direct sum TM & T* M.

In order to implement the dilaton present in any SUGRA, the bundle E has to be
extended by a conformal weight, following [39]. The corresponding structure group of
the extended bundle is O(d,d) x Rt and the different objects involved get weighted by
a conformal factor related to the dilaton. In particular, we now talk of a generalized
conformal frame, that we denote e~2? & A-

In the following, we are interested in a particular type of generalized frames that allow
a splitting of the generalized bundle. Here, splitting means that an isomorphism E ~
TM®T*M can be found and refers to a local relation, which might be difficult to define
globally. In particular, the isomorphism locally realizes a map from a generalized frame
to (04, e®). Choosing locally a set of coordinates the vielbein é relates 0, = €",0,, and
similarly one-forms with dz™. For completeness, we also introduce matrix notation é=7¢0
for d,, detailed in appendix . Then, a generalized conformal split frame e=2? £ 4 can be

denoted
e T (di) , (3.2.2)

where the matrix & of components Ay s a generalized vielbein. This notation leads to
d-dimensional blocks in matrices and we thus clarify the index placement for vectors and
one-forms by fixing the following up/down (u/d) notation

(U A (v 170 &
U.A = (ua) ) V4= <Ua> ) nas = 9 <5g 0 ; (323)

and indicate the indices for the O(d, d) metric n(u/d)ﬁ
Local expressions for a generalized conformal frame are provided by the two generalized

vielbeins £ and € of (3.1.1)

€'m

~ T ~m
2d 3T _ 24 /i (€ 0 sy M _ M _ [ €' 0
e & =e ] (éﬁ ~) (&A=, = (éanﬁnm ~am> : (3.2.5)

-T T m n
Tl (P I Ve R (e I Y

4To distinguish the standard generalized frame from generic quantities we denote the later by using a
ring on top.
5The O(d,d) structure group considered here is a priori different from the T-duality group. Indeed, our
O(d,d) acts on the flat index A, i.e. “on the left” of a generalized vielbein €, while a standard T-duality
acts on the “generalized curved space” index M, i.e. “on the right” of 5 also observed from the generalized
H in . The two groups may however be related. From our O(d, d) metrlc NaB, one can define a
curved space” metric Ny = EA M NAB EB A - The vielbeins considered in are elements of O(d, d)
and for those, naqns is then equal to the O(d, d) metric. One can thus con51der O(d, d) transformations on
the curved space index. We come back to this idea in section
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A third notation in terms of up and down indices is given by

e g, e 2 & = e7?\/|g] (Ca + bave”)
672d g — 672¢> |g| el

~ -2d & _ 26 /|~
e &, = {e Ea = eVl 4 . (3.2.7)

e—2d fa _ 20 3] (&* + 5abab)

: (3.2.6)

The standard example (3.2.6) was studied in [39], while the second was left for
investigation. We now focus on the latter and work out corresponding generalized geometric
structures.

Locally on each patch, these frames clearly provide an isomorphism to T'M & T* M.
However, the existence of a consistent global splitting requires more attention and depends
on the transformation behavior of a frame from one patch to another. In the case of the
frame a global meaning is provided by gauge transformations of the b-field, that can
be defined properly in this context [39]. Whether a similar global completion can be found
for is less straightforward and possibly involves well-defined 3 gauge transformation.
We discuss this point in section [£.1.2] In what follows, we consider all objects to be local
quantities and push questions of an underlying global geometry aside. Stated differently,
we work out the consequence of the conformal frame formally.

Furthermore, we remark that a splitting reduces the structure group to a subgroup
Gplit preserving the form of the splitting. For , the subgroup contains b-field gauge
transformations and diffeomorphisms. The reduction of the structure group of the gen-
eralized bundle E also manifests itself in a refinement of the bundle itself. For ,
E becomes the generalized tangent bundle Er of GCG and in principle should be
associated with a group Ggyiix and a proposed generalized cotangent bundle Er«, discussed
in section

Let us now define various generalized geometric objects, that are compatible with the
O(d, d) x R* structure of the extended generalized bundle. We mostly follow [39]. To start
with, we introduce the bilinear product of two generalized vectors V and W

<éA,éB> =1NAB , <‘/, W> = VAHABWB fOI‘ V = VAéA ,W = WBéB s (328)

where also a conformal factor can be inserted. Furthermore, we define a generalized co-
variant derivative acting on a generalized vector component V2 in flat indices

DAVB = aAVB + QABCVC , (329)

where 04 denotes a generalized partial derivative and O 4B is a generalized spin connection.
Demanding compatibility of the latter with O(d,d) x R* requires to separate it into two
pieces

QB0 = QB — ALOE (3.2.10)

where € is the spin connection for E, and A is related to the conformal weight. Further-
more, the O(d, d) structure, or equivalently compatibility with the metric (3.2.1)), yields
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the antisymmetry property analogous to the standard spin connection in (|A.3.13))
nDCQABC = —T]BCQADC . (3211)

On the tangent bundle, there exists a uniquely fixed torsion-free connection compatible
with a O(d — 1,1) structure called the Levi-Civita connection. Our goal is to impose
analogue requirements on the generalized objects. We start with the definition of the gen-
eralized torsion T'. The standard torsion is obtained by the difference of two Lie derivatives,
where for one of them, the partial derivative is replaced by the covariant derivative. The
generalized torsion is then defined similarly [39] in terms of the generalized Lie derivative
L [78] with the covariant derivative D ({3.2.9))

T(V,W)= LW — LyW . (3.2.12)

This definition is bilinear in V' and W and its components on a generic frame are then

defined using (3.2.8)) as ] o
TAse = n"PEp, T(Es, Ec)) - (3.2.13)

We find the following result in terms of the generalized connection using (|3.2.12))
Tusc = _3Q[ABC] + QDDBU.AC — 64d<6_2d éA, LéB (6_2d éc)> , (3214)

where certain indices are lowered with 7n45. Setting to zero the generalized torsion then
fixes some components of the generalized connection in terms of a given frame. In the

following we work this out for the frames (3.2.6]) and (3.2.7)).

In case of a splitting, we can specify the generalized partial derivativelﬂ

Om 5
Om = ;o Oa=E" Yy 0m . (3.2.15)
" =0

While 04 is simply d, for the frame with b-field (3.2.6)), we find 0* = 5%0, for the frame
(3.2.7) with (3, as can be seen from the generalized vielbeins in the form (3.2.4) and ([3.2.5]).
This gives a natural origin to S0 and it will lead to the new covariant derivative V defined
in (B.1.13).

Using the u/d notation (3.2.3)) the antisymmetry (3.2.11)) on the components takes the

form

Qu’ ==’ Q=0 Qe = — Qo - (3.2.16)
We can then work out more concretely the generalized derivative (3.2.9)) of a generalized
vector expanded on a conformal frame
(DAVB)e_Qd ég = ((éA’Ub + QAbCUC + QAbCUC)éb

% B3 (3.2.17)
+(5A'Ub — QACbUC + QAbC?JC)g — AAV 55 .

In principle one could introduce the abstract derivative 0™ which is set to zero in [39]. It could serve
as the 0™ of DFT.
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For the frame (3.2.6]), another natural requirement [39] is that D4 reproduces the standard

covariant derivative V, . More precisely, given the generalized derivative
D, should reproduces V, while D® should not get any contribution. Within D,, there are
three types of connection coefficients involved. €,°. presents a standard spin connection
and its antisymmetric part matches that of the Levi-Civita connection after imposing the
torsion-free condition. The symmetric part should then be fixed such that the full w®,
is reproduced. Hence, one finds the standard V, on both contravariant and covariant
objects, namely V,v* and V,v,. The second component §2,% is a non-standard term and
we set it to zero. The third type of connection coefficient €2,;. will be later related to the
H-flux for the frame . For D we find the component %, analogue to Q,% in D,.
Consequently, we set it to zero as well

0% =0, Q=0 (3.2.18)

Most of the other contributions to D® for the frame vanish thanks to the torsion-free
condition. The fixing indicated then realizes the requirement of reproducing the standard
Vo with D 4. For the frame the torsion condition will be different for D*, however
we stick here to the same fixing

(D,VB)e—2d Ep = e <(8avb + Qabcvc)c‘fb + (Oqvp — Qacbvc)éb + QupevEY — N\, VBEp
(D*VB)e—2d Ep=e 2 ((ﬁavb — Q“cbvc)é}, + (0%vp + “bcvc)éo'b + Qabey £, — caVBE,
(3.2.19)

where we denote

A=, A"=¢". (3.2.20)

On the contrary to the frame (3.2.6]), the 0* is non-trivial for the frame (3.2.7). The form of
the derivatives in (3.2.19)) suggests that the antisymmetric part of 2%, should be given by
that of wg (A.3.21)). In order to reproduce the full wg we then fix accordingly its symmetric

part. This will lead to the new covariant derivative Ve (A.3.20) being reproduced by D“
Let us now work out the torsion-free condition for the frame ([3.2.7)). We first compute

' e Ea, Lee ™ E) =2(f e + foap + [lea + Qu™ + Q™ + Q™ — R™™)
+ (flap — 2000 + Qab + BY fouy — 260N ac

where the right-hand side lists the components according to up or down indices on the
left-hand side. The fluxes f, () and R appearing here are precisely those defined in
(1.4.5). Then, using the connection coefficients of (3.2.19)), and setting the torsion to

zero in (3.2.14)), one first obtainsﬂ
fabc = 2Q[bac] ) fcab = QQ[acb] ) fbca = 2Q[cbat] )
Q. =20k, Q0 =204 Q. =20l b (3.2.22)
R =301 Qg =0

"For the frame (3.2.6]), the symmetric part of 2%,¢ should rather be set to zero to get D* = 0.
8These results as well as (3.2.24) are in agreement with those of [50].

(3.2.21)
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As discussed below (3.2.17)) and (3.2.19)), and given the properties (A.3.13]) and (A.3.23))
compared to the relations just derived, we identify for the frame (3.2.7)

Qe =wp , D =welt . (3.2.23)

From those, we deduce flg5 = Q4% and Q% = Q;*. The torsion-free condition then
finally gives

o =200, &= —2Q4" — Bfy + 280, . (3.2.24)

The sign of Q4" in looks rather surprising, as it differs from that of f¢y when
viewed as the trace of a connection, and leads to the —2Q4*? in &°. It is however the
correct result, and one accomplishes a better understanding by noticing that the tensor
T™ (3.1.12)) can be expressed in flat indices as

Ta _ _bea + ;BCdfacd . (3225)

One can then rewrite

Ao = 20,0, €1 =2(8%p — T, (3.2.26)

which give precisely the two dilaton terms in the Lagrangian /:5 in . T plays the
role of the conformal weight together with the dilaton, and appears in the corresponding
combination given by £%. This is the non-standard conformal weight, obtained with the
frame , that matches with the non-standard dilaton term in the Lagrangian. The
standard term for the frame is A4, corresponding to the standard dilaton kinetic
term.

There are further components of the connection which are unfixed by the torsion-free
condition. Those do not appear when computing —3Q4pc) + QpPpnac, i.e. the parts
of Qg or Q% that are not fully antisymmetric. For in [39], these undetermined
components eventually do not contribute to the scalar S respectively the Lagrangian.
Inspired by this situation, we choose here for simplicity to set them to zero for the frame
. In the end, we recover [ﬁg from S, despite this restriction.

Finally, we obtain for the frame l}

(D VE)e 2 Eg = €72 ((Va?) & + (Vaup)EP — 3 Hapov°E" — AV EER) 3997
(DavB)e—Qd 58 =0 ) ( e )
while the frame ([3.2.7)) leads to
(DVB)e 2 &5 = e ( (V,0°)E + (Vaup)E¥ — AV EEs ) 1998
(DOVE)e 2 &g = e (—(Vou')E, — (Vou) & + L R0, — €VBEg) (3:2.28)

where we introduced a new covariant derivative with connection coefficients (3.2.23))

Vb = — %00 + ngbvc , 6%;, = — [0 — wopve - (3.2.29)

9The torsion-free condition has been worked out in [39] with A\, = 20,¢.
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3.2.2 Preserving an O(d —1,1) x O(1,d — 1) structure

After having presented the O(d, d) x R* structure group of the extension of F, the associ-
ated generalized geometric objects, and given some concrete examples for those, we are now
interested in a specific O(d—1,1) x O(1,d— 1) subgroup. This structure was considered for
N =1 SUSY [69, [70], but also allowed to reproduce type II SUGRAs [55, 139, 89, [71]. Pre-
serving such a structure brings in more constraints. For instance, the metric and dilaton
are fixed by this structure, meaning that the conformal weight is globally defined, and one
then only focuses on the bundle E. Another example is that the two orthogonal groups
lead to two Spin(d—1, 1) groups, and associated spinors turned out to be related to the two
supersymmetries of type II theories. Finally, the generalized curvature scalar S defined in
terms of these spinors was shown to be related to the standard NSNS Lagrangian (3.1.5)).
Here, we are interested in the frame with # and the new derivative obtained in
(3-2:28). Analogously, the O(d —1,1) x O(1,d — 1) structure leads eventually to a scalar S
related to the Lagrangian £5 ([.4.9). In chapter éwe study SUSY of S-supergravity using
former results.

We define the subgroup O(d — 1,1) x O(1,d — 1) as follows. The O(d, d) metric 7(y/a)
, preserved on the generalized bundle F, has positive and negative eigenvalues. It is
possible to form two sets of signature (d —1,1) and (1,d — 1), as given by the diagonalized

O(d, d) metric n
nd 0 Nab 0
= _ ], = R 3.2.30
= (1 5) e (8 ) (3:2.30)

where we consider 7,, and g, to be the same in value, with (d — 1, 1) signature. The two
sets are distinguished by an unbarred/barred notation. A conformal generalized frame can
then locally be separated into these two sets, and denoted accordingly e=24 A , e M &
Whether these two sets remain separated spaces globally is however not guaranteed by
the O(d,d) structure group. Preserving such a frame is equivalent to reducing O(d,d)
to O(d — 1,1) x O(1,d — 1), since the metric (3.2.30) is left invariant. In that case, the
generalized bundle E is isomorphic to the direct sum of two sub-bundles, denoted as

E~C,®C_. (3.2.31)

O(d—1,1) and O(1,d — 1) act on these spaces respectively and the corresponding indices
are unbarred respectively barred.

Of the various quantities defined in section [3.2.1 we would now like to consider those
that preserve this O(d —1,1) x O(1,d — 1) structure. In order to do so, we first rotate the
previous O(d, d) representation to a new one where the embedding of O(d—1,1)xO(1,d—1)
is diagonal. In particular, this means switching from the up/down basis with metric 7¢,/q
to the unbarred/barred basis with metric 1. Secondly, we project out quantities that do
not respect the O(d — 1,1) x O(1,d — 1) structure.

We will perform this procedure for the frame with 3 introducing two different
sets of vielbeins, namely &%, respectively é%,, on the sub-bundles C.. Nevertheless, these
give rise to the same metric g, [39]. Eventually, we consider an alignment of vielbeins, i.e.
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that &%, = €%, for a = @ in value, in order to reduce to the standard degrees of freedom
of a SUGRA theory.
The described procedure is based on introducing a matrix P transforming the previous

up/down 7,/q (3.2.1) into the unbarred/barred diagonal n (3.2.30). More details on this
can be found in the appendix

1 g ) 1 ( 1 1 )
= PnyaPt P = )y, Pt=2( 2, ). 3.2.32
n n /d (IL _nd 2 ndl _ndl ( )

Any object in the fundamental representation of O(d, d) carrying an index A is then rotated
as follows

VB = PBA‘/(u/d).A ) VB = ‘/(ﬁ/d) (P_I)AB = (P_T)BA‘/(Zl/d) (3233)

) 5@ , 5¢ B 1 51) nbcé‘a
thP'AZ b cYa_ P ™8 _ - a I Ve 3934
W1 B (5;1 _,’71765g> ) ( ) A 2 52 _nbc(sg ( )

so that bilinears are preserved. In particular, the d’s in P and P~7 allow to pass from
the up/down to the unbarred/barred indices, however we leave them out in order simplify
formulas in the following. A first important example of this rotation is obtained by acting

on the frames (3.2.6) and (3.2.7)) which then take the form

B e 2 &, = e72\/g|(04 + bape® + nape’
e E= L, il e E) , (3.2.35)
e & =e |91 (0a + baze” — Tape”)
—2d & e 2 ga =% 191(Ca + nabﬁbcac + nabéb>
e EA == _2d ~ . 72(23 - o E 7’“’5 ; (3-2-36)
€ gE =e |g|(aﬁ - nabﬂ aE — Tab€ )

where we did not write out the d’s.
Next, we redefine a covariant derivative D4(W5)e=2? £z, where A, B are now un-
barred/barred indices. A priori, one would have for the unbarred A = a

D, (WB)e2 £ = ¢ ((?a(wb)éb + 0a(wh) s + QGBCWCS’B) , (3.2.37)

where 0,, respectively 0.5c are defined as the unbarred component obtained from the
rotation of the up/down 0, respectively (). As mentioned earlier, one could also start from
quantities D, ¢ and Q) with a generalized curved index M and contract these with the
proper generalized vielbein. In any case, the last term in (3.2.37) splits into four terms,
according to the unbarred or barred choices for B,C. Preserving the O(d—1,1) x O(1,d—1)
structure Q e and QO M’z transforming in the bi-fundamental representation of O(d, d) are
easily seen to be off-diagonal with respect to the O(d—1,1) x O(1,d—1) diagonal structure.
Such a component in the covariant derivative would introduce mixed contributions
from C4 and the components on &, would additionally contain w® thanks to Q mPz. These
have to be projected out in order to preserve the O(d — 1,1) x O(1,d — 1) structure and
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are thus set to zero. Separating the components on f'b and 505, one obtains the following
O(d—1,1) x O(1,d — 1) derivative

Dow® = d,ub + Qb e
Dow® = d,wb + Qb
DB =4"¢ “ e , 3.2.38
! Daw® = dqub + Q7% cw’ ( )
Dawb = (%.wa + nggwE

where again all indices are unbarred or barred.

We leave the details of the determination of the derivative ¢, the connection €2, and
the piece due to the conformal weight for the frame to the appendix The
definition of the latter is slightly changed [39] with respect to and we discuss this
in the appendix. In particular, this involves rotating the contributions to the O(d, d) x R*
derivative obtained in (3.2.28) and leaves us with

Do’ = V" = 1agVw® + tnaanes R w® — 3(88Ae — naen™Ac)uw®
Dawb _ Va,wb _ nadvdwb _ %nadn—chdbwa

D WE = < - 3.2.39
A Dawf = Vawf + mvf f - %Wnchﬁ we i - ( )
Dzw® = Vau® + T.a V'’ + $Teanlef R w® — §(02Az — Taen® Az)w®
as given in (|1.4.6|), where
Ae = X + nea€?
Ae = {A \ ngd : (3.2.40)
c — N\¢ 7 Tled

with A and £ given in (3.2.24)).

Following [39, [69], we introduce for the O(d—1,1) x O(1,d — 1) structure an associated
Spin(d —1,1) x Spin(1,d — 1) structure with respective spinors e and e¢~. The definition
of spinorial derivatives for (3.2.38)) is the standard one

1A

Dyet = opet + ZQMbcnbd”cher , (3.2.41)
1. = —

Dye™ = Ope + EQM%@%%— , (3.2.42)

where the v matrices and their properties are discussed in appendix [A.2] Interestingly,
one can build from these derivatives the generalized curvature scalar S mentioned in the
Introduction which is related to the Lagrangian Lysns up to a total derivative in the
standard NSNS case. As in , the scalar S is defined by

1 _
—5¢" = <’7aDa’beb 