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Summary

The central idea of the multi-time formalism, �rst suggested by Dirac in 1932, is that rel-
ativistic quantum mechanics should be built around a wave function ψ(x1, ..., xN ) (for N
particles) on space-time con�gurations (x1, ..., xN ), xi ∈ R4 instead of on spatial con�gura-
tions (x1, ...,xN ; t) at a common time t in a distinguished frame. This view has far-reaching
consequences for both the physical and the mathematical structure of the theory. On the
one hand, the question of the physical meaning of a wave function with many time coordi-
nates ti in xi = (ti,xi) arises. On the other hand, one has to �nd suitable Lorentz invariant
interacting wave equations to determine the time evolution of ψ in the many time coordi-
nates. Both questions are related to two major conceptual di�culties in the foundations of
relativistic quantum theory: (i) the measurement problem and (ii) the question of how to
construct an interacting relativistic quantum theory.

In this work, we �rst give an overview over these questions, the present status towards
their solution as well as the history of the multi-time formalism. Next, a conceptual frame-
work for the abstract wave function level of the theory is developed. This includes a careful
derivation of multi-time wave functions from single-time wave functions and Lorentz trans-
formations of con�gurations in the Schrödinger picture as well as a comparison to di�erent
approaches, such as in the Heisenberg picture or using path integrals. Furthermore, a re-
view of existence and uniqueness results for certain classes of multi-time evolution equations
is given. A no-go theorem for potentials is shown to motivate the search for alternative
mechanisms for relativistic interactions. Moreover, we study the question of appropriate
conserved (tensor) currents, densities and respective continuity equations. A geometric for-
mulation of probability conservation on space-like hypersurfaces using a di�erential form
constructed from these tensor currents is developed. In addition, adequate Hilbert spaces
are pointed out and it is shown that the (weak) uniqueness of solutions follows from prob-
ability conservation.

The next part deals with the question (i) of the physical meaning of multi-time wave
functions. It is approached by studying realistic relativistic quantum theories, mainly
the hypersurface Bohm-Dirac model, a relativistic generalization of Bohmian mechanics
using a preferred foliation of space-time into space-like hypersurfaces, but also relativistic
versions of objective collapse theories. Here, we work out which requirements on multi-
time wave functions are needed to ensure the compatibility with the respective models. A
great part of the work is focused on the development of a subsystem description for the
hypersurface Bohm-Dirac model via a new relativistic conditional density matrix. Such a
subsystem description is essential for Bohmian mechanics to derive statistical predictions.
The properties of the density matrix are studied rigorously and a lifting to a density operator
on the adequate Hilbert spaces is found. Furthermore, we take up an investigation by Bloch
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of the physical meaning of multi-time wave functions in �measurements� and show that
it supports the conjecture that the e�ective measurement formalism of the hypersurface
Bohm-Dirac model is independent of the preferred foliation.

Then we come to the main part of the thesis, concerning point (ii), the construction
of interacting multi-time wave equations. This goal is �rst approached for a relatively
simple model for two mass-less Dirac particles in 1 + 1 space-time dimensions. Interaction
is introduced via boundary conditions on the space-time con�gurations where the two
particles meet. This generalizes the idea of zero-range interactions to a relativistic (multi-
time) setting. To prove the existence and uniqueness of solutions, the usual functional-
analytic approach to zero-range interactions, namely implementing boundary conditions
via the domain of the Hamiltonian, does not su�ce anymore. Instead, the method of
characteristics from the theory of partial di�erential equations is generalized to the multi-
time case and applied to the existence and uniqueness proof. Furthermore, we show that
physically reasonable classes of boundary conditions can be extracted which are compatible
with probability conservation, Lorentz invariance and antisymmetry of the wave function.
Moreover, it is demonstrated that the model is interacting in the sense that it generates
entanglement.

Subsequently, the 1+1-dimensional model is generalized with respect to various aspects.
First, a new class of physically reasonable boundary conditions is studied. Then the model
is extended to the N -particle case for a class of boundary conditions which allows for a
compact formulation for all N . Furthermore, we answer the question of whether dynamics
on a domain of space-like con�gurations with a minimal space-like distance exist, a question
which is relevant to decide whether a generalization of the model to higher dimensions is
possible.

Finally, we study a di�erent interacting model for multi-time wave functions for 1 + 3
dimensions: the Two-Body Dirac equations of constraint theory. These achieve a novel
mechanism for relativistic interactions using additive interaction terms in the multi-time
equations which involve arbitrary powers of the total momentum operator. Our work
focuses on the question whether adequate tensor currents exist so that the model can be
considered compatible with a probabilistic meaning of the wave function. We point out
that the previous treatments of this question are incomplete. A criterion for the admissible
interaction terms is developed and shown to be violated for certain interaction terms which
haven been derived from quantum �eld theory in the literature. On the one hand, this raises
doubts whether applications of the Two-Body Dirac equations, e.g. for the calculation of
mesonic spectra, are justi�ed. On the other hand, we demonstrate that it is, in fact, possible
to extract a sub-class of the Two-Body Dirac equations for which the compatibility with
the general framework for multi-time wave functions is ensured.



Zusammenfassung

Der Grundgedanke des Multi-time-Formalismus, wie zuerst von Dirac im Jahr 1932 vorge-
schlagen, besagt, dass die relativistische Quantenmechanik auf einer Wellenfunktion ψ(x1, ..., xN )
aufgebaut sein sollte, die fürN Teilchen als Argument eine Raumzeit-Kon�guration (x1, ..., xN ),
xi ∈ R4 enthält, anstelle einer räumlichen Kon�guration (x1, ...,xN ; t) zu einer Zeit t in
einem ausgezeichneten Bezugssystem. Diese Au�assung hat weitreichende Konsequenzen,
sowohl für die physikalische als auch für die mathematische Struktur der Theorie. Einer-
seits stellt sich die Frage nach der physikalischen Bedeutung einer Wellenfunktion mit vie-
len Zeitkoordinaten ti in xi = (ti,xi). Andererseits gilt es, geeignete Lorentz-invariante
wechselwirkende Wellengleichungen zu �nden, um die Zeitentwicklung von ψ in den vielen
Zeitkoordinaten zu bestimmen. Die beiden Fragen stehen in engem Bezug zu zwei zentralen
konzeptionellen Problemen in den Grundlagen der relativistischen Quantentheorie: (i) dem
Messproblem sowie (ii) der Frage, wie man eine wechselwirkende, relativistisch invariante
Quantentheorie konstruiert.

In dieser Arbeit wird zunächst ein Überblick über diese Fragen gegeben, über den bishe-
rigen Fortschritt in Bezug auf ihre Lösung sowie die Geschichte des Multi-time-Formalismus.
Anschlieÿend wird ein konzeptioneller Rahmen für die abstrakte Wellenfunktionsebene der
Theorie entwickelt. Dies schlieÿt eine sorgfältige Herleitung von Multi-time-Wellenfunktionen
aus Einzeit-Wellenfunktionen mittels der Lorentz-Transformation von Kon�gurationen im
Schrödingerbild ein, sowie einen Vergleich dieses Ansatzes mit anderen Zugängen, wie
z.B. im Heisenbergbild oder mithilfe von Pfadintegralen. Auÿerdem fassen wir die be-
stehenden Existenz- und Eindeutigkeitsresultate für bestimmte Klassen von Multi-time-
Entwicklungsgleichungen kurz zusammen. Es wird gezeigt, dass ein No-go-Theorem für
Potentiale die Suche nach alternativen Mechanismen für relativistische Wechselwirkung mo-
tiviert. Darüber hinaus untersuchen wir die Frage nach angemessenen (Tensor-)Strömen,
Dichten und entsprechenden Kontinuitätsgleichungen. Es wird eine geometrische Formu-
lierung der Wahrscheinlichkeitserhaltung auf raumartigen Hyper�ächen entwickelt, unter
Benutzung einer Di�erentialform, die aus besagten Tensorströmen konstruiert ist. Auÿer-
dem zeigen wir auf, welche Hilberträume angemessen erscheinen, und beweisen, dass die
(schwache) Eindeutigkeit von Lösungen aus der Wahrscheinlichkeitserhaltung folgt.

Der folgende Teil beschäftigt sich mit der Frage (i) nach der physikalischen Bedeu-
tung von Multi-time-Wellenfunktionen. Wir nähern uns dieser Frage, indem wir realistische
relativistische Quantentheorien untersuchen, hauptsächlich das Hypersurface-Bohm-Dirac-
Modell, eine relativistische Erweiterung der Bohm'schen Mechanik mittels einer ausgezeich-
neten Blätterung der Raumzeit in raumartige Hyper�ächen, aber auch relativistische Ver-
sionen Objektiver Kollapstheorien. Dabei stellen wir besonders die Anforderungen an die
Multi-time-Wellenfunktionen heraus, die notwendig sind, um die Kompatibilität mit den
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entsprechenden Modellen zu gewährleisten. Ein groÿer Teil unserer Arbeit zu dem Thema
konzentriert sich auf die Entwicklung einer Subsystembeschreibung für das Hypersurface-
Bohm-Dirac-Modell mithilfe einer neuartigen relativistischen bedingten Dichtematrix. Wir
führen eine rigorose Analyse der Eigenschaften dieser Dichtematrix durch und geben ein
Lifting zu einem Dichteoperator auf dem angemessenen Hilbertraum an. Darüber hinaus
gehen wir auf eine Untersuchung Blochs der physikalischen Bedeutung von Multi-time-
Wellenfunktionen in �Messungen� ein und zeigen, dass Blochs Untersuchung die Behauptung
stützt, dass der e�ektive Messformalismus des Hypersurface-Bohm-Dirac-Modells unabhän-
gig von der ausgezeichneten Blätterung sei.

Hierauf kommen wir zum Hauptteil der Arbeit, der die Frage (ii) betri�t: die Konstruk-
tion wechselwirkender Multi-time-Wellengleichungen. Wir nähern uns diesem Ziel, indem
wir ein stark vereinfachtes Modell für zwei masselose Diracteilchen in 1 + 1 Raumzeitdi-
mensionen betrachten. Die Wechselwirkung wird dann mittels Randbedingungen auf den-
jenigen Raumzeitpunkten eingeführt, an denen sich die beiden Teilchen zur gleichen Zeit
am gleichen Ort be�nden. Diese Idee stellt eine Verallgemeinerung des Gedankens der Kon-
taktwechselwirkungen für die relativistische (Multi-time-)Situation dar. Um die Existenz
und Eindeutigkeit von Lösungen zu zeigen, reicht die übliche funktionalanalytische Heran-
gehensweise für Kontaktwechselwirkungen, d.h. die Implementierung der Randbedingungen
über den De�nitionsbereich des Hamiltonoperators, nicht mehr aus. Stattdessen verallge-
meinern wir die Methode der Charakteristiken aus der Theorie partieller Di�erentialglei-
chungen auf den Multi-time-Fall und wenden sie auf den Existenz- und Eindeutigkeitsbeweis
an. Darüber hinaus wird gezeigt, dass sich physikalisch sinnvolle Klassen von Randbedin-
gungen au�nden lassen, die mit den Aspekten der Wahrscheinlichkeitserhaltung, Lorentz-
Invarianz und Antisymmetrie im Einklang stehen. Schlieÿlich demonstrieren wir, dass das
Modell wechselwirkend ist, nämlich in dem Sinne, dass es Verschränkung generiert.

Anschlieÿend wird das 1 + 1-dimensionale Modell in Hinblick auf verschiedene Aspekte
verallgemeinert. Zunächst wird eine neue Klasse physikalisch vernünftiger Randbedingun-
gen untersucht. Dann wird das Modell für eine Klasse von Randbedingungen, die sich beson-
ders kompakt für jedes N formulieren lässt, auf den N -Teilchen-Fall ausgeweitet. Darüber
hinaus beantworten wir die Frage nach der Existenz der Dynamik auf dem De�nitionsbe-
reich raumartiger Kon�gurationen mit einem gewissen raumartigen Mindestabstand, eine
Frage, die wichtig dafür ist, zu entscheiden, ob sich das Modell auch auf höhere Dimensionen
verallgemeinern lässt.

Schlieÿlich untersuchen wir noch ein weiteres wechselwirkendes Modell für Multi-time-
Wellenfunktionen, das sich für 1+3 Raumzeitdimensionen formulieren lässt: die Two-Body-
Dirac-Gleichungen der Constraint-Theorie. Diese Gleichungen erreichen durch die Benut-
zung beliebiger Potenzen des Gesamtimpulsoperators in den Wechselwirkungstermen einen
neuartigen Mechanismus für relativistische Wechselwirkung. Unsere Arbeit konzentriert sich
dabei vor allem auf die Frage, ob angemessene Tensorströme existieren, über welche das
Modell Kompatibilität mit der probabilistischen Bedeutung der Wellenfunktion erreicht.
Wir weisen darauf hin, dass die bisherigen Untersuchungen dieser Frage unvollständig sind.
Wir entwickeln ein Kriterium für zulässige Wechselwirkungsterme und zeigen, dass es in
bestimmten Fällen verletzt ist, die in der Literatur aus der Quantenelektrodynamik hergelei-
tet wurden. Einerseits lässt dieser Befund Zweifel daran aufkommen, ob Anwendungen der
Two-Body-Dirac-Gleichungen, z.B. zur Berechnung von Mesonenspektren, berechtigt sind.
Andererseits zeigen wir, dass es in der Tat möglich ist, eine Unterklasse der Two-Body-
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Dirac-Gleichungen zu �nden, für welche die Kompatibilität mit dem allgemeinen Rahmen
für Multi-time-Wellenfunktionen gewährleistet ist.
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Introduction

What is relativistic quantum mechanics? In order to �nd an adequate answer to this
basic question, one has to reconsider the core aspects of special relativity (SR) and quantum
mechanics (QM). In our opinion1, the most important insights of SR can be considered (a)
the necessity of a space-time description and (b) the Lorentz transformation law for a
change between inertial frames (or equivalently, the space-time metric)2. The key structure
of QM, on the other hand, is the wave function, a non-local object on con�guration space
which can be related to the statistical outcomes of experiments. It is crucial to note that
the use of con�guration space implies that QM is not independent of the underlying space-
time theory. (Of course, there are more abstract ways of presenting QM but as long as
they are equivalent this does not change the fact that genuinely relativistic generalizations
of QM have to consider this aspect.)

Combining these key ingredients of SR and QM implies that relativistic QM should be
based on a wave function on space-time con�gurations which obeys a Lorentz invariant law
of motion. Furthermore, it should be related to the probability density for the statistics
of experiments. This view constitutes the basic idea of the multi-time formalism, as �rst
suggested by Dirac in 1932 in his article Relativistic Quantum Mechanics [38].

A brief history of the multi-time formalism: Dirac proposed that for two charged
spin-1

2 particles interacting via a second-quantized �eld the wave function should be a map

ψ : R4 × R4 −→ F , (x1, x2) 7−→ ψ(x1, x2), (1)

where F is a suitable Fock space, including the spin components as well as the �eld degrees
of freedom [38]. The presence of the many time coordinates in xi = (ti,xi) explains the
name of the multi-time formalism.

To determine the time evolution of ψ, Dirac prescribed simultaneous wave equations of

1Note, however, that there also exists the Lorentz-Poincaré view on SR (see e.g. [15, 25]). Its central
position is that all special-relativistic e�ects can also be obtained using the concept of absolute time
together with physical laws like Maxwell's equations which happen to have a symmetry under Lorentz
transformations. As then there is no particular theoretical reason for this special form of physical laws
(only compatibility with empiricism), laws for the quantum world do not necessarily have to be Lorentz
invariant on the fundamental level, just statistically and in the classical limit.

2A particularly clear derivation of this core structure of SR and nothing more was given by Whitehead
[103]. His investigation shows that locality, in the sense that distant objects can only in�uence each other
with a certain time delay, is not a central postulate of this �core SR�. This fact is particularly important
as locality in this sense would, according to Bell [14,16], con�ict with experimental �ndings (and quantum
mechanics).
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the form

F1ψ(x1, x2) = 0, F2ψ(x1, x2) = 0, (2)

where the operators Fi are the operators in the covariant form of the Dirac equation with
operator-valued 4-potential Âµ(x). The latter was supposed to satisfy a Lorentz invari-
ant, source-free wave equation. Remarkably, Dirac was able to show that these elements
nevertheless lead to an interacting, manifestly covariant theory.

Shortly after, Dirac, Fock and Podolsky presented a �rst multi-time QED model for
a �nite number of particles [40]. Subsequently, Bloch investigated the mathematical con-
sistency of the multi-time wave functions, �nding that the system (2) can only possess a
solution on the set of space-like con�gurations [20]. Furthermore, he analyzed the impli-
cations of certain assumptions about the time evolution operators together with the usual
measurement formalism, i.e. for the wave function ϕ(x1,x2, t) = ψ(t,x1, t,x2) evaluated at
equal times.

In 19433, Tomonaga worked out the reasons for the necessity of a multi-time formulation
and generalized it to matter �elds [96]. He replaced the multi-time wave function by a wave
functional Ψ[C] on space-like hypersurfaces C, obeying a functional wave equation for each
point P ∈ C. It takes the form[

−i δ

δCP
+H(P )

]
Ψ[C] = 0, (3)

where H(P ) is the Hamiltonian at the point P ∈ C and δ
δCP

is the functional derivative at
P ∈ C (see [96] for details).

A similar idea was developed by Schwinger in 1948 [93]. Accordingly, the term �Tomonaga-
Schwinger picture� was coined for the resulting formalism. For their fundamental work on
QED, the two researchers were, together with Feynman, awarded the Nobel prize in 1965.
However, at the same time this great success of a manifestly Lorentz invariant formulation
of QED was achieved, it was immediately overshadowed by the realization of the UV-
divergencies in quantum �eld theory (compare [96]). The situation in QED bears great
similarity to the problem of self-interaction in classical electrodynamics (see e.g. [52], [51,
chap. 2.4]). Even though renormalization procedures could be found to circumvent the
UV-divergencies in practical calculations, the underlying problem has never been solved. It
is no great secret that till present no rigorous formulation of quantum �eld theory in 1 + 3
space-time dimensions could be found (see e.g. [53]). Consequently, there does not exist a
�nite time evolution for QED. Instead, one focuses mainly on the calculation of S-matrix
elements. However, the S-matrix only describes a highly idealized transition of quantum
states separated in�nitely in space and time, for which the invariance requirements are
greatly restricted. Perhaps because of this fact, the manifestly Lorentz invariant formula-
tion of QED in the Tomonaga-Schwinger picture appears to have been largely forgotten.
Instead, it is common practice to employ formalisms primarily designed to quickly derive
e�cient computational methods � but for which the Lorentz invariance on all levels of the
theory cannot be seen as readily as for the multi-time formalism4.

3An English translation was published only in 1946 after World War II.
4See chap. 1, sec. 1.1 for a justi�cation of the claim, where the various approaches to relativistic

quantum physics are compared in detail.
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Main conceptual problems in relativistic quantum theory: In our discussion of
relativistic quantum mechanics we have so far only considered the abstract wave function
level. However, in order to make contact with empiricism, one also has to take into account
the statistical postulates about �measurements� of orthodox quantum theory. Doing so, one
immediately realizes that relativistic quantum (�eld) theory inherits the same conceptual
problems associated with the measurement formalism as are present in non-relativistic QM.
Since, for example, the collapse postulate of orthodox QM presupposes a distinguished
frame, it becomes clear that the formulation of any seriously Lorentz invariant theory
requires to take a position towards (or, better, avoid) this postulate and the associated
problems.
We formulate the major classes of di�culties following Dirac and Bell [6, 11]:

1. First-class di�culties: the measurement problem5 or, more generally, the question of
how the abstract level of quantum theory (wave functions, density matrices, Hilbert
spaces, operator observables) can be related to the physical world of everyday ex-
perience without invoking imprecise, subjective or external elements like �classical
measurement devices� or �observers� (as required by the collapse postulate of ortho-
dox QM).

2. Second-class di�culties: the UV divergencies or, more generally, the problem of how
to �nd an interacting relativistic quantum theory.

The present progress towards a solution of these problems can be summarized as follows.
The second-class di�culties could so far only be overcome for special models in low space-
time dimensions, e.g. in 1 + 1 dimensions [53]. For multi-time wave functions, however,
there does not, to our best knowledge, exist any rigorous interacting relativistic model yet.

The �rst-class di�culties, on the other hand, have successfully been avoided by realistic
relativistic quantum theories such as Bohmian mechanics [49, 51] and objective collapse
or Ghirardi-Rimini-Weber (GRW) theories [5, 12] in the case of non-relativistic QM. For
Bohmian mechanics and objective collapse theories, this was achieved by introducing quan-
tities (and respective laws of motion) which can be thought of as being located in space
and time and out of which physical systems are assumed to consist. These quantities have
been termed the �beables� [18] or the �primitive ontology� of a theory [2, 3]. Important
examples include point particles (in the case of Bohmian mechanics), mass densities and
discrete events, so-called ��ashes� (in the case of objective collapse theories).

For the very precision of theories with a primitive ontology, a relativistic extension
then requires a more accurate speci�cation of the term �relativistic�. The reason is that
one can, in fact, �nd models which are statistically Lorentz invariant but for which the
primitive ontology is not (see [21, chap. 12], [19]), showing that a comprehensive discussion
of relativistic quantum theory must consider the �rst-class di�culties. A good discussion
of the associated questions was given by Maudlin [73]. He arrives at the following criterion
for a relativistic theory6:

�Relativistic constraint: a theory is compatible with Relativity if it can be
formulated without ascribing to space-time more or di�erent intrinsic structure
than the (special or general) relativistic metric.�

5See e.g. [11] for a particularly clear introduction.
6Note that the criterion �ts well with the core structure of SR as outlined before.
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This constraint, of course, entails that the primitive ontology has to obey a Lorentz invariant
law of motion. Theories which can in this sense be considered �fundamentally Lorentz
invariant� have been proposed for both Bohmian mechanics [42, 43] and objective collapse
theories [10,97]. In all these cases, the Lorentz invariance of the primitive ontology requires
multi-time wave functions, providing another reason for their study. However, as there does
not seem to exist a set of rigorous, interacting and relativistic multi-time wave equations, a
simultaneous solution of both �rst and second class di�culties has not been achieved yet.

Goals and scope of the thesis: The goal of our work is to provide an exemplary solution
of the above-mentioned problems. The main challenges in this enterprise consist in

1. rigorously constructing interacting relativistic multi-time wave equations, and

2. ensuring the compatibility of these wave equations with a realistic relativistic quan-
tum theory. Of course, the term �quantum theory� implies that the usual statistical
predictions should follow from these theories in a suitable sense. To establish this for
a given model may be a further challenge, amounting to a derivation of the quantum
formalism, analogous to the way thermodynamics is derived from classical mechanics
via statistical physics.

In order to achieve both points, we make several assumptions and simpli�cations. First of
all, we focus on a �nite number N ≥ 2 of directly interacting particles. One can regard
the assumption of a �xed particle number either as restricting the domain of applicability
of the model or as requiring the Dirac sea picture to explain particle creation and anni-
hilation. While the meaning of negative energies thus depends on the underlying realistic
relativistic model, their appearance does not render models for �nite particles generally
impossible. These models rather work for any wave function, be it of positive or nega-
tive (or inde�nite) energy, and imply a certain behavior of matter which may or may not
be adequate to describe certain experimental situations. This, in turn, may restrict their
practical applicability � but not the possibility to logically conceive such a model7.

The concept of direct interaction can be seen as particularly appealing because the UV-
divergencies in classical �eld theory can exactly be avoided by a theory of this type, Wheeler-
Feynman electrodynamics [52, 101, 102]. One of the discussed models will furthermore
assume low space-time dimensions. This constitutes a real restriction. To devise more
realistic models will be a highly challenging step.

While our personal motivation derives from the above-mentioned conceptual questions,
we emphasize that the interacting models which will be developed in this thesis are just
as interesting for a reader who is solely interested in a Lorentz invariant formulation of
quantum dynamics on the wave function level.

7Claims to the contrary, e.g. that the �Klein paradox� or the �Zitterbewegung� or the non-existence
of a canonical 4-position operator in relativistic QM would logically rule out relativistic N -particle the-
ories, rather result from a �naive realism about operators� (see [48, sec. 9]), together with overly strong
preconceptions about the structure of a relativistic measurement formalism.



Chapter 1

The multi-time formalism

�The method of Schrödinger seems indeed more correctly conceived than that of
Heisenberg, and yet it is hard to place a function in coordinate space and view
it as an equivalent for a motion. But if one could succeed in doing something
similar in four-dimensional space, then it would be more satisfying.�

Einstein, 1926 [59, p. 83]

The goal of this chapter is to provide a conceptual framework for the abstract wave function
level of the theory. First, we show that various di�erent approaches towards relativistic
quantum mechanics lead to the necessity to consider multi-time wave functions (sec. 1.1).
Furthermore, possible structures for evolution equations for multi-time wave functions are
introduced and the di�culty to implement interaction is discussed (sec. 1.2). Next, the
implications for conserved currents, probability density and Hilbert spaces are worked out
(sec. 1.3). A geometric formulation of probability conservation involving a di�erential
form constructed from the conserved currents is developed and a proof that probability
conservation implies the uniqueness of solutions is given.

1.1 Approaches towards Lorentz invariant quantum theories

An attentive student entering the subject of relativistic quantum physics cannot but be
confused about the variety of con�icting approaches, terminologies and claims regarding
their status with respect to Lorentz invariance. Apart from the widespread but non-serious
tendency to call any theory �relativistic� which contains corrections or spin terms that are
not described by the Schrödinger-Pauli equation, it is sometimes held that the Schrödinger
picture is not Lorentz invariant while the Heisenberg picture and/or the path integral are.
Of course, these claims cannot be reconciled with the common understanding that all these
di�erent �pictures� are equivalent. It would seem that some of the claims are mistaken
or that it is common practice to employ inequivalent notions of Lorentz invariance. A
clari�cation seems in order.
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1.1.1 Schrödinger picture

It is striking that the Schrödinger picture is universally used by those quantum theories
which seriously attempt to explain the measurement formalism of quantum mechanics,
such as Bohmian mechanics [49, 51], GRW (objective collapse) theories [5, 12] and also
the many worlds interpretation [99]. This may be due to the fact that the problematic
collapse postulate, which is required by orthodox QM for empirical adequacy, entails that
the wave function changes upon �measurement�. As a �measurement� is to be located in
time, this implies that the wave function changes with time, even in the Heisenberg picture.
This somewhat breaks the conceptual integrity of the Heisenberg picture. Furthermore,
relativistic single-particle wave equations, such as the Klein-Gordon equation and the Dirac
equation, are (and have historically been) derived in the Schrödinger picture as a matter
of course. The likely reason for this is that then a space-time point appears naturally as
an argument of the wave function.

Yet, the Schrödinger picture is often claimed to be inferior to the Heisenberg picture
when it comes to relativistic multi-particle theories:

�We have seen that in the Schrödinger picture the state is speci�ed in terms of
the results of possible measurements on the system at time t. Such a description
picks out a particular Lorentz frame and is, therefore, not covariant. In the
Heisenberg picture, on the other hand, the state of the system is the same for
all time. For the discussion of the relativistic invariance the Heisenberg picture
has, therefore, decided advantages.�

Schweber [92, p. 164]

In this subsection, we �rst take up the criticism of the usual (single-time) Schrödinger
picture, following Tomonaga. Then we show how these problems can be overcome naturally
and clearly in the multi-time Schrödinger picture. The question of the equivalence of
the Schrödinger and Heisenberg pictures, implicitly raised by Schweber's quote, will be
discussed in section 1.1.2.

1.1.1.1 Single-time Schrödinger picture

For simplicity, we focus on the case of N ≥ 2 particles �rst.

Summary of Schrödinger picture: The single-time Schrödinger picture is based on a
wave function

ϕ : Rd × · · · × Rd︸ ︷︷ ︸
N times

×R −→ S, (x1, ...,xN , t) 7−→ ϕ(x1, ...,xN , t), (1.1)

where d is the number of spatial dimensions and S is a suitable spin space.
ϕ is supposed to satisfy a single-time wave equation

i
∂ϕ

∂t
= Hϕ, (1.2)

where H is the Hamiltonian on the Hilbert space

H = L2(RNd)⊗ S. (1.3)
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The solution of eq. (1.2) for initial data

ϕ(x1, ...,xN , 0) = ϕ0(x1, ...,xN ) (1.4)

is given by ϕ(·, t) = e−iHtϕ0(·), i.e. by letting the unitary group e−iHt generated by H act
on the initial data.

The connection with statistical experiments derives from the Born rule, i.e. by the
postulate that

ρ(x1, ...,xN , t) = |ψ|2(x1, ...,xN , t) (1.5)

is the probability density to �nd particle 1 at x1, particle 2 at x2, ..., and particle N at xN in
an experiment at time t. As emphasized by Bell [17, p. 166], more complicated experiments
can in principle always be reduced to position measurements, so the Born rule can indeed
be considered the essential part of the (non-relativistic) measurement formalism.

Note that the form of ρ is not independent of the wave equation but has to be chosen
according to the continuity equation which is implied by the latter. Furthermore, the
Hilbert space (1.3) is chosen to make spatial integrals over the probability density ρ = |ψ|2
well-de�ned. Its utility as a mathematical tool derives from the facts that (a) the wave
equation (1.2) is linear and (b) the scalar product obtains physical meaning by the Born
rule.

Criticism: The main points of criticism of the single-time Schrödinger picture with re-
spect to relativistic invariance are (compare Tomonaga [96]):

1. The single-time wave function ϕ(·, t) and the Hilbert space H which contains it
(at a particular time) treat space and time variables on an essentially di�erent ba-
sis.Tomonaga does not explicitly refer to this fact but instead criticizes the use of
equal-time commutation relations.

2. Relatedly, a single-time wave equation distinguishes a particular frame and therefore
cannot be covariant.

3. The Born rule makes use of a particular frame. The measurement formalism based
on it is therefore not covariant.

The lack of covariance of the single-time Schrödinger picture could not be clearer.

1.1.1.2 Multi-time Schrödinger picture

Instead of switching to the more formal Heisenberg picture and hoping for a solution of the
problems with Lorentz invariance along di�erent lines, we analyze the consequences of the
view that the multi-particle wave function should transform according to a representation
of the Lorentz group. This leads to the multi-time picture as outlined in the introduction.
The course of the argument follows the paper [67, sec. 1] by the present author.
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Derivation of multi-time wave functions from single-time wave functions and
Lorentz transformations: From basic representation theory, we know that under a
Lorentz transformation

Λ : R1+d → R1+d, x 7→ Λx (1.6)

a single-particle wave function ϕ(x) transforms as

ϕ(x)
Λ7−→ ϕ′(x) = S[Λ]ϕ(Λ−1x), (1.7)

where the matrices S[Λ] form a representation of the proper Lorentz group L↑+.
The attempt to Lorentz transform an N -particle single-time wave function ϕ immedi-

ately fails because its argument (x1, ...,xN , t) cannot directly be associated with a collection
of 4-vectors. However, (x1, ...,xN , t) does carry space-time information. It characterizes
the spatial con�guration (x1, ...,xN ) of N points at time t. The very same con�guration is
expressed by (t,x1; ...; t,xN ) which has a spatio-temporal meaning. Under Λ,

(t,x1; ...; t,xN )
Λ7−→

(
Λ−1(t,x1); ...; Λ−1(t,xN )

)
≡ (t′1,x

′
1; ...; t′N ,x

′
N ), (1.8)

where in general tj 6= tk for j 6= k.
The key idea now is to regard the single-time wave function as the special case of a

more general object, the multi-time wave function ψ, i.e.

ϕ(x1, ...,xN , t) = ψ (t,x1; ...; t,xN ) . (1.9)

Note that in the single-particle case (which is unproblematic with respect to Lorentz in-
variance) the multi-time wave function coincides with the single-time wave function. We
now determine the domain1 Ω on which ψ should be de�ned (and thereby the nature of
the map) by demanding that the Lorentz-transformed multi-time wave function ψ′ be also
a wave function on Ω.

Assuming the straightforward generalization of eq. (1.7), i.e.

ψ(x1, ..., xN )
Λ7−→ S[Λ]⊗ · · · ⊗ S[Λ]︸ ︷︷ ︸

N times

ψ(Λ−1x1, ...,Λ
−1xN ) (1.10)

we obtain

ϕ(x1, ...,xN , t) ≡ ψ (t,x1; ...; t,xN )
Λ7−→ S[Λ]⊗ · · · ⊗ S[Λ]ψ(t′1,x

′
1; ...; t′N ,x

′
N ), (1.11)

where in general tj 6= tk. Therefore, we arrive at the necessity to consider multi-time wave
functions

ψ : Ω ⊂ R1+d × · · · × R1+d︸ ︷︷ ︸
N times

−→ S, (x1, ..., xN ) 7−→ ψ(x1, ..., xN ), (1.12)

where the natural domain Ω is given by the set of space-like con�gurations

S := {(x1, ..., xN ) ∈ RN(1+d)| ∀j 6= k : (xj − xk)2 < 0}. (1.13)

Our sign convention for the Minkowski metric is η = diag(1,−1,−1,−1).

1Here and in the following, the symbol Ω denotes the general domain of a multi-time wave function.
Speci�c choices A of Ω will be introduced by Ω = A.
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Remarks:

1. Note that the above argument only yields Ω = S for N = 2. For general N , the orbit
of the simultaneous con�gurations under Lorentz transformations gives a set strictly
contained in S . However, because a collection of space-like 4-vectors is the most
general notion of an N -particle con�guration, we regard S as the natural domain for
the multi-time wave function. The set C of points where the coordinates of at least
a pair of particles coincide, are not contained in S because this would contradict the
premise of an N -particle con�guration2.

2. One may also consider di�erent domains than S , either larger ones such as RN(1+d),
i.e. the whole of con�guration space-time, or smaller ones such as the set Ωα of space-
like con�gurations with a minimum space-like distance α.
In the case of larger domains than S , the physical meaning of a wave function on
time-like con�gurations is obscure. From the above argument, it is clear that this
is not a natural generalization of non-relativistic QM. Furthermore, the envisaged
statistical meaning of the wave function can only be assumed to hold on space-like
hypersurfaces. Similarly to ρ = |ψ|2, one would expect that a quadratic function of ψ
yields the crossing probability for sets of the form ΣN (see sec. 1.3). Assuming that
particle trajectories are time-like, a crossing density can only be de�ned on sets of
this form. Moreover, the density associated with a relativistic wave equation should
not be expected to be integrable along time-like directions as this is not the case for
the non-relativistic |ψ|2-density, either. The case of smaller domains is possible but
not natural.
Historically, Dirac considered multi-time wave functions on RN(1+d). The domain S
was �rst proposed by Bloch [20] and taken up by Tomonaga [96], albeit mostly for
less general reasons concerning only the consistency of particular multi-time QED
models.

3. Instead of (1.10), one can also consider a more general notion of Lorentz transforma-
tions which is motivated by a general-relativistic view on multi-time wave functions
(compare [54,97]). Let (M, g) be the space-time manifold with metric g. In this case,
a multi-time wave function corresponds to a section of a spinor bundle over the set of
space-like con�gurations S , de�ned similarly as before by using g instead of η. Then
it is natural to consider separate Lorentz transformations Λj ∈ L↑+ in the tangent
spaces TpjM, j = 1, ..., N . Together they comprise a transformation which we call a
multi-time Lorentz transformation, i.e.

L : Tp1M×· · ·×TpNM −→ Tp1M×· · ·×TpNM, (x1, ..., xN ) 7−→ (Λ1x1, ...,ΛNxN ).
(1.14)

We setM = R1+d. Then under L, ψ transforms as

ψ(x1, ..., xN )
L7−→ ψ′(x1, ..., xN ) = S[Λ1]⊗ · · · ⊗ S[ΛN ]ψ(Λ−1

1 x1, ...,Λ
−1
N xN ). (1.15)

This notion of Lorentz transformations is slightly more general than (1.10) in that
the latter is the special case of (1.15) for Λj ≡ Λ for all j, corresponding to an

2This can best be seen for indistinguishable particles. The most natural view then is that wave functions
are functions of unordered con�gurations, i.e. of subsets of con�guration space with power N (see [44]).
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identi�cation of all the tangent spaces TpjM. Multi-time Lorentz transformations
can also be helpful in a special-relativistic setting for technical arguments and we
shall employ them when appropriate (see e.g. sec. 2.2). They are not appropriate for
terms involving di�erences of coordinates.
With this generalized notion of Lorentz transformations we brie�y return to point 1,
noting that S is indeed the orbit of the simultaneous con�gurations under multi-time
Lorentz transformations.

Evolution equations: Starting from the non-relativistic theory, the most obvious possi-
bility for multi-time evolution equations is to prescribe N simultaneous �rst-order equations
which can be written in Hamiltonian form. Dirac's original suggestion [38] falls into this
category (disregarding additional constraints on the quantum �elds). The subject of multi-
time evolution equations will be discussed in more detail in sec. 1.2. Here we only outline
as much as needed for a brief discussion of Lorentz invariance and the connection with the
Heisenberg picture (see sec. 1.1.2).

The class of Hamiltonian multi-time equations is given by:

i
∂

∂t1
ψ = H1ψ,

...

i
∂

∂tN
ψ = HNψ, (1.16)

where theHj are �rst order di�erential operators, called partial Hamiltonians. They contain
a k×k matrix structure where k is the number of spin components of ψ. The whole system
of equations (1.16) is supposed to transform covariantly under Lorentz transformations
(1.10), despite the asymmetric way of writing the time derivatives.

Examples:

1. Free multi-time Dirac theory is de�ned by

Hk ≡ HDirac
k := −iγ0

kγ
j
k∂k,j +mkγ

0
k , (1.17)

where γµk is the µ-th Dirac gamma matrix acting on the spin index of the k-th particle,
mk is the mass of the k-th particle and ∂j,µ := ∂

∂xµj
.

Then eqs. (1.16) can be recast into the manifestly covariant form

(iγµj ∂j,µ −mk)ψ(x1, ..., xN ) = 0, j = 1, ..., N. (1.18)

2. Free multi-time Klein-Gordon theory: Alternatively, one can consider second-order
equations

(�j +m2
j )ψ = 0, j = 1, ..., N. (1.19)

Note that it is not as easy as in the single-particle theory to rewrite the multi-time
Klein Gordon (KG) equations into Hamiltonian form (1.16) by introducing the time
derivatives as new variables, i.e. by de�ning ψ̃ := (ψ, i∂t1ψ, ..., i∂tNψ). This is because
e.g. considering i∂t1ψ̃ for N = 2 yields a term in which −∂t1∂t2ψ does not further
simplify to an expression without time derivatives.
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The connection of Hamiltonian multi-time wave equations with single-time wave equations
is straightforward. Suppose that ψ satis�es eqs. (1.16). Consider the associated single-
time wave function ϕ given by eq. (1.9). Using the chain rule, we �nd that it satis�es the
single-time wave equation (1.2) with Hamiltonian

H =

N∑
j=1

Hj . (1.20)

Statistical meaning: This point will be discussed in sec. 1.3 (on a formal level) and in
chap. 2 (with respect to its physical meaning). Here we just mention that under reasonable
assumptions on the wave equations of the theory, it is possible to obtain a formal crossing
density for general space-like hypersurfaces, meeting the criticism of the non-relativistic
picture. When it comes to the derivation of a generalized Born rule from a deeper ontological
level, the arguments are more subtle (see chap. 2).

Conclusion: Assuming that the statistical meaning of ψ can be established in a relativis-
tically satisfactory way, the multi-time Schrödinger picture indeed meets all the points of
criticism of the single-time Schrödinger picture.

A di�erent proposal involving wave functions with many time coordinates: A
di�erent approach towards relativistic quantum dynamics involving a wave function with
many times has been suggested by Horwitz and Rohrlich [58].

The central object of their theory is a wave function

χ : R5 × · · · × R5︸ ︷︷ ︸
N times

−→ C, (x1, τ1; ...;xN , τN ) 7−→ χ(x1, τ1; ...;xN , τN ). (1.21)

Horwitz and Rohrlich regard χ(·, τ1; ...; ·, τN ) as a function of the N parameters τj with
values in L2(R4N , d4Nx).
They consider evolution equations

i
∂χ

∂τj
=
[
p2
j +m2

j + φj(x1, ..., xN )
]
χ, j = 1, ..., N, (1.22)

where pj,µ = i ∂
∂xµj

(i.e. p2
j = −�j) and φj is a potential.

Evidently, this di�ers from the multi-time approach outlined above by the presence of the
N additional parameters τj and by the di�erent choice of Hilbert space.

The approach is subject to severe criticism. Firstly, the τ parameters do not have any
evident physical meaning. According to [58], the hope is to relate them to proper time
parameters associated with particles. However, no such connection is actually given � and
it is hard to imagine how this could be possible without the existence of trajectories in the
theory. Secondly, the approach does not have the correct non-relativistic limit. The non-
relativistic wave function simply does not contain τ -parameters. Even more importantly,
it is not square integrable with respect to time which destroys the possibility of the wave
function of Horwitz and Rohrlich to have statistical signi�cance. Thirdly, the approach
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does not encompass relativistic single-particle wave equations such as the Klein-Gordon
equation.

In conclusion, the approach of Horwitz and Rohrlich seems only formally motivated and
cannot be considered a generalization of non-relativistic QM.

Multi-time Schrödinger picture for a variable particle number: The relativistic
Heisenberg picture and path integrals for relativistic multi-particle quantum theories make
use of a Fock-space formulation. To have the possibility of direct comparison with these
approaches, we now brie�y summarize how to construct multi-time wave functions for a
variable particle number.

By analogous arguments as in the N -particle case, manifest Lorentz invariance in the
Schrödinger picture then requires to replace Fock space (which distinguishes a special frame)
by a suitable set of functions on the set of space-like con�gurations of arbitrary length
(see [81])3:

Svar :=
∞⋃
N=0

{(x1, ..., xN ) ∈ R4N : ∀j 6= k : (xj − xk)2 < 0}. (1.23)

Let S(N) denote the appropriate spin space for N particles. A multi-time wave function
then is a map

ψ : Svar −→
∞⊕
N=0

S(N),

(∅, (x1), (y1, y2), ...) 7−→ (ψ(0)(∅), ψ(1)(x1), ψ(2)(y1, y2), ...). (1.24)

Here, ψ(N) is the N -particle sector part of ψ. This construction of variable particle num-
ber wave functions is the relativistic analog of the Fock space construction in position
representation (see [81] and [92, chap. 6f]).

The dynamics for ψ can then be expressed by multi-time evolution equations for each
of the ψ(N). The crucial di�erence to the N -particle case is that the rhs. of (1.16) may
couple ψ(N) to ψ(K), e.g. K = N − 1, N + 1. An interacting, albeit ultraviolet-divergent
and not yet fully Lorentz invariant model of this type has recently been presented in [81].

For the purpose of the comparison of the various approaches the simple case of a free
neutral scalar �eld is su�cient. Then each ψN satis�es the free N -time KG equations
(1.19).

1.1.2 Heisenberg picture

We now return to the questions raised at the beginning of sec. 1.1.1: Is the Heisenberg pic-
ture �more Lorentz invariant� than the Schrödinger picture? If so, how can it be equivalent
to the Schrödinger picture? Furthermore, what is its relation to the multi-time Schrödinger
picture?

First, we brie�y summarize the well-known formalism using the example of a free neutral
scalar �eld (sec. 1.1.2.1) to create a basis for the subsequent discussion of Lorentz invariance
(sec. 1.1.2.2). Here, we also take into account subtle points which are often omitted in less

3Petrat and Tumulka also admit light-like con�gurations.
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critical textbook discussions. Finally, we point out the relation of the Heisenberg picture
with the single-time and multi-time Schrödinger pictures, resolving the tension between the
con�icting equivalence and Lorentz invariance claims (sec. 1.1.2.3).

1.1.2.1 Summary

For the relativistic Heisenberg picture, one considers Fock space F as Hilbert space. Ele-
ments |ψH〉 ∈ F are called Heisenberg state vectors. They do not evolve in time4.

The dynamics is carried by the �eld operators Φ(x), x ∈ R4:

i∂tΦ(t,x) = [Φ(t,x), H]. (1.25)

For suitable Hamiltonians H, these equations of motion can be written in a manifestly
Lorentz covariant form. For example, for the free neutral scalar �eld, one has [92, chap. 7]:

(�j +m2
j )Φ(x) = 0. (1.26)

The question of the general statistical signi�cance of the second-quantized Heisenberg pic-
ture theory is often discussed only in limited situations like scattering in textbooks, not on
a general level (compare e.g. [79]). One of the few books containing a statement about the

situation is Schweber's5. For |ψH〉 ∈ F let ψ(N)
H be the N -particle amplitude of |ψH〉 in

position (i.e. space-time) representation, i.e. informally ψ(N)
H (x1, ..., xN ) = 〈x1, ..., xN |ψH〉,

or

ψ
(N)
H (x1, ..., xN ) := (N !)−

1
2 〈0|Φ(x1) · · ·Φ(xN )|ψH〉, (1.27)

where |0〉 is the �vacuum� state. Then6:

�The physical interpretation of the Fock space component ψ(N)
H (x1, ..., xN ) when

x0
1 = x0

2 = · · · = x0
N is the probability amplitude for �nding N particles at time

x0 = x0
1 = · · · = x0

N .�

Schweber, [92, p. 171]

Along with other points, this quote strongly motivates a discussion of Lorentz invariance.

1.1.2.2 Lorentz invariance

To check the covariance of the theory, one de�nes a unitary operator U(Λ) which implements
the action of a Lorentz transformation Λ ∈ L↑+ on Fock space (see [92, chap. 7b]).
The Heisenberg state transforms as

|ψH〉
Λ7−→ U(Λ)|ψH〉. (1.28)

The vacuum state is de�ned to be invariant, i.e.

U(Λ)|0〉 = |0〉, (1.29)

4Note that it would be misleading to characterize the �xed state vector by the obviously non-covariant
equation ∂t|ψH〉 = 0 which one can �nd in textbooks (see e.g. [92, p. 650]).

5Schweber uses the positive energy �eld operators Φ(+)(x) instead of the total ones Φ(x). The reason
for this is independent of the present discussion.

6Our notation conventions have been used in the quote, without changes in content.
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and the �eld operators satisfy the relation

U(Λ)−1Φ(x)U(Λ) = Φ(Λ−1x). (1.30)

Relations (1.28)-(1.30) imply:

〈0|Φ(x1) · · ·Φ(xN )|ψH〉
Λ7−→ 〈0|U−1(Λ)Φ(x1) · · ·Φ(xN )U(Λ)|ψH〉
= 〈0|U−1(Λ)Φ(x1)U(Λ) · · ·U−1(Λ)Φ(xN )U(Λ)|ψH〉

(1.30)
= 〈0|Φ(Λ−1x1) · · ·Φ(Λ−1xN )|ψH〉 (1.31)

and thus the N -particle amplitude (1.27) transforms as (compare eq. (1.10)):

ψ
(N)
H (x1, ..., xN )

Λ7−→ ψ
(N)
H (Λ−1x1, ...,Λ

−1xN ). (1.32)

The above information su�ces to check the points required for relativistic invariance.

1. Invariance of the basic objects: According to eqs. (1.28), (1.30) both the Heisenberg
state as well as the �eld operators transform according to a representation of the
Lorentz group. Nevertheless, one may criticize the fact the Heisenberg state is an
element of Fock space. The latter is derived from the one-particle Hilbert space
L2(R3, d3x) which distinguishes a particular frame. This fact depends, in turn, on
the envisaged statistical meaning.

2. Invariance of the equations of motion: With the transformation rule (1.30), the
Heisenberg equations of motion are Lorentz covariant.

3. Statistical meaning: Recall Schweber's quote about the statistical meaning of the
N -particle amplitude. It is a direct translation of the Born rule into the Heisenberg
picture and, therefore, by the same reasons as before, not covariant. Note, however,
(1.27) is satisfactory from a formal point of view (as are expectation values of Heisen-
berg operators functions) because it only involves space-time points. One thus has
reason to hope for a Lorentz covariant generalization � but such a generalization is
usually not sought and would have to genuinely generalize the Born rule. We shall
return to this question later.
Note that the S-matrix formalism can, of course, be shown Lorentz invariant along
standard lines [79, 92]. The notion of Lorentz invariance is then greatly reduced to
invariance requirements only at two points separated in�nitely in space and time.
However, to restrict the formalism to this highly idealized situation (other than as an
approximation) is not satisfactory from a conceptual point of view because (a) strictly
speaking, no experiment satis�es the assumptions of in�nite separation in space and
time and (b) not all experimentally accessible situations can be treated as scattering
processes, for example bound states.

Conclusion: For a comparison with the single-time Schrödinger picture, we exclude point
3. Also dropping the objection about the unequal treatment of space and time in point
1 for the moment, the Heisenberg picture indeed satis�es the covariance requirements of
points 1 and 2 while the single-time Schrödinger picture does not. They thus cannot be

equivalent. We shall elaborate on this important point in the next section.
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1.1.2.3 Relation to the Schrödinger picture

Denote the state vector in the second-quantized single-time Schrödinger picture by |ϕ(t)〉
and the Schrödinger picture �eld operators by Φ(x). Then the standard relation between
the two pictures is given by

|ψH〉 = eiHt|ϕ(t)〉 (1.33)

and
Φ(t,x) = eiHtΦ(x)e−iHt. (1.34)

We �rst aim at working out more clearly the inequivalence between the single-time Schrödinger
picture and the Heisenberg picture in the relativistic context. The following lemma will
prove useful in this respect.

Lemma 1.1.1 Let |0(t)〉 = e−iHt|0〉 and let 〈x1, ...,xN |ϕ(t)〉 = (N !)−
1
2 〈0(t)|Φ(x1) · · ·Φ(xN )|ϕ(t)〉

be the N -particle Fock space amplitude in the single-time Schrödinger picture. Then the fol-

lowing relation to the N -particle amplitude in the Heisenberg picture ψ
(N)
H (x1, ..., xN ) holds:

〈x1, ...,xN |ϕ(t)〉 = ψ
(N)
H (t,x1; ...; t,xN ). (1.35)

Proof:

(N !)−
1
2 〈0(t)|Φ(x1) · · ·Φ(xN )|ϕ(t)〉 (1.33),(1.34)= (N !)−

1
2 〈0|eiHtΦ(x1)e−iHt · · · eiHtΦ(xN )e−iHt|ψH〉

= (N !)−
1
2 〈0|Φ(t,x1) · · ·Φ(t,xN )|ψH〉

(1.27)
= ψ

(N)
H (t,x1; ...; t,xN ). � (1.36)

The inequivalence between the relativistic Heisenberg picture and the single-time Schrödinger
picture can now be seen quite clearly. In the single-time Schrödinger picture, the Fock
space amplitude (1.35) is limited to equal times. In contrast, in the Heisenberg picture

ψ
(N)
H (x1, ..., xN ) can, and in fact must, be considered for general space-time points7 in or-

der to achieve Lorentz invariance (see eq. 1.32). The Heisenberg picture thus contains the

single-time Schrödinger picture but not vice versa.

Now only the question of the exact relation of the Heisenberg picture with the multi-time
Schrödinger picture remains. Eq. (1.35) suggests that the connection is straightforward.
Let ψ(x1, ..., xN ) be the variable particle number wave function, as de�ned in eq. (1.24),
and ψ(N)(x1, ..., xN ) its N -particle component8. Then one has (see also [81, assertion 3]):

ψ(N)(x1, ..., xN ) = ψ
(N)
H (x1, ..., xN ), (1.37)

where general space-time points are admitted on both sides.
It becomes evident that the Heisenberg picture and the multi-time Schrödinger picture

are equivalent if and only if the dynamical equations of either picture imply the ones of the

7Note that arbitrary con�gurations (x1, ..., xN ) can be considered. However, only space-like ones are
natural.

8ψ(N)(x1, ..., xN ) coincides with the N -time wave function of sec. 1.1.1.2 if it has autonomous dynamics.
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other. The fact that the Heisenberg equations of motion imply the multi-time equations
can be seen as follows. Consider the action of (�j +m2

j ) on ψ
(N)(x1, ..., xN ):

(�j +m2
j )ψ

(N)(x1, ..., xN )
(1.37),(1.27)

= (N !)−
1
2 〈0|Φ(x1) · · ·

[
(�j +m2

j )Φ(xj)
]
· · ·Φ(xN )|ψH〉

(1.26)
= 0. (1.38)

The converse is easily seen along standard lines. One �rst de�nes the (single-time) Schrödinger
picture �eld operators Φ(x) and obtains the Heisenberg picture �eld operators Φ(t,x) from
the unitary group e−iHt via eq. (1.34). Then the Heisenberg equations of motion are satis-
�ed by de�nition. Note that the additional freedom of the multi-time Schrödinger picture
as compared to the single-time Schrödinger picture plays no role in this particular step.

We thus see that starting from the single-time Schrödinger picture, going to the Heisen-
berg picture and translating back the formalism obtained, one arrives at the multi-time
Schrödinger picture. This shows that the (relativistic) Heisenberg picture tacitly general-
izes the single-time to the multi-time Schrödinger picture. This transition, albeit indirect,
constitutes a further reason, independent from the intuitive argument given in sec. 1.1.1.2,
to consider multi-time wave functions. Note that the crucial ingredient in this second deriva-
tion of multi-time wave functions is the possibility to consider products of Heisenberg �eld
operators at space-time points with di�erent time coordinates.

Conclusion: We have seen that, contrary to widespread belief, the single-time Schrödinger
picture and the Heisenberg picture for relativistic quantum �eld theory9 are not quite equiv-
alent. However, the generally assumed equivalence of Schrödinger and Heisenberg picture
can be re-established as an equivalence between the Heisenberg picture and the multi-time
Schrödinger picture.
We close the section with some comments on more subtle points.

Remarks:

1. E�ort to see the Lorentz invariance: Recall Schweber's quote at the beginning of sec.
1.1.1. Comparing secs. 1.1.1.2 and 1.1.2.2, Schweber's claim that the Heisenberg
picture has �decided advantages� for the discussion of Lorentz invariance appears
unfounded. Especially when it comes to the question of the relation of the wave
function with space-time in the two pictures, the multi-time Schrödinger picture is
more natural. Viewed from this perspective, the equivalence with the multi-time
Schrödinger picture rather alleviates the criticism that the Heisenberg state |ψH〉 is
an element of F which uses a strict separation of space and time.

2. Domain: Similarly to the �rst point, the fact that the multi-time wave function
(alias the N -particle amplitude (1.27)) is naturally only de�ned on S seems not to
be re�ected in the Heisenberg picture. This may seem only a minor subtlety, but we
shall see later that the domain S instead of R4N is indeed crucial for the construction
of interacting theories.

9For non-relativistic quantum theory, one can self-consistently restrict the Heisenberg picture to equal
times without violating symmetry requirements (such as Lorentz invariance). Then both pictures are indeed
equivalent.
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3. Multi-time Lorentz transformations: In the multi-time Schrödinger picture, general-
relativistic considerations straightforwardly lead to multi-time Lorentz transforma-
tions (1.14). For the Heisenberg picture, it is hard to see how this generalization
should be possible. A natural idea to obtain the transformation behavior (1.15) also
for the N -particle amplitude (1.27) would be to replace U(Λ) by an operator �U(Λx)�,
meaning that a Lorentz transformation Λx is chosen for each space-time point x and

that (1.30) is replaced by Φ(y)
Λx7−→ U−1(Λx)Φ(y)U(Λx) = Φ(Λ−1

y y). However, it is
unclear how this idea could be implemented in a Hilbert space setting, considering
that U(Λx) then would have to be on operator on H, which does not contain time,
and at the same time, informally speaking, would have to �get the y from Φ(y)�.

4. Statistical meaning: In order to generalize the obviously non-covariant interpreta-
tion of the N -particle amplitude by Schweber, one might be inclined to guess that
|ψ(N)
H (x1, ..., xN )|2 is the probability density to �nd particles at space-time points

x1, ..., xN , at least if all of them are space-like related. However, together with the
analogous guess for the multi-time Schrödinger picture this will in general turn out
wrong because it disregards the fact that probability conservation is only ensured
when the probability density and the current are chosen according to the wave equa-
tions of the theory (see sec. 1.3 and chap. 2). The train of thought necessary for such
a generalization is that the main role of the wave equations of the theory is to ensure
the existence of conserved tensor currents (from which the connection with physics
arises). This is much more natural in the multi-time Schrödinger picture than in the
Heisenberg picture.

1.1.3 Path integrals

In this section, we analyze the question of whether or to what extent the path integral can
be used as a fundamental basis of relativistic quantum theory, as distinct from a useful
computational tool. We illustrate the concepts using the example of the free neutral scalar
�eld.

It should �rst be mentioned that from a mathematical perspective it is as yet unclear
how to even de�ne the path integral for realistic models [53, 85]. The situation is di�erent
from the other two approaches where it is quite clear how to understand the time evolution
(e.g. as solutions of PDE systems or as unitary groups generated by self-adjoint Hamiltoni-
ans), independently of whether these proofs have actually been given. To be fair, however,
one should note that a consistent interacting multi-particle quantum theory has not been
found for the correct number of space-time dimensions in either framework.

This being said, for the present purpose of the discussion of Lorentz invariance we
adopt an optimistic viewpoint, assuming that mathematical sense can be given to all the
expressions used10. Note that in any case this implies that the path integral measure �Dφ�
and the integrand cannot be regarded as separate mathematical objects.

10This is the case for the free neutral scalar �eld.
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1.1.3.1 Summary

The path integral is often claimed to give one or even the Lorentz invariant formulation
of relativistic quantum (�eld) theory. One then usually focuses on the Lorentz invariance
of particular formulas. Only rarely one �nds an outline of the whole framework which
arises from taking the path integral as a fundamental basis of quantum theory. We brie�y
attempt to give such a summary here.

Let T̂ denote the time ordering symbol. The path integral can be used to express
correlation functions, such as the N -point Feynman functions

τN (x1, ..., xN ) := 〈0|T̂{Φ(x1) · · ·Φ(xN )}|0〉 (1.39)

in terms of the Lagrangian density L (= 1
2(∂µφ)(∂µφ)) of a corresponding classical �eld

theory (see [79, p. 284]):

τN (x1, ..., xN ) = lim
T→(1−iε)∞

∫
Dφ(x)φ(x1) · · ·φ(xN ) exp

[
i
∫ T
−T dx

0
∫
R3d

3xL(φ(x))
]

∫
Dφ(x) exp

[
i
∫ T
−T dx

0
∫
R3d3xL(φ(x))

] .

(1.40)
While this formula is indeed Lorentz invariant, it should be noted that the notion of Lorentz
invariance is very formal, as the measure �Dφ(x)� and the integrand do not exist as separate
mathematical objects. Contrary to the suggestive way of writing, there is no direct relation
to the Lorentz transformations of �elds on space-time.

Of course, correlation functions per se do not constitute relativistic quantum physics.
However, as Wightman showed [104], the set of all N -point Wightman functions

WN (x1, ..., xN ) = 〈0|Φ(x1) · · ·Φ(xN )|0〉 (1.41)

allows for a reconstruction of both the Fock space and the Heisenberg �eld operators. At
this point, some people claim (e.g. Roepstor� [85, p. 218]) that because of this relation, the
path integral yields a complete description of quantum �eld theory. This is, however, not
correct. Only the kinematical framework of Fock space is reconstructed. The fact that not
all information of �eld theory can be reconstructed by the path integral can easily be seen
from the non-existence of a path integral expression for the Heisenberg state |ψH〉. The
crucial formula (1.37) which allows to reconstruct the multi-time wave equations from the
Heisenberg equations of motion thus cannot be obtained. Moreover, a reconstruction of
Fock space is not even desirable from a relativistic standpoint, as it treats space and time
on an essentially di�erent basis.

At this point, we brie�y pause to consider �gure 1.1. The framework obtained so far
corresponds to the upper part of the �ow chart till the dashed horizontal line. In order to
discuss the Lorentz invariance of the path integral formalism, one has to give a dynamical

principle, to be expressed solely in terms of the path integral.
(Note that the Heisenberg equations of motion which the reconstructed Heisenberg �eld
operators satisfy do not provide a useful dynamical principle without the Heisenberg state.
To add the state to the theory would mean to depart from a pure path integral approach
and to switch to the Heisenberg picture.)
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Figure 1.1: Conceptual scheme of the path integral

1.1.3.2 In�nite times: scattering processes

One possibility for a new dynamical principle (for scattering situations) is to postulate the
LHZ reduction formula. This formula allows to express the S-matrix elements and therefore
cross sections which can directly be compared with experiments by correlation functions
(see e.g. [79, p. 307]). These can in turn be written as path integrals using eq. (1.40). As
all the formulas involved in this process are Lorentz invariant, the resulting theory also
possesses this property.

However, the fact that scattering processes can be expressed Lorentz invariantly by the
path integral constitutes no particular advantage of the latter. The same result would have
been obtained even in the single-time Schrödinger picture which is not Lorentz invariant
in any other respect. It thus becomes evident that the notion of Lorentz invariance in
scattering processes (i.e. idealized transitions between two free states separated in�nitely
in space and time) is too restricted to allow for a de�nite judgment about the Lorentz
invariance of the overall theory.

1.1.3.3 Finite times

For a signi�cant discussion of Lorentz invariance it is indispensable to consider �nite time
evolution. Analogously to the path integrals for propagators of the single-time Schrödinger
equations, one can �nd an expression for matrix elements of the �nite time evolution op-
erator e−iHt on the reconstructed Fock space of QFT by yet another path integral [79, p.
282]:

〈φb(x)|e−iHt|φa(x)〉 =

∫
Dφ(x) exp

[
i

∫ t

0
dx0

∫
R3

d3xL(φ(x))

]
, (1.42)
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where the functions φ(x) in the path integral are constrained to con�gurations φa(x) at
x0 = 0 and φb(x) at x0 = t.

Peskin and Schröder add in their explanation of the formula:

�The time integral in the exponent of (1.42) goes from 0 to t as determined
by our choice of what transition function to compute; in all other respects this
formula is manifestly Lorentz invariant.� [79, p. 282/283]

In other words: the formula (1.42) is not Lorentz invariant. This is evident from the fact
that a single time t cannot be su�cient to characterize a multi-particle quantum theory.
Of course, the lack of Lorentz covariance is inherent to the formulation of the problem,
namely the search for the single-time evolution operator e−iHt.

Conclusion: We have seen that (if mathematically well-de�ned) the path integral yields
Lorentz covariant scattering statistics. However, �nite time evolution seems to require11

a distinguished time coordinate t. The notion of time evolution is thus similar to (and
similarly problematic as in) the single-time Schrödinger picture.

Of course, this criticism concerns only the usual approaches found in textbooks. The
next paragraph sketches how the new dynamical principle of �g. 1.1 might be obtained by
a path integral for the multi-time propagator.

1.1.3.4 Outlook: multi-time path integrals

One may wonder whether the problems with the Lorentz invariance for �nite time evolution
can be overcome by using many times also for the path integral, similarly to the way the
multi-time Schrödinger picture solves the problems of the single-time Schrödinger picture.

Consider the Hamiltonian multi-time system (1.16) for an N -particle wave function
ψ(x1, ..., xN ). As will be shown in sec. 1.2, in certain situations the solution of (1.16) can
be obtained by letting the operator

U(t1, ..., tN ) := e−iH1t1 · · · e−iHN tN (1.43)

act on initial data ψ0 at t1 = · · · = tN = 0. U then contains all dynamics. It satis�es the
multi-time equations, i.e.

i
∂

∂tk
U(t1, ..., tN ) = HkU(t1, ..., tN ), k = 1, ..., N. (1.44)

Furthermore, it is completely characterized by its position representation

〈y1, ...,yN |U(t1, ..., tN )|x1...xN 〉. (1.45)

In the non-interacting case12, the operators Hk can be regarded as acting only on the
tensor factor of Hilbert space associated with the k-th particle. Denote the corresponding
operators on the single-particle Hilbert space by H̃k. Then (1.45) becomes

〈y1|e−iH̃1t1 |x1〉 · · · 〈yN |e−iH̃N tN |xN 〉. (1.46)

11Extensive literature research in standard textbooks on path integrals such as [62, 85] con�rms that no
Lorentz invariant treatment of �nite multi-particle time evolution via the path integral seems to exist.

12As will be shown in sec. 1.2.1.2, this may be more or less the only possibility for Hamiltonian multi-time
systems.
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For suitable Hamiltonians Hj , j = 1, ..., N each factor 〈yk|e−iH̃ktk |xk〉 has its own single-
particle path integral representation. It will be Lorentz invariant if the partial Hamiltonians
Hk are suitably chosen.

This train of thought shows that there is hope to express relativistic (multi-time) prop-
agators by path integrals. The problems with Lorentz invariance thus need not be inherent
in the path integral formalism. However, the usual path integral approaches do not take
this way. We think that a suitably constructed multi-time path integral formalism would
be equivalent to the Heisenberg and multi-time Schrödinger pictures, at least for a Hamilto-
nian theory. The common dynamical structure then is the unitary time-evolution operator
U(t1, ..., tN ), the subject of the next section.

We have thus seen that all major and genuinely relativistic approaches to quantum physics
involve a multi-time wave function or are related to it. This suggests the systematical study
of its evolution equations.

1.2 Multi-time evolution equations

In this section, we give an overview of various possibilities for multi-time evolution equa-
tions. This is most naturally done in the Schrödinger picture. For simplicity and for
conceptual clarity, we focus on the case of N directly interacting particles. Firstly, we
summarize mathematical results relevant for the class of Hamiltonian evolution equations
introduced in sec. 1.1.1.2. Secondly, we discuss a no-go theorem for interaction potentials
by Petrat and Tumulka. The conceptual implications are drawn and several alternative
mechanisms for interactions are pointed out, some of which will be analyzed in detail in
the following chapters.

1.2.1 Hamiltonian multi-time equations

We now return to the class of Hamiltonian evolution equations introduced in sec. 1.1.1.2,
eq. (1.16). Its study is important because of several reasons: (a) It is the one proposed
historically by Dirac [38] and further analyzed by Bloch [20] and Tomonaga [96]. (b) It
is the only one for which precise and general results on the existence and uniqueness of
solutions are available. (c) It straightforwardly generalizes the functional-analytic way of
understanding time evolution as a unitary group on a Hilbert space.

1.2.1.1 Existence and uniqueness theorems

The main idea is to regard the partial Hamiltonians Hj in

i∂tjψ(t1,x1, ..., tN ,xN ) = Hjψ(t1,x1, ..., tN ,xN ), j = 1, ..., N (1.47)

as self-adjoint operators on Hilbert space H = L2(R3N )⊗S where the spin space S is given
by S = Ck for some k ∈ N.
The multi-time wave function is then viewed as a map

ψ : RN → H, (t1, ..., tN ) 7→ ψ(t1, ..., tN ). (1.48)
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Given initial data
ψ(0, ..., 0) = ψ0, (1.49)

where ψ0 ∈ H, one aims at obtaining the corresponding solution of the initial data problem
via

ψ(t1, ..., tN ) = U(t1, ..., tN )ψ0, (1.50)

where U(t1, ..., tN ) was de�ned in eq. (1.43). The following theorem by Reed and Simon
[82, thm. VIII.12] on unitary N -parameter groups (slightly abbreviated here) shows when
exactly this idea works.

Theorem 1.2.1 (Reed/Simon) Let t → U(t) = U(t1, ..., tN ) be a strongly continuous

map of RN into the unitary operators on a separable Hilbert space H satisfying U(t + s) =
U(t)U(s) and U(0) = Id. Let D be the set of �nite linear combinations of vectors of the

form

ϕf =

∫
RN

f(t)U(t)ϕdt, ϕ ∈ H, f ∈ C∞0 (RN ). (1.51)

Then D is a domain of essential self-adjointness for each of the generators Hj of the one-

parameter subgroups U(0, ..., 0, tj , 0, ..., 0), each Hj: D → D and the Hj commute, j =
1, ..., N .

Corollary 1.2.2 There exists a strongly continuous unitary N -parameter group U(t1, ..., tN )
if and only if all generators Hj of the one-parameter subgroups U(0, ..., 0, tj , 0, ..., 0) are self-
adjoint on a common domain D and commute pairwise (in the spectral sense), i.e.

[Hj , Hk] = 0 ∀j, k. (1.52)

Proof: �⇒�: See thm. 1.2.1.
�⇐�: As every Hk is self-adjoint, we can de�ne a strongly continuous unitary N -parameter
group U(t) by eq. (1.43). The commutability and the common domain of the generators
Hk ensure the well-de�nedness of U(t). �

Corollary 1.2.3 There exists a unique H-valued solution ψ of the Hamiltonian multi-time

equations (1.47) with initial data (1.49) and conserved norm if the requirements of corollary

1.2.2 are satis�ed.

Proof: As U(t) is strongly continuous one can di�erentiate with respect to tj to obtain
the generator Hj . The multi-time equations are satis�ed because U(t)D = D and thus for
ψ0 ∈ D, we have ψ(t) ∈ D. (If the domains of the Hk were di�erent, it could happen that
e−iHkt does not leave the domain D(Hj) for j 6= k invariant.)
The solution is unique and has conserved norm because of the unitarity of U(t). �

Remarks:

1. Note that the norm (and thus the Hilbert space) is not independent of the form of
the wave equation. Presupposing a special norm, as necessary when one wants to
view the Hilbert space as primary, may thus unreasonably restrict the set of possible
wave equations. We therefore advocate the view of the wave equation as primary and
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the Hilbert space formalism as secondary. The question of the adequate probability
density, currents and their relation to the wave equations as well as the Hilbert space
formalism will be analyzed comprehensively in sec. 1.3.

2. The consistency condition (1.52) of the commutability of the partial Hamiltonians is
of crucial importance to determine the consequences of the Hamiltonian viewpoint
for the interaction terms in multi-time equations. It expresses that it should not
matter in which order one time-evolves the initial wave function ψ0 in the various
time coordinates, �rst in the tj-direction and then in the tk-direction or the other
way around. In other words, the following diagram has to commute:

ψ(0, 0)
e−iHjtj−−−−−→ ψ(tj , 0)

e−iHktk

y ye−iHktk
ψ(0, tk)

e−iHjtj−−−−−→ ψ(tj , tk).

(1.53)

3. Note also that the partial Hamiltonians Hk have to be self-adjoint on a common

domain. This is new compared to the results of Petrat and Tumulka [80] who as-
sume the partial Hamiltonians to be de�ned on the whole of H (and therefore to be
bounded). The common domain of self-adjointness plays a decisive role for the ques-
tion of whether it is possible to formulate zero-range interactions in the functional-
analytic framework (see chap. 3).

In the setting of eq. (1.47), the partial Hamiltonians are supposed to be �xed, i.e. time-
independent operators. This is, of course, not su�cient to discuss Lorentz covariant inter-
action terms, added to the partial Hamiltonians H free

j of the free theory, i.e.

Hj = H free
j + Vj(x1, ..., xN ), (1.54)

because the Vj have to contain space and time variables on a symmetric basis. In order to
treat terms of this kind, we quote a theorem of Petrat and Tumulka [80, thm. 2].

Theorem 1.2.4 (Petrat/Tumulka) Let H be a Hilbert space, and let H1, ...,HN be smooth

functions on RN with values in the bounded (symmetric) operators of H. Then the system

(1.47) possesses a solution ψ : RN → H for every initial condition ψ(0, ..., 0) ∈ H if and

only if

[i∂tj −Hj , i∂tk −Hk] = 0 ∀j, k. (1.55)

Remarks:

1. The boundedness of the operators is, of course, unrealistic. This is a technical as-
sumption which was used in [80] only to simplify the proof. As the assumption is
not essential for the proof, we expect with Petrat and Tumulka that a similar theo-
rem holds also for unbounded Hj 's with values in a set of self-adjoint operators with
common domain D.

2. Non-Hamiltonian evolution equations are not covered by thm. 1.2.4, even if they can
be written in �rst order form. General theorems which do not require the Hamiltonian
setting of a unitary group (or propagator) on a �xed Hilbert space do not exist yet
(to the best of our knowledge).
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1.2.1.2 A no-go theorem for potentials

As we shall see now, the consistency condition (1.55) rules out certain types of interaction
potentials. The following theorem collects the results of [80, thms. 3-6].

Theorem 1.2.5 (Petrat/Tumulka) Let H = L2(R3N ) ⊗ Ck. Suppose Hj = HDirac
j +

Vj(x1, ..., xN ) where HDirac
j is the free Dirac Hamiltonian (1.17) acting on xj and on the

j-th spin index, and Vj : R4N → M(R4N ,R4N ) is a smooth function with values in the

symmetric matrices acting only on the spin index of the j-th particle. Then the consistency

condition (1.55) is satis�ed if and only if the evolution (1.47) is gauge-equivalent to a non-

interacting one, i.e. there is a smooth real-valued function θ(x1, ..., xN ) and there exist, for

every j ∈ {1, ..., N}, smooth matrix-valued functions Ṽj(xj) : R4 → M(R4N ,R4N ) (also

acting only on the spin index of the j-th particle) such that

ψ̃(x1, ..., xN ) := eiθ(x1,...,xN )ψ(x1, ..., xN ) (1.56)

satis�es the equations

i∂tj ψ̃ =
[
HDirac
j + Ṽj(xj)

]
ψ̃, j = 1, ..., N. (1.57)

Remarks:

1. Theorem 1.2.5 remains valid for a multi-time system (1.47) on the space-like con�g-
urations S [80].

2. The assumption that Vj only acts on the spin index of the j-th particle is important
for the proof of the theorem. However, the interaction terms in the Hamiltonian of
the semi-relativistic Breit equation, including for example

∑3
a=1 γ

0
j γ

a
j γ

0
kγ

a
k/|xj − xk|,

are not of this form [22]. More precisely, assuming the form of the interaction
terms in thm. 1.2.5, one cannot recover such terms by considering i∂tψ(t, ..., t) =∑N

j=1Hjψ(t, ..., t). Furthermore, the assumed form of the potentials cannot be made
more plausible, either, by the self-consistent assumption13 that the Dirac current
ψγµ1

1 · · · γ
µN
N ψ should be conserved. (This assumption only leads to the requirement

that Vj has to commute with γ0
kγ

i
k for j 6= k which, for example, still allows Vj

to depend on γ5
k = iγ0

kγ
1
kγ

2
kγ

3
k .) Nevertheless, we strongly doubt that the remain-

ing possibilities for potentials could lead to both consistent dynamics and physically
adequate interactions.

3. The supposed impossibility of potential terms is not surprising for two more reasons.
(a) Potentials are generally not regarded compatible with relativity and famous ones
like the Breit or Coulomb potential are not Lorentz invariant, either. (b) Assuming
the form (1.54), one would like to choose the potential terms Vj in such a way that
they sum up to the corresponding single-time Hamiltonian (1.20). However, the exact
distribution of these terms is then ambiguous (see also [80, sec. 1.4]). Furthermore,
adding a Breit interaction term as above breaks the covariance of the multi-time
equations solely because of the matrix structure.

13Note that the notion of a H-valued solution, H = L2(R3N ) ⊗ Ck, with conserved L2-norm requires a
conserved tensor current jµ1...µN

ψ to exist (see sec. 1.3), with j0...0
ψ = ψ†ψ. A natural choice which satis�es

this requirement is the Dirac current jµ1...µN
ψ = ψγµ1

1 · · · γ
µN
N ψ.
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4. Theorem 1.2.5 bears some similarity with the so-called �no-interaction-theorem� by
Currie, Jordan and Sudarshan [35] in that it rules out a certain mechanism for rel-
ativistic interactions. Assuming canonical quantization rules, generalized versions of
the �no-interaction-theorem� may also have signi�cance for interaction potentials in
multi-time wave equations (see [27]). However, even then the �no-interaction-theorem�
would only be valid for Klein-Gordon-like multi-time equations. Theorem 1.2.5 comes
closer to the natural situations.

Conclusion: Together with the previous points, theorem 1.2.5 suggests that, at least for
N directly interacting particles, the separable and Hamiltonian view that one can time-
evolve a wave function separately in each time coordinate is too naive and too restrictive.
The separate existence of the operators e−iHjtj is also implausible from two further points
of view:

1. Let q ∈ S be a space-like con�guration and ψ0 ∈ H. Then for any tj > 0,
e−iHjtjψ0(q) = ψ(q′) with q′ /∈ S . In other words, e−iHjtj does not respect the
natural domain for multi-time wave functions (see sec. 1.1.1.2).

2. Relatedly, it is hard to imagine how the conservation of
∫
d3Nxψ†ψ(t1,x1, ..., tN ,xN )

for all t1, ..., tN , which is implied by the existence of the unitary N -parameter group
U(t) for the case H = L2(R3N )⊗ Ck, could attain physical signi�cance. The reason
for this is that crossing probabilities of time-like trajectories can in general only be
de�ned for space-like hypersurfaces (see also sec. 2.1).

In view of the implausibility of the existence of the partial time evolution operators e−iHjtj

and the fact that they do not respect the natural domain S for multi-time wave functions,
one should aim only for a time evolution between space-like hypersurfaces. This option
was �rst suggested by Tomonaga [96] in a QFT context, building on results by Bloch [20]
who showed that a multi-time QED model of Dirac, Fock and Podolsky [40] was only
consistent in the sense of eq. (1.55) on the set of space-like con�gurations (disregarding UV
divergencies). The view that a multi-time wave function should only be de�ned on S (or
S ) has also been advocated by Petrat and Tumulka [80,81]. We shall adopt this view from
now on. However, according to point 1 in the remark after thm. 1.2.5, the restriction to S
alone does not help to �nd consistent potentials. The question of alternative mechanisms
for relativistic interactions arises.

1.2.2 Alternative mechanisms of interaction

The above-mentioned situation constitutes the starting point for the present thesis. One
can think of various options of how to modify the Hamilonian multi-time setting of eq.
(1.47) of con�guration space-time R4N (in order of radicality):

1. One can introduce (quantum) �elds in addition to the particles and allow for a variable
particle number. This is the usual way, and it has been studied to great extent,
although usually not as a multi-time theory. Recall, however, from the introduction
that QED was initially formulated as a multi-time theory by Dirac, Fock, Podolsky,
Bloch, Tomonaga and Schwinger [20,40,93,96]. More recently, a multi-time emission-
absorption model involving two di�erent species of particles was presented in [81]. The
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main conceptual problem of all these QFT models is that up to now no satisfactory
method14 has been found to avoid the UV divergencies.

2. In the 1+1-dimensional case, the domain S together with an appropriate relativistic
notion of probability conservation (see sec. 1.3) naturally leads to boundary condi-
tions on the set of coincidence points in space-time. This includes the possibility of
relativistic contact interactions, an idea which will be analyzed in chaps. 3 and 4.

3. Besides the domain R4N , also the possibility of a division between space and time
derivatives such as in (1.47) is unnatural, or at least unnecessary. It can be relaxed
by allowing higher time derivatives in the equations (but still assuming that only
di�erential operators occur in the equations). If the time derivatives are of in�nite
order, one cannot reformulate the equations in the Hamiltonian way. (For �nite order
PDEs, this may be possible by introducing new variables for the time derivatives.) In
this case, one does not expect a Cauchy data initial value problem anymore and one
has to leave the well-explored mathematical territory. An example for this option,
the Two-Body Dirac equations, will be analyzed in chap. 5.

4. One can consider integral or integro-di�erential equations such as the Bethe-Salpeter
(BS) equation [87], [55, chap. 6]. The BS equation is indeed an equation for a multi-
time wave function, describing two directly interacting particles. Apart from UV di-
vergencies it does, however, encounter problems with negative-�norm� states (see [76]).
Besides, because of the unusual mathematical structure, the question of appropriate
initial data is normally ignored.
Note that the option of integro-di�erential equations is put forward by the analogy
with Wheeler-Feynman (WF) electrodynamics [101, 102]. This theory reformulates
classical electrodynamics in terms of directly interacting particles, thereby avoiding
the problems with self-interaction and UV-divergencies. It is, however, very challeng-
ing from a mathematical point of view and little is known about the existence and
uniqueness theory. Because of this fact and the additional di�culty that there exists
no clear and convincing (not to mention canonical) strategy to extend WF electrody-
namics to the quantum case, despite attempts in this direction [4, 36, 60], the option
of integral and integro-di�erential equations lies beyond the scope of this thesis.

5. Finally, there are suggestions in the literature to formulate equations for a multi-
time wave function only on a distinguished foliation of space-time (see [4], [37, chap.
8]). However, these approaches do not seem compatible with a serious understanding
of Lorentz invariance (compare Bell [13]), and we do not consider them here. Note,
however, that this option may seem attractive to a proponent of the Lorentz-Poincaré
view on special relativity (see [25]).

Remark: Note that for points 3-5, one cannot expect on a priori grounds that the (multi-
time) Schrödinger and Heisenberg pictures are equivalent, as the equal-time evolution oper-
ator e−iHt, which is evidently an element of the Hamiltonian theory, need not exist anymore.

14We regard renormalization as a way to extract partial information from the theory despite the oc-
currence of UV divergencies. In our view, it represents a circumvention rather than a solution of the
second-class di�culties.
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For point 1, the equivalence is evident. For point 2, one also expects a time evolution map
analogous to e−iHt to exist, as the equal-time hypersurfaces in a distinguished frame are a
subclass of the space-like hypersurfaces (between which the time evolution exists).

1.2.3 Single-time reducible theories

The above-mentioned possibilities show that besides restrictions, multi-time theories also
provide new possibilities to formulate a relativistically interacting theory. In order to better
grasp these possibilities, we introduce the following (informal) terminology. A multi-time
theory is called single-time reducible if and only if the following procedures yield the same
set of solutions:

1. restricting the theory (multi-time equations, boundary conditions etc.) to equal times
and then solving the resulting single-time theory, and

2. solving the full multi-time theory and restricting the solution to equal times.

Evidently, a multi-time theory can only be single-time irreducible if it cannot be formulated
as a single-time theory. It is then understood that a single-time theory can only be obtained
by making certain approximations, such as replacing light cones with simultaneity surfaces
(see the appendix).

Examples:

1. Hamiltonian multi-time theories are single-time reducible and the corresponding single-
time theory is also Hamiltonian, with H given by eq. (1.20).

2. The 1 + 1-dimensional model of chap. 3 with boundary conditions at the set of coin-
cidence points is single-time reducible but not Hamiltonian.

3. The Two-Body Dirac equations, which will be discussed in chap. 5, are single-time
irreducible because they contain arbitrary powers of the total momentum operator
and furthermore mix the time derivatives and spin components of the two particles.

4. The Bethe-Salpeter theory is also single-time irreducible because it involves convo-
lutions of relativistic propagators with the multi-time wave function. The respective
integrals cannot be reduced to simultaneous integrations in any frame. This fact is
particularly evident in the position space formulation of the BS equation (see [55,
chap. 6]).

Note that certain classes of single-time reducible multi-time theories can be treated by an
inductive method developed by Petrat and Tumulka [80, sec. 7.2]. This requires the multi-
time wave equations to have �nite propagation speed. Furthermore, the solution theory
of the corresponding single-time equation has to be known (which is taken for granted
in [80]). The important case of Dirac particles is thus included (depending, of course, on
the interaction terms).
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On the conceptual value of single-time irreducible theories: Single-time irre-
ducible theories are particularly interesting from a conceptual point of view because they
fully use the freedom provided by the space-time formulation. As insisted on by White-
head [103, chap. VIII], the role of laws in relativistic space-time is not (a) to characterize
the change of the physical state from one space-like hypersurface to another but rather
(b) to determine the overall spatio-temporal form of the physical structures. Of course,
possibility (a) is an example for possibility (b). Whitehead makes the point that (a) is
neither necessary nor natural from a relativistic standpoint.

However, so far no realistic theory of this kind has been studied mathematically in a
comprehensive way, even though with Wheeler-Feynman electrodynamics and the Bethe-
Salpeter equation there do exist prominent examples and research is ongoing [7�9, 37, and
references therein]. As multi-time theories per se provide their own challenges and as
little is known about them yet, we do not attempt to systematically analyze single-time
irreducible multi-time equations here, even though this might well turn out necessary for
the formulation of a realistic and mathematically consistent quantum theory. We will,
however, make �rst steps in this direction by digressing from the Hamiltonian point of view
in chap. 3 and furthermore by considering the Two-Body Dirac equations.

Note that �eld theory, while also o�ering new possibilities for the formulation of multi-
time theories [40, 81, 93, 96], can (as emphasized by Feynman in his Nobel lecture) be
considered an attempt to enforce the Hamiltonian method and therefore, in the sense of
Whitehead, the �non-relativistic� way of thinking about laws of motion.

�From the overall space-time view of the least action principle, the �eld dis-
appears as nothing but bookkeeping variables insisted on by the Hamiltonian
method.�

Feynman [52]

1.3 Tensor currents, probability conservation and Hilbert spaces

Recall that the statistical meaning of the wave function in non-relativistic QM is based on
the fact that ρ = |ψ|2 and j = 1

m Imψ∗∇ψ satisfy a continuity equation. Therefore, the
understanding that

∫
d3Nq ρ(q) is the probability for the N -particle con�guration to be

somewhere in con�guration space at time t is consistent.
It is clear that this central physical understanding, around which the mathematical

Hilbert space formalism is built, has to be generalized in a multi-time context. This is
the subject of the present section. The justi�cation of the statistical meaning of the wave
function is postponed till chap. 2. Parts of this section are based on the present author's
papers [68, sec. 2.2] and [67, sec. 4.2].

1.3.1 Tensor currents and continuity equations

Before de�ning the framework, note that the question of conserved currents and densities
is not independent of the considered type of multi-time evolution equations. The ideas
are motivated by Hamiltonian evolution equations but also apply to more general types
of di�erential equations on S (see points 1-3 in sec. 1.2.2). Whether an extension of the
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ideas is possible also for multi-time integral or integro-di�erential equations is yet to be
investigated.

The main assumption on which the rest of this section is based, is the existence of a
positive-de�nite tensor current15 jµ1...µN

ψ (x1, ..., xN ) as a function of the wave function. It
is supposed to satisfy N continuity equations

∂k,µkj
µ1...µk...µN
ψ (x1, ..., xN ) = 0, k = 1, ..., N. (1.58)

These continuity equations are assumed to follow from the multi-time evolution equa-
tions. Indeed, it can be considered the main role of the multi-time equations to provide
a divergence-free jψ. For example, for the free multi-time N -particle Dirac theory (1.18),
one has:

jµ1...µN
ψ (x1, ..., xN ) = ψ(x1, ..., xN )γµ1

1 · · · γ
µN
N ψ(x1, ..., xN ), (1.59)

where ψ = ψ†γ0
1 · · · γ0

N . The positive component of jψ then is j0...0
ψ = ψ†ψ, i.e. the usual

|ψ|2-density.
As will be shown in chap. 2, the adequate crossing probability density ρΣ for a space-like

hypersurface with normal covector �eld n(x) is given by

ρΣ(x1, ..., xN ) = jµ1...µN
ψ (x1, ..., xN )nµ1(x1) · · ·nµN (xN ). (1.60)

Another example for jψ is the tensor current of the free multi-time Klein-Gordon theory
(1.19) (see also [84, sec. 1B]):

jµ1...µN
ψ (x1, ..., xN ) = ψ∗(x1, ..., xN )(i

↔
∂
µ1

1 ) · · · (i
↔
∂
µN

N )ψ(x1, ..., xN ), (1.61)

where f(x1, ..., xN )
↔
∂ j,µj g(x1, ..., xN ) := f(x1, ..., xN )∂j,µjg(x1, ..., xN )−[∂j,µjf(x1, ..., xN )]g(x1).

Note that similarly to the one-particle KG theory (see e.g. [92, chap. 3]) the KG current
(1.61) can become negative. It thus cannot describe the crossing statistics of time-like
trajectories on space-like hypersurfaces.

Remarks:

1. Even though the existence of jψ may seem only a minimal operational requirement,
it is in fact su�cient to formulate a full realistic quantum theory (see chap. 2).

2. The functional form of the tensor currents depends on the form of the multi-time
equations and is not given a priori. A modi�ed probability density also has impact
on the predictions for experiments, for example for transition rates. In fact, such a
situation will be encountered for the Two-Body Dirac equations (see chap. 5).

3. The tensor currents may not be unique. Given a jψ which satis�es (1.58), one can
for example add a term with zero four-divergence in the various particle coordinates
and obtain another possible choice of the current. It is a matter of physics to select
the right current. Symmetry and limiting considerations may help in this respect.

15Similar tensor currents have been used in [42,84,90].
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1.3.2 Probability conservation

We now give a plausibility argument for the form of the probability density (1.60) by
generalizing the non-relativistic notion of probability conservation for arbitrary space-like
hypersurfaces, making use of the tensor current jψ.

Let d denote the number of spatial dimensions. Our starting point is the usual non-
relativistic notion of probability conservation, expressed via a single-time wave function
ϕ: ∫

ddx1 · · ·
∫
ddxN |ϕ|2(x1, ...,xN ; t) = 1, independently of t. (1.62)

Using the connection (1.9) between single-time and multi-time wave functions ψ, this equa-
tion reads:∫

ddx1 · · ·
∫
ddxN |ψ|2(t,x1, ..., t,xN ) = 1, independently of t. (1.63)

We now identify |ψ|2 = ψ†ψ as the component j0...0
ψ of the Dirac tensor current (1.59) and

rewrite eq. (1.63) as a hypersurface integral, making the geometric structure explicit:∫
Σt

dσ(x1) · · ·
∫

Σt

dσ(xN ) j0...0
ψ (x1, ..., xN ) = 1, independently of t, (1.64)

where Σt := {(τ,x) ∈ R1+d : τ = t}.
It is now easily recognized that a special family of hypersurfaces, the equal time sur-

faces Σt in a distinguished Lorentz frame, are used in the non-relativistic formulation.
This �aw can be overcome by demanding the corresponding condition for all space-like
hypersurfaces16 Σ. Let n denote the normal covector �eld at Σ. We propose the following
condition17:∫

Σ
dσ1(x1) · · ·

∫
Σ
dσN (xN ) nµ1(x1) · · ·nµN (xN ) jµ1...µN

ψ (x1, ..., xN ) = 1, independently of Σ.

(1.65)
This is justi�ed as follows. Firstly, the condition is completely geometric and does not
attribute signi�cance to a special class of space-like hypersurfaces. Secondly, for Σt one has
n ≡ (1, 0, ..., 0), so eq. (1.65) correctly reduces to eq. (1.64). Thirdly, the meaning of eq.
(1.65) as expressing probability conservation can be established rigorously by a relativistic
Bohmian analysis (see chap. 2).

In the case of a domain Ω ⊂ RN(1+d) with boundary, such as S , one should restrict the
range of integration to values in the domain and use the condition∫

ΣN∩Ω
dσ1(x1)∧· · ·∧dσN (xN ) nµ1(x1) · · ·nµN (xN ) jµ1...µN

ψ (x1, ..., xN ) = 1, indpt. of Σ.

(1.66)
It is clear that eqs. (1.65), (1.66) can be used for arbitrary positive-de�nite tensor currents
jψ, not just for the Dirac current. An example for tensor currents which di�er from the
Dirac current will be encountered in chap. 5.

16We generally assume that space-like hypersurfaces are smooth and possess a normal covector �eld at
every point.

17A related idea was used in [37, p. 163] to de�ne N -particle Hilbert spaces associated with a space-like
hypersurface Σ.
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1.3.3 The current form ωj

In order to obtain a completely geometric formulation of probability conservation, we rec-
ognize

ωj(x1, ..., xN ) := dσ1(x1) ∧ · · · ∧ dσN (xN ) nµ1(x1) · · ·nµN (xN ) jµ1...µN
ψ (x1, ..., xN ) (1.67)

as an Nd-form18. It will be referred to as the current form in the following.
For applications involving the current form on concrete domains such as S , it is useful

to have an expression for ωj in terms of the coordinate di�erentials dxµi (see chap. 3). To
this end, we make use of the results [63, p. 435]:

dσi(xi) =
d∑

µ=0

(−1)µnµ(xi) dx
0
i ∧ · · · d̂x

µ
i · · · ∧ dx

d
i , (1.68)

nµ dσi = (−1)µ dx0
i ∧ · · · d̂x

µ
i · · · ∧ dx

d
i , (1.69)

where d̂xµi denotes omission from the wedge product. Using eq. (1.69) in the expression for
ωj , we obtain:

Lemma 1.3.1 1. The current form can be rewritten as

ωj :=
d∑

µ1,...,µN=0

(−1)µ1+···+µN jµ1...µN
ψ (dx0

1 ∧ . . . d̂x
µ1
1 · · · ∧ dx

d
1)

∧ · · · ∧(dx0
N ∧ . . . d̂x

µN
N · · · ∧ dx

d
N ) (1.70)

2. Probability conservation on domains Ω ⊂ RN(1+d) with boundary is expressed by the

following condition on the current form:∫
ΣN∩Ω

ωj =

∫
(Σ′)N∩Ω

ωj (1.71)

for all pairs of space-like hypersurfaces Σ,Σ′.

The continuity equations for j yield:

Lemma 1.3.2 The exterior derivative of ωj vanishes, i.e. dωj = 0.

Proof:

dωj =

d∑
µ1,...,µN=0

(−1)µ1+...+µN∂1,µ1j
µ1...µN
ψ (−1)µ1dx0

1 ∧ · · · ∧ dxd1 ∧ · · · ∧ dx0
N ∧ · · · d̂x

µN
N · · · ∧ dx

d
N

+ ...+

d∑
µ1,...,µN=0

(−1)µ1+...+µN∂N,µN j
µ1...µN
ψ dx0

1 ∧ · · · d̂x
µ1
1 · · · ∧ dx

d
1

∧ · · · ∧ (−1)d(N−1)+µNdx0
N ∧ · · · ∧ dxdN

eq.(1.58)
= 0. � (1.72)

This result will allow us to relate the hypersurface integrals in (1.71) using Stokes' theorem
(see chap. 3).

18See [51, chap. 16.1] for a similar idea for the non-relativistic case.
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1.3.4 Hilbert spaces

We now show how adequate N -particle Hilbert spaces H(N)
Σ associated with space-like

hypersurface Σ arise naturally as a byproduct of the tensor currents. Let

H(N)
Σ :=

(
L2(ΣN )⊗ Ck, 〈·, ·〉Σ

)
. (1.73)

An appropriate scalar product 〈·, ·〉Σ can be de�ned if there exists a sesquilinear form of
two wave functions which generalizes the tensor current jψ, i.e. if there exists

jµ1...µN [ψ1, ψ2](x1, ..., xN ) with ∂k,µkj
µ1...µk...µN [ψ1, ψ2](x1, ..., xN ) = 0, k = 1, ..., N

(1.74)
for all solutions ψ1, ψ2 of the multi-time equations, and with

jµ1...µN [ψ,ψ] = jµ1...µN
ψ . (1.75)

For the free multi-time Dirac theory, we have:

jµ1...µN [ψ1, ψ2](x1, ..., xN ) = ψ1(x1, ..., xN )γµ1
1 · · · γ

µN
N ψ2(x1, ..., xN ). (1.76)

Then the natural choice19 for the scalar product is given by:

〈φ, χ〉Σ :=

∫
ΣN

dσ(x1)∧· · ·∧dσ(xN ) jµ1...µN [φ, χ](x1, ..., xN )nµ1(x1) · · ·nµN (xN ). (1.77)

One can easily verify that for j[ψ1, ψ2] given by (1.76) the scalar product reduces to the
familiar expression 〈φ, χ〉Σt =

∫
d3x1 · · · d3xN φ

†χ for an equal-time hypersurface Σt.
Furthermore, the scalar product has physical meaning by its connection with ρΣ from

eq. (1.60). This can be seen as follows: De�ne

‖ψ‖Σ :=
√
〈ψ,ψ〉Σ. (1.78)

Let A ⊂ ΣN and let 1A denote the indicator function of the set A. If ‖ψ‖Σ = 1, then by
eq. (1.60), ‖1Aψ‖2Σ yields the probability for a spatio-temporal con�guration of N particles
on Σ to be in A (see chap. 2 for a justi�cation of the claim).

We note that a similar expression for the scalar product was suggested by Rizov, Sazd-
jian and Torodorov [84,90]. They de�ne:

(φ, χ) :=

∫
Σ1

dσ(x1) · · ·
∫

ΣN

dσ(xN ) jµ1...µN [φ, χ](x1, ..., xN )nµ1(x1) · · ·nµN (xN ). (1.79)

The crucial di�erence to eq. (1.77) is that Rizov et al. allow the space-like hypersurfaces
Σk, k = 1, ..., N to be di�erent. This is problematic because according to the argument in
sec. 1.1.1.2, a multi-time wave function is naturally only de�ned on the set S of space-
like con�gurations. However, an element of Σ1 × · · · × ΣN is in general not a space-
like con�guration. Furthermore, there is no reason why then

√
(ψ,ψ) should be equal to

19Note that the natural range of integration is ΣN ∩S , expressing that the particles are always within
the domain. However, as will be shown in sec. 3.8, for d > 1 the di�erence to (1.77) is only a zero-measure
set.
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unity. This is because a crossing probability ρΣ can in general only be de�ned on sets of
the form ΣN . The physical reason for this is that a time-like con�guration may actually
correspond to two points on the world-line of the same particle. Besides these physical
arguments, the mathematical consistency of the multi-time equations (1.55) on the whole
of R4N may lead to very restrictive conditions on the possible operators Hi, e.g. excluding
a multi-time formulation of QED models which (disregarding UV divergencies) is possible
on S [20, 81,96].

Time evolution between space-like hypersurfaces: Returning to the Hilbert spaces
H(N)

Σ , we can understand multi-time evolution equations on S to de�ne a unitary evolution
between di�erent space-like hypersurfaces Σ,Σ′ as follows (see also [81]). Denote by ψ|Σ
the restriction of a solution of the multi-time equations to Σ. Then

UΣ→Σ′ : H(N)
Σ → H(N)

Σ′ , ψ|Σ 7→ ψ|Σ′ (1.80)

de�nes a map with ‖ψ|Σ‖Σ = ‖UΣ→Σ′ψ|Σ′‖Σ′ = ‖ψ|Σ′‖Σ′ . This way of formulating the
time evolution puts the multi-time system of equations in the foreground and yields the
Hilbert space picture as a byproduct. Note that reversing the train of thought and �rst
de�ning Hilbert spaces H(N)

Σ and the map UΣ→Σ′ does not in general yield a multi-time
wave function on S (which may be necessary for a consistent physical meaning, see chap.
2). This can be seen as follows: Pick two space-like hypersurfaces Σ 6= Σ′ with Σ∩Σ′ 6= ∅.
Then the Hilbert spaces H(N)

Σ and H(N)
Σ′ are essentially di�erent and for φ ∈ H(N)

Σ one may
have φ(q) 6= (UΣ→Σ′φ)(q).

The connection to the Hilbert space setting for the Schrödinger equation is given by re-
stricting to equal-time hypersurfaces Σt in a distinguished frame and identifying all Hilbert
spaces H(N)

Σt
for di�erent t [81]. This is possible for �at hypersurfaces without changing the

scalar product. Also, because of this identi�cation, the above-mentioned problem cannot
occur because trivially there do not exist t 6= t′ with Σt ∩ Σt′ 6= ∅.

Remark: One should only expect an evolution map UΣ→Σ′ to exist for multi-time evolu-
tion equations with a Cauchy data initial value problem. Out of the alternatives sketched
in sec. 1.2.2, points 1 and 2 fall into this category, 3-5 do not.

1.3.5 Probability conservation implies uniqueness of solutions

This subsection is based on the article [69, sec. 4.3] by Lukas Nickel and the present author.

The notion (1.65) of probability conservation is quite powerful. In this section, we show
that

∫
ΣN∩Ω ωj is a so-called energy integral and that therefore probability conservation

implies uniqueness of solutions in a suitable sense.
Let Σ be a space-like hypersurface and let Ω ⊂ R4N the domain of the multi-time wave

function. We de�ne function spaces

H(N)
Σ (Ω) := L2(ΣN ∩ Ω)⊗ Ck. (1.81)

These function spaces slightly generalize the previous H(N)
Σ by allowing for domains with

boundaries.
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Furthermore, we call the solution of multi-time evolution equations20 (with possible
additional conditions such as boundary conditions) weakly unique if and only if for every
two solutions ψ,ϕ and every space-like hypersurface Σ the restrictions ψ|Σ , ϕ|Σ of ψ,ϕ to

arguments in ΣN ∩ Ω are equal as elements of H(N)
Σ (Ω).

In the concrete applications in chaps. 3 and 4, we will deal with classical, i.e. di�eren-
tiable solutions. Then �weakly unique� simply means that the solutions are equal point-wise.
In general, a more abstract (weak) understanding of a �solution� is conceivable, such as in
sec. 1.2.1.1.

Theorem 1.3.3 Let Σ0 be a space-like hypersurface. Consider multi-time evolution equa-

tions which imply a conserved tensor current jψ (1.58), with boundary conditions ensuring

probability conservation (1.71) and initial values21 on I = (Σ0)N ∩ Ω, i.e. ψ|I ≡ g ∈
H(N)

Σ0
(Ω). Then its solution is weakly unique.

Proof: Consider the expression

‖φ‖2Σ :=

∫
ΣN∩Ω

ωj(φ), (1.82)

where ωj(φ) is the current form constructed from jφ according to eq. (1.70). Because the
tensor current jφ is assumed to be positive-de�nite and sesquilinear in the wave function,

‖ · ‖Σ de�nes a norm on H(N)
Σ (Ω).

Let ψ,ϕ be solutions of the initial boundary value problem. Then: ψ|Σ0
≡ ϕ|Σ0

≡
g ∈ H(N)

Σ0
(Ω) and therefore ‖ψ|Σ0

− ϕ|Σ0
‖Σ0 = 0. Now let Σ be an arbitrary space-like

hypersurface. Probability conservation (1.71) yields:

‖ψ|Σ − ϕ|Σ‖Σ = ‖ψ|Σ0
− ϕ|Σ0

‖Σ0 = 0 (1.83)

and it follows that ψ|Σ ≡ ϕ|Σ as elements of H(N)
Σ (Ω). �

Having reached this formal framework, we are prepared to analyze the physical role of
multi-time wave functions (chap. 2) as well as the question of how to construct interacting
wave equations (chaps. 3-5).

20We deliberately leave open the exact nature of these equations in order to arrive at a general result. A
concrete example are the Hamiltonian multi-time equations (1.47) on Ω = R4N . Further examples including
boundary conditions will be presented in chap. 3.

21The theorem still holds if the multi-time evolution equations do not have a Cauchy data initial value
problem. Initial values are then understood as one particular condition on the multi-time wave function.



Chapter 2

On the physical meaning of

multi-time wave functions and their

place in realistic relativistic quantum

theories

�[The usual quantum] paradoxes are simply disposed of by the 1952 theory of
Bohm, leaving as the question, the question of Lorentz invariance. So one of
my missions in life is to get people to see that if they want to talk about the
problems of quantum mechanics � the real problems of quantum mechanics �
they must be talking about Lorentz invariance.�

Bell, 1990, interview with philosopher Renée Weber

In this chapter, we treat the question of how a multi-time wave function attains physical
signi�cance in the overall structure of the theory. This includes a justi�cation of the en-
visioned statistical meaning of the tensor current jµ1...µN

ψ as well as its density component
which were motivated by formal considerations in sec. 1.3.

We approach these questions using realistic quantum theories, such as Bohmian mechan-
ics [21,51] and GRW theories [5,10,97]. Both have been used successfully in non-relativistic
QM to avoid the measurement problem and to establish the statistical meaning of the wave
function from a deeper (ontological) level1. An extension of these theories to the relativistic
domain is thus desirable.

The chapter is structured as follows. We begin with a brief introduction of the most-
discussed relativistic generalization of Bohmian mechanics, the hypersurface Bohm-Dirac

(HBD) model (sec. 2.1). Particular emphasis is put on the resulting requirements on the
multi-time wave function and the tensor currents. Subsequently, a subsystem description is
developed for the model (sec. 2.2). Such a description is crucial to derive statistical predic-
tions for typical subsystems in Bohmian mechanics. It furthermore answers the question of
how the various wave function and/or density matrix descriptions of subsystems of a larger
system are related and how they can be derived and justi�ed in their meaning using the

1See the introduction for the notion of �primitive ontology�.
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equations of the larger system only. Large parts of the section concern a new relativistic

conditional density matrix. In a brief outlook (sec. 2.2.5), we outline how the developed
subsystem description could be used in further work on the statistical analysis of the HBD
model. Besides, a comparison with a related analysis of Bloch is included (sec. 2.3).

The chapter ends with a brief presentation of alternative realistic relativistic models (sec.
2.4). The motivation for this is (i) to show that the assumption of a preferred foliation
in the HBD model is not in principle necessary to formulate relativistic Bohmian laws of
motion but rather to be able to perform a statistical analysis as in the non-relativistic case
(sec. 2.4.1) and (ii) to demonstrate that also objective collapse (GRW) theories lead to
similar requirements on a multi-time wave function as the HBD model (sec. 2.4.2).

2.1 The hypersurface Bohm-Dirac model

The HBD model aims at a Lorentz invariant generalization of non-relativistic Bohmian me-
chanics (BM, see e.g. [49,51]). It describes N point particles with world lines in Minkowski
space-time. The law of motion for the k-th particle is determined by the multi-time wave
function as well as the �simultaneous� con�guration of all the other particles. Indeed, it
can then be considered the primary role of the wave function to determine the law for the
world lines. Recalling the ideal picture of a relativistic theory as sketched in the introduc-
tion, it may at �rst seem that any notion of �simultaneity� must con�ict with any serious
understanding of Lorentz invariance2. The key idea here is the realization that a dynamical
foliation F of space-time into space-like hypersurfaces Σ can provide a seriously Lorentz
invariant notion of simultaneity [43]. A dynamical foliation can, for example, be extracted
from the (universal) wave function3. However, there is as yet no reason to pick a distin-
guished foliation. For the rest of the section, we therefore assume that an arbitrary foliation
F has been chosen. Furthermore, the space-like hypersurfaces Σ ∈ F , called �leaves� of the
foliation, are assumed to be smooth.

Besides the generalization of the notion of simultaneity appearing in the law of motion
of non-relativistic BM, there exists a further reason for a distinguished foliation:

�There does not in general exist a probability measure P on N -paths for which
the distribution of crossings ρΣ agrees with the corresponding quantum-mechanical
distribution on all space-like hyperplanes Σ.� [19]

Assuming that it is su�ciently clear what �the corresponding quantum-mechanical distri-
bution� is4, this statement suggests that either the way a statistical analysis proceeds has
to be changed as compared to the one in the non-relativistic case (see [47]) or that a prob-
ability measure with the above properties can only be found on a special foliation. The
HBD model focuses on the second possibility. (See sec. 2.4.1 for a more detailed discussion
of the di�culties associated with the �rst possibility.)

Originally, the HBD model was formulated for N non-interacting but entangled Dirac
(spin-1

2) particles [42], i.e. for jψ given by the free Dirac current (1.59). Here, we extend

2The term �serious Lorentz invariance� was coined by Bell, who considered subtleties about Lorentz
invariance in [13, p. 179-180].

3This idea does, however, stand in con�ict with a nomological understanding of the wave function (i.e.
the wave function as de�ning the law of motion only), see [49, chaps. 12.3.8, 12.3.9].

4We take it to refer to ρΣ of eq. (1.60).
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the model to encompass also the interacting case using the most general form of the tensor
current jµ1...µN

ψ of sec. 1.3 which is compatible with the envisioned statistical role of ρΣ.
From [42, sec. III], one can read o� the necessary requirements on jψ. Let n(x) be the
future-oriented normal covector �eld associated with F (i.e. for every Σ ∈ F and n(x) is
the future-oriented normal covector at x ∈ Σ):

1. jµ1...µN
ψ (x1, ..., xN )nµ1(x1) · · ·nµN (xN ) ≥ 0 for all space-like related x1, ..., xN and all

multi-time wave functions ψ from a su�ciently general function space5. In words:
the tensor current has to be positive-de�nite.

2. ∂k,µkj
µ1...µk...µN
ψ = 0 for all k = 1, ..., N and ψ as above. In words: the tensor current

has to be divergence-free in all of its indices.

We assume that the multi-time wave equations are chosen as to ensure the existence of a
jψ with these two properties. This is e.g. the case for the free multi-time Dirac theory (eq.
(1.18)).

The law for the N jointly parametrized world lines Xk(s), k = 1, ..., N is now readily
formulated:

dXµk
k (s)

ds
∝ jµ1···µk···µN

ψ (x1, ..., xN )
∏
j 6=k

nµj (xj)

∣∣∣∣∣∣
xi=Xi(Σ), i=1,...,N.

(2.1)

Here, Xi(Σ) denotes the intersection point of the i-th world line with Σ ∈ F , andXk(s) ∈ Σ.
The proportionality sign expresses that the tangent vector Ẋk(Σ) should be parallel to the
rhs. (which is also a vector). This geometrical formulation implies the arbitrariness of the
joint parametrization of the world lines via s.

The statistical import of the HBD model was analyzed in [42]: ρΣ of eq. (1.60) obeys the
continuity equation for curved surfaces and thus is an equivariant density on the leaves of the
foliation, generalizing the well-known |ψ|2-distribution. Therefore, the crossing probability
of Σ ∈ F is given by:

Prob (particle i crosses Σ in dσi, i = 1, ..., N) = ρΣ(x1, ..., xN )dσ1 · · · dσN , (2.2)

where (in slight abuse of notation) dσi denotes both an in�nitesimal area on Σ around xi
as well as its 3-volume.

The main goal of the HBD model has now been achieved: to �nd a manifestly Lorentz
covariant law of relativistic particle motion which is consistent with the formal density on
the wave function level.

Remarks:

1. Note that the HBD model only requires the multi-time wave function to be de�ned
on con�gurations (x1, ..., xN ) ∈

⋃
Σ∈F ΣN . Excluding con�gurations with xj = xk for

some j 6= k, this set is a strict subset of the space-like con�gurations S . However,
the (multi-time) Lorentz invariance of the wave equations can only be discussed if ψ

5Reasonable restrictions on the admissible wave functions may e.g. result from the existence and unique-
ness theory of the law of motion of the HBD model.
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is de�ned on the whole of S . In any case, these facts further support the view of sec.
1.1.1.2 that it is unnecessary for the multi-time wave function to be de�ned on the
whole of con�guration space-time R4N .

2. The formula (2.2) for the crossing probability is only valid for hypersurfaces Σ ∈ F .
The HBD model so far does not make any statistical statements for hypersurfaces
not belonging to the foliation. It was remarked in [42] that this fact need not stand
in con�ict with the usual quantum formalism. The main point is that the quantum
formalism only refers to �measurements�, i.e. special situations involving decoherence
and registering devices consisting of many particles. In order to be able to speak
of an experimental result, certain particle constellations (e.g. the ones comprising a
computer memory) have to persist for su�ciently large times. Therefore, they will
also be encoded in a particle con�guration on one of the leaves Σ of the foliation.
This leads to the conjecture that the measurement formalism implied by the HBD
model is independent of the foliation.

2.2 On the description of subsystems in relativistic hypersur-

face Bohmian mechanics

The following section is taken from the article [50] by Detlef Dürr and the present author.
It does not include those parts of [50] which are treated in other sections of the present
thesis (this concerns secs. 2 and 3 (b) of [50]). Besides, minor changes concerning references
to formulas and sections have been made.

2.2.1 Background and motivation

The possibility of describing a subsystem of a larger system in an autonomous way is basic to
physics. In quantum physics entanglement prevails and an autonomous subsystem descrip-
tion is harder to justify than in classical physics: A quantum mechanical N -particle system
possesses a wave function ψ(x1, ...xN , t) where x1, ...,xN are the particle coordinates. Sup-
pose that a subsystem is formed by the particles with coordinates q1 = (x1, ...,xM ). A
simple way to associate a wave function with the subsystem exists if ψ has the form

ψ(q1, q2, t) = ϕ(q1, t)φ(q2, t), (2.3)

where q2 = (xM+1, ...,xN ). Then ϕ can be regarded as the wave function of the subsystem.
However, the presence of entanglement exactly means that ψ cannot be written in the form
(2.3). This leads us to the question: which possibilities does quantum physics provide to
describe the subsystem?

In open system quantum theory, a non-autonomous subsystem description is achieved
by the reduced density matrix

Wred(q1, q
′
1, t) =

∫
dq2 ψ(q1, q2, t)ψ

∗(q′1, q2, t), (2.4)

where the environment is �traced out�, i.e. its actual state is ignored. The description is
non-autonomous because the time evolution for Wred is not given by a closed equation. In
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contrast, the association of the subsystem with a subsystem's wave function usually involves
a preparation procedure like an ideal measurement which we informally describe by

ψ(q1, q2, t = 0)
Schrödinger evolution7−→

∑
α

ϕα(q1, t)φα(q2, t)
collapse7−→ ϕα0(q1, t)φα0(q2, t), (2.5)

which leads to a projection onto a subsystem's wave function � a projection which depends
on the wave function of the total system, the environment included. The projection proce-
dure, also called the collapse of the wave function, is, however, not theoretically founded on
the fundamental equations of quantum mechanics. This fact is also known as the measure-
ment problem or objecti�cation problem. In order to achieve a justi�cation of the quantum
formalism, a subsystem analysis is needed [48,71].

In Bohmian mechanics (BM; see e.g. [21, 49, 51, 57]), the subsystem description is part
of the theory and the objecti�cation problem therefore does not even occur. For spin-less
BM, one can de�ne a conditional wave function ψcond by plugging into the wave function
of the larger system Ψ(q1, q2, t) the actual Bohmian environment con�guration Q2 [47]:

ψcond(q1, t) =
1

N
Ψ(q1, Q2(t), t), (2.6)

where N is a normalization factor such that ‖ψcond‖ = 1.
The evolution of the subsystem con�guration Q1 then only depends on the environment

con�guration via the conditional wave function. Besides, it is also possible to express
conditional probabilities for the subsystem via ψcond only. Therefore, the conditional wave
function is basic to the statistical analysis of BM [47].

However, the description of a subsystem by the conditional wave function is typically
not autonomous. Nevertheless, in certain situations autonomy can be attained and the
conditional wave function then becomes e�ective [47], in the sense that even the implicit
reference to the environment con�guration (which is present in ψcond) is lost. More precisely,
we say that a subsystem has the e�ective wave function ψeff (up to normalization) at time t
if the wave function Ψ of the total system and the environment con�guration Q2(t) satisfy

Ψ(q1, q2, t) = ψeff(q1, t)Φ(q2, t) + Ψ⊥(q1, q2, t), (2.7)

where Φ and Ψ⊥ have macroscopically disjoint6 q2-supports and Q2(t) ∈ supp Φ.
The e�ective wave function re�ects the idea of a quantum mechanical subsystem wave

function that has been �prepared� by controlling the environment (e.g. experimental de-
vices). ψeff persists as long as the Schrödinger evolution of the composite system does not
destroy the e�ective product structure. If it exists, ψeff = ψcond.

For non-relativistic BM with spin, the conditional wave function does not exist anymore.
Plugging the actual environment con�guration into the wave function of the composite
system yields a spinor-valued wave function which still contains all the spinor degrees of
freedom of the environment. Denote the spin components of the wave function of the
composite system by Ψs1s2 . Then naively generalizing eq. (2.6) would yield

ψs1s2cond(q1, t) =
1

N
Ψs1s2(q1, Q2(t), t), (2.8)

6See [47] for details.



40 2. On the physical meaning of multi-time wave functions

which cannot be a wave function associated only with the subsystem, as the spin index of
the environment is still present.

The substitute is a conditional density matrix [46] where the spinor degrees of freedom
of the environment are traced out. Explicitly:

W nonrel
cond

s1
s′1

(q1, q
′
1, t) =

1

N
∑
s2

Ψs1s2(q1, Q2(t), t)Ψ†
s′1s2

(q1, Q2(t), t), (2.9)

where (·)† denotes the conjugate transposed.
It turns out that the conditional density matrix functions in the same way as the

conditional wave function in the spin-less case [46]. Of course, there are also situations in
which an e�ective wave function exists [46]. It is clear that if this is the case the conditional
density matrix is pure and given by the e�ective wave function. The converse is less obvious.

In the following, we extend the subsystem description to relativistic BM with spin,
namely to the hypersurface Bohm-Dirac model [42]. It turns out that the description leads
to a non-trivial generalization of the non-relativistic conditional density matrix. Having
introduced the new conditional density matrix, we analyze its properties and �nd a lifting
to a density operator on the Hilbert space H(N)

Σ of eq. (1.73). Finally, we generalize the
notion of the e�ective wave function and prove a lemma that clari�es its relation to the
conditional density matrix.

2.2.2 Notation

For the rest of the section, we consider a HBD system S (i.e. a set of particles) composed of
two parts: S1, the subsystem of interest and S2, the environment. Schematically, we write
this as S = S1 ∪ S2. The number of particles splits according to N = N1 +N2. The wave
function of S is denoted by Ψ. We refer to its spin components as Ψs1s2 and to the partial
trace over these spin components as trCki where ki = 4Ni , i = 1, 2. If Ψ = ψ1 ⊗ ψ2, then
ψ1 = ψ†1γ

0
1 · · · γ0

N1
and ψ2 = ψ†2γ

0
N1+1 · · · γ0

N where these gamma-matrices now act on Ck1

and Ck2 , respectively. Consider a space-like hypersurface Σ ∈ F (we will use the symbol
S for arbitrary space-like hypersurfaces). The con�guration obtained by intersecting the
world lines of the particles with Σ is denoted by Q(Σ) = (Q1(Σ), Q2(Σ)) ∈ ΣN . A generic
con�guration space-time variable is called q = (q1, q2) = (x1, ..., xN1 , xN1+1, ..., xN ) ∈ MN .
The complex conjugate of z ∈ C is denoted by z∗.

2.2.3 Results

In order to be able to make concrete calculations, we henceforth assume that the tensor
current in the HBD law (2.1) is given by the Dirac current

jµ1···µN
ψ = ψγµ1

1 · · · γ
µN
N ψ. (2.10)

Note that a di�erent tensor current would entail modi�cations of the results. However,
the assumption of the Dirac current is plausible as it implies the usual |ψ|2-density on �at
hypersurfaces.
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2.2.3.1 Conditional density matrix

We �rst aim at a subsystem description of S1 by a conditional density matrix. To begin
with, we rewrite eq. (2.1), observing (2.10), for the world lines of particles in S1 by applying
the identity

v†w = (v∗1, ..., v
∗
k)

w1
...
wk

 = v∗1w1 + ...+ v∗NwN = trCk

v
∗
1w1 ∗

. . .
∗ v∗NwN

 = trCk(wv†)

(2.11)
to the rhs. of eq. (2.1) with v† = Ψ(q)γµ1

1 ...γµNN
∏
j 6=k nµj (xj) and w = Ψ(q) for �xed q.

This yields:

dXµk
k (s)

ds
∝ trCk

ΨΨγµ1
1 · · · γ

µk
k · · · γ

µN
N

∏
j 6=k

nµj (xj)


q=Q(Σ)

. (2.12)

Next, we split up the trace according to trCk ≡ trCk1 trCk2 and noting that the γ-matrices
in eq. (2.12) commute, we obtain after rearranging:

dXµk
k (s)

ds
∝ trCk1

trCk2

ΨΨ†
∏
j∈S2

γ0
j γ

µj
j nµj (xj)


q2=Q2(Σ)

γ0
kγ

µk
k

∏
j 6=k, j∈S1

γ0
j γj · n(xj)


q1=Q1(Σ).

(2.13)

In slight abuse of notation, in eq. (2.13) we use the same symbols for the gamma matrices
as before although now γ

µj
j , j = 1, ..., N1, act on Ck1 instead of Ck. The separation of

variables associated with S1 and S2 in eq. (2.13) leads to a rewriting of the HBD guidance
law of the desired form:

dXµk
k (s)

ds
∝ trCk1

Wcond(q1, q
′
1) γ0

kγ
µk
k

∏
j 6=k, j∈S1

γ0
j γj · n(xj)


q1=q′1=Q1(Σ)

, (2.14)

where

Wcond
s1
s′1

(q1, q
′
1) :=

1

N
∑
s2

Ψs1s2(q1, Q2(Σ))

Ψ†(q′1, Q2(Σ))
∏
j∈S2

γ0
j γj · n(Xj(Σ))


s′1s2

(2.15)

de�nes the components of the conditional density matrix for S1 and

N :=

∫
Σ
dσ1 · · ·

∫
Σ
dσN1trCk

Ψ(q1, Q2(Σ))Ψ†(q1, Q2(Σ))
∏
j∈S2

γ0
j γj · n(Xj(Σ))

∏
j∈S1

γ0
j γj · n(xj)


(2.16)
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is the appropriate normalization factor. Note that N is independent of the choice of the
space-like hypersurface in the domain of integration. To see this, we write:

N =

∫
Σ
dσ1 · · ·

∫
Σ
dσN1Ψ†(q1, Q2(Σ))

∏
j∈S2

γ0
j γj · n(Xj(Σ))

∏
j∈S1

γ0
j γj · n(xj)Ψ(q1, Q2(Σ))

=

∫
Σ
dσ1,µ1 · · ·

∫
Σ
dσN1,µN1

jµ1···µN1
µN1+1···µN [Ψ,Ψ]|q2=Q2(Σ)

∏
j∈S2

nµj (Xj(Σ)), (2.17)

which can easily be shown to be independent of the hypersurface in the domain of integra-
tion assuming drop-o� conditions for the wave function in the space-like directions in each
particle coordinate and by using the divergence theorem.

Also note that for a �at foliation, i.e. n(x) = (1, 0, 0, 0) ∀x in a certain frame, our
de�nition of Wcond coincides with the one for non-relativistic BM with spin in that frame
(cf. eq. (2.9) and since (γ0

k)2 = 1∀k).

The physical signi�cance of Wcond is based on its dynamical role as well as its role in the
statistical analysis. Eq. (2.14) establishes the dynamical role of Wcond. In order to analyze
the statistical meaning of Wcond, we start from the crossing probability of Σ ∈ F of the
HBD model (eq. (2.2)):

Prob (particle i crosses Σ in dσi, i = 1, ..., N) = ρ(x1, ..., xN )dσ1 · · · dσN . (2.18)

Next, we condition:

Prob (particle i crosses Σ in dσi, i = 1, ..., N1|Q2(Σ)) =
ρ(x1, ..., xN1 , Q2(Σ))dσ1 · · · dσN1∫

Σ dσ1 · · ·
∫

Σ dσN1ρ(x1, ..., xN1 , Q2(Σ))
(2.19)

and comparing eq. (2.10) with

ρ(x1, ..., xN ) = Ψ(q)γµ1
1 · · · γ

µN
N Ψ(q)

N∏
j=1

nµj (xj)

= jµ1···µN
Ψ

N∏
j=1

nµj (xj)

 , (2.20)

we repeat the same steps leading from eq. (2.1) to eqs. (2.12)-(2.14) to obtain:

Prob (particle i crosses Σ in dσi, i = 1, ..., N1|Q2(Σ))

= trCk1

Wcond(q1, q1)
∏
j∈S1

γ0
j γj · n(xj)

 dσ1 · · · dσN1 . (2.21)

Eqs. (2.19) and (2.21) also explain why the normalization (2.16) of Wcond is appropriate:
N =

∫
Σ dσ1 · · ·

∫
Σ dσN1ρ(x1, ..., xN1 , Q2(Σ)).

Eq. (2.21) allows us to calculate expectation values, e.g. of the distribution of the

subsystem con�guration. Let Q̂1 denote the multiplication operator with q1 on H(N1)
Σ for

Σ ∈ F ; then its expectation value for a �state� characterized by Wcond is given by:

〈Q̂1〉Wcond
=

∫
Σ
dσ1 · · ·

∫
Σ
dσN1 q1 trCk1

Wcond(q1, q1)
∏
j∈S1

γ0
j γj · n(xj)

 . (2.22)
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2.2.3.2 Conditional density operator

We introduce an operator Ŵcond on H(N1)
S such that for S = Σ ∈ F , eq. (2.22) can be

rewritten as the trace tr(Ŵcond Q̂1).
For this purpose, we de�ne bras 〈q1, s1| and kets |q′1, s′1〉 with 〈q1, s1|q′1, s′1〉 = δ(3N1)(q1−

q′1)δs1s′1 and Q̂1|q1, s1〉 = q1|q1, s1〉 where 〈·, ·〉 is the scalar product (1.77) on H(N1)
S (cf.

(1.73)).
Let

(γn)(qi) :=
∏
j∈Si

γ0
j γj · n(xj), where (γn)†(qi) = (γn)(qi), i = 1, 2, (2.23)

since (γµkk )† = γ0
kγ

µk
k γ0

k .
We now show that for every �xed qi, (γn)(qi), i = 1, 2, is a positive matrix. To see this,

we consider the quadratic forms Ψ† (γn)(qi) Ψ, i = 1, 2 and rewrite them using eqs. (2.23)
and (1.76):

Ψ† (γn)(q1) Ψ = jµ1···µN1
0···0[Ψ,Ψ]

∏
j∈S1

nµj (xj),

Ψ† (γn)(q2) Ψ = j0···0µN1+1···µN [Ψ,Ψ]
∏
j∈S2

nµj (xj), (2.24)

which both are greater or equal to zero as the tensor current jµ1...µN [Ψ,Ψ] is positive-
de�nite.

As a consequence of the positivity and the self-adjointness of (γn)(qi), it is possible to
de�ne

√
(γn)(qi). The relation of 〈q1, s1|ϕ〉 to the components ϕs1(q1) of a wave function

ϕ ∈ H(N1)
S then is:

〈q1, s1|ϕ〉 =
∑
s′1

√
(γn)(q1)

s1
s′1
ϕs
′
1(q1). (2.25)

Using the abbreviation ∫
SN1

d3N1q1 :=

∫
S
dσ1 · · ·

∫
S
dσN1 , (2.26)

we have

tr(Ŵcond Q̂1) =
∑
s1

∫
SN1

d3N1q1 〈q1, s1|Ŵcond Q̂1|q1, s1〉

=
∑
s1

∫
SN1

d3N1q1 q1 〈q1, s1|Ŵcond|q1, s1〉. (2.27)

Comparing eq. (2.27) with eq. (2.22), we are led to de�ne:

〈q1, s1|Ŵcond|q′1, s′1〉 :=

(√
(γn)(q1)Wcond(q1, q

′
1)
√

(γn)(q′1)

)s1
s′1

. (2.28)
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The action of Ŵcond on a vector ϕ ∈ H(N1)
S , expressed in components, is given by:

(Ŵcond ϕ)s1(q1) :=

∫
SN1

d3N1q′1
∑
s′1

[
Wcond(q1, q

′
1)(γn)(q′1)

]s1
s′1
ϕs
′
1(q′1). (2.29)

Note that eqs. (2.25), (2.28) and (2.29) are chosen consistently, as one must have:[√
(γn)(q1) Ŵcond ϕ

]s1
(q1)

(2.25)
= 〈q1, s1|Ŵcond |ϕ〉

=

∫
SN1

d3N1q′1
∑
s′1

〈q1, s1|Ŵcond |q′1, s′1〉〈q′1, s′1|ϕ〉

(2.28),(2.25)
=

∫
SN1

d3N1q′1
∑
s′1

(√
(γn)(q1)Wcond(q1, q

′
1)
√

(γn)(q′1)

)s1
s′1

[√
(γn)(q′1)ϕ(q′1)

]s′1
(2.29)

=
[√

(γn)(q1) Ŵcond ϕ
]s1

(q1). (2.30)

In fact, as one expects, Ŵcond (as an operator on H(N1)
Σ )7 can equivalently be derived from

the projector |Ψ〉〈Ψ| on H(N)
Σ by a partial trace. For this purpose, we straightforwardly

generalize eq. (2.25) to H(N)
Σ :

〈q1, s1, q2, s2|Ψ〉 =
∑
s′1s
′
2

√
(γn)(q1)

s1
s′1

√
(γn)(q2)

s2
s′2

Ψs′1s
′
2(q1, q2). (2.31)

Then: ∑
s2

〈q1, s1, Q2(Σ), s2|Ψ〉〈Ψ|q′1, s′1, Q2(Σ), s2〉

(2.31)
=

∑
s2

∑
s̃1,s̃2

√
(γn)(q1)

s1
s̃1

√
(γn)(Q2(Σ))

s2
s̃2

Ψs̃1s̃2(q1, Q2(Σ))

×
∑
ŝ1,ŝ2

Ψ†ŝ1,ŝ2(q1, Q2(Σ))
√

(γn)(q′1)
ŝ1

s′1

√
(γn)(Q2(Σ))

ŝ2
s2

(2.15)
=

∑
s̃1,ŝ1

√
(γn)(q1)

s1
s̃1
Wcond

s̃1
ŝ1

(q1, q
′
1)
√

(γn)(q′1)
ŝ1

s′1

(2.28)
= 〈q1, s1|Ŵcond|q′1, s′1〉. (2.32)

As expected, we have the following

Lemma 2.2.1 Ŵcond is a density operator on H(N1)
S .

Proof: 1. Consider H(N1)
S for a general space-like hypersurface S. Then Ŵcond is self-

adjoint on H(N1)
S . In the proof we make use of the property W †cond(q1, q

′
1) = Wcond(q′1, q1).

To see this, consider:

W †cond(q1, q
′
1) =

{
trCk2

[
Ψ(q1, Q2(Σ))Ψ†(q′1, Q2(Σ))(γn)(Q2(Σ))

]}†
. (2.33)

7Note that the restriction to H(N1)
Σ instead of a general H(N1)

S is necessary because of the use of

〈q1, s1, Q2(Σ), s2| on H(N)
Σ (cf. eq. (2.32)) which requires (q1, Q2(Σ)) ∈ ΣN .
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With the identity (trCk2A)† = trCk2 (A†) for the partial trace of matrices A : Ck → Ck, eq.
(2.33) becomes:

W †cond(q1, q
′
1) = trCk2

[
(γn)†(Q2(Σ))Ψ(q′1, Q2(Σ))Ψ†(q1, Q2(Σ))

]
. (2.34)

Using the cyclic property of the partial trace, i.e. trCk2 (1 ⊗ BA) = trCk2 (A1 ⊗ B) where
B : Ck2 → Ck2 , and observing (2.23), we �nally obtain:

W †cond(q1, q
′
1) = trCk2

[
Ψ(q′1, Q2(Σ))Ψ†(q1, Q2(Σ))(γn)(Q2(Σ))

]
= Wcond(q′1, q1). (2.35)

We proceed with the proof of the self-adjointness of Ŵcond:

〈ψ, Ŵcond ϕ〉
(N1)
S

(1.77),(2.29)
=

∫
SN1

d3N1q1

∫
SN1

d3N1q′1 ψ
†(q1) (γn)(q1)Wcond(q1, q

′
1) (γn)(q′1)ϕ(q′1)

(2.23),(2.35)
=

∫
SN1

d3N1q1

∫
SN1

d3N1q′1
[
Wcond(q′1, q1) (γn)(q1)ψ(q1)

]†
(γn)(q′1)ϕ(q′1)

(2.29)
=

∫
SN1

d3N1q′1

[
Ŵcond ψ

]†
(q′1) (γn)(q′1)ϕ(q′1)

(1.77)
= 〈Ŵcond ψ, ϕ〉

(N1)
S . (2.36)

Thus, Ŵcond is symmetric on H(N1)
S and as a bounded operator it is therefore also self-

adjoint.

2. To show the positivity of Ŵcond, we start with

〈ϕ, Ŵcond ϕ〉
(N1)
S =

∫
SN1

d3N1q1

∫
SN1

d3N1q′1 ϕ
†(q1) (γn)(q1)Wcond(q1, q

′
1) (γn)(q′1)ϕ(q′1)

(2.37)
and plug in the explicit form of Wcond

s1
s′1

(q1, q
′
1) from eq. (2.15). Next, we simplify the

expression for Wcond
s1
s′1

(q1, q
′
1) by a multi-time Lorentz transformation L (see eqs. (1.14),

(1.15)). As for �xed Q(Σ) all n(Xj(Σ)) are constant time-like future-oriented unit vec-
tors, we may choose L such that for the Lorentz-transformed normal covectors one has
n′(Xj(Σ)) ≡ (1, 0, 0, 0), j = 1, ..., N . Thus: (γn′)(Q2(Σ)) = 1.

Continuing with the hereby simpli�ed eq. (2.37) and dropping the Lorentz transforma-
tion primes for notational ease, we have:

〈ϕ, Ŵcond ϕ〉
(N1)
S =

1

N

∫
SN1

d3N1q1

∫
SN1

d3N1q′1
∑
s1,s′1

{[
ϕ†(q1) (γn)(q1)

]
s1

×
∑
s2

Ψs1s2(q1, Q2(Σ))Ψ†
s′1s2

(q′1, Q2(Σ))
[
(γn)(q′1)ϕ(q′1)

]s′1}

=
1

N
∑
s2

(∫
SN1

d3N1q1

∑
s1

[
ϕ†(q1) (γn)(q1)

]
s1

Ψs1s2(q1, Q2(Σ))

)

×

∫
SN1

d3N1q′1
∑
s′1

Ψ†
s′1s2

(q′1, Q2(Σ))
[
(γn)(q′1)ϕ(q′1)

]s′1
≡
∑
s2

cs2c∗s2 ≥ 0, (2.38)
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where

cs2 =
1√
N

∫
SN1

d3N1q1

∑
s1

[
ϕ†(q1) (γn)(q1)

]
s1

Ψs1s2(q1, Q2(Σ)). (2.39)

3. Ŵcond is normalized. This straightforwardly follows from the fact that tr Ŵcond yields
unity by eq. (2.21) when one applies the computational formula for the trace as used in eq.
(2.27) and makes use of eq. (2.28). �

2.2.3.3 E�ective wave function

Because of the dependence on Q2(Σ), Wcond typically does not evolve autonomously, i.e.
according to its own multi-time system of von Neumann equations. We now turn to an
autonomous subsystem description in terms of wave functions. For this purpose, we extend
the de�nition of the e�ective wave function (cf. eq. (2.7)) to the HBD model. Assume
that there exists a hypersurface Σ ∈ F such that Ψs1s2(q1, q2) and the actual con�guration
Q(Σ) = (Q1, Q2)(Σ) on that hypersurface satisfy

Ψs1s2(q1, q2) = ψs11 (q1)ψs22 (q2) + (Ψ⊥)s1s2(q1, q2) ∀q = (q1, q2) ∈ ΣN , (2.40)

with ψ2 and Ψ⊥ possessing macroscopically disjoint q2-supports and Q2(Σ) ∈ suppψ2.
Then for q1 ∈ ΣN1 system S1 is said to have the e�ective wave function

ψs1eff(q1) =
ψs11 (q1)

‖ψ1‖(N1)
Σ

. (2.41)

It has the following properties:

1. If Σ is an equal-time hypersurface of a Lorentz frame, then our de�nition agrees with
the non-relativistic one in that frame.

2. Inserting the product structure Ψ(q1, Q2(Σ)) = ψ1(q1) ⊗ ψ2(Q2(Σ)) resulting from eq.
(2.40) into the relativistic guidance equation (2.1) for a particle in S1, we obtain:

dXµk
k (s)

ds
∝ ψ1(q1)⊗ ψ2(Q2(Σ)) γµkk

∏
j 6=k,j∈S1

γj · n(xj) (γn)(Q2(Σ))ψ1(q1)⊗ ψ2(Q2(Σ))

∣∣∣∣∣∣
q1=Q1(Σ)

∝ ψeff(q1)γµ1
1 · · · γ

µk
k · · · γ

µN1
N1

ψeff(q1)
∏

j 6=k,j∈S1

nµj (xj)

∣∣∣∣∣∣
q1=Q1(Σ)

, (2.42)

where we absorbed the factor ‖ψ1‖(N1)
Σ ψ2(Q2(Σ)) (γn)(Q2(Σ))ψ2(Q2(Σ)) ≥ 0 into the

proportionality. One obtains the same result as in eq. (2.42) if one starts with a pure8

Wcond in eq. (2.14).

3. We now come to the expression of conditional probabilities, starting from the conditional
version of the crossing probability (cf. eq. (2.19)):

Prob (particle i crosses Σ in dσi, i = 1, ..., N1|Q2(Σ)) =
ρ(q1, Q2(Σ))dσ1 · · · dσN1∫

ΣN1 dq
3N1
1 ρ(q1, Q2(Σ))

. (2.43)

8We apply the notion pure to the matrix Wcond, in the sense that it can be written as Wcond(q1, q
′
1) =

ψ(q1)ψ†(q′1) for some wave function ψ. Otherwise, we call it mixed.
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Into this equation we plug in the HBD density

ρ(q) = Ψ(q)(γn)(q1) (γn)(q2)Ψ(q) (2.44)

in the particular situation given by eq. (2.40), using that then Ψ(q1, Q2(Σ)) = ψ1(q1) ⊗
ψ2(Q2(Σ)). This yields:

Prob (particle i crosses Σ in dσi, i = 1, ..., N1|Q2(Σ))

=
ψ1(q1)⊗ ψ2(Q2(Σ)) (γn)(q1) (γn)(Q2(Σ))ψ1(q1)⊗ ψ2(Q2(Σ)) dσ1 · · · dσN1∫
ΣN1 dq

3N1
1 ψ1(q1)⊗ ψ2(Q2(Σ)) (γn)(q1) (γn)((Q2(Σ)))ψ1(q1)⊗ ψ2(Q2(Σ))

=
ψ1(q1) (γn)(q1)ψ1(q1) dσ1 · · · dσN1∫

ΣN1 dq
3N1
1 ψ1(q1) (γn)(q1)ψ1(q1)

= ψeff(q1) (γn)(q1)ψeff(q1) dσ1 · · · dσN1 . (2.45)

Eq. (2.45) also explains the normalization in eq. (2.41).

4. The description of S1 in terms of ψeff has the same form as the description of S in terms
of Ψ (cf. eqs. (2.1), (2.42) and eqs. (2.2), (2.45)).

Wcond always exists; the e�ective wave function only exists in certain situations. If the
e�ective wave function exists, Wcond is pure and given by the e�ective wave function. The
converse is not as obvious and content of the following lemma.

Lemma 2.2.2 Wcond(q1, q
′
1) is pure if and only if for Σ ∈ F , Ψ(q1, Q2(Σ)) can be written

as Ψs1s2(q1, Q2(Σ)) = ψs11 (q1)ψs22 (Q2(Σ)).

Proof: �⇐�: Let Ψs1s2(q1, Q2(Σ)) = ψs11 (q1)ψs22 (Q2(Σ)). Then, according to eqs. (2.15)
and (2.23):

Wcond
s1
s′1

(q1, q
′
1) =

1

N
∑
s2

ψs11 (q1)ψs22 (Q2(Σ))
[
ψ†1(q′1)ψ†2(Q2(Σ))(γn)(Q2(Σ))

]
s′1s2

=
1

N

{∑
s2

ψs22 (Q2(Σ))
[
ψ†2(Q2(Σ))(γn)(Q2(Σ))

]
s2

}
ψs11 (q1)ψ1

†
s′1

(q′1)

≡ 1

Ñ
ψs11 (q1)ψ1

†
s′1

(q′1). (2.46)

�⇒�: We split the proof into two steps:

1. Simpli�cation of the form of Wcond: Using the manifest Lorentz invariance of the HBD
model, we simplify the form of Wcond employing the multi-time Lorentz transformation
leading to (γn)(Q2(Σ)) = 1 (cf. eq. (1.15) and below). Note that by virtue of eq. (1.15)
this transformation leaves a pure Wcond pure and a mixed Wcond mixed. We obtain:

W ′cond
s1
s′1

(q1, q
′
1) =

1

N
∑
s2

Ψ′s1s2(L−1(q1, Q2(Σ)))
[
(Ψ′)†(L−1(q′1, Q2(Σ)))

]
s′1s2

. (2.47)

For a �at foliation, this coincides with the de�nition of the conditional density matrix in
the non-relativistic case (cf. eq. (2.9)).
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2. Indirect proof of �⇒� via Schmidt decomposition: Assume that for Σ ∈ F and �xed
q1, Ψs1s2(q1, Q2(Σ)) cannot be written as a tensor product of vectors in Ck1 and Ck2 ,
respectively. Then according to the Schmidt decomposition there exist orthonormal bases
{u1, ..., uk1} of Ck1 and {v1, ..., vk2} of Ck2 such that

Ψ(q1, Q2(Σ)) =

m∑
j=1

cj uj ⊗ vj , in components : Ψs1s2(q1, Q2(Σ)) = cs1 δ
s1s2 , (2.48)

where m = max{k1, k2} and the coe�cients cj are non-negative, uniquely determined by
Ψ(q1, Q2(Σ)), and a number l ≥ 2 of them is non-zero. Relabel such that these are the
coe�cients c1, ..., cl.

Similarly for �xed q′1,

Ψ(q′1, Q2(Σ)) =

m∑
j=1

c′j u
′
j ⊗ v′j , in components : Ψs′1s

′
2(q′1, Q2(Σ)) = c′s′1

δs
′
1s
′
2 , (2.49)

where m is the same as before, the u′j and v′j de�ne orthonormal bases of the respective
spaces, and we can choose the �rst l′ ≥ 2 of the c′j to be non-zero. Then, with the previous
choice of the multi-time Lorentz transformation, the conditional density matrix takes the
following form:

Wcond
s1
s′1

(q1, q
′
1) =

1

N
∑
s2=s′2

cs1c
′
s′1
δs1s2δs′1s′2 =

1

N
cs1c

′
s′1
δs1
s′1
. (2.50)

Thus, as a diagonal matrix with min{l, l′} ≥ 2 non-zero entries, Wcond
s1
s′1

(q1, q
′
1) is not pure.

�

The lemma shows that the mathematical structure in the de�nition of the e�ective wave
function (cf. eq. (2.40)) follows from Wcond being pure. If in addition the �macroscopic
disjointness�, the key aspect to earn ψeff the attribute �e�ective�, is given, the e�ective
wave function is indeed the wave function that is uniquely determined by Wcond.

2.2.4 Indistinguishable particles

Particles with spin are usually thought of as being indistinguishable. Contrary to what
one may think, this poses no problem for BM (cf. [44]). One only has to recognize that
the appropriate con�guration space in this case is the set of unordered con�gurations, i.e.
the subsets of R3 with N elements: NR3 ≡ {S ⊂ R3 : |S| = N}. This space is topo-
logically nontrivial and the analysis of BM on this space leads to the familiar distinction
between bosons and fermions (see e.g. [44]). The description of the spinor bundle on this
con�guration space becomes, however, a bit technical. Since such technicalities do not yield
more insight into the autonomous subsystem description, we adopt a pragmatic point of
view here: One may use an arbitrary labeling of the particles (and thus the ordered ten-
sor product of spinors) and apply the corresponding (anti)symmetrization postulate. The
crucial point is that the constructions in the de�nitions of Wcond and ψeff in fact commute
with permutations of the particle labels. Thus, one may apply them without changes. In
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particular, the distinction between environment particles and subsystem particles is not
based on particle labels, but on the fact that some set of particles, e.g. particles belong-
ing to a certain region R ⊂ Σ of a hypersurface Σ ∈ F , has the actual con�guration
{X(Σ), Y (Σ), ..., Z(Σ)} ⊂ R.

2.2.5 Outlook

In this section, we have derived a subsystem description for the HBD model. By construc-
tion, the quantities of the subsystem, the conditional density matrix and the e�ective wave
function, have statistical meaning on the space-time structure given by the foliation F .

This framework should be taken as the starting point for a further study of an e�ective
relativistic �measurement formalism� which in turn should lead to a rigorous justi�cation
of the usual quantum formalism (as far as it exists for relativistic quantum theories). A
thorough discussion of the measurement formalism as arising from non-relativistic BM has
been achieved in [48,49].

To appreciate the quest, note that a physical experiment with its state of motion de�nes
an equal time hypersurface S in general not belonging to the foliation. That is, such
a hypersurface S is not part of the space time structure de�ned by F . Of course, the
main interest lies in the statistics of �measurements� of the subsystems on such a �query
hypersurface�. In order to obtain these statistics, one has to relate the �|ψ|2-probability�
formula holding only on leaves of F to the usual formalism of operator-observables on query
hypersurfaces. An analysis related in spirit was performed in [19] for a particular limiting
case of Lorentz invariance and spin-less particles.

2.3 Bloch's considerations on the statistical meaning of multi-

time wave functions in certain classes of �measurements�

In [20], Bloch showed how certain assumptions about the single-time measurement formal-
ism together with the possibility to separately time-evolve a multi-time wave function in
each time coordinate imply a statistical meaning of the multi-time wave function. A similar
consideration was made by Berndl et al. in [19, sec. 3.1]. We present a synthesized version
of both works here, clearly working out the assumptions and limits of the idea. We shall
see that this analysis supports the conjecture that the e�ective measurement formalism
resulting from the HBD model does not depend on the foliation (see the remark in sec. 2.1,
point 2).

Assumptions:

1. The unitary part of the time-evolution of the multi-time wave function is given by9

ψ(t1,x1, ..., tN ,xN ) = e−iH1(t1−t0) · · · e−iHN (tN−t0)ψ0(t0,x1, ..., t0,xN ) where ψ0 is an
initial wave function at some common time t0.

9Bloch uses a di�erent symbol for the partial time evolution operators, namelyDj(tj), instead of e
−iHjtj .

His de�nitions of the operators Dj , however, imply Dj(tj) = e−iHjtj .
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2. The orthodox single-time measurement formalism applies. In particular, |ψ|2(t,x1, ..., t,xN )
is the probability density to �nd particle 1 at position x1, ... and particleN at position
xN at common time t.

3. At (common) time t = τ1, a �position measurement� is performed on particle 1 only, ...
and at time t = τN on particle N only, where τ1 < · · · < τN . These �measurements�
have de�nite results which are associated with projectors Mi acting only on the spin
indices and particle coordinates of particle i. The Mi therefore commute with each
other as well as with e−iHjtj for j 6= i.

Argument: Let the initial wave function be ψ0 at common time t = 0. Then, by as-
sumptions 2 and 3, at time t = τN the (e�ective) wave function after the sequence of
�measurements� (and the associated collapses) is given by:

ψ(τ1, ..., τN ) = MNe
−i(τN−τN−1)HMN−1e

−i(τN−1−τN−2)H · · · e−i(τ2−τ1)HM1e
−iτ1Hψ0,

(2.51)
where the space coordinates xi are suppressed and H is the associated single-time Hamil-
tonian, H =

∑
kHk.

Using assumption 1 and the fact that the Mi commute with e−iHjtj for j 6= i as well as
the projector propertiesM2

i = Mi andM
†
i = Mi, eq. (2.51) yields the following probability

density for the �measurement results� associated with the operators Mi:

ψ†ψ(τ1,x1, ..., τN ,xN ) = ψ†0(x1 · · ·xN ) eiτ1H1 · · · eiHN τNMN · · ·M1 e
−iτNHN e−iτ1H1ψ0(x1 · · ·xN )

= ψ†(τ1,x1, ..., τN ,xN )MN · · ·M1ψ(τ1,x1, ..., τN ,xN ). (2.52)

In the case of �position measurements�, the operators Mi are multiplication operators with
the indicator functions of in�nitesimal spatial regions in the xi coordinates. We conclude
that

ψ†ψ (t1,x1, ..., tN ,xN )d3x1 · · · d3xN (2.53)

is the probability to �nd particle 1 at x1 in a �position measurement� at time τ1, ... and
particle N at xN at time τN .

Lorentz invariance: We now show that even though the derivation of (2.53) involves a
wave function collapse in a distinguished frame F , the result is Lorentz invariant.

To see this, rewrite (2.53) using the tensor current jψ and the oriented 3-volume elements
dσi,µi(xi) = dσi(xi)nµi(xi). Realizing ψ

†ψ = j0···0
ψ and j0···0

ψ = jµ1...µN
ψ dσ1,µ1 · · · dσN,µN for

n(xi) = (1, 0, 0, 0) and dσi(xi) = d3xi, i = 1, ..., N , eq. (2.53) becomes:

jµ1...µN
ψ (x1, ..., xN )dσ1,µ1 · · · dσN,µN , (2.54)

which is manifestly Lorentz invariant and does not contain any reference to a distinguished
frame. Thus, the results of Lorentz-transforming (2.53) and repeating the derivation for a
collapse in a di�erent frame coincide. The functional expression for the density furthermore
agrees with the one for ρΣ in eq. (1.60), with the only di�erence that the space-time points
in eq. (2.54) are arbitrary (i.e. do not have to lie on a space-like hypersurface Σ).
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Discussion:

1. One expects that the HBD model with a �at foliation leads to a similar measurement
formalism as used by Bloch. To obtain this measurement formalism, one would just
have to copy the statistical analysis of non-relativistic BM in [47] and [48], replacing
the conditional wave function with the conditional density matrix of sec. 2.2. Given
the above-mentioned assumptions, one would thus indeed reach a measurement for-
malism for arbitrary query hypersurfaces, as suggested in sec. 2.2.5. Bloch's analysis
then shows for a special case that the supposed measurement formalism is indeed
independent of the foliation, as conjectured in [19,42].

2. Bloch's assumptions are quite special. As was shown in sec. 1.2.1.2, the separate exis-
tence of the partial time evolution operators e−iHjtj is only ensured in the interaction-
free case. The overall dynamics for the e�ective wave function given by (2.51) then
corresponds to non-interacting phases which are interrupted from time to time by
external interventions. Moreover, the assumption that the Mi act only on the co-
ordinates and the spin index of particle i further restricts the generality of Bloch's
result. Consequently, the claim of Bloch (later taken up by Tomonaga [96]) that
(2.53) establishes the physical meaning of the multi-time wave function appears to be
too strong.

3. Bloch emphasizes in his paper that the result (2.53) were only valid for space-like
arguments of the wave function. The likely reason for this is that the QED model of
Dirac, Fock and Podolsky (on which Bloch's analysis is based) is only consistent on
S . However, the operators e−iHjtj do not respect the domain S . Bloch's analysis
thus does not apply to the QED model, and the restriction of (2.53) to space-like
con�gurations is unnecessary.

We conclude that in view of these points, realistic relativistic models such as the HBD
model may, due to their conceptual clarity, also prove particularly valuable for working out
a more general relativistic measurement formalism.

2.4 Alternative realistic relativistic models

While the previous section has made plausible that the foliation of the HBD model does not
appear in the respective measurement formalism, there remain some objectionable points
with regard to a preferred foliation.

1. It is additional space-time structure, con�icting Maudlin's �relativistic constraint�
(see the introduction). This fact holds even in the case that the foliation is extracted
from the wave function.

2. There does not appear to be a convincing reason to choose a particular foliation.

3. It has not been shown (and is di�cult to imagine) that no relativistic theory of particle
motion exists which does not need a foliation and which also implies the quantum
predictions in a suitable sense.
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In view of this criticism, we regard it as helpful to brie�y review the status of some existing
realistic relativistic models which do not require a foliation: a Bohmian light cone model
(sec. 2.4.1) and two di�erent relativistic GRW models (sec. 2.4.2).

2.4.1 Bohmian light cone models

In order to formulate a non-local law of motion for relativistic particle trajectories, a folia-
tion is not necessary. From a relativistic standpoint, the most natural generalization of the
simultaneity surfaces in non-relativistic BM are light cones. In order to obtain a non-local
law of motion (as necessary because of Bell's theorem [14]), one then has to use forward
light cones, either exclusively or in addition to the retarded ones. A Bohmian law of this
kind, based on a multi-time wave function, was suggested in [54]. It uses only advanced
light cones10. Here, we present a time-symmetric version of the model. Let Xk(sk) denote
the world lines of N particles, parametrized by an individual parameter sk. Using a positive
de�nite tensor current jψ similarly to before, the law reads:

dXµk
k

dsk

∥∥∥∥ 1

2

jµ1...µN
ψ

∏
j 6=k

dX
νj
j

dsj
(sj,ret(pk))ηµjνj + jµ1...µN

ψ

∏
j 6=k

dX
νj
j

dsj
(sj,adv(pk))ηµjνj

 ,
(2.55)

where pk = Xk(sk), sj,ret(pk) (sj,adv(pk)) are the values of the world line parameter sj
where the retarded (advanced) light cone at pk intersects the trajectory of the j-th particle
and the ‖-sign denotes parallelity of two vectors. The tensor current jψ is to be evaluated at
(X1(s1,ret(pk)), ..., XN (sN,ret(pk)) in the �rst summand and at (X1(s1,adv(pk)), ..., XN (sN,adv, (pk))
in the second.

Further heuristic reasons why to choose this particular law were given in [54]. However,
the problem of the model is that it does apparently not possess an equivariant measure. It
is therefore unknown whether (or how) it can be analyzed statistically. Because of this lack
of �statistical transparency�, to use the terminology of [19], theories of this kind are often
discarded (see e.g. [98, sec. 3.3.2]), leaving the HBD model as the best state of the art of
relativistic Bohmian theories.

Discussion of �statistical transparency�: It becomes obvious that the main reason
to use a preferred foliation in relativistic Bohmian mechanics is �statistical transparency�.
In [54, 98], this term is taken as the requirement that there exists an equivariant density.
However, this requirement is not really a physical one, as it is dictated only by the particular
way scientists are accostumed to perform a statistical analysis. While some way to perform
a statistical analysis is indeed required to obtain a useful theory, one may doubt that the
requirement of an equivariant density should hold in the light of relativity. The reason is
that the notion of equivariance presupposes a velocity vector �eld, i.e. a structure which
already requires a notion of simultaneity. Thus, one cannot make the argument that a
foliation � which mainly provides a notion of simultaneity � is necessary for �statistical
transparency�, because the argument is circular.

10Assuming interplaying macroscopic and microscopic arrows of time, they are relabeled as retarded light
cones.
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This line of thought rather motivates to search for alternative ways of performing a sta-
tistical analysis. What makes this task di�cult is that the law of motion and the statistical
analysis have to harmonize in some way � and neither of the two is �xed. Note, how-
ever, that the need for alternative ways of a statistical analysis is not limited to Bohmian
quantum theory. An analogous situation is encountered for Wheeler-Feynman electrody-
namics11. The same holds true for other laws of motion which do not involve a structure
similar to a velocity vector �eld.

Remark concerning the requirements on the wave function level of the theory:
Note that the question of an adequate statistical analysis of relativistic laws of motion may
also have consequences for the wave function level of the theory. To see this more clearly,
recall that the main role of the multi-time wave equations is to ensure the continuity
equations of the tensor current jψ. However, the purpose of these continuity equations
in turn is to guarantee the equivariance property for the HBD law of motion (eq. (2.1))
which may not be appropriate for a relativistic law of motion which is not based on a
velocity vector �eld. For example, there is no apparent reason why the tensor current in
eq. (2.55) should be divergence-free. Thus, an alternative way for the statistical analysis
may indeed have far-reaching consequences for the construction principles of multi-time
wave equations and these, in turn, for the entailed mathematical structures such as the
Hilbert space picture.

2.4.2 Relativistic GRW models

Apart from the HBD model, multi-time wave functions are also required to formulate
relativistic GRW (Ghirardi-Rimini-Weber) models. We do not attempt to give a complete
overview of these models here. Instead, we refer to the respective sources and introduce
only those parts of the theories which contribute to the question of the requirements on
multi-time wave function and its conceptual role in the theory.

GRW models can be distributed into two main classes: those with a mass density on-

tology (GRWm [10]) and those with a �ash ontology (GRWf [97]), i.e. where discrete events
in space-time are supposed to represent the physical world. Their common structure is a
modi�cation of the wave equations by stochastic terms (and corresponding new constants
of nature). This results in an objective collapse of the wave functions, so that objects
in physical space are e�ectively localized at a rate depending on the size (e.g. number of
particles or mass) of the object in question.

2.4.2.1 GRWm

The GRWm model [10] uses a unitary wave function dynamics between Hilbert spaces HΣ

for arbitrary space-like hypersurfaces Σ. The elements of the HΣ are, of course, multi-time
wave functions. For N �particles� (i.e. N arguments of the multi-time wave function), these

Hilbert spaces correspond to theH(N)
Σ of eq. (1.73). According to lemma 1.3.3, unitary wave

function dynamics between these Hilbert spaces exist if there is a conserved and positive-

de�nite tensor current jµ1...µN
ψ . The unitary time evolution is then interrupted from time

11Note that for WF theory, the task seems clearer than for Bohmian light cone models because at least
the law of motion is canonical.
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to time by jumps de�ned by a stochastic law the exact nature of which is not important
here.

Given jµN ...µNψ , one de�nes the law for the mass density, a 4-vector mµ in the Dirac
case, as follows. Compared to [10, eq. (4)] we use a slight generalization by allowing for
arbitrary positive-de�nite and conserved tensor currents, not just the free Dirac current
(1.59).

mµ(x) =
N∑
i=1

miδ
µi
µ

∫
PLC(x)N−1

∏
j 6=i

dσ
µj
j (yi)

 jψPLC(x),µ1...µi...µN , (2.56)

where jµ1...µN
ψ (x1, ..., xN ) is evaluated at (y1, ..., yi−1, x, yi+1, ..., yN ) and PLC(x) denotes

the past light cone at x.
Note that the multi-time wave function carries an additional hypersurface label Σ (Σ =

PLC(x) in eq. (2.56) which is a limiting case of space-like hypersurfaces). The reason for
this is that a collapse at p ∈ R4 globally modi�es all wave functions ψΣ with p in the past
of Σ. Thus, ψΣ and ψΣ′ , where Σ 6= Σ′, may di�er even in points q ∈ Σ ∩ Σ′.

Given an appropriate law for the collapses, the statistics of the resulting model can
be shown to agree (approximately) with any quantum-mechanical model with probability
density given by ρΣ of eq. (1.60).

2.4.2.2 GRWf

The GRWf model, as presented in [97], requires a unitary evolution map between Hilbert

spaces of the form H(1)
Σ1
⊗· · ·⊗H(1)

ΣN
. It was originally constructed for free multi-time Dirac

equations with external potential. However, given a positive-de�nite and divergence-free
tensor current jµ1...µN

ψ on R4N it can be formulated without essential changes as we sketch
now (otherwise following [97, sec. 3.3]).

The model assumes N initial �ashes X1, ..., XN ∈ R4 to be given. Then N time di�er-
ences ∆ti > 0, i = 1, ..., N are randomly determined and N hyperboloids Σi with time-like
distance ∆ti to Xi are constructed. These are the surfaces on which the next generation of
�ashes is determined, according to the probability distribution

Prob(Y1 ∈ dσ1, ..., YN ∈ dσN ) = %(y1, ..., yN )dσ1 · · · dσN , (2.57)

where the notation �dσi� is the same as in eq. (2.2).
The density % is given by

%(y1, ..., yN ) =

∫
∏
i Σi

dσ1(z1) · · · dσN (zN )|fΣ1(y1, z1)|2 · · · |fΣN (yN , zN )|2jµ1...µN
ψ nµ1(z1) · · ·nµN (zN ),

(2.58)
where the fΣi are certain �jump factors� (e.g. Gaussians on Σi) by which the wave function
becomes modi�ed as follows. One randomly determines N new �ashes Y1, ..., YN according
to (2.57). Then one replaces ψ by a new (collapsed) ψ′ de�ned by

ψ′(z1, ..., zN ) :=
fΣ1(Y1, z1) · · · fΣN (YN , zN )ψ(z1, ..., zN )

%1/2(Y1, · · · , YN )
(2.59)

on
∏
i Σi and on R4N by extension via the multi-time equations.
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Iterating the whole procedure, one obtains a set of �ashes which represents a discrete
space-time world, the statistics of which is (approximately) in agreement with the quantum
predictions based on ρΣ of eq. (1.60).

We thus see that both GRWm and GRWf models (approximately) recover the quantum
predictions without the use of a foliation. However, this is only possible using (unexplained)
stochastic terms.

2.5 Conclusion

Both the HBD model as well as the GRWm/f models � as di�erent as their pictures of the
world may be � suggest that the connection of the multi-time wave function ψ with physics
derives from the tensor current jψ. The tensor current is used to formulate covariant laws
for the primitive ontology (eqs. (2.1), (2.56) and (2.57), (2.58)). Besides this main role, it
also has a secondary role which follows from said laws: its density component yields the
statistical distribution on space-like hypersurfaces (in �measurements�).

Even though the discussed models all have their individual open issues (the preferred
foliation in the case of the HBD model and the unexplained stochastic terms in the case
of the GRW models), we have now reached an exemplary conceptual framework of the role
of multi-time wave functions in relativistic quantum theory. In the following chapters, we
proceed to the search for interacting evolution equations which are compatible with this
framework.
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Chapter 3

A relativistically interacting exactly

solvable multi-time model for two

mass-less Dirac particles in 1 + 1
dimensions

This chapter has been published in similar form as the article [67] by the present author.
In the version at hand, several sections have been adapted to avoid overlap with other
chapters. This concerns sections I, II, IV A and B, VI B as well as VIII of [67].

3.1 Background and motivation

The implausibility of potentials in multi-time wave equations (see sec. 1.2.1.2) motivates
the search for alternative mechanisms of interactions. Here we explore such a di�erent
approach, inspired by the �eld of zero-range physics (see [1] for an overview). The main
idea is that boundary conditions for the wave function may yield physically interesting
e�ects and even interaction while the formal di�erential operator in the wave equation is
the free one. This clearly avoids the use of potentials. However, the direct application
of the methods used in zero-range physics, developed for the single-time formalism, is not
possible for multi-time equations.

To illustrate this claim, recall the standard functional-analytic treatment of single-time
wave equations (see e.g. [82, 83] and [51, chap. 14])

i
∂

∂t
ϕ = Hϕ, (3.1)

where H is a self-adjoint operator on a Hilbert space H, most often H = L2(Q) ⊗ Ck,
where Q ⊂ RNd is the physically accessible part of con�guration space. Usually, H is
an unbounded operator with domain D(H) ( H. The speci�cation of D(H) is important
for physics, as it includes potential boundary conditions which in�uence time evolution
and spectrum. H is the generator of a strongly continuous unitary one-parameter group
U(t) = exp(−iHt). If ϕ0 ∈ D(H), then U(t)ϕ0 ∈ D(H) and U(t)ϕ0 satis�es eq. (3.1). The
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unitarity of U ensures conservation of the norm of the wave function which is essential for
the statistical meaning of the wave function.

It is crucial to note that within this approach the allowed boundary conditions are time-
less, as the Hilbert space L2(Q) ⊗ Ck does not include time. Spatial boundary conditions
prescribed in this way are automatically extended for all times t. An example for two
particles is:

ϕ(x1,x2, t) = 0 for x1 = x2, ∀t. (3.2)

For multi-time wave functions, the method can be generalized straightforwardly using the-
orem 1.2.1 on strongly continuous unitary N -parameter groups U(t1, ..., tN ) on the same
Hilbert space H as above. We recall that such a group can be constructed if and only
if the generators Hj of the one-parameter subgroups U(0, ..., 0, tj , 0, ..., 0) are self-adjoint,
commute pairwise and have a common domain D(Hj) ≡ D, independent of j. This implies:
if ψ0 ∈ D, then U(t1, ..., tN )ψ0 ∈ D and U(t1, ..., tN )ψ0 obeys the multi-time equations
(1.16).

However, one crucial aspect changes: boundary conditions are still supposed to be
expressed via the domain D which makes no reference to time. Consequently, the boundary
conditions are automatically extended in all time coordinates, e.g.:

ψ(t1,x1, t2,x2) = 0 for x1 = x2, ∀ t1, t2. (3.3)

Using the connection between single-time and multi-time equations (eq. (1.9)), one can see
that condition (3.3) in fact di�ers from the corresponding one in the single-time formalism
(3.2), although one might have D(H) = D. Namely, eq. (3.2) translated into the multi-time
formalism via (1.9) reads:

ψ(t1,x1, t2,x2) = 0 for x1 = x2, t1 = t2 (3.4)

with the condition �for t1 = t2� instead of �∀ t1, t2�. However, boundary conditions like (3.3)
for spatio-temporal con�gurations which may be time-like do not have a clear meaning. It
thus seems that the functional-analytic approach is not adequate for multi-time equations
on domains with boundaries, since it automatically implements too many1 and physically
unreasonable boundary conditions. Therefore, a di�erent method is required to implement
the idea that boundary conditions could lead to relativistically invariant interaction for
multi-time wave functions. In order for the boundary conditions to be Lorentz invariant,
time should also be admitted in their formulation. We suggest to take a step back and view
the multi-time equations (1.16) as a general overdetermined system of PDEs on a subset
of con�guration space-time RN(1+d), treating space and time on equal footing.

Of course, such a change in methods raises important questions, such as:

1. How does one prove existence and uniqueness of solutions?

2. How is probability conservation guaranteed and which notion thereof is adequate in
the relativistic regime?

1It may well be that the only common domain D of self-adjointness of the Hj 's is the one corresponding
to the free operators, i.e. one where no boundary condition such as (3.4) is prescribed.



3.2 The model 59

(In the functional-analytic treatment, the two points are conveniently answered by the
notion of self-adjointness.)

In this chapter, we provide a model for which both questions can be answered de�nitely
and precisely, bearing in mind also the physical aspects of interaction and Lorentz invari-
ance. For this purpose, we consider a two-time system of mass-less Dirac equations in one
spatial dimension (d = 1) on the domain of space-like con�gurations.

The choice of the model is explained as follows: The dimensionality both allows for an
explicit solution in the mass-less case as well as leads to the situation that a certain natural
Lorentz-invariant boundary in con�guration space-time, the set of coincidence points, has
the right dimensionality to have impact on the time evolution2. Moreover, the Dirac equa-
tion is Lorentz invariant, re�ects the expected dispersion relation, and possesses a conserved
tensor current with a positive component that can play the role of a probability density.
The choice of domain is explained by the considerations about the necessity of multi-time
wave functions in sec. 1.1.1.2. Interestingly, this immediately raises the question of bound-
ary conditions since the domain of space-like con�gurations has a non-empty boundary:
the light-like con�gurations. This provides a natural reason to study the idea of relativistic
interaction by boundary conditions.

The chapter is structured as follows: We begin with introducing the model, as de�ned
by its multi-time equations, domain, and initial conditions as well as boundary conditions at
the space-time points of coincidence. Next, the general solution is found (lemma 3.3.1) and
the existence and uniqueness of Ck-solutions3 is studied by a generalized method of char-
acteristics (theorem 3.3.3). Employing the relativistic notion of probability conservation
of sec. 1.3.2 combined with Stokes' theorem, we then determine a general class of bound-
ary conditions which guarantees it (theorem 3.4.2). We proceed with proving the Lorentz
invariance of the model, and particularly of the boundary conditions (lemma 3.5.1). More-
over, a criterion for what constitutes interaction is suggested and applied to the model,
showing that it is indeed interacting in this sense (theorem 3.6.2). The time evolution
and e�ect of the interaction are explicitly illustrated using the example of initially localized
wave packets for each of the two particles. Finally, the implications of antisymmetry for the
boundary conditions in the case of indistinguishable particles are analyzed (lemma 3.7.1).

3.2 The model

Our model is based on a two-time wave function for two Dirac (spin-1
2) particles in (1 + 1)-

dimensional space-time:

ψ : Ω ⊂ R2 × R2 −→ C2 ⊗ C2, (t1, z1, t2, z2) 7−→ ψ(t1, z1, t2, z2). (3.5)

As mentioned before, the physically natural choice of the domain Ω is the set S of space-like
con�gurations, given by4:

S := {(t1, z1, t2, z2) ∈ R2 × R2 : (t1 − t2)2 − (z1 − z2)2 < 0}. (3.6)

2In a functional-analytic setting, the dimensionality of the boundary to allow for zero-range interactions
is known to depend sensitively on the order of the di�erential operator and the dimension of con�guration
space [94].

3The di�erentiability referes to both space and time.
4We denote vectors in 1 + 1-dimensional space-time R2 by x = (t, z).
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Initial data should be prescribed on a surface I of the form I = (Σ0 × Σ0) ∩ Ω where Σ0

is a space-like hypersurface. We choose:

I := {(t1, z1, t2, z2) ∈ S : t1 = t2 = 0}, (3.7)

i.e. a Σ0 corresponding to t = 0.
In order to obtain a fully Lorentz invariant model, boundary conditions have to be

prescribed on a Lorentz invariant subset of ∂Ω. The �rst natural choice is the whole of
∂S , i.e. the set

L := {(t1, z1, t2, z2) ∈ S : (t1 − t2)2 − (z1 − z2)2 = 0} (3.8)

of light-like con�gurations. However, this set has dimension three, as compared to di-
mension two of I, so one expects it to lead to an overdetermined initial boundary value
problem (IBVP)5. The second natural choice � and the one we shall make � is the set C of
coincidence points in space-time, given by:

C := {(t1, z1, t2, z2) ∈ R2 × R2 : t1 = t2, z1 = z2}. (3.9)

As two-time wave equations we use the free (1 + 1)-dimensional mass-less Dirac equations
acting on the spin indices of the �rst and second particle, respectively. In this case, the
Dirac γ-matrices are 2× 2-matrices. Choosing the representation

γ0 = σ1, γ1 = σ1σ3, (3.10)

the multi-time Dirac equations (1.18) can be written as

i
∂

∂t1
ψ(t1, z1, t2, z2) = −i σ3 ⊗ 12

∂

∂z1
ψ(t1, z1, t2, z2),

i
∂

∂t2
ψ(t1, z1, t2, z2) = −i12 ⊗ σ3

∂

∂z2
ψ(t1, z1, t2, z2). (3.11)

In the case with mass, additional terms m1 σ1⊗ 12 and m2 12⊗ σ1 appear in front of ψ on
the right hand side.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.12)

are the Pauli matrices.
Note that the compatibility conditions (1.55) are satis�ed, as the matrices appearing in

the �rst and second equation of (3.11) are constant and commute. Furthermore, the free
Dirac current jµνψ = ψγµ1 γ

ν
2ψ is divergence-free in all of its indices as a consequence of eqs.

(3.11).
To summarize, the model is given by:

Eqs. (3.11) on S ,
ψi = gi on I, i = 1, 2, 3, 4,
boundary conditions on C .

(3.13)

5This claim will be given further evidence in sec. 4.3.
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Here, ψi, i = 1, 2, 3, 4 denote the components of ψ with respect to the (ordered) basis

B = (e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2), (3.14)

where ei are the canonical basis vectors of C2. gi, i = 1, 2, 3, 4 are arbitrary complex-valued
Ck-functions on I. The form of admissible boundary conditions will be explored in the next
section.

For future convenience, note the following explicit representation for arbitrary complex-
valued 2× 2 matrices A = (aij), B = (bij) with respect to B:

A⊗ 12 =


a11 0 a12 0
0 a11 0 a12

a21 0 a22 0
0 a21 0 a22

 , 12 ⊗B =


b11 b12 0 0
b21 b22 0 0
0 0 b11 b12

0 0 b21 b22

 . (3.15)

3.3 Existence and uniqueness

In this section, it is shown which type of boundary conditions ensures existence and unique-
ness of a Ck-solution (in space and time and for any k ∈ N) of the two-time equations.
This is achieved using a generalized version of the method of characteristics.

Lemma 3.3.1 On any open and connected domain D ⊂ R2 × R2, the general solution of

the two-time system (3.11) is given by:
ψ1

ψ2

ψ3

ψ4

 (t1, z1, t2, z2) =


f1(z1 − t1, z2 − t2)
f2(z1 − t1, z2 + t2)
f3(z1 + t1, z2 − t2)
f4(z1 + t1, z2 + t2)

 , (3.16)

where fj : R2 → C, j = 1, 2, 3, 4 are C1-functions.

Proof: Using eq. (3.15), we explicitly write out eq. (3.11):

i
∂

∂t1


ψ1

ψ2

ψ3

ψ4

 = −i


1

1
−1

−1

 ∂

∂z1


ψ1

ψ2

ψ3

ψ4

 ,

i
∂

∂t2


ψ1

ψ2

ψ3

ψ4

 = −i


1
−1

1
−1

 ∂

∂z2


ψ1

ψ2

ψ3

ψ4

 . (3.17)

We see that our choice of basis in spin space makes all occurring matrices diagonal. The
structure of the equations becomes very simple. For example, for ψ1 we have:(

∂

∂t1
+

∂

∂z1

)
ψ1 = 0,

(
∂

∂t2
+

∂

∂z2

)
ψ1 = 0 ⇒ ψ1(t1, z1, t2, z2) = f1(z1 − t1, z2 − t2),

(3.18)
where f1 is C1. The claim for the other components follows analogously. �
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It is instructive to understand this result in geometrical terms. Eq. (3.16) implies that the
components of the solution are constant along certain two-dimensional surfaces in R2×R2

(for some c1, c2 ∈ R):

S1(c1, c2) := {(t1, z1, t2, z2) ∈ R2 × R2 : z1 − t1 = c1, z2 − t2 = c2},
S2(c1, c2) := {(t1, z1, t2, z2) ∈ R2 × R2 : z1 − t1 = c1, z2 + t2 = c2},
S3(c1, c2) := {(t1, z1, t2, z2) ∈ R2 × R2 : z1 + t1 = c1, z2 − t2 = c2},
S4(c1, c2) := {(t1, z1, t2, z2) ∈ R2 × R2 : z1 + t1 = c1, z2 + t2 = c2}, (3.19)

where the index i in Si refers to the component ψi that is constant along Si. This behavior
closely resembles the method of characteristics (see e.g. [24, 56]). We therefore call the
surfaces Si multi-time characteristics. They allow for a simple and powerful method to
study the IBVP. Note that for the unbounded domain R2×R2, lemma 3.3.1 already yields
existence and uniqueness of solutions for the initial value problem (3.13), with fi(x, y) from
eq. (3.16) given by gi(x, y). For more complex domains such as Ω = S , one has to know
more about the topological structure (in particular the connectedness).

Lemma 3.3.2 The domain S is the disjoint union of the sets S1 and S2 where

S1 := {(t1, z1, t2, z2) ∈ R2 × R2 : (t1 − t2)2 − (z1 − z2)2 < 0, z1 < z2},
S2 := {(t1, z1, t2, z2) ∈ R2 × R2 : (t1 − t2)2 − (z1 − z2)2 < 0, z1 > z2}. (3.20)

Furthermore, S1 and S2 cannot be connected by a curve lying entirely in S .

Proof: The �rst statement is obvious from the de�nition S (eq. (3.6)). The second state-
ment follows because S1,S2 are disjoint and open (as can be seen from eq. (3.20)). �

This splitting of S into path-wise disjoint parts implies that one should formulate the
IBVP separately for S1,S2. In particular, this allows for more subtle boundary condi-
tions as limits within either S1 or S2. To identify these limits would mean to reduce the
number of possibilities to prescribing that ψ has to be continuous across the boundary. It
may, however, be physically reasonable to admit singularities (including jumps) of ψ at
the boundary. In fact, this situation is generic in the �eld of zero-range physics [1] where
similar singularities appear for δ-interactions.

Now we come to the main result of this section: the formulation of the initial boundary
value problem and the corresponding proof of the existence and uniqueness of solutions.

Theorem 3.3.3 Let k ∈ N. Given complex-valued Ck-functions h±j as well as g
(j)
i (i =

1, 2, 3, 4; j = 1, 2) such that (3.23) holds, there exists a unique solution ψ which is Ck on

S1 and S2 for the initial boundary value problem de�ned by:

1. For S1:

ψi(0, z1, 0, z2) = g
(1)
i (z1, z2), i = 1, 2, 3, 4 for z1 < z2, i.e. on I1 := I ∩S1,

ψ3(t, z − 0, t, z + 0) = h+
1 (t, z) for t ≥ 0, i.e. on C ,

ψ2(t, z − 0, t, z + 0) = h−1 (t, z) for t < 0, i.e. on C . (3.21)
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2. For S2:

ψi(0, z1, 0, z2) = g
(2)
i (z1, z2), i = 1, 2, 3, 4 for z1 > z2, i.e. on I2 := I ∩S2,

ψ2(t, z + 0, t, z − 0) = h+
2 (t, z) for t ≥ 0, i.e. on C ,

ψ3(t, z + 0, t, z − 0) = h−2 (t, z) for t < 0, i.e. on C . (3.22)

Here,�±0� denotes the corresponding limits, e.g. ψ(z − 0, z + 0) := limε→0 ψ(z − ε, z + ε).
Furthermore, it is required that the initial conditions satisfy the boundary conditions,

i.e.:

g
(1)
3 (z, z) = h+

1 (0, z) ∀z ∈ R,

g
(1)
2 (z, z) = h−1 (0, z) ∀z ∈ R,

g
(2)
2 (z, z) = h+

2 (0, z) ∀z ∈ R,

g
(2)
3 (z, z) = h−2 (0, z) ∀z ∈ R, (3.23)

and also that these transitions between initial and boundary values be of regularity Ck.

Proof: We only show the statement for S1; the one for S2 follows analogously. The
proof is structured as follows. First, we identify the part of S1 where each component
of ψ is formally determined by initial data, i.e. their domain of dependence. Next, we
check if there are also parts of S1 where the ψi are not speci�ed by initial data. We
continue by demonstrating that the above-mentioned boundary conditions formally yield
the missing values of the ψi. Subsequently, we make sure that the constructions actually
work by explicitly demonstrating that there exist curves within the characteristic surfaces
connecting each point in S with exactly one initial or boundary value. Finally, we explicitly
write down the solution in terms of initial data and show that it is indeed Ck.

1. Domain of dependence of the initial data: Consider the initial conditions in (3.21). Us-

ing the general solution (eq. (3.16)), we �nd: ψi(0, z1, 0, z2) = fi(z1, z2)
!

= g
(1)
i (z1, z2),

z1 < z2. Formally, this equation determines fi = fi(x, y) as a function on {(x, y) ∈
R2 : x < y}. Geometrically, this means that the characteristics Si(x, y) intersect I in
a single point (0, x, 0, y)i for all i. Then ψi is constant along Si(x, y). This consid-
eration demonstrates uniqueness. However, existence is only guaranteed if one can
connect the initial values with a continuous curve within Si that also remains in S1.
This is shown under point 4.

2. Complement of the domain of dependence of the initial data:

(a) ψ1(t1, z1, t2, z2) = f1(z1 − t1, z2 − t2): We know from 1. that there exist points
(t1, z1, t2, z2) ∈ S1 such that z1 − t1 < z2 − t2. However, is z1 − t2 > z2 − t2
also possible in S1? To answer this question, consider: z1 − t2 > z2 − t2 ⇔
z1 − z2 ≥ t1 − t2. In S1, z1 − z2 < 0 which implies t1 − t2 < 0 and therefore
|z1 − z2| < |t1 − t2|. This inequality states that the con�guration (t1, z1, t2, z2)
has to be time-like, in contradiction to S1 ⊂ S . So there are no points in S1

which require the function f1(x, y) to be de�ned for x > y. We proceed similarly
for the other components.
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(b) ψ4(t1, z1, t2, z2) = f4(z1 + t1, z2 + t2): z1 + t1 > z2 + t2 ⇔ t1− t2 > z2− z1. Since
z1 < z2 in S1, we obtain: |t1 − t2| > |z1 − z2|, so also f4(x, y) is only required
for x < y.

(c) ψ2(t1, z1, t2, z2) = f2(z1−t1, z2 +t2): z1−t1 > z2 +t2 ⇔ −t1−t2 > z2−z1. This
time, the inequality can always be satis�ed, e.g by choosing z1 < z2 arbitrarily
and t1 = t2 ≡ t with t < (z1 − z2)/2. Thus, f2(x, y) is not yet determined fully
by initial values. Note that this case appears only for t1 + t2 < 0.

(d) ψ3(t1, z1, t2, z2) = f3(z1 + t1, z2 − t2): z1 + t1 > z2 − t2 ⇔ t1 + t2 > z2 − z1.
Again, this can happen for all values of z1 + t2, z2 − t2, e.g. for t1 = t2 ≡ t with
t > (z2 − z1)/2. Note that this case requires t1 + t2 > 0.

3. Domain of dependence of the boundary values:

(a) The condition ψ2(t, z−0, t, z+0)
!

= h−1 (t, z), t < 0 yields (leaving away the limit
�±0� for notational ease): f2(z− t, z+ t) = h−1 (t, z). Indeed, this determines the
missing values f2(x, y), x ≥ y exactly once, as the map Φ : {(t, z) ∈ R2 : t <
0} → {(x, y) ∈ R2 : x > y}, (t, z) 7→ (z − t, z + t) is bijective.

(b) Similarly, the condition ψ3(t, z − 0, t, z + 0)
!

= h+
1 (t, z), t ≥ 0 determines

f3(x, y), x ≥ y exactly once as the map Φ̃ : {(t, z) ∈ R2 : t ≥ 0} → {(x, y) ∈
R2 : x ≥ y}, (t, z) 7→ (z + t, z − t) is bijective.

4. Proof of existence: We have to make sure that both initial values as well as boundary
values can be transported along a mult-time characteristic while staying in S1. Then
the aforesaid considerations show that the functions fi are determined uniquely.

(a) For ψ1: We have to show that there exists a continuous curve connecting
(t1, z1, t2, z2) to (0, z1 − t1, 0, z2 − t2) while staying within a multi-time char-
acteristic S1 de�ned by z1 − t1 = c1, z2 − t2 = c2 and also in S1. In fact, such
a path is given by:

γ1 : [0, 1]→ S1 ∩S1, γ1(τ) := (τt1, z1 − t1 + τt1, τ t2, z2 − t2 + τt2). (3.24)

Obviously: γ1(0) = (0, z1 − t1, 0, z2 − t2), γ1(1) = (t1, z1, t2, z2). Besides, the
z1-component of γ2(τ) has to be smaller than the z2-component: z1− t1 + τt1 <
z2− t2 + τt2 ⇔ z2− z1 > (t2− t1)(1− τ). This inequality is satis�ed because in
S1, we have z1 < z2 and |z1 − z2| > |t1 − t2|.
Furthermore, one has to ensure that γ1(τ) always yields a space-like con�gura-
tion. To see this, consider:

τ2(t1 − t2)2 < (z1 − t1 + τt1 − z2 + t2 − τt2)2

⇔ 0 < [(z1 − z2) + (t2 − t1)]2 − 2τ(z1 − z2)(t2 − t1)− 2τ(t2 − t1)2.

Now we use −(t2 − t1)2 > −(z2 − z1)2 for the last summand which yields:

[(z1 − z2) + (t2 − t1)]2 − 2τ(z1 − z2)(t2 − t1)− 2τ(t2 − t1)2

> [(z1 − z2) + (t2 − t1)]2 − τ [(z1 − z2)2 + 2(z1 − z2)(t2 − t1)− (t2 − t1)2]

= [(z1 − z2) + (t2 − t1)2](1− τ).
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For τ ∈ (0, 1) this is indeed greater than zero and for τ = 0, 1 the claim is
evident, anyway.

For the other components we only state the corresponding curves. The proof
that they stay within Si ∩S1 is analogous to the one above. In case of ψ2, ψ3

the curves start at boundary values, i.e. stay only within Si ∩S 1.

(b) For ψ4:

γ4 : [0, 1]→ S4 ∩S1, γ4(τ) := (τt1, z1 + t1 − τt1, τ t2, z2 + t2 − τt2). (3.25)

(c) For ψ2:

γ2 : [0, 1]→ S4 ∩S 1,

γ2(τ) :=


(τt1,z1−t1+τt1,τ t2,z2+t2−τt2) for z1−t1<z2+t2;

((−z1+z2+t1+t2)/2+τ(z1−z2+t1−t2),(z1+z2−t1+t2)/2+τ(z1−z2+t1−t2),

(−z1+z2+t1+t2)/2+τ(z1−z2−t1+t2),(z1+z2−t1+t2)/2+τ(−z1+z2+t1−t2))

for z1−t1>z2+t2.

(3.26)

The rather lengthy formula in the second case arises from a simple consideration.
As before, p = (t1, z1, t2, z2) is the point where we want to show the solution
to be determined. Next, one determines the point (t, z, t, z) of intersection of
S2(z1−t1, z2 +t2) with C , obtaining t = (−z1 +z2 +t1 +t2)/2 and z = (z1 +z2−
t1 + t2)/2. Then: γ2(τ) = (t+ τ(t1− t), z+ τ(z1− z), t+ τ(t2− t), z− τ(z2− z)).

(d) For ψ3:

γ3 : [0, 1]→ S3 ∩S 1,

γ3(τ) :=


(τt1,z1+t1−τt1,τ t2,z2−t2+τt2) for z1+t1<z2−t2;

((z1−z2+t1+t2)/2+τ(−z1+z2+t1−t2),(z1+z2+t1−t2)/2+τ(z1−z2−t1+t2),

(z1−z2+t1+t2)/2+τ(−z1+z2−t1+t2),(z1+z2+t1−t2)/2+τ(−z1+z2−t1+t2))

for z1+t1>z2−t2.

(3.27)

The expression in the second case results from an analogous consideration as
for ψ2, the only change being the use of the point (t, z, t, z) of intersection of
S3(z1 + t1, z2 − t2) with C .

5. Explicit solution and Ck property: Collecting the results from the previous points, we
obtain on S1:

ψ1(t1, z1, t2, z2) = g
(1)
1 (z1 − t1, z2 − t2),

ψ2(t1, z1, t2, z2) =

{
g

(1)
2 (z1−t1,z2+t2) for z1−t1<z2+t2

h−1 ((−z1+z2+t1+t2)/2,(z1+z2−t1+t2)/2) for z1−t1≥z2+t2

ψ3(t1, z1, t2, z2) =

{
g

(1)
3 (z1+t1,z2−t2) for z1+t1<z2−t2
h+

1 ((z1−z2+t1+t2)/2,(z1+z2+t1−t2)/2) for z1+t1≥z2−t2

ψ4(t1, z1, t2, z2) = g
(1)
4 (z1 + t1, z2 + t2). (3.28)
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From this formula, we immediately see that ψ1, ψ4 are Ck on S1 as g(1)
1 , g

(1)
2 are

Ck. For the other two components a similar argument holds true if additionally the
transition between the two cases is Ck.

(a) For ψ2: The critical points are at u := z1−t1 = z2 +t2. We obtain as a condition
that

g
(1)
2 (u, u)

!
= h−1 (0, u) ∀u ∈ R (3.29)

and that this transition be Ck. We recognize this as one of the conditions in
(3.23) in the statement of the theorem.

(b) For ψ3: The critical points are at v := z1 +t1 = z2−t2. We obtain as a condition
that

g
(1)
3 (v, v)

!
= h+

1 (0, v) ∀v ∈ R (3.30)

and that this transition be Ck. This is again one of the conditions in (3.23). �

Remark: Note that for the de�nition of the functions h±j one can make use of those com-
ponents of ψ that are already determined by initial values at the boundary point (t, z, t, z)
in question.

3.4 Boundary conditions derived from probability conserva-

tion

In this section, we combine the relativistic notion of probability conservation (see sec.
1.3.2) and especially its formulation via the current form ωj (see sec. 1.3.3) with Stokes'
theorem in order to extract a general class of probability-conserving boundary conditions.
This formulation is applicable to our model as the free Dirac equations conserve the tensor
current jµνψ = ψγµ1 γ

ν
2ψ. Before stating the main result, we formulate a lemma which allows

us to control the spreading of the wave function.

Lemma 3.4.1 Consider the IBVP de�ned by (3.21), (3.22) and let Σ denote a space-like

hypersurface. Then, if the initial data are compactly supported on I, they are compactly

supported on all sets of the form (Σ× Σ) ∩S .

Proof: This can be seen immediately from the explicit solution (3.28). (In�uences propa-
gate with �nite speed along the multi-time characteristics.) �

Theorem 3.4.2 Let εµν denote the Levi-Civita symbol. Assume that the initial data are

of regularity Ck, k ∈ N, and compactly supported on I. Then the following conditions for

the tensor current guarantee probability conservation in the sense of criterion (1.71):

εµνj
µν
ψ (t, z − 0, t, z + 0)

!
= 0, t, z ∈ R,

εµνj
µν
ψ (t, z + 0, t, z − 0)

!
= 0, t, z ∈ R. (3.31)

Expressed in terms of the components of ψ, these conditions are equivalent to:

ψ2(t, z − 0, t, z + 0)
!

= e−iθ1(t,z)ψ3(t, z − 0, t, z + 0), t, z ∈ R,

ψ2(t, z + 0, t, z − 0)
!

= e−iθ2(t,z)ψ3(t, z + 0, t, z − 0), t, z ∈ R (3.32)
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for arbitrary functions θ1, θ2 : R2 → [−π, π). (In order for ψ to be Ck, they have to be

Ck-functions, too.)

Remark:

1. Conditions (3.31) have the physical meaning that the probability �ux from S1 into
C and from S2 into C has to vanish, separately. They are therefore a subclass of
all conditions on j that lead to probability conservation. Boundary conditions with a
similar meaning are widely used to express con�nement of particles in certain spatial
regions (see e.g. [51, chaps. 12,14] for a physically motivated discussion). The crucial
di�erence here is that the boundary set is determined by internal relations between
the particles, not by external geometry.

2. Note that the boundary conditions (3.32) are of the form (3.21), (3.22) with the
property (3.23). Thus, theorem 3.3.3 ensures the existence and uniqueness of a Ck-
solution on S1 and S2 of the corresponding IBVP.

Proof: The idea is to use Stokes' theorem for a closed surface S of the form S = [(Σ1 ×
Σ1)∩S ]∪ [(Σ2×Σ2)∩S ]∪M where Σ1,Σ2 are space-like hypersurfaces andM is the rest
of the closed surface. Then, because of dωj = 0, one obtains equality of the normalization
integrals (1.66) if the contribution of M vanishes. Parts of the contribution of M vanish
because ψ is compactly supported on sets of the form (Σ × Σ) ∩ S according to lemma
3.4.1. Demanding that the remaining parts also vanish leads to conditions on the tensor
current.

We split the proof into two parts: the �rst one to establish the conditions on the
current such that the normalization integral of the wave function is equal for all space-like
hypersurfaces Σ and the second one to derive the equivalent conditions for the components
of ψ.

1. We �rst show that S can be understood as a closed surface in an appropriate sense.
To this end, we de�ne �nite versions of Σ1,Σ2. Pick p1 ∈ Σ1, p2 ∈ Σ2. Then let

ΣR
i := {p ∈ Σi : −(p0 − p0

i )
2 + (p− pi)2 < R2}, i = 1, 2. (3.33)

For R large enough and q ∈ [(Σi\ΣR
i ) × (Σi\ΣR

i )] ∩ S we have ψ(q) = 0 as ψ is
compactly supported on sets of the form (Σ× Σ) ∩S . Consequently, one obtains∫

(Σi×Σi)∩S
ωj =

∫
(ΣRi ×ΣRi )∩S

ωj , i = 1, 2. (3.34)

It is therefore permitted to replace Σi with ΣR
i for the purpose of the argument.

Now we construct a closed surface SR as follows: Let VΣ1,Σ2 ⊂ R1+d be the volume
between Σ1,Σ2, i.e. if tΣ(x) denotes the time coordinate of the unique point p ∈ Σ
with spatial coordinates x, then

VΣ1,Σ2 := {(τ,y) ∈ R1+d : tΣ1(y) < τ < tΣ2(y) ∨ tΣ2(y) < τ < tΣ1(y)}. (3.35)
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Figure 3.1: A continuous deformation of ΣR
1 into ΣR

2 .

Next, consider a continuous deformation of ΣR
1 into ΣR

2 (see �g. 3.1), i.e. a smooth
map

Φ : [0, 1]→ {Σ ⊂ V Σ1,Σ2 : Σ space-like surface}, with Φ(0) = ΣR
1 , Φ(1) = ΣR

2 .
(3.36)

Now let

SR := ∂

 ⋃
s∈[0,1]

[Φ(s)× Φ(s)] ∩S

 . (3.37)

By construction, SR is a closed surface. It has the form

SR = [(ΣR
1 × ΣR

1 ) ∩S ] ∪ [(ΣR
2 × ΣR

2 ) ∩S ] ∪M1 ∪M2, (3.38)

where M1 = M ∩ suppψ and M2 = M\M1 (so ψ ≡ 0 on M2). From eq. (3.37) it
can then be seen that M1 consists of those points p ∈ Φ(s) × Φ(s) which do not lie
in S . As Φ(s) is a space-like surface, all points p = (x, y), x, y ∈ Φ(s) with x 6= y
are contained in S . The remaining ones therefore belong to the set C of coincidence
points and it follows that M1 ⊂ C .

At this point, a subtlety appears: Recall that the values of ψ are not de�ned on C
(as C * S ). Rather, one has to consider the corresponding limits in S1 and S2.

Instead of SR, one should consider the union of S(1)
R with S(2)

R where S(i)
R , i = 1, 2 are

de�ned by eq. (3.37) using Si, i = 1, 2 instead of S . They have the form

S
(i)
R = [(ΣR

1 × ΣR
1 ) ∩Si] ∪ [(ΣR

2 × ΣR
2 ) ∩Si] ∪M1 ∪M (i)

2 , (3.39)

where M1 is the same as above and ψ ≡ 0 on M (i)
2 , i = 1, 2.

Let VR denote the volume enclosed by SR. Using Stokes' theorem for SR, we obtain:∫
SR

ωj =

∫
VR

dωj
eq.(1.72)

= 0

⇒
∫

(ΣR1 ×ΣR1 )∩S
ωj =

∫
(ΣR2 ×ΣR2 )∩S

ωj −
∫
M1

ω
(1)
j +

∫
M1

ω
(2)
j , (3.40)
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where ω(i)
j is shorthand for taking the limit ε → 0 for ψ(t, z + (−1)iε, t, z − (−1)iε),

i = 1, 2 in the expression for ωj . Orientation conventions have to be considered to
obtain the correct signs in front of the integrals.

Thus, we obtain independence of the normalization integrals from Σ if∫
M1

ω
(1)
j =

∫
M1

ω
(2)
j . (3.41)

We specialize6 to the case ∫
M1

ω
(1)
j =

∫
M1

ω
(2)
j = 0. (3.42)

This condition will be satis�ed if the current form obtained from the corresponding
limit vanishes on M1, or more generally on C . The latter condition is reasonable to
demand because the construction has to work for any Σ1,Σ2.

So far, the construction works for any dimension d. We now specialize to d = 1. In
order to obtain an appropriate condition on j, we express ωj using relative coordinates

z = z1 − z2, Z = z1 + z2, τ = t1 − t2, T = t1 + t2

⇔ z1 = 1
2(Z + z), z2 = 1

2(Z − z), t1 = 1
2(T + τ), t2 = 1

2(T − τ). (3.43)

This yields:

ωj = 1
2j

00
ψ dz ∧ dZ − 1

4(j10
ψ + j01

ψ )dτ ∧ dZ + 1
4(j10

ψ − j01
ψ )dτ ∧ dz

− 1
4(j10

ψ − j01
ψ )dT ∧ dZ − 1

4(j10
ψ + j01

ψ )dz ∧ dT + 1
2j

11
ψ dτ ∧ dT. (3.44)

Now, on C we have τ = 0, z = 0. Thus, we �nd:

ωj(t, z+(−1)i0, t, z−(−1)i0) = 1
4(j01

ψ −j10
ψ )(t, z+(−1)i0, t, z−(−1)i0) dT∧dZ (3.45)

which leads to the following condition for the tensor current:

(j01
ψ − j10

ψ )(t, z + (−1)i0, t, z − (−1)i0)
!

= 0, i = 1, 2. (3.46)

Recalling εµνj
µν
ψ = j01

ψ − j10
ψ , one easily veri�es that these are exactly the conditions

stated in eq. (3.31).

2. Next, we show that the conditions for the current (which are bilinear in ψ) are actually
equivalent to the linear relations between the components of ψ stated in eq. (3.32).
For this purpose, consider

j01
ψ − j10

ψ = ψ†(γ0
1γ

0
2γ

0
1γ

1
2 − γ0

1γ
0
2γ

1
1γ

0
2)ψ = ψ†(12 ⊗ σ3 − σ3 ⊗ 12)ψ

eqs.(3.12),(3.15)
= (ψ∗1, ψ

∗
2, ψ

∗
3, ψ

∗
4)


0
−2

2
0




ψ1

ψ2

ψ3

ψ4

 .

⇒ j01
ψ − j10

ψ = 0 ⇔ |ψ2|2 = |ψ3|2. (3.47)

6The general case would lead to compensating currents from S1 to S2 and the other way around. This
would mean that the particles could pass each other � which seems somewhat odd in d = 1. This case will
be analyzed in more detail in chap. 4.
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This relation is satis�ed if and only if there exists a phase function θ such that
ψ2 = e−iθψ3. Applied to eq. (3.46), this yields the claim (3.32). �

Remark: Note that the strategy used in the proof can immediately be generalized to
arbitrary particle numbers and dimensions and domains. Furthermore, it is purely geo-
metrical and therefore leads to Lorentz invariant conditions for the tensor current, if the
domain Ω is Lorentz invariant7.

3.5 Lorentz invariance

In this section, we address the issue of Lorentz invariance of the constructions used in the
model. First, we state clearly our understanding of Lorentz invariance. Then we brie�y
review some basic representation theory of the one-dimensional proper Lorentz group and
discuss the invariance of the model. The main result is the proof that the probability-
conserving boundary conditions (3.32) are indeed Lorentz invariant under certain conditions
on the phase functions. We also point out a subclass of conditions for which the invariance
is manifest.

3.5.1 The meaning of Lorentz invariance for the model

For the model to be Lorentz invariant, we require the following points:

1. If a function ψ solves the multi-time wave equations in one frame, it also solves the
equations in every other frame. Furthermore, the equations have the same functional
form in all frames.

2. Probability conservation holds in all frames.

3. In any frame, initial data can be given on (Σt × Σt) ∩S where Σt is an equal-time
hypersurface.

4. If a function ψ satis�es the boundary conditions in one frame, it satis�es the Lorentz-
transformed boundary conditions in every other frame. These boundary conditions
have the same functional form in all frames.

Before commenting on these points, we state the transformation properties in question.

3.5.2 Representation of the one-dimensional proper Lorentz group

In 1 + 1 dimensions, the proper Lorentz group L↑+ has only one generator, the boost gen-
erator in z-direction (xi = (ti, zi)). For the spinor representation acting on the spin index
of the i-th particle, this is:

S01
i = 1

4 [γ0
i , γ

1
i ]. (3.48)

Under the action of an element Λ ∈ L↑+, a two-time wave function transforms as

ψ(x1, x2)
Λ7−→ ψ′(x1, x2) ≡ S1[Λ]S2[Λ]ψ(Λ−1x1,Λ

−1x2), (3.49)

7We call a set A Lorentz invariant if and only if for each point p ∈ A the Lorentz transformed point p′

is also contained within the set.
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where
Si[Λ] = exp(βS01

i ). (3.50)

Here, β is a real parameter determined by Λ. Finally, for later use, note the following
relation:

γµi Si[Λ] = Si[Λ] Λµνγ
ν
i . (3.51)

The afore-noted information is already su�cient to discuss the requirements mentioned in
the previous subsection:

1. By the standard arguments about the Lorentz invariance of the Dirac equation (see
eg. [95]), one can show that the multi-time Dirac equations (3.11) indeed transform
covariantly. Recalling the argument in sec. 1.1.1.2, we note that in order to discuss
the Lorentz invariance of the wave equations, it is crucial to consider a multi-time
wave function. Moreover, this consideration also requires the domain Ω to be Lorentz
invariant. The space-like con�gurations S are of course such a Lorentz invariant set.

Furthermore, under Λ ∈ L↑+, one obtains

jµνψ (x1, x2)
Λ7−→ Λµρ Λνσ j

ρσ
ψ (Λ−1x1,Λ

−1x2), (3.52)

i.e. jµνψ transforms similarly to a tensor, the only di�erence being that the argument
of j is an element of con�guration space-time instead of just space-time.

2. As shown in theorem 3.4.2, if probability conservation holds on one space-like hy-
persurface, it holds on all space-like hypersurfaces. This, of course, includes the
equal-time hypersurfaces for all frames.

3. So far, we assumed the initial data to be given in one particular frame. However, as
the choice of this frame is not �xed by any circumstance, one can simply choose the
coordinates such that the initial data surface is actually of the desired form.

4. The Lorentz invariance of the boundary conditions is the most subtle point. Because
of the transformation properties of j, the conditions on the tensor current are easily
seen to be Lorentz invariant (see eq. (3.31)). However, for the conditions (3.32) on the
components of ψ, Lorentz invariance is not manifest and the transformation behavior
has to be checked explicitly.

3.5.3 Lorentz invariance of the boundary conditions

Lemma 3.5.1 The current-conserving boundary conditions

ψ2(t, z − 0, t, z + 0)
!

= e−iθ1 ψ3(t, z − 0, t, z + 0), t, z ∈ R,

ψ2(t, z + 0, t, z − 0)
!

= e−iθ2 ψ3(t, z + 0, t, z − 0), t, z ∈ R (3.53)

are Lorentz invariant if the functions θ1, θ2 transform as Lorentz scalars, i.e. if

θi(t, z)
Λ7−→ θi(Λ

−1(t, z)) ∀Λ ∈ L↑+, i = 1, 2. (3.54)
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Proof: We explicitly determine the transformation properties of the components ψi. Ac-
cording to eq. (3.49), we need to calculate the matrices S1[Λ], S2[Λ] via formula (3.50). We
have:

S1[Λ] = exp(β 1
2γ

0
1γ

1
1)

eq.(3.10)
= exp(β 1

2σ3 ⊗ 12)

eq.(3.15)
=

∞∑
k=0

(β/2)k

k!

(
12

(−12)k

)
= coshβ · 14 + sinhβ

(
12

−12

)
, (3.55)

S2[Λ] = exp(β 1
2γ

0
2γ

0
2)

eq.(3.10)
= exp(β 1

212 ⊗ σ3)

eq.(3.15)
=

∞∑
k=0

(β/2)k

k!


1

(−1)k

(−1)k

1



= coshβ · 14 + sinhβ


1
−1

−1
1

 . (3.56)

It follows that:

S1[Λ]S2[Λ] = cosh2 β14 + 2 coshβ sinhβ


1

0
0
−1

+ sinh2 β


1
−1

−1
1

 .

(3.57)

Thus

ψi(x1, x2)
Λ7−→ ψi(Λ

−1x1,Λ
−1x2) for i = 2, 3. (3.58)

Using this transformation property in eq. (3.53) together with eq. (3.54) immediately yields
the claim. �

Lemma 3.5.2 In the case of e−iθk(t,z) ≡ ±i, the boundary conditions (3.53) can be rewrit-

ten in the following manifestly Lorentz invariant form:

εµνγ
µ
1 γ

ν
2ψ(t, z − 0, t, z + 0)

!
= ±i(14 + γ5

1γ
5
2)ψ(t, z − 0, t, z + 0), t, z ∈ R,

εµνγ
µ
1 γ

ν
2ψ(t, z + 0, t, z − 0)

!
= ±i(14 + γ5

1γ
5
2)ψ(t, z + 0, t, z − 0), t, z ∈ R, (3.59)

where

γ5
k := iγ0

kγ
1
k , k = 1, 2. (3.60)
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Proof:

εµνγ
µ
1 γ

ν
2 = γ0

1γ
1
2 − γ1

1γ
0
2 = σ1 ⊗ 12 · 12 ⊗ (σ1σ3)− (σ1σ3)⊗ 12 · 12 ⊗ σ1 =


0 0
2 0

0 −2
0 0

 ,

14 + γ5
1γ

5
2 = 14 + iσ3 ⊗ 12 · i12 ⊗ σ3 = 14 −


1
−1

−1
1

 =


0

2
2

0

 .

(3.61)

Thus, we obtain:

εµνγ
µ
1 γ

ν
2ψ

!
= ±i(14 + γ5

1γ
5
2)ψ

⇔


0 0
2 0

0 −2
0 0




ψ1

ψ2

ψ3

ψ4

 !
= ±i


0

2
2

0




ψ1

ψ2

ψ3

ψ4

 . (3.62)

This is in turn equivalent to the following conditions

0 = 0,

ψ3 = ±iψ2,

−ψ2 = ±iψ3,

0 = 0. (3.63)

The claim follows. �

Remark: For the manifestly Lorentz invariant boundary conditions (3.59), one can use
the usual representation-independent strategy to prove Lorentz invariance.

Assume that the conditions are ful�lled in one frame F . Now consider the same conditions
in another frame F ′ that is connected with the former one by a Lorentz transformation Λ.
We have to show that (3.59) is satis�ed as a consequence of the transformation law (3.49)
for ψ as well as (3.59) for F . Consider eq. (3.59) for F ′:

εµνγ
µ
1 γ

ν
2ψ
′(x1, x2)

!
= ±i(14 + γ5

1γ
5
2)ψ′(x1, x2)

⇔ εµνγ
µ
1 γ

ν
2S1[Λ]S2[Λ]ψ(Λ−1x1,Λ

−1x2)
!

= ±i(14 + γ5
1γ

5
2)S1[Λ]S2[Λ]ψ(Λ−1x1,Λ

−1x2),
(3.64)

where x1 = (t, z ± 0) and x2 = (t, x2 ∓ 0). As S1[Λ] and S2[Λ] are invertible and because
(Λ−1x1,Λ

−1x2) again has the form (t′, z′±0, t′, z′∓0), it is su�cient to prove that S1[Λ]S2[Λ]
commutes with both εµνγ

µ
1 γ

ν
2 as well as 14 + γ5

1γ
5
2 . Consider �rst

εµν γ
µ
1 γ

ν
2 S1[Λ]S2[Λ]

eq.(3.51)
= S1[Λ]S2[Λ] εµν ΛµρΛνσ γ

ρ
1γ

σ
2 = S1[Λ]S2[Λ] ερσ γ

ρ
1γ

σ
2 , (3.65)
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where in the equality we used det(Λ)ερσ = εµν ΛµρΛνσ as well as det(Λ) = 1 for Λ ∈ L↑+.
In order to show that S1[Λ]S2[Λ] commutes with 14 + γ5

1γ
5
2 , it is su�cient that the

generators S01
k , k = 1, 2 commute with γ5

1γ
5
2 . We have: S01

k γ
5
j = γ5

jS
01
k , j, k = 1, 2. For

j 6= k, this is obvious and in case j = k the equation easily follows from S01
k = 1

2γ
0
kγ

1
k (see

eq. (3.48)) as well as γ5
k = iγ0

kγ
1
k (see eq. (3.60)).

3.6 Interaction

In this section, we analyze the physical meaning of the boundary conditions (3.53) and
in particular the question of whether they lead to interaction. In order to address this
question appropriately, we suggest a simple and clear-cut notion of interaction. Then we
use the explicit solution of our model to determine the time evolution initial product wave
functions. From this result, we gain physical insight into the detailed nature of the time
evolution implied by our model. Moreover, we can use it to conclude that the model indeed
leads to interaction.

A criterion for interaction: Most often, �interaction� in quantum mechanics is simply
de�ned by the presence of an interaction potential in the Hamiltonian. This notion of inter-
action is obviously not adequate for models such as ours where one aims at implementing
interaction e�ects via boundary conditions. A more general criterion is needed.
A quantum-mechanical model is called free if every initial product wave function (in the
particle coordinates and spin indices) remains a product wave function during time evolu-
tion. It is called interacting if there exist initial product wave functions that do not stay
product wave functions during time evolution.

Evolution of an initial product wave function: We �rst explicitly determine the
time evolution of an arbitrary initial wave function on S1.

Lemma 3.6.1 For our model de�ned with boundary conditions (3.32), the time evolution

of an initial wave function on S1, i.e.

ψi(0, z1, 0, z2) = g
(1)
i (z1, z2) for z1 < z2, i = 1, 2, 3, 4, (3.66)

where these initial data are assumed to satisfy the boundary conditions, is given by

ψ1(t1, z1, t2, z2) = g
(1)
1 (z1 − t1, z2 − t2),

ψ2(t1, z1, t2, z2) =

{
g

(1)
2 (z1−t1,z2+t2) for z1−t1<z2+t2

e−iθ1((−z1+z2+t1+t2)/2,(z1+z2−t1+t2)/2)g
(1)
3 (z2+t2,z1−t1) for z1−t1≥z2+t2

ψ3(t1, z1, t2, z2) =

{
g

(1)
3 (z1+t1,z2−t2) for z1+t1<z2−t2
eiθ1((z1−z2+t1+t2)/2,(z1+z2+t1−t2)/2)g

(1)
2 (z2−t2,z1+t1) for z1+t1≥z2−t2

ψ4(t1, z1, t2, z2) = g
(1)
4 (z1 + t1, z2 + t2). (3.67)

Proof: We make use of the explicit solution (3.28) where this time the functions h±1 are
given by ψ2, ψ3 via the boundary conditions (3.32). As noted before, we can solve the
model on S1 autonomously.
For ψ1, ψ4 the claim is directly given by eq. (3.28). For ψ2, ψ3 there are two di�erent cases:
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1. For z1 + t1 ≥ z2 − t2, ψ2 is determined by initial data (see eq. (3.28)) and we have:

ψ3(t1, z2, t2) = h+
1 ( z1−z2+t1+t2

2︸ ︷︷ ︸
t

, z1+z2+t1−t2
2︸ ︷︷ ︸
z

)

= eiθ1(t,z)ψ2(t, z − 0, t, z + 0) = eiθ1(t,z)g
(1)
2 (z − t, t+ z)

= eiθ1((z1−z2+t1+t2)/2,(z1+z2+t1−t2)/2)g
(1)
2 (z2 − t2, z1 + t1). (3.68)

2. Similarly, for z1 − t1 ≥ z2 + t2, ψ3 is determined by initial data and we obtain:

ψ2(t1, z2, t2) = h−1 (−z1+z2+t1+t2
2︸ ︷︷ ︸
t′

, z1+z2−t1+t2
2︸ ︷︷ ︸
z′

)

= eiθ1(t′,z′)ψ2(t′, z′ − 0, t′, z′ + 0) = eiθ1(t′,z′)g
(1)
2 (z′ − t′, t′ + z′)

= e−iθ1((−z1+z2+t1+t2)/2,(z1+z2−t1+t2)/2)g
(1)
3 (z2 + t2, z1 − t1). (3.69)

Noting that the two cases are exclusive on S1, we have determined ψ uniquely (see eq.
(3.28)) and the claim follows. �

We can use the lemma to determine the time evolution of an initial product wave function
on S1, given by ψ(0, z1, 0, z2) = φ(z1) ⊗ χ(z2) for z1 < z2 where φ, χ are two-component
spinors. ψ has the components

ψ1 = φ1χ1, ψ2 = φ1χ2, ψ3 = φ2χ1, ψ4 = φ2χ2. (3.70)

Theorem 3.6.2 Our model, de�ned by eqs. (3.21), (3.22) and (3.53), is interacting in the

sense of the criterion presented above.

Proof: Applying lemma 3.6.1 to the initial product wave function of eq. (3.70), we obtain:

ψ1(t1, z1, t2, z2) = φ1(z1 − t1)χ1(z2 − t2),

ψ2(t1, z1, t2, z2) =

{
φ1(z1−t1)χ2(z2+t2) for z1−t1<z2+t2

e−iθ1((−z1+z2+t1+t2)/2,(z1+z2−t1+t2)/2)φ2(z2+t2)χ1(z1−t1) for z1−t1≥z2+t2

ψ3(t1, z1, t2, z2) =

{
φ2(z1+t1)χ1(z2−t2) for z1+t1<z2−t2
eiθ1((z1−z2+t1+t2)/2,(z1+z2+t1−t2)/2)φ1(z2−t2)χ2(z1+t1) for z1+t1≥z2−t2

ψ4(t1, z1, t2, z2) = φ2(z1 + t1)χ2(z2 + t2) (3.71)

for (t1, z1, t2, z2) ∈ S1.
For t1, t2 6= 0, the wave function ψ in eq. (3.71) is in general not a product wave function

(3.70). This can clearly be seen from the case di�erentiation for the components ψ2, ψ3.
(The corresponding non-interacting model would merely lead to translated initial data in
all components.) We have therefore found an example for an initial product wave function
which becomes entangled with the time evolution and the claim follows. �
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Details of the interaction: As thm. 3.6.2 is an important result, we shall analyze the
interaction e�ect in more detail. To this end, we consider a particularly simple class of
initial product wave functions (nonzero only on S1):

ψ(0, z1, 0, z2) = φ(z1)⊗ χ(z2) where φ2 ≡ χ1 ≡ 0, φ1 = φ̃ 1[a,b], χ2 = χ̃ 1[c,d]. (3.72)

Here, φ̃, χ̃ : R → C are smooth functions with support in [a, b] and [c, d], respectively. We
choose a < b < c < d. The symbol 1[x,y] denotes the characteristic function of the interval

[x, y], i.e. 1[x,y](z) = 1 if z ∈ [x, y] and 0 otherwise. We have multiplied φ̃, χ̃ with the
characteristic functions of their support to make more explicit when they vanish.

As a consequence of (3.72), we have:

ψ1(0, z1, 0, z2) = ψ3(0, z1, 0, z2) = ψ4(0, z1, 0, z2) = 0,

ψ2(0, z1, 0, z2) = φ̃(z1) χ̃(z2) 1[a,b](z1) 1[c,d](z2). (3.73)

Speci�cally, we note that ψ2(0, z1, 0, z2) = 0 for z2 ≥ z1. Therefore, ψ satis�es the boundary
conditions (3.53) in the form 0 = 0. Eq. (3.72) represents a wave function which is initially
well-localized and associated with de�nite spin state e1 ⊗ e2 (corresponding to ψ2).

According to lemma 3.6.1, the explicit time evolution of ψ on S1 is given by

ψ1 ≡ ψ4 ≡ 0,

ψ2(t1, z1, t2, z2) = φ̃(z1 − t1)χ̃(z2 + t2) 1[a,b]+t1(z1) 1[c,d]−t2(z2)

×Θ(−z1 + t1 + z2 + t2),

ψ3(t1, z1, t2, z2) = eiθ1((z1−z2+t1+t2)/2,(z1+z2+t1−t2)/2)φ̃(z2 − t2)χ̃(z1 + t1)

× 1[a,b]+t2(z2) 1[c,d]−t1(z1) Θ(z1 + t1 − z2 + t2), (3.74)

where Θ denotes the Heaviside function. Note that in eq. (3.74) one can leave away the Θ
functions as they only set the function to zero where it vanishes anyway.

Eq. (3.74) allows for a simple graphical representation (see �g. 3.2). Focusing on times
t1 = t2 = t, we see that at t = 0 each particle has an associated wave packet localized in
a certain region. These regions do not overlap. For t > 0, the wave packets are translated
towards each other with speed c = 1, so that the gap between them shrinks with speed 2.
There is no dispersion in the mass-less case. Of course, these wave packets are not actually
functions on physical space but on di�erent copies thereof, as factors of con�guration space.
As soon as they meet, a scattering process happens. The wave packets swap place, i.e. the
one associated with particle 1 becomes associated with particle 2 and the other way around.
This process is associated with a phase. The particles move in opposite directions as before
� and the corresponding contribution to the wave function is one associated with di�erent
spin.

In summary, the interaction has range zero, respects retardation and produces a change
from one spin component into another. Due to this behavior, the model only describes
scattering processes. �Bound states� or �resonances� do not appear. (To de�ne these con-
cepts rigorously, one can use the single-time model obtained by restricting the multi-time
wave function to a common time.)
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Figure 3.2: Schematic illustration of the interaction. (a) t1 = t2 = 0: The wave packets
move towards each other (in di�erent parts of con�guration space) with speed c = 1 and
without dispersion. φ̃ is associated with particle 1 and χ̃ with particle 2. The only non-zero
component of the total wave function is ψ2 (associated with e1 ⊗ e2). (b) (d− a)/2 > t1 =
t2 > (c− b)/2: The wave packets overlap (if plotted in the same space). The hatched area
for e1 ⊗ e2 has left S1. It reappears with a phase in the component for e2 ⊗ e1. The wave
packets have swapped place. The hatched parts of φ̃ are now associated with particle 2
and the hatched parts of χ̃ with particle 1. (c) t1 = t2 > (d− a)/2: The wave packets have
passed each other. The only non-zero component is ψ3 (associated with e2 ⊗ e1).
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3.7 Indistinguishable particles

If we describe indistinguishable fermions, the correct transformation properties8 of the wave
function are

ψs1s2(x1, x2) = −ψs2s1(x2, x1). (3.75)

Here, the double index s1s2 where s1, s2 = −1, 1 is a di�erent way of denoting the spin
components. We have:

ψ−1−1 = ψ1, ψ−11 = ψ2, ψ1−1 = ψ3, ψ11 = ψ4. (3.76)

One may ask: is our model compatible with these transformation rules? In order to answer
this question, we note that given a solution of the IBVP with boundary conditions (3.32)
on S , we may use eq. (3.75) to extend it antisymmetrically to S2. It is easy to see that
as a consequence of the two-time Dirac equation (3.11) on S1 it also solves the two-time
Dirac equation on S2, with initial data that are the antisymmetric extension of those on
S1. However, under which circumstances are the boundary conditions on S2 satis�ed?

To answer this question, we consider the transformation behavior of the boundary
conditions (3.32) on S1:

ψ2(t, z − 0, t, z + 0)
!

= e−iθ1(t,z)ψ3(t, z − 0, t, z + 0), t, z ∈ R
antisym.7−→ −ψ3(t, z + 0, t, z − 0)

!
= −e−iθ1(t,z)ψ2(t, z + 0, t, z − 0), t, z ∈ R

⇔ ψ2(t, z + 0, t, z − 0)
!

= e+iθ1(t,z)ψ2(t, z + 0, t, z − 0), t, z ∈ R,

which is a boundary condition on S2. Comparison with eq. (3.32) yields the following
result:

Lemma 3.7.1 The IBVP de�ned by eqs. (3.21), (3.22) and (3.32) is compatible with

antisymmetry under particle exchange (3.75) if the initial data are antisymmetric and if

θ2 = −θ1.

3.8 Discussion and outlook

In this chapter, we have provided an explicit construction of an interacting quantum-
mechanical model which conforms to the strictest requirements of relativistic invariance, as
embodied by the multi-time formalism. In particular, the free Dirac current jµνψ = ψγµ1 γ

ν
2ψ

is conserved which makes the model compatible with the HBD model (compare sec. 2.1)
as well as the GRWm theory (sec. 2.4.2.1). Note that the same does not hold true for the
GRWf model (sec. 2.4.2.2) because the latter requires the multi-time dynamics to be de�ned
on RN(1+d) instead of S . Together with one of these realistic models, our one-dimensional
model thus constitutes an interacting theory free of the measurement problem, achieving
a solution of both �rst and second-class di�culties (see the introduction). The interac-
tion described by the model corresponds to a scattering process with zero range which is
associated with a spin �ip.

8Eq. (3.75) is a straightforward generalization of the well-known antisymmetry properties of a single-time
wave function, i.e. ϕs1s2(x1,x2, t) = −ϕs2s1(x2,x1, t).
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Recall the notion of a single-time reducible theory from sec. 1.2.3. Noting that the
boundary conditions (3.32) of our model are formulated at only one time, we see that it is
indeed single-time reducible9. A single-time formulation can be obtained by restricting the
multi-time wave function to a single global time via eq. (1.9). Then the multi-time model
(3.13) yields a single-time model (using the chain rule to obtain a single wave equation
from the multi-time wave equations).

The thus obtained single-time model allows for a comparison with the more familiar
functional-analytic approach. It can be analyzed on its own terms using the methods
of zero-range physics. This changes the notion of a solution from �classical� to �weak�.
Nevertheless, we expect such an approach to lead to results for the subclass of classical
solutions which are similar to the results for the solutions of our model when evaluated at
equal times. For the functional-analytic approach, one expects that the phase functions in
eq. (3.32) must not depend on t � and therefore, by Lorentz invariance, not on z, either.
Unsurprisingly, our approach is slightly more general in this regard10, as it is speci�cally
designed for an equal treatment of space and time variables (see the introduction).

In view of the success of the methods for this very simple model, it is natural to ask for
possible generalizations with respect to several aspects:

• Di�erent boundary conditions: The class of boundary conditions (3.32) was
deduced by a top-down approach, starting from the requirements of existence and
uniqueness and then successively adding the physical requirements of probability
conservation, Lorentz-invariance and antisymmetry. We did not attempt to show
that it is the most general class compatible with these requirements. In particular,
as noted in footnote 6, there do also exist further probability-conserving conditions
on the tensor current, corresponding to a non-vanishing transfer of total probability
form S1 to S2 and vice versa. A study of alternative boundary conditions and of the
generality of the present ones will be presented in sec. 4.1.

• N > 2 particles: A generalization to N particles is straightforward and will be given
in sec. 4.2. The main di�culty is to �nd a class of boundary conditions which can be
formulated in a simple way for every N .

• Non-zero masses: The study of the mass-less case is mainly a technical simpli�ca-
tion. The conservation properties of the tensor current as well as the derivation of the
class of probability-conserving boundary conditions are independent of the presence
of mass terms in the multi-time equations. However, the strategy of the existence
and uniqueness proof was to make use of the fact that the solution has to be con-
stant along the multi-time characteristics. This is not true anymore for the case with
mass. Preliminary investigations have led us to the idea that it might be possible to
reformulate the simultaneous di�erential systems of multi-time equations into a sin-
gle system of multi-time integral equations. For these integral equations, �xed point
arguments could be used to prove the existence and uniqueness of a solution.

9Of course, single-time reducibility does not mean that the multi-time formulation is dispensable. On
the contrary, it is essential, for otherwise Lorentz invariance of the wave equations cannot be discussed (see
sec. 1.1.1.2)

10Note, however, that this greater generality of the method may not be needed because translationally
invariant phase functions do not depend on t and z.
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A di�erent (albeit more indirect) way to approach the case m 6= 0 goes via the
single-time reduced model11. Assuming that the self-adjointness of the single-time
Hamiltonian can be shown on a domain implementing the boundary conditions, one
can always add a bounded term without changing the situation. Then one could use
the inductive method of Petrat and Tumulka mentioned in sec. 1.2.3 for single-time
reducible theories with �nite propagation speed to prove existence and uniqueness of
solutions for the multi-time model.

• Higher dimensions: An immediate generalization of the model to d > 1 is not
feasible. One can see this from the following consideration. The boundary conditions
as the mechanism of interaction are derived from the fact that the integral

∫
C ωj has

to vanish to ensure probability conservation. However, ωj is in general a 2d-form
and C = {(x1, x2) ∈ R1+d × R1+d : x1 = x2} is (1 + d)-dimensional. Thus, C is a
zero-measure set for d > 1 and the integral vanishes without boundary conditions. As
uniqueness of solutions follows from probability conservation according to thm. 1.3.3,
no boundary conditions are required from a mathematical perspective. Prescribing
boundary conditions in spite of this would either in�uence the wave function only
on a low-dimensional set or lead to (possibly complicated) restrictions on the initial
data. Without a clear physical reason for conditions of this kind, this option does
not seem sensible. We therefore conclude that our construction has to be modi�ed in
order to produce interaction e�ects for d > 1.

• Di�erent domains: Motivated by the fact that
∫
C ωj , the �ux through the bound-

ary, vanishes for d > 1, one can try to �nd a di�erent Lorentz invariant domain which
yields a non-vanishing �ux through the boundary, i.e.

∫
B ωj where B has a dimension

of at least 2d. Such a domain is for example given by the space-like con�gurations
with a minimum space-like distance α:

Sα := {(x1, x2) ∈ R1+d × R1+d : (x0
1 − x0

2)2 − (x1 − x2)2 < −α2}. (3.77)

The question of whether consistent, Lorentz invariant and probability-conserving dy-
namics exist on Sα will be answered in sec. 4.3 for the one-dimensional case. Note,
however, that this idea is not fully satisfactory from the physical point of view as
one introduces an additional constant α without an apparent deeper reason. Thus,
if consistent dynamics should exist on Sα, the limit α → 0 would be particularly
interesting. In this limit, the boundary conditions are prescribed on the light-like
con�gurations L , a situation which faintly resembles the mechanism of interaction
in Wheeler-Feynman electrodynamics.

11The single-time reduced model will be considered in more detail in sec. 4.2.6



Chapter 4

Generalizations of the

1 + 1-dimensional model

This section deals with several generalizations of the model in chap. 3. Firstly, we treat the
questions of di�erent boundary conditions as well as of the generality of the previous ones
(sec. 4.1). Secondly, the model is generalized to the N -particle case (sec. 4.2). Finally, the
issue of the existence of dynamics on a domain of con�gurations with a minimum space-like
distance α is addressed (sec. 4.3).

4.1 Di�erent boundary conditions

4.1.1 Probability conservation

Recall from the proof of thm. 3.4.2 that the following condition on the tensor current is
su�cient to ensure probability conservation in the sense of condition (1.71):

εµν

[
jµνψ (t, z − 0, t, z + 0)− jµνψ (t, z + 0, t, z − 0)

]
= 0 ∀t, z ∈ R. (4.1)

We now show that as compared to the previous class (3.32) there exists a new type of
boundary conditions implying (4.1) without rendering the individual summands in eq. (4.1)
and therefore the �ux from S1 to S2 (and vice versa) zero.

Lemma 4.1.1 Let w1 = ψ2+ψ3 and w2 = ψ2−ψ3. Then the following boundary conditions

ensure condition (4.1):

w1(t, z − 0, t, z + 0) = w1(t, z + 0, t, z − 0) ∀t, z ∈ R, (4.2)

w2(t, z + 0, t, z − 0)− w2(t, z − 0, t, z + 0) = −iβw1(t, z − 0, t, z + 0) ∀t, z ∈ R, (4.3)

where β is a real number.
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Remarks:

1. Similar boundary conditions were used by Albeverio et al. to express certain types of
zero-range interactions in the case of a single Dirac particle [1, appendix J, eqs. (J.6),
(J.7)]. Analogously, our boundary conditions do not exhaust the class of boundary
conditions which lead to compensating but non-vanishing currents between S1 and
S2. However, a complete classi�cation of all boundary conditions of this kind is
tedious and does not lead to more physical insight. Therefore, we only analyze the
class given by (4.2), (4.3) as an example.

2. The boundary conditions (4.2), (4.3) enforce a jump in the combination of the com-
ponents of ψ which is expressed by w2. Its strength depends on w1 and is, in addition,
controlled by the real parameter β. The case β = 0 corresponds to continuity of both
w1 and w2 (and therefore ψ1 and ψ2) between S1 and S2. Continuity of w1 between
the di�erent parts of the domain is always enforced by condition (4.2). Because of
this situation, we henceforth refer to eqs. (4.2), (4.3) as jump boundary conditions.

Proof: We begin by rewriting condition (4.1) in components, denoting (t, z − 0, t, z + 0)
by 0− and (t, z + 0, t, z − 0) by 0+.

εµν

[
jµνψ (t, z − 0, t, z + 0)− jµνψ (t, z + 0, t, z − 0)

]
= 0

⇔ j01
ψ (0−)− j10

ψ (0−) = j01
ψ (0+)− j10

ψ (0+)

⇔ |ψ3|2(0−)− |ψ2|2(0−) = |ψ3|2(0+)− |ψ2|2(0+). (4.4)

Next, we show that conditions (4.2) and (4.3) imply (4.4). One has:

|ψ2|2 = 1
4(|w1|2 + |w2|2 + w∗1w2 + w∗2w1),

|ψ3|2 = 1
4(|w1|2 + |w2|2 − w∗1w2 − w∗2w1). (4.5)

Using these relations in eq. (4.4), we obtain:

(4.4) ⇔ (w∗1w2)(0−) + (w∗2w1)(0−) = (w∗1w2)(0+) + (w∗2w1)(0+)

(4.2)⇔ w∗1(0−)w2(0−) + w∗2(0−)w1(0−) = w∗1(0)w2(0+) + w1(0)w∗2(0+)

⇔ w∗1(0−)[w2(0−)− w2(0+)] + w1(0−)[w2(0−)− w2(0+)]∗ = 0

(4.3)⇔ w∗1(0−) iβw1(0−) + w1(0−)[iβw1(0−)]∗ = 0, (4.6)

which is true. �

4.1.2 Existence and uniqueness

Next, we show that the jump boundary conditions do indeed lead to the existence and
uniqueness of solutions. This is achieved using the general existence and uniqueness theorem
3.3.3.

Lemma 4.1.2 The IBVP given by eqs. (3.21), (3.22) and (3.23), where the functions h±i
are de�ned by eqs. (4.2) and (4.3), possesses a unique solution.
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Proof: We only have to show that the functions h±i , i = 1, 2 are well-de�ned by the jump
boundary conditions. Then existence and uniqueness follow from thm. 3.3.3.
From the proof of thm. 3.3.3, we know the following:

• For t > 0, ψ2(0−) and ψ3(0+) are determined by the initial data. ψ3(0−) and ψ2(0+)
are not determined solely by the initial data.

• For t < 0, ψ3(0−) and ψ2(0+) are determined by the initial data. ψ2(0−) and ψ3(0+)
are not determined by the initial data alone.

Next, we use the jump boundary conditions and the above-mentioned limits of the wave
function at the boundary to de�ne the functions h±i , i = 1, 2 in the general form of the
boundary conditions (see eqs. (3.21) and (3.22)). To this end, we write down the jump
boundary conditions (4.2) and (4.3) in terms of the components ψ2(0±) and ψ3(0±) and
solve for the undetermined quantities.
Let t > 0. Then:

(3.21) ⇔ ψ3(0−)− ψ2(0+)︸ ︷︷ ︸
undetermined

= ψ3(0+)− ψ2(0−)︸ ︷︷ ︸
determined

, (4.7)

(3.21) ⇔ ψ2(0+) + ψ3(0−)︸ ︷︷ ︸
undetermined

−ψ3(0+)− ψ2(0−)︸ ︷︷ ︸
determined

= −iβ[ψ2(0−)︸ ︷︷ ︸
det.

+ψ3(0−)︸ ︷︷ ︸
undet.

] (4.8)

Now we solve (4.7) for ψ3(0−) and plug in the result into (4.8). This way, we obtain an
equation for ψ2(0+) in terms of quantities which are all determined by initial data only:

ψ2(0+) =
2ψ2(0−)− iβψ3(0+)

2 + iβ
≡ h+

2 . (4.9)

Recalling the meaning of the abbreviations 0±, this de�nes the function h+
2 . Inserting (4.9)

back into eq. (4.7) yields:

ψ3(0−) =
2ψ3(0+)− iβψ2(0−)

2 + iβ
≡ h+

1 . (4.10)

Let t < 0. An analogous procedure as above results in:

ψ3(0+) =
2ψ3(0−) + iβψ2(0+)

2− iβ
≡ h−2 , (4.11)

ψ2(0−) =
2ψ2(0+) + iβψ3(0−)

2− iβ
≡ h−1 . (4.12)

This completes the proof. �

4.1.3 Lorentz invariance and antisymmetry

In order to discuss the physical meaning of the jump boundary conditions, we now analyze
their compatibility with the further requirements of Lorentz invariance and antisymmetry
of the wave function.

Lemma 4.1.3 The jump boundary conditions (4.2), (4.3) are Lorentz invariant.
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Proof: Recall from eq. (3.58) that under a Lorentz transformation Λ, ψi(x1, x2)
Λ7−→

ψi(Λ
−1x1,Λ

−1x2) for i = 2, 3. Since only ψ2 and ψ3 appear in eqs. (4.2), (4.3) and the
boundary conditions are prescribed on the Lorentz invariant set C , this immediately yields
the claim. �

Lemma 4.1.4 In the case of an antisymmetric solution, the jump boundary conditions

(4.2), (4.3) imply that ψ2 and ψ3 are continuous across the boundary, i.e.

ψ2(0−) = ψ2(0+), (4.13)

ψ3(0−) = ψ3(0+). (4.14)

Proof: Antisymmetry of the wave function implies: ψ2(0−) = −ψ3(0+), ψ2(0+) = −ψ3(0−).
Inserting these relations into eq. (4.7) and eliminating ψ2(0±) yields eq. (4.13). Re-inserting
(4.13) into eq. (4.7) then gives eq. (4.14). �

Remark: First of all, note that the most important physical properties besides interaction
have now been established for the jump boundary conditions. Recall, however, from the
proof of thm. 3.3.3 that the interaction e�ects take place in the components ψ2 and ψ3

only. They furthermore require some kind of discontinuity of the wave function across the
boundary. Therefore, for indistinguishable particles, the continuity of ψ2 and ψ3 shown in
lemma 4.1.4 implies that the jump boundary conditions lead to a non-interacting model,
i.e. one agreeing with the free multi-time Dirac equations on R2 × R2. Interesting e�ects
appear only for distinguishable particles.

4.1.4 Interaction e�ects for distinguishable particles

In order to analyze the character of the supposed interaction in more detail and to prove
that the model is indeed interacting for distinguishable particles, we now determine the
explicit solution for the general IBVP with jump boundary conditions.

Lemma 4.1.5 The explicit solution of the IBVP de�ned by eqs. (3.21), (3.22) and (3.23),
where the functions h±i are given by eqs. (4.9)-(4.12), reads:

1. On S1:

ψ1(t1, z1, t2, z2) = g
(1)
1 (z1 − t1, z2 − t2),

ψ2(t1, z1, t2, z2) =

{
g

(1)
2 (z1−t1,z2+t2) for z1−t1<z2+t2

2g
(2)
2 (z1−t1,z2+t2)+iβg

(1)
3 (z2+t2,z1−t1)

2−iβ for z1−t1≥z2+t2

ψ3(t1, z1, t2, z2) =

{
g

(1)
3 (z1+t1,z2−t2) for z1+t1<z2−t2

2g
(2)
3 (z1+t1,z2−t2)−iβg(1)

2 (z2−t2,z1+t1)

2+iβ
for z1+t1≥z2−t2

ψ4(t1, z1, t2, z2) = g
(1)
4 (z1 + t1, z2 + t2). (4.15)
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2. On S2:

ψ1(t1, z1, t2, z2) = g
(2)
1 (z1 − t1, z2 − t2),

ψ2(t1, z1, t2, z2) =

{
g

(2)
2 (z1−t1,z2+t2) for z1−t1>z2+t2

2g
(1)
2 (z1−t1,z2+t2)−iβg(2)

3 (z2+t2,z1−t1)

2+iβ
for z1−t1≤z2+t2

ψ3(t1, z1, t2, z2) =

{
g

(2)
3 (z1+t1,z2−t2) for z1+t1>z2−t2

2g
(1)
3 (z1+t1,z2−t2)+iβg

(2)
2 (z2−t2,z1+t1)

2−iβ for z1+t1≤z2−t2

ψ4(t1, z1, t2, z2) = g
(2)
4 (z1 + t1, z2 + t2). (4.16)

Proof: The idea is to make use of the formula for the explicit solution of the IBVP, as given
in eq. (3.28) for S1. As the jump boundary conditions mix the parts of the solution on S1

and S2, we have to solve the IBVP on these two parts of the domain simultaneously. In a
completely analogous way as in thm. 3.3.3, one obtains a formula for the explicit solution
on S2:

ψ1(t1, z1, t2, z2) = g
(2)
1 (z1 − t1, z2 − t2),

ψ2(t1, z1, t2, z2) =

{
g

(2)
2 (z1−t1,z2+t2) for z1−t1>z2+t2

h+
2 ((−z1+z2+t1+t2)/2,(z1+z2−t1+t2)/2) for z1−t1≤z2+t2

ψ3(t1, z1, t2, z2) =

{
g

(2)
3 (z1+t1,z2−t2) for z1+t1>z2−t2
h−2 ((z1−z2+t1+t2)/2,(z1+z2+t1−t2)/2) for z1+t1≤z2−t2

ψ4(t1, z1, t2, z2) = g
(2)
4 (z1 + t1, z2 + t2). (4.17)

Next, we have to determine the functions h±i in terms of the initial data g(i)
j . Collecting

the results of eqs. (4.9)-(4.12) and using eq. (4.17) to express ψi(0±) via g(j)
i (i.e. ψi(0−) =

g
(1)
i (t, z, t, z) and ψi(0+) = g

(2)
i (t, z, t, z), i = 1, 2), we �nd:

h+
1 (t, z) =

2g
(2)
3 (z + t, z − t)− iβg(1)

2 (z − t, z + t)

2 + iβ
,

h−1 (t, z) =
2g

(2)
2 (z − t, z + t) + iβg

(1)
3 (z + t, z − t)

2− iβ
,

h+
2 (t, z) =

2g
(1)
2 (z − t, z + t)− iβg(2)

3 (z + t, z − t)
2 + iβ

,

h−2 (t, z) =
2g

(1)
3 (z + t, z − t) + iβg

(2)
2 (z − t, z + t)

2− iβ
. (4.18)

Inserting the h±i back into the second cases for ψ2 and ψ3 in eqs. (3.28) and (4.17) yields
the claim. �

From the form of the explicit solution (eqs. (4.15) and (4.16)), especially from the non-
trivial superpositions in ψ2, ψ3, we can read o� that generically entanglement is created in
the time evolution and therefore obtain:

Corollary 4.1.6 In the case of distinguishable particles, the model with jump boundary

conditions is interacting in the sense of the criterion in sec. 3.6.
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Details of the interaction: In order to understand the interaction e�ect in more detail,
we analyze the time evolution of the same initial product wave function as considered
previously in sec. 3.6, eq. (3.72):

g
(j)
1 ≡ g

(j)
3 ≡ g

(j)
4 ≡ 0, j = 1, 2,

g
(1)
2 (z1, z2) = φ̃(z1)χ̃(z2)1[a,b](z1)1[c,d](z2),

g
(2)
2 ≡ 0, (4.19)

where a < b < c < d. Note that the jump boundary conditions are satis�ed in the form
0 = 0 as ψi(0±) = 0 for t = 0 and all i.
The time evolution yields:

ψ1 ≡ ψ4 ≡ 0 on S . (4.20)

Furthermore, on S1:

ψ2(t1, z1, t2, z2) =

{
g

(1)
2 (z1−t1,z2+t2) for z1−t1>z2+t2

0 else

ψ3(t1, z1, t2, z2) =

{
0 for z1+t1>z2−t2
−iβg(1)

2 (z2−t2,z1+t1)

2+iβ
else

(4.21)

And on S2:

ψ2(t1, z1, t2, z2) =

{
0 for z1−t1>z2+t2

2g
(1)
2 (z1−t1,z2+t2)

2+iβ
else

ψ3 ≡ 0. (4.22)

The result of the calculation is represented schematically in �gure 4.1. The initial product
wave function is localized in S1 and associated with spin component ψ2 (corresponding to
e1⊗e2). If plotted in the same space, the product factors move towards each other with the
time evolution until they start overlapping. When this happens, the overlapping part is split
into one part which is transmitted into S2 and another part which is scattered back into
S1. The distribution of these parts is controlled by the parameter β. The transmitted part
remains in the same spin component while the re�ected part changes its spin component
to ψ3 (corresponding to e2⊗ e1). For large times, the initial part in S1 for ψ2 vanishes and
only the transmitted and re�ected parts remain.

Compared to the previous type of interactions (see sec. 3.6), both the existence of a
transmitted part and the detailed factors of this part and the re�ected one represent new
features. The presence of a transmitted part illustrates that there does indeed exist a non-
zero �ux between S1 to S2

1. This shows in detail that the jump boundary conditions are
di�erent from the previous ones.

1This fact can be seen more generally also from eqs. (4.15) and (4.16).
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Figure 4.1: Schematic illustration of the interaction for the jump boundary conditions. (a)
t1 = t2 = 0: The wave packets move towards each other. φ̃ is associated with particle
1 and χ̃ with particle 2. The only non-zero component of the total wave function is ψ2

(associated with e1 ⊗ e2). (b) (d − a)/2 > t1 = t2 > (c − b)/2: The wave packets overlap
if plotted in the same space. The hatched area for e1 ⊗ e2 has left S1. One part of it
(associated with a factor 2/(2 + iβ)) is transmitted to S2. The other part reappears in the
component for e2 ⊗ e1 with a factor −i/(2 + iβ). The wave packets have swapped place.
The hatched parts of φ̃ are now associated with particle 2 and the hatched parts of χ̃ with
particle 1. (c) t1 = t2 > (d− a)/2: The wave packets in each component have passed each
other. Contrary to the previous type of boundary conditions (see �g. 3.2) there exists both
a transmitted part (associated with e1 ⊗ e2, in S2) and a re�ected part (associated with
e2 ⊗ e1, in S1).
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Limiting cases:

1. β → 0: From eqs. (4.15), (4.15) one can see that then only the transmitted parts exist.
ψ2 and ψ3 are continuous across the boundary C between S1 and S2, because the
boundary conditions (4.2), (4.3) reduce to continuity for β → 0. The time evolution
of these components agrees with the non-interacting one, i.e. the one obtained by
solving the free multi-time Dirac equations on R2 × R2.

2. β → ∞: In this case, the transmitted parts vanish and eqs. (4.15), (4.15) show
that the re�ected parts are all associated with the phase factor −1. At �rst glance,
the situation seems similar to the one for the previous type of boundary conditions
(3.32). However, it crucially di�ers from the latter in that the initial data have to
satisfy the jump conditions (4.2) and (4.3) which enforce an in�nite jump in one of
the components of the wave function (ψ3). Strictly speaking, this is no valid initial
condition.

4.1.5 Conclusion

The class of jump boundary conditions leads to a mathematically well-de�ned and Lorentz
invariant dynamics which conserves probability. However, it is only interacting in the case
of distinguishable particles. One obtains two di�erent kinds of processes: (i) scattering o�
each other, and (ii) passing through each other. Process (ii) may seem unphysical for a
theory of point particles such as an HBD model, as at one instance of time both particles
then occupy the same space-point which, strictly speaking, contradicts the notion of a two-
particle con�guration2. All in all, the jump boundary conditions constitute an interesting
generalization of possible dynamics for the 1+1-dimensional model but the previous class of
boundary conditions is more universally applicable and harmonizes better with a Bohmian
theory of point particles.

4.2 N particles

This section is taken from the paper [69] by Lukas Nickel and the present autor with only
minor changes.

The main di�culty of an N -particle generalization of the 1+1-dimensional model is to �nd
a concise approach which allows to deal with every N ∈ N, N ≥ 2. While in chap. 3 we
started out with proving the existence and uniqueness for a very general class of boundary
conditions and restricted this class according to the various physical requirements, we shall
employ a bottom-up approach here. We directly specialize on the case of indistinguishable
particles, extract a class of physically reasonable boundary conditions and only then prove
existence and uniqueness for the resulting model.

The section is structured as follows. In sec. 4.2.1 we introduce the model as de�ned
by its multi-time equations, domain, initial values and boundary conditions. In sec. 4.2.2,

2For the GRWm model one reaches a di�erent conclusion, as it describes a di�erent microscopic reality.
The GRWf model, on the other hand, is not compatible with the 1 + 1-dimensional model, anyway, as it
requires the multi-time wave function to be de�ned not only on S but on R2×R2, precluding the possibility
of interaction via boundary conditions.
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the implications of antisymmetry are discussed and the general solution of the multi-time
equations is found using a generalized version of the method of characteristics. Sec. 4.2.3
deals with extracting a general class of probability-conserving boundary conditions. In sec.
4.2.4 the requirements of Lorentz invariance are checked and the before-mentioned class
of boundary conditions is shown to satisfy them. Our main result is an existence and
uniqueness theorem (sec. 4.2.5). In sec. 4.2.6 we �nally give a general argument that the
model is interacting and show that one can regard the interaction as given by an e�ective
δ-potential at equal times.

4.2.1 De�nition of the model

Analogously to the two-particle case (see sec. 3.2), our model is based on a multi-time wave
function for N mass-less Dirac particles on the set of space-like con�gurations

S := {(t1, z1, ..., tN , zN ) ∈ R2N : (tj − tk)2 − (zj − zk)2 < 0 ∀j 6= k} (4.23)

in 1 + 1-dimensional space-time. The appropriate spin space is S = (C2)⊗N . Thus, ψ has
2N spin components ψi, i = 1, ..., 2N .

As multi-time evolution equations we prescribe the system of N mass-less Dirac equa-
tions

iγµk ∂k,µ ψ(x1, ..., xN ) = 0, k = 1, ..., N, (4.24)

where xk = (tk, zk), ∂k,µ = ∂
∂xµk

and γµk is the µ-th Dirac gamma matrix acting on the spin

index of the k-th particle. Using the representation (3.10), the multi-time Dirac equations
(4.24) take a diagonal form (which can be seen by multiplying eq. (4.24) with γ0

k from the
left). This results in(

∂

∂tk
+ σ3,k

∂

∂zk

)
ψ(t1, z1, ..., tN , zN ) = 0, k = 1, ..., N, (4.25)

where σ3,k is the third Pauli matrix, σ3 = diag(1,−1), acting on the spin index of the k-th
particle.

Initial data are prescribed on the set

I := {(t1, z1, ..., tN , zN ) ∈ Ω : t1 = · · · = tN = 0}. (4.26)

Since S has a non-empty boundary ∂S , one should expect that boundary conditions are
needed to ensure the uniqueness of solutions. At this point, we leave open the exact nature
of the boundary conditions. It will be clari�ed by further considerations about Lorentz
invariance and probability conservation.
The structure of the model can be summarized as

the system of equations (4.25) on Ω = S ,
initial conditions on I,
boundary conditions on ∂Ω.

(4.27)
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4.2.2 Antisymmetry, general solution and multi-time characteristics

In this section, we �rst show how the antisymmetry of the wave function for indistinguish-
able particles allows to reduce the domain from N ! disconnected parts to a single connected
one. Using a notation for the spin components which is tailor-made for the multi-time equa-
tions (4.25) we show how this facilitates the explicit determination of their general solution.
This leads to the notion of multi-time characteristics.

4.2.2.1 Antisymmetry and reduction of the domain

Following the spirit outlined at the beginning of the section, we make simpli�cations wher-
ever physically reasonable in order to achieve a concise model for which existence and
uniqueness can be proved elegantly. The �rst simpli�cation is the assumption of indis-
tinguishable particles. This is natural, considering that the particles are not dynamically
distinguished by eqs. (4.24) alone. Denote the spin components of ψ by ψs1...sN where each
si can take the values ±1. We write

ψ1

ψ2

ψ3
...

ψ2N

 ≡


ψ−−···−−
ψ−−···−+

ψ−−···+−
...

ψ++···++

 . (4.28)

Indistinguishability implies the following antisymmetry condition for the wave function.
Let π ∈ SN be a permutation. Then

ψsπ(1)...sπ(N)
(xπ(1), ..., xπ(N))

!
= (−1)sgn(π)ψs1...sN (x1, ..., xN ). (4.29)

We now use this condition to relate a solution of (4.27) on the di�erent parts of the domain
Ω = S (see eq. (4.23)). Note that in one spatial dimension S separates into N ! disjoint
parts which can be classi�ed according to the relation of the spatial coordinates zk, e.g.
z2 < z1 < z5 < z3 < . . . Using the permutation group SN , we write S as the disjoint
union of open sets as follows:

S =
⊔

π∈SN
Sπ,

where Sπ :=
{

(t1, z1, ..., tN , zN ) ∈ S : zπ(1) < · · · < zπ(N)

}
. (4.30)

The crucial point is the following: given a solution of the model, as de�ned by (4.27) on
S1 (corresponding to z1 < · · · < zN ), the antisymmetric extension via eq. (4.29) yields a
solution on Sπ, provided the boundary and initial conditions are chosen to be compatible
with antisymmetry. Note that this reduces the possible classes of initial boundary value
problems (IBVPs) (4.27) to an autonomous IBVP on S1. We shall employ this strategy in
the following. Our new model may be summarized according to (4.27) with S replaced by
S1.
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4.2.2.2 Multi-time characteristics and general solution

Using the notation (4.28), we express the diagonalized multi-time Dirac equations (4.25)
for a �xed component ψs1...sN as(

∂

∂tk
− sk

∂

∂zk

)
ψs1...sk...sN = 0, k = 1, ..., N. (4.31)

Note that (4.31) imposes N equations for each of the 2N spin components ψs1...sN . This
simple form of the equations allows to �nd the general solution.

Lemma 4.2.1 The general solution of eqs. (4.31) is given by

ψs1...sN (t1, z1, ..., tN , zN ) = fs1...sN (z1 + s1t1, ..., zN + sN tN ) , (4.32)

where fs1...sN : RN → C are C1-functions, s1 = ±1, ..., sN = ±1.

Proof: The result is obvious when one is familiar with the notation. Simply write out eq.

(4.31) for ψs1...sN separately:
(

∂
∂t1
− s1

∂
∂z1

)
ψs1...sN = 0, ...,

(
∂
∂tN
− sN ∂

∂zN

)
ψs1...sN = 0.

This implies the form (4.32). �

The form of the general solution motivates the following de�nition, analogous to the one in
sec. 3.3.

De�nition: Let p = (t1, z1, . . . tN , zN ) ∈ R2N . Then we call

ck := zk + sktk (4.33)

the characteristic values at p associated with the component ψs1...sN .
Furthermore, we de�ne the multi-time characteristics of the components ψs1...sN by

Ss1...sN (c1, ..., cN ) := {(t1, z1, ..., tN , zN ) ∈ R2N : zk + sktk = ck}. (4.34)

With these de�nitions, one can reformulate lemma 4.2.1 as follows: the components ψs1...sN
of solutions of (4.31) are constant on the respective multi-time characteristics (4.34). Note
that this implies existence and uniqueness on the domain R2N for an initial value problem
at t1 = ... = tN = 0, the functions fs1...sN being given by the initial values. However, as
known from chap. 3, this does not in general hold true for a domain with a boundary such
as S1.

4.2.3 Derivation of boundary conditions from probability conservation

In this section, we use the current form ωj in an analogous way to sec. 3.4 to extract a
su�cient condition for probability conservation on the components of the wave-function.
Because of the reduction of the domain in the previous section, we may focus on S1 only.

Lemma 4.2.2 Probability conservation on S1 in the sense of∫
ΣN∩S1

ωj =

∫
(Σ′)N∩S1

ωj (4.35)
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for all space-like hypersurfaces Σ,Σ′ holds if the wave function ψ is compactly supported on

all sets of the form ΣN ∩S1 and if

ωj |C1
= 0, (4.36)

where

C1 := {(t1, z1, . . . tN , zN ) ∈ ∂S1 | ∃k : tk = tk+1 ∧ zk = zk+1} . (4.37)

Remark:

1. The assumption of compact support of the wave function (or, alternatively, of suit-
able drop-o� conditions) with respect to spatial directions is needed as a technical
assumption in the proof. It is reasonable because the multi-time Dirac equations have
�nite propagation speed (see eq. (4.32)). Consequently, compactly supported initial
data imply the desired property.

2. Note that the wave function is, strictly speaking, not de�ned on ∂S1. When using
values of the wave function at the boundary (such as in eq. (4.36)), we assume that
the wave function is continuous3 and refer to the corresponding limit in S1. In this
way, jumps of the wave function across the boundaries of di�erent Sπ are admitted.
In fact, singularities of this kind are typical for zero-range interactions [1, appendix
J].

Proof: We adopt the idea of the proof of thm. 3.4.2 and generalize it to N particles. Let
Σ,Σ′ be space-like hypersurfaces. We construct a suitable submanifold with boundary in
order to be able to use Stokes' theorem.

Let tΣ(z) denote the time coordinate of the unique point p = (tΣ(z), z) ∈ Σ. Let R > 0
and consider the following set:

VR :=

{
(t1, z1, . . . , tN , zN ) ∈ S 1

∣∣∣∣ ∃τ ∈ [0, 1] : ∀k : tk = tΣ(zk) + τ (tΣ′(zk)− tΣ(zk))
and |zk| ≤ R

}
(4.38)

VR is a bounded and closed, thus compact, (N + 1)-dimensional submanifold of R2N with
boundary

∂VR = (ΣN ∩S1) ∪ ((Σ′)N ∩S1) ∪M1 ∪M2, (4.39)

where M2 is the subset of VR with |zk| = R for some k and

M1 = VR ∩ ∂S1. (4.40)

Because of the �rst condition in the de�nition of VR, a con�guration in VR always is an
element of SN for some space-like hypersurface S. Therefore, it can only be an element of
M1 ⊂ ∂S1 (i.e. light-like) if ∃k : tk = tk+1 and zk = zk+1. This implies M1 ⊂ C1.

In the limit R → ∞, the integral
∫
M2

ωj vanishes because of the compact support of
the wave function. Thus, it follows from Stokes' theorem, together with dωj = 0, that

0 = lim
R→∞

∫
VR

dωj = lim
R→∞

∫
∂VR

ωj = −
∫

ΣN∩S1

ωj +

∫
(Σ′)N∩S1

ωj +

∫
M1

ωj . (4.41)

3The assumption of continuity will be justi�ed in sec. 4.2.5 where it is shown that a unique Ck solution
exists for an appropriate IBVP.
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The minus sign in front of the �rst integral on the rhs. is due to orientation conventions.
Thus, probability conservation in the sense of eq. (4.35) holds i�

∫
M1

ωj = 0. In order to
make this integral vanish for all possible choices of Σ,Σ′, the condition

ωj |C1

!
= 0 (4.42)

has to be satis�ed. �

Next, we study the implications of condition (4.42) for the components of the wave function.
For simplicity, we �rst focus on the special case of equal-time hypersurfaces in a �xed but
otherwise arbitrary Lorentz frame.

Lemma 4.2.3 Let C1,t := {(t1, z1, ..., tN , zN ) ∈ C1 : t1 = · · · = tN}. Then the condition

for probability conservation on equal-time hypersurfaces Σt in a particular Lorentz frame,

i.e. (4.42) with C1 replaced by C1,t, holds if and only if the following condition is satis�ed:

ψ†(p) (σ3,k − σ3,k+1)ψ(p) = 0 ∀p ∈ C
(k)
1,t ∀k = 1, ..., N − 1, (4.43)

where C
(k)
1,t := {(t1, z1, ..., tN , zN ) ∈ C1,t : zk = zk+1}.

Furthermore, eq. (4.43) can be rewritten as∑
(s1,...,sN )∈{−,+}N

sk 6=sk+1

sk+1|ψs1...sN |
2(p) = 0 ∀p ∈ C

(k)
1,t . (4.44)

Proof: We have to evaluate the condition ωj |C1,t
= 0. Note that for p ∈ C1,t there exists

k ∈ {1, ..., N − 1} such that p = (t, z1, ..., t, zk = z, t, zk+1 = z, ..., t, zN ).
Next, we calculate ωj |C1,t

according to eq. (1.70), recalling that in this case x0
k = t and

x1
j = zj as well as zk = zk+1 = z. All terms with more than one index µl = 1 in jµ1...µl...µN

vanish because they contain dt ∧ dt = 0. Moreover, the terms with µk = µk+1 = 0 do not
contribute, either, as they contain dz ∧ dz = 0. We are left with terms for which all indices
µj are equal to zero apart from the k-th or the (k + 1)-th:

ωj(p) = −j0...(µk=0)(µk+1=1)...0(p) dz1 ∧ · · · ∧ dzk−1 ∧ dz ∧ dt ∧ dzk+2 ∧ · · · ∧ dzN
− j0...(µk=1)(µk+1=0)...0(p) dz1 ∧ · · · ∧ dzk−1 ∧ dt ∧ dz ∧ dzk+2 ∧ · · · ∧ dzN

=
(
j0...10...0 − j0...01...0

)
(p) dz1 ∧ · · · ∧ dzk−1 ∧ dz ∧ dt ∧ dzk+2 ∧ · · · ∧ dzN (4.45)

This expression vanishes if and only if the bracket is zero. This yields condition (4.43):

0 = (j0...10...0 − j0...01...0)(p) = ψ†(p) (σ3,k − σ3,k+1)ψ(p). (4.46)

Written out in components, eq. (4.46) reads:

0 =
∑

(s1,...,sN )∈{−,+}N

(
−sk|ψs1...sN |

2(p) + sk+1|ψs1...sN |
2(p)

)
, (4.47)

where k was de�ned above.
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Summands with sk = sk+1 cancel out. We are left with

0 =
∑

(s1,...,sN )∈{−,+}N
sk 6=sk+1

2sk+1|ψs1...sN |
2(p). (4.48)

which yields (4.44). �

We now take the following approach in order to �nd adequate boundary conditions that
lead to probability conservation on general space-like hypersurfaces. First, we choose a
subclass of (4.44) which turns out to be Lorentz invariant (see the next section) and to
ensure the existence of a solution (see sec. 4.2.5). Then we prescribe the condition on the
whole set C1 and show that it is indeed su�cient to ensure condition (4.36) and therefore
probability conservation on general hypersurfaces.

It is useful to de�ne the sets

Ck,k+1 := {(t1, z1, ..., tN , zN ) ∈ ∂S1| tk = tk+1 ∧ zk = zk+1} . (4.49)

One can then write C1 =
⋃N−1
k=1 Ck,k+1 (see eq. (4.37)).

Lemma 4.2.4 Let ϕ(k) ∈ (−π, π] for k = 1, ..., N − 1. Then the boundary conditions

ψs1...sk−1+−sk+2...sN
!

= eiϕ
(k)
ψs1...sk−1−+sk+2...sN on Ck,k+1, k = 1, ..., N − 1 (4.50)

imply probability conservation on all space-like hypersurfaces in the sense of eq. (4.35).

Proof: It was shown in lemma 4.2.2 that eq. (4.35) follows if

ωj |C1
= 0. (4.51)

We now demonstrate that this equation indeed holds. Pick a point p ∈ C1. Then ∃k : p ∈
Ck,k+1. Condition (4.50) at this point yields:

|ψs1...sk−1+−sk+2...sN |
2(p) = |ψs1...sk−1−+sk+2...sN |

2(p). (4.52)

It follows that
jµ1µ2...01...µN (p) = jµ1µ2...10...µN (p) (4.53)

because the expression for the current is diagonal in the components. In the formula for
ωj(p) (eq. (1.70)), we �rst perform the sum over the indices µk, µk+1 and afterwards over
the rest. Then there are four possibilities in the summands:

• (µk, µk+1) = (0, 0) or (1, 1): These do not contribute because the coordinates of the
k-th and (k+1)-th particles are equal, say to (t, z), so either dz∧dz = 0 or dt∧dt = 0
appears as a factor in the wedge product.

• (µk, µk+1) = (0, 1) or (1, 0). One can see that these two factors cancel each other
because (abbreviating the other factors in the wedge product by A and B)

jµ1...(µk=0)(µk+1=1)...µNA ∧ dt ∧ dz ∧B + jµ1...(µk=1)(µk+1=0)...µNA ∧ dz ∧ dt ∧B

=
(
jµ1...01...µN (p)− jµ1...10...µN (p)

)
A ∧ dt ∧ dz ∧B (4.53)

= 0. (4.54)

Therefore, the probability-conserving property ωj(p) = 0 holds. �
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4.2.4 Lorentz invariance

As in sec. 3.5, the Lorentz invariance of the N -particle model requires the invariance of
the domain, the multi-time wave equations and the boundary conditions. Apart from the
last point, the invariance is already manifest. In this section, we show that also the class
(4.50) of probability-conserving boundary conditions is Lorentz invariant, meaning that the
Lorentz-transformed boundary conditions are satis�ed as a consequence of the old ones.

Recall that the transformation behavior of multi-time wave functions under a Lorentz
transformation Λ : x 7→ x′ in the proper Lorentz group L↑+ is given by

ψ′(x1, ..., xN ) = S[Λ]⊗ · · · ⊗ S[Λ]ψ(Λ−1x1, ...,Λ
−1xN ), (4.55)

where

S[Λ] = exp

(
− i

4
ωµνσ

µν

)
, σµν =

i

2
[γµ, γν ] . (4.56)

Here, ω is an antisymmetric (1 + d)× (1 + d) matrix which characterizes Λ.
For d = 1, there exists only one independent generator σ01 corresponding to a boost in

z-direction. We denote the corresponding boost parameter by β ∈ R. One obtains

S[Λ] =

(
coshβ + sinhβ 0

0 coshβ − sinhβ

)
. (4.57)

As the matrix is diagonal due to our choice of γ-matrices, it is easy to calculate the N -fold
tensor product in eq. (4.55). In this way, we �nd that the components of ψ transform as

ψ′s1...sN (x1, ..., xN ) =
N∏
k=1

(coshβ − sk sinhβ)ψs1...sN (Λ−1x1, ...,Λ
−1xN ). (4.58)

In other words: one obtains a factor of (coshβ − sinhβ) for every plus and a factor of
(coshβ + sinhβ) for every minus in the index (s1...sN ). Hence, components with an equal
number of plus and minus signs transform in the same way.

Example: We focus on the case N = 3 in order to motivate the general form (4.50) of
the boundary conditions. Consider a boundary point p = (t, z1, t, z, t, z) ∈ C1,t. We use eq.
(4.44) to explicitly compute what the condition of probability conservation amounts to:

ωj(p) = 0 ⇔ |ψ−−+|2(p)− |ψ−+−|2(p) + |ψ+−+|2(p)− |ψ++−|2(p) = 0. (4.59)

Now we Lorentz transform this condition according to eq. (4.58) using the identity
(coshβ − sinhβ) (coshβ + sinhβ) = 1:

0 = (coshβ − sinhβ)
(
|ψ−−+|2 − |ψ−+−|2

)
(p′)+(coshβ + sinhβ)

(
|ψ+−+|2 − |ψ++−|2

)
(p′),

(4.60)
where p′ = (Λ−1(t, z1),Λ−1(t, z),Λ−1(t, z)). This equation cannot possibly be Lorentz
invariant as a whole. Thus, demanding Lorentz invariance, we have to split up eq. (4.59)
into two separate conditions relating only components which have the same number of plus
and minus signs in their indices, i.e.

|ψ−+−|2(p)− |ψ−−+|2(p) = 0, |ψ+−+|2(p)− |ψ++−|2(p) = 0. (4.61)
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These equations are equivalent to

ψ−−+(p) = eiϕ−ψ−+−(p), ψ++−(p) = eiϕ+ψ+−+(p). (4.62)

A priori, the phases ϕ± could be functions of all particle coordinates. Invariance under
Poincaré transformations leads to the requirement that the phases ϕ± should only depend
on the Minkowski distances of pairs of particles, (xi − xj)µ(xi − xj)µ. In the 3-particle
case, there is only one such variable, s2 := (t1 − t)2 − (z1 − z)2. However, the Minkowski
distance s2 changes along a multi-time characteristic. This would lead to a contradiction
because the solution has to be constant along the characteristic (see lemma 4.2.1). Thus,
ϕ± must be constant in order for solutions to exist. A further investigation of the existence
and uniqueness problem shows that even ϕ+ = ϕ− is necessary.

We arrive at the following general picture. Exchanging sk ↔ sk+1 in ψs1...sksk+1...sN on
Ck,k+1 only yields a phase factor which must not depend on the other spin indices (but
may depend on k). This motivates the choice of boundary conditions (4.50). The following
lemma shows that they are indeed Lorentz invariant.

Lemma 4.2.5 The probability conserving boundary conditions of lemma 4.2.4, i.e.

ψs1...sk−1+−sk+2...sN
!

= eiϕ
(k)
ψs1...sk−1−+sk+2...sN on Ck,k+1, k = 1, ..., N − 1 (4.63)

are Lorentz invariant.

Proof: According to eq. (4.58), eq. (4.63) has the same form in every Lorentz frame.
Besides, the sets Ck,k+1 on which the condition is prescribed are Lorentz invariant. �

Remark: One may ask if there are other possible choices of boundary conditions which
lead to ωj = 0 at the boundary and are Lorentz invariant. The example shows that for
N = 3 we have already found the only one. For N ≥ 4 there may exist more complicated
boundary conditions with the desired properties. However, aiming at a model valid for all
N ≥ 2, we do not further pursue this question here.

4.2.5 Existence and uniqueness of solutions

We now come to the main result of the N -particle section: the theorem on the existence
and uniqueness of solutions for the boundary conditions discussed so far (thm. 4.2.6).
Furthermore, we �nd an explicit formula for the unique solution of the respective IBVP.

We start by providing some intuition about the behavior of the solution for N = 3.
The main idea is to make use of the fact that the components of the solution have to be
constant along the multi-time characteristics (see sec. 3.3).

Example: For N = 3 the wave function has 23 = 8 components. According to lemma
4.2.1, these are constant along their respective multi-time characteristics. We visualize the
multi-time characteristics as follows (see �g. 4.2). One can see from eq. (4.34) that the
multi-time characteristics are the Cartesian product of N = 3 lines. These lines are plotted
in the same space-time diagram. Any combination of three points on the di�erent lines
constitutes an element of the respective multi-time characteristic. The slopes of the various
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lines characterize the associated component ψs1...sN . More precisely, a line with negative
(positive) slope for particle k is associated with the appearance of sk = +1 (sk = −1) in
the index of ψ.

Fig. 4.2 shows a multi-time characteristic S+++(c1, c2, c3) for the component ψ+++

where the ck are de�ned by a certain point p = (A,B,C) ∈ S1 (see eq. (4.33)). ψ+++ is
determined at p by initial data because the whole characteristic S+++(c1, c2, c3) is contained
in S1. This can be seen from the fact that every three points on di�erent lines are space-
like related. Besides, the value ψ(p) is determined uniquely by initial data as there exists
a unique intersection point of S+++(c1, c2, c3) with the surface t1 = t2 = t3 = 0, given by
(0, c1, 0, c2, 0, c3). Thus, we obtain

ψ+++(t1, z1, t2, z2, t3, z3) = psi+++(0, c1, 0, c2, 0, c3) = g+++(c1, c2, c3), (4.64)

where g+++ are the initial values for ψ+++.

z

t

0 (0,c1) (0,c2) (0,c3)

A=(t1,z1) C=(t3,z3)

B=(t2,z2)

Figure 4.2: A multi-time characteristic S+++(c1, c2, c3) for the component ψ+++.
S+++(c1, c2, c3) is the Cartesian product of three lines which are plotted in the same space-
time diagram. Every triple of points on di�erent lines, e.g. (A,B,C), is contained in S1.

For a component ψs1s2s3 containing plus as well as minus signs in the index, for example
ψ+−+, the situation is di�erent (see �g. 4.3). One can see that intersections of the lines
de�ning a characteristic S+−+ do occur in the diagram.

When an intersection occurs, the multi-time characteristic leaves S1. Therefore, a situ-
ation as in �g. 4.3 can happen: tracing back the multi-time characteristic to the initial data
surface, one leaves the domain. Thus, ψ+−+(A,B,C) is not de�ned solely by initial values.
To obtain the value of ψ+−+(A,B,C), we �rst realize ψ+−+(A,B,C) = ψ+−+(P, P,C).
Then we employ the boundary conditions to obtain ψ+−+(A,B,C) = ψ+−+(P, P,C) =

eiϕ
(1)
ψ−++(P, P,C). The component ψ−++ is now determined at (P, P,C) by initial data

in a similar way as before, i.e. ψ−++(P, P,C) = g−++(c2, c1, c3). Summarizing the relations,
we obtain:

ψ+−+(t1, z1, t2, z2, t3, z3) = eiϕ
(1)
g−++(c2, c1, c3). (4.65)

Figuratively speaking, this amounts to exchanging particle labels and picking up a phase
while leaving the domain on the way back to the initial data surface.

The considerations above hint at a general idea: it is possible to obtain an explicit
formula for the solutions of the IBVP (see eq. (4.68)) by a process of successively tracing
back components to collisions, using the boundary conditions to switch the component,
tracing back to the next collision and �nally arriving at the initial data. In this way, one
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z

t

0 (0,c1)(0,c2) (0,c3)

A=(t1,z1) C=(t3,z3)

B=(t2,z2)

P

Figure 4.3: A multi-time characteristic S+−+ for ψ+−+, depicted for the same con�guration
as in �g. 4.2. One cannot trace back the lines to the initial data surface I because one
leaves S1 at the point P . Instead one has to �rst make use of the boundary conditions and
can then trace back the multi-time characteristic for ψ−++ which corresponds to the same
lines but with particle labels 1 and 2 exchanged.

can also determine the values of components of ψ with multiple intersections of the lines
constituting the multi-time characteristic, as in �g. 4.4. This motivates the theorem below.

z

t

0

A=(t1,z1)

C=(t3,z3)

B=(t2,z2)

Figure 4.4: A multi-time characteristic with several intersections for the component ψ+−−.

Theorem 4.2.6 Let m ∈ N and choose initial data gj ∈ Cm
(
I ∩S 1,C

)
, j = 1, ..., 2N

which also satisfy the boundary conditions, i.e.

gs1...sk−1+−sk+2...sN = eiϕ
(k)
gs1...sk−1−+sk+2...sN on I ∩ Ck,k+1, k = 1, ..., N − 1 (4.66)

and let this transition be Cm.
Then there exists a unique solution ψ ∈ Cm

(
S 1, (C2)⊗N

)
of the IBVP (4.27) with Ω = S1,

boundary conditions (4.50) and initial data

ψs1...sN (0, z1, ..., 0, zN ) = gs1...sN (z1, ..., zN ), z1 ≤ · · · ≤ zN . (4.67)

If all characteristic values ck = zk + sktk are di�erent, the components of the solution are

explicitly given by

ψs1...sN (t1, z1, ..., tN , zN ) = eiφ
π
s1...sN gsπ(1)...sπ(N)

(
cπ(1), ..., cπ(N)

)
, (4.68)

where π is the permutation with

cπ(1) < · · · < cπ(N). (4.69)
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φπs1...sN is the phase which is uniquely determined by the ϕ(k) of eq. (4.50) via the de�nition

below.

If some of the ck are equal, ψs1...sN is given by the continuation of eq. (4.68). In addition,

the model ensures probability conservation on general space-like hypersurfaces and is Lorentz

invariant.

De�nition: A pair (k, l) ∈ {1, ..., N}2 with k < l is said to be a collision of a transposition
π ∈ SN i� π(k) > π(l).

De�nition: The phases φπs1...sN appearing in thm. 4.2.6 are given by the conditions

1. φid
s1...sN

= 0,

2. Let τk be the transposition of k and k + 1. If π can be decomposed as π = τk ◦ σ
where σ is a permutation with fewer collisions than π, then

φπs1...sN = φσs1...sk+1sk...sN
+ skϕ

(k). (4.70)

Lemma 4.2.7 The phases φπs1...sN exist and are uniquely determined.

Proof: We proceed via induction over the number of collisions.

Induction start: If π has no collision, π = id. Thus, the phase φid
s1...sN

is determined
uniquely by the �rst condition in the de�nition. If π has exactly one collision, then it is
just a transposition of neighboring elements, so there exists some k with π = τk = τk ◦ id
and the phase is uniquely determined by (4.70) as φπs1...sN = skϕ

(k).
Induction step: Assume that all phases φπ

′
s1...sN

for permutations with n ≥ 1 collisions
are uniquely determined and let π have n + 1 collisions. It is known from the general
theory of permutations that there exists at least one permutation σ with n collisions and a
neighboring transposition τs such that π = τs◦σ. However, it may be possible to decompose
π in two di�erent ways:

π = τs ◦ σ = τk ◦ κ, (4.71)

where s, k ∈ {1, . . . , N}, s 6= k and σ, κ are permutations with at least n collisions. In
order for these two permutations to have one collision less than π, we see that (k, k + 1)
and (s, s+ 1) must be collisions of π.

To show that despite the di�erent ways of decomposition, the corresponding phases
are uniquely de�ned, we make use of the fact that the phases need only be de�ned for a
certain type of permutation. To characterize them, we prove an auxiliary claim: in the
above situation, τs commutes with τk because |s− k| 6= 1.

Claim: Let ψs1...sN and (t1, z1, . . . , tN , zN ) ∈ S1 such that there is a collision, i.e. a pair
(a, b) with a < b and ca > cb. Then one of the following two possibilities holds:{

either sa = +1 ∧ sb = −1 ∧ ta > 0 ∧ tb > 0
or sa = −1 ∧ sb = +1 ∧ ta < 0 ∧ tb < 0

. (4.72)

Proof of the Claim: We know that a < b, ca > cb and za < zb. We show that sa = +1
implies sb = −1 ∧ ta > 0 ∧ tb > 0; the second case follows analogously.
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If sa = +1, then

ca > cb

⇔ za + ta > zb + sbtb

⇔ ta − (sbtb) > zb − za = |zb − za|. (4.73)

If now sb = +1, this would be a contradiction to the points (ta, za) and (tb, zb) being
space-like separated. Hence, sb = −1, so we have:

|zb − za| < ta + tb = |ta + tb|. (4.74)

This implies that ta and tb cannot both be negative. So assume that one of them is
negative, w.l.o.g. ta > 0, tb < 0. But then |ta − tb| > |ta + tb| and

|zk − za| < |ta + tb| < |ta − tb|, (4.75)

which also is a contradiction to the points being space-like. Thus, one must have ta >
0, tb > 0 which proves the claim.

Because of the speci�c sign combinations that allow for collisions, the claim shows that if
(s, s + 1) is a collision, neither (s − 1, s) nor (s + 1, s + 2) can be a collision. Therefore,
|k − s| ≥ 2 and τk, τs commute.

We use the commutability of τk and τs to de�ne a third permutation

ρ := τk ◦ τs ◦ π = τk ◦ σ = τs ◦ κ, (4.76)

which by construction has n− 1 collisions, i.e. one less than σ and κ. This means that the
seemingly di�erent representations of φπs1...sN ,

φπs1...sN = φσs1...ss+1ss...sN
+ ssϕ

(s) and

φπs1...sN = φκs1...sk+1sk...sN
+ skϕ

(k), (4.77)

are in fact equal. This can be seen from the fact that the di�erent ways of decomposing π
via eq. (4.71) yield (using (4.70)):

φπs1...sN = φσs1...ss+1ss...sN
+ ssϕ

(s) = φρs1...sk+1sk...ss+1ss...sN
+ skϕ

(k) + ssϕ
(s)

= φκs1...sk+1sk...sN
+ skϕ

(k) = φπs1...sN . (4.78)

This �nishes the proof of uniqueness of the phases because by the induction hypothesis,
the phases associated with ρ, σ and κ exist and are uniquely determined. �

Proof of the theorem: The points of Lorentz invariance and probability conservation
are clear from lemma 4.2.5 and lemma 4.2.4, respectively. Furthermore, we already know
that the uniqueness of solutions in a weak sense follows from probability conservation by
virtue of thm. 1.3.3. If the function de�ned by eq. (4.68) is indeed m times continuously
di�erentiable, it follows from continuity that it is also unique as a Cm-function

Thus, it only remains to show that the function given by (4.68) is indeed a classical
solution of the IBVP. In order to prove this, the following four points have to be veri�ed:
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1. Di�erentiability: We need to prove that ψ ∈ Cm
(
S1, (C2)⊗N

)
. As the initial values

satisfy gj ∈ Cm (I,C) ∀j = 1, ..., 2N , this property is inherited by ψj via the charac-
teristics. To see this, note that eq. (4.68) just makes use of a translation of the initial
values along straight lines in the (tk, zk) spaces.
However, we need to consider those points separately where the permutation π changes.
This exactly happens when at least two of the characteristic values cj are equal. But
then the Cm-property of ψ is ensured by the requirement that the initial values must
satisfy the boundary conditions (eq. (4.66)) and that the transition shall be Cm.

2. The function de�ned by eq. (4.68) solves the system of Dirac equations in S1. This
follows from lemma 4.2.1 because the components of the solution are indeed constant
along the respective multi-time characteristics and only depend on the characteristic
values ck.

3. The initial conditions (4.67) are satis�ed: At a point (0, z1, 0, z2, ..., 0, zN ) ∈ I ∩S 1,
we have ck = zk ∀k and thus cπ(1) ≤ cπ(2) ≤ · · · ≤ cπ(N) is ful�lled for π = id.
Therefore, formula (4.68) reduces to

ψs1...sN (0, z1, ..., 0, zN ) = gs1...sN (c1, ..., cN ) (4.79)

which is equivalent to (4.67).

4. The boundary conditions (4.50) are satis�ed: Let k ∈ {1, ..., N − 1} and (t1, z1, ..., tk =
t, zk = z, tk+1 = t, zk+1 = z, ..., tN , zN ) ∈ Ck,k+1. We consider two components
of ψ where only the k-th and (k + 1)-th sign is exchanged, or more formally: let
(s1, . . . sN ), (s̃1, . . . s̃N ) ∈ {−1,+1}N with sl = s̃l ∀l /∈ {k, k + 1} and (sk, sk+1) =
(+,−) = (s̃k+1, s̃k). The respective characteristic values are given by ck = zk + sktk
and c̃k = zk + s̃ktk.
Now observe the property cl = c̃l ∀l /∈ {k, k + 1} and ck = c̃k+1, c̃k+1 = ck. Let π
be the permutation that leads to cπ(1) ≤ · · · ≤ cπ(N). The permutation σ needed to
achieve c̃σ(1) ≤ · · · ≤ c̃σ(N) is given by σ = τk ◦ π and it has one collision less than π
with respect to the indices s̃k. Inserting this into eq. (4.68) yields

ψs̃1...s̃N
(4.68)

= e
iφσs̃1...s̃N gs̃σ(1)...s̃σ(N)

(
c̃σ(1), ..., c̃σ(N)

)
(4.70)

= eiφ
π
s1...sN e−iϕ

(k)
gsπ(1)...sπ(N)

(
cπ(1), ..., cπ(N)

)
(4.68)

= e−iϕ
(k)
ψs1...sN . (4.80)

This shows that (4.50) is valid.

These four points establish existence; the function given by (4.68) is indeed the solution of
the IBVP. �

Remark:

1. Uniqueness of solutions can also be proven di�erently than by invoking thm. 1.3.3,
namely by directly showing that every solution of the IBVP has to ful�l eq. (4.68).
A possible proof goes via induction over the number of collisions.
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2. Note that on purely dimensional grounds it is remarkable that solutions for the IBVP
with boundary conditions (4.50) do exist. Because the dimension of Ck,k+1 is (N −
1)(1 + d) which for N > 1 + d is greater than Nd, the dimension of the initial data
surface I ∩S1, one might have suspected this not to be the case.

4.2.6 Interaction and e�ective potential

In addition to the mathematical and physical features already established, we now prove
that our model is interacting. Moreover, we outline how the interaction can be described
e�ectively at equal times using self-adjoint extensions of the free two-particle Dirac Hamil-
tonian.

In sec. 3.6, a general criterion for interaction was given. We call a physical model in-
teracting i� it generates entanglement, i.e. i� there exist wave functions that are initially
product states and become entangled during time evolution. Note that for the antisym-
metrized wave functions we are considering, a product means �wedge product�. We now
present a simple argument for why our model is interacting in this sense.

Lemma 4.2.8 The model de�ned by (4.27) with Ω = S1 and boundary conditions (4.50)
is interacting if there exists k ∈ {1, . . . , N − 1} with ϕ(k) 6= π.

Proof: W.l.o.g. k = 1. Let the initial conditions be such that ψ|I is a product wave
function. In particular, this means that there exist functions α, β, γ, δ ∈ Cm(R,C) and
ζ ∈ Cm(RN−2,C) with

g+−+···+(z1, ..., zN ) = α(z1)β(z2)ζ(z3, ..., zN ),

g−++···+(z1, ..., zN ) = γ(z1)δ(z2)ζ(z3, ..., zN ) (4.81)

for z1 ≤ · · · ≤ zN .
Antisymmetry (4.29) implies:

α(z1)β(z2) = −γ(z2)δ(z1). (4.82)

Consider the solution at a point p = (t, z1, ..., t, zN ) ∈ S1 with common time t > 0. The
auxiliary claim in the proof of lemma 4.2.7 implies that the characteristic values at p with
respect to the component ψ+−+···+ are in ascending order i� z1 + t ≤ z2 − t. Thus we
can use formula (4.68) to obtain ψ+−+···+(p), with the permutation π being the identity if
z1 ≤ z2− 2t and the transposition τ1 if z1 > z2− 2t. Written via the Heaviside function Θ,
this yields

ψ+−+···+(p) = g+−+···+(c1, ...cN ) Θ (z2 − z1 − 2t)

+ eiϕ
(1)
g−++···+(c2, c1, c3, ..., cN ) Θ (2t+ z1 − z2)

= α(c1)β(c2)ζ(c3, ..., cN ) Θ (z2 − z1 − 2t)

+ eiϕ
(1)
γ(c2)δ(c1)ζ(c3, ..., cN ) Θ (2t+ z1 − z2) . (4.83)

Using (4.82), the expression simpli�es to

ψ+−+···+(p) = α(c1)β(c2)ζ(c3, . . . , cN )
(

Θ(c2 − c1)− eiϕ(1)
Θ(c1 − c2)

)
. (4.84)
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This function contains the Heaviside function of a combination of t, z1 and z2 in a non-
factorizable way. The Θ-function cannot be left away for general initial values (as might
be the case if they were zero in some regions). Furthermore, because of the prefactor eiϕ

(1)

of the second summand, we cannot write it as a product as long as ϕ(1) 6= π. �

E�ective single-time model: In the following, we show how an e�ective single-time
model can be obtained from our model when considered at equal times t1 = t2 = t. Even
though manifest Lorentz invariance is lost for a single-time model, we consider it instructive
to connect with this familiar setting.

For simplicity, let N = 2. We denote the single-time wave function by χ(z1, z2, t) :=
ψ(t, z1, t, z2). Then the single-time model is given by the domain {(z1, z2, t) ∈ R3 : z1 6=
z2}, initial data at t = 0, boundary conditions (4.50) (with t1, t2 replaced by t in all the
constructions) and the wave equation

i
∂χ

∂t
= −i

(
σ3 ⊗ 1

∂

∂z1
+ 1⊗ σ3

∂

∂z2

)
χ ≡ Ĥχ. (4.85)

Note that eq. (4.85) is obtained from the multi-time equations (4.24) by the chain rule.
We introduce new coordinates u = 1

2(z1 − z2) and v = 1
2(z1 + z2). The Hamiltonian

becomes
Ĥ = −idiag(∂v, ∂u,−∂u,−∂v). (4.86)

The boundary condition (4.50) can be reformulated using antisymmetry, i.e. χ2(u, v, t) =
−χ3(−u, v, t), with the result

lim
u↗0

χ2(u, v, t) = lim
u↘0
−e−iϕχ2(u, v, t), t ∈ R,

lim
u↗0

χ3(u, v, t) = lim
u↘0
−eiϕχ3(u, v, t), t ∈ R. (4.87)

The components χ1 and χ4 evolve freely and have to be continuous and zero at u = 0
because of antisymmetry. For ϕ = π, eq. (4.87) also reduces to the condition of continuity.
In that case, the model becomes free � in agreement with lemma 4.2.8.

The boundary conditions (4.87) can be implemented in the functional-analytic setting
by a family of self-adjoint extensions of Ĥ parametrized by ϕ [78]. Moreover, the unitary
groups generated by these self-adjoint extensions can also be obtained as the limits of
unitary groups generated by Hamiltonians Ĥn = Ĥ + Vn with

Vn(u) = diag (0, Vn(u),−Vn(u), 0) , (4.88)

where the potentials converge to the δ-function, Vn(u)→ (π−ϕ)δ(u), in the distributional
sense. In essence, this is what the physics literature shows [23,74]4. Recalling u = 1

2(z1−z2),
our model can therefore be considered a relativistic version of the 1 + 1-dimensional multi-
particle Dirac equation with a spin-dependent δ(z1 − z2)-potential for ϕ 6= π.

4Note that [23, 74] consider a single-particle Dirac equation. A comparison with these papers is never-
theless possible since, as evident from eqs. (4.86), (4.88) the single-time equation (4.85) with additional
potential (4.88) decouples and χ̃ := (χ2, χ3) satis�es a one-particle Dirac equation in u, i.e. i∂tχ̃(u, v) =
[−iσ3∂u + σ3Vn(u)] χ̃(u, v).
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4.2.7 Conclusion

In this section, we have achieved an N -particle generalization of the model in chap. 3 which,
analogously to the latter, combines the most important qualitative physical properties for a
multi-time theory: probability conservation, manifest Lorentz invariance and antisymmetry.
The existence of the conserved tensor current again ensures the compatibility with the HBD
and GRWm models.

The main results are (a) the extraction of the class (4.50) of boundary conditions which
guarantees the desired physical properties and (b) the proof of the existence of dynamics
and the explicit formula for solutions. Concerning (a), we believe that this class is the only
one compatible with the physical requirements which can be formulated for general N (see
the remark at the end of sec. 4.2.4). Concerning (b), the possibility to explicitly determine
the solution of an interacting relativistic N -particle model is remarkable and may serve as
both a pedagogical example as well as a testing ground for general claims about relativistic
quantum mechanics.

4.3 Non-existence of dynamics for con�gurations with a min-

imal space-like distance α

This section is taken from the paper [69, sec. 8] by Lukas Nickel and the present author
with only minor changes.

We return to the question of whether there exist consistent Lorentz-invariant and probability-
conserving dynamics on the domain Sα of space-like con�gurations with a minimum space-
like distance α (de�ned in eq. (3.77)). As emphasized in sec. 3.8, this is relevant for the
question of whether an extension of the idea of interaction by boundary conditions for
multi-time wave equations to higher dimensions is possible. However, for higher dimen-
sions there are, at present, no methods available to treat the existence and uniqueness
theory on spatio-temporally nontrivial domains. Therefore, we focus on the simplest case
d = 1 and N = 2 here, for which the method of multi-time characteristics is applicable,
and show that the answer to the question is negative.

First, we demonstrate that there can only be one kind of boundary conditions with the
desired properties. In a second step we then prove that the corresponding IBVP on Sα

does not possess non-trivial solutions. We make use of the following de�nitions:

S +
α := {(t1, z1, t2, z2) ∈ Sα : z1 − z2 > 0} ,

S −
α := {(t1, z1, t2, z2) ∈ Sα : z1 − z2 < 0} . (4.89)

Then: Sα = S +
α ∪S −

α .

Lemma 4.3.1 Let α > 0 and N = 2. For the multi-time Dirac equations (4.24) on

the domain Sα, there exist no other Poincaré invariant boundary conditions which lead

to probability conservation on every space-like hypersurface and which are compatible with

antisymmetry, besides the ones given by:

ψ+−(p) = e±iϕψ−+(p) ∀p ∈ ∂S ±
α (4.90)

with a �xed ϕ ∈ (−π, π].
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Proof: Let p = (t1, z1, t2, z2) ∈ ∂Sα. Because the two points (t1, z1) and (t2, z2) are space-
like separated, there exists a Lorentz frame with t1 = t2. Working in this frame, we can
either write p = (tp, z, tp, z + α) or p = (tp, z, tp, z − α). The idea is to use Stokes' theorem
in a similar way as in the proof of lemma 4.2.2 in order to obtain a condition for probability
conservation on equal-time hypersurfaces Στ1 ,Στ2 in the considered Lorentz frame. Here,
w.l.o.g. τ1 < τ2. Let

V :=
{

(t, z1, t, z2) ∈ S α : τ1 ≤ t ≤ τ2

}
. (4.91)

V plays the same role as VR in eq. (4.38) for R su�ciently large. Following the strategy of
the proof of lemma 4.2.2, one deduces:

0 =

∫
V
dωj =

∫
∂V
ωj . (4.92)

Note that in contrast to the proof of lemma 4.2.2 but similar to the proof of thm. 3.4.2, there
now exist two connected components of the domain Sα. Therefore, probability conservation
in the form ∫

(Στ1×Στ1 )∩Sα

ωj =

∫
(Στ2×Στ2 )∩Sα

ωj (4.93)

is equivalent to ∫
M(1)

ωj =

∫
M(2)

ωj , (4.94)

where M (j) = {(t, z1, t, z2) ∈ ∂Sα : max{z1, z2} = zj ∧ τ1 < t < τ2} for j = 1, 2. Observe
that from (t, z1, t, z2) ∈ M (j) it follows that zj = z3−j + α. Furthermore, antisymmetry
implies:

ωj(t, z, t, z + α) = −ωj(t, z + α, t, z). (4.95)

This can be seen from the fact that on C1, ωj = (|ψ−+|2− |ψ+−|2) dt∧ dz (see the proof of
lemma 4.2.3).
Inserting (4.95) into eq. (4.94) allows us to conclude:∫

M(1)

ωj = −
∫
M(1)

ωj = 0. (4.96)

As this relation must hold for every τ1, τ2, we must have ωj(p) = 0. In components:

|ψ+−(p)|2 − |ψ−+(p)|2 = 0 ⇔ ψ+−(p) = eiϕ(p)ψ−+(p), (4.97)

where ϕ : ∂Sα → (−π, π] could in principle be a function which is not constant. Because
p is an arbitrary boundary point, this equation must hold on the whole of ∂Sα. Moreover,
the requirement of Poincaré invariance has the consequence that ϕ(p) has to be locally
constant (see the example preceding lemma (4.2.4)). The domain Sα has the two connected
components S ±

α and by antisymmetry one obtains:

ϕ|S +
α

= − ϕ|S−α . (4.98)

Thus, indeed no other boundary conditions than (4.90) are permitted. �
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Remark:

1. A similar proof for distinguishable particles shows that in this case another possibility
appears. Similarly to sec. 4.1, the two contributions in eq. (4.94) can cancel instead of
vanishing individually. However, this canceling is not physically sensible here because
it would imply a non-vanishing current from S +

α to S −
α and vice versa. Provided the

Born rule holds, the particles could then swap place instantaneously over a distance,
which seems unphysical. We therefore take the class (4.90) to be the right one also
for distinguishable particles.

2. The boundary conditions (4.90) do indeed imply Poincaré invariance and probability
conservation. However, this will not be shown explicitly as they do not lead to the
existence of dynamics (see the following lemma).

Lemma 4.3.2 Let α > 0 and consider the IBVP given by
iγµk ∂k,µψ(t1, z1, t2, z2) = 0 for k = 1, 2,

ψ(0, z1, 0, z2) = g(z1, z2),
ψ+− = eiϕ ψ−+ on ∂Sα

(4.99)

on the domain Sα. Here, ϕ ∈ (−π, π] and g : {(z1, z2) ∈ R2 : |z1 − z2| > α} → C4 is

supposed to be a C1-function.

Then, if there exist real numbers a1 < b1 < a2 < b2 with g+−(a1, a2) 6= g+−(b1, b2) or

g−+(a1, a2) 6= g−+(b1, b2) the IBVP (4.99) does not have any C1-solution.

Proof: Assume that there exist real numbers a1 < b1 < a2 < b2 with g−+(a1, a2) 6=
g−+(b1, b2). The case of g+− is similar and will not be shown explicitly. Suppose that ψ
is a solution of (4.99). We obtain a contradiction by constructing points (t1, y1, t2, y2) and
(s1, x1, s2, x2) ∈ Sα which lie on the same multi-time characteristic with respect to the
component ψ+− (see �g. 4.5).
The construction proceeds as follows:

1. Choose a point (t1, y1, t2, y2) on the same multi-time characteristic of ψ+− as (0, a1, 0, a2)
and on the boundary of Sα, i.e.

a1 = y1 − t1,
a2 = y2 + t2,

(t1 − t2)2 = (y1 − y2)2 − α2.
(4.100)

This in particular implies:

ψ−+(t1, y1, t2, y2) = g−+(a1, a2). (4.101)

2. Consider the set of points (s1, x1, s2, x2) on the same multi-time characteristic as
(0, b1, 0, b2) and on the boundary of Sα, i.e.

b1 = x1 − s1,
b2 = x2 + s2,

(s1 − s2)2 = (x1 − x2)2 − α2.
(4.102)

This means
ψ−+(s1, x1, s2, x2) = g−+(b1, b2). (4.103)
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3. Now select a point (s1, x1, s2, x2) on the same multi-time characteristic as (t1, y1, t2, y2)
with respect to the component ψ+−, i.e.{

x1 + s1 = y1 + t1,
x2 − s2 = y2 − t2.

(4.104)

This implies that the value at (t1, y1, t2, y2) can be obtained in two di�erent ways:
�rstly by using the boundary condition at that point and secondly by going along the
characteristic surface5 to (s1, x1, s2, x2) and using the value from there. In formulas:

ψ+−(t1, y1, t2, y2)
b.c.
= eiϕ ψ−+(t1, y1, t2, y2)

(4.101)
= eiϕ g−+(a1, a2).

(4.105)

ψ+−(t1, y1, t2, y2)
char.
= ψ+−(s1, x1, s2, x2)

b.c.
= eiϕ ψ−+(s1, x1, s2, x2)

(4.103)
= eiϕ g−+(b1, b2). (4.106)

Thus:
g−+(b1, b2) = g−+(a1, a2), (4.107)

in contradiction to the assumption.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z
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Y2X1

X2

Figure 4.5: Construction in the proof for values a1 = 1, b1 = 2, a2 = 5, b2 = 6 and α =
√

6.
The points are Aj = (aj , 0), Bj = (bj , 0), and Yj = (yj , tj), Xj = (xj , sj) for j = 1, 2.
The black hyperbola consists of points with space-like distance α to Y1 and the grey one
of those with space-like distance of α to X1. The con�gurations (X1, X2) and (Y1, Y2) lie
on the same multi-time-characteristic, comprised of the Cartesian product of the two solid
black lines.

This proves the claim, provided the points we use do exist. Indeed, the combination of the
eight equations (4.100), (4.102) and (4.104) with eight unknowns leads to rather lengthy

5One may wonder how to obtain a path connecting the two points which neither leaves the characteristic
nor the domain. This is achieved as follows. Concatenate the two linear paths from (t1, y1, t2, y2) to
(t1, y1, s2, x2) and from (t1, y1, s2, x2) to (s1, x1, s2, x2), i.e. �rst move the right point from Y2 to X2 and
afterwards the left from Y1 to X1. One can see from the hyperbolas in �gure 4.5 that this path only leaves
Sα at its endpoints.
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quadratic equations the general solution of which can be found below. One explicit solution
is given in the �gure. �

Remark: The lemma shows that the most general Lorentz invariant and probability-
conserving IBVP (4.99) on Sα is over-determined. From eq. (4.107) we conclude that the
only admissible initial data are those for which g−+ is constant (and thus also g+−). Due
to normalization, this constant has to be zero. The two other components are exactly those
which are not a�ected by the boundary conditions. Moreover, it becomes clear from the
proof that the problem originates from the fact that the dimension of ∂Sα is too high which
implies (regardless of initial conditions) that certain components of the wave function have
to be constant on sets as the initial data surface. This problem cannot simply be avoided
by prescribing boundary conditions only on a part of the boundary due to the requirement
of Lorentz invariance.

Explicit formulas for the points used in the proof of lemma 4.3.2: In the following
we state the solutions of the eight equations (4.100), (4.102) and (4.104) which are used in
the proof of lemma 4.3.2.

y1 = a1 +
1

2

(
−a1 + b1 +

1

2
(a2 − 2b1 + b2)− 1

2
ξ

)
,

2t1 = −a1 + b1 +
1

2
(a2 − 2b1 + b2)− 1

2
ξ,

y2 = a1 +
1

2

(
−a1 + b1 +

1

2
(a2 − 2b1 + b2) +

1

2
ξ

)
,

t2 =
a2 − b2 + 2

(
α2 − b21 + 2b1b2 − b22 + (b2 − b1)

(
1
2(a2 − 2b1 + b2)− 1

2ξ
))

(4b1 − 4b2 + 2(a2 − 2b1 + b2)− 2ξ)
,

x1 = b1 +
1

4
(a2 − 2b1 + b2) +

1

4
ξ,

s1 =
1

4
(a2 − 2b1 + b2) +

1

4
ξ,

x2 =
b2 − α2 − b21 + 2b1b2 − b22 + (b2 − b1)

(
1
2(a2 − 2b1 + b2)− 1

2ξ
)

(2b1 − 2b2 + (a2 − 2b1 + b2) + ξ)
,

s2 =
α2 − b21 + 2b1b2 − b22 + (b2 − b1)

(
1
2(a2 − 2b1 + b2)− 1

2ξ
)

(2b1 − 2b2 + (a2 − 2b1 + b2) + ξ)
, (4.108)

where

ξ =

√
(b2 − a2)2(b1 − a1) + 4α2(b2 − a2)

b1 − a1
. (4.109)

The radicand is positive since a1 < b1 and a2 < b2.

4.4 Discussion and outlook

In this chapter we have seen that various generalizations of our model, such as di�erent
boundary conditions and theN -particle case, can be achieved with mathematical rigor. The
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possibility of the N -particle generalization may be taken to further motivate the question
of whether also a QFT model for a multi-time wave function on the set Svar of space-
like con�gurations with arbitrary particle number (see eq. (1.23)) can be formulated and
shown consistent in a similar way. Such a model could then be combined with a Bell-type
(Bohmian) quantum �eld theory [45]. A good starting point might be the case of a �nite
number of N -particle sectors.

However, a generalization of the model to the domain Sα with the desired properties
was shown to be impossible for d = 1. While not strictly excluded, this result motivates us
to believe that physically sensible dynamics do not exist on Sα for d > 1, either. On this
basis, the limit α → 0 (which is attractive because of its parallels with Wheeler-Feynman
theory) can also be excluded.

These aspects show that, while valuable to demonstrate that the most important quali-
tative physical features can be achieved for a manifestly Lorentz invariant quantum theory,
the idea of interaction by boundary conditions is too limited to describe more realistic phys-
ical systems. This motivates us to analyze a di�erent class of multi-time wave equations
with a di�erent mechanism for relativistic interactions which can be formulated for 1 + 3
space-time dimensions: the Two-Body Dirac equations.
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Chapter 5

The Two-Body Dirac equations of

constraint theory

This chapter is based on the paperOn the question of current conservation for the Two-Body
Dirac equations of constraint theory by the present author [68]. Introduction and discussion
have been modi�ed in order to �t with the other chapters of the thesis. Overlapping parts,
such as sec. 2 of [68], have been left away or merged into the general chapters on the
multi-time formalism, especially into chap. 1, sec. 1.3.

5.1 Background and motivation

In the 1980s, a formulation of classical mechanics using Dirac's formalism of constraints
[39,41,64,65,86] led, via canonical quantization, to the formulation of equations for a multi-
time wave function of two directly interacting particles in 1 + 3 space-time dimensions (see
e.g. [27, 70, 88] and references therein)1. For our purpose, the most important outcome
of this development were the Two-Body Dirac (2BD) equations [26, 27, 29, 31, 33, 75, 88].
These are simultaneous relativistic equations for a 16-component multi-time wave function
ψ(x1, x2) which relates the space-time coordinates xi of two spin-1

2 particles i = 1, 2. They
take the following form:

D1ψ(x1, x2) = 0,

D2ψ(x1, x2) = 0, (5.1)

where Di = Di,0 +Ṽi(x, P̂ ). Here, Di,0 is the operator in the free Dirac equation Di,0ψ = 0
for the i-th particle in manifestly covariant form (see eq. (1.18)) and Ṽi(x, P̂ ) are functions
of x = x1 − x2 as well as the total momentum operator P̂ .

Compared to the previously analyzed types of multi-time equations, the structure of the
2BD equations di�ers precisely by the inclusion of these momentum-dependent interaction
terms. This clearly avoids the no-go theorem 1.2.5 for potentials in Hamiltonian multi-time
wave equations (which are assumed to be momentum-independent). However, the structural
change in the equations implies that one leaves the known territory of the existence and

1Apparently, the development was largely independent (and unaware of) the work of Dirac [38], Tomon-
aga [96] and Schwinger [93].
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uniqueness theories of quantum-mechanical wave equations, including the generalizations
made in the previous chapters. This raises di�cult and important questions, such as:

1. Are the Two-Body Dirac equations mathematically consistent or is it at least plausible
that solutions exist?

2. Are they compatible with a probabilistic meaning of the wave function? More specif-
ically, does there exist a conserved tensor current jµνψ with a positive density compo-
nent as in sec. 1.3?

These questions do, of course, also concern the general validity of applications of the 2BD
equations to bound state problems, such as phenomenological calculations of mesonic spec-
tra (see e.g. [26,28,30,61]).

In view of this situation, the present chapter aims at a clari�cation of whether the 2BD
equations �t within the general conceptual framework of chaps. 1 and 2. First, we introduce
the mathematical idea underlying the 2BD equations which allows them to satisfy a certain
necessary compatibility condition (sec. 5.2.2). We then discuss its physical consequences,
in particular the necessity of the appearance of a certain covariantization of the spatial
distance in the center of momentum frame and the compatibility of this fact with the theory
of relativity. Subsequently, we introduce and focus on a concrete and important class of
the 2BD equations for particle-antiparticle pairs which was �rst suggested by Sazdjian [88]
(sec. 5.2.3). This class is related to other forms of the 2BD equations like the one used by
Crater and Van Alstine (see [31, 75]) so that our analysis is su�ciently general. We point
out open mathematical issues (sec. 5.2.4) and propose a preliminary understanding (sec.
5.2.5).

After this, we come to the main part of this chapter: the question of whether an appro-
priate tensor current exists. To approach this question, we show that the free Dirac current
is not conserved (sec. 5.3.1). Possible replacements can, however, be found. Nevertheless,
there does not seem to exist a general argument that any of them is positive de�nite. We
therefore continue the analysis by posing the question of whether further conditions can
render the currents or, equivalently, the associated scalar product positive de�nite. A re-
lated analysis of Sazdjian [90] is discussed and found incomplete. The main open points are
the questions of 1. how one should regard the further assumptions, (a) as restrictions on the
admitted space of functions (sec. 5.3.2) or (b) as restrictions on the admissible potentials
5.3.3, as well as 2. whether the two options (a), (b) or a combination thereof are physically
reasonable. These questions are answered and the consequences are drawn. Furthermore,
we brie�y point out that the class of gauge transformations for the 2BD equations is re-
stricted as compared to the free case (sec. 5.4). The chapter ends with a discussion of the
results and their implications.
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5.2 The Two-Body Dirac equations as multi-time evolution

equations

5.2.1 Notation

We use the following abbreviations:

x = x1 − x2, X = (x1 + x2)/2,

p̂k,µ = i
∂

∂xµk
, k = 1, 2,

p̂ = (p̂1 − p̂2)/2, P̂ = p̂1 + p̂2. (5.2)

5.2.2 Implications of the consistency condition for the general form of

the equations

Our starting point is the following general form of multi-time wave equations:

Diψ(x1, x2) = 0, i = 1, 2. (5.3)

The crucial point is that in contrast to the form of the Hamiltonian multi-time system
(eq. (1.47)), which led to the no-go theorem 1.2.5, we now allow the operators Di to be
di�erential operators of any order, including in�nity.

Recall from sec. 1.2.1.1 that certain compatibility conditions have to be satis�ed in order
for the wave equations (5.3) to have solutions. However, because the Di are not necessarily
�rst-order di�erential operators, eqs. (5.3) cannot be cast into the form (1.47). Therefore,
the consistency condition (1.55) is not appropriate. For general operators Di, one cannot
expect to �nd a simple replacement of eq. (1.55) which is also both necessary and su�cient.
However, a necessary condition reads

[D1, D2] = λ1D1 + λ2D2, (5.4)

where at least formally the λi can be operators.
To see that (5.4) is a necessary condition, consider a solution ψ of (5.3). Assume that one

cannot write [D1, D2] in the form (5.4). In general, we then have [D1, D2] = λ1D1+λ2D2+R
where Rψ 6= 0. Thus: [D1, D2]ψ = Rψ 6= 0 in contradiction to the fact that [D1, D2]ψ = 0
trivially holds for any solution of (5.3) on which the action of D1D2 and D2D1 is well-
de�ned.

Remark: Note that in the case that the operators Di are of �rst order, condition (5.4)
bears some similarity with the consistency condition of Frobenius' theorem from di�erential
topology. However, it was discussed in [80, sec. 2.4] that the conditions for multi-time wave
functions are, even for �rst-order operators, di�erent from the statement of Frobenius'
theorem, one of the reasons being the number of components of ψ.

Furthermore, note that (5.4) applied to the �rst-order multi-time equations (1.47) seems
to lead to a weaker condition than the previous condition (1.55). For (5.4) it is su�cient for

the right hand side to be a linear combination of the operators
(
i ∂
∂tk
−Hk

)
instead of having

to vanish. At �rst glance, the result in [80], according to which (1.55) is a necessary and
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su�cient condition, thus seems to deem (5.4) too weak a condition. However, [80] is tied to
the case that the operators Hk are operators on Hilbert space (or more generally operator-
valued functions of the time variables). As the operators Di contain time derivatives and
therefore cannot be regarded as operators on Hilbert space, it does not follow from [80]
that the right hand side of eq. (5.4) has to vanish. Still, the question of a necessary and

su�cient condition for the system of equations (5.3) remains open.

The important question now is: which operators Di satisfy condition (5.4)? In order to
reduce this question to a tractable form, we assume with [88] that operators Di take the
following form:

Di = Di,0 +D3−i,0V̂ , i = 1, 2, (5.5)

where Di,0 are the operators of the corresponding free equations and V̂ is an operator the
structure of which is yet to be determined. Generally, it may depend on x, p̂ and P̂ as well
as the gamma matrices γµ1 , γ

ν
2 . A dependence on X is excluded as one aims at a Poincaré

invariant theory. Note that (5.5) introduces a relation between the interaction terms in the
two wave equations (5.3). We remark that the form (5.5) may imply that the wave function
of eq. (5.3) cannot be directly identi�ed with the wave function of, say, the Breit equation,
or the class of 2BD equations of Crater and Van Alstine. A wave function transformation
may be necessary to relate the two types of wave functions (see [31,75]). Notwithstanding,
we analyze the theory resulting from (5.5) on its own terms.

Using the form (5.5), we obtain:

[D1, D2] = D1,0D2,0 +D2
1,0V̂ +D2,0V̂ D2,0 +D2,0V̂ D1,0V̂

−D2,0D1,0 −D2
2,0V̂ −D1,0V̂ D1,0 −D1,0V̂ D2,0V̂ . (5.6)

As the Di,0 are supposed to correspond to the operators in a free wave equation (acting
only on the coordinates and spin indices of the i-th particle), we have [D1,0, D2,0] = 0 and
the �rst summands in the lines of eq. (5.6) cancel.

Aiming to bring (5.6) into the form of the right hand side of eq. (5.4), we calculate the
expression

−[D1,0, V̂ ]D1 + [D2,0, V ]D2 = −D1,0V̂ D1,0 −D1,0V̂ D2,0V̂ + V̂ D2
1,0

+D2,0V̂ D2,0 +D2,0V̂ D1,0V̂ − V̂ D2
2,0. (5.7)

Comparing eqs. (5.6) and (5.7), condition (5.4) is satis�ed if

[D2
1,0 −D2

2,0, V̂ ] = 0. (5.8)

Specializing to the Dirac case, we evaluate (5.8) for

Di,0 = γi · p̂i −mi. (5.9)

Then: D2
i,0 = p̂2

i +m2
i and eq. (5.8) reduces to:

[p̂2
1 − p̂2

2, V̂ ] = 0. (5.10)

Rewriting this equation using total and relative momentum operators yields:

[P̂ · p̂, V̂ ] = 0. (5.11)
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Now, because of Poincaré invariance, V̂ must not depend on X. Thus, we arrive at the
condition

P̂µ
∂V̂

∂xµ
!

= 0. (5.12)

To further evaluate eq. (5.12), note that the only Poincaré-invariant quantities involving x
are functions of x · q where q is a quantity transforming as a 4-vector (e.g. x, P̂ , p̂, γ1, γ2).

Thus, ∂V̂
∂xµ ∝ qµ and (5.12) requires q ⊥ P̂ in the Minkowski sense. This can in general only

be achieved if qµ has the form

qµ = π̂νµq̃ν , (5.13)

where π̂νµ :=
(

1− P̂µP̂ ν

P̂ ·P̂

)
is (an operator version of) the projection operator on the subspace

�orthogonal to P̂ � and q̃ again transforms as a vector.
The most important consequence of this can be seen by considering the case that q̃ = x.
Then eq. (5.13) implies that the only dependence of V̂ on x may be via

x̂µ⊥ := π̂µνx
ν = xµ − P̂ · x P̂µ

P̂ · P̂
. (5.14)

To see this in detail, note that x · q = x · x̂⊥ = x · (π̂x) = x · (π̂2x) = x̂⊥ · x̂⊥. We emphasize
that x̂⊥ involves the total momentum operator and therefore is an operator itself.

On the meaning of x̂⊥: In classical mechanics, the analog x⊥ of the operator x̂⊥, i.e.
where P̂ in eq. (5.2) is replaced by a time-like 4-vector P , has the following meaning.
Consider the relative spatial coordinate x = x1 − x2 in the center of momentum (c.m.)
frame, i.e. the frame where the total momentum 4-vector takes the form (P 0, 0, 0, 0). Then
x⊥ = (0,x). In this way, one can see that x⊥ is the covariantization of (0,x).

Note that generalizing a non-relativistic law by the replacement (0,x) → x⊥ would
arouse suspicion. If P were the total momentum of the total system, it would be inac-
ceptable because in this context total quantities do not have any physical meaning but are
only used to de�ne coordinate systems. However, the use of x⊥ is restricted to autonomous
two-particle systems which are to be thought of as subsystems of a larger system. Then the
total momentum P is meaningful. Yet one might object against the use of any preferred
frame, even if it is dynamically preferred, such as the c.m. frame. However, this criticism is
alleviated by the fact that the replacement (0,x)→ x⊥ has never been used in the deriva-
tion of the necessity of x̂⊥. Rather, the crucial point is the form (5.5) of the operators Di �
which is far from directly assuming a covariantization of a non-relativistic law of motion2.

Further remarks:

1. One can also motivate the necessity of x̂⊥ very concisely in the context of two-body
Klein-Gordon equations of the form (p̂2

i −m2
i − V̂ )ψ = 0, i = 1, 2 where V̂ is a scalar

and Poincaré invariant potential (operator) [29, sec. II]. However, this derivation is
of limited signi�cance for the approach to the 2BD equations taken here because the

2A related subtlety of the notion of Lorentz invariance was critically discussed by Bell in [13].
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square of the operators (5.5) does not in general yield p̂2
i − m2

i − V̂ with a scalar
potential V̂ 3.

2. The necessity of x̂⊥ does not follow from the connection of the 2BD equations with
the Bethe-Salpeter equation (see [89]). Rather, the insight that x̂⊥ is necessary to
formulate di�erential equations of the type (5.3) is itself used to make the so-called
�relativistic instantaneous approximation� which creates a manifest x̂⊥-dependence
of the potential terms.

3. The occurrence of x̂⊥ constitutes a non-local feature of the 2BD equations, in the sense
that V̂ involves non-trivial functions of di�erential operators. It therefore cannot
be represented as a simple multiplication or di�erential operator. We shall see in
sec. 5.3 that this kind of �non-locality� (i.e. the momentum-dependence of V̂ ) causes
di�culties with the current conservation.

5.2.3 Two-Body Dirac equations for fermion-antifermion systems

For the rest of the chapter, we now specialize to an important class of 2BD equations which
is almost identical to one discussed above: the case of spin-1

2 particle-antiparticle pairs.
This case is particularly relevant as one aims at a theoretical description of mesons and
their spectra [26,28,30,61]. Equations for fermions with the same charge are, on the other
hand, not believed to describe bound states (as are the equations below) and therefore not
to lead to particularly interesting subsystem dynamics.

The class of 2BD equations for particle-antiparticle pairs (�rst introduced by Sazdjian
in [88, sec. VI]) is given by

D1ψ(x1, x2) ≡
[
γ1 · p̂1 −m1 − (−γ2 · p̂2 +m2)V̂

]
ψ(x1, x2) = 0,

D2ψ(x1, x2) ≡
[
γ2 · p̂2 +m2 + (γ1 · p̂1 +m1)V̂

]
ψ(x1, x2) = 0. (5.15)

Here, ψ is a 16-component wave function. According to standard sign conventions, particle
2 is the anti-particle.

The form of the equations is motivated similarly as the approach via eqs. (5.3) and
(5.5), the only di�erence being that one has to account for the symmetries of the fermion-
antifermion system. More precisely, the �rst of the equations (5.15) has to be obtained
from the second via charge conjugation and mass exchange [88, p. 3411]. This changes
some signs as compared to the form of the operators Di in (5.5).

V̂ is an operator which may depend on P̂ , p̂, x̂⊥ and the γ-matrices in a Poincaré
invariant manner. The symmetry of the fermion-antifermion system demands [88, p. 3411]:

V̂ (1, 2; γ1, γ2) = V̂ (2, 1;−γ2,−γ1), (5.16)

where �1↔ 2� indicates the exchange of particle labels in quantities such as p̂i, xi (but not
the γ-matrices). We remark that here and in the following the notation V̂ (...) is only meant
to emphasize possible dependencies on certain variables. V̂ is always the same operator.

3Note that starting from a di�erent point, Crater and Van Alstine were in fact able to derive 2BD
equations with scalar interactions as �square roots� of corresponding scalar interacting two-body Klein-
Gordon equations [27].
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Then the 2BD equations (5.15) also satisfy the compatibility condition (5.4) because
the following relation holds [88, p. 3412]:

[D1, D2] = −[γ1 · p̂1, V̂ ]D1 + [γ2 · p̂2, V̂ ]D2. (5.17)

Special choices of V̂ may yield [D1, D2] = 0 [88, sec. VII].

Single-time irreducibility: Recall the notion of a single-time reducible theory from sec.
1.2.3. If the 2BD equations (5.15) were single-time reducible, we would have to obtain a
single-time equation by considering i∂tϕ(x1,x2; t) for ϕ(x1,x2; t) = ψ(t1,x1, t2,x2, t)|t1=t2=t.
However, contrary to the Hamiltonian multi-time equations (1.16), such a reduction is not
possible here as one cannot solve the 2BD equations (5.15) for i∂t1ψ and i∂t2ψ. Therefore,
the 2BD equations are single-time irreducible.

5.2.4 Basic mathematical questions

Due to the dependence of V̂ on P̂ , the 2BD equations (5.15) are of in�nite order both in
space and time coordinates. This immediately raises di�cult mathematical questions which
are generally not addressed in the literature (compare e.g. [27,88]). Besides the question of
the compatibility of the 2BD equations which was already discussed in sec. 5.2.2, one may
ask:

1. What are appropriate initial data?

2. What is an adequate space of solutions?

Concerning 1., note that in contrast to a �rst-order multi-time system (1.47), one does not
expect initial data to consist only of prescribing the wave function for con�gurations on
a space-like hypersurface as in (1.49). For wave equations of n-th order one would rather
expect that also (n− 1)-th time derivatives have to be prescribed. If this analogy extended
to in�nite order, this understanding of time evolution for the 2BD equations could not
make sense since prescribing all derivatives of an (analytic) function on a Cauchy surface
is equivalent to writing down the solution on the whole of R8 (for two particles). One may,
however, hope that the fact that the in�nite order only arises from the dependence of V̂ on
the total momentum operator may help to identify sensible initial data (see section 5.2.5).

With respect to point 2, note that the possible spaces of initial data are usually a good
starting point for de�ning Hilbert spaces on which at least the non-relativistic existence and
uniqueness theory is usually based. Due to the occurrence of powers of P̂ to in�nite order,
and therefore of time derivatives, it is clear that this setting cannot be used without major
changes. Moreover, the considerations in section 1.3 show that the natural Hilbert spaces
depend, via the scalar product (1.77) (and corresponding statements about self-adjointness
etc.), on the form of the conserved tensor current of the theory (1.58). The question of
conserved currents for the 2BD theory will be addressed in section 5.3.

5.2.5 A preliminary mathematical understanding

In this subsection, we propose a way how one can understand the 2BD equations in a
preliminary way for superpositions of eigenfunctions of the total momentum operator.
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Assume that the only momentum dependence of V̂ is via P̂ (explicitly via P 2 or im-
plicitly via x̂⊥). We write: V̂ = V̂ (x̂⊥, P̂ ). Let ψP be an eigenfunction of P̂ , i.e. a function
of the form4

ψP (x1, x2) = ψ̃(x)e−iP ·X . (5.18)

Then
V̂ (x̂⊥, P̂ )ψP ≡ V (x⊥, P )ψP , (5.19)

where V (x⊥, P ) is the matrix-valued function which is obtained by replacing P̂ in x̂⊥ with
its eigenvalue P . In this way, we can regard V̂ as a multiplication operator.

For ψP , eqs. (5.15) constitute a �rst order system of di�erential equations, analogous
to (1.47). The analogy with (1.49) suggests that adequate initial data are of the form of
prescribing ψP (x1, x2) on a space-like hypersurface, e.g. for x0

1 = x0
2 = 0:

ψP (0,x1, 0,x2)
!

= ψ̃0(x)eiP·X, x ∈ R3. (5.20)

The role of the two eqs. (5.15) then is to (a) time-evolve ψ̃ in x0 and (b) determine P 0.
More generally, one should consider superpositions of eigenfunctions of P̂ . These func-

tions are necessary to describe localized wave packets5 on the con�guration space of two
particles. Let Z denote further quantities, e.g. the relative momentum eigenvalues, which
classify a suitable space of �relative coordinate wave functions� ψ̃(x). Then:

ψ(x1, x2) =

∫
dZ

∫
d3P c(P, Z)ψ̃Z(x)e−iP ·X , (5.21)

where it is understood that each P 0 is determined by eqs. (5.15) by demanding that
ψ̃Z(x)e−iP ·X be a solution for every Z,P.

The further strategy in this chapter is the following: Setting aside the question of the
solution theory6, we assume that solutions of the form (5.21) exist, at least for superpo-
sitions of �nitely many eigenvalues of P̂ . This permits us to analyze the central physical
question of whether there exist adequate conserved currents for the 2BD equations.

5.3 The question of current conservation

Recall the central place of the tensor current jµν [ψ1, ψ2] and especially jµν [ψ,ψ] in the
general structure of a multi-time theory (sec. 1.3). The importance of j has also been
recognized by various authors in the context of the Two-Body Dirac equations, in particular
for the question of how to construct scalar products and corresponding Hilbert spaces,
see [70,84] for the spin-less Klein-Gordon case and [88,90] for the Dirac case with spin.

4Note that an HBD law (2.1) then does not imply that the Bohmian center of mass coordinate X(s) =
(X1(s) +X2(s))/2 (for m1 = m2) moves on a straight line.

5Note that the issue of localization is not as problematic for the 2BD equations as e.g. in relativistic
quantum �eld theory where the Hamiltonian is assumed to be bounded from below. The reason is that, as
with the single-particle Dirac equation, for the 2BD equations negative eigenvalues of the energy-momentum
operators are possible.

6A good starting point for the question of existence and uniqueness might be to �rst specialize on the
case of a total momentum eigenfunction (5.18). One may then hope that via (5.21) a suitable space of
solutions can be constructed.
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Here, we �rst review previous results for the 2BD equations, adding details and clearly
stating critical assumptions (sec. 5.3.1). It turns out that the free Dirac current is not
conserved. While possible replacements can be found, they are neither unique nor simple.
We follow Sazdjian [90] to pick a particular one in order to further analyze the resulting
theory. The expression for the scalar product is in general not positive de�nite and a
comprehensive analysis of the associated problems has apparently not been performed yet.
Therefore, we discuss whether the �scalar product� can be rendered positive de�nite by (a)
restrictions on the function space (sec. 5.3.2) or (b) restrictions on the potential terms (sec.
5.3.3).

5.3.1 Previous results

In the following we assume that V̂ satis�es the following hermiticity condition:

V †(x⊥, P ) = γ0
1γ

0
2V (x⊥, P )γ0

1γ
0
2 , (5.22)

where V (without the hat) was introduced in eq. (5.19).

Claim 1: Let ψP , ψP ′ be eigenfunctions of P̂ . Then the free Dirac tensor current j
µν
free[ψP , ψP ′ ] =

ψPγ
µ
1 γ

ν
2ψP ′ is conserved if and only if no interaction terms −(−γ2 · p̂2 + m2)V̂ and (γ1 ·

p̂1 +m1)V̂ , respectively, are present in the 2BD equations.

Proof: Consider

i∂1,µ

(
ψPγ

µ
1 γ

ν
2ψP ′

)
= −(γµ1 p̂1,µψP )†γ0

1γ
0
2γ

ν
2ψP ′ + ψPγ

ν
2 (γµ1 p̂1,µψP ′). (5.23)

Denote7 V̂ ψP by VPψP � which still contains a x⊥-dependence. The �rst of the 2BD
equations (5.15) yields:

γ1 · p̂1 ψP ′ = [m1 + (−γ2 · p̂2 +m2)VP ′ ]ψP ′ . (5.24)

Using the relations (5.22) as well as (γµk )† = γ0
kγ

µ
k γ

0
k it follows that

(γ1 · p̂1 ψP )† = ψP

[
VP (m2 + γ2·

←
p̂2) +m1

]
γ0

1γ
0
2 , (5.25)

where the arrow indicates the direction in which the derivative acts. Combining eqs. (5.23),
(5.24) and (5.25), we obtain:

i∂1,µ(ψPγ
µ
1 γ

ν
2ψP ′) = ψP

[
−VP (m2 + γ2·

←
p̂2)γν2 + γν2 (−γ2 · p̂2 +m2)VP ′

]
ψP ′ . (5.26)

We note the following points:

1. The term with m1 has dropped out.

2. The term with m2, i.e. −VPm2γ
ν
2 + γν2m2VP ′ yields zero only in the case that V does

not contain γ2-matrices and for P = P ′.

7This replaces the previous notation V (x⊥, P ) to �t in the equations.
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3. Even in the latter case, the remaining term −VPγ2·
←
p̂2 γ

ν
2 − γν2γ2 · p̂2VP ′ does not

vanish because [γν2 , γ2 · p̂2] 6= 0.

4. If P 6= P ′ and V is not constant, not even special choices for V make the rhs. of
(5.26) vanish. The appearance of both VP and VP ′ is unavoidable because the basic
mechanism which allows the 2BD equations to circumvent the no-go theorems is the
use of these momentum-dependent terms.

5. The only case in which the free Dirac current is conserved is that the 2BD equations
do not contain the interaction terms from the very beginning.

An analogous reasoning for −i∂2,ν

(
ψPγ

µ
1 γ

ν
2ψP ′

)
establishes the claim. �

Claim 2 (see [90, p. 1625]): There exist currents jµνint[ψP , ψP ′ ] which are conserved by the

2BD equations.

Proof: One looks for a term jµνadd[ψP , ψP ′ ] such that

jµνint[ψP , ψP ′ ] := jµνfree[ψP , ψP ′ ] + jµνadd[ψP , ψP ′ ] (5.27)

is conserved. We leave away the square brackets [ψP , ψP ′ ] in the following for notational
ease but emphasize that in order to be able to treat V as a matrix this understanding is
crucial. De�ning

F ν1 := ∂1,µj
µν
free, Fµ2 := ∂2,νj

µν
free, F := ∂1,µ∂2,νj

µν
free, (5.28)

we see that jµνadd has to be a solution of the equations

∂1,µj
µν
add = −F ν1 , ∂2,νj

µν
add = −Fµ2 . (5.29)

Such a solution is easy to �nd [90, eq. (3.19)]. Let G(x − x′) be a Green's function of the
four-dimensional wave equation, i.e.

�xG(x− x′) = δ(4)(x− x′). (5.30)

Then for any pair of Green's functions Gi, i = 1, 2, a solution of (5.29) is given by:

jµνadd(x1, x2) : = −∂µ1
∫
d4x′1G1(x1 − x′1)F ν1 (x′1, x2)− ∂ν2

∫
d4x′2G2(x2 − x′2)Fµ2 (x1, x

′
2)

+ ∂µ1 ∂
ν
2

∫
d4x′1d

4x′2G1(x1 − x′1)G2(x2 − x′2)F (x′1, x
′
2). � (5.31)

Remark:

1. Note that the approach of �nding divergence-free tensor currents via eq. (5.27) is
motivated by relativistic invariance. It is quite di�erent from the situation for a
non-local potential in the Schrödinger equation (see [66]). There, the free spatial
current and density do not satisfy a continuity equation, either. In oder to obtain
a continuity equation, one modi�es only the spatial current, retaining the density
component |ψ|2. However, in the relativistic case, an analogous approach is not
possible because modi�cations of only the spatial components of the tensor current
would destroy the transformation properties of the latter.



5.3 The question of current conservation 121

2. From eq. (5.31) it is obvious that jµνadd is not de�ned uniquely. One has to make a
choice of the Green's functions Gi, i = 1, 2. Sazdjian's choice is8 Gi ≡ GA, i = 1, 2
where GA is the advanced Green's function, with the reason that this would be �the
only solution of (5.29) which vanishes when the interaction is switched o�� [90, p.
1625].

3. The construction of jint is very general (one might even say too general) since it would
have worked for any F ν1 , F

µ
2 de�ned by eq. (5.28). So, what is the signi�cance of the

existence of conserved jint's? A good answer would be to point out, for example, a
unique current with the required properties such as a positive component (see sec.
1.3). However, a general argument why any of the possible de�nitions jint should
yield a positive de�nite current simply does not exist.

4. Nevertheless, one may ask the question of whether given further assumptions the
currents are positive de�nite. Further assumptions might even be plausible, for ex-
ample if they concern special potentials V̂ . In the end, it is only important that the
currents are positive de�nite for realistic choices of V̂ . An approach involving further
assumptions was chosen by Sazdjian [90] which we shall critically review next.

Sazdjian's paper does not directly address the question of whether the currents jint are
positive de�nite but rather with the one of whether the associated scalar product (see eqs.
(1.77), (1.79)) is. However, these two questions are equivalent as long as the wave functions
admitted in the construction of the tensor currents (and in the scalar product) are not
subject to restrictions which forbid localized wave packets.

Sazdjian's results for the scalar product derived from jµνint according to (1.77) are as
follows. The above-mentioned choice of Green's functions leads to the following expression9

for a scalar product, for two eigenfunctions10 ψP , ψP ′ of P̂ and the special case of Σ = Σt,
i.e. an equal-time hypersurface with normal covector �eld n ≡ (1, 0, 0, 0) [90, eq. (5.11)]:

〈ψP , ψP ′〉Σt :=

∫
Σt×Σt

dσ(x1)dσ(x2) jµνint[ψP , ψP ′ ](x1, x2)nµ(x1)nν(x2)

= lim
ε→0

∫
d3X d3x ψP

[
γ0

1γ
0
2 − V ∗P ′γ0

1γ
0
2VP

+ (P 0′ + P 0)
VP ′+iεn − VP−iεn
P 0′ − P 0 + 2iε

]
ψP ′ , (5.32)

where (·)∗ denotes complex conjugation (without transposition). The limit ε → 0+ comes
from the de�nition of GA(x) by its Fourier transform

GA(x) = lim
ε→0+

∫
d4k

(2π)4

e−ik·x

k2 − 2ik0ε
. (5.33)

8Sazdjian only uses eq. (5.31) with G1 ≡ G2.
9We have adopted our notation conventions. Besides, the range of integration is corrected according to

the remark in sec. 1.3 below eq. (1.79) so that the integration over x1 and x2 is over the same equal-time
hypersurface instead of two di�erent ones.

10For more general wave functions such as in (5.21), the de�nition of 〈·, ·〉Σt can be extended by linearity.
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Let ψP = e−iP ·Xφ1(x), ψP ′ = e−iP
′·Xφ2(x). Then for P 2 = (P ′)2, Sazdjian obtains from

eq. (5.32) [90, eq. (5.12)]:

〈ψP , ψP ′〉Σt = (2π)3δ(3)(p− p′)

∫
d3xφ1(x)

[
γ0

1γ
0
2 − VPγ0

1γ
0
2VP + 4(P 0)2 ∂VP

∂(P 2)

]
φ2(x),

(5.34)
where x = (x0 = 0,x). We note that because of the delta function one can use P = P ′

everywhere inside the integral.

Remark: Ignoring the delta function, for P = P ′, eq. (5.34) should yield the square of a
norm. It therefore has to be positive. However, in general (i.e. independently of VP ) only
the �rst term in the square brackets of eq. (5.34), which corresponds to the usual expression∫
ψ†ψ =

∫
ψγ0

1γ
0
2ψ in the Dirac case, yields a positive contribution. Thus, as recognized

by Sazdjian [90, p. 1631]11:

�If the potential V is explicitly independent of P 2 in the c.m. frame, the expres-
sion of the norm (5.34) shows that its kernel still depends on V . This implies
that V must satisfy some inequality conditions to guarantee the positivity of
the norm. This question was examined in more detail in Ref. [88, sec. VII A].�

In Ref. [88, sec. VII A], it is suggested to make a wave function transformation [88, eq. (7.1)]
which would map the norm given by eq. (5.34) to the free

∫
|ψ|2-norm. However, this is

only possible for operators V̂ for which VP does not depend on P 2 in the c.m. frame [88, p.
3423] and if in addition the following condition [88, eq. (7.6)] is satis�ed:

1
4 Tr (γ1 · P̂√

P̂ 2
γ2 · P̂√

P̂ 2
V̂ ) < 1. (5.35)

Presumably, the trace is to be taken over the spin components of V̂ . The question of
whether the independence of VP of P 2 in the c.m. frame is a reasonable assumption is
not clari�ed in [88]. The more recent article [75, eqs. (A4), (A9)] even seems to show the
contrary.

However, this confusing point set aside, a much more basic question is left open. Because
V = VP and because P is a property of ψP , i.e. of the wave function, it is unclear how one
should regard conditions that lead to the positivity of (5.34):

1. as conditions on the space of admissible wave functions, or

2. as conditions on the operators V̂ , given their domain?

These questions are discussed in none of the references [75, 88,90] for the 2BD case.

In the following subsections we analyze the consequences of these two possibilities (see sec.
5.3.2 for possibility 1 and sec. 5.3.3 for possibility 2).

11For clarity, notation and references in the quote have been adapted to our conventions, without changes
in content.
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5.3.2 Can the positivity of norm and currents be guaranteed by restric-

tion of the function space?

Recall from section 1.3.4 that the hope is to be able to regard the 2BD equations as de�ning
an evolution map12 for any pair of space-like hypersurfaces Σ,Σ′, i.e.

UΣ→Σ′ : H(2)
Σ → H(2)

Σ′ , ψΣ 7→ ψΣ′ (5.36)

with ψΣ(q) = ψΣ′(q) if q ∈ Σ ∩ Σ′. UΣ→Σ′ should be unitary in the scalar product de�ned
by jint according to eq. (1.77).

However, as we saw above, this construction does not yield a scalar product on H(2)
Σ

because it is in general not positive de�nite. Thus, we de�ne

Hpos
Σ := {φ ∈ H(2)

Σ : 〈φ, φ〉Σ <∞∧ 〈φ, φ〉Σ > 0} ∪ {0} (5.37)

as the subspaces of H(2)
Σ for which 〈·, ·〉Σ is actually positive de�nite. The question is: does

Hpos
Σ de�ne an acceptable space of functions?

To decide on this question, consider the following points:

1. It is not clear anymore that Hpos
Σ contains all physically relevant functions. One

can see this e.g. from (5.21) and (5.34). Any reasonable quantum mechanical matter
theory should be able to describe localized wave packets. To construct these wave
packets, one in general requires all Fourier modes ψP as in (5.21). However, for
a general V̂ , the requirement of positivity of (5.34) implies conditions on the P 's
such that some are not admitted in the construction of wave packets. Furthermore,
these conditions are mathematically quite involved and do not serve a clear physical
purpose.

2. The Hpos
Σ do not, in general, de�ne Hilbert spaces. Completeness may be violated.

Even worse, the Hpos
Σ may not even be vector spaces. Consequently, the mathematical

structures, on which the usual quantum formalism is built up, break down, including
the self-adjoint operator observables as well as the standard approach to de�ne the
time evolution. Of course, one may consider the option of further reducing the ad-
missible functions by replacing Hpos with some Hilbert space H∗ contained in it. In
fact, a similar route was suggested by Sazdjian [90, p. 1624]. This, however, further
strengthens the criticism of point 1 and still leaves open the question of whether the
usual mathematical structures can be de�ned.

A simple analogy: To appreciate the problems that accompany the restricted function
spaces Hpos

Σ and H∗, consider the following example. Let the Hilbert space of our theory
be given by C2 with �scalar product�

〈v, w〉A := v†Aw where A =

(
1 0
0 −1

)
. (5.38)

12Note that this question is independent of the fact that the operators Di appearing in the 2BD equations
are not operators on Hilbert space.
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Of course, 〈·, ·〉A does not de�ne a scalar product on C2. So in analogy to (5.37) we de�ne:

Hpos := {v ∈ C2 : v†Av > 0} ∪ {0} (5.39)

as the subset on which 〈·, ·〉A actually is a scalar product. We note that e.g. (0, 1), which
may be a physically relevant vector to represent a spin state, is not contained in Hpos (cf.
point 1).

Moreover, Hpos is not a vector space, because for v1 = (1, 1
2) ∈ Hpos and v2 = (−1, 1

2) ∈
Hpos, the sum v1+v2 = (0, 1) is not an element ofHpos. Furthermore, it is also not complete,
as the following example illustrates. Consider the sequence given by vn = (1, 1− 1/n). We
have: 〈vn, vn〉A = 1 − (1 − 1/n)2 > 0 and thus vn ∈ Hpos. However, the limit v = (1, 1)
has norm zero, i.e. v 6∈ Hpos. These problems are analogous to point 2 above. Note that
they can be overcome by de�ning even smaller Hilbert spaces H∗ as the span of (1, 0). (H∗
is a complete vector space for which 〈·, ·〉A de�nes a scalar product.) However, even more
physically interesting vectors get lost this way.

To extend the analogy, suppose that the �wave equation� of our theory is given by

i
d

dt
u = Bu, (5.40)

where

B =

(
0 i
−i 0

)
. (5.41)

B is self-adjoint with respect to the canonical scalar product on C2 but not with respect to
〈·, ·〉A. Thus, it de�nes a time evolution on C2 but not necessarily on Hpos. Let us analyze
the consequences. Given u(t = 0) ≡ u0, we have

u(t) = exp(−iBt)u0 = (12 cos t − iB sin t)u0. (5.42)

Let u0 = (1, 0) ∈ Hpos∩H∗. Then u(t) = (cos t,− sin t), which is in general not an element
of Hpos (neither of H∗).

One may try admitting only initial data u0 = (a, b) ∈ Hpos for which also u(t) ∈ Hpos ∀t.
Then |a| > |b|. We have u(t) = (a cos t+ b sin t,−a sin t+ b cos t) and therefore

u†(t)Au(t) = (|a|2 − |b|2)(cos2 t− sin2 t) + 4 Re (a∗b) cos t sin t. (5.43)

We ask: do a, b ∈ C with |a| > |b| exist which make this expression positive for every
t? For an answer, consider (5.43) for (i) t = π/4 and (ii) t = 3π/4. In the case (i), we
have sin t = cos t = 1/

√
2 and obtain as a condition that Re (a∗b) > 0. In the case (ii),

sin t = − cos t = 1/
√

2 and we obtain the condition Re (a∗b) < 0, in contradiction to (i).
We conclude that the restriction to Hpos is not in any way consistent with the given time
evolution (5.40) (neither is the restriction to H∗). This illustrates the problem of de�ning
the time evolution of point 2 above.

Comparison with Klein-Gordon theory: If the above analogy extends to the case of
the 2BD equations, the logical consequence is to reject restrictions on the function space.
However, in view of previous claims about the consistency of a Hilbert space picture for
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interacting two-body Klein-Gordon (KG) equations in [70,84,90], one may wonder if points
1 and 2 are actually as severe as they seem to be.

These sources (especially [90, sec. III]) show the following. In the KG case, one can
identify potentials such that the scalar product given by the conserved tensor currents of
the theory according to (1.77) is positive de�nite on a subspace H∗ of the Hilbert space
HΣ of the theory. Then H∗ is again a Hilbert space, corresponding to one of four possible
choices of the sign of eigenvalues of the operators p1 · P̂ /P̂ 2 and p2 · P̂ /P̂ 2. One may thus
hope that the problems of point 2 do not appear.

However, this approach disregards problem 1: the subspace H∗ does not contain all
physically relevant functions. One cannot, for example, represent localized wave packets by
wave functions in H∗. To do so would require basis vectors from all of HΣ. Furthermore,
problems with the self-adjointness of operator observables may occur (see also [84, p. 66]).
A completely analogous situation is encountered in free one-particle KG theory [92, chap.
3]. In this case, one draws the logical consequence that the KG equation theory cannot be
considered a self-contained one-particle theory. By the same arguments, one also has to
reject the approach via H∗ towards interacting two-body KG theory.

Conclusion: One may wonder whether or not the situation for the KG theory has any
signi�cance for the 2BD theory. As remarked after the discussion of the meaning of x̂⊥
in sec. 5.2.2, the square of the 2BD equations does in general not yield interacting scalar
KG equations. Moreover, recalling the quote at the end of section 5.3.1, the implications
of the two-body KG theory on the 2BD theory are limited. For the 2BD case, the �scalar
product� is not positive de�nite even if the norm is independent of P 2 in the c.m. frame
(see also [88, p. 1627-28, 1631]). Furthermore, we note that the approach in the KG case
involves both restrictions on the potential operator V̂ as well as restrictions on the function
space. The restrictions on the function space turned out to be inacceptable whereas there
is no reason to reject restrictions on the potentials as long as they include the ones used
in applications. In view of this situation, together with points 1-2 (as illustrated by the
analogy), we conclude that restrictions on the function space are also inacceptable for the
2BD theory13. The question of whether, on the other hand, there exist sensible restrictions
on the potentials such that the scalar product is positive de�nite will be the subject of the
next section.

5.3.3 Do special operators V̂ exist for which scalar product and currents

are always positive de�nite?

Consider eq. (5.34) �in the c.m. frame�, i.e. for P = (P 0, 0, 0, 0). Then x̂⊥ acts as the
multiplication operator with the spatial part x of the relative coordinate. Demanding that
〈ψP , ψP 〉Σt be positive for all eigenfunctions ψP of P̂ , we obtain the following condition for
VP :

φ(x)

[
γ0

1γ
0
2 − VPγ0

1γ
0
2VP + 4(P 0)2 ∂VP

∂(P 2)

]
φ(x) ≥ 0. (5.44)

This condition should be satis�ed for a reasonably general class of functions φ, e.g. for all
φ ∈ L2(R3)⊗ C16. We note the following points:

13One may even hope that the situation is better in the 2BD theory, in the sense that the free Dirac
current is positive de�nite, as opposed to the free KG current.
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1. VP , which depends on P̂ via the quantities x⊥ = (0,x) and P 2 = (P 0)2 in the c.m.
frame, has to be bounded14 with respect to (a) P 2 and (b) x2

⊥ = −x2. (a) is easy to
achieve, e.g. in the case that V does not depend on (P 0)2 in the c.m. frame. (b) is a
real restriction. We shall see the consequences below.

2. Do solutions VP of eq. (5.44) exist? To answer this question, consider the class of
scalar functions VP ≡ f(−x2

⊥). In the c.m. frame they take the form f(x2) which
is independent of (P 0)2. Thus, the term 4(P 0)2 ∂VP

∂(P 2)
in eq. (5.44) vanishes. Making

use of the fact that f(−x2) is real-valued as a consequence of eq. (5.22) in the scalar
case, condition (5.44) reduces to

φ†(x)
[
1− |f(x)|2

]
φ(x) ≥ 0 ∀φ ∈ L2(R3)⊗ C16, ∀x ∈ R3

⇔ |f(x2)| ≤ 1 ∀x ∈ R3. (5.45)

Thus, we conclude that there do indeed exist special operators, e.g. V̂ ≡ f(−x̂2
⊥) with

|f(y)| < 1 ∀y ∈ R, for which the scalar product is positive de�nite on a general function

space, e.g. for superpositions of eigenfunctions of P̂ (5.21) with suitable drop-o� conditions15

for |x2
⊥| → ∞. Given any smooth and real-valued function g(y), such a function f can be

constructed as

f(y) := tanh g(y). (5.46)

One may, however, ask: are these restrictions on V̂ physically reasonable16?

We try to answer this question by using realistic potentials derived from quantum �eld
theory in [75, appendix A]. One such possibility for scalar interactions in lowest order
perturbation theory is [75, eqs. (A4), (2.17), (2.20)]:

V̂1 := tanh

− 1

2
√
P̂ 2

g1g2

4π

exp
(
−µ
√
−x̂2
⊥

)
√
−x̂2
⊥

 , (5.47)

where g1, g2 ∈ R, µ > 0. The question is: does V̂1 satisfy the positivity condition (5.44)?
We �rst note that V1,P (i.e. V̂1 where P̂ is replaced by an eigenvalue P ) does indeed

explicitly depend on P 2 even for P = (P 0, 0, 0, 0). This feature is shared with other
possible potentials derived from QFT (see17 [75, appendix A]). Thus, we can neither use
the simpli�ed condition (5.45) nor the before-mentioned condition (5.35) of Sazdjian.

14�Bounded� in this context means that the absolute values of the eigenvalues of VP = V (x⊥, P ) are
bounded.

15Note that because of the form of the kernel of the scalar product (5.34) the drop-o� conditions may
become modi�ed as compared to the case V̂ ≡ 0. If this turns out problematic, one could easily avoid the
situation by demanding that VP goes to zero for |x2

⊥| → ∞ su�ciently fast.
16Note that when comparing such a bounded V̂ with, say, a Coulomb potential (which is unbounded),

one may have to take into account a wave function transformation (see [75] and the remark below eq. (5.5)).
17Note that also for Crater's and Van Alstine's form of the equations the potentials explicitly depend on√
P 2, called w in the references (see e.g. [26, appendix A]).
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Let us evaluate condition (5.44) for V1,P for eigenfunctions of P̂ and in the c.m. frame.

Then: P 2 = (P 0)2 and
√
−x2
⊥ = |x|. We have:

∂V1,P

∂(P 0)2
=

1

4
|P 0|−3 g1g2

4π

e−µ|x|

|x|
1

cosh2
[
− 1

2|P 0|
g1g2

4π
e−µ|x|

|x|

] . (5.48)

Let

y :=
1

2|P 0|
g1g2

4π

e−µ|x|

|x|
. (5.49)

Evidently, y > 0. Then eq. (5.44) becomes

φ†
[
1(1− tanh2(−y)) + 2γ0

1γ
0
2

y

cosh2(−y)

]
φ ≥ 0 ∀y > 0, ∀φ ∈ C16. (5.50)

Note that γ0
j has the eigenvalues ±1 for each j. Thus, eq. (5.50) yields the two conditions

1− tanh2(−y)± 2y

cosh2(−y)
≥ 0 ∀y > 0. (5.51)

However, for �−�, the function h(y) := 1 − tanh2(−y) − 2y
cosh2(−y)

is negative for y > 1
2 ,

corresponding to |x|eµ|x| < 1
|P 0|

g1g2

4π . Consequently, wave functions with internal part φ(x)

with support concentrated around |x| = 0 have negative �norm� and �probability density�.

Comparison with the norm used by Crater and Van Alstine: Building on Sazd-
jian's work [90], Crater and Van Alstine also considered the question of an adequate
norm [31, p. 9]. Their derivation of the norm is based on the following wave function
transformation between the wave function ψ of eq. (5.15) and the wave function ψ̃ appear-
ing in the so-called �hyperbolic form� of their equations [31, eqs. (52), (53)]:

ψ = cosh(∆)ψ̃, (5.52)

where
∆ = tanh−1(V̂ ). (5.53)

We note that this transformation is not a simple mathematical object because it evidently
depends on the operator V̂ . We continue assuming that it does indeed exist (which may
yield further conditions on the potentials or on the function space) and analyze the conse-
quences for the norm.

Employing the transformation (5.52) for eq. (5.34), Crater and Van Alstine obtain
(see [31] and [34, appendix B]; the result is adapted to our notation):

〈ψ̃P , ψ̃P ′〉Σt = (2π)3δ(3)(p− p′)

∫
d3x φ̃†1(x)

[
1− 4P 2γ0

1γ
0
2

∂∆P

∂(P 2)

]
φ̃2(x), (5.54)

where the φ̃i are de�ned analogously to the φi in eq. (5.34) and ∆P is the operator ∆
with P̂ replaced by its eigenvalue P . The symbol (̃·) indicates that the wave function
transformation (5.52) has been made.
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Considering eq. (5.54), we note that the expression for the norm (i.e. for P = P ′)
reduces to the usual

∫
|ψ|2-expression for energy-independent potentials and is then positive

without further restriction on the potentials. However, as evident from both [75, appendix
A] and [26, appendix A], realistic choices of the potentials explicitly depend on the energy√
P 2. Thus, equivalent restrictions on the potentials as given by condition (5.44) also

appear following Crater's and Van Alstine's approach. This, of course, has to be the case
if the wave function transformation is to yield an equivalence between the 2BD equations
of Sazdjian (5.15) and the 2BD equations of Crater and Van Alstine.

More precisely, one can see from eq. (5.54) that the following condition has to be satis�ed
by ∆:

φ̃†(x)

[
1− 4P 2γ0

1γ
0
2

∂∆P

∂(P 2)

]
φ̃(x) ≥ 0 (5.55)

for all φ̃ ∈ L2(R3)⊗ C16.
We now evaluate this condition for the choice of ∆ corresponding to V̂1 from above (see

eq. (5.47), [75, eq. (A4)]). Then:

∆1 = tanh−1(V̂1) = − 1

2
√
P̂ 2

g1g2

4π

exp
(
−µ
√
−x̂2
⊥

)
√
−x̂2
⊥

. (5.56)

After a short and elementary calculation similar to the one leading from eq. (5.44) to eq.
(5.51), condition (5.55) reduces to

|x|eµ|x| < g1g2

4π
, (5.57)

which is the same condition as before, with the same consequences.

Conclusion: It is in principle possible to guarantee the positive de�niteness of the scalar
product by special choices of the potential operator V̂ . This is particularly easy to achieve
in the scalar case and for V̂ 's which are independent of P̂ 2. Realistic choices for V̂ such as
V̂1 from eq. (5.47), however, are not independent of P̂ 2. This has the consequence that V̂1

does not satisfy the condition (5.44) for positive de�niteness of the scalar product and of the
probability density. One may suspect that other realistic choices for V̂ might su�er from
the same problem. Therefore, they might not lead to a self-contained quantum mechanical
two-particle theory which can possibly make statistical predictions in its own right.

5.4 Gauge invariance

In this section, we brie�y comment on how the unusual mathematical structure of the 2BD
equations in�uences the notion of gauge invariance.
According to the view put forward in sec. 1.3, one should regard the tensor current jµν [ψ,ψ],
not the wave function ψ, as the physical object. Transformations ψ which leave j invari-
ant are considered pure gauge. In the case of free multi-time Dirac equations, one has
jµν [ψ,ψ] = ψγµ1 γ

ν
2ψ and the gauge transformations are given by (see also [80]):

ψ(x1, x2) 7→ e−iθ(x1,x2)ψ(x1, x2). (5.58)
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In the 2BD case, however, the tensor currents have to be modi�ed (see sec. 5.3.1). The pos-
sible replacements are momentum-dependent, i.e. their form depends on the wave function
itself. Consequently, the class of gauge transformations changes. In particular, the standard
transformations (5.58) cannot in general be considered gauge transformations anymore, be-
cause e.g. ψ 7→ e−iP ·Xψ may change the eigenvalue P of P̂ and P in turn is crucial for the
form of jint. The class of gauge transformations is thus reduced to transformations

θ(x1, x2) ≡ θ̃(x) (5.59)

which do not involve the coordinate X on which P̂ acts. Note, however, that the general
gauge transformations (5.58) may introduce terms into the multi-time equations (5.3) which
are not Poincaré invariant. This is not possible using only the restricted class of gauge
transformations (5.59).

5.5 Discussion

In this chapter, we critically reviewed the 2BD equations, placing them into the context
of the multi-time formalism for the �rst time. As compared to the class of Hamiltonian
multi-time equations of sec. 1.2.1, the 2BD questions achieve a mechanism of interaction by
making use of interaction terms including arbitrary powers of the total momentum operator
P̂ . These in turn are required to de�ne the variable x̂⊥, a certain covariantization of the
spatial relative coordinate in the center of momentum frame, which is needed to satisfy a
necessary compatibility condition.

However, the use of P̂ entails that the 2BD equations are of in�nite order (and single-
time irreducible). Consequently, the question arose whether they �t within the general
framework for multi-time wave functions of chaps. 1 and 2. The main concern was whether
there still exist conserved tensor currents, as required for probability conservation (see sec.
1.3). It turned out that the free Dirac current is not conserved. There do, however, exist
possible replacements. These replacements are not unique and there is no general argument
why for any of them the currents should be positive de�nite for arbitrary potentials and on
a general function space. This led to the question of whether the currents can be rendered
positive de�nite by restricting the function space or the admitted class of potentials. Our
analysis started out from a previous one by Sazdjian which was, however, shown incomplete.
In particular, Sazdjian did not discuss the question if further restrictions to render the
currents positive de�nite are to be regarded as restrictions of the function space or of the
potentials, so that further work was necessary.

First, we showed in detail that restrictions of the function space are not acceptable.
The reason is that, roughly speaking, Fourier modes are excluded which are necessary for
the representation of localized wave packets, for the self-adjointness of operator observables
and for the usual way of de�ning the time evolution.

Second, we analyzed the implications of the requirement of positivity of the currents
on the allowed form of the potentials, given a su�ciently general function space. The
results were twofold: on the one hand, we found that it is indeed possible to identify a
general class of potentials with the desired property. On the other hand, potentials which
were suggested as physically accurate in the literature may in fact violate the requirements
for positive de�nite currents. It should be emphasized that in any case the form of the
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probability density changes as a consequence of the fact that the form of the currents de-
pends on the chosen potential. This is of relevance also for applications, e.g. concerning
transition rates. For spectra, in contrast, the form of the probability density is unimportant.

As there are several possible motivations to study the 2BD equations, the implications of
the results on restrictions for the admissible potentials can be regarded in di�erent ways.

On the one hand, for applications where realistic potentials are required, doubts are
raised that phenomenological calculations of meson spectra based on the 2BD equations
such as in [26,30,34,75,100] do have a theoretical justi�cation. To resolve the doubts would
require to check the positivity condition (5.44) (or, equivalently, (5.55)) for the potential
used. This, however, has not been done in the literature, nor does an awareness of the
problem seem to exist. In fact, we found that for a simple choice of the potential which was
derived by Sazdjian from the Bethe-Salpeter equation, the positivity condition is violated.
The fact that this topic has not received attention before is somewhat surprising, considering
that one of Crater's and Van Alstine's main reasons to introduce the �rst version of the
2BD equations was that the Bethe-Salpeter equation possesses negative-norm states � and
therefore does not have a clear physical interpretation [27].

Furthermore, assuming that physically realistic potentials could be found which also
satisfy the positivity condition, the modi�ed probability density as compared to the |ψ|2-
density seems unusual. It would therefore be interesting to subject the modi�ed density
to experimental tests, for example by determining transition rates. In this respect, Crater
and coworkers investigated decay rates of quarkonium and positronium into two photons18,
considering the e�ects of the modi�ed norm (5.54) [34]. The theoretical results obtained
compare well with other phenomenological approaches, but still lie outside of the error bars
of the experimental data in all cases. These di�erences between theory and experiment
are particularly interesting, considering that they appear at a place which is critical from
a purely theoretical point of view. As we stressed in sec. 5.3.1, the tensor current is not
unique, requiring the choice of two Green's functions in eq. (5.31). Note that the theoretical
results for the mesonic spectra given in [34], which are independent of the exact form of
the tensor current, �t much better with the experimental data.
One could take these �ndings as a motivation to study the question of whether modify-
ing the potentials or (as is particularly interesting) making a di�erent choice of the tensor
current could improve the theoretical results. However, before immediately drawing the
consequence that such modi�cations are required, one should not forget that further (pos-
sibly critical) assumptions are involved in the process of calculating decay rates via the 2BD
equations. This is obvious from the fact that the 2BD equations as a strict two-particle
theory do not, by themselves, accommodate processes with variable particle numbers. A
theoretical justi�cation to nevertheless calculate decay rates using solutions of the 2BD
equations therefore cannot be contained in the framework of the 2BD equations alone but
has to come e.g. from quantum �eld theory.

On the other hand, for foundational aspects in relativistic quantum theory, it seems
remarkable that there do exist interaction terms for multi-time equations at all which sat-
isfy the minimal requirements of Lorentz invariance and compatibility with a probabilistic
meaning of the wave function. It is interesting to note that the compatibility of these as-

18I am grateful to H. W. Crater for pointing this out to me.
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pects in 1 + 3 space-time dimensions was achieved for a single-time irreducible theory (see
sec. 5.2.3). One class of these equations is given by19:{

γ1 · p̂1 −m1 − (−γ2 · p̂2 +m2) tanh
[
g(−x̂2

⊥)
]}
ψ(x1, x2) = 0,{

γ2 · p̂2 +m2 + (γ1 · p̂1 +m1) tanh
[
g(−x̂2

⊥)
]}
ψ(x1, x2) = 0, (5.60)

where g(y) is an arbitrary smooth and real-valued function. The expression for the associ-
ated positive tensor current is rather lengthy and can be calculated via eqs. (5.28), (5.31).
The corresponding scalar product, evaluated on equal-time hypersurfaces of a special frame,
is given by (5.34). As stressed above, the tensor current involved in this construction is
not unique. Such a non-uniqueness of the currents is, however, not an uncommon situa-
tion in quantum physics. One can for example always add a term which is divergence-free
� and sometimes this is even appropriate. Moreover, the additional freedom in choosing
a Green's function in eq. (5.31) might (in more general situations than (5.60)) help to
reconcile experimental and theoretical results for decay rates.

Finally, one may wonder whether a similar approach as for the 2BD equations can be
taken also for N > 2 particles. However, appropriate wave equations in a closed form have
never been found. This may be due to the fact that there does not exist a generalization of
the variable x⊥ for N particles which allows to satisfy the necessary compatibility condition
of the wave equations in a similar way as for two particles [32, 91].

19Note that a similarly looking class of 2BD equations was suggested by Crater and Van Alstine [31, eqs.
(52), (53)]. Eq. (5.60) is a subclass of these equations for which the positivity of the scalar product and
currents has been checked in sec. 5.3.3. For the general class in [31], positivity may be violated.
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Perspective

In this thesis, we presented � and in parts developed � a comprehensive physical and mathe-
matical framework for multi-time wave functions. The combinations of the interacting wave
equations of chaps. 3-5 with a hypersurface Bohm-Dirac guidance law or a GRWm theory of
chap. 2 may provide the �rst examples for interacting realistic relativistic quantum theories.
They show possible ways how the two main problems of relativistic quantum theory, the
problem of mathematically consistent relativistic interactions and the measurement prob-
lem, can be avoided, achieving both physical clarity and mathematical precision. Thus,
the main goal, as formulated in the introduction, could be achieved. Furthermore, the de-
veloped models provide explicit counterexamples to various general impossibility claims in
the �folklore� of relativistic quantum physics, which seem to often result from an interpre-
tational over-generalization of certain no-go theorems. Examples include the impossibility
of localized particles per se in relativistic quantum physics (sometimes said to follow from
Malament's theorem [72]) as well as the necessity of particle creation and annihilation for
quantum-mechanical relativistic interactions (often stated in textbooks on QFT, e.g. [79],
and sometimes said to follow from the �no interaction theorem� [35]).

Our work o�ers several concrete starting points for future research.

1. The subsystem description for the HBD model in sec. 2.2 provides the basis for a
derivation of an e�ective measurement formalism. As shown in sec. 2.3, this has so
far only been achieved in strongly restricted situations.

2. The 1 + 1-dimensional model of chaps. 3 and 4 most likely allows for further gener-
alizations, such as non-zero masses and the QFT case.

3. The �ndings about the restrictions on the potentials in the Two-Body Dirac equations
advise a study of whether the potentials used in applications satisfy them and are
therefore conceptually adequate. Furthermore, one may speculate that the insight
that there are further possible choices of conserved tensor currents may help to rec-
oncile experimental data and theoretical calculations for transition and decay rates
for mesons.

Finally, in view of the fact that the discussed interacting models are exemplary and (in
one or the other way) too restricted to describe realistic (actual) physical systems, we now
speculate about how further progress for interacting relativistic multi-time theories may
be achieved. Considering the various no-go theorems on Hamiltonian theories and the fact
that none of our interacting models is Hamiltonian, we do not regard further e�orts in this
direction fruitful. Even though the 1 + 1-dimensional model is in fact single-time reducible
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and nevertheless interacting, it would be highly interesting to focus future research on
single-time irreducible theories. These theories are of particular conceptual value in view
of the fact that then a multi-time formulation is not only necessary to achieve manifest
Lorentz invariance but also provides new possibilities for the formulation of interacting
dynamics.

A particularly interesting possibility for single-time irreducible multi-time wave equa-
tions is given by multi-time integral equations. There are several further clues pointing in
this direction: the supposed possibility of reformulation of the 1 + 1-dimensional model in
terms of an integral equation, the analogy with Wheeler-Feynman electrodynamics as well
as the Bethe-Salpeter equation (from which the Two-Body Dirac equations can in some
sense be derived). It will furthermore be sketched in the appendix that appropriate multi-
time integral equations imply potential equations for the single-time wave function when
retardation e�ects are neglected.

The main reason why we did not attempt a more detailed study of multi-time integral
equations here is that for these it is in general an open question how the wave function
attains statistical meaning. In addition to the usual problems with UV-divergencies, the
Bethe-Salpeter equation is, for example, known to possess states with negative �norm�.
This, of course, simply means that the respective density is not adequate for the theory.
While it has to our best knowledge not been excluded that di�erent conserved and positive
de�nite tensor currents can be found (similarly to the situation for the Two-Body Dirac
equations), it may also be that the framework of conserved tensor currents of sec. 1.3 is too
restricted to encompass integral equations.

One may thus raise the question of why to remain within this framework. From the
perspective of Bohmian mechanics, the reason is the possibility of a statistical analysis
via an equivariant density. However, as discussed in sec. 2.4.1, one would not expect the
concept of an equivariant density to be adequate for Bohmian light cone models or, more
generally, other models which do not make use of additional space-time structure besides
the space-time metric. It becomes clear that one faces a complex of di�cult and interrelated
questions, which, in our opinion, seems exciting and full of novel possibilities at the same
time. Perhaps an approach via simpli�ed, exactly solvable toy models for the Bethe-Salpeter
equation, such as the Wick-Cutkosky model [77], could help to make progress.

In conclusion, we hope that the insights from this thesis provide a fresh and unconven-
tional perspective on the foundations of relativistic quantum physics.



Appendix: Derivation of a potential

equation from a multi-time integral

equation

In the following, we further support the claim that multi-time integral equations may
provide a promising mechanism for relativistic interactions by showing (in a non-rigorous
way) that a multi-time integral equation inspired by the Bethe-Salpeter equation yields a
single-time wave equation with potential when time delay e�ects are neglected.

Consider the integral equation

ψ(x1, x2) = e1e2

∫
d4x′1

∫
d4x′2G1(x1 − x′1)G2(x2 − x′2)δ((x′1 − x′2)2)ψ(x′1, x

′
2), (61)

where the Gj , j = 1, 2 are the respective Green's functions of the free wave equation (e.g.
the free KG equation) for the j-th particle and the ej are charges. Eq. (61) is a version of
the BS equation for scalar particles in the ladder approximation (compare [55, chap. 6]).
We now perform the non-relativistic limit of eq. (61) employing the following assumptions:

1. One can replace the Gj 's by the Green's functions of the respective free Schrödinger
equations, i.e.

i
∂

∂tj
Gj(tj ,xj) = − 1

2mj
∆jGj(tj ,xj) + δ(4)(tj , xj). (62)

2. The retardation is negligible, i.e. one is allowed to make the replacement

δ((t1 − t2)2 − (x1 − x2)2) =
1

2

[
δ(t1 − t2 − |x1 − x2|)

|x1 − x2|
+
δ(t1 − t2 + |x1 − x2|)

|x1 − x2|

]
7−→ δ(t1 − t2)

|x1 − x2|
. (63)

Assumption 1 aims at obtaining an equation of �rst order in time. It is motivated by
an analogous assumption of Dirac in his derivation of a potential equation from a QED
model [38]. Heuristically, the assumption asserts that one may treat the matter as moving
with low speed in relation to the reference frame. Assumption 2 amounts to requiring that
the wave function does not change much when one replaces t1− t2±|x1−x2|/c with t1− t2.
Its plausibility is immediately seen for SI units as then c� 1.
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Next, consider

i
∂

∂t
ψ(t,x1, t,x2) = i

∂

∂t1
ψ(t1,x1, t2,x2)|t1=t2=t + i

∂

∂t2
ψ(t1,x1, t2,x2)|t1=t2=t

(61),(62)
=

(
− 1

2m1
∆1 −

1

2m2
∆2

)
ψ(t,x1, t,x2) + I1 + I2, (64)

where

I1 := e1e2

∫
d4x′2G2(t− x0

2
′
,x2 − x′2)δ((t− t′2)2 − (x1 − x′2)2)ψ(t,x1, t

′
2,x
′
2),

I2 := e1e2

∫
d4x′1G1(t− x0

1
′
,x1 − x′1)δ((t′1 − t)2 − (x′1 − x2)2)ψ(t′1,x

′
1, t,x2). (65)

We focus on I1 and make use of assumption 2. This results in

I1 7→ e1e2

∫
d3x′2G2(0,x2 − x′2)

1

|x1 − x′2|
ψ(t,x1, t,x

′
2). (66)

Now the Green's functions of the Schrödinger equation have the property

Gj(0,x) = δ(3)(x), (67)

so we obtain:
I1 7→

e1e2

|x1 − x2|
ψ(t,x1, t,x2). (68)

Proceeding analogously for I2, eq. (64) becomes

i
∂

∂t
ψ(t,x1, t,x2) =

[
− 1

2m1
∆1 −

1

2m2
∆2 +

2e1e2

|x1 − x2|

]
ψ(t,x1, t,x2). (69)

This is the two-particle Schrödinger equation with Coulomb potential20 for the single-time
wave function (1.9).

Conclusion: Contrary to the Hamiltonian multi-time wave equations of sec. 1.2.1, multi-
time integral equations are capable of implying single-time wave equations with a potential.
The latter arises as an e�ective description from neglecting the retardation. It is notewor-
thy that for multi-time integral equations the problems associated with the consistency
condition (1.55), as required for systems of multi-time di�erential equations, do not occur.
The reason is that one prescribes only a single equation and not many which may contra-
dict each other. (Systems of integro-di�erential multi-time equations are obtained from eq.

(61) by letting the free operators, i.e.
(
i ∂∂tj + 1

2mj
∆j

)
, j = 1, 2, act on it. To see their

consistency without reducing it to the question of the existence of solutions of the integral
equation (61) seems di�cult.)

20We are not concerned with prefactors here.
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