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Summary 
 

Photosynthetic light reactions take place in the thylakoid membranes of cyanobacteria, algae and 

plants. Photosynthetic electron transport is coupled to proton pumping from the stroma into the 

thylakoid lumen. The resulting proton gradient drives ATP production by the ATP synthase 

complex. The free energy released from the ATP hydrolysis is used for numerous cellular 

enzymatic reactions. The ATP synthase is composed of chloroplast- and nucleus-encoded 

subunits which are coordinately assembled by the assistance of additional auxiliary and 

regulatory factors to form a functional complex. By comparative genomic analyses, a set of 

proteins was previously identified in photosynthetic organisms (green algae, flowering and 

nonflowering plants) which is not found in non-photosynthetic organisms. Those proteins are 

called GreenCut proteins and are associated with chloroplast function. Remarkably, around 50 % 

of them have not been functionally characterized yet.  

Here, we show that Gc9, one of the unknown GreenCut proteins is located in the thylakoid 

membrane. Sequence alignments of Gc9 revealed that the C-terminal, transmembrane domain of 

Gc9 shares some similarity to the Atp1/UncI proteins which are encoded in the ATP synthase 

operons of bacteria and cyanobacteria. Arabidopsis Gc9 knock-out mutant lines (gc9-1) display a 

reduction in growth relative to wild type plants. In addition, increased non-photochemical 

quenching, elevated ΔpH-dependent quenching and an activated xanthophyll cycle could be 

observed in the mutant lines which are caused by a drastically lowered ATP synthase content in 

gc9-1 by 70-90 % compared to wild type plants. Gc9 neither forms a stable complex with the 

ATP synthase nor is it an ATP synthase subunit. Furthermore, no drastic transcriptional or 

translational defect related to ATP synthase subunit expression could be detected in gc9-1, 

whereas BN-PAGE analyses of ATP synthase complex intermediates indicated a significant 

accumulation of AtpH monomers in gc9-1. Split-Ubiquitin assays confirmed that Gc9 interacts 

with AtpH, the ring-forming subunit of the membrane-integral CFO part of the ATP synthase. 

Taken together, Gc9 is involved in the efficient AtpH ring assembly in chloroplasts of 

Arabidopsis thaliana. Thus, lack of Gc9 has more severe effects on ATP synthase assembly than 

its counterpart UncI in bacteria. 



Summary 

ii 

 

Zusammenfassung 
 

Die Photosynthese findet in den Thylakoidmembranen von Cyanobakterien, Algen und Pflanzen 
statt. Durch absorbierte Lichtenergie wird im Innenraum der Thylakoidmembran (Lumen) 
Wasser gespalten, wobei Sauerstoff, Protonen und Elektronen mobilisiert werden. Elektronen 
werden über membranständige Photosynthesekomplexe transportiert und auf 
Reduktionsäquivalente im Stroma übertragen, die essentiell für die enzymatische Fixierung von 
Kohlenstoff sind. Zusätzlich ist der Elektronentransport an den Protoneneinstrom in das Lumen 
gekoppelt, was zu einem Membranpotential zwischen Lumen und Stroma führt. Beim 
Rücktransport von Protonen in das Stroma wird ATP durch den ATP-Synthase-Komplex 
generiert, was für zahlreiche, zelluläre enzymatische Reaktionen benötigt wird. In Algen und 
Pflanzen setzt sich die ATP Synthase aus chloroplastenkodierten und kernkodierten 
Untereinheiten zusammen. Bei deren Integration zu einem funktionellen Komplex in die 
Thylakoidmembran werden zusätzliche Hilfsproteine und regulatorische Faktoren benötigt. In 
einer vorrausgehenden Studie wurden durch vergleichende Genomanalysen Proteine identifiziert, 
die nur in photosynthetischen, eukaryotischen Organismen (Grünalgen und blühenden und nicht 
blühenden Pflanzen) vorkommen. Diese Proteine übernehmen hauptsächlich Funktionen im 
Chloroplasten und werden als GreenCut Proteine bezeichnet. Bemerkenswert ist, dass rund 50 % 
von ihnen noch nicht funktionell charakterisiert sind.  

Im Rahmen dieser Arbeit wurde gezeigt, dass Gc9 (At2g31040), eines der unbekannten Greencut 
Proteine, essentiell für eine effiziente Photosynthese ist. Anhand von Sequenzvergleichsstudien 
konnte gezeigt werden, dass die C-terminale Transmembrandomäne von Gc9 moderate 
Ähnlichkeiten zu den Atp1/UncI Proteinen aufweist, welche in den ATP-Synthase-Operons von 
Bakterien und Cyanobakterien codiert sind. Die Gc9 knock-out Linien bei Arabidopsis thaliana 
(gc9-1) zeichnen sich durch ein verringertes Wachstum im Vergleich zu den Wildtyppflanzen 
aus. Zusätzlich konnte in den Linien eine erhöhte Wärmeabgabe, eine Protonenanreicherung im 
Lumen und ein aktivierter Xanthophyll-Zyklus ermittelt werden. Diese Phänomene lassen sich 
durch einen stark gesenkten ATP-Synthase-Gehalt in gc9-1 um 70-90 % gegenüber dem Wildtyp 
erklären. Gc9 ist weder eine Untereinheit noch bildet es einen stabilen Komplex mit der ATP-
Synthase. Transkription oder Translation von ATP-Synthase-Untereinheiten in gc9-1 sind 
ebenfalls nur gering beeinträchtigt. Jedoch konnte über Assemblierungsstudien des ATP-
Synthase-Komplexes eine Anreicherung von AtpH-Monomeren in gc9-1 nach gewiesen werden. 
Split-Ubiquitin-Analysen bestätigten, dass Gc9 mit AtpH, der ringbildenden Untereinheit des 
CFO Teils der ATP-Synthase, interagiert. Zusammengefasst konnte gezeigt werden, dass Gc9 für 
eine effiziente AtpH Ringassemblierung erforderlich ist und dass das Fehlen von Gc9 zu einer 
stärkeren Beeinträchtigung der ATP Synthase-Assemblierung im Vergleich zum bakteriellen 
Gegenstück Atp1/UncI führt. 
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1 Introduction 
 

1.1 Photosynthesis 

Photosynthesis is a photophysical and biochemical process in which light energy is converted 

into chemical energy and organic compounds. Cyanobacteria, algae and plants use H2O as an 

electron donor and release oxygen during photosynthesis. 

Oxygenic photosynthesis takes place in thylakoid membranes (Menke, 1962) which are located 

in the cytosol of prokaryotes (cyanobacteria) and in chlorophyll-containing organelles, the 

chloroplast, of algae and plants. The major photosynthetic complexes are multimeric proteins 

which are encoded by chloroplastic and nuclear genes (Sharma et al., 2007; Barkan, 2011 and 

Maier et al., 2008). Those protein complexes are light harvesting complex II and I (LHCII and 

LHCI), Photosystem II (PSII), Cytochrome b6f complex (Cyt b6f), Photosystem I (PSI) and the 

chloroplast ATP synthase (CF1FO-ATP synthase) (Nelson and Ben-Shem, 2004). Thylakoid 

membranes of land plants are organized in two parts, the grana stacks and the stroma lamellae 

which connect different grana stacks. PSII-LHCII complexes are mainly found in grana stacks, 

whereas PSI-LHCI and ATP synthase complexes are located in the stroma lamellae and in the 

edges of grana membranes. The Cyt b6f complex is distributed throughout all the domains of the 

thylakoid membranes (Albertsson, 2001; Staehelin, 2003; Dekker and Boekema, 2005; Jansson 

et al., 1997; Vallon et al., 1991). 

Light harvesting proteins (LHCI and LHCII) are attached non-covalently to PSII and PSI and 

absorb light energy which is transferred to the reaction centre of the two photosystems. Absorbed 

light energy drives electron transfer from H2O to the final electron acceptor (NADP+) through 

PSII, Cyt b6f and PSI during linear electron flow (LEF). The linear electron transport is coupled 

to the generation of a proton gradient by oxidation of plastoquinone in the Q0-center of the Cyt 

b6f complex (Cramer et al., 2006). In addition, the oxygen evolving complex (OEC) of PSII 

releases protons by water oxidation. It was shown that during photophosphorylation, the proton 

concentration (pH) in the thylakoid lumen is about 6.0-6.2 and in the stroma 7.8-8.0, 

respectively. The difference in pH generates a transmembrane electrochemical proton gradient 

∆µ̃H+ (or the so-called proton-motive force). In mitochondria, chloroplasts and in bacterial cells, 



Introduction 

2 

 

the proton-motive force is 11.6-19.3 kJ/mol, which is equivalent to 160-220 mV (Tikhonov, 

2012). The major fraction of this energy is used for ADP to ATP conversion (Evron et al., 2000) 

by the ATP synthase complex. For each mol of NADPH generated by oxygenic photosynthesis, 

about 1.5 molecules of ATP are produced simultaneously. Generated ATP and NADPH/H+ are 

used mostly for CO2 and nitrate assimilation to synthesise carbohydrates and amino acids, but 

also for the biosynthesis of other organic substances such as nucleotides, lipids, vitamins, plant 

hormones and secondary metabolites. 

 

1.2 ATP synthase structure 

1.2.1 General aspects of ATP synthase 

Mitochondria and chloroplast are known as the power sources in living cells. They generate 

biochemical energy by the ATP synthase complex. The free energy released from the ATP 

hydrolysis drives numerous cellular enzymatic reactions e.g., biosynthesis, mechanical motility, 

transport through membranes, regulatory networks and nerve conduction (von Ballmoos et al., 

2009). The structure, composition and basic organisation of the ATP synthase is conserved 

among eubacteria, mitochondria and plastids (Strotmann et al., 1998; Groth and Pohl 2001). 

The core subunit composition of the chloroplastic ATP synthase is like in mitochondria and 

bacteria but the mitochondrial ATP synthase contains 7–9 additional subunits, which are 

involved in oligomerization of the enzyme and also take over regulatory functions. ATP 

synthases share high amino acid sequence similarities within structural and functional regions 

(Walker et al., 1985), which suggests a common ancestry and a common core structure for all 

ATP synthases. It is also accepted that all ATP synthases undergo the same catalytic mechanism 

for ATP production or hydrolysis and the basic molecular mechanisms are essentially the same. 

The chloroplast ATP synthase belongs to the F1FO-type ATP synthase family, which is 

composed of two functionally and structurally different parts: 1) CFO (chloroplast coupling factor 

O), a hydrophobic, membrane-embedded protein complex which is responsible for proton 

transport and 2) CF1 (chloroplast coupling factor 1) which is a globular water-soluble protein 

complex and contains the nucleotide-binding site (s) for reversible ATP synthesis (Boekema et 
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al., 1988). Structure and function of CF1 have been extensively studied by various biochemical 

and biophysical techniques, whereas CFO is less characterised than CF1 due to its high 

hydrophobicity (Seelert and Dencher, 2011). 

CFO is composed of four different polypeptides (AtpF/b/I, AtpG/b’/II, AtpH/c/III, AtpI/a/IV) 

with molecular weights of 19, 16.5, 8 and 25 kDa, respectively (Pick and Racker, 1979; Fromme 

et al., 1987a) and the subunit stoichiometry is I/II/III/IV=1/1/9-12/1 (Fromme et al., 1987b).  

The CF1 part has five different subunits (AtpA/α, AtpB/β, AtpC/γ, AtpD/δ and AtpE/ε) with 

molecular weights of 55.5, 53.8, 35.9, 20.5 and 14.7 kDa, respectively. The subunit 

stoichiometry is α/β/γ/ δ/ ε = 3/3/1/1/1 (Süß and Schmidt, 1982; Moroney et al., 1983). 

The annotation varies among chloroplastic, mitochondrial and bacterial ATP synthase subunits. 

In addition, the mitochondrial ATP synthase contains subunits which are neither present in 

chloroplasts nor in bacteria (Table 1.1). To avoid confusion, subunits will be annotated according 

to the first column (Chloroplast) in table 1.1 throughout the dissertation. The two portions of the 

chloroplast ATP synthase are physically connected by two stalks: 1) a central stalk which is built 

up by the AtpC and AtpE subunits and 2) a peripheral stalk harbouring the AtpD, AtpF and AtpG 

subunits. 

Table 1.1 Subunit compositions of chloroplastic, mitochondrial (S. cerevisiae) and bacterial (E. coli) ATP 
synthase  

 Chloroplast 
Mitochondria     
(S. cerevisiae) 

Bacteria (E. coli) 

F1 AtpA α α 
 AtpB β β 
 AtpC γ γ 
 AtpD δ ε 
 AtpE ε - 
 - OSC δ 

FO AtpF 6 a 
 AtpG 8 - 
 AtpH 9 c 
 AtpI 4 b 
 - d - 
 - h - 
 - f - 
 - e - 
 - g - 
 - i - 
 - k - 
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1.2.2 CF1 portion 

In the CF1 portion, three AtpA and three AtpB subunits are arranged in a hexamer with 

alternating AtpA and AtpB subunits, whereas AtpC, AtpD and AtpE subunits are present in 

single copies. Each AtpA and AtpB subunits harbour a single nucleotide site. The catalytic sites 

are located on the AtpB subunits, whereas regulatory sites are placed on AtpA subunits (Richter 

et al., 2000). The central cavity of the hexamer is partially filled by subunit AtpC, which was 

shown by direct labelling of –SH groups engineered in the AtpC subunit of the Escherichia coli 

enzyme (Groth and Strotmann, 1999). The AtpC subunit forms a coiled-coil structure which is 

bound to the three AtpA/B pairs and plays a regulatory role in the catalytic activity of the ATP 

synthase. It was assumed that AtpD and AtpE subunits are involved in the functional connection 

between CF1 and CFO (Patrie and McCarty, 1984). The AtpE subunit functions as a negative 

regulator of ATP synthase activity and probably links conformational changes between CF1 and 

CFO during proton translocation via incorporation with the AtpC subunit. 

 

1.2.3 CFO portion 

In the CFO portion, subunit AtpF and AtpG share similar amino acid sequences. They contain a 

single transmembrane helix in interaction with CF1. Subunit AtpF is linked to subunit AtpD 

(Beckers et al., 1992) and subunit AtpG connects CFO to CF1. 

Subunit AtpH forms a hairpin like structure and consists of two α-helices. Those subunits are 

also called proteolipids because of their high hydrophobicity in organic solvents (Folch and Less, 

1951). The hairpin loop is orientated towards the stroma and its terminal domains are submerged 

into the thylakoid lumen. The number of subunit AtpH for ring assembly varies from 8 

(mitochondria in animals) to 15 (in the cyanobacterium Spirulina platensis) in different 

organisms (Watt et al., 2010; Pogoryelov et al., 2005). In chloroplasts of higher plants 14 copies 

of subunit AtpH form a channel for proton traslocation through the membrane (Vollmar et al., 

2009). 
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1.3 ATP synthase function 

During photophosphorylation, the ATP synthase complex snythesizes ATP from ADP and 

inorganic phosphate (Pi) by making use of the transmembrane proton gradient. The kinetics of 

this process can be described by the Michaelis-Menten equation. The binding of the ADP and 

phosphate to the catalytic site on subunit AtpB occurs in a random fashion (Kothen et al., 1995) 

but binding of the first substrate increases the affinity of the second substrate which is known as 

stochastic binding mechanism (Groth and Junge, 1993). 

The nucleotide-bound states on AtpB subunit are in different conformational states during 

catalysis (Boyer, 1993). The binding of both substrates, ADP and Pi, takes place in the loose site 

(L), whereas the ATP generation and ATP dissociation occur in the tightly (T) and empty (O) 

sites, respectively. Those three different conformational states appear during one complete 

rotation of the AtpC subunit in a stepwise 120° motion which can be observed at very low ATP 

concentration (Yasuda et al., 1998). The stored energy in the transmembrane proton gradient is 

used for the substrate (ADP, Pi) binding and/or ATP dissociation and/or opening of the catalytic 

sites situated on the AtpB subunits. 

The catalytic sites are located in the CF1 portion, whereas luminal proton efflux occurs in the 

membrane embedded CFO domain, which also contains the motor for the ATP generation. The 

latter is composed of the AtpH and AtpI, where subunit AtpH assembles into a ring. In 

chloroplasts of higher plants 14 copies of AtpH are assembled to form a circular structure which 

serves as a channel for proton translocation through the membrane (Vollmar et al., 2009). Each 

AtpH subunit mediates one proton translocation per turn of the ATP synthase. Thus, 14 protons 

are required for a full turn of the ATP synthase and yield three ATP molecules (Seelert et al., 

2000).  

Subunits AtpH and AtpI of CFO are directly involved in transmembrane proton transport. The 

carboxyl group of Glu61 in AtpH subunit acts as an acceptor for protons coming from the acidic 

side (lumen) through the input channel. Protonated AtpH subunits than rotate along with the 

AtpH ring and thereby consecutively release their protons on the alkaline side (stroma) through 

the output channel (Nelson and Cox, 2005). 
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The salt bridge between the Glu61 residue (in E. coli: Asp61) of one of the subunits AtpH and 

the Arginine 210 (R210) residue of subunit AtpI is dissociated from the proton-accumulated 

membrane side by protonation and causes a ratchet-type motion of the rotor (Wang and Oster, 

1998). The other critical amino acids for proton translocation in AtpI subunit are E219 (Glutamic 

acid 219) and H245 (Histidine 245) residues, which are required for proton binding and guidance 

towards the negatively charged membrane side. 

The torque of the AtpH ring might be transmitted to the AtpA/B hexamer via the AtpC and AtpE 

subunits. The rotation of the AtpC subunit (rotor) induces the conformational rearrangements in 

each of the three catalytic binding sites of the AtpB subunits (Weber and Senior, 2000).  

 

1.4 ATP synthase regulation 

The regulation of ATP synthase activity is important to avoid futile ATP hydrolysis under 

transient light/dark conditions and to induce ATP synthesis only in the presence of an 

electrochemical proton gradient. Multiple regulatory mechanisms exist for this purpose. Mg-

ADP is an inhibitor of the ATP synthase activity which binds tightly to catalytic and regulatory 

sites on the AtpA/B hexamer in the dark and prevents subsequent ATP hydrolysis (Bar-Zvi and 

Shavit, 1982; Vasilyeva et al., 1982). This tight binding of ADP may restrict the rotation of the 

AtpC subunit within the AtpA/B hexamer, thereby proton translocation through CFO is inhibited 

(Richter et al., 2000). During thylakoid illumination, proton flow through CFO decreases the 

affinity for ADP binding to the regulatory site, thereby inducing ATP synthase activity. The 

rotation and conformational changes of central α helices is involved in coupling proton 

translocation to ATP synthesis, regulation of proton flux and ATP synthase activity (Hisabori et 

al., 1997; Richter et al., 2000; Sunamura et al., 2012). 

Several modifications in the AtpC subunit regulate the ATP synthase activity. The redox-

dependent regulation is an exclusive feature for chloroplast ATP synthases in which thiol groups 

are present in the AtpC subunit (Hisabori et al., 2003). In this process, reduced thioredoxin 

induces the conformational change of a regulatory domain (Cys199-Cys205) on the AtpC 

subunit which leads to the reduction of the disulfide bond. The energetic threshold of the ATP 
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synthesis and proton translocation is lowered by the reduction of disulfide bonds which causes 

enhanced photophosphorylation (Evron and McCarty, 2000). Therefore, the catalytic activity of 

the ATP synthase enzyme is regulated by proton accumulation and a redox-state dependent 

process, in which a disulfide bond in the AtpC subunit is reversibly oxidized and reduced (Mills 

et al., 1995). 

The AtpE subunit plays a role in coupling of proton flow to the ATP synthesis. An extended C-

terminal helix-turn-helix structure inhibits the ATP synthase activity to prevent ATP 

consumption (Richter et al., 1984; Yagi et al., 2007). The oxidized, inactive form of the ATP 

synthase (in the dark) shows neither ATP hydrolysis nor synthesis activity. In the inactive ATP 

synthase form, subunit AtpE interacts tightly with CF1 subunits and thereby AtpC and AtpE 

subunits are inhibited from rotation by the AtpA/B hexamer. In illuminated thylakoids, 

conformational changes in the AtpC and AtpE subunits induce movements of these subunits that 

cause disulfide reduction and AtpC (Cys89) modification. The disulfide bond reduction induces 

an additional conformational change. The binding affinity of subunit AtpE for CF1 subunits is 

lowered and then ATP is synthesized at physiological ΔpH values (Soteropoulos et al., 1992). 

 

1.5 Assembly of photosynthetic protein complexes 

1.5.1 A dual genetic origin of photosynthetic proteins 

Chloroplasts contain about 3000 different proteins, most of them ( > 90 %) are encoded in the 

nucleus and only a few are chloroplast-encoded polypeptides (Figure 1.1). The nuclear-encoded 

subunits are synthesized as precursor forms on free cytosolic ribosomes (Keegstra and Cline, 

1999; Abdallah et al., 2000; Leister, 2003). Those proteins must be directed to the chloroplast, 

inserted and folded into the correct conformation. The precursor form contains a transit peptide 

which is an amino-terminus targeting signal. The precursor proteins are transported post 

translationally into the chloroplast in an energy-dependent process called chloroplast protein 

import. 

The chloroplast protein import is mediated by protein complexes situated in the outer and inner 

envelope membranes and are called TOC and TIC (Translocon at the Outer/Inner envelope 
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membrane of Chloroplasts). The TOC complex is composed of Toc159, Toc34 and Toc75 

components. The first two (Toc159 and Toc34) mediate transit peptide recognition and Toc75 

forms a channel for precursor protein conductance (Soll and Schleiff, 2004; Li and Chiu, 2010). 

Different chaperones are required for chloroplast protein import at different stages. Cytosolic 

factors such as Hsp90, Hsp70 and 14-3-3 proteins may guide pre-proteins to reach the TOC 

complex and to prevent their misfolding, aggregation or degradation (Zhang and Glaser, 2002; 

Gokirmak et al., 2010; Qbadou et al., 2006). The chaperone Hsp70 mediates precursor protein 

passage through the intermembrane space and plays a role in the stroma but the information 

about this chaperone is still inconclusive (Becker et al., 2004). The stromal chaperones, Hsp93 in 

cooperation with Tic110 and Tic40 and Hsp70 act to maintain translocation competence of the 

precursor proteins and to drive transport at the expense of ATP hydrolysis (Balsera et al., 2009; 

Bukau et al., 2006). 

When precursor proteins arrive in the stroma, the transit peptide is removed by the stromal 

processing peptidase (SPP) and chaperones such as Hsp70, Cpn60, cpSRP43 are involved in 

their folding, assembly and transport to the internal destinations (Cline and Dabney-Smith, 2008; 

Li and Chiu, 2010 ; Jackson-Constan et al., 2001). 

The first step in the assembly of photosynthetic complexes is the insertion of subunits which act 

as a scaffold for subsequent assembly steps. Those dominant subunits are D2 for PSII, PsaB for 

PSI and PetB for Cyt b6f. In the absence of scaffold proteins, translation of the next protein to be 

inserted into the complex is inhibited. This type of regulation is called “control by epistasy of 

synthesis (CES)” and was found to be valid for PSII, the Cyt b6f, and the ATP synthase complex 

(Rochaix, 2011). Genetic and biochemical studies have shown that both general and complex-

specific factors are needed to assemble functional complexes. An example for a general 

assembly factor is the nuclear-encoded Albino 3 (ALB3) which is required for the integration of 

the LHC proteins into thylakoid membranes in vascular plants and green algae 

(Chlamydomonas). This protein shows homology to the mitochondrial Oxa1p and bacterial YidC 

proteins (Sundberg et al., 1997; Bellafiore et al., 2002). Oxa1 is involved in the assembly of the 

cytochrome oxidase, ATP synthase and the cytochrome bc1 complex into the inner membrane of 

yeast mitochondria (Bauer et al., 1994; Bonnefoy et al., 1994; Jia et al., 2007; Altamura et al., 
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1996). YidC is involved in the insertion of most inner membrane proteins in E. coli (Urbanus et 

al., 2002). Also a large number of complex-specific assembly factors were identified e.g., Ycf3, 

Ycf4, and Ycf37 which are PSI-specific assembly factors (Naver et al., 2001; Ozawa et al., 2009; 

Dühring et al., 2007).  

 

 

Figure 1.1 Assembly of photosynthetic protein complexes in the thylakoid membrane  

Nuclear-encoded subunits are translated on cytoplasmic ribosomes and then transported into the chloroplast. The 

chloroplast protein import is mediated by the two TOC and TIC protein complexes. Chloroplast-encoded subunits 

are translated by the chloroplast translation machinery and inserted directly into the thylakoid membrane. In the last 

step, imported subunits and plastome-derived subunits are assembled into functional complexes in the thylakoid 

membrane.  
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1.5.2 ATP synthase assembly factors 

The ATP synthase assembly process in chloroplast is less understood than the assembly process 

in E. coli and yeast cells. The biochemical study of ATP synthase biogenesis in yeast cells is not 

simple, because of the rapid turnover of some FO and stator subunits in ATP synthase-deficient 

mutants (Contamine and Picard, 2000). To assemble a functional ATP synthase a series of 

factors for subunit recognition, for establishing correct interactions and for correct folding are 

required. In addition, several nuclear-encoded factors which have a function at pre- and post- 

translational steps of the biogenesis pathway have been characterized (Pícková et al., 2005). 

Some substrate-specific proteins were identified in Saccharomyces cerevisiae which have a 

chaperone type function: Atp10p, Atp11p, Atp12p, Atp22p and Fmc1p. Atp10p, Atp11p and 

Atp12p are general ATP synthase assembly factors which are present in the majority of 

eukaryotic organisms, whereas Fmc1p and Atp22p are yeasts-specific ATP synthase assembly 

factors. 

Atp11p and Atp12p belong to the families of molecular chaperones pfam06644 and pfam07542, 

respectively, which are needed for mitochondrial ATP synthase assembly in all eukaryotic cells 

(Marchler et al., 2003). Atp11p and Atp12p mediate the formation of the mitochondrial F1 via 

transient interactions with AtpB and AtpA subunits, respectively. The absence of those factors 

leads to AtpA/AtpB aggregation into insoluble inclusion bodies in the mitochondrial matrix 

(Ackerman, 2002). Atp11p/AtpB and Atp12p/AtpA interactions prevent the formation of 

functional inactive AtpA/AtpA, AtpB/AtpB and AtpA/AtpB complexes. Subsequently, subunit 

AtpC initiates the release of chaperones from AtpA and AtpB subunits and binds to the mature 

complex (Ludlam et al., 2009). 

Atp10p and Atp22p are required for the formation of the mitochondrial FO. Atp10p acts in the 

incorporation of the FO-AtpF subunit (Ackerman and Tzagoloff, 1990; Helfenbein et al., 2003). 

The role of Fmc1p is unclear but it seems to be associated with F1 assembly and is required for 

correct folding of Atp12p (Lefebvre et al., 2001).  
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1.6 Photoprotection 

1.6.1 Heat dissipation of excess light energy as a photoprotective mechanism 

Light is one of the most important environmental factors for photosynthetic organisms. But 

excess light energy leads to the formation of reactive oxygen species (ROS) (mainly hydrogen 

peroxide (H2O2)) and singlet oxygen (1O2
*), which cause photo-oxidative damage of the 

photosynthetic complexes and of other cellular components. Photosynthetic organisms have 

evolved a series of mechanisms for sensing and responding to excess light energy.  

Different classes of photoreceptors, including phototropins, phytochromes, neochromes, 

rhodopsins and cryptochromes are involved in sensing high light (Li et al., 2009). In addition, 

excess light energy can be sensed indirectly via metabolic (e.g., accumulation of Chl 

intermediates) and biochemical signals (e.g., production of ROS and changes in thylakoid lumen 

pH) which trigger protective responses. These responses include several mechanisms like 

chloroplast movements, changes in gene expression and non-photochemical quenching. 

Heat dissipation of excess light energy (NPQ= non-photochemical quenching) is an important 

photoprotective mechanism leading to the reduction of ROS generation which is as an indicator 

for oxidative stress (Jahns and Holzwarth, 2012). At least three different NPQ components exist: 

1) qE, energy- or pH-dependent quenching (Krause et al., 1982), 2) qT, state transition 

quenching (Allen et al., 1981) and 3) qI, photoinhibitory quenching (Krause, 1988). In 

Arabidopsis, the relative contribution of those components is dependent on the light intensity and 

light exposure time. Total NPQ at moderate light intensities under short time illumination (10-

200 s) can be mainly attributed to pH-dependent quenching (qE). qI is the dominant component 

at high light intensity and longer light exposure ( > 30 min) which leads to degradation of D1 

(Nilkens et al., 2010; Lambrev et al., 2010). qT does not contribute significantly to NPQ in 

higher plants (Nilkens et al., 2010). 

The induction of qE occurs in minutes and is independent of gene expression but is dependent on 

the proton gradient formation across the thylakoid membrane (Briantais et al., 1979), PsbS (Li et 

al., 2002) and xanthophyll cycle activation (Demmig et al., 1987). The qE component is 

controlled by the PsbS protein which acts as a pH-sensing protein in vascular plants (Li et al., 
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2004). Monomerization of a PsbS dimer and association with the antenna proteins occur at low 

lumen pH (high light), whereas the PsbS dimer is associated with the PSII reaction center in low 

light or darkness (Bergantino et al., 2003). The decrease in thylakoid lumen pH generates a 

signal under excess light absorption. The signal is transferred to PSII antenna proteins, induces 

their conformational changes or changes in the protein-protein interactions and trigger qE 

activation. Two quenching sites were identified in higher plants which are active in the 

regulation of photosynthetic light-harvesting. The PsbS-dependent quenching site (Q1) is located 

in the LHCII and becomes detached from photosystem II (PSII) and a Zx-dependent quenching 

site (Q2) which is located in the remaining antenna of PSII (Holzwarth et al., 2009). 

 

1.6.2 Xanthophylls and photoprotection 

Xanthophylls are assumed to be photoprotective isoprenoids that play a role either directly or 

indirectly in non-photochemical quenching processes in the antenna of PSII (Li et al., 2009; 

Horton et al., 2005). 

Two different xanthophyll cycles are known to be important for photoprotection in land plants: 

1) violaxanthin (Vx) cycle and 2) lutein epoxide (Lx) cycle. The violaxanthin cycle is present in 

all land plants in which violaxanthin is reversibly converted to zeaxanthin via antheraxanthin 

(Jahns et al., 2009). The lutein epoxide cycle is present in some species, in which lutein epoxide 

is reversibly converted into lutein (Garcia-Plazaola et al., 2007; Esteban et al., 2009). Vx and Lx 

are epoxidized forms of xanthophylls which are present in low light or darkness, whereas de-

epoxidized xanthophylls (Zx, Ax and Lut) are present in excess light energy. 

The decrease in luminal proton concentration and saturated electron transport under high light 

activate the violaxanthin de-epoxidase enzymes via conformational changes (Kalituho et al., 

2007). The activated enzymes convert violaxanthin to zeaxanthin causing zeaxanthin 

accumulation under excess light energy. Zx is involved in the deactivation of excited singlet 

chlorophylls in the antenna of PSII and also acts as an antioxidant in the lipid phase of the 

thylakoid membrane under extreme high light stress (Havaux et al., 2007). The exact role of Zx 

in qE is still not clear but it was shown that qE can be modulated by Zx (Johnson et al., 2008). 
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The most abundant xanthophyll, lutein, plays a role in photoprotection of PSII by deactivation of 

triplet chlorophyll in higher plants (Mathis et al., 1979). Lutein is also involved in structural 

stabilization of antenna proteins and excitation energy transfer to chlorophylls (Siefermann-

Harms, 1985). 

 

1.7 GreenCut proteins 

Extensive genetic, biochemical and structural analyses have been performed to elucidate the 

architecture of photosynthesis and to identify the function of photosynthesis-relevant factors 

(Eberhard et al., 2008; Nelson and Ben-Shem, 2004). But gaps of knowledge especially in 

biogenesis of photosynthetic complexes and regulation of photosynthesis are still existent. 

Forward genetic screens of mutants affected in photosynthesis have been employed to identify 

new factors (Dent et al., 2005). A new approach to identify important proteins involved in 

photosynthesis is the use of comparative genomic analyses. This type of reverse genetic 

approach has become more and more popular since the number of sequenced genomes has 

increased almost exponentially over the last decades making phylogenomic comparison analyses 

more robust. In 2007, Merchant and co-workers released the ~120-megabase-long nuclear 

genome of Chlamydomonas in line with extensive comparative phylogenomic analyses. The 

comparison of the Chlamydomonas reinhardtii proteome with the proteome of the higher plant 

Arabidopsis thaliana, the moss Physcomitrella patens, the two algae Ostreococcus tauri, 

Ostreococcus lucimarinus and the proteome of human revealed that 349 proteins are conserved 

in photosynthetic organisms but not in non-photosynthetic organisms. In a second version 

(GreenCut2), additional sequenced genomes (Micromonas, Selaginella and soybean) have been 

included in the phylogenomic comparison resulting in a cross section of 597 proteins which are 

conserved in plants, moss and green algae but which are absent in non-photosynthetic organisms. 

GreenCut proteins are likely associated with photosynthesis and chloroplast function. However, 

311 proteins of the GreenCut2 proteins (52 %) are not functionally characterized yet. Not all of 

those proteins play directly a role in photosynthetic processes but can be involved in 

maintenance of chloroplast structure and function or in plant-specific processes e.g., signalling or 

regulatory activities. Based on gene ontology and molecular functions of predicted domains, 
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unknown GreenCut2 proteins have been placed in three different functional groups (Karpowicz 

et al., 2011): 1) Photosynthesis, Redox and Pigments, 2) Macromolecular Metabolism and 

Signaling and 3) Uncategorized proteins.  

Group 1 contains 62 proteins with confirmed or predicted chloroplast localization. The three 

proteins with unknown function in this group are CrCGL30 (At1g77090), CrCGL40 

(At1g49975) and CrCGL160 (At2g31040). 

 

1.8 Aim of this thesis 

The aim of the thesis was to elucidate the function of one of the GreenCut proteins (At2g31040, 

named Gc9) by in-depth biochemical and genetic characterization. The effect of Gc9 disruption 

on photosynthetic function was examined by chlorophyll a fluorescence measurements and by 

leaf pigment analyses. In addition, the effect of the mutationon on the abundance of 

photosynthetic protein complexes was analyzed. When it became clear that Gc9 disruption leads 

to a defect in ATP synthase complex abundance, the potential role of Gc9 in transcription, 

translation and assembly of ATP synthase subunits was studied. Moreover, interactions of Gc9 

with subunits of the membrane-embedded CFO complex were tested by the split-ubiquitin 

system. Finally, the entire experimental informations were combined to establish a model for 

Gc9 protein function in the assembly of the chloroplast ATP synthase complex in Arabidopsis 

thaliana. 
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2 Materials and Methods 

 

2.1 Plant material 

2.1.1 Arabidopsis thaliana mutant lines 

Two T-DNA insertion Arabidopsis mutant lines for the Gc9 gene (At2g31040) were used in this 

work. The gc9-1 line (SALK_057229) was obtained from the SALK collection and contains a 

ROK2 T-DNA insertion (Alonso et al., 2003), whereas the gc9-2 line (WiscDsLoxHs024_02B) 

was obtained from the Wisconsin DsLox T-DNA collection (Woody et al., 2007). Both lines are 

in Columbia-0 ecotype background. 

 

2.1.2 Complementation of gc9-1 mutant lines 

The Gc9 coding sequence (without the stop codon) was amplified using Gateway primers (for 

primer information see Table 2.1), and the Phusion DNA polymerase (Finnzymes, Finland 

Vantaa) according to the manufacturers instructions. The amplified region was introduced into 

the binary Gateway destination vector pB7FWG2.0 (Karimi et al., 2002) under the control of the 

Cauliflower Mosaic Virus 35S promoter using the Gateway LR Clonase enzyme mix 

(Invitrogen®). In the obtained construct, the Gc9 coding sequence is fused at the C-terminus 

with green fluorescent protein (eGFP) from Aequorea Victoria. The final construct was 

introduced into the Agrobacterium tumefaciens strain GV3101, which was then used to 

transform gc9-1 plants, by floral dip (Clough and Bent, 1998). For this purpose, gc9-1 plants 

were grown on soil under greenhouse conditions and then the flowers of 30-day-old Arabidopsis 

plants were dipped into A. tumefaciens suspension containing 5 % (w/v) sucrose and 0.0005 % 

(v/v) surfactant Silwet L-77, for 1 min. After dipping, plants were covered with plastic bags for 

two days and transferred to the greenhouse. Seeds were collected 4 weeks after transformation 

and BASTA (glufosinate ammonium)-resistant T1 plants were selected after BASTA treatment. 

The insertion of the Gc9::EGFP coding region into the gc9-1 genome was verified by Northern 

blot analyses and by immunodetection of the EGFP::Gc9 fusion protein. Successful 
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complementation was confirmed by measurements of leaf area surfaces from 8 to 25 day-old 

plants grown under short day conditions and by Non-Photochemical Quenching measurements 

described in the section 10.2. 

 

2.2 Plant growth conditions 

Arabidopsis thaliana wild-type and mutant seeds were stratified in Petri dishes on wet Whatman 

paper and placed for two days at 4 °C to break dormancy. Subsequently, seeds were transferred 

on potting soil (A210, Stender AG, Schermbeck, Germany) and grown under greenhouse-

controlled conditions (PFD: 70-90 µmol m-2 s-1, 16/8 h light/dark cycles) or in climate chambers. 

Different light regimes were used for plant growth when they were grown in climate chambers 

(short day: 16h/8h dark/light, normal day: 12h/12h dark/light, long day 8h/16h dark/light). 

Fertilizer (Osmocote Plus: 15 % N, 11 % P2O5, 13 % K2O, 2 % MgO) was added according to 

the manufacturer’s instruction (Scotts Deutschland GmbH, Nordhorn, Germany). For growth 

curve comparison, leaf area surfaces from 8 to 25 day-old plants were calculated by using the 

ImageJ software (Abramoff et al., 2004). 

MS (Murashige-Skoog, Duchefa Co., The Netherlands) plates supplemented with 1.5 % (w/v) 

sucrose were used to grow mutants which are not able to survive photoautotrophically (psad, 

atpd, petc and hcf136) and to select resistant plants after transformation. For this purpose, seeds 

were first treated for 8 min with 70 % ethanol and then 8 min with a solution containing 7.5 % 

hypochloride and 0.5 % Triton X-100. Sterilized seeds were washed four times with sterile water 

and plated on sterile MS plates containing 1.5 % (w/v) sucrose and 0.7 % (w/v) agar. Seeds were 

incubated in the dark at 4 °C for 48 hours and then transferred into the climate chamber (16 h/8 h 

light dark cycle) at 22 °C. 

Transformed plants were grown on MS medium containing kanamycin (25 µg/ml) for 3 weeks 

under low light. Then, plants were transferred on soil and grown under greenhouse conditions. 
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2.3 Bioinformatic sources 

Protein and gene sequences were obtained from the Arabidopsis Information Resource server 

(TAIR; http://www.arabidopsis.org) and the National Center for Biotechnology Information 

server (NCBI; http://www.ncbi.nlm.nih.gov/). The Vector NTI software (Invitrogen®) was used 

for protein sequence alignments. Transit peptide lengths were predicted using ChloroP 1.1 

(http://www.cbs.dtu.dk/services/ChloroP/), and transmembrane helices were predicted by 

Aramemnon (http://aramemnon.botanik.uni-koeln.de/), MINNOU (http://minnou.cchmc.org) or 

SCAMPI (http://scampi.cbr.su.se/), respectively. Alignments were formatted using Boxshade 

3.21 (http://www.ch.embnet.org/software/BOX_form.html). Gene expression levels of Gc9 in 

different tissues of Arabidopsis thaliana were examined by the “Bio-Array Resource for Plant 

Biology” platform (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Sequence identifiers for Gc9 

homologs in eukaryotic organisms are: Vitis vinifera (GI: 225446613), Oryza sativa (GI: 

125532550), Zea mays (GI: 413950882), Picea sitchensis (GI: 148907731), Selaginella 

moellendorffii (GI: 302814051), Physcomitrella patens (Pp1s184_139V6.4) and 

Chlamydomonas reinhardtii (GI: 159464014). Sequence identifiers for Gc9 homologs in 

cyanobacteria and Propionigenium modestumare: Synechocystis spec. (GI: 443313485), 

Synechococcus spec. (GI: 170077363), Cyanothece spec. (GI: 220906906), Anabaena variabilis 

(GI: 75908831), Gloeocapsa spec. (GI: 434391846), Calothrix spec. (GI: 428298284), Nostoc 

punctiforme (GI: 186684951), Nostoc spec. (GI: 427707295) and Propionigenium modestum 

(GI: 45648). 

 

2.4 Genomic DNA extraction and recovery of the T-DNA flanking sequences 

Genomic DNA was isolated from three-week-old Arabidopsis leaves. Leaves were frozen in 

liquid nitrogen and then grounded with metal beads. DNA was isolated by using an extraction 

buffer containing 0.25 M NaCl, 0.2 M Tris-HCl, pH 7.5, 25 mM EDTA and 0.5 % SDS. First, 

DNA was precipitated using 0.7 % volumes of isopropanol and then centrifuged for 30 min at 

4,700 g. The pelleted DNA was washed with 70 % ethanol, centrifuged again for 15 min at 



Materials and Methods 

18 

 

16,000 g and then resuspended in 100 µl ultrapure water containing 0.02 mg/ml RNAse A 

(Invitrogen, Karlsruhe, Germany). 1 µl of genomic DNA was used for a 10 µl reaction in PCR 

analyses. To identify the exact T-DNA insertion site in the genomic DNA insertion- and gene-

specific primers were employed in PCR assays (see primers list). The resulting PCR products 

were gel-purified and then sequenced by means of the sequencing service at the LMU München 

(http://www.genetik.biologie .uni/münchen.de/sequencing). 

 

2.5 RNA extraction 

Total RNA was extracted from powdered leaves (100 mg) using 4 ml of TRIzol reagent 

(Invitrogen®). Chloroform (200 µl) was then added to the supernatant. After incubation for 15 

min at room temperature, the organic and the aqueous phase were separated by centrifugation for 

10 min at 12,000 g at 4 oC. RNA in the aqueous phase was precipitated with isopropanol and a 

high salt solution (0.4 M Na citrate, 1.2 M NaCl) and then washed with 70 % ethanol. Air-dried 

RNA was resuspended in DEPC water and RNA concentration was measured by UV/visible 

spectrophotometer (Amersham Bioscience). 

 

2.6 Northern analysis 

Northern blot was performed as described in (Sambrook and Russell, 2001). In brief, 5 µg of 

total RNA was denatured and electrophoretically separated in formaldehyde-containing agarose 

gels (1.5 %) using a MOPS running buffer (20 mM MOPS, pH 7.0, 5 mM NaAc, 1 mM EDTA). 

RNA transfer onto nylon membranes (Hybond-N+, Amersham Bioscience) was carried out using 

SSC buffer (1.5 M Nacl, 0.15 M sodium citrate, pH 7.0). RNA was crosslinked to the membrane 

by UV radiation (Stratalinker® UV Crosslinker 1800). Methylene blue staining of rRNAs (0.02 

% (w/v) methylene blue, 0.3 M sodium acetate, pH 5.5) was performed to control equal loading. 

Membranes were pre-hybridized at least for 4 hours at 65 °C with pre-warmed hybridization 

buffer (7 % SDS, 0.25 M Na2HPO4, pH 7.0) containing denaturated Herring sperm DNA. To 

identify Gc9- and ATP synthase-specific transcripts, amplified DNA fragments from cDNA were 

labeled with radioactive [α-P32] dCTP and subsequently used for hybridization at 65 °C 
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overnight. Hybridized membranes were treated twice with washing buffer (0.1 % SDS, 2x SSPE) 

at 60 °C (first time for 30 min and second time for 15 min) and then exposed to the Storage 

Phosphor Screen (Fuji). Signals were detected and quantified by the Typhoon Phosphor Imager 

(GE Healthcare, Munich, Germany) and the Bioprofile software (Peqlab, Erlangen, Germany), 

respectively. 

 

2.7 cDNA synthesis and RT-PCR analysis 

For cDNA synthesis, 1 µg RNA was mixed with 1 µl oligo (dT) (500 mg/µl) primers, heated for 

5 min at 65 °C and incubated for 1 min on ice. Then, 1 µl dNTP (10 mM), 4 µl 5x first strand 

buffer (Invitrogen), 1 µl DTT (0.1 M), 1 µl H2O and 1 µl of Superscript III reverse transcriptase 

(Invitrogen) were added and heated for 60 min at 50 °C and for 15 min at 70 °C. The quality of 

synthesized cDNA was tested by PCR using a primer combination for Ubiquitin. Synthesized 

cDNA was diluted 1:10 in DEPC water for RT-PCR and Real time PCR. Gc9 transcript levels 

were analyzed in semi-quantitative PCR (RT-PCR) assays using primers for amplicons flanking 

the T-DNA insertion sites (see primers list). The RT-PCR program includes an initial 

denaturation step (94 °C for 3 min) followed by 25 cycles of denaturation (94 °C for 15 sec), 

annealing (55 °C for 45 sec) and extension (72 °C for 90 sec). Electrophoretic analyses of PCR 

products were performed on 1-2 % (w/v) agarose gels supplemented with 0.5 µg/ml ethidium 

bromide in TAE buffer (40 mM Tris-acetate, 20 mM Sodium acetate, 2 mM EDTA, pH 8.2). 

 

2.8 Real time PCR analyses 

PCR reaction samples for Real-time PCR analyses are composed of iQ™ SYBR Green 

Supermix (Bio-Rad, California, USA), transcript-specific primers (see primers list) and cDNA as 

template. A control reaction without template cDNA was included, in order to calculate primer- 

dimer formation. Ubiquitin was employed as a reference gene. The PCR program consisted of an 

initial denaturation step (at 95 °C for 5 min) which was followed by 40 cycles of denaturation 

(95 °C for 20 sec), annealing (57 °C for 20 sec) and extension (72 °C for 20 sec). DNA 

amplification was monitored by detecting SYBR-Green fluorescence signals at 530 nm at the 
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end of each extension period. The fluorescence signals was detected by IQ™5 Multicolor Real 

time PCR Detection system (Bio-Rad) and then gene expression was calculated using the iQ5™ 

Optical System Software (Bio‐Rad). 

 

2.9 Leaf pigment analysis 

Leaves from 5-week-old wild type, gc9-1 and transgenic oeGc9::EGFP plants grown under 

short-day conditions were harvested 4 h after simulated sunrise. The harvested leaves were 

powdered in liquid nitrogen and incubated with 100 % acetone on ice for 10 min in the dark. 

Centrifugation at 16,000 g for 20 min at 4 °C was performed and supernatants were transferred 

into new tubes. Pigment compositions in the supernatants were analyzed by reverse-phase HPLC 

as described in Färber et al. (1997). 

 

2.10 Chlorophyll a fluorescence measurement (PAM) 

In vivo chlorophyll a fluorescence was measured by using the Dual-PAM (Pulse Amplitude 

Modulation) 101/103 fluorometer (Walz GmbH, Effeltrich, Germany). Slow induction and dark 

relaxation kinetics were measured according to Roháček (2010). Single leaves of dark adapted 

(20 min) plants grown under short day conditions were first exposed shortly (30 sec) to 

measuring light for minimal chlorophyll fluorescence yield determination (F0). Then, a saturating 

light pulse (10,000 µE m-2 s-1, 800 ms) was applied for maximal chlorophyll fluorescence yield 

determination (Fm). The maximal quantum yield (Fv/Fm) - which reflects PSII functionality - was 

calculated by the formula FV/Fm= (Fm- F0)/Fm. Actinic red light was applied for 15 min and 

steady-state fluorescence yields (FS) were measured. A saturating light pulse (10,000 µE m-2 s-1, 

800 ms) at the end of the light phase was applied to determine the maximal fluorescence yield in 

the light (Fm’). After the dark relaxation phase (10 min), Fm’’ and F0’’ were measured by 

applying a saturating light pulse (10,000 µE m-2 s-1, 800 ms). Parameters were calculated as 

follows: 

Effective quantum yield of PSII: ФII = (Fm’ - F0’)/Fm’= Fv’/Fm’ 
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Estimation of minimal fluorescence yield in the light: F0’ = F0 / (Fv/Fm + F0/Fm’) 

Electron transport rate through PSII: ETR (II) = ФII * PAR * 0.84 * 0.5 

Excitation pressure: 1- qP = 1 - (Fm’ - FS) / (Fm’ - F0’) 

Nonphotochemical Chl fluorescence quenching: NPQ = (Fm - Fm’) / Fm’ 

Nonphotochemical quenching of variable Chl fluorescence:  

qN = ((Fm - F0) - (Fm’ - F0’)) / (Fm’ - F0’) = 1 - Fv’/Fv 

Energy-dependent quenching of Chl fluorescence: qE = Fm’’/Fm’ - Fm/Fm’’ 

Photoinhibitory quenching: qI = qIDAS+ qILAS = (0.83 - Fv/Fm) + (Fv - Fv’’)/Fv 

Additionally, slow induction and dark relaxation assays were performed under increasing actinic 

light intensities (13, 22, 53, 95, 216, 339 and 531 µmol m-2 s-1) in seven successive 

measurements to determine ETR, NPQ, qE and qI. 

The imaging chlorophyll fluorometer (Walz Imaging PAM, Walz GmbH, Effeltrich, Germany) 

was used to determine chlorophyll a fluorescence parameters for whole plants. 

First, the dark adapted plants (20 min) were exposed to blue measuring light (1 Hz, intensity 4) 

and then to a first saturating light pulse (intensity 4). A second saturating light pulse was applied 

at the end of the actinic light phase (10 min, 100 µE m-2 s-1) to calculate Y (NPQ) values as 

described by Kramer et al. (2004). 

 

2.11 Generation of a Gc9 antibody and determination of the molar ratio of 

Gc9 to AtpC1 

The partial sequence of Gc9 coding for the N-terminal part of the protein (without the predicted 

transit peptide and the transmembrane domain) and the sequence of AtpC1 (without the sequence 

coding for the predicted transit peptide) were cloned into the pET151 Topo vector (Invitrogen) to 

overexpress Gc9 and AtpC1 with an N-terminal His-Tag in Escherichia coli (see primer list).    

E. coli cultures were grown at 37 °C in LB medium (5 g/L yeast extract, 10 g/L tryptone and 10 

g/L NaCl) supplemented with 100 µg/ml carbenecillin. Gc9 and AtpC1 synthesis in E. coli cells 

(BL21 strain) was induced by adding IPTG to a final concentration of 1 mM. Cultures were then 

grown under continuous shaking for 4 hours at 37 °C. After harvesting the cells, the expressed 

proteins were purified under denaturating conditions using Ni2+-affinity purification by Ni2+-
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NTA Agarose (Qiagen, Hilden, Germany). Gc9 protein was bound to Agarose beads by shaking 

for 1 h at 4 °C. Agarose beads were washed with 100 mM NaH2PO4, 10 mM Tris/HCl, 8 M urea, 

pH 6.3 in a column and were eluted with elution buffers (100 mM NaH2PO4, 10 mM Tris/HCl, 8 

M urea, pH 5.9 and pH 4.5). 

Elution fractions were loaded on Tricin-SDS-PAGE and fractionated proteins were precipitated 

by the use of a 0.1 M KCl solution. To generate polyclonal antibodies, Gc9 was electroeluted 

from the gel and injected into rabbits. Antiserum was employed in 1/200 to 1/1,000 dilutions. 

The molar ratio of Gc9 to AtpC1 in wild type thylakoid membranes was determined by 

comparing immunodetected amounts of heterologously expressed and purified proteins to 

immunodetected proteins of thylakoid samples. For this purpose, the concentration of purified 

Gc9 and AtpC1 proteins were calculated by comparing quantified band intensities of elution 

fractions to a BSA standard curve on coomassie-stained Tricin-SDS-PAGE. Then, decreasing 

amounts of purified Gc9 or AtpC1 protein samples and wild type thylakoid membrane samples 

corresponding to 5 µg chlorophyll were separated on Tricin-SDS-PAGE. After blotting on PVDF 

membranes, proteins were immunodetected with antibodies against Gc9 and AtpC1. Quantified 

signals from wild type thylakoid samples were compared to signals from the loaded Gc9 or 

AtpC1 gradient. 

 

2.12 Protoplasts isolation and GFP signal detection 

Three week old leaves of transgenic Arabidopsis plants carrying the 35S::Gc9::EGFP construct 

were cut into small pieces and incubated with enzyme solution (2.6 mg/ml Macerozyme 

(Duchefa), 10 mg/ml Cellulase (Duchefa), 10 mM MES pH 5.7, 20 mM KCl, 0.5 mM Mannitol, 

10 mM CaCl2 and 1 mg/ml BSA) for 4 h in the dark at room temperature to lyse cell walls. The 

mixture was filtered through a nylon membrane (pore size 72µm) and transferred into glass 

tubes. After centrifugation for 10 min at 50 g, the pellet was quickly resuspended in 8.5 ml MSC 

solution (10 mM MES, pH 5.7, 20 mM MgCl2 and 120 mg/ml saccharose) and overlaid carefully 

with 2 ml MMM solution (10 mM MES, pH 5.7, 10 mM MgCl2, 10 mM MgSO4 and 0.5 M 

Mannitol). After centrifugation (70 g for 10 min), the dark green band in the interphase 

containing the protoplasts were washed once with MMM solution (50 g for 10 min) and 
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resuspended in MMM solution. The GFP signal and chlorophyll fluorescence from stably 

transformed protoplasts were detected using an Axio Imager fluorescence microscope with an 

integrated ApoTome (Zeiss, Jena, Germany).  

 

2.13 Intact chloroplast and envelope isolation from Arabidopsis leaves 

Leaves from 4-week-old dark adapted plants were harvested (20 g) and homogenized in 

homogenization buffer (450 mM Sorbitol, 20 mM Tricine-KOH, pH 8.4, 10 mM EDTA, 10 mM 

NaHCO3, 0.1 % (w/v) BSA) using a waring blender. The homogenate was filtered through two 

layers of Miracloth (Calbiochem) and centrifuged (Beckman rotor JA-14) at 500 g for 6 min at   

4 °C to collect chloroplasts. The supernatant was discarded immediately to remove the toxic 

vacuole extract and the pelleted chloroplasts were resuspended in 800 µl of 0.3 M sorbitol, 20 

mM Tricine-KOH, pH 8.4, 2.5 mM EDTA and 5 mM MgCl2. The suspension was added on a 

two-step Percoll gradient (40-80 % (v/v)) and centrifuged (low acceleration and no brake) at 

6,500 g (Beckman, swing rotor JS 13.1) for 20 min at 4 °C. Intact chloroplasts were collected 

from the 40 % to 80 % Percoll interface and ruptured by treatment in lysis buffer (20 mM 

HEPES/KOH, pH 7.5, 10 mM EDTA) for 30 min on ice. The insoluble fraction (thylakoid and 

envelope) and the soluble fraction (stroma) were separated by centrifugation at 42,000 g for 30 

min at 4 °C.  

Leaves from 4 week old wild type plants (300 g) were harvested for envelope and thylakoid 

membranes isolation. Chloroplast isolation was performed as described above. Envelope and 

thylakoid membranes were separated on a sucrose step gradient (1.2/1.0/0.46 M sucrose) by 

centrifugation at 58,000 g for 2 h. Envelope membranes were collected from the interface 

between the layers of 0.46 and 1 M sucrose and thylakoid membranes from the pellet, 

respectively. Each fraction was washed several times and resuspended in 10 mM HEPES, 5 mM 

MgCl2, pH 7.6. Intact chloroplast, the thylakoid, the envelope and the stroma fraction were 

separated on 12 % SDS-PAGE for immunoblot analyses. 
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2.14 Thylakoid isolation from Arabidopsis leaves 

Leaves from 6-week-old dark adapted (16 h) plants were harvested and homogenized by 

blending in T1 buffer (0.4 M Sorbitol, 0.1 M Tricine, pH 7.8) supplemented with fresh protease 

inhibitors (0.2 mM PMSF, 1 mM benzamidin, 5 mM aminocaproicacid). The suspension was 

filtered through double-layered Miracloth (Calbiochem®) and centrifuged at 1,500 g for 4 min at 

4 °C. The pellet was resuspended in T2 buffer (20 mM HEPES/KOH, pH 7.5, 10 mM EDTA) for 

10 min on ice to lyse the chloroplasts and then centrifuged at 9,500 g for 10 min at 4 °C. The 

chlorophyll concentration of the samples was measured as described in Porra et al. (1989). 

Thylakoid membrane were frozen in liquid nitrogen and stored at -80 °C or were directly 

resuspended in loading buffer (6 M urea, 50 mM Tris-HCl pH 6.8, 100 mM DTT, 2 % (w/v) 

SDS, 10 % (w/v) glycerol and 0.1 % (w/v) bromophenol blue) for immune titration analysis as 

described below.  

 

2.15 Blue Native analysis and second dimension gel 

Leaves from 6-week-old plants grown under a short day regime were harvested and thylakoids 

were isolated as described in section 2.14. Thylakoid membrane samples were adjusted 

according to chlorophyll and washed four times in washing buffer (25 mM BisTris/Hcl, pH 7.0, 

20 % glycerol). The samples were resuspended in solubilization buffer (25 mM BisTris, pH 7.0, 

20 % glycerol, 1 % β-dodecyl maltoside (β-DM); adjusted to 1 ml/mg chlorophyll) and incubated 

for 10 min on ice. Non-soluble material was precipitated by centrifugation at 16,000 g for 20 min 

at 4 oC and supernatants (soluble material) were supplemented with 1/20 volume of BN loading 

buffer (100 mM BisTris/HCl, pH 7.0, 750 mM ε- aminocaproic acid, 5 % (w/v) Coomassie G-

250). The solubilized samples corresponding to 80 µg of chlorophyll were loaded per lane on 

BN-PAGE (4-12 % gradient) which was prepared as described in Schägger et al. (1994). The gel 

was run in cathode buffer (50 mM Tricine, 15 mM BisTris, pH 7.0, 0.02 % Coomassie-G-250) 

and anode buffer (50 mM BisTris, pH 7.0) with a constant voltage of 25 V at 4 oC overnight. On 

the following day, the blue cathode buffer was exchanged with coomassie-free cathode buffer 

and destaining of gels was performed at 250 V until the dye front reached the bottom of the gel 

length. The stripes of the Blue Native gels were incubated in denaturing buffer (0.5 M Na2CO3,  
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2 % (w/v) SDS, 0.7 % (v/v) β-mercaptoethanol) for 30 min at room temperature. The gel stripes 

were then loaded on top of a Tricine-SDS-PAGE (10 % gels supplemented with 4 M urea) which 

were prepared according to Schägger (2006). The gel was run in cathode buffer (0.1 M Tris, 0.1 

M Tricine, 0.1 % (w/v) SDS) and anode buffer (1 M Tris/HCl, pH 8.9) overnight at 25 mA. Gels 

were subsequently subjected to immunoblot analysis with antibodies against ATP synthase 

subunits as described below. 

 

2.16 Complex isolation using sucrose density gradient centrifugation 

Leaves of 6-week-old plants were harvested and homogenized in isolation buffer (25 mM MES, 

pH 6.5, 330 mM sucrose, 5 mM MgCl2, 1.5 mM NaCl, and 100 mM NaF). The homogenate was 

filtered through double-layered Miracloth (Calbiochem®) and centrifuged at 4,500 g for 5 min at 

4 oC. The collected thylakoids (pellet) were resuspended in EDTA wash buffer (5 mM EDTA, 

pH 7.8) with a paint brush and centrifuged at 13,000 g for 5 min at 4 oC. The pellet was 

resuspended in H2O and solubilized in 1 % (w/v) DM for 10 min on ice. The soluble material 

was collected by centrifugation at 16,000 g for 5 min at 4 oC (supernatant fraction) and loaded 

onto the prepared sucrose gradient (0.1 M to 1 M sucrose, 5 mM Tricine/NaOH, pH 8.0, 0.05 % 

(w/v) DM). 

Solubilized protein complexes were fractionated on sucrose gradients by ultracentrifugation at 

191,000 g for 21 hours at 4 oC. Fractions (1-19) were collected and separated on Tricine-SDS-

PAGE (10 %, 4 M urea). After blotting on PVDF membranes, ATP synthase subunits and Gc9 

were immunodetected with specific antibodies. 

 

2.17 Salt washing 

Salt wash treatments were performed as described by Karnauchov et al. (1997). Isolated 

thylakoid membranes were resuspended to a final chlorophyll concentration of 0.5 mg/ml in 50 

mM HEPES/KOH, pH 7.5 supplemented either with 2 M NaCl, 0.1 M Na2CO3, 2 M NaSCN or 

0.1 M NaOH. Suspensions were incubated for 30 min on ice and then solublilized and insoluble 

proteins were separated by centrifugation at 10,000 g for 10 min at 4 oC. Samples were 
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fractionated on Tricin-SDS-PAGE (10 %) and subjected to immunoblot analysis using Gc9, 

Lhcb1 (Agrisera) and PsaD (Agrisera) antibodies. 

 

2.18 Western blot analysis 

Solubilized proteins were fractionated by gel electrophoresis and transferred to PVDF 

membranes (Immobilon®-P, Millipore, Eschborn, Germany) using a semi-dry blotting apparatus 

(Bio-Rad). A constant current corresponding to 1 mA cm-2 in transfer buffers (cathode buffer: 25 

mM Tris, 10 % methanol and 40 mM glycine, pH 9.4; anode buffer 1: 0.3 M Tris, pH 10.4 and 

10 % methanol; anode buffer 2: 25 mM Tris, pH 10.4 and 10 % methanol) was used. The PVDF 

membranes were blocked with 3 % BSA or 5 % (w/v) milk in TBST buffer (10 mM Tris, pH 8.0, 

150 mM NaCl and 0.1 % Tween- 20) for 1 hour at room temperature. Then, membranes were 

incubated (4 oC overnight) with antibodies against subunits of PSI (Agrisera), PSII (Agrisera), 

Cyt b6f (Agrisera), ATP synthase subunits (obtained from Jörg Meurer, University of Munich) 

and Gc9. After incubation with first antibodies, membranes were washed 3 times (10 min each) 

with TBST buffer at room temperature and incubated with the corresponding secondary 

antibodies (conjugated with horseradish peroxidase) for 1 hour at room temperature. After 

washing 5 times (5 min each) with TBST buffer, signals were detected by enhanced 

chemiluminescence (ECL kit, Amersham Bioscience®) using an ECL reader system (Fusion 

FX7, PeqLab®, Erlangen, Germany) and quantified by the Bioprofile software (Peqlab, 

Erlangen, Germany). 

 

2.19 Association of mRNAs with polysomes 

Polysome analyses were performed according to Barkan (1988). Around 300 mg of leaves from 

four week-old plants were powdered in liquid nitrogen and homogenized in polysome extraction 

buffer (0.2 M Tris-HCl, pH 9.0, 0.2 M KCl, 35 mM MgCl2, 25 mM EGTA, 0.2 M sucrose, 1 % 

(v/v) Triton X-100, 2 % (v/v) polyoxyethylene-10-tridecyl ether, 0.5 mg/ml heparin, 100 mM 2-

mercaptoethanol, 100 µg/ml chloramphenicol and 25 µg/ml cycloheximide). The homogenate 

was incubated on ice with 0.5 % (w/v) sodium deoxycholate for 10 min for microsomal 
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membrane solubilization and centrifuged at 16,000 g for 15 min at 4 oC. Supernatants were 

loaded on top of sucrose gradients (15-55 %) and centrifuged (240,000 g) for 65 min at 4 oC in 

an SW60 rotor (Beckman). Ten fractions were collected starting from the top and were 

supplemented with 5 % SDS and 0.2 M EDTA, pH 8.0. RNA was extracted from these fractions 

with phenol/chloroform/isoamyl alcohol (25:25:1) and precipitated with 95 % ethanol at room 

temperature. Resuspended RNA in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was 

subjected to gel electrophoresis and RNA gel blot analyses as described above. 

 

2.20 In vivo translation assay 

For in vivo radioactive labeling of thylakoid proteins, leaf discs of plants grown under short day 

conditions were used (5 discs for each genotype and for each time point). Leaf discs were 

vacuum-infiltrated with pulse-chase buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM EDTA, 

0.2 % (v/v) Tween 20) containing 20 μg/ml cycloheximide. Samples were incubated in light for 

30 min to block cytosolic translation and then one sample (time point 0) was collected. The other 

samples were transferred in new tubes and were vacuum–infiltrated with pulse-chase buffer 

(with cycloheximide) containing 1mCi of [35S] Met, in order to radiolabel newly translated 

chloroplast proteins. The infiltrated leaf discs were transferred in small Petri dishes, incubated in 

light (100 μE) and samples were collected after 5 and 30 min of incubation (pulse 5 min and 

pulse 30 min samples). For thylakoid protein preparation, collected samples were washed, 

grinded in 20 mM HEPES/KOH, pH 7.5, 10 mM EDTA and filtered into a new tube. The soluble 

fraction was obtained by centrifugation at 16,000 g for 10 min at 4 °C. After adjusting samples 

according to the chlorophyll concentration, de novo synthesized proteins were separated on 

Tricine-SDS-PAGE (8 % acrylamide, 4 M urea) and blotted on PVDF membranes. PVDF 

membranes were exposed to Storage Phosphor Screen (Fuji) and radioactive labeled proteins 

were detected with the Typhoon Phosphor Imager (GE Healthcare, Munich, Germany). 

 

2.21 Split-Ubiquitin assay 

Transient interaction partners of Gc9 were identified in split ubiquitin assays. Gc9 (without the 

ChloroP-predicted, 46 aa long transit peptide) was fused to the C-terminal domain of ubiquitin 
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(Cub) by cloning the respective CDS into the bait vector pAMBV4 (Dual-systems Biotech). 

Coding sequences of potential interaction partners (AtpH, AtpF, AtpI, AtpA, PsbA, PsbC, PsaA, 

PsaB, FNR1, Fd and cpSecY) were fused to the mutated N-terminus of ubiquitin (NubG) by 

cloning the sequences into the multiple cloning site of the prey vector pADSL (Dual-systems 

Biotech). The vectors pAlg5-NubG (NubGAlg5) and pAlg5-NubI (NubIAlg5) were used as a 

negative and positive control. The yeast strain was cotransformed with various combination of 

bait and prey constructs using the Dual-Membrane kit (Dual-systems Biotech). After 

cotransformation, yeast cells were plated on permissive medium lacking the two amino acids Leu 

and Trp (-LT). Then the same colonies were grown on selective medium without Leu, Trp and 

Histidine (-LTH). 

 

2.22 Primers list 

Table 2.1 Primers used in Materials and methods. Overhangs which are necessary for cloning are underlined. 

Gene   Forward primer Reverse primer Appilication 
T-DNA/Gc9 junction 
in gc9-1  

AAGTTAAGATTCCATTTTCGCA
TC 

TCCCTAAACATCACATCCTGC Genotyping primers 
gc9-1 

T-DNA/Gc9 junction 
in gc9-2 

GAGTACAATCAATTTTCCTTGT
GGACTTG 

TGATCCATGTAGATTTCCCGGACATGA
AG 

Genotyping primers 
gc9-2 

Gc9 CTTTAGCAGAGTTATGAGTC CAATAGCCTTACTCATTTGC Amplicon 2 for RT-PCR 

Gc9 TACCCAATAAGAAACCTGAG TAAGTCTGTGGAAGTAATGG Amplicon 1 for RT-PCR 

Gc9 GGGGACAAGTTTGTACAAAAA
AGCAGGCTCAATGGCGATTCTT
AGTTACAT 

GGGGACCACTTTGTACAAGAAAGCTG
GGTGATCACTGGCCTGTGTGTCTG 

Gc9 cloning into 
pB7FWG2.0 for 
complementation 
studies 

AtpC CACCGCTTCCTCTGTTTCACCA
CTCCAAGCG 

TCAAACCTGTGCATTAGCTCCAGCA AtpC TOPO cloning 
into pET151 for 
overexpression in E. coli 

Gc9  CACCGGAGAGTACGGTGGTCC
TCC 

TTATACTTCTGGGTCACCACGTG Gc9 TOPO cloning into 
pET151 for 
overexpression in E. coli 

AtpA GACAGACAGACCGGTAAAAC AAACATCTCCTGACTGGGTC Northern probe 

AtpB TTAGGTCCTGTCGATACTCG ACCCAATAAGGCGGATACCT Northern probe 

AtpE GTGTACTGACTCCGAATCGA 
 

TATTGAGAGCCTCGACTCGT Northern probe 

AtpF 
 

TCGTTTACTTGGGTCACTGG 
 

TTGTTGGAAAACCCGTTCGC 
 

Northern probe 

AtpH 
 

GAATCCACTGGTTTCTGCTG 
 

AGCGCTAATGCTACAACCAG 
 

Northern probe 

AtpI 
 

TATCCAGTTACCTCAAGGGGA
GTTA 

TTAATGATGACCTTCCATAGACTCA 
 

Northern probe 

Gc9 CACCGGAGAGTACGGTGGTCC
TCC 

CAATAGCCTTACTCATTTGC Northern probe 

Gc9 ATTAACAAGGCCATTACGGCC
ATGAAAATCATTCTACCCAATA
AGA 

AACTGATTGGCCGAGGCGGCCCCATCA
CTGGCCTGTGTGTCTGGAG 

pAMBV4 cloning for 
split-ubiquitin assays 
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3 Results 

 

3.1 GreenCut protein 9 (Gc9) is found in all photosynthetic eukaryotes 

The use of comparative genomic analysis is an applicable approach to screen for novel proteins 

involved in photosynthetic function. By this approach proteins were identified which are shared 

by organisms from the green lineage among the eukaryotic organisms but which are absent in 

non-photosynthetic eukaryotes (Merchant et al., 2007). These proteins are designated as 

GreenCut proteins. This cross section contains 597 Chlamydomonas proteins with homologs in 

higher plants (Arabidopsis thaliana), moss (Physcomitrella patens) and green algae 

(Chlamydomonas reinhardtii, Ostreococcus tauri and Ostreococcus lucimarinus). One of the 

GreenCut proteins with unknown function is Gc9/Cgl160 (AT2G31040). This protein is encoded 

by a single nuclear gene which is located on chromosome 2 of Arabidopsis thaliana. The 

genomic sequence of the gene, from the start to the stop codon, is 1919 bp long, whereas the 

ORF is constituted of nine exons and is 1044 bp long. The 350-aa-long Gc9 protein (38.6 kDa) is 

predicted to be targeted to the chloroplast by a 46-aa-long transit peptide sequence (ChloroP, 

Emanuelsson et al., 1999). Gc9 harbors four transmembrane domains (Aramemnon database, 

Schwacke et al., 2003) and two phosphorylation sites were experimentally identified in the N-

terminal domain in a phosphoproteome study (Reiland et al., 2009) (Figure 3.2 A). 

Transcriptome data (http://atted.jp/data/locus) show that Gc9 is co-regulated with proteins 

important for photosynthetic functions, such as TAP38 (regulatory protein), NPQ1 

(photoprotective protein), PSAE (structural protein) and HCF136 (assembly factor for PSII) 

(Table 3.1). Moreover, gene expression profile analyses of Arabidopsis thaliana 

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) revealed highest expression levels in 

photosynthetic tissues (Figure 3.1). 
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Table 3.1 Gc9 Coregulation with photosynthetic genes  

Gene locus, average correlation to query loci (Gc9), putative subcellular targeting and function of the respective 

genes were obtained from the ATTED database (atted.jp). The putative subcellular targets (C: chloroplast 

localization; M: mitochondrial localization; Y: cytosolic; O: others) are related to TargetP and WoLF PSORT 

programs which are shown on the ATTED database. 

Locus Ave. cor. 

to query 

loci 

Target (TargetP, 

WoLF PSORT) 

Function 

At4g27800 0.86 M, C TAP38/thylakoid-associated phosphatase 38 

 

At3g15840 0.83 C, M PIFI (post-illumination chlorophyll fluorescence 

increase) 

At1g20020 0.85 C, C FNR2(ferredoxin-NADP(+)-oxidoreductase 2) 

 

At1g08550 0.77 O, Y NPQ1 (non-photochemical quenching 1) 

At1g18730 0.78 C,Y NDF6 (NDH dependent flow 6) 

At2g28800 0.72 C, C ALB3 (63 kDa inner membrane family protein) 

 

At5g66190 0.76 C, C FNR1 (ferredoxin-NADP(+)-oxidoreductase 1) 

 

At3g16250 0.76 C, C NDF4 (NDH-dependent cyclic electron flow 1) 

 

At1g70760 0.75 C, C NdhL (inorganic carbon transport protein-related) 

At4g11960 0.60 C, C PGRL1B (PGR5-Like B) 

At5g23120 0.75 C, C HCF136 (photosystem II stability/assembly factor) 

 

At2g20260 0.74 C, C PSAE-2 (photosystem I subunit E-2) 

At4g00895 0.67 C, C ATPase, F1 complex, OSCP/delta subunit protein 
 

At1g15980 0.73 C, C NDF1 (NDH-dependent cyclic electron flow 1) 
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Figure 3.1 Overview of Gc9 mRNA expression in different tissues of A. thaliana  

Expression levels ± standard deviation were obtained from the BAR Arabidopsis eFP Browser 

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) for different tissues. Data are normalized by the GCOS method, TGT 

value of 100. Most tissues were sampled in triplicates.  

 

Protein sequence alignments confirmed that Gc9 is conserved in different species from the green 

lineage like in higher plants (Oryza sativa, Zea mays, Vitis vinifera, Picea sitchensis) spikemoss 

(Selaginella moellendorffii), moss (Physcomitrella patens) and also in eukaryotic green algae 

(Chlamydomonas reinhardtii). The transmembrane domain (84.0/25.7% similarity/identity; 209-

350 aa of Gc9) shows higher conservation than the N-terminal domain (59.8/4.3% 

similarity/identity; 47-208 aa of Gc9) (Figure 3.2 B). 

BLAST searches of the Gc9 orthologous using Chlamydomonas reinhardtii sequence against the 

protein domain database CDD (Marchler- Bauer et al., 2011) revealed that the membrane domain 

shares some sequence similarity with the Atp1/UncI like domain (CDD entry: Pfam03899) 
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(Figure 3.2 C). Atp1/UncI proteins are encoded in the bacterial F1FO ATP synthase operons and 

are short, hydrophobic proteins. Recent studies showed that UncI plays a chaperone-like role in 

the c-ring assembly of the ATP synthase in Propionigenium modestum (Suzuki et al., 2007; 

Ozaki et al., 2008). 
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Figure 3.2 Characterization and protein sequence alignment of Gc9 

A) The predicted chloroplast transit peptide (46aa), four transmembrane domains and two phosphopeptides are 

shown in the schematic diagram of Gc9. B) The protein sequence of Gc9 from A. thaliana was compared with its 

homologs from other plant and algal species. Sequence similarity/identity in at least 50 % of the sequences is 

colored in grey/black, respectively. Predicted chloroplast targeting sequences by ChloroP are shown in lower case 

letters. The transmembrane domains were predicted by the Aramemnon database for V. vinifera (Vitis vinifera), O. 

sativa (Oryza sativa), Z. mays (Zea mays) and by the MINNOU program for P. sitchensis (Picea sitchensis), S. 

moellendorffii (Selaginella moellendorffii), P. patens (Physcomitrella patens) and C. reinhardtii (Chlamydomonas 

reinhardtii). The predicted transmembrane domains are highlighted in bold letters. C) Sequence alignment of the 

Gc9 transmembrane domain with the UncI sequence of Propionigenium modestum (P. modestum). The prediction of 

the Gc9 transmembrane domain was adopted from the Aramemnon database, whereas the UncI transmembrane 

domains were predicted by SCAMPI. Transmembrane domains are shown in bold letters and are colored as 

indicated in the figure legends. 

 

3.2. Gc9 knock-out plants grow slower than wild type plants 

To identify the function of Gc9, two A. thaliana (Columbia-0 ecotype) T-DNA insertion mutant 

lines were obtained from public available mutant line collections. T-DNA insertion sites were 

precisely determined by amplifying the flanking sequences using insertion- and gene-specific 

primers and subsequently sequencing of the respective PCR products. In gc9-1, the T-DNA 

(ROK2 construct) is inserted in the first of nine exons, 344 bp downstream of the start codon, 

whereas in gc9-2 the T-DNA is located in the 5’UTR, 72 bp upstream of the start codon (Figure 

3.3 A). Leaf surface measurements performed every four days indicated that the growth rate of 

gc9-1 plants is slower than the growth rate of wild type plants, whereas the growth rate of gc9-2 

is close to that of the wild type under short day conditions (Figure 3.3 B and C). 
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Figure 3.3 T-DNA insertion mutant lines and growth phenotype of gc9-1 and gc9-2 

A) Positions of T-DNA insertions in the Gc9 gene. Untranslated regions are shown by black boxes, whereas exons 

are indicated by white boxes and intron sequences by black lines. Two transcript sites which were used for Real time 

PCR analysis are indicated by amplicon 1 and amplicon 2. B) Growth phenotype of four week-old wild type, gc9-1 

and gc9-2 plants grown in the climate chamber under short day conditions (8h light/16h dark). C) Growth curves of 

wild type (Col-0) and the two mutant lines (gc9-1, gc9-2) were calculated by leaf surface measurements using the 

ImageJ program. Values are averages ± standard deviations of 20 plants. Standard deviations are indicated by error 

bars. 

 

Real-time PCR analysis for two transcript sites on synthesised cDNA from wild type, gc9-1 and 

gc9-2 leaves revealed that Gc9 expression was strongly reduced in gc9-1 but Gc9 transcripts 

were still detectable in gc9-2 (Figure 3.4 A). Semi-quantitative PCR (RT-PCR) analyses were 
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carried out using Gc9- and ubiquitin-specific primers to detect transcripts in wild type and 

mutant plants. RT-PCR results confirmed that Gc9 transcripts were still detectable in gc9-2 but 

not in gc9-1 (Figure 3.4 B). In addition, western blot analyses with Gc9-specific antibodies 

raised against fractionated thylakoid membrane proteins were performed. The mature Gc9 (33.7 

kDa) was detected in wild type thylakoid membrane samples, but less than 25 % of Gc9 amounts 

were present in gc9-2, whereas Gc9 was completely absent in gc9-1 (Figure 3.4 C). Overall, Gc9 

interruption prevents accumulation of mRNA in gc9-1 and leads to a Gc9 knock-out mutant line 

with a slower growth rate. In contrast, Gc9 mRNA accumulation is only slightly reduced in gc9-

2 and leads to a Gc9 knock-down. The presence of less than 25 % Gc9 amounts compared to 

wild type amounts is still sufficient for normal growth rates. 
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Figure 3.4 Gc9 transcription and protein abundance in the two mutant lines 

A) Gc9 transcript levels were detected by Real-time PCR analysis for two transcript sites on exon 1 and exon 2 for 

the indicated genotypes. B) RT-PCR was performed to analyse Gc9 gene expression. Ubiquitin expression in each 

genotype was taken as reference for normalization. C) Immunodetection of Gc9 in thylakoid membrane samples of 

wild type and mutant lines. Each lane was loaded with 10 µg of thylakoid proteins for the mutant plants and 10, 7.5, 

5.0 and 2.5 µg of proteins for the wild type samples and then probed with an antibody raised against Gc9. 

Coomassie staining (CBB) of the gel was performed as a loading control. 

 

3.3 Gc9::EGFP overexpressors show the same growth phenotype as the wild 

type 

To confirm that the slower growth rate of gc9-1 was caused by the Gc9 disruption, an 

overexpression construct of Gc9 (oeGc9::EGFP) was transformed into gc9-1. The overexpressor 

construct leads to the expression of a Gc9-eGFP fusion (Enhanced Green Fluorescent Protein). 

Two independent BASTA-resistant progenies were selected after transformation and successful 

complementation was confirmed by growth measurements (Figure 3.5 A). Integration of the 

overexpressor construct into the gc9-1 genome was tested by PCR (for primer information see 

primers list). In addition, Gc9 overexpression and Gc9::EGFP accumulation were tested by RNA 

blot and protein immunoblot analyses, respectively (Figure 3.5 B and C). The RNA blot analysis 

using a Gc9-specific probe revealed that the Gc9-GFP transcript is overexpressed (Gc9::EGFP) 

in two independent lines. Also immunoblot analyses using the Gc9 antibody confirmed the 

presence of the Gc9-EGFP fusion in the complemented plants. Overall, it was assumed that the 

lack of Gc9 is responsible for the gc9-1 growth phenotype. 
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Figure 3.5 Complementation analyses by introducing a Gc9::EGFP overexpressor construct into gc9-1 

A) Growth phenotype of wild type, gc9-1 and gc9-2 mutants and two independent complemented lines grown in the 

climate chamber under short day conditions for 4 weeks. The coding sequence of Gc9 was cloned into the 

destination vector (pB7FWG2.0) under the transcriptional control of Cauliflower Mosaic Virus 35S promoter. This 

construct (35S::Gc9::EGFP) was used to complement gc9-1 plants. B) Northern analysis using a 32P-labeled DNA 

probe specific for the Gc9 transcript which was hybridized to fractionated RNA (5µg) from wild type, gc9-1 and 

two independent complemented plants. Methylene blue staining (M.B.) of blotted RNA was carried out to assess 

equal loading. C) Gc9 immunodetection in thylakoid membrane samples isolated from wild type, gc9-1 and 

overexpressors plants. Coomassie-staining of blotted proteins on PVDF membranes was performed to assess equal 

loading. Signals marked by an asterisk are unspecific signals which could neither be attributed to Gc9 nor to the 

fusion protein Gc9-EGFP. 
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3.4 Subcellular and suborganellar localization of Gc9 

According to five prediction algorithms for subcellular localization (ChloroP, iPSORT, Predator, 

Protein Prowler, Bacello) Gc9 is targeted to the chloroplast. In addition, Terashima and 

coworkers could detect the Gc9 homolog of Chlamydomonas in the chloroplast by a mass 

spectrometry approach (Terashima et al., 2011). To confirm the chloroplast localization, the 

Gc9::EGFP fusion protein was detected in isolated protoplasts from stably transformed gc9-1 

plants carrying the overexpression construct (oe::Gc9::EGFP). EGFP signals overlapped with 

chlorophyll autofluorescence signals confirming the chloroplast localization of Gc9 (Figure 3.6 

A). To determine the suborganellar localization of Gc9, chloroplasts from wild type plants were 

isolated and fractionated into a soluble and an insoluble fraction. Fraction purity was tested by 

western blot analyses using antibodies against PsaD (as a control for thylakoid proteins) or RbcL 

(as a control for stromal proteins). Western blots with the Gc9-specific antibody revealed that 

Gc9 is located in the insoluble chloroplast fraction which contains thylakoid and envelope 

membranes (Figure 3.6 B). Subsequently, membranes were separated into a thylakoid and an 

envelope fraction and subjected to immunoblot analysis. The purity of isolated fractions was 

tested by antibodies raised against PsaD and Tic40 as indicators for thylakoid and envelope 

membrane proteins, respectively. Gc9 immunodetection showed that Gc9 is only found in the 

thylakoid membrane fraction (Figure 3.6 C). Isolated chloroplast membranes from wild type 

plants were treated with different chaotropic salts and alkaline solutions. Subsequently, soluble 

and insoluble proteins were separated by centrifugation and subjected to western blot analysis 

using Gc9, Lhcb1 and PsaD antibodies. Immunodetection assays indicated that Gc9 behaved like 

the Lhcb1 control for an integral membrane protein since it was present in the insoluble pellet 

fractions after all salt treatments (Figure 3.6 D). Taken together, these results show that Gc9 is an 

integral membrane protein which is located in the thylakoid membranes of the chloroplast. 
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Figure 3.6 Subcellular and suborganellar localization of Gc9 

A) Subcellular localization of Gc9. EGFP and chloroplast autofluorescence signals were detected in protoplasts 

isolated from plants carrying the EGFP-Gc9 construct. DIC: image of a single protoplast in bright field, Auto: 

chlorophyll autofluorescence signal, EGFP: EGFP signal, Merged: Merged image of the protoplast picture in bright 

field, chloroplast autofluorescence and GFP signals. B) Suborganellar localization of Gc9. Intact chloroplasts and 

soluble and insoluble chloroplast fractions were subjected to immunodetection analyses using antibodies raised 

against Gc9, PsaD (as a marker for an insoluble protein) and RbcL (as a marker for a soluble protein). C) Thylakoid 

and envelope membranes were isolated and subjected to western blot analysis using specific antibodies for Gc9, 

PsaD (as a marker for a thylakoid membrane protein) and Tic40 (as a marker for an envelope membrane protein). D) 

Thylakoid membrane association of Gc9. After incubation with different salt solutions (NaCl, Na2CO3, NaSCN and 

NaOH) solubilized (S) and insoluble proteins (P) were separated by electrophoresis and subjected to 

immunodetection analysis with antibodies raised against Gc9, Lhcb1 (as a control for an integral membrane protein) 

and PsaD (as a control for a peripherally bound membrane protein). 

 

3.5 Photosynthesis is altered in gc9-1 

To analyse the effect of the mutation on photosynthesis, leaf pigment analysis and Chlorophyll a 

fluorescence yield measurements were carried out. Gc9-1 leaves are characterized by a pale 
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green color and chlorotic spots on the leaves after six weeks of growth in the short-day climate 

chamber (Figure 3.7). Leaf pigments were extracted from wild type, gc9-1 and oeGc9::EGFP#1 

plants grown under 80-100 µmol m-2 s-1 light intensities and analyzed by reverse-HPLC (Table 

3.2). Total chlorophyll and carotenoid concentrations were decreased in gc9-1 (Chla+b: 2065 ± 

268 pmol/mg, Car: 174 ± 24 pmol/mg) with respect to the wild type (Chla+b: 3086 ± 244 

pmol/mg; Car: 268 ± 27 pmol/mg) and to the overexpressor line oeGc9::EGFP#1 (Chla+b: 3647 

± 325 pmol/mg; Car: 317 ± 30 pmol/mg). The concentration of viloaxanthin (Vx) was also 

reduced in gc9-1 (30 ± 4 pmol/mg) compared to the wild type (57 ± 7 pmol/mg) and the 

overexpressor line (70 ± 9 pmol/mg). Interestingly, protonated forms of Vx, Anteraxanthin (Ax) 

and Zeaxanthin (Zx) accumulated in gc9-1 (11 ± 3 and 4 ± 2 pmol/mg), whereas levels in wild 

type and oeGc9::EGFP#1 samples were under or close to the detection level. The conversion of 

Vx to Zx via Ax is catalyzed by the enzyme violaxanthin de-epoxidase which is activated at 

increasing luminal proton concentrations. Overall, accumulation of Zx and Ax indicates that the 

xanthophyll cycle is activated in gc9-1. 

 

 

 

 

 

 

Figure 3.7 Leaves of 6 weeks-old wild type and gc9-1 plants grown in the climate chamber under short day 

conditions 

 

 

 

 

WT gc9-1 
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Table 3.2 Leaf pigment analyses 

Leaf pigment composition of 6 week-old wild type, gc9-1 and overexpressor (oeGc9::EGFP#1) plants grown in 

climate chamber under short day condition was detected by reverse-HPLC. Average amount of pigments ± standard 

deviations are reported by pmol per mg fresh weight obtained from five physiological replicates. Nx: Neoxanthin, 

Vx: Violaxanthin, Ax: Antheraxanthin, Lut: Lutein, Zx: Zeaxanthin, Chl a: Chlorophyll a, Chl b: Chlorophyll b, 

Car: Carotenoids, VAZ: Violaxanthin+Antheraxanthin+Zeaxanthin, Chla+b: total Chlorophyll, Chl a/b: Chlorophyll 

a to Chlorophyll b ratio. Except Chl a/b all values are given in pmol/mg. 

 

 

 

 

 

 

 

 

 

 

 

 

During photosynthesis, absorbed light energy by PSII is converted into biochemical energy. 

Alternatively, absorbed light energy can be lost by chlorophyll a fluorescence or by heat 

dissipation. Those three processes are in competition, thus photochemistry and heat dissipation 

can be estimated by chlorophyll a fluorescence measurements. Chlorophyll a fluorescence 

parameters of single leaves were analyzed in vivo in slow induction assays by using the Dual-

PAM (Pulse Amplitude Modulation) technique (Table 3.3). The maximal quantum yield (Fv/Fm) 

Pigment Wild type gc9-1 oeGc9::EGFP 

Nx  95 ± 6 67 ± 9 109 ± 12 

Vx  57 ± 7 30 ± 4 70 ± 9 

Ax  0 11 ± 3 1 ± 0 

Lut  275 ± 23 191 ± 24 338 ± 33 

Zx  0 4 ± 2 0 

Chl b  708 ± 49 483 ± 62 830 ± 68 

Chl a  2378 ± 196 1582 ± 207 2817 ± 257 

Car  268 ± 27 174 ± 24 317 ± 30 

VAZ  58 ± 7 45 ± 3 72 ± 9 

Chla+b  3086 ± 244 2065 ± 268 3647 ± 325 

Chl a/b 

 

3.36 ± 0.06 3.27 ± 0.03 3.39 ± 0.04 
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of gc9-1 leaves (0.79 ± 0.01) was slightly lowered compared to that of wild type leaves (0.81 ± 

0.01) indicating that PSII is still functional in gc9-1. However, the effective quantum yield of 

PSII (ΦII) under moderate light intensities (100 µE m-2 s-1) was reduced in gc9-1 (0.41 ± 0.02) 

with respect to the wild type (0.51 ± 0.02). ΦII reduction implied that lower steady-state electron 

transport rates take place through PSII in gc9-1. Notably, non-photochemical quenching (NPQ) 

was increased in gc9-1 (1.1 ± 0.06) with respect to the wild type (0.59 ± 0.08), indicating that a 

larger fraction of absorbed light energy is lost by heat dissipation in gc9-1 under moderate light 

intensities. Dark relaxation analyses (100 µE m-2 s-1) were performed under increasing light 

intensities to calculate the two different non-photochemical quenching parameters qE (energy-

dependent or ΔpH-dependent quenching of Chl fluorescence) and qI (photoinhibitory quenching) 

(Table 3.3). No drastic difference for PSII photoinhibition (qI) could be observed between gc9-1 

(0.17 ± 0.02) and wild type (0.21 ± 0.03), but ΔpH-dependent quenching of Chl fluorescence 

(qE) was already increased in gc9-1 (1.00 ± 0.06) with respect to the wild type (0.42 ± 0.07) 

under moderate light intensities. Photoinhibitory quenching increased almost linearly with 

increasing light intensities in gc9-1 and wild type leaves, while qI values for gc9-1 were slightly 

lowered at all measured light intensities compared to those for the wild type (Figure 3.8). qE 

values (ΔpH-dependent quenching) were elevated in gc9-1 compared to the wild type under 

moderate light intensities and saturated at lower light intensities (220 µmol m-2 s-1) in gc9-1 with 

respect to the wild type (340-540 µmol m-2 s-1). Additionally, maximal electron transport rates 

through PSII were lowered and NPQ values were higher in gc9-1 compared to the wild type 

under increasing light intensities (13 and 530 µE m-2 s-1) (Figure 3.8). The results indicate that 

gc9-1 plants are able to cope with higher excitation pressure under moderate light intensities by 

ΔpH-dependent quenchingin order to protect PSII. Therefore, the high NPQ phenotype in gc9-1 

is mainly caused by ΔpH-dependent quenching. The increased proton concentration in the lumen 

activates the xanthophyll cycle which leads to the accumulation of oxidized forms of Vx (Zx and 

Ax) which could be shown by leaf pigment analyses (Table3.2). 
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Table 3.3 Photosynthetic parameters of wild type and gc9-1 leaves were measured with the Dual-PAM system 

under moderate light intensities (100 µE m-2 s-1) 

The components of non-photochemical quenching (qE and qI) were determined after a 10-min-lasting dark 

relaxation phase. Averages ± standard deviations were calculated from 6 physiological replicates. Fv/Fm: maximal 

quantum yield of PSII; ΦII: effective quantum yield of PSII in actinic light (100 µE m-2 s-1); 1-qP: excitation 

pressure; NPQ: non-photochemical Chlorophyll fluorescence quenching; qN: non-photochemical quenching of 

variable Chl fluorescence; qE: energy-dependent quenching of Chl fluorescence; qI: photoinhibitory quenching. 

Parameter Fv/Fm ΦII 1-qP NPQ qN qE qI 

WT 0.81 ± 0.01 0.51 ± 0.02 0.28 ± 0.03 0.59 ± 0.08 0.6 ± 0.02 0.42 ± 0.07 0.21 ± 0.03 

gc9-1 0.79 ± 0.01 0.41 ± 0.02 0.36 ± 0.02 1.10 ± 0.06 0.75 ± 0.02 1.00 ± 0.06 0.17 ± 0.02 
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Figure 3.8 Chlorophyll a fluorescence induction kinetics of wild type and gc9-1 plants  

Leaves were dark-adapted for 20 min and then exposed to increasing light intensities (13, 22, 53, 95, 216, 339 and 

531 µmol m-2s-1). Electron transport rates through PSII and non-photochemical quenching (NPQ) were measured 

after each light phase by a saturating pulse. Energy dependent quenching (qE) and photoinhibitory quenching (qI) 

for each light intensity were calculated after a 10-min-lasting dark relaxation phase. Average values and standard 

deviations (error bars) were obtained from six measurements. 

 

To verify if the introduction of the Gc9-EGFP overexpressor construct into gc9-1 restores wild 

type like photosynthesis, imaging-PAM analyses were carried out (Figure 3.9). Y (NPQ) values 

in two independent overexpressor lines, as well as the knock-down gc9-2, were similar to wild 

type plants. Thus, the Gc9::EGFP fusion protein was functional in the complemented lines and 

led to the restoration of the wild type phenotype. 

 

 

Figure 3.9 Imaging-PAM analyses of wild type, mutant (gc9-1 and gc9-2) and two complemented plants 

The plants were dark-adapted for 20 min and then exposed to actinic light (10 min, 100 µmol m-2 s-1) to calculate    

Y (NPQ) values which are shown on the right site of the panel in false colors on a scale from 0 to 1. 
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3.6 Photosynthetic complexes are altered in gc9-1 

The abundance of photosynthetic complexes was determined by western blot analyses using 

antibodies against marker subunits of PSII (D1, D2, CP43 and PsbO), PSI (PsaB, PsaD and 

PsaL), Cyt b6f (cytf), light harvesting proteins (Lhcb2 and Lhca1) and of the ATP synthase 

complex (AtpA/B, AtpC, AtpE, AtpF, AtpG, AtpH and AtpI) (Figure 3.10 A). Photosynthetic 

complexes were all affected in gc9-1; PSII, PSI, Cyt b6f and LHC were reduced to 60-80 % of 

the wild type levels. The most severe effect on complex abundance could be identified for the 

chloroplastic ATP synthase; CF1 and CFO subunits in thylakoid membrane preparations were 

reduced to about 70-80 % wild type levels, whereas ATP synthase abundance in gc9-2 was 

similar to wild type plants (Figure 3.10 B). Therefore, the low amounts of Gc9 (less than 25 %) 

are enough for normal accumulation of the ATP synthase complex in gc9-2 plants. Taken 

together, these results indicate that proton-gradient-generating complexes (PSII and Cyt b6f) are 

not as strongly affected as the proton gradient-dissipating ATP synthase complex in gc9-1. As a 

consequence, protons accumulate in the thylakoid lumen and trigger energy-dependent 

quenching mechanisms such as the xanthophyll cycle. Additionally, acidification of the lumen 

and higher excitation pressure already under moderate light intensities induce long-term adaption 

processes such as the down regulation of photosynthetic complex synthesis as it has been shown 

for other mutants affected in the chloroplastic ATP synthase complex (Zoschke et al., 2012). 
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Figure 3.10 Photosynthetic complex abundance in wild type, gc9-1 and gc9-2 

A) Wild type and gc9-1 thylakoid membrane samples (10µg total protein) and decreasing amounts of wild type 

samples (0.75, 0.5 and 0.25) were fractionated on SDS-PAGEs and blotted on PVDF membranes. Subunits of PSII 

(D1, D2, CP43, PsbO), PSI (PsaB, PsaD, PsaL), Cyt b6f (Cytf), LHCs (Lhcb2, Lhca1) and the ATP synthase 

(AtpA/B, AtpC, AtpE, AtpF, AtpG, AtpH and AtpI) were immunodetected with the respective antibodies. Relative 

protein amounts (shown on the right site of the panel) were determined by comparing signals from immunodetected 

proteins in gc9-1 samples to immunodetected signals from the wild type gradient. B) The ATP synthase abundance 

in gc9-2 was determined by western blot analyses with antibodies raised against essential subunits of CF1 and CFO 

and compared to gc9-1 and wild type samples. Relative protein amounts were determined by comparing signals 

from immunodetected proteins in gc9-2 samples to immnodetected signals from the wild type gradient and shown 

on the right site of the panel. 
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3.7 Gc9 is not a subunit of the ATP synthase complex 

The Gc9 to AtpC1 stoichiometry and the Gc9 abundance in different mutant lines were analyzed 

to clarify whether Gc9 is a subunit of the ATP synthase complex. AtpC1 and Gc9 were 

heterologously expressed and purified by using an N-terminal fused His-tag. Subsequently, 

immunodetected signals from known amounts of purified AtpC1 and Gc9 proteins were 

compared to those from wild type thylakoid samples (Figure 3.11 A). The comparison revealed 

that the AtpC1 (1.72 ± 0.21 mmol/mol Chl) to Gc9 (0.066 ± 0.001 mmol/mol Chl) ratio is about 

25. Thus, the substoichiometric presence of Gc9 with respect to the ATP synthase suggests that 

Gc9 is not a subunit of the ATP synthase complex. In addition, Gc9 abundance in different 

photosynthetic mutant lines was determined by western blot analysis (Figure 3.11 B). Entire 

PSII, PSI, Cyt b6f or cpATPase complexes are completely absent in hcf136 (Plücken et al., 

2002), psad1/2 (Ihnatowicz et al., 2004), petc (Maiwald et al., 2003) or atpd (Maiwald et al., 

2003), respectively. Complex abundance was verified by immundetection of marker proteins 

(PsbO for PSII, PsaF for PSI, Rieske for Cyt b6f and AtpA/B for ATP synthase deficient 

mutants). As expected, PsbO, PsaF, Rieske and AtpA/B proteins were not detectable in hcf136, 

psad1/2, petc and atpd, respectively. Instead, Gc9 immunodection showed that Gc9 was present 

in all photosynthetic mutants, which suggests that Gc9 accumulation is independent of the 

assembly of all tested photosynthetic complexes. From these results it was concluded that ATP 

synthase assembly and Gc9 accumulation can occur independently. Overall, Gc9 is not a subunit 

of the ATP synthase complex, since Gc9 is present in substoichiometric amounts with respect to 

the ATP synthase and accumulates in the absence of the ATP synthase 
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Figure 3.11 Gc9 quantification analyses and abundance in different photosynthetic mutant lines 
A) AtpC1 (AtpC1-TP+6His) and Gc9 (Gc9-TP-TM+6xHis) were heterologously expressed in E. coli and purified. 

Known amounts of purified proteins and three wild type thylakoid samples corresponding to 5 µg chlorophyll were 

loaded on SDS-PAGE to determine the Gc9 to AtpC1 stoichiometry. Thylakoid membrane proteins were 

fractionated and blotted on PVDF membranes and membranes were probed with AtpC1 and Gc9 antibodies. The 

asterisk marks an unspecific signal which can not be attributed to Gc9. B) Proteins (total leaf extract) of wild type, 

photosynthetic mutant lines devoid of PSII (hcf136), PSI (psad1/2), Cyt b6f (petc) or of ATP synthase (atpd) and 

gc9-1 were loaded on Tris-Tricine gels and subsequently subjected to immunodetection analyses with antibodies 

raised against PsbO, PsaF, Rieske, AtpA/B and Gc9. Actin served as a loading control. 

 

3.8 Gc9 does not form a stable complex with the ATP synthase 

To study a potential complex formation of Gc9 with the ATP synthase, solubilized thylakoid 

complexes from wild type and gc9-1 plants were separated on sucrose gradients. Gradients were 

divided into 19 fractions and subjected to western blot analyses using antibodies against AtpA/B, 

AtpH and Gc9 (Figure 3.12). As expected, the immunodetection assays showed that AtpA/B and 

AtpH subunits were reduced in gc9-1 compared to wild type signals, whereas Gc9 was not 

detectable. In sucrose fractions of the wild type, AtpA/B and AtpH were mainly found in fraction 

9 to 13, whereas Gc9 was present in fraction 3 to 6. The different migration pattern of Gc9 in 

sucrose gradients with respect to the ATP synthase indicated that Gc9 does not form a stable 

complex with the ATP synthase under the given experimental conditions. 
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Figure 3.12 Comigration analysis of Gc9 with the ATP synthase complex 

Thylakoid membranes from wild type and gc9-1 leaves were isolated and solubilized by β-DM (1 %). Solubilized 

membrane complexes were fractionated on sucrose gradients (0.1 to 1 %), which were divided into 19 fractions. 

Proteins in the fractions were separated on SDS-PAGE and subjected to immunodetection analyses using antibodies 

against AtpA/B, AtpH and Gc9.  

 

3.9 The transcript abundances of chloroplast-encoded ATP synthase subunits 

are slightly altered in gc9-1 

To check if reduced ATP synthase subunit amounts in gc9-1 are caused by altered transcription, 

their transcript abundance was tested by Northern blot analyses (Figure 3.13). ATP synthase 

subunits are encoded in the chloroplast as well as in the nuclear genome. The chloroplast-

encoded subunits are organized in two different operons: the large atpI/H/F/A operon (encoding 

for AtpI, AtpH, AtpF and AtpA) and the small atpB/E operon (encoding for AtpB and AtpE). 

The large operon contains several promoters that lead to polycistronic precursors which are then 

processed to at least 18 different transcripts as shown for the atpI/H/F/A operon in maize (Pfalz 

et al., 2009). The small operon contains two promoters upstream of the atpB/E coding region and 

a promoter within the atpB coding region which lead to two dicistronic atpB/E and one 

monocistronic atpE transcript, respectively (Ghulam et al., 2012). RNA gel blot analyses with 

atpB- and atpE-specific probes revealed that atpB transcript amounts in gc9-1 were similar to the 

amounts detected in the wild type. An atpE-containing transcript with a size slightly smaller than 

1200 nt was present in lower amounts in gc9-1 compared to the wild type, whereas the amount of 

a 400-nt-long fragment was slightly increased. Northern blot analyses using atpA and atpI probes 

revealed that distribution patterns or amounts of these transcripts were not altered in gc9-1. 
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Analyses with atpH- and atpF-specific probes revealed that three atpH-containing fragments 

were upregulated in gc9-1 but the amount of an atpF-containing fragment was diminished in 

gc9-1 with respect to the wild type. According to the RNA blot analyses, no processing defect or 

downregulation in ATP synthase subunit transcription could be observed which explain the 

drastic reduction of ATP synthase amounts in gc9-1. 

 

 

Figure 3.13 RNA gel blot analyses 

Isolated total RNA from wild type and gc9-1 leaf tissue was fractionated on denaturing RNA gels and blotted on 

nitrocellulose membranes. 32P-labeled probes specific for plastid-encoded ATP synthase subunits were used for 

hybridization. 25 S and 18 S rRNA was detected by methylen blue (M.B.) staining as a control for equal loading. 
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3.10 atpH-transcript-polysome loading and chloroplast protein synthesis are 

affected in gc9-1 

To study if the ATP synthase reduction in gc9-1 is caused by an affected translation initiation or 

elongation, polysome analyses were carried out. The association of ATP synthase-specific 

transcripts to polysomes was analyzed by fractionation of polysome-enriched samples on sucrose 

gradients and subsequent Northern blot assays (Figure 3.14 A). Ribosome association to 

transcripts can be estimated by the distribution of ribosomal RNA in sucrose gradients 

(visualized by ethidium bromide staining of isolated and electrophoretically separated RNA from 

10 different sucrose fractions). According to those results, distribution of cytoplasmic 25 S, 18 S 

and chloroplastic 16 S rRNAs in gc9-1 samples were similar to the distribution of wild type 

samples which points to an intact, cellular translation machinery in gc9-1. Northern blots with an 

atpB-specific probe (as a marker transcript for the atpB/E operon) and an atpH-specific probe (as 

a marker transcript for the atpI/H/F/A operon) indicated that ribosome loading on atpB 

transcripts was not altered in gc9-1; the ratio of polysome-loaded atpB transcripts to free atpB 

transcripts in gc9-1 (55 % / 45 % = 1.2) was similar to the ratio of the wild type (54 % / 46 % = 

1.2). Total amounts of atpH transcripts were increased in gc9-1 and more ribosomes were 

associated with atpH transcripts in fraction 10. However, the ratio of ribosome-associated atpH 

transcripts to unbound atpH transcripts in gc9-1 (67 % / 33 % = 2) was close to that of the wild 

type (61 % / 39 % = 1.6, lower band). As a conclusion, Gc9 disruption does not lead to an 

impairment of ribosome loading in gc9-1 as it has been shown for mutants altered in translation 

or translation initiation (Schult et al., 2007). 

In addition to polysome analyses, in vivo pulse labelling experiments were carried out to 

examine whether the reduced ATP synthase amounts in gc9-1 are caused by a reduced protein 

synthesis rates (Figure 3.14 B). Cytosolic translation was blocked by cycloheximide treatment 

and then radiolabelled, newly synthesized chloroplast proteins were collected after 5 and 30 

minutes incubation with [35S] Met. De novo synthesized proteins were fractionated on 

denaturing gels. PsaA/B, AtpA/B, CP47, CP43 and D1/D2 subunits were annotated according to 

their electrophoretic mobility and to previous studies (Armbruster et al., 2010). Comparing de 

novo synthesized proteins in gc9-1 and wild type suggests that chloroplast protein synthesis is 

moderately reduced in gc9-1. 
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Figure 3.14 Effect of Gc9 disruption on the translation of ATP synthase subunits 

A) Association of ATP synthase subunit transcripts to polysomes. Polysome-enriched samples from wild type and 

gc9-1 leaves were fractionated on sucrose gradients (0.44 to 1.6 M) by ultracentrifugation. Gradients were divided 

into 10 fractions and subjected to RNA gel blot analyses. RNA gel blots were stained with ethidium bromide (EtBr) 

to visualize 25 S, 18 S and 16 S rRNAs. Nitrocellulose membranes with blotted RNA were hybridized with radio-

labeled probes specific for atpH and atpB transcripts. atpH- (corresponding to the 600 nt band) and atpB-signals 

(corresponding to the 2500 nt band) were quantified and the ratios of signals arising from fractions 1-5 and 6-10 to 

the overall signal (fraction 1-10) are shown at the bottom of each RNA blot experiment (in %). B) Chloroplastic 

protein synthesis. Cytosolic translation was blocked by cycloheximide treatment in wild type and gc9-1 leaves. 

Newly synthesized thylakoid proteins were isolated from leaves after 5 min (5’) and 30 min (30’) incubation with 

[35S] Met under 100 µmol m-2 s-1 light intensities. Proteins were fractionated by SDS-PAGE and then blotted on 

PVDF membrane. Signals of de novo synthesized proteins were detected by autoradiography.  
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3.11 AtpH monomer is enriched in the gc9-1 mutant 

To investigate a potential role of Gc9 in the assembly of the ATP synthase, BN/SDS-PAGE 

analyses were performed. Thylakoid membranes were solubilized with β-DM and photosynthetic 

complexes were fractionated by Blue Native PAGEs (Figure 3.15 A). Eight major bands, 

representing PSI-NDH, PSII/PSI supercomplex, monomeric PSI/dimeric PSII, dimeric cyt 

b6f/monomeric PSII, multimeric LHCII, monomeric PSII minus CP43, trimeric LHCII and 

monomeric LHCII were detected in BN/PAGEs (Figure 3.15 A). Blue Native stripes were either 

stained with Coomassie or used for the second dimension to analyse the complex composition. 

Coomassie-staining of the BN stripes revealed that a band representing the ATP synthase 

complex CF1 (2) was reduced in gc9-1 compared to the wild type (Figure 3.15 A). The second 

dimension of BN/PAGE was blotted for either immunodetection or coomassie staining. The 

coomassie stained membranes (Figure 3.15 B) showed the reduction of AtpA/B and AtpC 

subunits in gc9-1 compared to the wild type, which confirmed the results from sucrose gradient 

and western blot analyses. As shown by immunodetection assays (Figure 3.15 C), three 

intermediate complexes for the ATP synthase assembly were detected in wild type and gc9-1. 

ATP synthase complex (1) and (2) contain all tested subunits but CFO (III) complex includes 

only AtpH and AtpE subunits. Also a strong reduction for all ATP synthase intermediates and 

monomers/dimers was identified in gc9-1 for all ATP synthase subunits except for the AtpH 

monomer which accumulated in gc9-1. As shown by immunodetection assays from three 

independent experiments, the amount of unassembled AtpH in gc9-1 was eight times higher with 

respect to the wild type (8 ± 3). 
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Figure 3.15 Blue Native analyses of wild type and gc9-1 thylakoid membranes 

A) Thylakoid membranes were isolated and then solubilized with β-DM (1 %). Protein amounts corresponding to  

80 µg chlorophyll were fractionated on a BN gels (4-12 % gradient). Blue Native stripes were stained with 

Coomassie (R250) to visualize complexes containing no chlorophyll-binding proteins. B) Lanes of the first 

dimension BN/PAGE gel (160 µg Chlorophyll) were loaded on Tris-Tricine gels (10 %, 4 M urea) to separate 

protein complexes. Separated proteins were blotted on a PVDF membrane and stained with Coomassie (G250). C) 

Western blot analyses of thylakoid proteins separated by second dimension gel electrophoresis using antibodies 

against ATP synthase subunits. The accumulation of unassembled AtpH in gc9-1 is indicated by a red circle. 
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3.12 Gc9 interacts with the AtpH subunit 

According to co-migration analyses on sucrcose gradients, Gc9 does not form a stable complex 

with the ATP synthase. Transient interactions of Gc9 with the ATP synthase were examined by 

split-ubiquitin experiments. The mature Gc9 protein (without the predicted transit peptide) was 

fused to the C-terminal domain of ubiquitin (Cub) and potential interaction partners were cloned 

and fused with the N-terminal domain of ubiquitin (NubG) carrying a mutation which prevents 

auto-reconstitution of the ubiquitin protein. Yeast strains were cotransformed with different 

combinations of the Gc9-Cub fusion construct and NubG-interactor fusion constructs, plated on 

permissive medium and then the same colonies were grown on selective medium without 

leucine, threonine and histidine (Figure 3.16). Cell growth on selective medium indicates 

interaction between Gc9 and the tested fusion construct leading to ubiquitin reconstitution. The 

combination of Gc9-Cub and NubGAlg5 was used as a negative control, whereas the combination 

of Gc9-Cub and NubIAlg5 was employed as a positive control. According to the results, no 

interactions of Gc9-Cub with marker subunits of PSII (PsbA and PsbC), PSI (PsaA and PsaB) 

and other proteins like ferredoxin-NADP+oxidoreductase (FNR), ferredoxin (Fd) and cpSecY 

were observable. However, interaction assays with ATP synthase subunits revealed that Gc9 

interacts with AtpH and in a certain degree with AtpF. No interaction of Gc9 could be observed 

with the AtpI or AtpA subunit. 

 

Figure 3.16 Split-ubiquitin assays to test for transient interactions of Gc9 with photosynthetic complexes 

Yeast strains were cotransformed with Gc9-Cub and constructs coding for NubG-fusions of potentially interacting 

proteins (NubGAtpH, NubGAtpF, NubGAtpI, NubGAtpA, NubGPsbA, NubGPsbC, NubGPsaA, NubGPsaB, NubGFNR1, NubGFd and 
NubGcpSecY). Combinations of Gc9-Cub with NubGAlg5 and NubIAlg5 were employed as a negative and positive 

control, respectively. Cotransformed yeast cells were grown on permissive medium without leucine and threonine   

(-LT) and then on selective medium without leucine, threonine and histidine (-LTH). 
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4 Discussion 
 

4.1 Photosynthetic electron transport rates are only moderately affected in 

gc9-1 

It was described by Rott and his co-workers (2011) that a strong repression of ATP synthase 

accumulation in tobacco (Nicotiana tabacum) leads to a lowered linear electron flux, as well as 

reduced assimilation and ATP synthase activity. Moreover, a slower growth rate was observed in 

those mutants. However, ability of photoautotrophic growth was maintained. In contrast, tobacco 

leaves with a 25 % reduction of ATP synthase content relative to the wild type did not show a 

significant reduction in ATP synthase activity. Similarly, electron transport, assimilation 

capacities and all other photosynthetic parameters were not altered. This may indicate that 

photosynthetic electron transport is only affected by ATP synthase abundances less than 25 %.  

According to our data, the lack of Gc9 causes a 70 to 90 % reduction of ATP synthase content 

(Figure 3.10) leading to a reduced proton translocation efficiency, which in turn results in proton 

accumulation in the lumen. The lowered pH in the thylakoid lumen acts as a signal to induce the 

activation of the violaxanthin de-epoxidase enzyme, which accumulates in its protonated form. 

Elevated ΔpH-dependent quenching and accumulation of protonated violaxanthin in gc9-1 were 

confirmed by chlorophyll a fluorescence measurements and leaf pigment analyses (Figure 3.8 

and Table 3.2).  

In contrast, down-regulation of Gc9 expression shows a more robust growth phenotype 

compared to that of knock-out gc9-1 plants (Figure 3.3). Also, quantification of ATP synthase 

subunit abundance by Western blot (Figure 3.10 B) did not display a significant difference. 

Finally, measurement of non-photochemical quenching by using imaging PAM analyses for gc9-

2 mutants clarified that those values are close to wild type values (Figure 3.9). 

The increased non-photochemical quenching of chlorophyll a fluorescence and an accumulation 

of protonated forms of xanthophylls under low light were also observed in the A. thaliana mutant 

line atpd-1 which lacks the AtpD subunit (Maiwald et al., 2003). The absence of AtpD results in 

a destabilization of the chloroplastic ATP synthase complex and leads to a slower dissipation of 

the transthylakoid proton gradient. In addition, the absence of AtpC destabilizes the entire ATP 
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synthase complex in which a high proton gradient and an elevated ΔpH-dependent quenching 

(qE) is responsible for most of the non-photochemical quenching (Dal Bosco et al., 2004). Those 

results confirm that lowered ATP synthase abundance in gc9-1 is the reason for an elevated 

thylakoid lumen proton concentration, higher non-photochemical quenching and an activated 

xantophyll cycle.  

 

4.2 Conserved secondary structure in Gc9 

Gc9 is conserved in all organisms from the green lineage (Figure 3.2 B), with its transmembrane 

domain at the C-terminus being more conserved than the N-terminal part. The conserved N-

terminal domain is found only in eukaryotic species and contains two phosphorylation sites, 

(Reiland et al. 2009). Those sites may play a role in regulation of protein function and thus 

emphasize further functional or regulatory features for Gc9. A BLAST analysis of the Gc9 

sequence against the CDD database revealed a homology to the Atp1/UncI-like domain 

(Marchler-Bauer et al., 2011). Atp1/UncI is encoded in the F1FO ATP synthase operon of 

bacteria and cyanobacteria (Gay and Walker, 1981). Although the putative transmembrane 

domains predicted for Gc9 show only moderate sequence similarities with Atp1 proteins from 

different cyanobacteria (similarity/identity 33.6/18.6 %) (Figure 4.1), their positions align well 

and constitute a conserved, secondary structure for Gc9 in the eukaryotic green lineage species 

as well as for Atp1 in various cyanobacteria. 
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Figure 4.1 Sequence alignment of the Gc9 transmembrane domain with Atp1 from various cyanobacteria 

The putative transmembrane domain of Gc9 (201-350 aa) was aligned to Atp1 sequences of Synechocystis sp. 

(Synechocystis spec.), Synechococcus sp. (Synechococcus spec.), Cyanothece sp. (Cyanothece spec.), A. variabilis 

(Anabaena variabilis), Gloeocapsa sp. (Gloeocapsa spec.), Calothrix sp. (Calothrix spec.), N. punctiforme (Nostoc 

punctiforme) and Nostoc sp. (Nostoc spec.). The transmembrane domains of Gc9 protein were predicted using the 

Aramemnon database. SCAMPI was used for prediction of Atp1 transmembrane domains. Residues belonging to 

putative transmembrane domains are highlighted in bold. Identical and similar amino acids are shaded in black and 

grey, respectively. Non-conserved amino acids within the putative transmembrane domains are coloured according 

to the figure legend.  

 

4.3 Upregulation of atpH transcripts can be a compensatory mechanism in 

response to an altered FO assembly 

Gc9 disruption does not lead to severe effects on transcription of ATP synthase subunits (Figure 

3.13). Therefore, altered transcription is not the reason for the reduction of ATP synthase 

subunits in gc9-1 mutants.  

The AtpH ring sructure is directly involved in luminal proton efflux. Therefore, AtpH integration 

within the lipid bilayer and AtpH ring formation is a critical step for ATP synthase assembly and 

function (Rochaix, 2011).  
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Since the fact that ATPH ring formation is affected in gc9-1 mutants, it can be deduced that 

unassembled AtpH monomers can lead to a feedback response on atpH transcription in an 

assembly-dependent manner. This feedback response triggers upregulation of atpH transcription. 

RNA gel blot analyses with atpH specific probes revealed over accumulation in steady-state 

levels of these transcripts in gc9-1 mutants (Figure 3.13). 

 

4.4 Gc9 involvement in the AtpH co-translational membrane integration 

The mechanism of AtpH membrane integration was described in the literature for subunit c, the 

AtpH counterpart in E. coli (van Bloois et al., 2004). Using in vitro cross-linking experiments in 

combination with in vivo protease mapping techniques, it could be shown that AtpH is co-

translationally targeted to the membrane by the signal recognition particle (SRP). The SRP 

delivers the nascent subunit c to the YidC protein, a member of the Alb3/Oxa1/YidC protein 

family which functions as a subunit c insertase in a Sec-independent mechanism. Hence, AtpH 

integration into the membrane is a co-translational integration process.  

The results described in this work are in line with observations made by van Bloois et al (2004). 

The rRNA distribution in gc9-1 mutants was similar to wild-type plants, so that a general 

translational effect could be excluded in gc9-1 chloroplasts. Besides higher amounts of atpH 

transcript, polysome-loading of atpH was more pronounced in gc9-1 mutants (fraction 10, Figure 

3.14 A). Taken together these results may provide an evidence for an incomplete membrane 

integration in A. thaliana chloroplasts and are suggestive of a role for Gc9 as co-translational 

regulator in this insertional process. The conserved N-terminal domain of Gc9 in eukaryotic 

species may assist in AtpH cotranslational insertion, although AtpH monomer detection in 

thylakoid membranes of gc9-1 suggest that other factors beside Gc9 may be involved in the 

insertional process. 

 

4.5 Gc9 acts as an AtpH ring assembler in chloroplasts 

Chloroplast fractionation and subsequent western blot analyses show that Gc9 is a component of 

the thylakoid membrane (Figure 3.6). Also salt wash experiments imply that Gc9 is an integral 

membrane protein (Figure 3.6 D) with four putative transmembrane domains (Figure 3.2). Gc9 



Discussion 

60 

 

blast searches against the protein domain database CDD revealed that Gc9 harbors an Atp1/UncI 

like-domain. Therefore, it was hypothesized that the Gc9 function is the same as the UncI 

function. 

UncI is a hydrophobic protein that contains 130 residues in E. coli and its homologs in 

Saccharomyces cerevisiae are YHL007c-a, VMA21 and YHL007c-a. The function of UncI in 

bacteria (Propionigenium modestum) was identified by Suzuki et al. (2007). They reported that 

the UncI protein plays a chaperone-like role to assist in the c-ring assembly of the ATP synthase 

complex.  

The accumulation of unassembled AtpH subunits as a monomer or dimer was detected in gc9-1 

mutants (Figure 3.15 C) and interaction of Gc9 with the AtpH subunit was confirmed by split 

ubiquitin analyses (Figure 3.16). Those results are clear indications that Gc9 is involved in the 

efficient assembly of AtpH into the chloroplastic ATP synthase.  

Since the abundance of ATP synthase subunits in gc9-2 knock-down mutants is not as drastically 

altered as in gc9-1, it seems that the presence of 10 % Gc9 is sufficient for the AtpH ring 

formation (Figure 3.10 B). CFO is the structural component of the ATP synthase which triggers 

luminal proton efflux, but it also plays an essential role in ATP synthesis. Hence, the correct 

assembly of the CFO domain has a high impact on photosynthesis and needs to be tightly 

regulated (Weber and Senior, 2000).  

Therefore, a disruption in the early steps of the assembly causes an overall reduction of 

functional ATP synthases leading to several physiological consequences and to long-term 

adaptational processes (Rott et al., 2011; Maiwald et al., 2003; Dal Bosco et al., 2004) :              

1) Acidification of the lumen inhibits the electron transfer between photosystem II and 

photosystem I (Kramer et al., 2003). Consequently, photochemical activity in the PSII is reduced 

(Figure 3.8 and Table 3.3) due to enhancement of heat dissipation of energy in the light 

harvesting antenna of PSII (Jahns et al., 2012).  

2) It was hypothesized that plastid gene expression is dependent on the redox state of the electron 

transport chain (Allen, 1993). The alteration in photosynthetic complex expression as a 
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secondary effect of Gc9 disruption was detected by immunoblot analyses in gc9-1 mutants 

(Figure 3.10 A). 

3) Also lowered, overall ATP synthase activity causes lower ATP supply for chloroplast protein 

synthesis in gc9-1 that leads to moderate and general reduction of chloroplast protein synthesis, 

confirmed by in vivo pulse labelling analyses (Figure 3.14 B).   

 

4.6 Current model of the FOF1 ATP synthase assembly 

It could be shown that assembly of the F1, FO and stator portions of the ATP synthase occur in 

independent processes (Tzagoloff, 1969; Velours and Arselin, 2000). The assembly of F1 takes 

place in the cytoplasm/stroma where the subunits AtpA, AtpB, AtpC, AtpD and AtpE form a 

globular structure.  

The sequential FO assembly steps are unknown (Pícková et al., 2005) in which oligomerization 

of subunit AtpH into the ring can be the initiating step in this process (Lai-Zhang et al., 1999; 

Duvezin-Caubet et al., 2006). Some factors were identified in Saccharomyces cerevisiae, which 

are involved in transcription or translation of subunit AtpH. The C-terminal half of the Atp25p 

(cAtp25p) and Aep1p are atpH mRNA-specific stability factors (Zeng et al., 2008; Ziaja et al., 

1993) and AEP2/ATP13 are involved in expression of subunit atpH (Finnegan et al., 1995).  

The insertion of subunit AtpH into the inner membrane of E. coli is induced by the YidC 

pathway (Scotti et al., 2000). The N-terminal peptide of Atp25p (32kDa) of Saccharomyces 

cerevisiae functions in oligomerization of AtpH into a proper size ring structure (Zeng et al., 

2008) and UncI of Propionigenium modestum acts in subunit AtpH ring assembly (Suzuki et al., 

2007; Ozaki et al., 2008). 

Also our results suggest that Gc9 is a nucleus-encoded protein for ATP synthase complex 

assembly and function in the AtpH ring formation. The assembled ATP synthase (10-30 %) in 

gc9-1 mutants implies that either self-assembly (Arechaga et al., 2002) or other proteins assist in 

the AtpH ring formation in chloroplasts (Zeng et al., 2008). 

The stator formation is required for the initial interaction of F1 with the ring by stabilization of 

the AtpH ring/F1 complex in yeast cells (Tzagoloff, 1970). The assembly of the stator is initiated 
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with the insertion of subunit AtpG into the inner membrane of mitochondria, followed by 

interaction between hydrophilic region of subunit AtpI and OSCP, and then terminated with AtpI 

interaction (Straffon et al., 1998). It was proposed that the hydrophilic subunits of the stator are 

added to the preassembled F1 and then this complex interacts with the membrane-embedded part 

of the stator (subunit AtpI) and the AtpH ring. 

Several factors were identified which interacts with subunit AtpF and the AtpH ring in 

Saccharomyces cerevisiae. ATP10 binds to newly translated AtpH subunits and is required for 

the interaction of the AtpH ring with subunit AtpF, but is not involved in ring assembly 

(Tzagoloff et al., 2004). Also Atp23p and Oxa1p are involved in the ring/AtpF complex 

formations (Osman et al., 2007; Jia et al., 2007).  

The ATP synthase assembly process in chloroplasts is less understood than in E. coli and yeast 

cells. It could be shown that the YidC homolog ALB4 interacts physically with AtpB and AtpG 

in the Arabidopsis chloroplast and plays a role in assembly and/or stabilization of the CF1CF0–

ATP synthase (Benz et al., 2009). The data presented in the thesis show clearly that Gc9 

participates in the AtpH ring formation in chloroplasts, but the involvement of Gc9 in other steps 

of the ATP synthase assembly is still an open question. Nevertheless, Gc9 is the first described 

ATP synthase assembly factor in chloroplasts and future work will provide more insights into the 

early ATP synthase assembly steps. 
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Figure 4.2 Current model of the FOF1 ATP synthase assembly 

F1 portion assembly occurs in the cytoplasm/stroma, whereas FO assembly takes place in the membrane. FO assembly 

is initiated by AtpH ring formation in which UncI or Gc9 are involved in. FO assembly is terminated with AtpI 

integration and generates the complete ATP synthase after assembly with the F1 portion. 
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