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Zusammenfasung-Summary 

ZUSAMMENFASSUNG 

Hintergrund und Ziele: Tivantinib ist ein neu entwickelter c-MET Inhibitor, welcher 

derzeit für die Therapie unterschiedlicher Tumorentitäten im Rahmen klinischer 

Studien untersucht wird. Insbesondere zeigte dieser Inhibitor in einer Phase 2 

randomisierten Studie ein Überlebensvorteil in Patienten mit hepatozellulären 

Karzinomen (HCC) in denen eine Überexpression von c-MET nachgewiesen werden 

konnte. Aufgrund der prädiktiven Bedeutung von c-MET, wurde die sukzessive, 

derzeit laufende Phase 3 klinische Studie von Tivantinib in selektierten 

„c-MET-high“ HCC Patienten durchgeführt. Trotz extensiver klinischer Untersuchung, 

wurde die Effektivität von Tivantinb als c-MET Inhibitor – und somit die Rationale 

für seine Anwendung in dieser Patientensubgruppe – von vor kurzem publizierten 

Studien in Frage gestellt. 

Methoden: In dieser Studie untersuchten wir in vitro die Wirkungsmechanismen von 

Tivantinib. Hierfür wurde ein Panel unterschiedlicher Zelllinien aus gastrointestinalen 

Tumoren mit unterschiedlichen c-MET Expressionsstatus verwendet, sowie 

c-MET-Exon 16-KO Zelllinien, in denen die Bindungsstelle von Tivantinib nicht 

vorhanden ist. Zellproliferation, Apoptose, Zellzyklus und die zugrundeliegenden 

molekularen Veränderungen wurden durch Viabilitätanalyse, FACS, Western blot, 

funktionelle Caspase-Aktivierung und si-RNA-Ansätze erforscht. 

Ergebnisse: Die Inkubation mit Tivantinib induzierte Apoptose und Zellzyklusarrest. 

Zugleich konnten die Herabregulierung von p-c-MET, der antiapoptotischen Moleküle 

Bcl-xl und Mcl-1, sowie die Hochregulierung von Cyclin-B1 beobachtet werden. Die 

biologische Wirkung von Tivantinib sowie die damit assoziierte molekulare 

Veränderungen konnten sowohl in c-MET-exon 16-KO Zellen, als auch in c-MET 

Wildtyp Zellen reproduziert werden. Die Stimulation von c-MET durch HGF führte 

zu einer erhöhten Phosphorylierung von c-MET sowie zu der Hochregulierung von 

Mcl-1 und Bcl-xl. Dies hatte dennoch keinen relevanten Einfluss auf Cyclin B1. 
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Zusammenfasung-Summary 

Zusammenfassung: Die biologische Wirkung von Tivantinib wird durch die 

Regulierung von Mcl-1, Bcl-xl and Cyclin B1 vermittelt. Wie durch Experimente in 

c-MET-KO Zellen zu sehen ist, erfolgen dieser Veränderungen aber unabhängig von 

der Fähigkeit dieses Medikaments p-c-MET zu inhibieren. Die Tatsache dass Mcl-1, 

Bcl-xl – jedoch nicht Cyclin B1 – auch durch die Inhibition von c-MET beeinflusst 

werden können, stellt eine mögliche Erklärung für die prädiktiven Bedeutung von 

c-MET in klinischen Studien dar. Da Cyclin B1, Mcl-1 und Bcl-xl unabhängig von 

der Expression von c-MET von Tivantinib beeinflusst werden, sollten diese Moleküle 

als alternative, und potentiell geeignetere Prädiktoren der therapeutischen Wirkung 

von Tivantinib untersucht werden.  
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Zusammenfasung-Summary 

SUMMARY 

Introduction: Tivantinib is a c-MET inhibitor which demonstrated clinical benefit in 

patients bearing tumors exhibiting elevated c-MET expression in the clinical setting. 

A phase-3 trial in advanced HCC patients selected according to c-MET expression has 

been thus initiated. Yet, surprisingly, the effectiveness of tivantinib as specific c-MET 

inhibitor and thus its employment in this subset of patients have very recently been 

questioned. 

Aims and methods: In the present paper we aimed at assessing the still not fully 

elucidated mechanisms underlying the antitumor effects of tivantinib and their 

relation to the inhibitory effect of this compound on c-MET. To this aim, analysis of 

cell viability, apoptosis, cell cycle and of the underlying molecular changes were 

conducted after tivantinib administration in a panel of cell lines exhibiting different 

c-MET expression status and in c-MET exon 16 MET KO cell lines, which lack the 

binding site for Tivantinib. 

Results: Tivantinib induced caspase-dependent apoptosis and cell cycle arrest 

accompanied by decrease of antiapoptotic Bcl-xl and Mcl-1 and increase of Cyclin B1. 

Cell viability and these molecular changes were affected independently of c-MET as 

shown by experiments in c-MET exon 16 KO cell lines. However, stimulation of 

c-MET by HGF induced increase of Bcl-xl and Mcl-1 revealing that these molecules 

are targets downstream of c-MET. 

Conclusions: Tivantinib impinges on Bcl-xl, Mcl-1 and on Cyclin B1 to cause 

apoptosis and cell cycle arrest independently of c-MET. However, our finding that 

Bcl-xl and Mcl-1 are downstream targets of c-MET provides a possible explanation 

for the predictive effect of c-MET in clinical trials. Cyclin B1, Mcl-1 and Bcl-xl were 

affected by tivantinib regardless of c-MET and should be considered as possible and 

potentially more reliable response predictors. 
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Introduction 

1. INTRODUCTION 

1.1．HGF/c-MET Axis. 

1.1.1. Structure of c-MET 

The N-methyl-N’-nitro-nitroso-guanidine human osteosarcoma transforming (c-MET) 

proto-oncogene represents a prototypic member of receptor tyrosine kinase (RKT) 

family. Located on chromosome 7q21-q31, c-MET was discovered in 1984 by George 

Van de Wounde from a human osteosarcoma cell line and identified to form a fusion 

protein with translocated promoter region (TPR) in the chromosomal rearrangement 

TPR-MET [1, 2]. The protein of c-MET is synthesized in the post-Golgi compartment 

of hepatocytes as a primary single chain precursor (p170met) and undergoes a 

proteolytic process to form a mature glycosylated heterodimer receptor (p190met) 

which is composed of an extracellular α subunit (p50met) and a transmembrane β 

subunit (p140met). Physiologically, c-MET is expressed mainly on the surface of 

endothelial and epithelial cells in many organs, such as liver, pancreas, kidney and 

bone marrow [3]. On the extracellular side, c-MET comprises three domain modes: a 

semaphorin (Sema) domain, which includes the complete α subunit and the 

N-terminal part of the β subunit, the Plexin-Semaphorin-Integrin (PSI) domain, 

(which contains four disulphide bonds), and four Immunoglobulin – Plexin - 

Transcription domains (IPT) [4, 5]. The intracellular field of c-MET contains a 

tyrosine kinase domain including two catalytic tyrosines (Tyr1234 and Tyr1235) 

which are phosphorylated upon activation of c-MET. On the contrary, the 

phosphorylation of a juxtamembrane tyrosine (Tyr1003) negatively modulates the 

activity of c-MET by promoting polyubiquitination, endocytosis and degradation of 

c-MET upon the recruitment of ubiquitin ligase casitas B lineage lymphoma (c-CBL). 

Two other pivotal tyrosines (Tyr1349 and Tyr1356) are located in the C-terminal 

region and are responsible for recruiting several adapter proteins when c-MET is 

activated. A schematic representation of the structure of c-MET is provided in Fig. 1 
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Introduction 

[4, 5]. 

 

Figure 1. Schematic structure of c-MET. Mature c-MET receptor is composed of an extracellular α 

subunit and a transmembrane β subunit. 

 

1.1.2. Structure of HGF 

Hepatocyte growth factor (HGF - also known as “scatter factor”) was discovered in 

1984 and is the only known ligand for c-MET. HGF is secreted predominantly by 

cells of mesenchymal origin as a single chain precursor (Pro-HGF) which undergoes a 

proteolytic process into an active status via extracellular proteases [6-8]. The 

bioactive form of HGF contains an α chain including an N-terminal hairpin loop 

domain and four “kringle domains” (K1 to K4), and a C-terminal β chain which 

contains the serine protease homology (SPH) domain [9-12]. 
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Figure 2. Schematic structure of HGF. 

 

1.1.3. Activation of HGF/c-MET signaling pathway 

Binding of HGF to the Sema domain of c-MET leads to receptor homodimerization 

and autophosphorylation of the two tyrosine residues Tyr1234 and Tyr1235 [13, 14]. 

The second step of c-MET activation implies the phosphorylation of the tyrosine sites 

Tyr1349 and Tyr1356 within the carboxyl terminal region of the receptor [3, 15]. 

Phosphorylation of these tyrosines forms a multifunctional docking site recruiting a 

spectrum of intracellular adaptors and effectors including adaptor proteins (growth 

factor-bound protein 2 - GRB2, src homology 2 domain-containing - SHC, v-crk 

sarcoma virus CT10 oncogene homolog - CRK and CRK-like - CRKL) and effector 

molecules (phosphatidylinositol 3-kinase - PI3K, phospholipase Cγ - PLCγ and SRC, 

the src homology 2 domian-containing 5’ inositol phosphatase SHP-2 and the signal 

transducer and activator of transcription STAT3) [4]. Moreover, GRB2-associated 

binding protein 1 (GAB1), a peculiar multi-adaptor protein, binds either directly or 

indirectly with c-MET, recruiting more binding sites for the downstream adaptors 

[16-19]. 

Physiologically, c-MET is expressed predominantly in epithelial cells of a wide 

spectrum of tissues, including liver, pancreas, kidney, prostate, muscle and bone 

marrow, where it exerts a crucial function in embryogenesis, wound healing and tissue 
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Introduction 

repair by affecting different functions such proliferation, cell scattering, motility, 

mitogenesis, morphogenesis, and angiogenesis depending on the specific cell type and 

the microenvironment [20-24]. The importance of c-MET signaling during 

embryogenesis is corroborated by the fact that c-MET- or HGF-deficient mice show a 

severe impairment of muscle tissue formation [9, 12] and smaller liver size [25]. 

The effect of c-MET activation on cell proliferation, motility and morphogenesis are 

mediated in the different contexts by the activation of three main different signaling 

pathways which are schematically represented in Fig.3. These include the PI3K/Akt 

signaling axis, the Ras-Raf-MEK-Erk cascade and STAT3 pathway. 

The PI3K/Akt signaling axis is activated upon the binding of the p85 and p110 

subunits of PI3K directly to c-MET or indirectly through GAB1, activating the 

serine-threonine kinase Akt/protein kinase B (PKB) [26]. After its dissociation from 

the plasma membrane, Akt has been shown to phosphorylate the pro-apoptotic 

molecules Bad and Bax causing resistance to apoptosis. Furthermore, the activation of 

Akt leads to the phosphorylation of the Tuberous Sclerosis Complex which releases 

its inhibitory effect on mTOR. Activated mTOR affects cell growth and proliferation 

through its activity as transcription factor [27]. Activated Akt can also lead to the 

activation of Ras thus establishing a cross-talk between the PI3K/Akt/Tor axis and the 

Ras/Raf/MAPK signaling pathway [28]. 

The Ras-Raf-MEK-Erk cascade is activated upon binding of the adaptor protein 

GRB2 to the activated phosphorylated form of c-MET. This leads in turn to the 

recruitment of the rat sarcoma viral oncogene homolog Son of Sevenless (SOS), 

which causes the activation of Ras. Activated Ras, leads to the activation of the kinase 

B-Raf which phosphorylates and activates the MAP kinase extracellular 

signal-regulated kinases 1 and 2 (MEK1/MEK2) and successively the extracellular 

signal-regulated kinases 1 and 2 (Erk1/Erk2) which translocate into the nucleus to 

phosphorylate additional transcriptional factors, hereby regulating cell proliferation, 
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Introduction 

cell motility and cell cycle progression [29-32]. The Erk/MAPK axis can be 

additionally activated through the c-MET-mediated activation of Gab1 and SHP2 [17, 

31]. 

The STAT3 signaling pathway is activated by c-MET through the phosphorylation of 

STAT which leads to its dimerization and translocation to the nucleus, which has been 

shown to result in tubulogenesis and invasion [33, 34]. 

 

 

 

Figure 3. HGF/c-MET axis and its downstream pathways. Binding of HGF to the Sema domain of 

c-MET leads to autophosphorylation of Tyr1234 and Tyr1235 and subsequently the phosphorylation of 

the tyrosine sites Tyr1349 and Tyr1356. Phosphorylation of these tyrosines forms a multifunctional 

docking site recruiting a spectrum of intracellular adaptors and effectors, activating a spectrum of 

downstream signaling pathways, such as the PI3K/Akt-axis, the Ras-Raf-MEK-Erk cascade, and the 

STAT3 signaling pathway. 
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1.2．HGF/c-MET axis in carcinogenesis 

1.2.1. Aberrant activation of HGF/c-MET 

While the activation of c-MET in physiological condition is indispensable to control 

various aspects of cell proliferation and motility, the aberrant constitutive activation of 

this receptor has been shown to cause uncontrolled proliferation, cell migration and to 

determine the metastatic potential of cancer cells. Aberrant activation of c-MET 

signaling has been shown to occur due to several mechanisms which include the 

transcriptional upregulation of c-MET, c-MET gene mutations and amplifications, and 

its constitutive (HGF-dependent or –independent) autocrine or paracrine stimulation 

of this receptor. These different ways of c-MET aberrant activation are briefly 

summarized below. 

Increased transcription of c-MET in the absence of c-MET amplification represents 

one of the major causes of constitutive activation of c-MET [35, 36]. Overexpression 

of c-MET has been documented in several tumor entities including hepatocellular 

carcinoma, colorectal cancer, cholangiocellular carcinoma, pancreatic, gastric, lung 

and breast carcinomas and multiple myeloma. The importance of c-MET 

overexpression in these tumor entities is corroborated by several studies showing a 

direct correlation between the overexpression of c-MET and patient’s survival, an 

aggressive tumor phenotype, or resistance to chemotherapeutic treatment [37-40]. A 

summary of different reports on c-MET overexpression in different tumor entities is 

provided in Table 1: in hepatocellular carcinoma (HCC) patients c-MET 

overexpression is associated with poor differentiation, the presence of metastasis and 

shorter five-year survival, and with tumor recurrence after partial hepatectomy 

[41-44]. Correspondingly, it has been shown that transgenic mice overexpressing 

c-MET more frequently develop hepatocellular carcinomas and that a regression of 

such tumors can be achieved by pharmacological inhibition of c-MET [45]. In breast 

cancer, c-MET/HGF overexpression has been shown to correlate with high tumor cell 
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proliferation, poor differentiation, poor prognosis and higher incidence of metastases 

[25, 46]. High levels of c-MET and HGF expression in lung adenocarcinomas also 

showed a correlation with poor survival, metastases formation, resistance to 

radiotherapy, and to the administration of EGFR inhibitors [47-49] (Table 1). 

 

 Expression (% or +)* Association 

 Met HGF Poor prognosis 

Gastrointestinal cancers    
Hepatocellular 68-69% + + 

Colon cancer (incl.liver Mets) 55-78% + + 
Cholangiocarcinoma + +  

Pancreatic + + + 
Gastric carcinoma 75-90% + + 

Other tumor types    

Breast cancer 25-60% + + 

Lung (non-small cell) 41-72% + + 

Multiple myeloma 48-80%   
 

Table.1 c-MET and HGF expression in human cancers and their correlation with prognosis. * 

Expression (% or +): Proportion of tumor samples that are positive for expression is shown with (%) or 

indicated with (+) where expression range has not been reported. Adapted from Giorgio V. Scagliotti et 

al. The emerging role of MET/HGF inhibitors in oncology. (From: Cancer Treatment Reviews 39 

(2013), 793-801). 

 

c-MET point mutations have been reported seldom in hepatocellular carcinoma, 

sporadic and inherited human papillary renal cell cancer (pRCC), NSCLC and breast 

carcinomas [5, 50]. The majority of these mutations occur in the c-CBL binding site 

of cytoplasmic juxtamembrane domain playing a role on the ubiquitination of c-MET 

and other receptor tyrosine kinases (RTKs) including EGFR and PDGFR. c-MET 
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mutations in c-CBL binding domain prevent ubiquitination which lead to c-MET 

overexpression and cellular transformation [51]. Missense mutations of c-MET have 

also been reported in the Sema and juxtamembrane domain. These mutations are very 

likely to play a role in determining the metastatic potential of cancer cells, since they 

were shown to occur more frequently in metastatic tumor tissues in comparison to 

their primary tumors of origin [52]. 

Amplification of c-MET and the consequent c-MET protein expression and activation 

have been found in a number of primary cancers including colon carcinoma, gastric 

cancers and NSCLC [53-55]. However, several reports have shown that c-MET 

amplification occurs more frequently in metastatic tumors, such as liver metastasis 

from colon carcinoma, which indicates the role of c-MET in the late phase of tumor 

progression [56, 57]. 

Autocrine and paracrine activation of c-MET. A number of neoplastic cells show 

intracytoplasmic positivity for HGF, indicating an autocrine pattern of c-MET 

stimulation through endogenous HGF secretion as possible mechanism of constitutive 

c-MET activation in cancer [58]. In addition to the autocrine or paracrine activation of 

c-MET through HGF, some evidence exists that c-MET could be constitutively 

activated by DCP (des-gamma-carboxy prothrombin). DCP is a well-known 

diagnostic and prognostic marker of hepatocellular carcinoma which is at this time 

undergoing extensive investigation in the screening and diagnosis of this tumor. DCP 

is increased in the serum of 44 to 81% of HCC patients and has been shown to bind to 

c-MET hereby leading to its activation and increased proliferation of HCC cells [59]. 

In addition to these mechanisms, activation of c-MET has been shown to occur in 

consequence of the interaction of c-MET with other membrane receptors like EGFR 

and proteinase-activated receptor-2 (PAR-2) which can interact with c-MET leading 

to c-MET constitutive activation and c-MET mediated cell invasion [60, 61]. 

 

 

14  



Introduction 

1.3．The small molecule c-MET inhibitor tivantinib 

The increasing understanding of the function of the HGF/c-MET axis has led to the 

development of several c-MET inhibitors for cancer therapy. Among these compounds, 

tivantinib (originally known as ARQ197) has emerged as a small molecule c-MET 

inhibitor with a spectrum of antitumor activity as a single agent in in vitro and in vivo 

investigations and clinical trials. 

 

1.3.1. Clinical trials of tivantinib 

Tivantinib has been developed as small molecule kinase inhibitor of c-MET. In recent 

years, this agent has been extensively studied as alternative cancer treatment in 

several tumor entities. After proving safe and well tolerated in phase I studies [62, 63], 

a phase 2 study of tivantinib as a second-line therapy was conducted in 107 advanced 

HCC patients after failure of a previous first-line systemic therapy with sorafenib [64]. 

In this study, in which patients were allocated 2:1 to receive tivantinib or placebo, 

tivantinib modestly improved time to progression (TTP) in the intent-to-treat 

population (median 1.6 vs 1.4 month; HR=0.64; p=0.04). However, in patients 

bearing tumors with high expression of c-MET, as judged by predetermined 

immunohistochemical (IHC) criteria (>2+ staining intensity in >50% of tumor cells), 

Overall survival (OS - median 7.2 vs 3.8 months; HR=0.64; p=0.04), time to 

progression (TTP - median 2.7 vs 1.4; HR=0.43; p=0.03) and progression free 

survival (PFS - 2.4 vs 1.5 months; HR=0.45; p=0.02) were significantly improved in 

comparison to placebo-treated patients. Conversely, tivantinib failed to improve OS, 

PFS or TTP in patients with c-MET low expression tumors. Due to these promising 

results, a randomized Phase III clinical trial with tivantinib as a second line therapy in 

patients selected according to the expression of c-MET and exhibiting a “c-MET-high” 

staining in tumor samples has been initiated. 

A second study showing a correlation between c-MET expression and outcome of 
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patients treated with tivantinib is provided by a Phase II study [65] in non-small cell 

lung cancer (NSCLC) patients investigating the tivantinib/erlotinib vs. the 

placebo/erlotinib-combination. This study demonstrated a significant improvement of 

PFS and OS in a subset of patients with K-RAS mutations. Moreover, tivantinib in 

association to erlotinib delayed time to new metastasis formation in patients with 

non-squamous histology. However, the subsequent phase III study was terminated 

prematurely after an interim analysis failing to show signs of effectiveness with 

respect to the primary endpoint of improved OS [66]. In spite of these results in the 

intention-to-treat population, a successive subgroup analysis revealed a substantial 

improvement in the OS of the subgroup of patients carrying tumors exhibiting 

increased expression of c-MET [67].  

Thus, tivantinib showed signs of in patients affected by different tumor entities 

showing overexpression of c-MET. 

In addition to the clinical trials conducted with tivantinib as single agent, tivantinib 

has also been assessed as a combination treatment in association to the kinase 

inhibitor sorafenib. In particular, a phase 1 study of sorafenib and tivantinib 

corroborated preliminary safety and efficacy of the combination of these two agents 

and showed promising signs of efficacy [69]. 
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1.3.2. Mechanisms of action of tivantinib and issues on its specificity as c-MET 

inhibitor 

Tivantinib has been initially presented as a highly selective, orally bioavailable, 

small-molecule inhibitor of c-MET tyrosine kinase. In contrast to the majority of most 

available c-MET inhibitors, which act in an ATP-competitive way, tivantinib inhibits 

the binding of ATP to c-MET kinase in a non-ATP competitive manner [70]. 

 

 

 

 

Figure 4. Schematic structure of Tivantinib. (From Eathiraj S et al. J Biol Chem. 2012). 

Data on the specificity of tivantinib as c-MET inhibitor were provided by Munshi and 

colleagues [70] who found that tivantinib inhibited c-MET in a wide panel of human 

cancer cell lines with an IC50 of 355 nmol/L but had no relevant inhibitory effect on a 

large panel of human kinases in the same concentration range. Also, the authors 

reported that cancer cell lines without detectable c-MET protein expression were less 

responsive to tivantinib than those exhibiting high c-MET expression. In addition, 

tivantinib showed anti-proliferative activities and apoptosis induction in various 

human carcinoma cell lines with constitutive c-MET activity in vitro, suggesting that 

the antiproliferative effect of tivantinib is independent of the mode of activation of 

c-MET [70]. These preclinical data seemed to be confirmed by the aforementioned 

clinical studies showing that c-MET is an outcome predictor in patients treated with 

tivantinib. 

However, more recently the concept of tivantinib as c-MET inhibitor has been 

challenged by two independent laboratories: Katayama and colleagues [71] reported 
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that tivantinib fails to inhibit c-MET in serveral cell lines, that this agent inhibits cell 

viability in both c-MET addicted and non-addicted cells and indicated a perturbation 

in microtubule formation as the main target of tivantinib. Another study, conducted by 

Basilico et al. [72], observed that tivantinib does not inhibit c-MET 

autophophorylation in several cancer cells but promotes microtubule stabilization 

independently of c-MET. These studies openly challenged the rationale underlying the 

use of this inhibitor in the subset of patients showing high c-MET expression. This 

pre-clinical evidence apparently contradicts the notion that c-MET is as predictor of 

efficacy of tivantinib in the clinical setting. The reasons for this discrepancy have 

become the object of intense debate [73-75] and the question arose of whether c-MET 

expression might represents a response marker rather than the actual target of 

tivantinib.  

The actuality of this issue and the intensive clinical use of tivantinib in subsets of 

patients selected according to c-MET status in ongoing clinical trials also in our 

institution prompted us to investigate the molecular mechanisms underlying the 

function of tivantinib and their dependency on c-MET. 

To this purpose, analysis of cell viability, apoptosis, cell cycle and of the underlying 

molecular changes were conducted after tivantinib administration in a panel of cell 

lines exhibiting different c-MET expression status and in c-MET exon 16 MET KO 

cell lines, which lack the binding site for tivantinib. 
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2. MATERIALS AND METHODS 

2.1.  MATERIALS 

2.1.1. Cell lines 

 

Name of cell line Cell type Morphology Medium 

Huh7 
Hepatocellular 

carcinoma cell line 
Adherent DMEM 

HepG2 
Hepatocellular 

carcinoma cell line 
Adherent DMEM 

Hep3B 
Hepatocellular 

carcinoma cell line 
Adherent MEM 

Chang 
Hepatocellular 

carcinoma cell line 
Adherent DMEM 

DLD1 Colon cancer cell line Adherent DMEM 
DLD1 Wild type Colon cancer cell line Adherent RPMI1640 

DLD1 Met exon 16 
knock out 

Colon cancer cell line Adherent RPMI1640 

PL5 
Pancreatic carcinoma 

cell line 
Adherent DMEM 

PANC1 
Pancreatic carcinoma 

cell line 
Adherent DMEM 

TFK1 
Cholangiocarcinoma     

cell line 
Adherent RPMI1640 

 

HepG2, DLD1, PL5 and PANC1 cells were purchased from ATCC (Rockville, MD, 

USA), Huh7 cells were purchased from the Japanese collection of research biosources 

(Osaka, Japan), Chang cells were purchased from Cell lines services (Eppelheim, 

Germany) and TFK1 cells were purchased from German collection of microorganisms 

and cell cultures (Brunswick, Germany). DLD1 wild type and MET exon 16 knockout 

cell lines were a kind gift from Prof. A. Bardelli (Department of Oncology, IRCC, 

Institute for Cancer Research and Treatment and University of Torino, Candiolo, 

Italy). 
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2.1.2. Cell culture 

1. 100 mM Sodium Pyruvate Solution      PAA, Austria 

2. 100 x Amino Acids Non Essential      PAA, Austria 

3. 100 x L-Glutamine 200nM        PAA, Austria 

4. 100 x Penicillin/Streptomyclin       PAA, Austria 

5. Cell Culture Mediums:        PAA, Austria 

Dulbecco´s modified Eagle´s Medium (DMEM)  

High Glucose with L-Glutamine (4.5 g/L)  

Modified Eagle´s Medium (MEM) 

Roswell Park Memorial Institute 1640 (RPMI 1640) with L-Glutamine 

6. Dimethylsulphoxid (DMSO)                      Calbiochem, USA 

7. Disposable Serological Pipette                   Corning Incorporated, USA 

5ml, 10ml and 25ml                            

8. Dulbecco´s PBS without Ca & Mg                 PAA, Austria 

9. Falcon Tubes 15 ml and 50 ml                     BD, USA 

10. Fetal Bovine Serum (FBS)                        PAA, Austria 

11. Tissue Culture Dish (100 x 20 mm)                 BD, USA 

12. Tissue Culture Plate, 6 well, 12well and 96 well       Becton Dickinson, USA 

13. Trypsin-EDTA (1x) 0.05%/0.02% in PBS             PAA, Austria 
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2.1.3. Colony Formation Assay 

1. Crystal violet                                   Sigma, USA 

2. Paraformaldehyde                               Merck, Germany 

 

2.1.4. Fluorescence Activated Cell Sorting (FACS)  

1. Propidium Iodide 1mg/ml                      Sigma, USA 

2. Triton x-100                                    Sigma, USA 

3. Tri-Natriumcitra-Dihydrat                         Merck, Germany 

4. BD AccuriTM C6 Flow Cytometer                   BD, USA 

2.1.4.1. PI Staining Solution 

Ingredients Volume 
Propidum Iodide  10 ml 

Triton x-100 188.8 µl 
Tri-Natriumcitrat-Dihydrat 227.928 mg 
Dissolved in 200ml ddH2O  

 

2.1.5. Materials for Western Blot  

1. SDS Page Running Buffer                    CLN GmbH, Germany    

2. CriterionTM Cell                               Bio-Rad, USA 

3. Filter Paper                                   Whatman, UK 

4. Methanol 100%                               CLN GmbH, Germany    

5. MicroPulser Electroporator                      Bio-Rad, USA  

6. Milk Powder                                 CLN GmbH, Germany    
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7. Protease Inhibitor Cocktail Set 1                  Calbiochem○,RE

A, USA 

8. PVDF Transfer Membrane                      Millipore, USA 

9. Pierce ECLA

○,RE

AWestern Blotting Substrate           Thermol Scentific, 

USA      

SuperSignal A

○,RE

AWest Pico         Thermol Scentific, 

USA      

Chemiluminescent Substrate                     Thermol Scentific, USA      

SuperSignal A

○,RE

AWest Dura        Thermol Scentific, USA      

Extended Duration Substrate                    Thermol Scentific, USA   

10. Medical X-Ray Film                      FujiFilm Corporation, 
Japan 

2.1.5.1. Lysis Buffer 

Unit Ingredients 

20 mM Tris base, pH 7.4 

1% Triton x-100 
2 mM EDTA 
1 mM Na3VO4 

150 mM NaCl 
20 mM Naf 

2 mM Sodium Pyrophosphate 

1% Protease Inhibitor Cocktail Set 1 
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2.1.5.2. Loading Buffer 

Unit Ingredients 
1M Tris-HCl 1.25 ml 

20% SDS 2.5 ml 
Glycerol 2.5 ml 

Bromphenol Blue 0.025 g 

Dissolved in 10 ml ddH2O  

                                 

2.1.5.3. Transfer Buffer (10x) 

Ingredients Volume 
250mM Tris base 30.3 g 
192mM Glycine 144 g 

Dissolved in 1000 ml dd H2O 
Diluted 1:10 with 20% Methanol before using 

 

2.1.5.4. TBST Buffer (10x) 

Ingredients Volume 
150 mM Tris base 24.1 g 

150 mM Nacl 80 g 

Dissolved in 1000 ml ddH2O. pH 7.6                                
Diluted 1:10 with 0.2% Tween 20 before using  

2.1.5.5. Antibodies 

Name 
Molecular 

Weight 
(kDa) 

Source  Concentration Company 

Akt1 60 Mouse 1:1000 in 5% milk Cell signaling 
Phospho-Akt (Ser473) 60 Rabbit 1:1000 in 5% BSA Cell signaling 

 

 

23  



Materials and Methods 

Met (C-28) 145 Rabbit 1:500  in 5% milk Santa Cruz 
Phospho-Met 

(Tyr1349) 
145 Rabbit 1:1000 in 5% BSA Cell signaling 

P53 (DO-1) 53 Mouse 1:1000 in 5% milk Santa Cruz 

Phospho-p53 (Ser46) 53 Rabbit 1:1000 in 5% BSA Cell signaling 
Caspase-3 17, 19, 35 Rabbit 1:1000 in 5% milk Cell signaling 
Caspase-8 18, 43, 57 Mouse 1:1000 in 5% milk Cell signaling 

PARP 89, 116 Rabbit 1:1000 in 5% milk Cell signaling 
Bad 23 Rabbit 1:1000 in 5% milk Cell signaling 
Bax 20 Rabbit 1:1000 in 5% BSA Cell signaling 

Bcl-2 (50E3) 26 Rabbit 1:1000 in 5% milk Cell signaling 
Bcl-xL (54H6) 30 Rabbit 1:1000 in 5% milk Cell signaling 

Bid 15, 22 Rabbit 1:1000 in 5% milk Cell signaling 
Mcl-1 40 Mouse 1:1000 in 5% milk Cell signaling 

CyclinB1 (GNS1) 60 Mouse 1:1000 in 5% milk Santa Cruz 

β-actin 42 Mouse 1:10000 in 5% 
milk Sigma 

 

2.1.6. Small interfering RNA 

RNAase free Water                                Sigma, USA 

DharmaFECT 4 Transfection Reagent                 Thermo Scientific, USA 

CCNB1 (CyclinB1) Smart Pool siRNA Reagent         Thermo Scientific, USA 

ON-TARGETplus SMARTpool, Human MET      Thermo Scientific, USA 

siGENOME Non-Targeting Control siRNAs            Thermo Scientific, USA 

 

2.1.7. Laboratory Equipment 

1. Centrifuges:  

Qualitron DW-41 Microcentrifuge              Qualitron, Germany  

Heraeus Biofuge Primo R                     Heraeus, Germany  

Hettich Rotantal centrifuge                    Hettich, Germany 

2. Dynatech Microtiterplate reader Mr7000         Labexchange, Germany 
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3. Filmprocessor.Curix 60                        AGFA-Gevaert, Belgium 

4. Freezer, -20 oC                               Liebherr, Germany   

Freezer, -80 oC                               Thermol Scientific, USA 

5. GloMax®-Multi Microplate Multimode Reader     Promega, USA 

6. Heraeus B 5028 Incubator                    Heraeus, Germany 

7. Heraeus Safe Clean Bench                     Heraeus, Germany 

8. Hotplate Magnetic Stirrers, Type RM54           CAT, Germany 

9. Microprocessor pH-mV Meter pH538           WTW, Germany 

10. Microplate reader                       PeQLab, Germany  

11. Orbital Shaker, SSL1                          Stuart, Germany 

12. Pipettes: 2.5µl, 10µl, 20µl, 100µl, 200µl and 1000µl   

                                           Eppendorf, Germany 

13. Power PAC200                               Bio-Rad, USA 

14. Thermo Electron LED GmbH                   Thermo Scientific, USA 

15. Thermomixer comfort No.5355 24990          Eppendorf, Germany 

16. Vortex Genie 2-Mixer                   Bender&Hobein AG, Switzerland 

17. Vortex Genie2                         Scientific Industries, USA 

18. W22 water bath                            Medingen, Germany 
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2.1.8. Other Reagents  

1. Caspase-8 Inhibitor II, Z-IETD-FMK       BD, USA 

2. Hoechst 33342 dye 100 mg/ml                   Sigma, USA   

3. SYBR A

○,RE

A Green I Nucleic Acid Gel Stain         Lonza, Switzerland  

4. Recombinant Human HGF 50µg/ml               R&D Systems, USA  

5. Recombinant Protein A 50mg/ml                  Bio Vision, USA  

6. Tivantinib (ARQ197) 30 mM                    ArQule, USA  

7. Tigatuzumab (CS-1008) 10mg/ml          Daiichi Sankyo Phama     
                 Development, USA 

8. Sorafenib 10 mM                    Bayer, Germany 

 

2.2.  Methods  

2.2.1. Cell culture 

2.2.1.1. Cell culture conditions 

Cell culture procedures were performed under a laminar flow hood under sterile 

conditions. DMEM and RPMI 1640 media were supplemented with 10% FBS (Fetal 

Bovine Serum) and 1% Penicillin/Streptomyclin; MEM medium was supplemented 

with 10% FBS, 1% Penicillin/Streptomycin, 1x Amino Acids and 2mML-Glutamine. 

All cell lines were cultivated in a humidified incubator with 5% CO2 at 37°C. Cells 

were plated in tissue culture dishes (100 x 20 mm) and sub-cultured every 2-3 days by 

incubating with 1 x Trypsin EDTA (3 min long for DLD1 wild type and MET exon 16 

knockout cells; 5 min for Huh7, HepG2, Hep3B, Chang and PANC1 cells; 10 min for 

DLD1 and TFK1 cells; 12 min for PL5 cells).  
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2.2.1.2. Cell storage and recover 

For long term storage, 80% confluent adherent cells per dish were released and 

suspended in 1.5 ml of cell culture medium with 10% DMSO. Cells were aliquoted 

into cell freezing containers and stored in a -80oC freezer (Short term storage) or in 

liquid nitrogen (-196oC - Long time storage). Rapid thawing of the cells in a 37oC 

water bath is required when performing cell recovery. Cells were resuspended in cell 

culture medium, centrifuged for 5 min at 1200 rpm before fresh culture medium was 

added to remove DMSO. 

 

2.2.2. Cell Proliferation Assays 

1. Cells were washed with warm-PBS (37oC) and collected after incubation with 

Trypsin-EDTA. After counting, cells were seeded onto 96-well plates at the 

indicated cell density prior to tivantinib treatment. 

Cell line Cell number/well 
Huh7 2500 

HepG2 3000 
Hep3B 2500 
Chang 1000 
DLD1 1000 
PL5 600 

PANC1 700 
TFk1 3500 

 

2. After overnight incubation, cells were incubated with a cell culture medium 

solution containing different concentrations of tivantinib. 0.02% DMSO was used 

as control. 

3. After incubation for 6 days, culture media were removed and cells were washed 

with ice-cold PBS. For osmotic lysis, 100µl ddH2O was added into each well.  
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4. 100µl Sybr green solution (1:500 in ddH2O) per well was added. Fluorescence 

was measured by using Cytofluor® Series 4000 Fluorescence Multi-well Reader. 

Proliferation index was calculated as a ratio to control-treated cells.  

2.2.3. Colony Formation Assay 

1. Different cancer cell lines were plated onto 6-well plates before incubation with 

tivantinib at the following cell densities. 

 

2. 24 h after cell seeding, culture media containing increasing concentration of 

tivantinib or DMSO were added. 

3. After 24h, and subsequently every three days, media in each well were replaced 

with fresh culture media. Cells were cultivated for altogether 3 weeks. 

4. 1 ml crystal violet staining solution was added onto each well. After 30 min the 

staining solution was removed and the number of colonies in each well was 

counted. 

 

2.2.4. Fluorescence Activated Cell Sorting (FACS) Analysis  

Cells were plated onto 12-well plates at the following cell densities. 

Cell line Cell number/well 
Huh7 5000 

HepG2 5000 
Hep3B 5000 
Chang 4000 
DLD1 4000 
PL5 4000 

PANC1 5000 
TFk1 5000 

Cell line Cell number/well 
Huh7   1 x 105 
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1. After overnight incubation, cells were treated with increasing concentration of 

tivantinib for 24, 48 or 72 h. 

2. Cells were collected in 1.5 ml tubes on ice, centrifuged for 8 min at 1500 rpm and 

washed with ice-cold PBS. 

3. Cells were stained with 5% Propidium Iodide Staining Solution according to the 

method of Nicoletti et al. [76]. 

4. FACS analysis was performed by means of the AccuriTM C6 Flow Cytometer 

according to the manufacture´s instruction. 

 

2.2.5. Western Blot Analysis 

1. Cells growing in Petri dishes were collected and washed twice with ice-cold PBS 

and then lysed in cell lysis buffer.  

2. Protein concentration was measured by the BCA assay kit (Sigma, USA). 60 µg of 

protein lysate were loaded and separated by 8% or 12% SDS-Page gels and 

transferred onto polyvinylidene difluoride (PVDF) membranes.  

3. Membranes were blocked at room temperature with 5% non-fat milk or BSA for 1 

h and incubated overnight at 4°C with specific antibodies in TBS-T (TBS-0.1% 

Tween20).  

4. After washing with TBS-T, membranes were incubated at room temperature with 

horseradish-peroxidase-conjugated anti-rabbit/mouse secondary IgG-antibody for 

HepG2             1.25 x 105 
Hep3B              1.5 x 105 
Chang   1 x105 
DLD1 0.8 x 105 
PL5 0.8 x 105 

PANC1 1.2 x 105 
TFk1 1.5 x 105 
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2h. The bands were visualized by an enhanced chemoluminescence detection 

system (Thermo Scientific, USA) according to the manufacturer’s instruction. 

 

2.2.6. Use of DLD1 MET exon 16 knock out (KO) colon carcinoma cells. 

To assess whether the anti-tumor efficacy of tivantinib is specifically due to its 

inhibitory effect on c-MET, two isogenic clones of engineered MET exon 16 knockout 

(KO) and wild type DLD1 cells (Fig.6) were used. These cell lines were previously 

described [77]. 

 

 

 

 

 

 

 

 

Figure 5. c-MET exon 16 knock-out DLD1 colon carcinoma cell lines. MET exon16, which encodes 

the ATP binding cleft including also the hydrophobic site where tivantinib binds, was deleted through 

homologous recombination, resulting in an inactive MET receptor which is neither able to be 

auto-phosphorylated nor to be activated by its ligand HGF. 

 

Cells were plated onto 96, 12 or 6 well plates at the cell density of 3000, 8000 or 

10000 cells per well respectively prior to treatment. Cell proliferation assays, FACS 

analysis and Western blot analysis were performed as described above. 
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2.2.7. Apo-ONER Homogeneous Caspase-3/7 Assay 

1. 5 x 103 Huh7 and HepG2 cells were cultivated in 96-well plates for 24 hours. 

2. Cells were treated with 533 or 4800 nM tivantinib for 24h. Cells incubated with 

DMSO or cell culture media alone were used as negative controls. 

3. 100μl of Apo-ONE® Caspase-3/7 Reagent was added to each well.  

4. Plates were placed on a plate shaker for one hour at room temperature. 

5. Fluorescence was measured in each well at an excitation wavelength range of 485 

± 20nm and an emission wavelength range of 530 ± 25nm. 

 

2.2.8. Hoechst Staining 

1. 2 x 105 cells per well were seeded onto 6-well plates and incubated at 37℃. 

2. After incubation with tivantinib for 1 day, cells were fixed with 4% formalin at 4℃ 

for 30 min. 

3. After washing with PBS, cells were stained with Hoeschst 33 (1:1000 in TBST 

solution) at room temperature for 30 min and assessed by an immunofluorescence 

microscope. 

 

2.2.9. Cyclin B1 small interfering RNA and transfection 

To assess the functional relevance of Cyclin B1 expression in determining the G2-cell 

cycle arrest induced by tivanitnib, Cyclin B1 was silenced by small interfering RNA 

(siRNA) or non-coding siRNA before tivantinb administration. The commercially 

available siRNA SMARTpool® kit containing the following 4 pooled Cyclin 

B1-specific RNA oligonucleotides was used. Transfection procedures were performed 

according to the instruction of the manufacturer. 
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1) siGENOME SMARTpool siRNA D-003206-05, CCNB1 

Target Sequence: CAACAUUACCUGUCAUAUA  Mol.Wt. 13343.0 (g/mol) 

2) siGENOME SMARTpool siRNA D-003206-06, CCNB1 

Target Sequence: CCAAAUACCUGAUGGAACU  Mol.Wt. 13373.0 (g/mol) 

3) siGENOME SMARTpool siRNA D-003206-07, CCNB1 

Target Sequence: GAAAUGUACCCUCCAGAAA  Mol.Wt. 13373.0 (g/mol) 

4) siGENOME SMARTpool siRNA D-003206-21, CCNB1 

Target Sequence: ACUGUAGGGUAGCGGAAA   Mol.Wt. 13388.0 (g/mol) 

 

2.2.10. Cell cycle and viability analysis after siRNA against CyclinB1  

1. Huh7 cells were seeded onto 6 or 96-well plates with a cell density of 1 x 105 or 5 

x 103 per well in serum and antibiotic-free DMEM medium respectively. 

2. 24 h later, 2 ml or 200µl/well 25nM CyclinB1-siRNA solution was added with 

equal volume of 25nM non-targeting control-siRNA or serum and antibiotic-free 

medium as negative or blank control respectively.  

3. After incubation for 6 h, culture medium was replaced with standard cell culture 

medium containing 10% FCS and 1% Penicillin/Streptomyclin. 

4. Cells underwent incubation with 250 or 300 nM tivantinib for 24 hours (cell cycle 

analysis) or 48 hours (viability assay). 

 

2.2.11. Knock-down of c-MET by si-RNA 

To assess the effect of c-MET silencing, the commercially available 
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ON-TARGETplus SMARTpool siRNA kit containing the following 4 pooled 

c-MET-specific RNA oligonucleotides were used. 

1). ON-TARGETplus SMARTpool siRNA J-003156-13, MET 

Target Sequence: GAACUGGUGUCCCGGAUAU  Mol.Wt. 13444.8 (g/mol) 

2). ON-TARGETplus SMARTpool siRNA J-003156-14, MET 

Target Sequence:GAACAGCGAGCUAAAUAUA   Mol.Wt. 13399.9(g/mol) 

3). ON-TARGETplus SMARTpool siRNA J-003156-15, MET 

Target Sequence:GAGCCAGCCUGAAUGAUGA   Mol.Wt. 13444.9 (g/mol) 

4). ON-TARGETplus SMARTpool siRNA J-003156-16, MET 

Target Sequence: GUAAGUGCCCGAAGUGUAA   Mol.Wt. 13429.7 (g/mol) 

 

2.2.12. c-MET expression and HGF stimulation 

Huh7 cells were incubated for 24 hours with two different concentrations of tivantinib 

(533 and 4800 nM) and then stimulated with 100 ng/ml recombinant human HGF 

(R&D System, USA) for 10 min. After protein quantification, cell lysates were 

analyzed by western blot as described above. 
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3. RESULTS 

3.1. Tivantinib exerts a strong anti-proliferative effect in gastrointestinal cancer 
cell lines 

To assess the effect of tivantinib on c-MET inhibition, phosphorylation of c-MET was 

measured in Huh7 and HepG2 cells by western blot. Due to low basal levels of 

phosphorylated c-MET, western blot analysis was conducted after pre-incubation with 

the HGF ligand c-MET. As exemplarily shown in Fig. 6, upon incubation with 

tivantinib both the phosphorylation of c-MET and the overall expression of this 

receptor were reduced in both Huh7 and HepG2 cell lines. To assess the 

anti-proliferative properties of tivantinib, cell proliferation assays were performed in a 

panel of eight cell lines from different gastrointestinal tumors exhibiting different 

c-MET expression status (Fig. 7A). As determined by dsDNA assessment, 

administration of increasing doses of tivantinib resulted in a remarkable loss of cell 

viability with IC50 values comprised between 9.9 nM (Huh7) and 448 nM (Hep3B – 

Fig. 7B). The strong anti-proliferative effect of tivantinib was confirmed by colony 

forming assays showing a remarkable reduction in the number and size of colonies 

(Fig. 8). As shown in Fig. 8A the expression of c-MET varied greatly across different 

cell lines and was expressed at high level in Hep3B or PL5 cells, whereas it was 

expressed at lower level in HepG2 cells. Nevertheless, no apparent correlation could 

be seen between c-MET expression status and the effectiveness of tivantinib in the 

different cell lines as judged by viability assay and colony forming assay. 

 

 

 

 

 

Figure 6. Western blot analysis of c-MET and phospho-c-MET upon incubation with tivantinib. 
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Figure 7. Effect of tivantinib on proliferation of HCC and of four additional cancer cell lines 

(colon cancer [DLD1], pancreatic cancer [PL5, PANC1] and cholangiocellular carcinoma 

[TFK1]). (A) Assessment of c-MET by western blot and (B) Cell viability assays in the different 

indicated cell lines. Results are expressed as mean and standard deviation of 3 independent experiments 

each conducted in triplicate. * p < 0.01; # p < 0.05 in comparison to control treated cells. 
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Figure 8. Effect of tivantinib on colony formation of HCC and other four gastrointestinal cancer 

cells. Data are representative of three independent experiments and are expressed as the mean +SEM 

(standard error of the mean). * p < 0.01; # p < 0.05 in comparison to control treated cells. 
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3.2.Tivantinib induced apoptosis in a dose and time dependent way 

To further assess the events underlying the loss of cell viability in tivantinib-treated 

cell lines, cellular apoptosis was assessed by FACS analysis. As judged by the count 

of the sub-G1 cell fraction after PI staining (Fig. 9 and Fig. 10) a dose- and time- 

dependent increase of apoptosis could be observed upon incubation with tivantinib. 

The pro-apoptotic effect of tivantinib was readily observable at the concentration of 

533 nM, most cells showing features of apoptosis for a concentration above 4 µM 

after 48 hours incubation. Concomitantly, progressive increase of caspase 3 and 

PARP cleavage (Fig. 11A), and caspase 3/7 activation could be observed (Fig. 11B). 

After Hoechst staining, cells treated with tivantinib at the concentration of 4.8 µM 

showed typical features of apoptosis with characteristic signs of chromatin 

condensation and nuclear fragmentation (Fig. 12). 

 

 

 

 

 

 

 

 

Figure 9. Typical FACS pattern of Huh7 and HepG2 cells. Typical FACS patterns showing increase 

of nuclear fragmentation corresponding to the increase of sub-G1 events after PI staining at FACS 

analysis. 
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Figure 10. FACS-analysis based quantitation of apoptosis after PI-staining of tivantinib-treated 

cells. Count of sub-G1 events was conducted by gating the fraction of cells with subdyploid DNA 

content after propidium iodide (PI) staining at the indicated time points. 
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Figure 11. Assessment of caspase cleavage. Assessment of caspase cleavage by detection of 

fragmentation products of caspase 3 and PARP by western blot (A) and of caspase 3/7 activation as 

determined by fluorimetric analysis (B) 24 hours after incubation with tivantinib. Data are 

representative of three independent experiments and are expressed as the mean +SEM. * p < 0.01, in 

comparison to control treated cells. 
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Figure 12. Tivantinib induces typical features of apoptosis with nuclear fragmentation. 

Fluorescence microscopy features of Huh7 and HepG2 cells after Hoechst staining showing intact cell 

nuclei of DMSO-treated cells and chromatin condensation and nuclear fragmentation (indicated by the 

arrows) after incubation with tivantinib.  
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3.3. Tivantinib enhances apoptosis by influencing effectors of the mitochondrial 
signaling pathway. 

To investigate the mechanisms of apoptosis triggered by tivantinib, we assessed the 

role of different pro- and antiapoptotic molecules regulating the extrinsic apoptotic 

pathway (which is activated at the level of the “death receptors” upstream of caspase 

8) and the intrinsic apoptotic pathway (which is triggered in response to mitochondrial 

depolarization). Incubation with tivantinib led to increased caspase 8 cleavage 

followed by cleavage of Bid, which indicates the activation of the extrinsic signaling 

pathway (Fig. 13). Assessment of the mitochondrial regulators of apoptosis showed a 

decrease of the antiapoptotic molecules Bcl-xl and Mcl-1, while no quantitative 

changes could be seen in the pro-apoptotic protein Bax and Bad and in the 

antiapoptotic regulator Bcl-2. These results indicate that tivantinib causes the 

activation of the extrinsic apoptotic pathway by recruitment of caspase 8 while 

simultaneously switching the balance of pro- and anti-apoptotic mitochondrial 

regulators of apoptosis to recruit effector caspases and cause cell death. However, 

preincubation of Huh7 and HepG2 cells with the caspase 8 inhibitor Z-IETD-FMK, 

only marginally affected cell viability upon incubation with tivantinib (Fig. 14), 

indicating that apoptosis triggered in response to this agent is mediated mainly by the 

activation of the mitochondrial pathway.  
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Figure 13. Effect of tivantinib on different regulators of apoptosis in HepG2 and Huh7 cancer 

cells. Western blot-based analysis of different regulators of apoptosis in Huh7 (A) or HepG2 (B) cell 

lines at the indicated time-points. 
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Figure 14. Effect of tivantinib administration on apoptosis after inhibition of caspase 8. FACS 

analysis was performed to assess nuclear fragmentation 24 hours after administration of tivantinib in 

the presence or absence of the Caspase 8 inhibitor Z-IETD-FMK. 

 

3.4. Tivantinib causes a Cyclin B1-dependnet G2/M cell cycle arrest 

To assess whether an effect of tivantinib on cell proliferation concurs with apoptosis 

induction to determine its effect on cell viability, analysis of the cell fraction in 

different phases of the cell cycle was performed by FACS analysis after PI staining as 

shown in Fig. 15. Administration of tivantinib caused a G2/M cell cycle arrest in all 

cell lines assessed, with a corresponding decrease of the fraction of cells in G1 and S 

phases. For example, the fraction of cells in G1, S and G2/M phase in vehicle-treated 

Huh7 cells were 57.9±4.1%, 10.4±5.9%, and 31.7±9.8% respectively. After 24 h 

incubation with tivantinib at the concentration of 1.6 µM the fractions of cells in the 

respective phases of cell cycle were 24.1%±2.8, 11.1±2.0%, 64.9±9.8% (p<0.01 - Fig. 

16A). Similar effects were observed in several cell lines from colon, gallbladder and 

pancreatic cancer cells (data not shown). 

To determine the mechanisms underlying the G2/M cell cycle arrest caused by 

tivantinib, the regulatory protein Cyclin B1, which is known to control the cellular 

transition at the G2/M checkpoint [78], was assessed for 24 hours. Incubation with 

tivantinib was associated with an early, strong increase of Cyclin B1 (Fig.15B). The 
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functional importance of this molecule to determine the observed cell cycle changes 

was confirmed by silencing of Cyclin B1 by siRNA, which led to a robust and 

effective downregulation of Cyclin B1 over 72 hours (Fig.16A). Silencing of Cyclin 

B1 prevented the G2/M cell cycle arrest induced by tivantinib and significantly 

reduced the loss of cell viability caused by tivantinib (Fig.16 B and C). 
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Figure 15. Tivantinib induced significant G2/M cell cycle arrest in HCC cell lines and augmented 

Cyclin B1 expression. (A) Quantification and typical flow cytometry patterns of G2/M cell cycle arrest 

of the indicated HCC cell lines after incubation with tivantinib for 24 hours. (B) Time kinetic of Cyclin 

B1 expression.   

0%

20%

40%

60%

80%

100%

Control 1600

%
 o

f c
el

ls

Tivantinib(nM)

Huh7

G2/M

S

G1

 

0%

20%

40%

60%

80%

100%

Control 1600

%
 o

f c
el

ls

Tivantinib(nM)

HepG2

G2/M

S

G1

  G1  S  G2/M 

   Control           1600 nM 

  G1  S  G2/M 

 G1  S  G2/M   G1 S  G2/M 

   Control           1600 nM 

 

 

45  

β-actin  

Cyclin B1  

Cyclin B1  

β-actin  

  Incubation Time 

 

Huh7 

HepG
 

3 6 12 24 

Tivantinib (nM)  0 533  4800  533  4800  533  4800  533  4800  



Results 

A 

 

 

      

     

B 

 

 

 

 

 

 

 

C 

 

 

 

 

 

 

Figure 16. Tivantinib causes a Cyclin B1-dependent G2/M cell cycle arrest. (A) siRNA-based 

silencing of Cyclin B1in Huh7 cells. (B) Effect of tivantinib on cell cycle distribution after Cyclin B1 

silencing in Huh7 cells. (C) Effect of tivantinib on cell viability after Cyclin B1 silencing in Huh7 cells 

assessed by MTS assay after 48 hours. # p < 0.05 compared to control (medium only) or control-siRNA 

(non-coding siRNA). 
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3.5.  The antiproliferative effect of tivantinib is independent of c-MET but is 
caused by molecular targets downstream of c-MET. 

The expression of c-MET, as judged by immunohistochemistry of human liver cancer 

tissue samples, was associated with a higher response rate in the clinical setting. As 

show in Fig. 8A, the expression of c-MET varied greatly across the eight different cell 

lines used in our system: c-MET was highly expressed in Hep3B or PL5 cells, 

whereas it was expressed at lower level in HepG2 cells. However, no apparent 

correlation could be seen between c-MET expression (Fig. 7A) and the biological 

effect of tivantinib on cell viability (Fig. 7B), colony formation (Fig. 8), apoptosis 

(Fig. 9 to 12) and cell cycle (Fig. 15). These results indicate that c-MET might not be 

the sole target of tivantinib as purported in other previous studies [71, 72]. 

To further explore whether the antiproliferative effect exerted by tivantinib is 

dependent on its inhibitory effect on c-MET, a type of engineered DLD1 c-MET exon 

16 KO cell line, which lacks the binding site for tivantinib was used. As shown in Fig. 

18, tivantinib caused loss of cell viability in a dose dependent manner by inducing 

apoptosis and cell cycle arrest in DLD1 wild type (WT) and in the two c-MET exon 

16 knock out independent clones (KO1 and KO2 - Fig. 17). Furthermore, western blot 

analysis of these cells clones showed that the expression of Mcl-1 and Bcl-xl was 

reduced (Fig. 18A) and Cyclin B1 (Fig. 18B) increased in both wild type and 

c-MET-exon 16 knock out DLD1 cells. To rule out clonal artefacts potentially 

occurring in gene knockout model systems, RNA-interference experiments were 

additionally conducted using unselected Huh7 cells. As shown in Fig. 19A, 

transfection of siRNA targeting c-MET caused a robust downregulation of c-MET, 

but failed to induce apoptosis or cell cycle arrest (Fig.19B).Taken together, these data 

suggest that the cytotoxic activity of tivantinib is largely independent of c-MET. 
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Figure 17. Effect of tivantinib on c-MET exon16 knock-out cell lines. (A) Viability assay upon 

administration of tivantinib in parental DLD1 cells, and in the two independent c-MET-exon 16 KO 

cells (DLD-KO1 and DLD-KO2). (B,C) FACS-based quantitation of apoptosis (B) and cell cycle (C) 

after PI-staining of tivantinib-treated cells. Results are expressed as mean and standard error of 3 

independent experiments each conducted in triplicate.  
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Figure 18. Effect of tivantinib on c-MET-KO clones. (A) Assessment of Mcl-1 and Bcl-xl by 

western blot upon administration of tivantinib at the indicated time points in parental DLD1 cells, and 

in the two c-MET-exon 16 KO cell clones. (B) Time kinetic of Cyclin B1 in the indicated cell lines. 

Data are representative of at least two independent experiments. 
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Figure 19. Effect of c-MET silencing on apoptosis and cell cycle. (A) c-MET protein expression 

after siRNA transfection at the indicated time points. (B) Effect of c-MET silencing on apoptosis and 

(C) on cell cycle distribution. Results are expressed as mean and standard error of 3 independent 

experiments each conducted in triplicate. 
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Results 

Subsequently, we hypothesized that the predictive relevance of c-MET in determining 

the outcome of patients on tivantinib is related to the fact that Mcl-1, Bcl-xl and 

Cyclin B1 are downstream targets of c-MET, and that the efficacy of tivantinib on 

tumors overexpressing c-MET reflects the effect of this compound on c-MET-driven 

overexpression of these molecules even in cells poorly responsive to the effect of 

tivantinib on the kinase activity of c-MET. To assess this possibility, Huh7 cells were 

stimulated with the c-MET ligand HGF with or without the addition of tivantinib. 

HGF administration resulted, as expected, in an increase of phospho-c-MET and 

phospho-Akt, which is known to be activated downstream of c-MET. HGF 

administration also caused an increase of Bcl-xl and Mcl-1 (Fig. 20). In contrast, 

administration of HGF caused an increase of Cyclin B1 expression levels in Huh7 

cells, and the expression of this molecule was further increased by co-incubation with 

tivantinib. Since c-MET is the only know receptor for HGF, the data indicate that 

Bcl-xl and Mcl-1 are regulated downstream of c-MET, whereas Cyclin B1 is not. 

 

 

 

 

 

 

 

 

 

 

Figure 20. Effect of c-MET stimulation by HGF and tivantinib on p-c-MET and target molecules 

of tivantinib in Huh7 cells.   
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3.6. Tivantinib sensitizes cancer cells to the pro-apoptotic action of 

TRAIL-receptor stimulation 

In a final set of experiments, to assess whether the pro-apoptotic effect of tivantinib 

might exert a sensitizing effect on the action of therapeutic agents targeting the 

pro-apoptotic membrane receptors, cells were co-incubated with tivantinib and 

tigatuzumab, a humanized agonistic monoclonal antibody which is capable of 

specifically inducing apoptosis in cancer cells by binding TRAIL-R2. For comparison, 

apoptosis induced by the combination of tivantinib and sorafenib was assessed. Low 

concentrations of tivantinib and tigatuzumab resulted in more than additive increase 

of apoptosis rates when compared to the administration of each agent alone: combined 

application of tivantinib and tigatuzumab caused a 2.9±0.7 fold increase of apoptosis 

in Huh7 cells and a 1.5±0.1 fold increase of HepG2 cells vs. the administration of 

these agents alone (Fig. 21). In contrast, the application of tivantinib and sorafenib 

resulted in apoptosis rates comparable to those observed after the administration of 

these agents individually (ratio of apoptotic cells in the combination treatment vs. the 

sum of each agent was 1.1±0.2 for Huh7 and 0.9±0.2 for HepG2). These data suggest 

that the effect of tivantinib on caspase 8 recruitment and its inhibition of antiapoptotic 

molecules Mcl-1 and Bcl-xl overcome the resistance of cancer cells to apoptosis, and 

together represent a mechanistic rationale for its combination with agents specifically 

capable of inducing apoptosis in cancer cells. 
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Figure 21. Tivantinib increases the sensitivity of HCC cells to the effect of tigatuzumab but not of 

sorafenib. FACS analysis of DNA fragmentation 24 after incubation with the respective agents. 

Graphs shows average rates of apoptosis and standard deviation of one representative experiment, 

performed in triplicate and repeated at least three times (Tiva=tivantinib, Tiga=tigatuzumab,  

Sora=Sorafenib).
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Discussion 

4. DISCUSSION 

The recognition of the role played by c-MET in the biology of tumors led to the 

establishment and extensive clinical investigation of several inhibitors of c-MET [79]. 

Tivantinib is a novel c-MET inhibitor which is being extensively studied in different 

tumor entities and which significantly prolonged time-to-progression and overall 

survival among “MET-high” HCC patients as a second line treatment after failure of a 

first line sorafenib treatment [64, 80]. Based on these phase 2 results, a phase 3 study 

of tivantinib in HCC patients has been initiated in several centers worldwide, 

including the GI-oncology unit of our institution, to enroll “c-MET-high” patients. 

Tivantinib also showed signs of efficacy in association with sorafenib, indicating that 

this agent could be effectively employed also as combination-treatment. 

The clinical efficacy of tivantinib was previously attributed to its pro-apoptotic and 

anti-proliferative effects, to its capability to inhibit the metastatic potential of cancer 

cells [81] or to cause impairment of microtubule assembly or degradation [71, 72]. 

Nevertheless, the molecular mechanisms underlying the biological effects of 

tivantinib in tumor cells have yet to be thoroughly investigated. Furthermore, while it 

has been shown that tivantinib binds to c-MET, affects downstream signaling of 

c-MET pathway in patients, and provides survival benefit only in MET-High patients, 

the specific efficacy of tivantinib as c-MET inhibitor and the rationale for using this 

compound as cancer treatment in a subset of patients bearing tumors with high c-MET 

expression has been recently questioned [71, 72, 74], suggesting that c-MET might 

not represent the only target of this compound. 

First, we aimed at assessing the molecular events underlying the biological effects of 

tivantinib, particularly focusing on apoptosis and cell cycle arrest. Secondly, we 

addressed the issue of whether the biological effect of tivantinib is mediated through 

its efficacy as c-MET inhibitor as originally postulated, or whether “off-target” 

molecules might be responsible for the observed biological properties as recent 
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studies seem to suggest. To this aim we investigated the effect of tivantinib in a panel 

of eight different cell lines exhibiting different c-MET status and employed 

additionally MET exon-16 KO cell lines which lack the binding site for tivantinib. 

These two issues and the clinical implication of our findings are separately discussed 

in the following paragraphs. 

 

4.1. Molecular mechanisms underlying the effect of tivantinib on apoptosis and 

cell cycle. 

Apoptosis can be triggered by two separate signaling pathways. The extrinsic (or 

receptor-mediated) pathway is characterized by the activation of caspase 8 in 

consequence of the stimulation of the membrane-bound “death-receptors” such as 

TRAIL-R1 and –R2 or CD95 [82, 83]. The intrinsic apoptotic pathway is activated by 

mitochondrial depolarization leading to caspase 9 cleavage and eventually to cleavage 

of caspase 3. This pathway is usually activated by stimuli occurring within the cell 

leading to a shift of the balance between pro-apoptotic molecules (such as Bax, Bak, 

Bim and Bid) and anti-apoptotic molecules (such as Bcl-2, Bcl-xl and Mcl-1). 

However, the intrinsic apoptotic pathway can also be initiated in consequence of the 

activation of the receptor-mediated pathway through the caspase 8-mediated cleavage 

of Bid [82, 83]. As we examined the time kinetic of caspase activation after 

administration of tivantinib, we observed a dose- and time-dependent cleavage of 

caspase 8 followed by the cleavage of Bid indicating a recruitment of 

receptor-mediated apoptosis (Fig.13). However, co-incubation of cell lines with a 

caspase 8 inhibitor only marginally affected the cell viability caused by tivantinib 

(Fig.14). As we subsequently assessed several pro- and anti-apoptotic regulators of the 

intrinsic apoptotic pathway by western blot, we could observe a clear downregulation 

of Mcl-1 and Bcl-xl (Fig.13). Mcl-1 and Bcl-xl are Bcl-2-related proteins, which bind 

to Bax and Bak, thereby blocking their pro-apoptotic interaction with the outer surface 
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of the mitochondria. These data indicate that when cells are stimulated with tivantinib 

alone, apoptosis is triggered mainly due to the mitochondrial pathway. It was 

previously shown that phosphorylation of p53 represents a mechanism by which 

inhibition of c-MET causes cell death by phagocytosis in lung cancer cells. Although 

phosphorylation of p53 was observed early after stimulation with tivantinib in HCC 

cells in our system (data not shown), tivantinib did not differently affect the cell 

viability of cell lines exhibiting different p53 status (Huh7 shows a mutant p53 

phenotype and Hep3B shows a p53 gene deletion), demonstrating that the effect of 

tivantinib is independent of p53. 

To further assess the pro-apoptotic potential of tivantinib, in a further experiment, we 

assessed whether the increased cleavage of caspase 8 observed after administration of 

this compound might affect the sensitivity of cancer cells upon stimulation of the 

membrane death receptors. To this aim, tivantinib was administered alone or in 

combination with the TRAIL-R2-binding monoclonal antibody tigatuzumab, which 

has been recently made available as anticancer treatment. Administration of tivantinib 

sensitized several HCC cell lines to the action of tigatuzumab but had marginal effect 

on apoptosis rates observed after the administration of sorafenib (Fig.21). Therefore, 

although the administration of tivantinib alone seems to cause apoptosis mainly 

through the activation of the mitochondria, the sensitization of HCC cell lines to the 

action of tigatuzumab show that tivantinib-mediated increase of caspase 8 cleavage is 

capable to enhance the sensibility of cancer cells to the effect of TRAIL-R-targeting 

compounds. 

Besides these changes in the regulators of apoptosis we could detect a strong increase 

of Cyclin B1 after administration of tivantinib (Fig. 15B). Cyclin B1 in complex with 

Cdk2 controls the G2-M transition of the cell cycle [84, 85]. Also, Ito and colleagues 

showed that prolonged arrest at the G2-phase and abrupt entry into aberrant M-phase 

in the presence of accumulated Cyclin B1 are followed by cell death and that loss of 
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cell viability could be achieved by abrogation of cytoplasmic Cyclin B1 accumulation 

[86]. Furthermore, a previous report showed that elevation of Cyclin B1 correlated 

with the mitotic delay observed in Hela cells expressing autonomous CaMKII 

(Calcium/Calmodulin-dependent protein kinase II) [87]. In line with these previous 

reports, we could detect a strong Cyclin B1 accumulation as soon as 3 hours after 

administration of tivantinib. The functional relevance of Cyclin B1 in determining the 

effect of tivantinib on cell cycle could be confirmed by experiments using specific 

siRNA targeting Cyclin B1. As shown in Fig. 16, siRNA targeting Cyclin B1 but not 

control-siRNA reversed the fraction of cells in the G2/M phase to almost basal levels 

after co-administration of tivantinib. Correspondingly, silencing of Cyclin B1 

significantly reduced the loss of cell viability observed after tivantinib administration. 

These data show that cell cycle arrest concurs with apoptosis in determining the 

anti-proliferative effect of tivantinib. 

In their recent work, Basilico and colleagues showed accumulation of 

alpha-tubulin-containing microtubules 36 hours after administration of tivantinib and 

indicated that tivantinib-mediated apoptosis occurs as a consequence of cell cycle 

arrest caused by impaired microtubule formation [72]. Subsequently, Katayama and 

colleagues showed inhibition of microtubule polymerization as a mechanism of action 

of tivantinib. In agreement with these observations, we found that apoptosis 

progressively increased until 72 hours after administration of tivantinib. However, a 

time kinetic of Bcl-xl and Mcl-1 showed a strong downregulation of these 

antiapoptotic proteins at an early time point after administration of tivantinib and 

before cell cycle changes could be observed. Accordingly, the sensitizing effect of 

tivantinib to TRAIL-R2 stimulation led to apoptosis in the majority of cells within 24 

hours. These findings, together with our data on the reversibility of cell cycle changes 

as a consequence of cyclin B1 inhibition, indicate that both apoptosis and cell cycle 

arrest occurring at an early time point might concur with cell death occurring at a later 

time point in consequence of microtubules perturbations to determine the 
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antiproliferative effect of tivantinib. 

 

4.2. c-MET expression and response to tivantinib. 

Our data showed that tivantinib exerted a remarkable anti-proliferative effect in cell 

lines expressing very different levels of c-MET (Fig. 7). This discrepancy between our 

data and the predictive effect of c-MET expression in the clinical setting might be due 

to differences related to the higher complexity of the mechanisms of action of 

tivantinib in vivo, e.g. those underlying invasion and metastasis formation [81], and to 

microenvironmental changes related to previous administration of sorafenib in these 

patients. Such hypothesis would be supported by the reported role of c-MET in 

determining the resistance to anti-angiogenic therapy [88, 89]. Nevertheless, 

differences in c-MET expression observed by us in cells equally responsive to 

tivantinib are remarkable and seem to confirm recent reports suggesting that c-MET 

expression might not be the only determinant of the response to tivantinib [71, 72]. As 

shown by western blot analysis of p-MET, our data confirm the fact that tivantinib 

acts as c-MET inhibitor (Fig. 6). Interestingly, we also observed a decrease of total 

c-MET after tivantinib treatment (Fig. 6) possibly contributing to the MET-dependent 

mechanism of action of this drug independently of its ability to inhibit the kinase 

activity of c-MET. A similar observation was reported previously and was suggested 

to be mediated by the ubiquitin pathway [90]. In addition, we could show that the 

HGF-mediated increase of antiapoptotic Bcl-xl and Mcl-1 downstream of c-MET 

could be reversed by tivantinib (Fig. 20). Nevertheless, as shown in Fig. 17, silencing 

of c-MET by specific siRNA failed to reproduce the effects of tivantinib on apoptosis 

and on cell cycle. Moreover, the effect of tivantinb on cell viability, apoptosis, cell 

cycle and the regulation of Bcl-xl, Mcl-1 and Cyclin B1 in c-MET-KO cell clones, 

was indistinguishable from that exerted by this agent in c-MET wild-type cells (Fig. 

18 and 19). In addition, the early increase of Cyclin-B1 observed upon administration 
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of tivantinib, proved independent of c-MET, as shown by the activation of c-MET by 

HGF (Fig. 20). These results indicate that the downregulation of important regulators 

of apoptosis like Mcl-1 and Bcl-xl can occur through both c-MET-dependent and 

c-MET independent mechanisms, but are affected by tivantinib independently of 

c-MET, while the activation of Cyclin B1 represents a c-MET-unrelated mechanism of 

action of tivantinib. 

 

4.3. Conclusions and clinical pitfalls 

In summary, we provide a first report on the molecular changes underlying apoptosis 

and cell cycle arrest caused by tivantinb and on their relation to c-MET. Tivantinib 

caused increased caspase 8 recruitment and sensitized cancer cells to the pro-apoptotic 

effect of TRAIL-R-stimulation. Since the activation of the death receptors on the cells 

surface represents a crucial mechanisms for the immune-mediated clearance of tumor 

cells [91, 92], tivantinib might exert an additional antitumor effect in vivo by 

sensitizing cancer cells to the pro-apoptotic effect of endogenous TRAIL, thus 

favoring the clearance of metastatic cells. These data suggest also that the 

pro-apoptotic potential of tivantinib can be exploited by its association with 

pro-apoptotic agents recently made available for clinical employment [93], and that 

such agents should be considered as alternative to the tivantinib-sorafenib 

combination as second line treatment of HCC.  

Experiments of c-MET stimulation with HGF showed that Mcl-1 and Bcl-xl are 

downstream targets of c-MET. Yet, these molecules are affected by tivantinib 

independently of c-MET. The efficacy of tivantinib on tumors overexpressing c-MET 

might therefore reflect the effect of this compound on the c-MET-driven 

overexpression of these molecules even in cells poorly responsive to the effect of 

tivantinib on the kinase activity of c-MET. These findings might account for the 

apparent discrepancy between the relevance of c-MET as predictor of the outcome of 
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patients treated with tivantinib and the recent in vitro reports questioning the activity 

of tivantinib as c-MET inhibitor. Since Cyclin B1, Mcl-1 and Bcl-xl were affected by 

tivantinib regardless of c-MET, we suggest that these molecules are considered as 

possible and potentially more reliable response predictors. 
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5. TABLES AND FIGUERS 

 

Fig.1.  Schematic structures of c-MET. 

Fig.2.  Schematic structures of HGF. 

Fig.3.  HGF/c-MET signaling pathway. 

Fig.4.  Schematic structure of Tivantinib. 

Fig.5.  DLD1 colon carcinoma cell line with deletion of ATP binding cleft of MET.  

Fig.6.  Inhibition of phospho-c-MET and total c-MET by tivantinib as judged by 
western blot.  

Fig.7.  Effect of tivantinib on proliferation of HCC and other four gastrointestinal 

cancer cells (colon cancer, pancreatic cancer and cholangiocellular cacinoma) 

and c-MET expression of these cell lines. 

Fig.8.  Effect of tivantinib on colony formation of HCC and other four 

gastrointestinal cancer cells.  

Fig.9.  Typical FACS pattern of Huh7 and HepG2 cells. Fig.11.  Tivantinib 

induces typical features of apoptosis with caspase cleavage and nuclear 

fragmentation. 

Fig.10.  FACS-analysis based quantitation of apoptosis after PI-staining of        

       tivantinib-treated cells.  

Fig.11.  Tivantinib induces typical features of apoptosis with caspase cleavage. 

Fig.12.  Tivantinib induced typical features of apoptosis with nuclear fragmentation. 

  

Fig.13.  Effect of tivantinib on different regulators of apoptosis in HepG2 and Huh7 
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cancer cells. 

Fig.14.  Effect of tivantinib administration on apoptosis after inhibition of caspase-8 

and on phosphorylation of p53 at Ser46 in Huh7 and HepG2 cells.  

Fig.15.  Tivantinib induced significant G2 cell cycle arrest in HCC cell lines and 

augmented Cyclin B1 expression.  

Fig.16.  Tivantinib causes a Cyclin B1-dependent G2 cell cycle arrest. 

Fig.17.  Cytotoxic effect of Tivantinib on Met exon16 konock out DLD1 cell lines. 

Fig.18. Effect of tivantinib on c-MET KO clones – WB analysis.  

Fig.19.  Downregulation of c-MET by specific siRNA and its effect on apoptosis and 

cell cycle.  

Fig.20.  Effect of c-MET stimulation by HGF and tivantinib on p-c-MET and target 

molecules of tivantinib. 

Fig.21. Tivantinib treatment sensitizes HCC cells to the apoptotic effect of    

tigatuzumab, but not sorafenib. 

Table.1. c-MET and HGF expression in human cancers and their correlation with 

prognosis. 
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6. ABBREVIATIONS  

 

c-MET:   N-methyl-N’-nitro-nitroso-guanidine human osteosarcoma 

transforming  

CRK:       v-crk sarcoma virus CT10 oncogene homolog 

CRKL:     CRK-like  

DCP:         Des-gamma-carboxy Prothrombin 

DMEM:      Dulbecco´s Modified Eagle´s Medium  

DMSO:     Dimethylsulphoxid  

EGFR:       Epidermal Growth Factor Receptor 

FACS:            Fluorescence Activated Cell Sorting 

FBS:              Fetal Bovine Serum      

GAB1:            GRB2-Associated Binding Protein 1  

GRB2:            Growth Factor-Bound Protein 2  

HCC:             Hepatocellular Carcinoma 

HGF:             Hepatocyte Growth Factor 

IHC:              Immunohistochemistry 

IPT:              Immunoglobulin-Plexin-Transcription 

IGF1R:    Insulin Growth Factor Receptor (IGF1R) 

ITT:              Intent-to-Treat  

KO:              Knock Out 
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MAPK:           Mitogen Activated Protein Kinase 

Mcl-1:            Myeloid Cell Leukemia Sequence 1 

MEM:            Modified Eagle´s Medium 

NSCLC:           Non-Small Cell Lung Cancer 

OS:               Overall Survival 

PAR-2:          Proteinase-Activated Receptor-2  

PDGFR:           Pletelet Drived Growth Factor Receptor 

PFS:            Progression Free Survival 

PI:               Propidium Iodide    

PI3K:             Phosphatidylinositol 3-kinase   

PKB:             Protein Kinase B 

PLCγ:            Phospholipase Cγ 

PR:              Partial Response 

pRCC:          Human Papillary Renal Cell Cancer 

PSI:             Plexin-Semaphorin-Integrin 

Raf:             v-raf murine sarcoma viral oncogene homolog B1  

RAS:            Rat Aarcoma Viral Oncogene Homolog  

RPMI 1640:       Roswell Park Memorial Institute 1640  

RTKs:           Receptor Tyrosine Kinases  

SEM:    Standard Error of the Mean 
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Abbreviations 

SF:              Scatter Factor 

SHC:             Src Homology 2 Domain-Containing 

SHP2:            Src Homolog 2 Domian-Containing Phosphatase-2 

siRNA:           small interfering RNA  

SOS:             Son of Sevenless 

SPH:             Serine Protease Homology 

STAT3:           The Signal Tranducer and Activator of Transcription 3  

TPR:            Translocated Promoter Region 

TRIAL:          Tumor Necrosis Factor Related Apoptosis Inducing Ligand 

TRAILR:         TRIAL Receptor 

TTP:             Time To Progression 

VEGFR:          Vascular Epithelial Growth Factor Receptor 
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