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1. Introduction 

Intracellular calcium signals are essential for a variety of physiological processes 

(Berridge, 2004; Catterall, 2010; Turner et al., 2011). They affect virtually all cellular 

processes, from the excitation-contraction coupling in skeletal and cardiac muscles 

through signal transduction, hormone and neurotransmitter release, regulation of 

enzyme activity, gene expression to cell proliferation in different cell types. These 

signals are generated when calcium enters the cell via voltage gated Ca2+ channels 

in the plasma membrane. Alternatively, intracellular Ca2+ can transiently rise upon 

release from intracellular organelles such as ER, nuclear envelop, mitochondria and 

lysosomes. Voltage gated Ca2+ channels in the plasma membrane belong to the 

superfamily of voltage gated pore loop ion channels. This superfamily also includes 

voltage-gated sodium and potassium channels. Voltage gated Ca2+ channels open in 

response to changes in the membrane potential. The opening and the closing of 

these calcium channels is regulated by hormones, protein kinases, protein 

phosphatases, and drugs (Hofmann et al., 1999; Minor and Findeisen, 2010). 

Changes in the function and expression of calcium channels lead to cellular disorders 

and thereby a number of diseases (Bidaud et al., 2006; Striessnig et al., 2010). 

Voltage-gated calcium channels are known to play a key role in synaptic 

transmission. In the retina, a distinct member of the voltage gated Ca2+ channel 

family is expressed, termed Cav1.4. Cav1.4 channels are located in specialized 

synapses of retinal photoreceptors and bipolar cells, so called ribbon synapses. 

Cav1.4 channels are responsible to the tonic glutamate release in the retinal 

photoreceptors synapses as a result of graded and sustained changes in membrane 

potential during a light stimulus (Fig. 1.1). In the dark, when the membrane potential 

is rather depolarized (-40mV), glutamate is released at these synapses. Light 

induces a hyperpolarization and, hence, switches off neurotransmission (Barnes and 

Kelly, 2002; Bech-Hansen et al., 1998; Corey et al., 1984; Doering et al., 2005; 

Mansergh et al., 2005; Morgans, 2001; Strom et al., 1998; Taylor and Morgans, 

1998; Thoreson, 2007). 

Cav1.4 critical for synaptic transmission and mutations in the encoding gene 

(CACNA1F, chromosome Xp11.23) that lead to aberrations in the expression of the 

Cav1.4 protein or to its complete loss have been linked to severe human diseases 

(Striessnig et al., 2004). Recently, mutations in the gene CACNA1F have been 
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identified in patients who have incomplete X-linked congenital stationary night 

blindness (CSNB2) (Bech-Hansen et al., 1998; Boycott et al., 2001; Striessnig et al., 

2004; Strom et al., 1998; Wutz et al., 2002). Another forms of channelopathies 

related to malfunctioning of the Cav1.4 are CORDX3 (x-linked cone-rod dystrophy) 

which it is an X-linked rod-cone dystrophy type 3 (Jalkanen et al., 2006), and the 

Åland Iceland eye disease (AIED, Forsius-Eriksson syndrome) (Jalkanen et al., 2007; 

Vincent et al., 2011).  

The symptoms of these diseases range from relatively mild forms of night blindness 

and decreased visual acuity to severe forms in which myopia, hyperopia, nystagmus, 

complete vision loss and dystrophy of the photoreceptors may additionally appear. In 

order to understand the molecular mechanism by which mutations in the Cav1.4 

channel lead to disease two mice lines, which lack the full CACNA1F gene for the 

channel Cav1.4, have been generated (Mansergh et al., 2005; Specht et al., 2009). 

Both of the Cav1.4 KO mice show a CSNB-like phenotype.  

The electrophysiological hallmark of these knockout animals is a 'Schubert and 

Bornschein' type electroretinogram, in which the amplitude of the scotopic b-wave is 

smaller than the normal a-wave size (Kabanarou et al., 2004). This finding suggests 

that the pathologic correlate of the disease is localized most likely at the 

photoreceptor-to-bipolar synapse which may lead to neurotransmission impairment 

(Mansergh et al., 2005; Specht et al., 2009). In addition, deletion of another 

component of the Cav1.4 channel complex, the auxiliary 2a subunit, in the mouse 

leads also to CSNB2 like phenotype (Ball et al., 2002).  

Since the Cav1.4 channelopathies are transmitted by X-chromosomal inheritance, the 

clinical symptoms have occasionally been also observed in heterozygous female 

carriers (Hemara-Wahanui et al., 2005; Hope et al., 2005; Jalkanen et al., 2007; 

Rigaudiere et al., 2003). Moreover, the clinical picture is not always restricted to the 

visual system, there is evidence of an association between mutations in the Cav1.4 

gene locus and neurological disorders such as mental retardation, autism or epilepsy 

(Hemara-Wahanui et al., 2005; Hope et al., 2005).  

 



INTRODUCTION 

 

9 
 

 

 

Figure 1.1 – Principal structure of the retinal network. (A) The retina is precisely organized 
into a discrete laminar structure at the back of the eye. (B) The retina layers are composed of 
different neurons and glial cell types, which are derived from a common progenitor cell 
population. The index of the retina layers: retinal pigment epithelium (RPE), outer segments 
(OS), outer limiting membrane (OLM), outer nuclear layer (ONL), outer plexiform layer (OPL), 
inner nuclear layer (INL), inner plexiform layer (IPL), ganglion cell layer (GCL) and nerve 
fiber layer (NFL). (Poche and Reese, 2009) 

 

A 

B 
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1.1 Voltage-gated calcium channel 

The voltage gated calcium channels (VGCC, Cav) are protein complexes containing 4 

to 5 subunits. The pore-forming subunit 1 with about 190-270kDa is the largest 

component of the complex. The 1 subunit is functionally the most important 

component of the channel and determines its biophysical and pharmacological 

properties (Catterall, 2000).  

In mammals, there are ten different 1 subunits (Fig. 1.2). The voltage-dependent 

calcium channels can be divided into high voltage-activated (high voltage activated, 

HVA) and low voltage-activated (low voltage activated, LVA) calcium channels, 

according depolarization required for activation (Hofmann et al., 1999; Striessnig, 

1999; Yaari et al., 1987). 

 

 

 

Figure 1.2 – Phylogenetic tree of the voltage-gated calcium channels according to its        

1-Subunit. L-type channels: Cav1.1 - Cav1.4, P / Q-type channel: Cav2.1, N-type channels: 
Cav2.2, R-type channel: Cav2.3, T-type channels: Cav3.1 - Cav3.3. (Dolphin, 2012) 

 

The LVA channels which are also called T-type channels (Cav3.1-Cav3.3) are 

activated at quite hyperpolarized voltages. On the other hand, the HVA channels 

need a high depolarization of the membrane potential to open. They open at a 

membrane potential of >-30mV, for example -30mV (for Cav1.2) and inactive slowly 

compared to the LVA. 

Depending on their pharmacological properties the HVA calcium channels can be 

distinguished further into subtypes. The first type, the so-called L-type calcium 

channels (LTCCs) (Cav1.1-Cav1.4), produces a long lasting ("L") current which is 
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sensitive to organic LTCC blockers including dihydropyridine (DHP), 

phenylalkylamines and benzodiazepines (Catterall, 2000; van der Heyden et al., 

2005).  

The P/Q-type (Purkinje), N-type (Neither L- nor T-) and R-type (Remaining) channels 

(Cav2.1-Cav2.3, respectively) belong to HVA calcium channels but they are only 

weakly affected by the L-type channel blockers. These channels typically can be 

blocked by specific polypeptide toxins from snail and spider venoms. 

The LVA calcium channels, which lead to the tiny/transient current ("T"), require only 

weak depolarization for activation and rapidly inactive. They have a lower 

conductivity than the HVA. Furthermore, the LVA calcium channels resistant to 

subtype-specific channel blockers (Nowycky et al., 1985). 
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Table 1A shows an overview of the classification of the various voltage-dependent 

calcium channels. 

Nomenclature primary 
tissues 

antagonists Citation 

HVA 

Cav1.1 1S L-Type skeletal muscle 

DHP 
PAA 
BTZ 

Mibefradil 

(Tanabe et al., 1987) 

Cav1.2 1C L-Type 
heart, smooth 
muscle, brain, 

pancreas 

(Biel et al., 1990; 
Mikami et al., 1989; 
Moosmang et al., 

2006) 

Cav1.3 1D L-Type 
brain, pancreas 
kidney, heart, 

Ovary 
(Seino et al., 1992) 

Cav1.4 1F L-Type retina 
L- and D-

cis-diltiazem 
DHP 

(Strom et al., 1998) 

Cav2.1 1A 
P/Q-
Type 

brain, cochlea, 
pituitary gland 

-Agatoxin 
(Mori et al., 1991; 
Starr et al., 1991) 

Cav2.2 1B N-Type 
brain, peripheral 
nervous system 

-Conotoxin 
(Dubel et al., 1992; 

Williams et al., 1992) 

Cav2.3 1E R-Type 
brain, cochlea, 
retina, pituitary 

gland 
SNX-482 (Niidome et al., 1992) 

LVA 

Cav3.1 1G T-Type 
brain, heart, 
peripheral 

nervous system Mibefradil 

(Perez-Reyes, 1998) 

Cav3.2 1H T-Type heart, brain (Cribbs et al., 1998) 

Cav3.3 1I T-Type brain (Lee et al., 1999) 

 
Table 1A – Classification of the voltage-dependent calcium channels: The two main groups 
of HVA and LVA can be subdivided on the basis of electrophysiological and pharmacological 
properties into several subtypes. DHP (dihydropyridine), PAA (phenylalkylamine), BTZ 
(benzothiazepines). Detailed references on the VGCC's nomenclature (Birnbaumer et al., 
1994; Ertel et al., 2000; Tsien et al., 1988) 

 

The 1 subunit contains the channel pore, the voltage sensor and the gating 

machinery. The 1 subunit also contains the binding domain of dihydropyridine, 

benzodiazepines and phenylalkylamines, three classes of calcium channel 

antagonist (Striessnig, 1999). The 1 subunit has four homologous domains, which 

are composed of six -helix transmembrane segments. The fourth segment of each 

respective domain serves as a voltage sensor of the channel, the pore loop between 

the segments 5 and 6 acts as a selectivity filter, as was reported for K+ channel at 

2.0Å resolution (Zhou et al., 2001)  and later by crystal structure of the mammalian 
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voltage-dependent K+ channel family (Chen et al., 2010; Long et al., 2005) (Fig. 1.3). 

The structure determination for K+ channel could be similar to Cav/Nav channels, 

since these channels are also a complex of six -helix transmembrane segments 

domains.  

The carboxy-terminus (C-terminus) contains a variety of regulatory structural 

elements: (i) the IQ motif (consisting of the amino acids isoleucine and glutamine), for 

binding calmodulin which can change the open probability of the channel (Zuhlke et 

al., 2000); (ii) The EF-hand motif translates Ca2+-CaM binding into channel 

inactivation and essential for calcium dependent inactivation (Peterson et al., 2000); 

(iii) AKAP150 binding site element enables the interaction between the protein kinase 

C and the calcium channel (Oliveria et al., 2007); and several phosphorylation sites 

(Hell et al., 1995). The distal part of the C-terminus was proposed to play an 

important role in the regulation of transcription of many genes (Dolmetsch et al., 

2001). 

The remaining subunits are considered to be accessory subunits so-called 

modulatory proteins which fine-tune the basic properties of the channel complex, as 

they influence the expression of the channel, also the kinetics and amplitude of the 

calcium influx (Bers, 2002; Gao et al., 1999). The  subunit plays specially an 

important role in the channel transport and trafficking to the cell membrane (Shistik et 

al., 1995). The  subunit (50-72kDa) interacts with the 1 pore subunit in a certain 

domain (AID), located in the intracellular loop between segments 1 and 2      

(Pragnell et al., 1994).   

The other accessory subunits are: The  subunit, which is anchored to the cell 

membrane from the extracellular side, and the extracellular 2 subunit. Both subunits 

(together 125kDa) are linked by disulfide-bonds forming the 2 subunit complex. In 

skeletal muscle, the voltage-gated calcium channels contain an additional  subunit 

(25kDa), a transmembrane protein. (Fig. 1.3) 
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Figure 1.3 – The topology of calcium channel subunits. (A) The topology of calcium channel 

subunits in two dimensions. Voltage-gated calcium channel 1 subunits have 24 

transmembrane ‑helixes, organized into four homologous repeats (I–IV). The fourth 

transmembrane segment of each repeat (S4; shown in red) is the voltage-sensing domain of 

the channel. The yellow segments represent the pore loops.  subunit consists of a Src 
homology (SH3) domain (pink circle) and a guanylate kinase domain (purple circle), 

connected by a linker region. The  subunit binds to the intracellular linker between domains 

I and II of the 1 subunit (AID). The 2 subunit consists of 2 (red), which is an extracellular 

subunit, disulphide-bonded to the  subunit (orange), which anchors to the cell membrane 
(Dolphin, 2012). (B) Diagram of calcium channel heteromeric structure with all the LTCC 
subunits, showing potential organization in relation to the cell membrane (Bauer et al., 2010). 

A 

B 
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1.2 L-type calcium channel 

L-type calcium channels (LTCCs) have been extensively studied. They can be found 

in a wide range of tissues while different isoforms are often expressed together in 

single cells or tissues. 

Like all HVA, the LTCC are activated at a high membrane potential (more than           

-30mV), and reach their excitation maximum between 0 to +10 mV. The class of      

L-type calcium channels can be further subdivided into Cav1.1 to Cav1.4. The L-type 

calcium channels have different functions depending on the site of expression    

(Table 1B).  

The Cav1.1 is critically involved in the electromechanical coupling in skeletal muscle 

(Rios et al., 1992; Tuluc et al., 2009). The Cav1.2 is responsible for the maintenance 

of vascular tone in vascular smooth muscle cells (Moosmang et al., 2003). In the 

heart, the Cav1.2 and Cav1.3 L-type calcium channels play a role both in the 

formation of electrical pulses as well as the contraction of the heart muscle (Bohn et 

al., 2000; Zhang et al., 2005). Cav1.2 can be also detected in the pancreas (Schulla 

et al., 2003), adrenal glands (Marcantoni et al., 2007) and the brain (Hell et al., 

1993). Cav1.3 is expressed especially in the brain, though in a lesser amount than 

the Cav1.2 channel (Hell et al., 1993). Additionally, Cav1.3 could be identified in 

ovaries, kidneys, pancreas (Yang and Berggren, 2006), cochlea (Kollmar et al., 

1997) and in cardiac tissue (Wyatt et al., 1997), including the sinoatrial node (Bohn et 

al., 2000; Platzer et al., 2000; Zhang et al., 2011). Cav1.4 has been discovered 

mainly in the retina (Baumann et al., 2004; Bech-Hansen et al., 1998; Strom et al., 

1998), but at the moment the properties of Cav1.4 are not yet fully well known.  

The LTCC members can be identified by taking in consideration several hallmark 

parameters: sensitivity to dihydropyridines, activation kinetics including facilitation, 

channel conductance and the presence of calcium dependent inactivation (CDI) 

and/or voltage dependent inactivation (VDI). 
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Name 
Primary 

tissues 

Physiological 

function 

Mutations and 

pathophysiology 

Cav1.1 

skeletal 

muscle 

excitation-contraction 

coupling, Ca2+ 

homeostasis 

Malignant hyperthermia 

Cav1.2 

heart prolongation of 

action potential 

duration and 

increased calcium 

transients 

Timothy syndrome 

Brugada syndrome 

smooth 

muscle Cav1.2 deficient mice  
show multiple phenotypes 

brain 

Cav1.3 

brain, 

pancreas 

kidney, 

heart, Ovary 

hormone release, 

regulation of 

transcription, 

synaptic integration 

Congenital cardiac 

(sinoatrial node arrhythmia) 

and auditory (deafness) 

phenotype 

Cav1.4 
mainly 

retina 

neurotransmitter 

release 

CSNB2 

 CORDX3  

ÅIED 

 

Table 1B – Overview on the tissue distribution and physiology / pathophysiology of L-type 
calcium channels (Bech-Hansen et al., 1998; Catterall et al., 2005; Doering et al., 2007; Firth 
et al., 2001; Jalkanen et al., 2007; Jalkanen et al., 2006; Liao et al., 2005; Mansergh et al., 
2005; Platzer et al., 2000; Schulla et al., 2003; Seisenberger et al., 2000; Splawski et al., 
2005; Splawski et al., 2004; Stockner and Koschak, 2013; Striessnig et al., 2010; Striessnig 
et al., 2004; Zhang et al., 2005) 
 

1.2.1 Regulation by voltage and Ca2+ ions 

The flux of ions through the calcium channel into the cell is influenced by inactivation 

of the channel. In LTCC inactivation is primarily voltage dependent (voltage 

dependent inactivation, VDI). In addition, VGCC are characterized by another type of 

inactivation called calcium dependent inactivation (CDI). CDI is a negative feedback 

by which Ca2+ ions are able to limit their own influx (Christel and Lee, 2012). In most 

cell types, this auto-inhibition property is essential to prevent exaggerated Ca2+ 

levels, which may lead to toxicity. 
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At present, the inactivation mechanism is not fully understood. Most of the recent 

knowledge is mainly based on the experiments and recordings on Cav1.2 or Cav1.3 

subtype (Tadross et al., 2010). These channels have a strong VDI and CDI which are 

tied together on a molecular level.   
  

On structural level, the cytoplasmic linker between domain I and II seems to play an 

important role in the inactivation. This linker is supposed to form a blocking particle 

(Fig. 1.4, red linker) that closes the pore and causes the inactivation of channel 

(Cens et al., 1999; Stotz et al., 2000; Tadross et al., 2010). Another crucial structural 

determinant for inactivation is the cytosolic proximal carboxy tail of the L-type calcium 

channel which contains several motifs: an EF-hand motif, an IQ motif and the Pre-IQ 

motif, which corresponds to the sequence stretch between the EF-hand and the IQ 

motif. This proximal C-terminus is highly conserved among all HVA calcium 

channels. 

The IQ motif is localized 148 amino acids downstream of the last transmembrane 

segment IV S6 (Zuhlke et al., 1999) and consists of 12 conserved amino acids. To 

this region binds Calmodulin (CaM), a 17kDa protein, which belongs to the family of 

EF-hand proteins and serves in eukaryotic cells as a calcium sensor, which by 

calcium-binding changes its conformation (Halling et al., 2006; Halling et al., 2009; 

Liang et al., 2003; Pate et al., 2000; Peterson et al., 1999; Pitt et al., 2001; Romanin 

et al., 2000; Zhou et al., 1997; Zuhlke et al., 1999; Zuhlke and Reuter, 1998). Binding 

of CaM to the IQ motif has an important function for auto-regulation of LTCC (Zuhlke 

et al., 2000) and may play a role in regulation of signal transduction pathways in the 

cell nucleus to enable the transcription of genes (Dolmetsch et al., 2001). 

During the rest state, in the absence of Ca2+ ions, Ca2+-free calmodulin 

(apocalmodulin) is pre-bound to the A-region (Fig. 1.4) between the EF-hand motif, 

and the IQ-domain of the carboxy tail of the L-type calcium channel. The channel is 

closed and there is no calcium influx. Apocalmodulin (ApoCaM) is a calcium sensor 

containing four EF-hands;  two in the N-lobe with low affinity for binding Ca2+ ions 

and two in the C-lobe with high affinity (Chin and Means, 2000). 

Upon depolarization (= active state) the channel opens and calcium flows into the 

cell, and the Ca2+ concentration at the intracellular side increases (Liang et al., 2003).  
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During sustained depolarization, calcium binds with high affinity to CaM. Upon 

calcium binding, CaM changes its conformation and interacts with the IQ motif. As a 

consequence, the channel goes to the inactive state and closes (Zuhlke and Reuter, 

1998).  

Point mutation studies indicate that the isoleucine, in the IQ motif, is required for 

interaction with CaM. Moreover, the EF-hand motif, which is located between domain 

IV and the IQ motif, was also reported to be important for the inactivation (de Leon et 

al., 1995; Zuhlke and Reuter, 1998). 

The facilitation is a positive feedback mechanism. This mechanism is characterized 

by increase in calcium influx through L-type calcium channels after increase the 

basal calcium concentration (Gurney et al., 1989) or after consecutive pulses (Noble 

and Shimoni, 1981a, b). The voltage-dependent facilitation is based on a calmodulin 

kinase II-dependent phosphorylation at positions S1512 and S1570 (Blaich et al., 

2010).  

The two forms of self-regulation, facilitation and inactivation exist in parallel. In both 

mechanisms plays calmodulin, which is bound to the IQ motif, an important role 

(DeMaria et al., 2001; Peterson et al., 1999; Zuhlke et al., 1999; Zuhlke et al., 2000). 

Due to calcium binding to its C-lobe, CaM interacts with the IQ motif on the channel 

which leads to facilitation, on the other hand calcium binding to the N-lobe of CaM 

causes inactivation of the channel (Budde et al., 2002). Facilitation and inactivation 

have different kinetics and a different start point after depolarization. The facilitation 

is caused by a fast response of CaM's c-lobe to increase concentration of calcium, 

while the n-lobe responds slowly to concentration changes of calcium and initiates 

the channel inactivation. In addition, when both mechanisms are switched on 

simultaneously, the inactivation of the channel is becoming dominant over the 

facilitation (Zuhlke et al., 2000) which can not been seen. By point mutation and 

replacing the isoleucine to alanine in the IQ motif the CDI disappears whereas the 

facilitation remains unaffected (Zuhlke et al., 1999; Zuhlke et al., 2000). 
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Figure 1.4 – Model for CDI and VDI in LTCC. (A) In the ideal state, the channel is closed 
and there is no Ca2+ influx. The CaM binds to peptide A, located between the EF hand and 
the IQ motif of the C terminus of the LTCC. (B) In response to a depolarizing stimulus, Ca2+ 
flows through the LTCC into the intracellular space and binds to CaM. In the open Ca2+ 
channel state, the EF hand prevents structural conformation of the I–II loop required to block 
Ca2+ entry through the channel pore. (C) Upon elevation of [Ca2+]i (depolarization), the 
Ca2+/CaM complex undergoes the Ca2+-dependent conformational change that relieves the 
inhibition of EF hand, permitting the I–II loop to interact with the pore and accelerate the fast 
inactivation process. The graph shows representative ICa traces evoked by depolarization 
from –50mV to +40mV, as labeled, using –60mV as holding potential. (D) Involvement of 
CaM and CaMKII in the facilitation process. CaMKII enhances the ICa through 
phosphorylation of LTCC. We show murine whole-cell ICa generated from paired depolarizing 
pulses (–60mV ± 10mV at 0.5Hz) representing Ca2+-dependent facilitation (graph).         
(Bodi et al., 2005) 
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1.3 The L-type Calcium Channel Cav1.4 

The Cav1.4 channels play a key role in synaptic transmission by providing a long-

lasting presynaptic Ca2+ influx into the cell which is the trigger for glutamate release.  

Cav1.4 channels are tailored for their function due to two facts: First, they have 

relatively low activation threshold and the very rapid activation kinetics. Second and 

the most striking feature of Cav1.4 is slow inactivation of the channel. 

The Cav1.4 differs in important biophysical properties from other HVA channels. 

Cav1.4 channels are lacking Ca2+-dependent inactivation (CDI) and have very slow 

voltage-dependent inactivation (VDI) (Baumann et al., 2004; Griessmeier et al., 2009; 

Koschak et al., 2003; McRory et al., 2004; Singh et al., 2006; Wahl-Schott et al., 

2006). These properties increase dramatically the current window of the Cav1.4 

compared to other HVA channels, a fact that ensures in the dark to a permanent 

glutamate release at depolarized voltages. (Fig. 1.5) 

 

 

Figure 1.5 – The electrophysiological properties of the Cav1.4 compare to the Cav1.2.        
(A) Whole cell recording from cells expressing either Cav1.4 (left) or Cav1.2 (right).                  
(B) I\V relationship for Cav1.4 channels (solid cycle) and Cav1.2 (opened cycle).                 
(C) Conductance-voltage relationships for Cav1.4 channels (solid cycle) and Cav1.2 (opened 
cycle). (Baumann et al., 2004) 
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It was recently discovered that the Cav1.4 contains an inhibitory domain (ICDI: 

inhibitor of CDI) located at the distal C-terminus and is approximately 100 amino 

acids long (Baumann et al., 2004; Singh et al., 2006; Wahl-Schott et al., 2006). This 

domain binds to upstream C-terminal regulatory domains and switches off the CDI of 

the cannel. (Detailed sequence of the murine Cav1.41 cDNA can be found at 

appendix 8.1).  

Two experiments support the key role of the ICDI in the Cav1.4 regulation as auto-

inhibitory unit on the channel. First, deletion of the ICDI domain from the wild type 

Cav1.4 channel restores the property of Ca2+/CaM-induced CDI, like we see in the 

other HVA channels. Second, co-expression of truncated channel lacking the ICDI 

(Cav1.4ICDI) together with the ICDI domain abolishes the CDI.  

 

1.4 Calcium binding proteins (CaBPs) 

Many voltage-sensitive or ligand-gated ion channels, which regulate the pre- and 

post-synaptic calcium influx, are regulated by families of small calcium sensing 

proteins. These proteins exhibit characteristic calcium binding properties together 

with specific patterns of cellular expression and subcellular distribution, and by that 

permit fine tuning of the calcium signaling mainly in the mammalian CNS (Burgoyne 

and Weiss, 2001; Haynes et al., 2012) 

The Calcium Binding Proteins (CaBPs) represent one such family, which belongs to 

the largest class of calcium sensing proteins in mammals. The CaBPs are part of the 

calmodulin (CaM) superfamily (Fig. 1.6).  

 

 

 
Figure 1.6 – A phylogenetic tree of CaBPs sequences. (Haeseleer et al., 2002) 
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The CaBPs share a similar molecular architecture as CaM. They are defined as 

CaM-related calcium sensors with four EF-hand motifs. However, The CaBPs contain 

significant sequence divergence from their common ancestor – CaM, which may give 

rise to unique structural and functional properties (Haeseleer et al., 2000; Mikhaylova 

et al., 2011). 

The CaBP family, in humans, comprises six proteins: CaBP1, 2, 4, 5, 7 and 8. The 

CaBP3 that was originally identified is most likely a pseudogene, while no CaBP6 

gene exists. It should be mentioned that CaBP7 and CaBP8 are also known under 

the alternative names Calneuron-II and Calneuron-I, respectively. 

All CaBPs members share a core domain comprised of four EF-hand motifs, like 

CaM, although some of the EF-hands may not necessarily be functional (Haeseleer 

and Palczewski, 2002). The EF-hand motif represents a conserved sequence of 30–

35 amino acids with greatest similarity to CaM. The EF motif is the residue which can 

bind Ca2+ ions, and each EF-hand has its own distinct Ca2+ binding affinity (Gariepy 

and Hodges, 1983; Yap et al., 1999). The CaBPs members differ also in unique 

regions located at the N-or C-terminus (McCue et al., 2010). (Fig. 1.7) 

 

 

 

Figure 1.7 – Schematics of the EF motifs organization in a human CaM, CaBP1-5 and 
CaBP7-8. EF-hand motifs (numbered above) are shown as a functional (green square) and 
nonfunctional (gray square). The scale in amino acids (aa). (Detailed multiple sequence 
alignment of the CaBPs can be found at appendix 8.2) 
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Unlike CaM, which is ubiquitously expressed in all plants and animals and has 

essential functions in many aspects of normal cellular physiology, the CaBPs are 

enriched in neuronal tissues where they have been shown to act as important 

regulators of key calcium influx channels. 

Calcium binding proteins have an important role in regulation of the Ca2+ influx via 

the VGCCs in Ca2+-dependent feedback mechanisms and mediate Ca2+-dependent 

signal transduction pathways (Cui et al., 2007; Dick et al., 2008; Few et al., 2011; 

Lee et al., 2002; Liang et al., 2003; Pitt et al., 2001; Zuhlke et al., 2000). 

Many EF-hand Ca2+-binding proteins achieve their effects by direct regulation of 

VGCC properties (Dick et al., 2008; Liang et al., 2003; Pitt et al., 2001; Zuhlke et al., 

2000). However, it seems that the CaBPs and CaM have the capacity to differentially 

regulate the VGCC. This suggests that dysfunctions in Ca2+-binding protein mediated 

VGCC regulation may lead to some common human diseases. 

In contrast to CaM, CaBPs regulate L-type channels in a Ca2+-independent manner 

(Haeseleer et al., 2004; Lee et al., 2002; Zhou et al., 2004; Zhou et al., 2005).  

For example, CaBP1 and CaBP4 compete with CaM for binding to the IQ motif in the 

LTCC 1 C-terminal subunit and act as regulators of these channels (Cui et al., 

2007; Zhou et al., 2004; Zhou et al., 2005).  

CaBP1 is located at the presynaptic ribbon synapse of adult inner hair cells, and is 

suggested to mediate an inhibitory effect on Ca2+-dependent inactivation of Cav1.3 in 

auditory transmission (Cui et al., 2007). Unlike CaBP4, CaBP1 interacts also with the 

N-terminal domain of Cav1.2 to prolong channel activation, independently of the CaM 

effect (Oz et al., 2011). CaBP2 is also physiologically relevant in the auditory system. 

It is identified that mutations in CaBP2 cause moderate-to-severe hearing loss 

(Schrauwen et al., 2012). 

CaBP5 (Rieke et al., 2008) are localized at the photoreceptor synaptic terminals in 

the retina, and are important for developing and sustaining synaptic transmission to 

bipolar cells. 

Both CaBP7 and CaBP8 were found to influence the phosphatidylinositol                 

4-phosphate (PI4P) levels and trafficking of specific secretory cargo to the plasma 

membrane by interaction with and inhibition of the activity of PI4Kβ (PI4P kinase) in 

mammalian cells (Mikhaylova et al., 2009). Moreover, CaBP8 was reported to inhibit 

Ca2+ currents generated through N-, L- and P/Q- type calcium channels, but not by 
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direct interaction with the channel rather by restricting trafficking of the channel to the 

plasma membrane (Shih et al., 2009). 

1.4.1 CaBP4 

CaBP4 is a neuronal Ca2+ sensor protein with structural homology to CaM. Like CaM, 

CaBP4 contains two globular domains, the N- and the C-lobe, each containing a pair 

of EF-hand motifs connected by a central helix (Haeseleer et al., 2002; Haeseleer et 

al., 2000) (Fig. 1.8). It has been shown that CaBP4 is part of the Cav1.4 channel 

complex in the retina (Haeseleer et al., 2004). 

 

 

Figure 1.8 – Model base on a secondary structure function of the CaBP4 domains: 
blue=helix, red=strand, green=turn, cyan=loop. The calcium atoms are shown as yellow 
balls. http://www.cmbi.ru.nl/~hvensela/CABP4/CABP4_2.html 

 

CaBP4 regulates the Cav1.4 channels in the retina (Haeseleer et al., 2004) and the 

Cav1.3 channels in the auditory system (Cui et al., 2007). CaBP4 shifts the activation 

of Cav1.4 to more hyperpolarized potentials through direct interaction with the          

C-terminal domain of the Cav1.4 channel protein. 

Phosphorylation of S37 on CaBP4 in the retina is critical for tuning presynaptic Ca2+ 

signals required for light induced neurotransmitter release (Lee et al., 2007).  

CaBP4 was linked to several human diseases, since mutations in the gene lead to 

rod and cone dysfunction and visual impairments (Aldahmesh et al., 2010; Littink et 

al., 2009; Zeitz et al., 2006). In line with these findings, deletion of CaBP4 in the 

mouse leads to dysfunction of Cav1.4 channels and a CSNB2 like phenotype 

(Haeseleer et al., 2004). Sequence alignments of the CaBP4 protein variants, which 

have been investigated in this work, can be found in appendix 8.3. 

http://www.cmbi.ru.nl/~hvensela/CABP4/CABP4_2.html
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2. Objective of the study 

Despite extensive research in this field, there is still an uncertainty as to why the 

CaBP4 is an important regulator of Cav1.4 channels and how does CaBP4 bind and 

regulate the channel despite the fact that CaM is also expressed in the cells? 

The following objectives have been addressed in this study: 

1. The first aim of this study was to examine in detail the mechanism by which 

CaBP4 regulates the Cav1.4 channel. To clarify this question, HEK293 cells 

which stably express Cav1.41, Cav1.41ICDI or the Cav1.4/5A L-type calcium 

channel subunit were generated and transiently transfected with the additional 

subunits 2a and 2. Afterwards, the basic biophysical properties, like voltage 

dependent activation and inactivation as well as CDI, were determined in 

electrophysiological experiments using whole cell measurements. Additionally, 

two mutations in CaBP4, which are associated with human retinal disease, were 

also analyzed in order to give an explanation as to why patients carrying these 

mutations suffer from a congenital variant of human night blindness (CSNB2). 

2. The second objective was to characterize the Cav1.4 deficient mouse phenotype 

in vivo; in particular the Cav1.4 channelopathies in aged heterozygote Cav1.4 

female mice. For this propose, genetically modified mice that are either 

homozygous or heterozygous for the CACNA1F deletion were analyzed. In order 

to characterize the effect on retinal function, changes in the morphology and 

retinal architecture of these mice were correlated with functional alterations as 

assessed by electroretinography (ERG) and behavioral tests. 
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3. Materials and Methods 

All Buffer and solutions were generated using desalted high purity water and high 

purity standard chemicals (for molecular biology purposes). Additionally, some of the 

solutions were autoclaved for long term use.  

3.1 Chemicals, Solutions and Equipment 

Detailed information on the materials and equipment, which have been used during 

this research study, can be found in the appendix No. 8.5.  

3.2 Molecular biology methods 

3.2.1 Plasmids 

Plasmids are circular, double-stranded DNA molecules which are used in molecular 

biology methods to amplify or express DNA in autonomously replicable manner in 

bacteria. Plasmids work as DNA vectors and contain some essential components 

like: an origin of replication, an antibiotic resistance sequence for selection and a 

multiple cloning site (MCS), with variety recognition sites of different restriction 

enzymes. 

pcDNA3 (5.4 kb, Invitrogen) 

The pcDNA3 vector was used to heterologously express the L-type calcium channel 

Cav1.4 and Cav1.2 subunits for electrophysiology, as well as different fragments for 

FRET measurements. Because of its cytomegalovirus promoter (CMV promoter) the 

vector ensures strong constitutive expression in eukaryotic cells. The vector carries 

an ampicillin resistance gene for positive selection of bacteria after transformation 

with the vector.  

 

Figure 3.1 – The plasmid map of pcDNA3 (Invitrogen) 
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pcDNA5 (5.1 kb, Invitrogen) 

This plasmid vector was used to generate the stable HEK cell lines based on the   

Flp-In™ System (Invitrogen), and according to manufacturer's protocol. 

   

Figure 3.2 – The plasmid map of pcDNA5 (Invitrogen) 

 

pIRES2-EGFP (5.3 kb, Clontech) 

The pIRES2-EGFP vector has an internal Ribosome Entry Site (IRES) sequence in 

addition to its CMV promoter. This sequence is located between the MCS and a 

coding sequence for EGFP (enhanced green fluorescent protein) and enables 

simultaneous expression of the inserted gene and the green fluorescent protein. 

Using this vector makes it possible to identify the transfection efficiency. Vector 

pIRES2-EGFP was utilized to express all CaBP4 and CaM variants for the patch-

clamp measurements. The vector has a kanamycin resistance gene for positive 

selection of bacteria after transformation with the vector. 

   

 

Figure 3.3 – The plasmid map of pIRES2-EGFP (Clontech). The marked restriction sites 
(BglII and SalI) were used for cloning.  
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pEGFP-N3 (4.7 kb, Clontech) 

This vector also carries the EGFP gene (red-shifted variant of wild-type GFP). This 

vector was used in experiments that did not include the use of pIRES2-EGFP, as an 

empty vector which expresses the EGFP only and serves as a control for positive 

transfected cells. The vector has a kanamycin resistance as the pIRES2-EGFP 

vector.  

3.2.2 Generated constructs  

 Constructs for electrophysiology 3.2.2.1

 Cav1.4subunits constructs 3.2.2.1.1

For stable expression of the wild type murine Cav1.4 LTCC subunit channel 

(Baumann et al., 2004) (accession number: AJ579852) or other variants of the 

subunit, namely Cav1.4ICDI and Cav1.4/5A (Griessmeier et al., 2009), HEK293 cell 

lines were generated using the Flp-In™ System (Invitrogen) according to the 

manufacturer's protocol. 

To clone the cDNA of the subunits, the restriction enzymes BamH-I and Xho-I were 

used in two cloning steps. 

The two other subunits of the Cav1.4 LTCC, 2a (accession number: X64297) and 

21 (accession number: M21948) were cloned into the pcDNA3 expression vector 

(Invitrogen) and transiently transfected into the HEK stable lines cells to express the 

functional calcium channel. 

 CaBP4 constructs 3.2.2.1.2

Wild type CaBP4 (accession no. NM144532: CaBP4 of mus musculus, corresponds 

to NM145200: CaBP4 of homo sapiens) was cloned into pIRES2-EGFP (Clonetech) 

expression vector, by using the restriction sites: Bgl-II and Sal-I. Consequently, both 

the CaBP4 and the EGFP are expressed as separate proteins. Transfected cells 

were easily identified by checking for green fluorescence before patch clamp.  

In addition to murine wild type CaBP4, two mutant variants of CaBP4 which are 

associated with autosomal recessive forms of human congenital retinal disease 

CSNB2 were cloned. In CaBP4-R216X, a single nucleotide exchange (C646T) 

replaces an arginine residue at position 216 by a premature stop codon (Littink et al., 

2009). This mutation leads to a truncated CaBP4 protein lacking the C-lobe 

containing EF hand 3 and 4. 
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In the second mutation (CaBP4-E267fs) a deletion of two nucleotides causes a frame 

shift at the last residue of EF hand 4 which elongates the protein by 91 novel amino 

acid residues (Zeitz et al., 2006). The mutations were introduced into the mouse 

CaBP4 sequence to keep in line with the findings in genetic mouse models. The 

human protein sequence of CaBP4-R216X and CaBP4-E267fs corresponds to 

murine CaBP4-R212X and CaBP4-E263fs, respectively.  

 

3.2.3 Culture and transformation of bacteria  

 Bacteria strains 3.2.3.1

Different strains of Escherichia coli (E. coli) were used as host organisms for cloning 

steps and transformation experiments. The stains with their properties and their 

origins are shown in Table 2.1. 

Strain Description Source 

Escherichia coli 
XL1-Blue MRF 

Δ(mcrA)183Δ(mcrCB-hsdSMR-mrr)173endA1supE44 thi-1  

recA1 gyrA96 relA lac [F΄proAB lacq ZΔM15 Tn10 (TetR)] 
Stratagene 

Escherichia coli 

XL10-Gold 

TetRΔ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1  supE44 

thi-1 recA1 gyrA96 relA1 lac Hte [F´proAB lacq ZΔM15 Tn10 

(TetR)Amy CamR]a 

Stratagene 

Table 2.1 – The E. coli bacteria strains 

 

 Culture media and antibiotics 3.2.3.2

Competent E. coli bacteria were cultivated in an autoclaved Luria-Bertani (LB) 

medium with glucose (LB+ medium). 

In case of cultivation on petri dishes, solid medium was used. The medium was 

produced by adding an additional 15g per liter of agarose to liquid LB+ medium. 

Bacteria selection medium for selection after transformation were made by addition 

of the appropriate antibiotic at a final concentration of 100g/mL to an autoclaved 

LB+ medium.  

In agar plates, the appropriate antibiotic was added to the final concentration of 

50g/mL after the LB+ and the agar solution was autoclaved and cooled down to 

50°C. The medium was then poured into sterile Petri dishes with a diameter of 92mm 

(Sarstedt). The cooled plates were stored at 4°C 
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Both of the manufactured antibiotic stock solutions (Ampicillin 50μg/mL, Roth; 

Kanamycin 30μg/mL, Roth) were stored at -20°C. 

 

 

 

 

 

 

 

 

 

 Bacteria culture 3.2.3.3

The cultivation of E. coli bacteria was carried out in LB medium under aerobic 

condition. For small scale plasmid DNA isolation (2.2.4.1), the bacteria were grown in 

5mL liquid LB+ medium in plastic 15mL tubes, or in case of large scale isolation 

(2.2.4.2) in Erlenmeyer flasks with 100mL LB+ medium. The cultivations were 

incubated at 37°C and 225rpm overnight. The cultures always contained the 

appropriate antibiotic (Ampicillin or Kanamycin) at a concentration of 50mg/mL, for a 

positive selection. 

In a transformation procedure, the individual colonies were incubated overnight on 

agar plates, and afterwards were stored at 4°C under selection pressure. 

 Creation of competent bacterial cells stocks 3.2.3.4

Chemically competent bacterial cells were allowed to grow until they reached optical 

density (OD600) values of 0.3; afterwards they were immediately centrifuged off. The 

bacterial pellet was then resuspended in TSS solution and stored in 400L aliquots at 

-80°C. 

 

 

 

 

 

 

 

LB medium + Glucose 

Peptone (Roth) 10 g 

Yeast extract (Roth) 5 g 

NaCl (Roth) 5 g 

Glucose (Roth) 1 g 

H2O ad 1000 mL 

pH 7.2-7.5 

LB medium + Glucose 

Agar (Roth) 15 g 

LB+ medium 5 g 

TSS  

(Transformation-Storage-Solution) 

PEG 3350 40% 50 mL 

MgCl2 1M 10 mL 

DMSO 10 mL 

LB+ medium ad 200 mL 
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 DNA Transformation into E. coli cells 3.2.3.5

Transformation is defined as the introduction of foreign DNA into bacterial cells. 

In this work, different plasmids were transfected into chemically competent cells 

(Table 2.1), using the heat shock method.  

The cells were cultured with antibiotic medium in respect to the plasmids selection 

cassette to obtain a stable transformation of the plasmid in the competent cells.  

DNA transfer into E. coli by heat shock 

The ligation mixture (5-10L) was added and gently mixed into 100L chemically 

competent cells which had been thawed on ice. The cells were then incubated for 

30min on ice, followed by heat shock for 45sec in a 42°C water bath. By this heat 

shock, the recombinant DNA was introduced into the cells.   

Right after the heat shock step, the cells were returned to additional 2min incubation 

on ice for recovery. Thereafter, the competent cells were incubated in 900L of 

SOC(+) medium for one hour at 37°C and 225rpm. 

Finally, the cells were seeded on two agar plates: one in low concentration (150L 

directly from the cell mixture) and the second in high concentration (150L after 

centrifugation step for 5min at 3500rpm). The two plates were incubated overnight at 

37°C. 

SOC(+) medium 

Peptone (Roth) 20 g 

Yeast extract (Roth) 5 g 

NaCl (Roth) 10 mM 

KCl (Roth) 2.5 mM 

MgCl2 10 mM 

MgSO4 20 mM 

Glucose (Roth) 20 mM 

H2O ad 1000 mL 

pH 7.2-7.5 

3.2.4 Isolation of plasmid DNA 

Isolation of plasmid DNA from E. coli cells was performed by NaOH/SDS lysis, as 

described in (Birnboim and Doly, 1979). For the small analytical scale, a mini-

preparation was performed; on the other hand, maxi-preparation was made for the 

larger preparative approach.  
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 Mini-preparation (Miniprep) 3.2.4.1

Miniprep DNA isolation was performed after transformation of plasmids into bacterial 

cells to check which colony contains the correct plasmid. One by one, colonies were 

picked from the agar plate after the transformation and cultured in 7mL of LB medium 

containing 14L antibiotic (Ampicillin or Kanamycin) in a concentration of 50g/mL. 

The Falcon tube was incubated at 37°C and 225rpm overnight. The next morning, 

the culture was spun down by centrifugation (5min, 6000xg, 4°C). The pellet was 

resuspended on ice with 250L MP1. MP2 solution was added to the suspension, 

causing alkaline lysis of the cells. This step takes 5min while the cells suspension is 

incubated at room temperature. Next, 250L of MP3 is added and incubated 20min 

on ice. After a centrifugation step (15min, 20000g, 4°C), the plasmid DNA is now in 

the supernatant. The next step was to precipitate the plasmid DNA with cold 100% 

ethanol, centrifuge at 4°C and then wash with cold ethanol 70%. At the end, the 

washed pellet was dried for 10min in a vacuum centrifuge, and resuspended with a 

desired amount of H2O at 37°C. 

 

 MP1  

Tris 6.06 g 

EDTA∙2H2O 3.72 g 

RNAse A 100 mg 

H2O ad 1000 mL 

pH 8.0 

MP2  

NaOH 8.0 g 

SDS 10% 100 mL 

H2O ad 1000 mL 

MP3 

KOAc 8.0 g 

SDS 10% 100 mL 

pH 5.5 
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 Maxi-preparation (Maxiprep) 3.2.4.2

Maxi-preparation is preformed to isolate plasmid DNA at a large scale. For this 

purpose, bacteria expressing the plasmid were incubated overnight in 500mL 

Erlenmeyer flasks with 100mL LB+ medium containing antibiotic (for example 150L 

ampicillin in concentration of 50mg/mL) at 37°C and 225 rpm. After incubation, a 

glycerol stock from part of the bacteria was made, and in parallel an isolation of the 

plasmid by using the PureYieldTM Midiprep system (Promega), according to the 

manufacturer protocol was done. This kit is based on the method of alkaline lysis, in 

combination with purification by a silica membrane column. 

 Determination of the DNA concentration  3.2.4.3

Quantification of the plasmid DNA can be obtained by their specific absorption at a 

wavelength of 260nm, using an Eppendorf Bio-Photometer. This photometer can also 

indicate protein and RNA contaminations of the sample. For this the absorption ratio 

between OD260 to OD280 (for protein), and OD260 to OD230 (for RNA) were 

measured. The ratio OD260/OD280 should be approximately between 1.7 and 2, the 

ratio OD260/OD230 should be greater than 2. 

3.2.5 Polymerase chain reaction (PCR) 

The Polymerase Chain Reaction (PCR) is an enzymatic method to amplify in-vitro 

specific DNA fragments from a mixture of nucleic acids (Mullis and Faloona, 1987). 

The PCR reaction contains 3 consequential steps: denaturation, annealing of the 

primers and elongation. 

A double-stranded DNA template is separated into two single strands at 94°C, in a 

process called denaturation. By reducing the temperature, specific primers can bind 

to the single stranded DNA, this is the annealing step. Starting from the specific locus 

where the primers bind, the polymerases are able to synthesize the complementary 

lacking single strand. The polymerases fill the nucleotides from the 5' to 3' end. This 

step is the elongation, and usually it is carries out at 72°C. 

The PCR is programmed to be a cycle of denaturation, annealing and elongation 

which repeats several times. Ideally, after each cycle the amplified DNA fragment is 

multiplied exponentially. In theory, at n cycles there are only 2n-1 amplified DNA 

fragments. 
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The annealing temperature in the PCR reaction is dependent on the primers. This 

temperature is roughly 5°C below the melting temperature of the specific primer, 

which can be easily calculated based on the nucleotides the primer contains. 

The elongation duration and temperature depend on the polymerase type and the 

length of the target fragment to be amplified. 

The PCR method was used at this work in different ways: cloning certain DNA 

sequence into expressing plasmid, insert point mutations and genotype mice litters.  

 Primers 3.2.5.1

Primer refers to a DNA fragment with a length of 18-30 base pairs, which is usually 

used in pair to amplify DNA by PCR. The primers used in this study were ordered all 

from MWG-Biotech. Some rules need to be considered when designing primers:  

 Guanine (G) and Cytosine (C) nucleosides should be less than 50% of the 

primer. 

 There should never be four identical bases in a row. 

 The melting temperature should be between 50 to 65°C. 

 At the 3'-end should be located a guanine or cytosine residue. 

 The primer should only bind specifically to a locus within the target DNA. 

 Secondary structures within the primer (like hairpin structures) should be 

avoided. 

 Two pair primers should not be able to hybridize to themselves, in order to 

avoid formation of a dimer. 

 

The computer program "DNA-Man 5.0" (Lynnon BioSoft) was used to design the 

primers. The lyophilized primer DNA was dissolved with H2O to a concentration of 

10pmol/L. For detailed primers list used in the study, check appendix 8.4. 

 

 

 Standard genotyping PCR  3.2.5.2

The thermo-stable Taq polymerase is characterized by fast DNA synthesis, but at a 

relatively high failure rate (0.1% - 1 in 1000 bases is wrong). Therefore, Taq 

polymerase or REDTaq
ReadyMix (Sigma-Aldrich) was only used for genotyping 

. 
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 High Fidelity PCR for cloning  3.2.5.3

The Phusion High Fidelity polymerase is also a thermostable enzyme with a high 

synthesis capacity and the ability of proof-reading. This enzyme is able to detect and 

correct errors in DNA synthesis. Additionally, it also has a very high synthesis rate 

(30-60 bases/sec). PCR with Phusion polymerase (Finnzymes) was used with the 

appropriate reaction buffer (HF buffer) for cloning. 

Each reaction conditions had to be adapted specifically in two important points before 

using this PCR protocol: First, the annealing temperature of the primers, which 

depends on the melting temperature of each primer. Second, the elongation time 

depending on the size of the amplified DNA fragment. 

The dNTP mixture was made of dATP, dCTP, dTTP, dGTP, manufactured by NEB, 

with a final concentration of 10mM of each nucleotide. 

 

 

 

 

Standard-PCR-reaction  

DNA template 30 – 150 ng 

10x Taq-Buffer 2.5 μL 

dNTP's (1,25mM) 4 μL 

Primer forward (10μM) 1.25 μL 

Primer reverse (10μM) 1.25 μL 

Taq-Polymerase 0.25 μL 

H2O ad 25 μL 

REDTaq -PCR-reaction 

DNA template 4 μL 

Primer forward (10μM) 1 μL 

Primer reverse (10μM) 1 μL 

REDTaq ready-mix Buffer 9 μL 

Standard-PCR -program 

94°C 5 min 

94°C 30 sec 

56°C 30 sec 

72°C 60 sec \ 1kb 

72°C 10 min 

X30 
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 Overlap-PCR 3.2.5.4

PCR is a suitable method to introduce point mutations into a target fragment. This 

can be done by using overlap PCR. In this case, primers carrying a substitution of 

one or more base(s) in their sequences were used. The new base may create new 

recognition sites for restriction enzymes or change amino acid sequences and by that 

the functional properties of the protein. 

To introduce a mutation by using the overlap PCR in a DNA fragment, two steps are 

required. First, two fragments are amplified; each one carries the mutation in 

question, one at the 3' end and the second at the 5' end. The two fragments have a 

common overhanging end. Then these two sub-fragments can be brought together to 

form the desired mutated fragment by using primers which are complementary to the 

ends of the fragment. 

This technique was used to generate the chimera constructs between CaBP4 and 

CaM. 

 Quikchange-PCR 3.2.5.5

For the introduction the point mutations in the CaBP4 sequence the QuickChange 

Site-Directed Mutagenesis kit from Stratagene was used. 

This mutagenesis kit allows introducing mutations directly on double-stranded DNA 

plasmids. Therefore, sub-cloning of the mutated DNA fragment is no longer 

necessary. In Figure 3.4, the principle of this mutagenesis kit is illustrated. 

Phusion -PCR-reaction  

DNA template 15 - 30 ng 

5xHF-Puffer 10 μL 

dNTP's (1,25mM) 8 μL 

Primer forward (10μM) 2.5 μL 

Primer reverse (10μM) 2.5 μL 

Taq-Polymerase 0.5 μL 

H2O ad 50 μL 

Phusion -PCR -program 

98°C 5 min 

98°C 30 sec 

65°C 30 sec (-1°C)   

72°C 30 sec \ 1kb 

98°C 30 sec 

45-60°C 30 sec  

72°C 30 sec \ 1kb 

72°C 7 min 

X35 

X10 
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Figure 3.4 – The QuikChange II site-directed mutagenesis method. (Stratagene). 

 

This mutagenesis approach requires 2 anneal mutagenic primers which introduce the 

point mutation, by amplification the whole DNA plasmid using a predetermined 

program in a thermocycler. The polymerase is PfuUltra HF DNA.  

At the end of the amplification step, there are 2 plasmids in the reaction cup, one is 

the template plasmid and the other is the plasmid with the introduced point mutation. 

 

 

 

 

 

 

 

 

In order to eliminate the template plasmid, the restriction enzyme DpnI (10U/L) was 

added to the solution for a digestion step (1h at 37°C). The DpnI enzyme digests only 

methylated plasmid DNA. Therefore the newly synthesized and modified plasmid 

remains intact and could be transformed into chemically competent cells. Some of 

the EF hands mutations in the CaBP4 have been introduced with this technique. 

 

  

QuikChange-PCR -program 

95°C 30 sec 

95°C 30 sec 

55°C 30 sec 

68°C 60 sec \ 1kb 

X12 
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QuikChange-PCR-reaction  

DNA template 100 ng 

10x Buffer 5 μL 

dNTP's mix 1 μL 

Primer forward (10μM) 1.5 μL 

Primer reverse (10μM) 1.5 μL 

PfuUltra HF polymerase 1 μL 

H2O ad 50 μL 

3.2.6 Isolation, purification and quantification of DNA 

DNA fragments from PCR or restriction digestion can be separated by agarose or 

PAGE gels. In both, the DNA fragments are separated by gel electrophoresis. The 

negatively charged nucleic acids migrate to the positive pole under electric field. The 

DNA is separated as a function of the applied voltage, the concentration of the gel as 

well as the conformation and size of the DNA fragments. The migration rate 

increases with decreasing DNA mass. 

The DNA samples were loaded on the gel with gel-loading buffer (6x Dye) which 

contains the dyes bromophenol blue & xylene cyanol to track electrophoresis 

progress. The bromophenol blue dye runs at the same level like DNA fragments with 

a size of 10-100bp, while the xylene cyanol dye can be seen at the level of DNA 

fragments with a size of 5kb. A universal size standard for DNA fragments (1kb DNA 

Ladder, Invitrogen) was used next to the samples. 1x Tris/Borate/EDTA buffer (TBE) 

was used as electrophoresis running buffer.  

 

6x Dye 

Ficoll 18 g 

0.5 M EDTA (pH=8) 24 mL 

10x TBE 60 mL 

Bromophenol blue (50 μg/mL) 3 mL 

Xylene cyanol (50 μg/mL) 3 mL 

H2O ad 100 mL 

 

The concentration of agarose or acrylamide (PAGE) in the gel is depended on the 

size of the DNA fragments which need to be separated. 

10x TBE 

Tris HCl 540 g 

Boric acid 275 g 

0.5 M EDTA (pH=8) 200 mL 

H2O ad 1000 mL 

Electrophoresis running 

buffer 

10x TBE 1 L 

H2O 9 L 
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 Agarose gel 3.2.6.1

Separation of DNA on an agarose gel by electrophoresis was the standard 

procedure. Depending on the fragment size, gels with different agarose (peqGOLD 

universal agarose Peqlab) concentration were used. Gels with 0.7% for fragments 

bigger than 1000bp and 2% for fragments between 200-1000bp. The agarose was 

added to 1x TBE solution and set to boil in the microwave. Afterwards, the solution 

was cooled to about 60°C and 0.8g/mL ethidium bromide solution was added to it. 

The ethidium bromide is a DNA intercalator which makes the DNA visible under UV 

light. After the gel solidified, it was placed in a horizontal electrophoresis chamber, 

overlaid with 1x TBE. The samples were mixed in the ratio 1:6 with 6x loading buffer 

and carefully pipetted into the gel pockets. The electrophoresis was carried out at 

100 to 135V. Following the procedure, the gel was photographed in a gel 

documentation system (Gel Doc 2000, Bio-Rad). In case of a preparative gels, the 

desired band was excised with a scalpel from the gel, in order to isolate the DNA 

from the gel (2.2.6.3).  

 Polyacrylamide gel electrophoresis (PAGE) 3.2.6.2

For the separation of very small DNA fragments (<400bp) 5% polyacrylamide gels 

(PAGE) without ethidium bromide were used. These are vertical gels with thickness 

only of 0.75mm for analytical purposes or 1.5mm thick gels for preparative purposes. 

The samples are mixed with 6x loading buffer and applied to the vertical 

electrophoresis PAGE gel filled with 1x TBE buffer. The gel was running for 10min at 

100V, followed by 50min at 260V. 

Subsequently, the gel was stained for 10min in ethidium bromide (final concentration 

0.8g /mL), followed by a washing step with double distilled H2O to remove the rest 

of the ethidium bromide. At the end, the gel was photographed with Gel Doc system. 

 

PAGE-Gel 

Rotiphorese Gel 40  

(Acrylamid / N,N’-Bisacrylamid = 29:1, 

40% aqueous solution) 

3.8 mL 

1x TBE ad 30 mL 

TEMED (N,N,N`,N`- Tetramethylethylendiamin) 20 μL 

APS 70 μL 
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 Isolation of DNA from a gel  3.2.6.3

The band of interest was excised under UV-light with a scalpel from the gel. Isolation 

and purification of DNA from agarose gel was performed with a kit according to the 

manufacturer's instructions (QIAquick Gel Extraction Kit, Qiagen). Alternatively, the 

DNA band was excised from the gel and inserted into a dialysis tube (Sigma) with 

300L 1x TBE solution with no air bubbles. The dialysis tube was placed in a 

horizontal electrophoresis (containing 1x TBE running buffer) for 2-3 hours at 145mA 

of electro-elution. The buffer inside the dialysis tube, which contains after the elution 

the DNA, was transferred into a reaction vessel, to proceed with the DNA 

precipitation protocol. 

 Precipitation of DNA 3.2.6.4

Purification or concentration of DNA by ethanol precipitation was performed from 

aqueous solutions. The precipitation was done by adding 2 solutions successively: 

First, 1/10 times volume of 5M NaCl fraction (pH 5.2) was added to the DNA solution. 

Second, 2.5 times the volume of 100% ethanol (-20°C). The reaction cup was then 

mixed and set for 15min at -80°C to let precipitate the DNA.  

Centrifugation at 14,000rpm for 15min at 4°C followed, to discard the supernatant. 

The pellet was washed with 100mL of 70% ethanol and centrifuged again for 5min 

(14,000rpm, 4°C). Finally, the DNA was dried in a vacuum centrifuge (SpeedVac, 

Heraeus) for 3-5 minutes and dissolved in the desired amount of water.  

 Isolation of genomic DNA from mouse tissues 3.2.6.5

Due to the large size of the genomic DNA molecules and the fact that it can easily be 

damaged by shear forces, it is impossible to isolate DNA from mouse tissues (toes) 

for genotyping like in the procedure to isolate a plasmid DNA. The lysis of the cell 

membranes was done by incubating the mouse tissue in 100L lysis buffer 

containing 10L proteinase K buffer and 1L proteinase K, to solubilize the cell 

membrane. This mixture was incubated overnight at 55°C and 650rpm. The following 

day, the mixture was heated to 95°C K for 10min to inactivate the proteinase K, and 

stored at 4°C. The DNA is then used for genotyping analysis.  

For Southern blot, 5mm mouse tail tissue was incubated with 500L lysis buffer at 

56°C and 300rpm overnight. 
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 Phenol-chloroform extraction 3.2.6.6

By phenol-chloroform extraction, proteins can be separated from an aqueous solution 

of DNA to obtain particularly pure DNA. The extraction procedure was done in the 

following steps: 

First, the DNA-protein mixture was increased with autoclaved H2O to a minimum 

volume of 500L. Afterwards, the solution was mixed with an equal volume of 

phenol-chloroform-isoamyl alcohol mixture (25:24:1, Roth), and centrifuged for 5 min 

at 14,000rpm and 4°C. As a result, two phases formed, the lower organic phase 

containing the protein and the upper aqueous phase, in which the DNA is dissolved. 

The upper phase was removed and mixed with 500L chloroform and centrifuged 

again. The DNA in the upper phase was collected and could be precipitated (like 

2.2.6.4). 

The phenol-chloroform extraction was used also as intermediate step to purify the 

DNA while pre-overlap PCR application.  

 Sequencing of DNA  3.2.6.7

The DNA fragments were analyzed by restriction digestion and also by sequencing. 

The DNA fragment (genomic or plasmid) was sent with forward and/or reverse 

primer(s) to Eurofins MWG Operon, Ebersberg Germany for sequencing. The 

sequencing was done according to company's instructions and protocols. 

(http://www.eurofinsdna.com)    

 

 

 

 

 

 

 

 

 

 

 

http://www.eurofinsdna.com/


MATERIALS AND METHODS 

 

42 
 

3.2.7 Enzymatic modification of DNA 

Cloning of DNA fragments after the amplification and purification steps and/or 

linearization of the DNA vector require using enzymatic modifications steps like 

restriction digestion. The enzymes that were used in this work were purchased from 

New England Biolabs (NEB) and Fermentas.  

 Restriction digestion  3.2.7.1

Restriction enzymes are bacterial endonucleases that recognize and cut specific 

sequences in double-stranded DNA (Sambrook and Russell, 2001). In this work, 

restriction endonucleases type II, which digest the DNA within their specific 

palindromic recognition sequence, were used. Characteristically, the enzyme can 

create either blunt ends ("blunt ends") or as complementary 5'-and 3'-protruding 

cohesive ends ("sticky ends"). 

The recognition sequences, reaction buffer and incubation conditions of each 

enzyme were taken from the manufacturer's specifications.  

When using two restriction enzymes with different optimal buffers, one reaction buffer 

was chosen in which each enzyme activity did not decrease below 75%. For detailed 

restriction enzymes list used in the study please check appendix 8.4. 

 Dephosphorylation 3.2.7.2

To prevent religation of the restricted, linearized vector during the ligation, the vector 

DNA was dephosphorylated at the 5 'ends. The 5'-phosphate group was removed by 

treatment with CIP (calf intestinal phosphatase).   

After the restriction digestion of the vector, the vector was treated with 1L CIP 

(corresponding to 1 unit) with the appropriate buffer at 37°C for 15min, followed with 

heat inactivation step (65°C, 5min). Before and after the dephosphorylation step, the 

restriction mixture was purified a phenol-chloroform extraction followed by DNA 

precipitation (2.2.6.6, 2.2.6.4). Lastly, the vector DNA was used for ligation (2.2.7.3).  

 Ligation 3.2.7.3

The T4 DNA ligase was used to link the compatible ends of the linearized vector and 

the DNA insert fragment. This enzyme is ATP-dependent, ligating two ends of double 

stranded DNA by catalyzing the formation of a phosphodiester bond between a 5'-

phosphate and a 3'-hydroxyl group. T4 DNA ligase can be used for DNA with sticky 

ends as well as with blunt ends.  
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Ligations were performed, using the 1L Quick T4 DNA ligase (NEB), in a volume of 

20L with the buffer system (contains ATP) provided by the manufacturer. The 

ligation mixture was incubated for 5 min at RT or alternatively overnight at 16°C in a 

water bath.  

For ligation, vector and insert were used in a mass ratio of 1:3, respectively. The 

vector DNA was being approximately 10ng. The amount of insert DNA was 

calculated using the following equation: 

 

                     
                                             

                  
    

 

As a result of the ligation, circular plasmid was created containing the desired DNA 

insert sequence. This recombinant plasmid could be later introduced by 

transformation in E. coli (2.2.3.5). 

 

 

 

3.2.8 Southern-Blot  

The Southern blot method makes it possible to identify single-stranded DNA 

fragments from total genomic DNA (Southern, 1975). Briefly, The DNA fragments are 

separated on an electrophoresis gel, which are then blotted onto a membrane and 

immobilized. By hybridization with a radioactively labeled probe which is 

complementary to region of interest, the specific DNA fragment can be detected. 

This technique was used once in this study to confirm that the mice we used as our 

animal model are indeed Cav1.4 knockout mice. 
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 Buffers and solutions for Southern blot 3.2.8.1

 

 

 

 

 

 Extraction of genomic DNA from mouse tissue 3.2.8.2

In order to isolate the genomic DNA, a short piece from the mouse tail was incubated 

at 60°C overnight in 500L lysis buffer contains proteinase K. The next morning, the 

DNA was precipitated ethanol-NaCl mixture followed by phenol/chloroform extraction.  

 Restriction digestion of genomic DNA 3.2.8.3

The extracted genomic DNA was incubated in 50L restriction mix with the enzyme 

Bgl-lI according to the enzyme's manufacturer requirements at 37°C for 2-3 hours. 

5M NaCl 

NaCl 29.2 g 

H2O ad 100 mL 

0.5M EDTA pH 8.0 

Na2EDTA*2 H2O 93.05 g 

H2O ad 500 mL 

1M Tris pH 8.0 

Tris 60.5 g 

H2O ad 500 mL 

20% SDS 

SDS 100 g 

H2O ad 500 mL 

1M NaH2PO4 

NaH2PO4*2 H2O 156 g 

H2O ad 1000 mL 

1M Na2HPO4 

Na2HPO4*2 H2O 178 g 

H2O ad 1000 mL 

0.4M HCl 

HClconc. 40mL 

H2O ad 1000 mL 

ssDNA 10mg/mL 

ssDNA from herring sperm 0.5 g 

H2O ad 50 mL 

20x SSC  pH 7.0 

NaCl 175 g 

Na3Citrat*2 H2O 88 g 

H2O ad 1000 mL 

0.5M NaOH / 1.5M NaCl 

NaOH 40 g 

NaCl 175.3 g 

H2O ad 2000 mL 

0,5M Tris / 3M NaCl   pH 

7.0 

Tris 121 g 

NaCl 351 g 

H2O ad 2000 mL 

10x TE 

Tris 1M pH 8.0 50 mL 

EDTA 0.5M pH 8.0 10 mL 

H2O ad 500 mL 

2x wash buffer 

20x SSC 200 mL 

20% SDS 10 mL 

H2O ad 2000 mL 

0.4x wash buffer 

20x SSC 40 mL 

20% SDS 10 mL 

H2O ad 2000 mL 

Church buffer 

BSA 5 g 

1M Na2HPO4  193.5 mL 

1M NaH2PO4  56.5 mL 

20% SDS 175 mL 

0.5M EDTA 1 mL 

ssDNA 10mg/mL 5 mL 

H2O 50 mL 
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After inactivation of the restriction enzyme, the DNA mix was applied on 0.8% 

agarose gel for separation. 

 Separation of genomic DNA on agarose gel 3.2.8.4

The digested DNA was loaded on a 0.8% agarose gel and separated at 150V. 

Subsequently, the gels were photographed under UV light with an applied ruler to 

determine the size of the band after blotting.  

 Depurination of genomic DNA 3.2.8.5

Depurination of the genomic DNA increases the effectiveness of relatively large DNA 

fragments to be transferred from the agarose gel to the membrane. Before the 

blotting step, the agarose gel was treated in 3 washing steps: first with 0.4M HCl for 

15min to break the DNA strands. Second, with 0.5M NaOH/1.5M NaCl for 15 min to 

separate the two DNA strands. And finally, with 0.5M Tris/ 3M NaCl (pH 7.5) for 

20min for neutralization.  

 Blotting 3.2.8.6

The DNA fragments from the gel are transferred by capillary force to a Hybond-N 

membrane. The agarose gel is placed over 3 layers of filter paper on soaked 

sponges with 10x SSC buffer in half-filled with 10x SSC buffer metal dishes. The 

membrane was placed over the agarose gel with another 3 layers of filter paper and 

a big stack of paper towels on top. Great care was taken that no liquid bridges 

between paper towels and buffer stocks formed, so that the entire liquid could travel 

through the gel and the membrane towards the paper towels, whereby the DNA 

fragments are transferred to the membrane. 

On the following day, the membrane was removed after marking the gel pockets and 

the ladder marker with a pencil. The DNA on the membrane was then immobilized 

with UV light (cross-linking), and dried for 1-2 hours at 80°C. 

 Amplification of the 32P-labeled probe 3.2.8.7

The probe for the Southern blot was amplified by PCR from genomic DNA and sub-

cloned using restriction enzymes. Before the labeling reaction, the probe was excised 

from the vector by restriction digestion and purified. Radioactive labeling was 

performed using the "random-primed DNA labeling kit" from Roche. About 100ng 

DNA fragment served as a template after 10 minutes denaturation at 95°C. The 

Klenow enzyme optimally synthesizes new labeled DNA strands with dNTP mix (with 
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radioactive -32P-dCTP) at 37°C. After 1.5 hour of labeling reaction the labeled 

probe was purified on a NickTM Column (GE Healthcare). The activity of the probe 

was determined using a scintillation counter. 

 Hybridization 3.2.8.8

The membrane with the immobilized DNA fragments was first prehybridized for 2 

hours at 60°C with Church buffer in a water bath, to block nonspecific binding sites. 

For hybridization, the radioactive labeled probe, which was previously denatured at 

95°C for 5 minutes, was added to pre-warmed Church buffer. The membrane was 

then incubated overnight at 60°C, in a water bath. 

 Washing and analyzing the membrane 3.2.8.9

The next day, the membrane was washed briefly with pre-heated to 60°C 2xSSC 

washing buffer, and then treated along the following washing steps in order to 

remove excess and non-specifically bound probe: 

 

1. 15min 2.0xSSC / 0.1%SDS 60°C 

2. 30min 0.4xSSC / 0.1%SDS 65°C 

3. 30min 0.4xSSC / 0.1%SDS 67°C 

4. 30min 0.4xSSC / 0.1%SDS 72°C 

 

The membrane was washed until the point that its activity was between 20-50cpm, 

by Geiger counter. The membrane was then air-dried at room temperature on filter 

paper, and placed overnight to several days with a Phospho-imager plate (BAS 

MP2025P, Fujifilm) in exposure case. The signals on this plate were detected by 

BAS 1000 Phospho imager (Fujix Company). 
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3.3 Biochemical methods 

Protease inhibitors were added to the solutions, in all the steps described below, 

according to the manufacturer´s instructions. Moreover, the steps were performed at 

4°C, in order to prevent denaturation or degradation of the proteins. 

3.3.1 Protein extraction from HEK293 cells 

HEK293 cells were transfected using a calcium phosphate protocol (as described in 

2.4.3.2). The medium was exchanged 16-20 hours after transfection, and the 

HEK293 cells were harvested 3 days after transfection. For lysing the cells, first the 

culture medium was aspirated; the cells washed once with 10mL of PBS and lysed 

with 0.5mL of cell lysis buffer containing protease inhibitors (Complete ® EDTA-free, 

Roche). 

To detach the cells, the culture dishes were placed on a shaker for 15min at 4°C and 

100rpm. The lysed cells were subsequently transferred by pipetting up and down 

several times in a 1.5mL reaction tube. After 15 minutes of centrifugation at 4°C 

(13,000 rpm), the supernatant containing the solubilized protein was transferred into 

a new reaction tube. The pellet was discarded and the supernatant was frozen at       

-80°C for further use.  

 

 

 

 

 

 

 

3.3.2 Quantification of protein concentration 

The overall protein concentration of lysates was quantified with photometrical  

method – Bradford assay (Bradford, 1976), using the BioPhotometer (Eppendorf). 

For this purpose, 5L from the protein solution were mixed with 95L 0.15M NaCl 

and subsequently with 1mL of Coomassie solution. The mixed solution was 

incubated for 2 min at room temperature. 

The Coomassie solution contains the dye Brilliant Blue G250 which forms complexes 

with proteins in acidic conditions. The complex shifts the absorption maximum from 

Cell lysis buffer 

Tris HCl pH 7.4 50 mM 

NaCl 150 mM 

EDTA 1 mM 

Triton X-100 1 % 
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465nm to 595nm. Therefore, the protein concentration in the solution is quantified by 

absorbance at 595nm. 

 

Coomassie solution 

Coomassie brillant blue G250 50 mg 

EtOH 95% 25 mL 

H3PO4 85% 50 mL 

H2O ad 500 mL 

 

3.3.3 Electrophoretic separation of proteins by SDS-PAGE 

The separation of proteins according to their molecular weight was carried out by 

SDS – polyacrylamide gel electrophoresis, as described in (Laemmli, 1970). 

By heating the sample in 6xLaemmli sample buffer to denaturing conditions, proteins 

become unfolded and coated with sodium dodecyl sulfate (SDS) detergent 

molecules, acquiring a high net negative charge that is proportional to the length of 

the polypeptide chain. By this modification the separation depends only on the size 

and not on the net charge of the proteins. Before application to the gel, the samples 

were denatured by addition of Laemmli buffer for 5min at 98°C. 

To prepare the gel, all components of the stacking gel and the separating gel were 

initially mixed without ammonium peroxodisulphate (APS) and TEMED. After adding 

these two components, the liquid separating gel was first poured into the prepared 

glass plates (Biorad) with thickness of 1.5mm. 100% ethanol was added on top to 

ensure a smooth surface of the gel. The gel polymerized within about 30 minutes, 

then the ethanol layer was removed and the ready mixed stacking gel was set onto 

the separation gel with the gel comb. The concentration of acrylamid/bisacrylamid 

solution (Rotiphorese Gel 30, 37.5:1, Roth) in the separation gel is depended on the 

size of the protein to be analyzed. For electrophoresis, the Mini-Protean 3 

electrophoresis system (Biorad) was used. The electrophoresis was done at 100V 

with the protein standard Kaleidoscope Protein Ladder (Biorad). 
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3.3.4 Western Blot 

Recombinant CFP-tagged human CaBP4 mutations (CaBP4 R216X and CaBP4 

E267fs) and wild type CaBP4 were expressed in HEK293 cells using the calcium 

phosphate transfection method (2.4.3.2). Western Blot protocol was performed as 

published previously (Schieder et al., 2010), using an antibody against GFP 

(Clonetech).  

Briefly, after electrophoretic separation was carried out, the proteins were transferred 

to an Immun-Blot PVDF membrane (Polyvinylidene difluoride, Immobilon, pore size 

0.45 microns, Millipore). The transfer process was done in a tank-blot system (Mini 

Trans-Blot, Bio-Rad) with ice cooling at 100mA for 1 hour. The duration of the blotting 

was determined by the size of the transferred proteins.   

4xTris-HCl/SDS pH6.8 

(0.5M Tris, 0.4% SDS) 

Tris Base 6.04 g 

SDS 0.4 g 

H2O ad 100 mL 

4xTris-HCl/SDS pH8.8 

(1.5M Tris, 0.4% SDS) 

Tris Base 18.2g 

SDS 0.4 g 

H2O ad 100 mL 

Stacking gel 

Rotiphorese Gel 30  0.65 mL 

4xTris-HCl/SDS pH6.8 1.25 mL 

H2O 3.05 mL 

APS 25 μL 

TEMED 5 μL 

Separation gel (7%-15%) 

Rotiphorese Gel 30 3.5-7.5 mL 

4xTris-HCl/SDS pH8.8 3.75 mL 

H2O 7.75-3.75 mL 

APS 30 μL 

TEMED 10 μL 6xLaemmli sample buffer 

(Storage at -20°C) 

4xTris-HCl/SDS pH6.8 7 mL 

Glycerol 3 mL 

SDS 1 g 

Bromphenol blue 0.004% 

DTT 0.9 g 

H2O ad 10 mL 

10xElectrophoresis buffer 

Tris Base 30.2 g 

Glycine 144 g 

SDS  10 g 

H2O ad 1000 mL 
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After blotting, the PVDF membrane was dried for 1h at 37°C and blocked with tris 

buffered saline (TBST) containing 5% milk powder for 1 hour at room temperature. 

Incubation with primary anti-GFP antibody (mouse monoclonal, IgG) was done 

overnight at 4°C. The blot was then incubated (1h, RT) in the secondary anti-mouse 

IgG antibody conjugated with horseradish peroxidase, which was diluted 1:5000 in 

TBST containing 3% milk powder. Between and after the incubation steps the 

membrane was washed three times for 5min with TBST. At the end, protein was 

detected by enhanced chemiluminescence using the ECL Western Blotting Analysis 

System (Amersham Biosciences or Roche) and a light sensitive film (Hyperfilm ECL, 

Amersham Biosciences). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10x TBS (pH 8.2) 

Tris Base 12.1 g 

NaCl 80.2 g 

H2O ad 1000 mL 

1x TBST 

10 x TBS 100 mL 

Tween 20 1 mL 

H2O ad 1000 mL 

Transfer buffer 

10x Electrophoresis buffer 100 mL 

Methanol 200 mL 

H2O ad 1000 mL 

Blocking buffer 

5% powdered milk in 1x TBST 
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3.4 Culture and transfection of eukaryotic cells 

All work described in this section was carried out under sterile conditions (laminar air 

flow, HERAsafe HS18, Heraeus). All media and solutions were heated in a 37°C 

water bath before use. 

3.4.1 HEK293 cells culture 

HEK293 (human embryonic kidney) cells were treated to overexpress the human wild 

type CaBP4 and/or the CaBP4 mutations before proceeding with the western blot. 

The cells were cultured in 100mm Petri dishes (Sarstedt) in an incubator (Heraeus) 

at 37°C and 10% CO2. Dulbecco's modified Eagle medium (DMEM) containing 1g/L 

D-glucose and pyruvate supported with 10% fetal bovine serum (FBS), 100U/mL 

Penicillin G and 100μg/mL Streptomycin was used as the culture medium.   

3.4.2 Establish of HEK293 stable cell lines 

Murine Cav1.4 1 subunits (wild type, ICDI and 5A) were expressed in stable 

HEK293 cell lines generated by using the Flp-InTM System (Invitrogen). 

The Flp-In system is based on using the FLP recombinase and FLP site - a specific 

recombination sequence in order to integrate a gene of interest at a defined position 

in the target cell genome. The target cell line HEK-FlpTM is a genetically modified cell 

line which contains a singular FRT site (FLP recombination target site) in the genome 

and a zeocin resistance gene. In parallel, the plasmid vector pcDNA5/FRT also 

contains an FRT site, combined with a hygromycin resistance gene. The Cav1.4 1 

subunits of the calcium channel were cloned in two steps into the vectors MCS, 

under control of the CMV promoter. 

Co-transfection of the targeting vector with the gene of interest and the FLP 

recombinase expression vector (pOG44) causes integration of the gene into the 

genome. The result of the integration is a change of resistance cassette from zeocin 

to hygromycin. Therefore, only cells that can grow under hygromycin selection are 

cells carrying the gene of interest. 

Cells were seeded in 35mm diameter culture dishes and grown overnight, without 

antibiotic selection. The next day, cells were transfected with 1.5g Cav1.41 

pcDNA5/FRT-Plasmid and 2.5g pOG44 plasmid. After 4 hours, the transfection 

medium was removed, the cells washed with PBS and received fresh medium 

without antibiotic. 24 hours after transfection, the cells were trypsinized and 
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transferred to a new culture dish using hygromycin to select for the positive, resistant 

cells. The positive cells were frozen and stored in liquid nitrogen. 

During routine work, the cells were cultured in 25cm2 cell culture flask in an incubator 

at 37°C and 10% CO2, using DMEM containing 4.5g/L D-glucose and pyruvate with 

addition to 10% FBS and antibiotics (Penicillin and Streptomycin). 

Once the cells had grown close to 100% confluence, they were split. The cells were 

washed once with phosphate buffered saline (PBS) to remove leftover of the culture 

medium and subsequently disaggregated with EDTA-trypsin. After inactivation of 

trypsin by adding DMEM medium to the flask, the cells were resuspended by 

mechanic force. 

5% of the cells were seeded into a new 25cm2 culture flask and another 5% were 

seeded into 12 wells plate for transfection. After transfection, the cells were seeded 

in 24-well plates with and poly-L-lysine coated coverslips, in a final volume of 1mL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Transfections 

 Transient transfection with Fugene 3.4.3.1

The transient transfection of HEK293 cells was performed both for electrophysiology 

as well as for the FRET measurements using Fugene 6 transfection reagent (Roche), 

according to the manufacturer's instructions. The ratio of DNA (micrograms) to 

Fugene (L) was typically 3:1, the ratio of Fugene (L) to the reaction medium      

(L, DMEM without additives) 1:10. Cells with 90% confluent in 12 well plates were 

PBS (pH 7.4) 

NaCl 40.0 g 

KCl 1.0 g 

Na2HPO4*12H2O 14.5 g 

KH2PO4 1.2 g 

H2O ad 5000 mL 

EDTA-trypsin solution 

Stock solution             

(0.5% trypsin/0.2% EDTA) 10 mL 

PBS (pH 7.4) ad 100 mL 
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transfected 48 to 62 hours before preform the whole-cell patch clamp measurements 

on them. The transfection rate and right time window to patch the cells was estimated 

base on the eGFP expression in the transfected cells.  

 Transient transfection with calcium phosphate 3.4.3.2

HEK cells were grown on 100mm culture dishes in 10mL medium to approximately 

75% confluency before being transfected with the calcium phosphate method.  

The DNA was diluted to final volume of 400L with H2O, and then 100L 2.5M CaCl2 

and 500L 2xBBS were added. The mixture was incubated for 12min at room 

temperature before it was distributed drop-wise on the 100mm culture dish. The cells 

were incubated for approximately 16h overnight at 37°C incubator with 3% CO2. The 

next morning, the medium was changed and the cells were incubated at 37°C and 

10% CO2 for 2-3 days, and then lysed. For each dish, 30g of plasmid DNA was 

used. 

 

 

 

 

 

 

 

 

 

3.4.4 Harvesting of HEK293 cells 

Cells were harvested 72 hours after transfection. They were washed twice with PBS 

and scraped from the bottom of the culture dish with a cell scraper. The cells were 

collected in a reaction tube and stored at -80°C, after short centrifugation step of 5 

minutes at 1000rpm, until further use. 

3.4.5 Freezing of HEK293 cells 

The HEK cells can also be stored to a longer period at -180°C. For that purpose, the 

HEK cells must be first trypsinized and centrifuged at 1000rpm for 5 minutes. The 

pellet is then resuspended in 1mL of freezing medium, and stored for a few weeks at 

-80°C or at -180°C for longer time. 

2x BBS (pH=7) 

BES 0.533 g 

NaCl 0.818 g 

Na2HPO4*2H2O  0.013 g 

HEPES 5 mM 

H2O ad 50 mL 

2.5 M CaCl2 

CaCl2* 2H20 7.35 g 

H2O ad 20 mL 
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3.5 Investigation of Cav1.4 knockout mice 

All experiments were conducted in accordance with animal welfare guidelines and 

approved by the government of Upper Bavaria. 

The animals were kept under a 12:12 hour's light/dark cycle and received food and 

water ad libitum. The offspring of breedings were genotyped 7-10 days after birth by 

a PCR analysis. At the age of 3-4 weeks the pups were separated from their 

mothers. 

3.5.1 The Cav1.4 knockout mice 

In the second part of the study, Cav1.4 specific KO mice were used. The Cav1.4 

deficient mice were generated by deletion of exons 14-17 and disruption of Cav1.4 

gene (Fig. 3.5) through homologous recombination using a Cre/loxP site strategy 

(Specht et al., 2009). 

All test mice were descendent from heterogeneous breeding mates, after several 

generations of cross-breeding with C57-Bl6/N mouse strain.   

 

 

 

 

 
Figure 3.5 – The targeting locus of Cav1.4 (Cacan1f) with the 48 exons. The targeting vector 
contains two recombination arms: 5' with exons 9-13 and 3' with exons 18-27. In addition the 
targeting locus, where exons 14-17 are floxed with the NeoR selection cassette. Green 
triangles: loxP sites, Blue triangles: FRT sites, B: Bgl-II. The Southern blot probe is marked in 
Orange and the sizes of the fragments are mentioned. 

 

3.5.2 Immunohistochemical methods 

Immunohistochemical staining was performed at 3, 6 and 12 months according to the 

procedures described previously (Michalakis et al., 2005).  

Briefly, the eyes were removed completely from a mouse that was sacrificed with 

diethyl ether, and pierced with a needle so the 4% PFA fixative could penetrate the 

eye during pre-fixation (5 min). After pre-fixation, the area above the ora serrata was 

cut and removed along the glass lens body.   
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The remaining eye cup with the retina inside was fixed for 45 minutes in 4% PFA, 

then washed three times in 0.1M PB and incubated overnight in 30% sucrose. 

Finally, the eye cup was embedded in tissue freezing medium, Tissue-Tek O.C.T 

Compound (Sakura Finetech). 10m thick sections of the eye cup were cut by using 

a cryotome. The retina slices were rehydrated with 0.1M PB and then fixed for 10min 

with 4% PFA. After three washing steps with 0.1M PB the slices were incubated with 

the primary antibody overnight at 4°C in a solution of 0.1M PB, 5% 

ChemiBLOCKER™ and 0.3% Triton X. The next morning, the slices were washed 

again three times with 0.1M PB before proceeding to the incubation with the 

secondary antibodies. The secondary antibodies were diluted in 0.1M PB with 3% 

ChemiBLOCKER™ and slices incubated for 90 minutes, followed by washing step. 

The cell Nuclei were treated with the cell nucleus stained marker Höchst 33342 for 

five minutes. Finally, the sections were washed with 0.1M PB and covered with 

coverslips. 

The following primary antibodies were used: 

Rabbit anti-Cav1.4 (Cav1.4 Pep3; 1:1000; (Specht et al., 2009)), rabbit anti-Calbindin 

(Swant, Bellinzona, Switzerland; 1:2000; (Michalakis et al., 2012)), mouse anti-PKC 

(anti-Protein Kinase C-Biotin, Leinco Technologies Inc.; 1:50; (Young et al., 1988)), 

mouse anti-NF200 (anti-Neurofilament 200; Sigma; 1:300; (Franke et al., 1991)), 

Cy3-coupled anti-GFAP  (Sigma, Germany; 1:1000; (Michalakis et al., 2005)), mouse 

anti-Rhodopsin (anti-Rhodopsin Clone 1D4; Thermo Scientific; 1:150; (Michalakis et 

al., 2010)), FITC-peanut agglutinin (PNA, Sigma-Aldrich, 1:100, (Michalakis et al., 

2010)) was used as a cone marker, guinea pig anti-glycogen phosphorylase (GlyPho, 

1:1000 (Pfeiffer-Guglielmi et al., 2003)), rabbit anti-cone arrestin (kindly provided by 

Cheryl Craft, 1:300, (Koch et al., 2012)), rabbit anti-complexin 3 (kindly provided by 

Kerstin Reim (Reim et al., 2005), 1:1000, (Koch et al., 2012)), rabbit anti-complexin 4 

(kindly provided by Kerstin Reim (Reim et al., 2005), 1:20000, (Koch et al., 2012)). 

Laser scanning confocal micrographs were made using a LSM 510 meta microscope 

(Carl Zeiss, Germany) and images presented as collapsed confocal z-stacks. The 

fluorescence images were taken with a confocal laser scanning microscope Zeiss 

LSM 510 Meta microscope (Carl Zeiss, Germany) and images are presented as 

collapsed confocal z-stacks. The stainings were reproduced in ≥3 independent 

experiments. 
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3.5.3 Electroretinography (ERG) 

ERG analysis was performed using 3 months old mice according to the procedures 

described previously (Seeliger et al., 2001; Tanimoto et al., 2009), in the lab of Prof. 

Mathias Seeliger at Division of Experimental Ophthalmology, Institute for Ophthalmic 

Research, Centre for Ophthalmology, Eberhard Karls Universität Tübingen, 

Germany.  

3.5.4 Behavior test - Water maze 

A modified version of the Morris water maze was used to test Rod visual function and 

vision-guided behavior (Pang et al., 2006). Mice were housed separately in an 

inverse 12h light/dark cycle. The experiment was performed in dark in the first 3 

days. 

Mice were trained for 3 days (8 trials a day) to locate a stable platform (10cm in 

diameter) at dim light conditions of 0.32cd/m2 to ensure that vision is totally 

dependent on the rod system. The platform was placed in a circular swimming pool 

(120cm in diameter, 70cm high, white plastic) filled with water up to a depth of 30cm. 

The location of the platform was marked with black triangle attached to the maze wall 

next to the platform. The starting position of the mouse was changed from trial to trial 

in a pseudorandom order to avoid distal spatial cues, whereas the platform was kept 

in a constant location. 

Trials were terminated if the mouse climbed onto the platform or when it swam for     

2 min without finding the platform. In cases when a mouse did not find the platform it 

was gently placed on the stable platform. After each trial, the mouse was left on the 

platform for 30s undisturbed before the mice were towel-dried, transferred to their 

home cage, and warmed using a heating lamp. On Days 4 and 5, the experiment 

was performed under light conditions (29.04cd/m2) to test cone vision-mediated 

behavior.  

The platform was cleaned thoroughly between all trials and the water in the maze 

was mixed to remove potential proximal cues (e.g., urine). Every day, after finishing 

all trails, the water in the maze was exchanged with fresh water.  

The experiment was performed and analyzed blind to the animal genotype. In total,  

11-KO, 9-HZ and 9-WT mice were tested. 
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3.6 Electrophysiology 

3.6.1 Experimental implementation 

HEK293 cells stably expressing Cav1.4  (wild type, Cav1.4/5A or Cav1.4ICDI) were 

transiently transfected with expression vectors encoding the other subunits of the 

calcium channel 2 (accession number: X64297) and 21(accession number: 

M21948). In some cases wild type CaBP4 or CaBP4 variants were also transfected 

in equal amount - 1.5g from each construct. 

Depending on the transfection conditions (details in 3.4.3.1), the transfected cells 

were taken on coverslips coated with poly-L-lysine to be patched after 2-3 days. The 

electrophysiological measurements were carried out at room temperature in the 

whole-cell configuration. For data acquisition an Axopatch 200B amplifier and the 

computer program Clampex 10.2 (Axon Instruments) were used. In addition Clampfit 

10.2 (Axon Instruments) and Origin 7.5 (Microcal, Originlab Corporation) software to 

analyze acquired patch-clamp data. 

Patch pipettes were made from borosilicate glass capillaries with an outer diameter 

of 1.5mm and an inner diameter of 1.17mm (GC150TF-8, Harvard Apparatus). The 

pipettes were pulled in a horizontal pipette puller (DMZ-Universal Puller). The pipette 

resistance varied from 2.0 to 3.0MΩ, and the cell sizes ranged between 10 and 

100pF. ICa and IBa were measured from the same cell. 

 

The following bath and pipette solutions were used for the whole-cell measurements: 

 

 

 

 

 

 

 

 

 

 

 

 

Bath solution 10mM Ca 

NaCl 102 mM 

CaCl2 10 mM 

CsCl2 5.4 mM 

MgCl2 1 mM 

TEA 20 mM 

HEPES 5 mM 

Glucose 10 mM 

adjusted to pH 7.4 with NaOH 

Bath solution 10mM Ba 

NaCl 102 mM 

BaCl2 10 mM 

CsCl2 5.4 mM 

MgCl2 1 mM 

TEA 20 mM 

HEPES 5 mM 

Glucose 10 mM 

adjusted to pH 7.4 with NaOH 
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For experiments carried out in low (2mM) Ca2+ in the extracellular solution, the 

omitted Ca2+ was equimolarily replaced by Na+. Bath solutions were changed during 

experimentation using a local solution exchanger. 

3.6.2 Patch-clamp protocols 

The peak I/V-relationship was measured by two different voltage protocols: 

 

Protocol for determining the half-maximum activation voltage (V0.5) 

The I/V curves were measured by applying 350ms voltage pulses to potentials 

between -80 and 70mV in 10mV increments at 0.2Hz. The holding potential was        

-80mV. 

 

 

 

 

 

Protocol for determining the half-maximum inactivation voltage (V0.5,inact)  

In order to efficiently record the inactivation property of the Cav1.4 channel, the 

V0.5,inact was determined using a pseudo-steady state inactivation protocol, rather 

than true steady state inactivation. In this protocol, a prepulse duration of 2.5s was 

Pipette solution 

CsCl 112 mM 

MgCl2 3 mM 

MgATP 3 mM 

EGTA 10 mM 

HEPES 5 mM 

adjusted to pH 7.4 with CsOH 
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sufficient to induce considerable open state inactivation which was comparable to 

values achieved by a 5s prepulse in past publications (Baumann et al., 2004). 

Moreover, the time interval between trials (10s) was sufficient to recover the majority 

of inactivated channels. Ultra-slow inactivation of Cav1.4, which needs more than 10 

minutes to recover (Peloquin et al., 2008) was not addressed in the present research. 

The protocol was adjusted and the prepulse lengths and inter-trial intervals were 

decreased as follows:  

From a holding potential of -80mV a series of 2.5s conditioning pre-pulses to various 

voltages between -100mV and +50mV were used. The conditioning pulse was 

followed by a 10ms long return to the holding potential and a 150ms test pulse to 

+10mV (the maximum activation voltage (Vmax)). The individual trials of the protocol 

were applied at a time interval of 10s. 

 

 

 

 

Additionally, Cav1.4 channel inactivation was quantified by calculating the fraction of 

peak Ba2+ and Ca2+ currents remaining after 350ms of depolarization (R350) as 

described. R350 is used to quantify CDI. 

3.6.3 Data analysis  

 

For determination of half-maximum activation voltage (V0.5,act), I/V curves were 

recorded and the chord conductance (G) was calculated from the current voltage 

curves by dividing the peak current amplitude by its driving force at that respective 

potential, where Vrev is the interpolated reversal potential, Vm is the membrane 

potential, and I is the peak current.  
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The reversal potential is the voltage at which no net current flows through the 

channel. It is determined also as the intersection of the IV curve with the x-axis         

(I = 0pA). 

Conductivity curves were calculated by nonlinear curve fitting using the Boltzmann 

equation:  

  
    

      
             

     

 

 

Where Gmax is the maximum conductance, V0.5 is the half-maximum activation 

voltage, Vm is the membrane potential, and kact is the slope factor of the activation 

curve. 

The current density was obtained by normalizing the maximum current amplitude at 

maximum activation voltage (Vmax) to the cell membrane capacitance (Cm). The 

activation threshold is defined and determined from I/V curves as the potential at 

which 5% of the maximum current is elicited. 

Families of current traces obtained by applying the pseudo steady state inactivation 

protocol were analyzed by normalizing tail currents immediately after the test pulse to 

+10mV to the maximum current amplitude and plotted as a function of the membrane 

potential of the conditioning pulse. The data points were fitted with the Boltzmann 

function:  

  
 

      
               

       

 

 

Where Vm is the test potential, V0.5,inact is the half-maximum voltage for pseudo-steady 

state inactivation, and kinact is the slope factor of the curve.  

As a measure for overall channel availability, the window conductance was 

determined. Window conductance exists at potentials whereby ion channels are 

already activated but not yet fully inactivated. This condition is present within the 

overlapping region under the intersection of activation and inactivation curves of 

Cav1.4 channels. For the quantification of window conductance, V0.5 for activation 

and V0.5,inact for inactivation was corrected for the liquid junction potential. Window 

conductance was then calculated by multiplying the activation curve by the 

inactivation curve (Chemin et al., 2000; Liao et al., 2007).  
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To estimate the window conductance at physiological Ca2+ concentrations, the shift 

of V0.5 of voltage dependent activation and inactivation was determined upon 

lowering Ca2+ concentration from 10mM to 2mM. The V0.5 for activation was shifted 

by 5.3mV, V0.5,inact for inactivation by 2.0mV both to more hyperpolarized potentials. 

These shifts were used to correct window conductance for surface potential effects in 

all measurements using extracellular solution containing 10mM extracellular Ca2+. 

3.6.4 Calculation of the liquid junction potential (LJP) 

The composition of the extracellular solution (bath solution) and the intracellular 

solution (Pipette solution) differs in whole-cell patch-clamp experiments considerably. 

The different ions, present at the interface between different solutions, form an 

interfacial potentials (=Liquid junction potential (LJP, VLJP)), due to their mobility. This 

potential is dependent on the mobility, charge and concentration of the ions. 

The LJP were calculated using the software JPCalc (Barry, 1994).  

During a patch clamp experiment, the amplifier adjusts command voltage Vcmd, but 

nevertheless, due to the offset potential this value is too large and must be corrected 

after the measurement. 

 

             

 

The calculated liquid junction potential for calcium extracellular solutions is: 5.4mV 

for extracellular solution containing 10mM Ca2+ and 5.0mV for extracellular solutions 

containing 2mM Ca2+. 

Unless stated otherwise, the liquid junction potential was not corrected. 

3.7 Statistical analysis 

Data analysis, plotting, curve fitting, and statistical analysis were performed using 

Origin 7.5 (Microcal). All values are presented as mean ±SEM for the indicated 

number "n" of experiments. An unpaired t test was performed for the comparison 

between two groups. Significance was tested by ANOVA followed by Dunett’s test if 

multiple comparisons were made. P-values of less than 0.05 were considered 

significant. Significance levels are indicated as * (p <0.05), ** (p <0.01) and             

*** (p <0.001). 
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4. Results 

4.1 The regulation properties of retinal Cav1.4 channel by CaBP4  

4.1.1 Cav1.4 channels are regulated by CaBP4 

The Cav1.4 channels show relatively small amplitude compared with other LTCC, 

which makes it difficult to investigate and discover how different proteins regulate the 

channel. In order to overcome this problem, we established a new approach by using 

a stable HEK293 cells line expressing the pore subunit Cav1.41 (WT, 5A or ICDI). 

Those stable cells show a high expression of the Cav1.4 pore subunit and do not 

express the CaBP4 endogenously (Fig. 4.1). In whole cell recordings, a robust 

Cav1.4 specific Ca2+ current could be observed, which made it possible to unravel 

how CaBP4 regulates the Cav1.4 channel. 

 

 

 

Figure 4.1 – CaBP4 is not expressed in HEK Cav1.4 stable cells. RT-PCR of CaBP4 from 

the two stable HEK cell lines, which were used in electrophysiological experiments. GAPDH 
serves as loading control.  

 

 The calcium dependent inactivation (CDI) in truncated Cav1.4 variants 4.1.1.1

The CaBP4 affects strongly the calcium dependent inactivation (CDI) in other LTCC, 

like in Cav1.2 and Cav1.3 (Cui et al., 2007; Yang et al., 2006). However, Ca2+ and 

Ba2+ currents recorded from Cav1.4 stable cell lines display no difference in time 

course of activation or inactivation irrespective of the absence or presence of CaBP4 

(Fig. 4.2A and B, respectively). Under both conditions, no CDI could be observed. 
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The calcium and barium currents were measured on the same cells by stepping from 

a holding potential of -80mV to +10mV during a 350ms pulse. Current traces were 

normalized to peak current, and the Ba2+ traces were scaled to match Ca2+ traces 

(scale bar). 

 

                        

 

Figure 4.2 – Representative traces of ICa (red traces) and IBa (black traces) through Cav1.4 
(A), Cav1.4 + CaBP4 (B), recorded in bath solution containing 10mM Ca2+ (red trace) or 
10mM Ba2+ (black trace) as charge carrier.  

 

Truncation of the ICDI domain in the distal C-terminus of Cav1.4 unmasked CDI, 

which is caused by endogenous CaM (Wahl-Schott et al., 2006) (Fig. 4.3A). In 

contrast, CaBP4 completely abolished CDI in Cav1.4 channels lacking the ICDI 

domain (Fig. 4.3B).  

 

                       

 
Figure 4.3 – Representative traces of ICa (red traces) and IBa (black traces) through 

Cav1.4ICDI (A) and Cav1.4ICDI + CaBP4 (B), recorded in bath solution containing 10mM 
Ca2+ (red trace) or 10mM Ba2+ (black trace) as charge carrier. 

 

The CDI can be quantified as the value of R350 which corresponds to the fraction of 

ICa or IBa remaining after 350ms (Fig. 4.4 A and B) 

A B 

A B 
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Figure 4.4 – Quantification of the CDI in figures 4.2 and 4.3: Fractional inactivation of ICa (A) 
or IBa (B) during a 350ms test pulse to Vmax. The number of experiments is given in 
parentheses. Statistical significance is given in comparison to the other constructs of this 
panel. 

 

These findings indicate that both CaBP4 and the ICDI domain have equivalent 

functions with regard to their effect on CDI. Both are able to inhibit the CDI of the 

Cav1.4 channel. Furthermore, these observations suggest that CaM and CaBP4 

stabilize the channel in a different conformational state that gives rise to the absence 

of CDI in the case of CaBP4 and to the presence of CDI in the case of CaM. 

 CaBP4 increases Cav1.4 channel availability by modulating voltage 4.1.1.2
dependent gating of the channel 

To analyze the effect of CaBP4 on voltage dependence of Cav1.4, activation and 

inactivation curves for Ca2+ and Ba2+ (10mM) currents were determined in the 

absence and presence of CaBP4 using activation (Fig. 4.5A) and inactivation       

(Fig. 4.5B) protocols. The voltage dependent inactivation gating was characterized by 

using a pseudo-steady-state inactivation protocol, rather than true steady-state 

inactivation. In order to efficiently record inactivation, the protocol was adjusted and 

the prepulse lengths and inter-trial interval were shortened. However, induction of 

complete inactivation requires long prepulse length and long recovery interval 

between individual trials. Representative families of Ca2+ current traces of Cav1.4 

from the protocols are displayed in figure 4.5. For the I/V relationships, peak current 

amplitudes were plotted against membrane potential (Fig. 4.5E and F).  

A B 
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Figure 4.5 – Voltage dependent activation and inactivation of Cav1.4 in the absence and 
presence of CaBP4. Voltage protocol used for the determination of activation properties (A) 
and of pseudo-steady state inactivation properties (B). Representative family of Ca2+ current 
traces for Cav1.4 in the absence (C), and presence of CaBP4 (E), using the activation 
protocol. Representative family of Ca2+ current traces for Cav1.4 in the absence (D) and 
presence of CaBP4 (F), using the pseudo-steady state inactivation protocol. I/V relationship 
for Cav1.4 in absence of CaBP4 (G) or in the presence of CaBP4 (H). In (E) and (F) currents 
were recorded in bath solution containing 10mM Ca2+ (circles) or 10mM Ba2+ (squares) as 
charge carrier. Currents were normalized to the peak Ba2+ current. 

 

 

A B 

C D 

E F 

G H 
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Using the two protocols for activation and pseudo-steady-state inactivation, the 

fractional activation and inactivation curves of Cav1.4 could be plotted in figure 4.6 as 

function of the voltage (mV), while Ca2+ or Ba2+ serve as charge carrier. 

 

 

 

Figure 4.6 – The voltage dependent gating of Cav1.4 properties in the absence and 
presence of CaBP4. (A) Activation curves for Cav1.4 in the absence (red) and in the 
presence of CaBP4 (black). In the left panel Ba2+ (10mM) was the charge carrier and in the 
right panel Ca2+ (10mM) was the charge carrier. (B) Pseudo-steady state inactivation curve 
for Cav1.4 in the absence (red) and in the presence of CaBP4 (black). 

 
 

Together the effects of CaBP4 on activation and inactivation lead to a pronounced 

increase of the window conductance which can be demonstrate by the overlap of the 

activation and the inactivation curve (Fig. 4.7).  

 

A 

B 
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Figure 4.7 – CaBP4 increases dramatically the Cav1.4 channel availability. The overlay of 
activation curves presented in (Fig. 4.5A) and pseudo-steady state inactivation curves 
presented in (Fig. 4.5B) demonstrate an increase in availability of Cav1.4 in the presence of 
CaBP4. 

 

The increase in the channel availability and window conductance are caused by 

three major facts: 1. The CaBP4 shifts the activation curve of Cav1.4 to more 

hyperpolarized potentials; 2. The CaBP4 increases the steepness of the activation 

curve (Table 8.6.1 – appendix 8.6); 3. The CaBP4 dramatically reduces pseudo-

steady-state inactivation of the channel (Table 8.6.2 – appendix 8.6). 

 

Similar experiments were carried out for Cav1.4ICDI channels. Surprisingly, in the 

absence of the ICDI domain CaBP4 had no effect on voltage dependent activation 

and inactivation and window currents (Fig. 4.8). Moreover, voltage dependent 

activation and inactivation of Cav1.4ICDI channels were very similar to that of wild 

type Cav1.4 channels in the presence of CaBP4. In the absence of the ICDI domain 

the only effect of the CaBP4 on the Cav1.4 was the blockade of the CDI (Fig. 4.3). 
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Figure 4.8 – In the absence of the ICDI domain the effect of CaBP4 on voltage dependent 
gating is abolished. Overlay of activation curves and pseudo-steady-state inactivation curves 

for Ba2+ (10mM; A) or Ca2+ (10mM; B) currents through Cav1.4ICDI channels in the 
absence (red) and the presence (black) of CaBP4. 

 

 

Taking together these observations indicate that CaBP4 and the ICDI domain 

modulate the Cav1.4 in a complex fashion. Regarding to voltage dependent gating of 

Cav1.4 channels, the ICDI domain and CaBP4 have opposing functional effects. The 

ICDI domain shifts the activation curve of Cav1.4 to more depolarized potentials and 

increases inactivation, while CaBP4 shifts the activation curve of Cav1.4 to more 

hyperpolarized potentials and decreases inactivation. Concerning the inhibition of the 

CDI, the ICDI domain and CaBP4 have equivalent functional effects. 
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4.1.2 Functional alterations in two CaBP4 human mutations 

So far, four different human mutations in the CaBP4 have been reported in the 

literature (Aldahmesh et al., 2010; Littink et al., 2009; Zeitz et al., 2006). Since two of 

the mutations cause either non-functional truncated protein or point mutation without 

major effect, this study focused to analyze the functional consequences of the other 

two human mutations which were associated with autosomal recessive forms of 

human congenital retinal disease CSNB2.  

The expression of two CaBP4 mutant proteins was analyzed by Western blot from 

transfected HEK cells (Fig. 4.9). The first mutation (CaBP4-R216X) results in a 

truncated CaBP4 protein lacking the C-lobe that contains EF hand 3 and 4 (Littink et 

al., 2009). In the second CaBP4 mutant (CaBP4-E267fs) the last residue of EF hand 

4 (E267) is exchanged to Valine followed by a frame shift elongating the protein 

(Zeitz et al., 2006).  

  

 

Figure 4.9 – Schematic representation and expression of the human CaBP4 mutants in 
HEK293 cells (A) Schematic description of the CaBP4 mutants compared to the WT. The 
boxes represent EF hands 1-4. Gray boxes: functional EF hands 1, 3 and 4; black box: 
nonfunctional EF hand 2. NT: N-terminus of CaBP4; CT: C-terminus of CaBP4. (B) Western 
blot demonstrating the expression of mutant variants and wild type CaBP4 fused to CFP. 
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In FRET experiments, both of the CaBP4 human mutants CaBP4-E267fs and 

CaBP4-R216X were shown to interact with the C-terminus of Cav1.4 even with higher 

FRET signal than that of wild type CaBP4 (Shaltiel et al., 2012). (These experiments 

were performed by Christos Paparizos-C.P., data not shown).  

The finding that CaBP4-R216X interacts with the C-terminus of Cav1.4 is very 

interesting because it shows that the N-lobe of CaBP4 is sufficient to interact with 

Cav1.4. Furthermore, the presence of CaBP4-E267fs and CaBP4-R216X may 

partially impair binding of the ICDI domain. 

The functional impact of the CaBP4 mutations was analyzed in electrophysiological 

experiments (Fig. 4.10 and Fig. 4.11). After coexpression of CaBP4-R216X or 

CaBP4-E267fs together with wild type Cav1.4 channels, Ca2+ currents did not display 

CDI. In contrast, in coexpression experiments of mutated CaBP4s together with 

Cav1.4ICDI, CDI could be indeed observed, which was pronounced for CaBP4-

R216X and subtle but detectable for CaBP4-E267fs (Figs. 4.10).  

 

 

Figure 4.10 – The CaBP4 mutant variants display CDI. Representative traces of ICa (10mM; 

red traces) and IBa (10mM; black traces) through Cav1.4ICDI coexpressed with CaBP4-
R216X (A) or CaBP4-E267fs (B). Currents were evoked by stepping from a holding potential 
of -80 mV to +10 mV (pulse duration: 350ms). Current traces were normalized to peak 
current. (C) Quantification of CDI as R350 values. The number of experiments is given in 
parentheses. *** p<0.001. Statistical significance is given in comparison to WT. 
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The appearance of slow CDI in coexpression experiments of Cav1.4ICDI channels 

and mutant CaBP4 suggests that endogenous CaM can access the effector site for 

CDI at least in some of the channels. 

  

Next, the effect of CaBP4 mutations on voltage dependent gating of Cav1.4 was 

analyzed (Figs. 4.11). In contrast to wild type CaBP4, both CaBP4 mutations did not 

shift voltage dependent activation to more hyperpolarized potentials. For CaBP4-

E267fs the activation curve was even shifted by about 6mV to more depolarized 

potentials in experiments using Ca2+ as charge carrier (Fig. 4.11 B).  

 

 

 
Figure 4.11 – Mutant CaBP4 variants reduce Cav1.4 channel availability as compared to WT 
CaBP4. Overlay of activation and pseudo-steady-state inactivation curves for Cav1.4 
coexpressed with CaBP4-R216X (A) and CaBP4-E267fs (B). For comparison activation and 
pseudo-steady-state inactivation curves for Cav1.4 in the absence (red) and presence of 
CaBP4 (grey) are indicated. Graphs for Ba2+ (10mM) are shown on the left, those for Ca2+ 
(10mM) on the right. 
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Slope factors of both CaBP4 mutations were significantly higher than those observed 

in the presence of CaBP4 and very similar to that observed in the absence of CaBP4 

(Table 8.6.1 – appendix 8.6). CaBP4 mutants like wild type CaBP4 functionally 

reduce the inactivation process (Table 8.6.2 – appendix 8.6). However, the effect of 

mutant CaBP4s was significantly less pronounced as compared to wild type CaBP4. 

  

4.1.3 Window conductance and availability of the Cav1.4 channel under 
physiological extracellular Ca2+ concentrations 

In order to determine the correct window conductance for Cav1.4 channels closed  to 

the physiological extracellular Ca2+ concentrations, recordings with a extracellular 

solution containing 2mM Ca2+ were performed (Fig. 4.12).  

 

 

Figure 4.12 – Cav1.4 activation and inactivation measured in physiological extracellular Ca2+ 
(2 mM) concentration. (A-B) Representative family of Ca2+ current traces recorded by 
applying the activation protocol (A) or the pseudo-steady-state inactivation protocol (B). (C) 
Lowering extracellular Ca2+ from 10mM (red line) to 2mM (black squares) results in a shift of 
the voltage dependent activation curve (n=9) and the voltage dependent inactivation (n=12) 
curve both to more hyperpolarized potentials. 
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Lowering extracellular Ca2+ from 10mM to 2mM results in a shift of the voltage 

dependent activation curve of 5.3mV and a shift of the voltage dependent        

pseudo-inactivation curve of 2.0mV, both to more hyperpolarized potentials. 

Therefore, under more physiological conditions, the window conductance was shifted 

to more hyperpolarized potentials, Compared to standard extracellular recording 

solution containing 10mM Ca2+. 

Based on the experimentally determined voltage shift in 2mM Ca2+, all the window 

conductances obtained in experiments using standard recording solutions (10mM 

extracellular Ca2+) were also corrected (Fig. 4.13).  

 

  

 

 

 

 

 

 

 
Figure 4.13 – Predicted availability of Cav1.4 wild type or Cav1.4ICDI channels in the 
absence or presence of CaBP4 wild type or CaBP4 mutants as indicated (A-F).                  
(G) Fractional availability for combinations as indicated in A-F. The predicted availabilities 
are calculated for 2mM extracellular Ca2+. 
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To calculate the availability of Cav1.4 wild type or Cav1.4ICDI channels window 

conductances were determined by multiplying the normalized activation curve with 

the normalized inactivation curve.  

The comparison revealed that in the presence of CaBP4 the predicted window 

conductance for the physiological conditions of 2mM Ca2+ was more than 2-fold 

larger than in the absence of CaBP4 (Figs. 4.14 A). To reflect more the physiological 

voltage range observed in photoreceptors (less than -30mV), window conductances 

at -30mV and -40mV were calculated too (Fig. 4.14B).  

 

 
Figure 4.14 – Quantification of total and physiologically relevant window conductance at -30 
mV and -40 mV. (A) Comparison of total window conductances taken from Fig. 4.13 (A-F). 
(B) Window conductances at -30 mV and -40 mV as indicated. Conductances are normalized 
to Cav1.4 + CaBP4. 
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Fig. 4.14 indicates that the window conductance was 2.2-fold or 1.7-fold higher in the 

presence of CaBP4 at -30 or -40mV, respectively. Moreover, the observed effects in 

CaBP4 mutants significantly decreased the predicted window conductance as 

compared to wild type CaBP4; 2-fold or 3-fold for CaBP4-R216X at -40mV or -30mV, 

respectively and 3-fold or 4-fold for CaBP4-E267fs at -40mV or -30mV, respectively. 

These observations indicate that CaBP4 markedly increased overall Cav1.4 channel 

availability, and changes in Cav1.4 channel availability are significantly less 

pronounced in the presence of mutant CaBP4 proteins than in the presence of wild 

type CaBP4. This effect was equally pronounced for Ca2+ and Ba2+ currents, 

indicating that this effect is not Ca2+ dependent. 

4.1.4 CaBP4 binds to the IQ motif in the C-terminus of Cav1.4 

FRET experiments were carried out by C.P. to further examine the interaction 

between CaBP4 and Cav1.4, using YFP-tagged variants of Cav1.4 C-terminus and 

CFP-CaBP4. In those experiments, it was found that CaBP4 interacts with the         

C-terminus of both wild type Cav1.4 and Cav1.4ICDI. Moreover, like other CaBPs 

and/or CaM, CaBP4 binds to the IQ motif in the C-terminal tail of Cav1.4. In these 

experiments, 5 residues within the IQ motif in the CT Cav1.4 were replaced by 5 

alanines (1.4/5A). The CaBP4 was not able to interact with 1.4/5A C-terminus, which 

indicating that CaBP4 and CaM share the same binding domain on the C-terminus of 

Cav1.4.   

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 4.15 – Schematic representation of the Cav1.4/5A C-terminus. The highly conserved 
amino acids are highlighted in red. 
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Electrophysiological measurements by patch clamp technique of the Cav1.4/5A 

channel variant may provide further insights how the IQ motif is important to the CaM 

and CaBP4 regulation of the channel. These experiments may also help us to explain 

why the activation curve of the human mutant CaBP4-E267fs was even shifted to 

more depolarized potentials in experiments using Ba2+ and Ca2+ as charge carrier. 

The activation and inactivation curves of Cav1.4/5A as function of the voltage (mV) 

were plotted using the two protocols for activation and pseudo-steady-state 

inactivation, where Ca2+ or Ba2+ served as charge carrier (Fig. 4.16 A and B). The 

Cav1.4/5A curves were compared to wild type Cav1.4 and Cav1.4ICDI. For both of 

the charge carriers, the activation curves shift between 5mV to 10mV to more 

depolarized potential, whereas the inactivation of the Cav1.4/5A were reduced 

compared to the Cav1.4 WT channel. These results also confirm that the endogenous 

CaM itself, by binding to the Cav1.4 in the IQ motif, shifts the activation to more 

hyperpolarized potential. However, this shift is less pronounced compared to the 

CaBP4.     

In order to find if the CaBP4 is still able to regulate the channel without the ability to 

bind to the IQ motif, HEK293 cells stably expressing the Cav1.4/5A variant were 

transfected with CaBP4 (Fig. 4.16 C). Surprisingly, in electrophysiological recordings 

from these cells, CaBP4 causes an increase in the channel availability and window 

conductance due to the following effects: 1. The CaBP4 shifts the activation curve of 

Cav1.4/5A to more hyperpolarized potentials, but less pronounced compared to the 

shift in Cav1.4 WT channel; 2. The CaBP4 increases the steepness of the activation 

curve; 3. Finally, the CaBP4 is able to reduce the pseudo-steady-state inactivation of 

the channel. This result suggests that the CaBP4 has a second binding site on the 

Cav1.4 beyond the IQ motif. 
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Figure 4.16 – CaBP4 can even change the channel availability of the Cav1.4/5A variant.    
(A-B) Overlay of activation and pseudo-steady-state inactivation curves for the Cav1.4/5A 
channel variant (purple) compared to the activation and pseudo-steady-state inactivation 

curves for Cav1.4 (red) and Cav1.4ICDI (black). Graphs for Ba2+ as charge carrier (10mM; 
activation n=9, inactivation n=8) are shown on the left (A), those for Ca2+ as charge carrier 
(10mM; activation n=7, inactivation n=5) on the right (B). (C) The overlay of activation curves 
and pseudo-steady state inactivation curves for the Cav1.4/5A channel variant in presence of 
CaBP4 (yellow) in bath solution containing 10mM Ba2+ (activation n=13, inactivation n=7) as 
charge carrier. For comparison activation and pseudo-steady-state inactivation curves for 
Cav1.4 in presence of CaBP4 (black) and the Cav1.4/5A channel variant in the absence of 
CaBP4 (purple) are shown. 
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4.2 Characterization of the Cav1.4 channels function in-vivo 

In the second part of this study, we have focused to characterize the in-vivo the 

function of Cav1.4 channels using genetic modified mice lacking Cav1.4 1 pore 

subunit (Cav1.4-/- - Cav1.4 KO). The mice were obtained from Dr. Marion Maw, 

University of Otago, North Dunedin, New Zealand (Specht et al., 2009). In these 

mice, the CaCNA1F locus was globally disrupted through homologous recombination 

by a Cre/loxP based deletion of exons 14-17, which encode the transmembrane 

helixes 8-12 located in domain 2 of the channel protein (Fig. 4.17 A). 

Cav1.4 deficient mice were born at the expected Mendelian ratio, were fertile and 

showed no visible behavioral and physical abnormalities. The deletion of exon 14-17 

of the Cav1.4 gene was confirmed at the level of genomic DNA by Southern blot 

analysis (Fig. 4.17 B). 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
Figure 4.17 – The Cacna1f targeting locus. (A) Schematic display of the Cacna1f wild type 
(WT) locus (top) the targeting locus (middle) and the knockout (KO) locus (bottom). The 
targeting locus has a FRT site (blue arrowhead) flanked neomycin resistance selection 
cassette (NeoR) and two loxP sites (green arrowheads) that flank exons 14-17 and the NeoR 
cassette. Cre recombinase mediated excision of the loxP flaked sequence results in the KO 
locus that lacks exons 14-17. B, Bgl-II restriction enzyme recognition site. All exons except 
14-17 are shown in a condensed view. The position of the probe used for the southern blot in 
panel B is marked by an orange line. (B) Southern blot on Bgl-II digested genomic DNA from 
wild type (left lane) and Cav1.4KO (right lane) mice. 
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Furthermore, the protein expression of Cav1.4 in the Cav1.4 KO mice was also 

analyzed, using immunohistochemistry. In the wild type retinae, Cav1.4 could be 

detected in the OPL and to a lesser extent in the IPL, while in retinae from Cav1.4 KO 

mice the Cav1.4 immunoreactivity was not present in the OPL and IPL (Fig. 4.18 B). 

To exclude the possibility that the expression levels of other voltage gated Ca2+ 

channels or auxiliary subunits which are present in the retina are altered in response 

to the global deletion of Cav1.4, a quantitative PCR analysis of the retina was 

performed (Fig. 4.18 A).  

 

 

 

 
Figure 4.18 – Analysis of the Cacna1f KO (Cav1.4 KO) mice (A) Quantitative reverse 
transcirptase PCR gene expression analysis of all relevant L-type calcium channel subunits 
from wild type (black bars) and Cav1.4 KO retina (red bars). (B-C) Confocal scans of vertical 
retinal sections from wild type (B) and Cav1.4 KO mice (C) labeled with a Cav1.4-specific 
antibody (green). Cell nuclei were stained with the nuclear dye Hoechst 33342 (grey). Inlay in 
B: magnification of the outer plexiform layer (opl) region marked with a white rectangle 
illustrating the partial co-localization of the Cav1.4 signal with the cone pedicle marker peanut 
agglutinin (PNA, magenta). The scale bar marks 20 µm. gcl: ganglion cell layer, inl: inner 
nuclear layer, ipl: inner plexiform layer, onl: outer nuclear layer. 
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The data show that the number of transcripts for the major voltage gated Ca2+ 

channels and auxiliary subunits are unchanged in Cav1.4 KO mice, excepting for 

24 and 1F. This finding indicates that compensatory remodeling or changes in 

gene expression of other Cav channels or subunits are not a relevant issue in the 

Cav1.4-deficient retina. 

To evaluate the overall retinal function of Cav1.4 KO mice, a Ganzfeld 

Electroretinograms (ERGs) was carried out using specific stimulation protocols to 

differentiate between the rod- and cone-driven activities. In the dark-adapted 

(scotopic) part of the protocol, in which cones are non-responsive, the b-wave 

component and oscillatory potentials were completely absent in ERG recordings of 

Cav1.4 KO mice as compared to wild-type mice throughout the stimulus range. In 

Cav1.4 KO mouse, the amplitude and the threshold of the a-wave was similar in all 

mice tested (Fig. 4.19 A). In the light-adapted (photopic) part of the protocol, in which 

rods are non-responsive due to desensitization, ERG recordings in the b-wave 

component and oscillatory potentials were completely absent in ERG recordings of 

Cav1.4 KO mice, while the amplitude and the threshold of the a-wave was similar to 

wild type mice (Fig. 4.19 B). The absence of a scotopic and photopic b-wave in the 

Cav1.4 KO mice is consistent with a defect in neurotransmission between rod and 

cone photoreceptors and second-order neurons, particularly bipolar cells. 

 

 

 

Figure 4.19 – Electroretinographic analysis of retinal function in Cav1.4 KO mice. 
Representative Ganzfeld-ERG intensity series from dark-adapted (A) and light-adapted (B) 
wild type (wt, black traces) and Cav1.4 KO mice (red traces).  

A B 



RESULTS 

 

81 
 

The functional significance of the observed defects in the ERG responses was 

evaluated by testing the visual performance of Cav1.4 KO mice in a visual water-

maze behavioral task. The latency to locate a visible platform under dark and normal 

light conditions was significantly increased in Cav1.4 KO as compared to wild type 

mice (Fig. 4.20). In more than 30% of the trials in the dark and more than 20% of the 

trials during light Cav1.4 KO mice did not manage to find the platform (error of 

omission). By contrast, there was no error of omission in wild type mice.  

 

 

 

 

 

 

 

 
Figure 4.20 – Performance of Cav1.4KO mice in a visual water-maze behavioral task.        
(A) Latency to locate a visible platform under dark (left two bars) and normal light conditions 
(right two bars). (B) Example swimming paths under dark (upper part) and normal light 
conditions (lower part). Errors of omission under dark (C) and normal light conditions (D). 

 

 

During a three days training period performed under dark light conditions, wild type 

mice dramatically improved locating the visible platform, while in Cav1.4 KO mice no 

improvement was observed. Furthermore, under normal light conditions (day four) no 

further improvement was observed in either group (Fig. 4.21).  
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A similar learning curve was also observed during a three days training period 

performed under normal light conditions. Cav1.4 KO mice did not show any 

improvement during the test period. Consistent with the increased latency the 

swimming path was much longer (Fig. 4.20 B) and the average and not the maximal 

swimming speed was reduced in Cav1.4 KO mice as compared to wild type mice 

(Fig. 4.21 C and D).  

 

 

 

 

 

 

 

 
 
 

 
 

 
 
 
Figure 4.21 – A visual water-maze performance over three days training period. (A) Learning 
curves for wild type (wt) and Cav1.4 KO mice in the visual water-maze behavioral task under 
dark (days 1-3) and normal light conditions (day 4). (B) Learning curves for wt and Cav1.4 
KO mice in the visual water-maze behavioral task on three consecutive days under normal 
light conditions. (C-D) Maximal swimming speed and the average (Avg) measured speed of 
Cav1.4 KO, heterozygote (HT) and wt mice under dark (C) and normal light conditions (D). 

 

Synaptic changes in the retinal network architecture caused by Cav1.4 deletion in 

Cacna1f deficient mice were characterized by immunohistochemistry. These 

experiments revealed marked changes in second-order neurons in Cav1.4 KO mice. 

Stainings of wild-type retinas using the horizontal and amacrine cell marker calbindin 

showed strong labeling of horizontal cell bodies and a dense plexus of horizontal cell 
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processes in the opl (Fig. 4.22 A). By contrast, in retinas of Cav1.4 KO mice, 

calbindin staining was reduced in the opl, and horizontal cell processes extended far 

into the onl in young (Fig. 4.22 B) and aged animals (Fig. 4.22 C).  

 

 

Figure 4.22 – Confocal scans of vertical retinal sections from wild type (wt) (A) and Cav1.4 
KO mice (B-C). Immunolabeling of horizontal and amacrine cells with calbindin (Calb, green, 
right parts in A-C). The cell nuclei were stained with the dye Hoechst 33342 (grey) to 
illustrate the retinal layers (left part in A-C). Horizontal cell neurites extent deep into the outer 
nuclear layer (onl) in young (6-week-old) (B) and aged (12-month-old, PM 12) ko mice (C). 
Retinal sections from 6-week-old wt and ko mice immunolabeled with the rod bipolar cell 

marker protein kinase C alpha (PKC) (D-E), as well as with the presynaptic markers 
vesicular glutamate transporter 1 (vGlut1) (F-G), Complexin 4 (Cplx4) (H-I) and complexin 3 
(cplx3) (J-K). The scale bar shown in (A) marks 20 µm. 

 

In wild-type retinas stainings by PKCα, a rod bipolar cell marker, showed regular 

arborisation of bipolar cell dendrites restricted to the opl (Fig. 4.22 D). In contrast, 

PKC staining in retinas of Cav1.4 KO mice demonstrates pronounced growth of the 

rod biopolar cell dendrites extended beyond the opl, far into the onl (Fig. 4.22 arrows 

in E). Note that PKC also labels cone outer segments (upper part in D and E), 

which appear disorganized in Cav1.4 KO mice (Fig. 4.22 E).  
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Evaluation of the overall structure revealed outgrowth of neurites from the opl into the 

onl and caused a marked thinning of the opl in Cav1.4 KO retinas as compared to 

wild type retinas (Fig. 4.22 A-C). Presynaptic markers were used to test whether this 

outgrowth leads to the formation of ectopic synapses between photoreceptor 

terminals and aberrant dendrites of rod bipolar and horizontal cells, which were 

displaced out of the opl and into the onl stainings. The presynaptic markers reveal a 

disperse redistribution of rod (vGlut1 and Cplx4) and cone (Cplx3) presynaptic 

elements from the opl to the onl in the Cav1.4 KO mice (Fig. 4.22 G, I and K), 

compared to the wild type mice (Fig. 4.22 F, H and J). The presynaptic markers 

confirmed a greatly reduced immunoreactivity in the opl and an increased punctuated 

staining in the onl in Cav1.4 KO mice as compared to wild type mice. These results 

are consistent with a loss of synaptic contacts in the opl and the formation of ectopic 

synapses in the onl. In addition, specific staining of horizontal cell neurites by NF200 

demonstrate a pronounced outgrow of neurites into the onl (not shown). 

Together, these findings indicate both, disturbed photoreceptor to rod bipolar cell and 

horizontal cell contacts with pronounced outgrow of neurites into the onl. In contrast, 

Calbindin-expressing amacrine and ganglion cells appeared identical in the wild-type 

and Cav1.4 KO retinas. 

The expression and localization of the rod arrestin, a rod photo-transduction cascade 

protein, was not affected in outer segments of rod photoreceptors in the Cav1.4 KO 

mice (Fig. 4.23 A, B). However, the synaptic fraction of rod arrestin (arrows in A) was 

lost from the opl and was partially found in the onl (arrows in B). In addition, staining 

of cone photoreceptors by cone arrestin was markedly down regulated throughout 

the cone cells in Cav1.4 KO mice (Fig. 4.23 C, D). In line with this finding, specific 

labeling of cone photoreceptor extracellular matrix by peanut lectin revealed a loss of 

cone pedicle whereas the morphology of the cone inner and outer segments (is, os) 

was preserved (Fig. 4.23 E, F). In Cav1.4 KO retinas, the present GFAP-positive 

stress fibers are indicating a reactive gliosis. Together, these findings indicate that 

there is an ongoing rod and cone photoreceptor synaptopathy and reactive gliosis in 

the Cav1.4 KO mouse.  
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Figure 4.23 – Photoreceptor morphology in Cav1.4 KO mice. Confocal scans of vertical 

retinal sections from 6-week-old wild type (wt) and Cav1.4 KO mice labeled for rod arrestin 

(A-B), cone arrestin (C-D), peanut lectin (E-F) and GFAP-positive stress fibers (G-H).       
The right part (in panels G-H) represents Hoechst 33342 (grey) nuclear staining of the 
respective retinal slices. The scale bar marks 20 µm. gcl: ganglion cell layer; inl: inner 
nuclear layer; ipl: inner plexiform layer; onl: outer nuclear layer; is, inner segment and os: 
outer segment.  

 

 

 

Next, we were examining whether the changes observed in male Cav1.4 deficient 

mice are also present in heterozygous (hz) females (Cav1.4+/-). Interestingly, the hz 

mice show a pronounced mosaic (patchy) photoreceptor synaptopathy (Fig. 4.24), 

which can be characterized by islets of Cav1.4 immunoreactivity and areas without 

Cav1.4 immunoreactivity next to each other (Fig. 4.24 A-C). 
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Figure 4.24 – Mosaic synaptopathy in Cav1.4 hz mice. Confocal scans of vertical retinal 
sections from Cav1.4 hz mice. (A) Representative image from an hz mouse labeled with a 
Cav1.4-specific antibody (green). (B) Magnification view on the outer plexiform layer region 
marked with a white rectangle in (A). (C) Magnification view on the corresponding region 
from a wild type control mouse labeled with a Cav1.4-specific antibody (green). Cell nuclei in 
(A-C) were stained with the nuclear dye Hoechst 33342 (grey). (D-L) Retinal sections from 
hz (D-E, G-H and J-H) and wt (F, I and L) mice immunolabeled for calbindin (Calb) (D-F), 
vGlut1 (G-I) and complexin 3 (cplx3) (J-L). The regions marked with a white rectangle in 
panels (D, G and J) are shown in (E, H and K), respectively. (F, I and L) show corresponding 
immuno-stainings from wt mice. (M-O) Representative image from hz mice labeled for 
peanut agglutinin (M), cone arrestin (N) and GFAP (O) reveal a mosaic loss of synaptic cone 
structures and reactive gliosis in the hz. The scale bar marks 20 µm. gcl: ganglion cell layer; 
inl: inner nuclear layer; ipl: inner plexiform layer; onl: outer nuclear layer; opl: outer plexiform 
layer. 

 
In line with this finding, stainings for calbindin (Fig. 4.24 D-F), VGlut1 (Fig. 4.24 G-I), 

and complexin 3 (Fig 4.24 J-L) revealed a similar patchy histology pattern with areas 

characterized by the KO phenotype and wild type areas close to each other. 

Specifically, retinal network columns lacking Cav1.4 consistently showed outgrowths 

of horizontal cell neurites and bipolar cell dendrites into the onl and a reduction of the 

opl. In addition, a pronounced loss of synaptic cone structures and degeneration was 
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observed in KO-like retinal columns in the Cav1.4 hz mice (Fig 4.24 M and N), in 

addition to a reactive gliosis (Fig. 4.24 O).  

By co-staining analysis using pre and postsynaptic markers, the formation of ectopic 

disturbed contacts between the photoreceptor and bipolar or horizontal cells could be 

observed. The disturbed contacts are characterized by horseshoe shaped wild type-

like presynaptic structures synapsing to aberrant rod bipolar and horizontal cell 

dendrites (Fig 4.25). Together, these findings are consistent with a pronounced 

mosaic rod and cone photoreceptor synaptopathy. 

 

 

Figure 4.25 – Pre- and postsynaptic changes in Cav1.4 heterozygous mice. High resolution 
confocal scans of vertical retinal sections from Cav1.4 hz mice double-labeld for a 
combination of pre- a postsynaptic marker proteins. (A) Immunostaining for the ribbon 
synapse marker C-terminal binding protein 2 (Ctbp2). The affected area is encircled with a 
dotted line. The arrow marks an ectopic wild type-like horseshoe shaped Ctbp2-positive 
structure at the border of the affected area. (B) Merged image for Ctbp2 (magenta) and 

PKC (green). (C) Immunostaining for the postsynaptic L-type calcium channel subunit 1.1 
(Cav1.1). The arrows point to Cav1.1-positive synapse at the border of the affected area. (D) 
Merged image for Cav1.1 (magenta) and vGlut1 (green). The scale bar marks 10 µm. inl: 
inner nuclear layer; onl: outer nuclear layer; opl: outer plexiform layer. 
 

 

The functional consequences of these morphological changes were tested by ERG 

measurements. In scotopic ERG in heterozygous female mice (Fig 4.26 A) revealed 

significantly reduced b-wave amplitude (Fig 4.26 A, B) and also reduced oscillatory 

potentials as compared to wild-type mice throughout the stimulus range. The 

threshold of the b-wave was normal in Cav1.4+/- mice. The amplitude and the 
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threshold of the a-wave were similar in all mice tested (n=5 Cav1.4+/-; n=2 WT). 

Similar changes were observed for the photopic ERGs (Fig 4.26 C, D). 

 

 

 
Figure 4.26 – Visual function in Cav1.4 heterozygous mice. (A-D) Electroretinographic 
analysis of retinal function in Cav1.4HZ mice. Representative Ganzfeld-ERG intensity series 
from dark-adapted (A) and light-adapted (C) wild type (wt, black traces) and Cav1.4HZ mice 
(red traces). (B, D) Quantitative data of the entire group shown as Box-and-Whisker plots, 
i.e. boxes indicate the 25% and 75% quantile range, whiskers indicate the 5% and 95% 
quantiles, and the asterisks indicate the median of the data. The amplitude data are plotted 
as a function of the logarithm of the flash intensity. Performance of Cav1.4HZ mice (grey) in a 
visual water-maze behavioral task under dark (E-F) or normal light conditions (G-H). Wild 
type (wt, black) and Cav1.4 KO mice (red) are show for comparison. (E and G) Latency to 
locate a visible platform under dark (E) and normal light conditions (G). Example swimming 
paths of Cav1.4HZ mice are shown as insets. Errors of omission under dark (F) and normal 
light conditions (H). 

 

The performance of heterozygous Cav1.4+/- mice as judged by the latency to locate 

the platform (Fig 4.26 E), errors of omission under dark conditions (Fig 4.26 F), 

swimming paths length and the maximal swimming speed (Fig 4.21), as well as the 

latency to locate the platform under normal light conditions was in between wild type 

and Cav1.4 KO mice (Fig 4.26 G, H). 
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5. Discussion 

5.1 Functional effects of the CaBP4 regulation on the Cav1.41 

In the first part of this work, the functional effects of CaBP4 on wild type Cav1.4 

channels were analyzed. The electrophysiological profile of Cav1.41 channel differs 

profoundly from that of other LTCCs (Baumann et al., 2004; McRory et al., 2004). 

Cav1.4 has very slow VDI, which leads to an increase in the channel conductance 

window compared to other LTCCs. The conductance window exists at potentials 

whereby ion channels are already activated but not yet fully inactivated. This 

condition is present within the overlapping region under the intersection of activation 

and inactivation curves of Cav1.4 channels. This property enables the channel to 

provide steady state inward calcium current. The CaBP4, as described in this study, 

increases the conductance window and the channel availability of Cav1.4 even more 

(Fig. 4.13 G). 

The ICDI domain and CaBP4 have opposing functional effects on voltage dependent 

gating of Cav1.4 channels. In wild type Cav1.4 channels the ICDI domain shifts the 

activation curve to more depolarized potentials and increases inactivation. CaBP4 

antagonizes these effects by shifting the activation curve of Cav1.4 to more 

hyperpolarized potentials and decreases inactivation. In line with this hypothesis, in 

the presence of CaBP4 the ICDI domain is functionally silent. Furthermore, in Cav1.4 

channels lacking the ICDI domain CaBP4 has no effects on the voltage dependence. 

On the functional level CaBP4 selectively abolishes the effects of the ICDI domain on 

Cav1.4 channel availability. As a consequence, the voltage dependence of channel 

availability is pushed towards physiological operating voltage range in photoreceptors 

(Corey et al., 1984; Moriondo et al., 2001; Schneeweis and Schnapf, 2000; Thoreson 

et al., 2004; Witkovsky et al., 1997). Beside the effects on voltage dependent channel 

availability, CaBP4 also blocks CDI. This effect is only evident in Cav1.4 channels 

lacking the ICDI domain. With respect to its inhibitory effect on CDI, CaBP4 and the 

ICDI domain are functionally equivalent (Fig. 5.1). 
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Figure 5.1 – Schematic of CaBP4 and ICDI effects on Cav1.4 channel activation and 
inactivation. (A) In the absence of CaBP4 the activation curve of Cav1.4 channels (black 
curve -CaBP4 +CaM) is at depolarized potentials. CaBP4 shifts activation curve of wild type 
Cav1.4 channels to the left (green curve: +CaBP4, -CaM). The same left shift is observed in 

Cav1.4ICDI channels (green curve: -ICDI). In case of CaBP4-E267fs mutant or the 
Cav1.4/5A variant (purple curve) a shift to even more depolarized potentials can observed. 
(B) In the absence of CaBP4, there is pronounced inactivation of Cav1.4 channels (black 
curve: -CaBP4). CaBP4 decreases Cav1.4 channel inactivation (green curve: +CaBP4). 

Similar decrease in Cav1.4 inactivation is observed in Cav1.4ICDI channels (green curve:    
-ICDI). Voltage axis in arbitrary units; the physiological voltage range of operation in 
photoreceptor cells is shown in green. The Boxes summarize the conditions under which the 
respective activation curve is observed. +ICDI refers to the wild type Cav1.4 channel -ICDI 
refers to truncated channels lacking the ICDI domain. Furthermore, in the boxes the 
presence or absence of endogenous CaM or CaBP4 is given.  
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The FRET experiments (data not shown, made by C.P.) indicate that the CaBP4 

interferes structurally with the binding of the ICDI domain to the C-terminus of Cav1.4. 

One possible explanation could be that CaBP4 partially displaces the ICDI domain. 

Partial departure of the ICDI domain could selectively abolish the effects of the ICDI 

domain on voltage dependent Cav1.4 channel gating. 

The FRET experiments provide an evidence that CaBP4 tightly associates with the 

IQ motif of Cav1.4 channels and that CaBP4 is able to displace CaM from binding to 

the IQ motif at physiological conditions. In line with this interpretation, it was shown 

that CaBP4 can very efficiently regulate the functional properties of Cav1.4 channels 

in HEK293 cells in which CaM is endogenously expressed at high levels. It is very 

likely that binding of CaBP4 induces a conformation different from the conformation 

in the presence of CaM. This difference could be the reason for differential effects of 

CaBP4 and CaM on CDI in Cav1.4ICDI channels. Moreover, CaBP4 with its long   

N-terminus (NT) is a much larger as compared to CaM. The N-terminus (NT) of 

CaBP4 contains different functional motif domains including a phosphorylation site    

(S-37). Therefore, it is possible that CaBP4 may bind or interact with the channel also 

on other interaction site(s) in addition to the IQ motif. The structural domain which 

may play a critical role in calcium channel inactivation could be the cytoplasmic I-II 

linker as suggested by (Cens et al., 1999; Kim et al., 2004; Stotz et al., 2000; 

Tadross et al., 2010). This linker forms a cytoplasmic gating/blocking particle or a lid 

which is involved in closing the channel pore and initiates the inactivation process of 

the channel. This domain may serve as one potential additional interaction domain of 

CaBP4 on Cav1.4. The dark green ball which is presented in figures 5.2-5.4 

represents any intracellular domain, whereby the I-II linker could be one candidate. 

 

The following mechanisms may explain the presented findings: 

First, in the Cav1.4 WT channel (Fig. 5.2), the ICDI domain is present in the distal 

end of the C-terminus (CT). The CaM or CaBP4 bind to the IQ motif and lead to 

conformational change of the C-terminus, while the ICDI may interact independently 

with other elements on the channel and inhibit the inactivation process of the 

channel. In this situation, the inactivation occurs in a strictly voltage dependent 

manner (VDI). In this case, the ICDI masks the conformational change caused by 

CaM or CaBP4, and by that eliminates the CDI of the channel. However, the 

differences between CaBP4 and CaM can be seen by the shift of the activation curve 
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to more hyperpolarized potential and the inhibition of the inactivation process, when 

CaBP4 is coexpressed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.2 – Model showing the inactivation mechanism in Cav1.4 WT channel.                 
Left panel, coexpressed CaBP4 binds to the IQ motif and cause a conformational change in 
the CT, while its N-terminus (NT) may interact with additional domains on the Cav1.4 
channel. Right panel, endogenous CaM binds also to the IQ motif causing a conformational 
change in a way that the ICDI domain interacts with an intracellular domain to abolish the 
CDI of the channel. 
 
 
 

Second, in the truncated variant of the channel, Cav1.4ICDI, the ICDI is absent. 

Cav1.4 lacking ICDI shows CDI. However this CDI is abolished when CaBP4 is 

coexpressed. In the absence of the ICDI domain, the effect of CaBP4 on voltage-

dependent gating is abolished. No difference between CaM and CaBP4 can be seen 

regarding activation and inactivation curves, meaning that deletion of the ICDI affects 

dramatically all the activation and inactivation properties of the channel (Fig. 5.3). 
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Figure 5.3 – Model showing the inactivation mechanism in Cav1.4ICDI channel.              
Left panel, coexpressed CaBP4 binds to the IQ motif and its N-terminus (NT) may still 
interact with additional domains on the Cav1.4 channel, therefore no CDI can be seen.    
Right panel, endogenous CaM binds also to the IQ motif. However, now a direct interaction 
between intracellular domains like with the EF-hand on the CT of the Cav1.4 may speed up 
channel closure and promotes fast CDI.  

 

 

The third case deals with Cav1.4/5A, in which 5 residues in the IQ motif were 

replaced by alanines (Fig. 5.4). Here, neither the CaBP4 nor the endogenous CaM 

binds to the IQ motif and therefore no conformational change of the CT. Both may 

stay pre-bound to additional motif in a close proximity up or downstream of the IQ 

sequence.  

Patch clamp recordings in Cav1.4/5A HEK cells coexpressing CaBP4 show a 

surprising result in which the CaBP4 is still able to shift the activation curve by 

approximately 5mV shift to more hyperpolarized potential, compared to Cav1.4/5A in 

the absence of CaBP4.   

These observations indicate that the CaBP4 is able to bind independently to another 

binding site on the channel, besides the IQ motif. The CaBP4 may bind with its long 

NT to any cytoplasmic domain on the channel, like the I-II linker and/or the EF 
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domain, therefore no CDI can be seen. By this interaction, CaBP4 is still partly able 

to regulate the channel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 – Model showing the inactivation mechanism in Cav1.4/5A channel.                  
Left panel, coexpressed CaBP4 is prebound to the CT of the channel and its N-terminus (NT) 
may still interact with additional domains on the Cav1.4 channel, therefore no CDI can be 
seen. Right panel, endogenous CaM is also prebound to the IQ motif. However, still a direct 
interaction between intracellular domains like with the EF-hand on the CT of the Cav1.4 may 
speed up channel closure and promotes fast CDI. 
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5.2 The patho-mechanism of CaBP4 mutants 

Both CaBP4 mutants interact with the C-terminus of Cav1.4 but lack most of the 

effects of wild type CaBP4, suggesting that both lobes of CaBP4 need to be present 

and act to produce a conformational change that regulates voltage dependent 

activation and inactivation.  

This research provides mechanistical insight how CaBP4 mutants lead to disease. 

Both of the mutants share a common feature; they significantly reduce the overall 

channel availability as compared to wild type CaBP4. The two CaBP4 mutants show 

no negative shift of the voltage dependent activation curve and no change in the 

slope of the activation curve. This suggests that CaBP4 mutants, even though bound 

to the channel, cannot antagonize the effect of the ICDI domain on voltage 

dependent activation.  

The CaBP4-R216X mutant is missing the functional C-lobe. The CaBP4-R216X 

could indeed interact with the channel; however the absence of the C-lobe CaBP4-

R216X would not be able to produce the conformational change of the Cav1.4-

CaBP4 complex which is required for the interference with the ICDI domain.  

On the other hand, in the CaBP4-E267fs mutant both lobes are present but the 

function of the C-lobe could be affected by the exchange of the last amino acid 

residue in the fourth EF hand and the additional nonsense downstream sequence. 

Interestingly, for CaBP4-E267fs even a significant shift of the activation curve toward 

more positive potentials was observed.  

A possible explanation is that the CaBP4 mutant stabilizes the channel in a 

conformational state whereby the endogenous CaM is completely displaced from 

binding to the channel through IQ motif. This interpretation can be supported by the 

results obtained with the Cav1.4/5A channel, where a right shift toward more positive 

potentials was observed (Fig. 4.16 A and B). Alternatively, the CaBP4 intensifies the 

interaction of the ICDI domain with the channel, causing a shift in the activation curve 

toward more positive potentials. 

In both CaBP4 mutants, voltage dependent inactivation was more pronounced than 

in wild type CaBP4. This indicates that CaBP4 mutants can only partially induce the 

conformational change induced by wild type CaBP4. The physiological window 

currents in both CaBP4 mutants were significantly reduced. These effects are more 

pronounced in CaBP4-R216X.  
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The appearance of slow CDI in Cav1.4ICDI channels coexpressed with mutant 

CaBP4 suggests that CaM can access the effector site for CDI at least in some of the 

channels.  

5.3 Functional characterization of Cav1.4 deficient mice 

Here, the retinal phenotype of Cav1.4 deficient mice (Specht et al., 2009) was 

analyzed in vivo. Using ERG, the homozygous Cav1.4 deficient mice show 

diminished ERG b-waves under scotopic and photopic light conditions compared to 

wild type mice, demonstrating that this mouse line is a true functional knockout. 

Additionally, the Cav1.4 KO mice performed very poorly in a water maze-based vision 

test, suggesting that they are essentially blind. 

In line with this finding, retinal morphology of Cav1.4 KO mice was markedly 

changed. Further morphological analysis of the Cav1.4 KO retinas demonstrated 

thinning of the opl, pronounced outgrowth of postsynaptic structures like rod bipolar 

cells dendrites and horizontal cell neurites into the onl and retraction of presynaptic 

elements to the onl, leading to ectopic synapse formation in the onl. These changes 

concurred with pronounced degeneration and loss of cone, but not of rod 

photoreceptors. Those results demonstrate that Cav1.4 channels are essential for 

both rod and cone neurotransmission and the functional and structural integrity of 

photoreceptor synapses in mice. These observations are consistent with similar 

findings from an independent genetically engineered Cav1.4 deficient mouse model, 

which was previously reported (Mansergh et al., 2005; Raven et al., 2008). 

Cav1.4 channels are encoded by the X-chromosomal CACNA1F gene. In some 

cases, mutations in CACNA1F lead to distinct forms of congenital stationary 

blindness type 2 associated with clinical symptoms in carrier females (Hemara-

Wahanui et al., 2005; Hope et al., 2005; Jalkanen et al., 2007; Rigaudiere et al., 

2003). Therefore, it was important to extend this study to heterozygous mice. The 

analysis of Cav1.4 heterozygosity on retinal function and morphology revealed 

several new aspects of Cav1.4 channel in vivo function. In Cav1.4 aged heterozygous 

mice, retinal patches with typical changes observed in the Cav1.4 deficient mouse 

retina have been seen side by side with patches of wild type-like morphology. It is 

very likely that the patchy pattern is caused by random X-chromosomal inactivation 

of the healthy or the affected Cacna1f gene copy early in retinal precursor cells. 

During development, inactivation of the X-chromosome carrying wild type Cav1.4 
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gene leads to cells deficient of Cav1.4 in heterozygous Cav1.4 mice, organized 

precisely in radial columns (Reese and Galli-Resta, 2002). Importantly, this means 

that all pathological and morphological changes observed in the heterozygous 

affected patches including the synaptopathy as well as the degenerative changes 

(e.g. loss of cone pedicle structure and patchy activation of Müller glial cells) spread 

radially and cannot be compensated by neighboring unaffected and functional retinal 

cells. 

However, closer observation of the border regions between affected and non-

affected retinal patches suggests a functional interaction. Pre- and postsynaptic 

elements in affected retinal patches appear different when they are in close proximity 

to cells within non-affected parts of the heterozygous retina. For instance, labeling of 

the postsynaptic VDCC Cav1.1 or the ribbon protein Ctbp2 are lost in the knockout 

retina and in affected parts of the heterozygous retina, but are present, though with 

ectopic localization within the onl, in the border area between affected and non-

affected retinal regions in the heterozygous mouse. These observations may suggest 

that non-affected rod cell bodies are able to form an ectopic synapse with bipolar cell 

neurites originating from postsynaptic partners within the neighboring affected retinal 

column. 

These findings suggest that retinal function in the heterozygous Cav1.4 retina should 

be impaired for two reasons:  

1. The affected retinal columns cannot contribute to light detection and signal 

transmission through the visual pathway.  

2. Aberrant crosstalk between affected and non-affected retinal patches in the 

border regions might interfere with normal retinal processing.  

 

In line with this, aged heterozygous mice presented reduction in ERG b-wave 

amplitudes side by side with intermediate performance in the vision-guided 

behaviour test which was in between that of wild type and Cav1.4 deficient mice. 

Notably, this phenotype was observed under scotopic and photopic light conditions, 

arguing for defects in rod and cone function. 

For most X chromosome-linked diseases carrier females are not affected (Migeon, 

2006). However, the results presented in this study suggest, that patients carrying 

an allele with a null mutation should present with a phenotype. Nevertheless, one 

needs to take into account that the human retina differs extensively from the mouse 
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retina. Moreover, it is still not clear if human cones (or rods) express other L-type 

VDCCs (e.g. Cav1.3) in addition to Cav1.4 that might compensate for the loss of 

Cav1.4 function.  

Taken together, this work shows for the first time that CACNA1F heterozygosity in 

female carrier mice has deleterious effects on rod and cone-mediated vision. 
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6. Summary 

Synapses of retinal photoreceptors and bipolar neurons are characterized by their 

ability to release the neurotransmitter glutamate in a sustained and tonic fashion. 

Several ion channels contribute to this hallmark property, among which a member of 

the L-Type calcium channel family, Cav1.4, which has a particular significance. 

Cav1.4 differs from most other calcium channels by its ultra-slow kinetics of voltage-

dependent inactivation (VDI). Moreover, Cav1.4 does not display feedback inhibition 

by permeating Ca2+ (CDI, calcium-dependent inactivation), that is found in other 

calcium channels.  

Recent studies suggested that the activity of Cav1.4 is regulated by a specific Ca2+-

binding protein (CaBP4). In this thesis, this issue was explored in detail. Using 

heterologous expression in HEK293 cells, CaBP4 was found to dramatically increase 

Cav1.4 channel availability (“window conductance”) at the physiological range of 

membrane potentials. This effect crucially depends on the presence of the C-terminal 

inhibitory domain of Cav1.4 (ICDI, inhibitor of Ca2+-dependent inactivation). 

Consequently, the effect of CaBP4 was lost in a Cav1.4 mutant lacking the ICDI. 

CaBP4 was found to interact with a specific C-terminal motif of Cav1.4 (“IQ motif”) 

and to interfere with the binding of the ICDI domain. These findings suggest that 

CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the 

ICDI domain on voltage-dependent Cav1.4 channel gating. In addition, two CaBP4 

mutants which are associated with a congenital variant of human night blindness 

(CSNB2) were analyzed. Although both mutants interact with Cav1.4 channels, the 

functional effects of CaBP4 mutants are only partially preserved, leading to a 

reduction of Cav1.4 channel availability and loss of function. The heterologous 

expression studies were corroborated by the analysis of a Cav1.4-deficient mouse 

model that displays several clinical aspects of human CSNB2. The effects of Cav1.4 

deletion on the retinal structure and visual function were examined in detail as part of 

this thesis. A particular focus was set on the phenotype of heterozygous female mice, 

since Cav1.4 is encoded by the X-chromosome and can be transcriptionally silenced. 

In conclusion, this study sheds new light on the functional regulation of Cav1.4 by 

CaBP4. Moreover, it provides insights into the mechanism by which CaBP4 mutants 

lead to loss of Cav1.4 function and to retinal disease. Finally, the analysis of Cav1.4-

defieicent mice has provided important information with regard to the 

pathophysiological processes taking place in the CSNB2 retina. 
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8. Appendix 

8.1 Sequence of the murine Cav1.41 cDNA 

 
1         ATGTCGGAATCTGAAGTCGGGAAAGATACAACCCCAGAGCCCAGTCCAGCCAATGGGACT 

1          M  S  E  S  E  V  G  K  D  T  T  P  E  P  S  P  A  N  G  T  

 

61        GGCCCTGGCCCTGAATGGGGGCTCTGTCCTGGGCCTCCAACTGTGGGGACTGATACCAGC 

21         G  P  G  P  E  W  G  L  C  P  G  P  P  T  V  G  T  D  T  S   

 

121       GGGGCGTCAGGCCTGGGGACCCCAAGAAGAAGGACCCAGCACAACAAACACAAGACTGTG 

41         G  A  S  G  L  G  T  P  R  R  R  T  Q  H  N  K  H  K  T  V   

 

181       GCGGTGGCCAGTGCTCAGAGATCACCTCGAGCGCTCTTCTGCCTCACCCTTACTAATCCC 

61         A  V  A  S  A  Q  R  S  P  R  A  L  F  C  L  T  L  T  N  P   

 

241       ATTCGTCGGTCCTGCATCAGCATTGTAGAGTGGAAGCCTTTTGATATTCTCATCCTCCTG 

81         I  R  R  S  C  I  S  I  V  E  W  K  P  F  D  I  L  I  L  L   

 

301       ACAATCTTTGCCAACTGCGTGGCATTGGGGGTATATATCCCCTTCCCTGAGGACGACTCC 

101        T  I  F  A  N  C  V  A  L  G  V  Y  I  P  F  P  E  D  D  S   

 

361       AACACTGCTAACCACAACTTGGAACAGGTAGAATACGTGTTCCTGGTGATTTTCACCGTG 

121        N  T  A  N  H  N  L  E  Q  V  E  Y  V  F  L  V  I  F  T  V   

 

421       GAGACAGTGCTCAAGATCGTAGCCTATGGGCTGGTGCTCCATCCCAGCGCCTATATTCGC 

141        E  T  V  L  K  I  V  A  Y  G  L  V  L  H  P  S  A  Y  I  R   

 

481       AATGGCTGGAACCTGCTCGACTTCATCATCGTCGTGGTCGGGCTGTTCAGCGTGCTGCTG 

161        N  G  W  N  L  L  D  F  I  I  V  V  V  G  L  F  S  V  L  L   

 

541       GAACAAGGACCTGGGCGGCCAGGAGATGCCCCGCATACTGGAGGAAAGCCAGGAGGCTTC 

181        E  Q  G  P  G  R  P  G  D  A  P  H  T  G  G  K  P  G  G  F   

 

601       GATGTAAAGGCACTGCGGGCATTTAGGGTGCTACGACCTCTAAGGCTAGTGTCTGGGGTC 

201        D  V  K  A  L  R  A  F  R  V  L  R  P  L  R  L  V  S  G  V   

 

661       CCGAGTCTGCACATAGTGCTCAATTCCATCATGAAGGCGCTTGTGCCGCTGCTGCACATT 

221        P  S  L  H  I  V  L  N  S  I  M  K  A  L  V  P  L  L  H  I   

 

721       GCCCTGTTGGTGCTCTTCGTCATTATCATTTACGCCATCATCGGACTCGAGCTATTCCTC 

241        A  L  L  V  L  F  V  I  I  I  Y  A  I  I  G  L  E  L  F  L   

 

781       GGACGAATGCACAAGACATGCTACTTCCTGGGATCTGATATGGAAGCAGAGGAGGACCCA 

261        G  R  M  H  K  T  C  Y  F  L  G  S  D  M  E  A  E  E  D  P   

 

841       TCACCTTGTGCATCTTCTGGCTCTGGGCGTTCATGCACACTGAACCATACCGAGTGCCGC 

281        S  P  C  A  S  S  G  S  G  R  S  C  T  L  N  H  T  E  C  R   

 

901       GGGCGCTGGCCAGGACCCAACGGTGGCATCACGAACTTCGACAATTTTTTCTTTGCCATG 

301        G  R  W  P  G  P  N  G  G  I  T  N  F  D  N  F  F  F  A  M   

 

961       CTAACTGTGTTCCAGTGTATTACCATGGAAGGCTGGACAGACGTCCTCTACTGGATGCAG 

321        L  T  V  F  Q  C  I  T  M  E  G  W  T  D  V  L  Y  W  M  Q   

 

1021      GATGCCATGGGGTATGAGCTGCCTTGGGTGTACTTTGTGAGCCTTGTCATCTTTGGGTCC 

341        D  A  M  G  Y  E  L  P  W  V  Y  F  V  S  L  V  I  F  G  S   

 

1081      TTCTTTGTCCTCAACCTTGTGCTTGGAGTCCTAAGCGGGGAGTTCTCCAAGGAAAGAGAA 

361        F  F  V  L  N  L  V  L  G  V  L  S  G  E  F  S  K  E  R  E   
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1141      AAGGCAAAAGCACGAGGTGACTTTCAGAAGCTTCGGGAGAAGCAGCAGATGGAAGAAGAC 

381        K  A  K  A  R  G  D  F  Q  K  L  R  E  K  Q  Q  M  E  E  D   

 

1201      CTTCGGGGCTACCTGGACTGGATCACACAGGCTGAGGAGTTAGACCTTCATGACCCCTCA 

401        L  R  G  Y  L  D  W  I  T  Q  A  E  E  L  D  L  H  D  P  S   

 

1261      GTAGACGGCAACTTGGCTTCTCTTGCTGAAGAGGGACGGGCGGGCCATCGGCCACAACTG 

421        V  D  G  N  L  A  S  L  A  E  E  G  R  A  G  H  R  P  Q  L   

 

1321      TCAGAGCTGACCAATAGGAGGCGCGGACGGCTGCGATGGTTCAGCCACTCTACTCGCTCC 

441        S  E  L  T  N  R  R  R  G  R  L  R  W  F  S  H  S  T  R  S   

 

1381      ACACACTCCACCAGCAGCCACGCCAGCCTCCCAGCCAGTGACACTGGCTCCATGACAGAC 

461        T  H  S  T  S  S  H  A  S  L  P  A  S  D  T  G  S  M  T  D   

 

1441      ACCCCTGGAGATGAGGATGAAGAAGAGGGGACCATGGCTAGCTGTACACGCTGCCTAAAC 

481        T  P  G  D  E  D  E  E  E  G  T  M  A  S  C  T  R  C  L  N   

 

1501      AAGATTATGAAAACAAGGATCTGCCGCCACTTCCGCCGAGCCAACCGGGGTCTCCGTGCA 

501        K  I  M  K  T  R  I  C  R  H  F  R  R  A  N  R  G  L  R  A   

 

1561      CGCTGCCGCCGGGCCGTCAAGTCCAACGCCTGCTACTGGGCTGTACTGTTGCTCGTCTTC 

521        R  C  R  R  A  V  K  S  N  A  C  Y  W  A  V  L  L  L  V  F   

 

1621      CTCAACACGTTGACCATAGCTTCAGAGCACCATGGGCAGCCTTTGTGGCTCACCCAGACC 

541        L  N  T  L  T  I  A  S  E  H  H  G  Q  P  L  W  L  T  Q  T   

 

1681      CAAGAGTATGCCAACAAAGTTCTGCTCTGCCTCTTCACTGTGGAGATGCTCCTCAAACTG 

561        Q  E  Y  A  N  K  V  L  L  C  L  F  T  V  E  M  L  L  K  L   

 

1741      TACGGCCTGGGCCCCTCTGTCTACGTTGCCTCCTTTTTCAACCGCTTTGACTGCTTCGTG 

581        Y  G  L  G  P  S  V  Y  V  A  S  F  F  N  R  F  D  C  F  V   

 

1801      GTCTGTGGGGGCATCCTAGAAACCACTTTGGTGGAGGTGGGGGCCATGCAGCCTCTTGGC 

601        V  C  G  G  I  L  E  T  T  L  V  E  V  G  A  M  Q  P  L  G   

 

1861      ATCTCAGTGCTCCGATGTGTACGTCTCCTCAGGATCTTCAAGGTCACCAGGCACTGGGCA 

621        I  S  V  L  R  C  V  R  L  L  R  I  F  K  V  T  R  H  W  A   

 

1921      TCCCTGAGCAATCTGGTGGCATCTTTGCTCAATTCCATGAAGTCCATCGCCTCCTTGCTG 

641        S  L  S  N  L  V  A  S  L  L  N  S  M  K  S  I  A  S  L  L   

 

1981      CTTCTCCTCTTTCTCTTCATCATCATCTTCTCCCTGCTTGGCATGCAGCTGTTTGGGGGC 

661        L  L  L  F  L  F  I  I  I  F  S  L  L  G  M  Q  L  F  G  G   

 

2041      AAGTTCAACTTTGACCAGACCCACACCAAGAGGAGCACCTTTGATACCTTCCCCCAAGCC 

681        K  F  N  F  D  Q  T  H  T  K  R  S  T  F  D  T  F  P  Q  A   

 

2101      CTCCTCACTGTCTTTCAGATCCTGACTGGTGAGGATTGGAACGTTGTCATGTATGATGGT 

701        L  L  T  V  F  Q  I  L  T  G  E  D  W  N  V  V  M  Y  D  G   

 

2161      ATCATGGCCTACGGTGGGCCCTTCTTCCCAGGGATGCTGGTGTGTGTTTATTTCATCATC 

721        I  M  A  Y  G  G  P  F  F  P  G  M  L  V  C  V  Y  F  I  I   

 

2221      CTCTTCATCTGTGGCAACTACATCCTGCTGAACGTGTTTCTTGCCATTGCCGTGGATAAC 

741        L  F  I  C  G  N  Y  I  L  L  N  V  F  L  A  I  A  V  D  N   

 

2281      CTAGCCAGCGGGGATGCAGGCACTGCCAAAGACAAGGGCAGAGAGAAGAGCAGTGAAGGA 

761        L  A  S  G  D  A  G  T  A  K  D  K  G  R  E  K  S  S  E  G   

 

2341      AACCCTCCAAAGGAGAACAAAGTATTGGTGCCTGGTGGAGAGAATGAGGACGCAAAGGGT 

781        N  P  P  K  E  N  K  V  L  V  P  G  G  E  N  E  D  A  K  G   
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2401      GCAAGAAGTGAAGGAGCAGCACCAGGCATGGAGGAGGAGGAGGAGGAGGAAGAAGAAGAA 

801        A  R  S  E  G  A  A  P  G  M  E  E  E  E  E  E  E  E  E  E   

 

2461      GAGGAGGAGGAGGAAGAGGAAAATGGTGCAGGACATGTGGAACTCTTGCAGGAAGTAGTA 

821        E  E  E  E  E  E  E  N  G  A  G  H  V  E  L  L  Q  E  V  V   

 

2521      CCCAAGGAGAAGGTGGTACCCATCCCTGAAGGCAGTGCCTTCTTCTGCCTTAGCCAAACC 

841        P  K  E  K  V  V  P  I  P  E  G  S  A  F  F  C  L  S  Q  T   

 

2581      AACCCGCTTCGGAAGGCCTGCCACACACTCATACATCACCATATCTTCACCAGTCTCATC 

861        N  P  L  R  K  A  C  H  T  L  I  H  H  H  I  F  T  S  L  I   

 

2641      CTAGTGTTCATCATCCTCAGTAGTGTGTCCCTGGCTGCTGAGGACCCCATCCGAGCTCAC 

881        L  V  F  I  I  L  S  S  V  S  L  A  A  E  D  P  I  R  A  H   

 

2701      TCCTTCCGAAACCATATTCTGGGATATTTTGATTATGCCTTCACCTCCATATTCACTGTG 

901        S  F  R  N  H  I  L  G  Y  F  D  Y  A  F  T  S  I  F  T  V   

 

2761      GAGATTCTACTCAAGATGACAGTGTTTGGGGCCTTCCTGCACCGAGGCTCTTTCTGCCGT 

921        E  I  L  L  K  M  T  V  F  G  A  F  L  H  R  G  S  F  C  R   

 

2821      AGCTGGTTCAATCTGTTGGATCTCCTTGTGGTCAGTGTGTCCCTCATCTCCTTCGGCATC 

941        S  W  F  N  L  L  D  L  L  V  V  S  V  S  L  I  S  F  G  I   

 

2881      CACTCCAGTGCCATCTCAGTTGTGAAGATTCTCCGAGTCCTCCGAGTCCTGCGGCCTCTC 

961        H  S  S  A  I  S  V  V  K  I  L  R  V  L  R  V  L  R  P  L   

 

2941      CGAGCCATCAACAGAGCCAAGGGACTCAAGCATGTGGTGCAGTGTGTGTTCGTGGCCATC 

981        R  A  I  N  R  A  K  G  L  K  H  V  V  Q  C  V  F  V  A  I   

 

3001      CGGACCATCGGAAACATCATGATTGTCACCACCCTCTTGCAGTTCATGTTCGCCTGCATT 

1001       R  T  I  G  N  I  M  I  V  T  T  L  L  Q  F  M  F  A  C  I   

 

3061      GGTGTTCAGCTGTTCAAGGGAAAATTCTACAGTTGCACTGATGAGGCCAAACACACCCTG 

1021       G  V  Q  L  F  K  G  K  F  Y  S  C  T  D  E  A  K  H  T  L   

 

3121      AAAGAATGCAAGGGCTCCTTCCTCATCTACCCTGATGGAGATGTGTCACGACCTTTGGTC 

1041       K  E  C  K  G  S  F  L  I  Y  P  D  G  D  V  S  R  P  L  V   

 

3181      CGGGAGCGGCTCTGGGTCAACAGTGATTTTAACTTTGACAACGTCCTTTCAGCCATGATG 

1061       R  E  R  L  W  V  N  S  D  F  N  F  D  N  V  L  S  A  M  M   

 

3241      GCCCTGTTCACTGTCTCTACCTTTGAAGGCTGGCCTGCGCTACTATACAAGGCCATAGAT 

1081       A  L  F  T  V  S  T  F  E  G  W  P  A  L  L  Y  K  A  I  D   

 

3301      GCAAACGCAGAAGATGAGGGCCCTATCTACAATTACCATGTGGAGATATCAGTATTCTTC 

1101       A  N  A  E  D  E  G  P  I  Y  N  Y  H  V  E  I  S  V  F  F   

 

3361      ATTGTCTACATCATCATCATCGCCTTCTTCATGATGAACATCTTTGTGGGCTTTGTTATC 

1121       I  V  Y  I  I  I  I  A  F  F  M  M  N  I  F  V  G  F  V  I   

 

3421      ATCACATTCCGTGCCCAGGGAGAGCAGGAGTACCAAAACTGTGAACTGGACAAGAACCAG 

1141       I  T  F  R  A  Q  G  E  Q  E  Y  Q  N  C  E  L  D  K  N  Q   

 

3481      CGCCAGTGTGTGGAATATGCCCTCAAAGCTCAGCCACTCCGCCGATACATCCCTAAGAAT 

1161       R  Q  C  V  E  Y  A  L  K  A  Q  P  L  R  R  Y  I  P  K  N   

 

3541      CCTCATCAGTACCGCGTGTGGGCCACTGTGAACTCTGCTGCCTTTGAGTACCTCATGTTT 

1181       P  H  Q  Y  R  V  W  A  T  V  N  S  A  A  F  E  Y  L  M  F   

 

3601      CTGCTCATCCTGCTCAACACGGTGGCCCTAGCCATGCAGCACTATGAACAGACTGCTCCC 

1201       L  L  I  L  L  N  T  V  A  L  A  M  Q  H  Y  E  Q  T  A  P   
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3661      TTTAACTATGCCATGGACATCCTCAACATGGTCTTCACTGGCCTCTTCACCATTGAGATG 

1221       F  N  Y  A  M  D  I  L  N  M  V  F  T  G  L  F  T  I  E  M   

 

3721      GTGCTCAAAATCATCGCCTTTAAACCCAAGCATTACTTTGCAGATGCCTGGAATACGTTT 

1241       V  L  K  I  I  A  F  K  P  K  H  Y  F  A  D  A  W  N  T  F   

 

3781      GATGCTCTCATTGTAGTGGGCAGTGTAGTCGACATCGCCGTCACAGAAGTCAATAACGGA 

1261       D  A  L  I  V  V  G  S  V  V  D  I  A  V  T  E  V  N  N  G   

 

3841      GGCCATCTTGGCGAGAGTTCAGAGGACAGCTCCCGCATATCTATCACGTTCTTTCGCCTC 

1281       G  H  L  G  E  S  S  E  D  S  S  R  I  S  I  T  F  F  R  L   

 

3901      TTCCGAGTCATGAGGCTGGTCAAGCTTCTGAGTAAGGGTGAGGGGATCCGCACACTGCTC 

1301       F  R  V  M  R  L  V  K  L  L  S  K  G  E  G  I  R  T  L  L   

 

3961      TGGACATTCATCAAGTCTTTCCAGGCCTTGCCCTATGTGGCACTTCTCATAGCAATGATA 

1321       W  T  F  I  K  S  F  Q  A  L  P  Y  V  A  L  L  I  A  M  I   

 

4021      TTCTTCATCTATGCAGTCATTGGCATGCAGATGTTTGGCAAGGTGGCTCTTCAGGACGGC 

1341       F  F  I  Y  A  V  I  G  M  Q  M  F  G  K  V  A  L  Q  D  G   

 

4081      ACGCAGATAAATCGAAACAACAATTTCCAGACCTTTCCGCAGGCTGTGCTGCTTCTGTTC 

1361       T  Q  I  N  R  N  N  N  F  Q  T  F  P  Q  A  V  L  L  L  F   

 

4141      AGGTGTGCCACTGGTGAGGCCTGGCAAGAGATAATGCTAGCCAGCCTTCCAGGAAATCGA 

1381       R  C  A  T  G  E  A  W  Q  E  I  M  L  A  S  L  P  G  N  R   

 

4201      TGTGACCCTGAGTCTGACTTTGGCCCAGGCGAGGAATTTACCTGTGGTAGCAGTTTTGCC 

1401       C  D  P  E  S  D  F  G  P  G  E  E  F  T  C  G  S  S  F  A   

 

4261      ATCGTCTACTTCATCAGCTTCTTTATGCTCTGTGCCTTCCTGATTATAAATCTCTTTGTG 

1421       I  V  Y  F  I  S  F  F  M  L  C  A  F  L  I  I  N  L  F  V   

 

4321      GCTGTAATCATGGATAACTTTGATTACCTAACCAGAGATTGGTCTATCCTGGGACCCCAC 

1441       A  V  I  M  D  N  F  D  Y  L  T  R  D  W  S  I  L  G  P  H   

 

4381      CACCTTGATGAATTCAAGAGGATCTGGTCTGAATATGACCCCGGAGCCAAGGGCCGCATC 

1461       H  L  D  E  F  K  R  I  W  S  E  Y  D  P  G  A  K  G  R  I   

 

4441      AAGCACTTGGATGTGGTTGCCCTGCTGAGACGCATCCAGCCCCCATTGGGATTTGGAAAG 

1481       K  H  L  D  V  V  A  L  L  R  R  I  Q  P  P  L  G  F  G  K   

 

4501      CTATGCCCACACCGAGTGGCCTGCAAGAGACTCGTGGCAATGAATGTGCCCCTCAACTCA 

1501       L  C  P  H  R  V  A  C  K  R  L  V  A  M  N  V  P  L  N  S   

 

4561      GATGGAACAGTGACATTCAACGCTACACTCTTTGCCCTGGTGCGGACATCCCTGAAGATC 

1521       D  G  T  V  T  F  N  A  T  L  F  A  L  V  R  T  S  L  K  I   

 

4621      AAGACAGAAGGGAACCTGGATCAAGCCAACCAGGAGCTTCGGATGGTCATCAAAAAGATC 

1541       K  T  E  G  N  L  D  Q  A  N  Q  E  L  R  M  V  I  K  K  I   

 

4681      TGGAAGCGGATAAAGCAGAAATTGTTGGATGAGGTCATCCCTCCTCCCGATGAGGAGGAG 

1561       W  K  R  I  K  Q  K  L  L  D  E  V  I  P  P  P  D  E  E  E   

 

4741      GTCACTGTGGGAAAATTCTATGCCACATTCCTGATCCAAGATTATTTCCGAAAATTCCGG 

1581       V  T  V  G  K  F  Y  A  T  F  L  I  Q  D  Y  F  R  K  F  R   

 

4801      AGAAGGAAAGAAAAGGGGCTACTAGGAAGAGAGGCCCCAACAAGCACATCCTCTGCCCTC 

1601       R  R  K  E  K  G  L  L  G  R  E  A  P  T  S  T  S  S  A  L   

 

4861      CAGGCTGGTCTAAGGAGCCTGCAGGACTTGGGTCCTGAGATCCGTCAAGCCCTCACCTAT 

1621       Q  A  G  L  R  S  L  Q  D  L  G  P  E  I  R  Q  A  L  T  Y   

EF 

Pre-IQ 

IQ 
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4921      GACACTGAGGAAGAAGAGGAAGAGGAAGAGGCAGTGGGTCAGGAGGCTGAGGAAGAGGAA 

1641       D  T  E  E  E  E  E  E  E  E  A  V  G  Q  E  A  E  E  E  E   

 

4981      GCTGAGAACAACCCAGAACCATACAAAGACTCCATAGACTCCCAGCCCCAATCTCGATGG 

1661       A  E  N  N  P  E  P  Y  K  D  S  I  D  S  Q  P  Q  S  R  W   

 

5041      AACTCTAGGATTTCGGTGTCTCTACCTGTTAAGGAGAAACTTCCAGATTCTCTCTCAACT 

1681       N  S  R  I  S  V  S  L  P  V  K  E  K  L  P  D  S  L  S  T   

 

5101      GGGCCGAGTGATGATGATGGGCTGGCTCCCAACTCCAGGCAGCCCAGTGTGATACAGGCT 

1701       G  P  S  D  D  D  G  L  A  P  N  S  R  Q  P  S  V  I  Q  A   

 

5161      GGCTCCCAACCACACAGGAGAAGCTCTGGGGTTTTCATGTTCACTATCCCGGAAGAAGGA 

1721       G  S  Q  P  H  R  R  S  S  G  V  F  M  F  T  I  P  E  E  G   

 

5221      AGTATTCAGCTCAAGGGAACTCAAGGGCAGGACAATCAGAATGAGGAACAGGAAGTCCCT 

1741       S  I  Q  L  K  G  T  Q  G  Q  D  N  Q  N  E  E  Q  E  V  P   

 

5281      GACTGGACTCCTGACCTGGATGAGCAGGCCGGGACTCCTTCGAACCCAGTCCTTTTACCA 

1761       D  W  T  P  D  L  D  E  Q  A  G  T  P  S  N  P  V  L  L  P   

 

5341      CCTCACTGGTCCCAGCAACACGTAAACGGGCACCATGTGCCACGCCGACGTTTGCTGCCC 

1781       P  H  W  S  Q  Q  H  V  N  G  H  H  V  P  R  R  R  L  L  P   

 

5401      CCCACGCCTGCAGGTCGGAAGCCCTCCTTCACCATCCAGTGTCTGCAACGCCAGGGCAGT 

1801       P  T  P  A  G  R  K  P  S  F  T  I  Q  C  L  Q  R  Q  G  S   

 

5461      TGTGAAGATTTACCTATCCCAGGCACCTACCATCGTGGACGGACCTCAGGACCAAGCAGG 

1821       C  E  D  L  P  I  P  G  T  Y  H  R  G  R  T  S  G  P  S  R   

 

5521      GCTCAGGGTTCCTGGGCAGCCCCTCCTCAGAAGGGTCGACTGCTATATGCCCCCCTGTTG 

1841       A  Q  G  S  W  A  A  P  P  Q  K  G  R  L  L  Y  A  P  L  L   

 

5581      TTGGTGGAGGAATCTACAGTGGGTGAAGGATACCTTGGCAAACTTGGCGGCCCACTGCGT 

1861       L  V  E  E  S  T  V  G  E  G  Y  L  G  K  L  G  G  P  L  R   

 

5641      ACCTTCACCTGTCTGCAAGTGCCTGGAGCTCATCCGAATCCCAGCCACCGCAAGAGGGGC 

1881       T  F  T  C  L  Q  V  P  G  A  H  P  N  P  S  H  R  K  R  G   

 

5701      AGTGCTGACAGTTTGGTGGAGGCTGTGCTCATCTCCGAAGGCCTAGGTCTCTTTGCCCAA 

1901       S  A  D  S  L  V  E  A  V  L  I  S  E  G  L  G  L  F  A  Q   

 

5761      GACCCACGATTTGTGGCCCTGGCCAAGCAGGAGATTGCAGATGCATGTCACCTGACCCTG 

1921       D  P  R  F  V  A  L  A  K  Q  E  I  A  D  A  C  H  L  T  L   

 

5821      GATGAGATGGACAGTGCTGCCAGTGACCTGCTGGCACAGAGAACCACCTCCCTTTACAGT 

1941       D  E  M  D  S  A  A  S  D  L  L  A  Q  R  T  T  S  L  Y  S   

 

5881      GATGAGGAGTCTATTCTTTCCCGCTTTGATGAAGAGGACCTGGGAGATGAGATGGCCTGT 

1961       D  E  E  S  I  L  S  R  F  D  E  E  D  L  G  D  E  M  A  C   

 

5941      GTCCATGCCCTCTAA 

1981       V  H  A  L  *   

 

 

 

  

NNN – loops 1/2/3 sequences  
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8.2 Multiple sequence alignment of the CaBPs  
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8.3 Sequence alignment of the CaBP4 protein variants  

 

 

 

 

CaBP4_WT      MATEHNVQLVPGSQKIPKGVVSPRSAAEGPALTRRRSKKE     40 

CaBP4_E267fs     MATEHNVQLVPGSQKIPKGVVSPRSAAEGPALTRRRSKKE     40 

CaBP4_R216X      MATEHNVQLVPGSQKIPKGVVSPRSAAEGPALTRRRSKKE     40 

Consensus        matehnvqlvpgsqkipkgvvsprsaaegpaltrrrskke 

 

CaBP4_WT         SWHPGSQKASSGDQSSSQGSEASGSSKHPPRTKVGQEEPS     80 

CaBP4_E267fs     SWHPGSQKASSGDQSSSQGSEASGSSKHPPRTKVGQEEPS     80 

CaBP4_R216X      SWHPGSQKASSGDQSSSQGSEASGSSKHPPRTKVGQEEPS     80 

Consensus        swhpgsqkassgdqsssqgseasgsskhpprtkvgqeeps 

 

CaBP4_WT         SAPARPASHRHSHRHRSDPQQDAAQRTYGPLLNRMFGKDR    120 

CaBP4_E267fs     SAPARPASHRHSHRHRSDPQQDAAQRTYGPLLNRMFGKDR    120 

CaBP4_R216X      SAPARPASHRHSHRHRSDPQQDAAQRTYGPLLNRMFGKDR    120 

Consensus        saparpashrhshrhrsdpqqdaaqrtygpllnrmfgkdr 

 

CaBP4_WT         ELGPEELEELQAAFEEFDTDQDGYIGYRELGDCMRTLGYM    160 

CaBP4_E267fs     ELGPEELEELQAAFEEFDTDQDGYIGYRELGDCMRTLGYM    160 

CaBP4_R216X      ELGPEELEELQAAFEEFDTDQDGYIGYRELGDCMRTLGYM    160 

Consensus        elgpeeleelqaafeefdtdqdgyigyrelgdcmrtlgym 

 

CaBP4_WT         PTEMELLEVSQHVKMRMGGFVDFEEFVELISPKLREETAH    200 

CaBP4_E267fs     PTEMELLEVSQHVKMRMGGFVDFEEFVELISPKLREETAH    200 

CaBP4_R216X      PTEMELLEVSQHVKMRMGGFVDFEEFVELISPKLREETAH    200 

Consensus        ptemellevsqhvkmrmggfvdfeefvelispklreetah 

 

CaBP4_WT         MLGVRELRIAFREFDKDRDGRITVAELRQAAPALLGEPLE    240 

CaBP4_E267fs     MLGVRELRIAFREFDKDRDGRITVAELRQAAPALLGEPLE    240 

CaBP4_R216X      MLGVRELRIAF                                 211 

Consensus        mlgvrelriafrefdkdrdgritvaelrqaapallgeple 

 

CaBP4_WT         GTELDEMLREMDLNGDGTIDFDEFVMMLSTG       271 

CaBP4_E267fs     GTELDEMLREMDLNGDGTIDFDvcndaiyrlrhlqgqptg    280 

Consensus        gteldemlremdlngdgtidfd 

 

CaBP4_E267fs     pggqdtsrhqtttpfpsmekspfpqagspphhtqlqslpv    320 

 

CaBP4_E267fs     lsspipklwrekkn                              334 
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8.4 Primers and Restriction enzymes  

Name 5´-Sequence-3´ 
Length 

(bp) 
Restriction 

enzyme 
Construct 

LS_CaBP4_F 
CATCTTAGATCTGCCGCCAC

CATGGCAACAGAGCACAATG 
40 BglII CaBP4 in pIRES  

LS_CaBP4NT_F 
CAAGAGATCTGCCGCCACCA

TGTTTGGAAAGGATCG 
36 BglII CaBP4NT in pIRES 

LS_CaBP4_R 
CATAAAGTCGACTCAGCCTG

TAGATAGCATC 
31 SalI CaBP4 in pIRES 

CaBP4_R216X_R 
GTGTTGTCGACTCAGAAGGC

GATGCGTAGCTCC 
33 SalI CaBP4 R216X in pIRES 

CaBP4_R216X_R2 
CCGCCGCTCGAGTCAGAAGG

CGATGCGTAGCTCC 
34 XhoI CaBP4 R216X for FRET 

CaBP4-3’UTR_R 
CAATGTCGACAAATCATGTT

CTCCAGTG 
28 SalI CaBP4-E267fs in pIRES 

CaBP4-delAG_F 
CACCATAGACTTTGACGTTT

GTAATGATGCTATC 
34 

Overlap 

PCR 
CaBP4-E267fs 

CaBP4-delAG_R 
GATAGCATCATTACAAACGT

CAAAGTCTATGGTG 
34 

Overlap 

PCR 
CaBP4-E267fs 

LS_NTCaBP4_R 
CATTGTCGACTCAGCGGTTG

AGCAAGGGC 
29 SalI NTCaBP4 in pIRES 

LS_NTCaBP4_R2 
CATTCTCGAGTCAGCGGTTG

AGCAAGGGC 
29 XhoI NTCaBP4 for FRET 

Neoext_F CACTCCAGACATCCTGCTGA 20 
Genotyping 

Old WT allele PCR 

(ca. 290bp) Kout1f_R1 GTCAACCCATGCTGTCTCCT 20 

Kout1f_F ACCAAACCCTAGCCCATACC 20 
Genotyping 

Old KO allele PCR 

(ca. 150bp) Neoext_R CCACATCAGAGGGAAAGGAA 20 

Cav1.4_for 
CCAACCAAACCCTAGCCCAT

ACC 
23 

Genotyping 

New PCR for 

genotyping the  

Cav1.4 mice 

   WT band = 398bp 

   KO band = 169bp 

Cav1.4_WT_Rev 
CATGCATACATACCTGGTGA

CC 
22 

Cav1.4_KO_Rev 
GATGTGTGCTTGCGAGATCC

AC 
22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 

 

123 
 

8.5 Materials and Equipment 

8.5.1 Devices  

Name Company 
Certomat® S (Bacterial culture shaker) B.Braun Biotech international 

CemiDoc™ MP imaging system  (for Western blots)  Biorad 

E143, E835, EV202 (Voltage source for gel electrophoresis) Consort 

Gel Doc 2000 (for agarose gels)  Biorad 

Incubator Cell culture – Hera safe Heraeus 

Incubator Bactria – Hera function line  Heraeus 

Microwave R-212 Sharp 

MilliQ-UF gradient Millipore 

Balance BP1215 (fine) and BP 4105 Sartorius 

Plastic materials (petri dishes, plates, falcon, cups) Sarstedt \ Greiner Bio-one 

Photometer (BioPhotometer™) Eppendorf 

Glass cuvette Hellma 

Agarose gel chamber PeqLab 

pH meter PH110 VWR international 

Thermomixer compact Eppendorf 

Ultraviolet crosslinler CL-1000  UVP 

Thermocycler T1(PCR) Biometra 

Mastercycler nexus gradient (PCR) Eppendorf 

Vacuum Concentrator Bachofer 

VortexMixer VWR international 

Refrigerator premium  Liebherr 

Freezer confort no-frost Liebherr 

-800C freezer Heraeus 

P21 / K10 / B3 + DC10 (Water bath) Haake 

Western blot system Biorad 

Cryotome CM 30505 Leica 

Hera guard – linear fume-chamber Heraeus 

Hera safe Cell culture fume-chamber Heraeus 

MR-3001K (magnet rotor) Rotamax120 Heidolph 

Microscopes  Zeiss 

Centrifuge:  

     Eppendorf Centrifuge 5415 R\D Eppendorf 

     J2-MC Centrifuge (Rotor: JA-10; JS-13.1) Beckmann 

     L-80K Ultracentrifuge Beckmann 

     Labofuge200\fresco\primo\pico Heraeus 

     Galaxy mini or mini-spin(tabletop centrifuge) VWR international\Eppendorf   

Patch Clamp setup:  

Light source SNT12V 100W + Axiovert200 microscope Zeiss 

Axopatch 200B (Amplifier)  Axon instruments 

Polychrome V Till photonics 

Digitizer digidata 1440A Axon instruments 

Control system SM1 Luigs & Neumann 

Puller DMZ universal WZ 

Borosilicate glass cappillaries SC150FT-8 Harvard Apparatus 
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8.5.2 Chemicals 

Name Company 
Ampicillin Roth 

Agarose Peqlab 

Seakem® LE-Agar Biozym 

Bacto-yeast extract Aplichem 

Bacto- tryptone Aplichem 

Boric acid Sigma 

Bromophenol blue Sigma 

DMSO (dimethyl sulfoxide) Sigma 

DNA extension ladder (standard markers) Fermentas 

dNTPs Roth 

EDTA (ethylenediamine-N, N, N ', N'-tetraacetic acid) Roth 

Acetic acid Roth 

Ethanol Roth 

Ethidium bromide Roth 

Glucose Roth 

Glycerol Sigma 

Glycin Roth 

Glycerin Roth 

HCl (hydrochloric acid) Roth 

Isopropanol Roth 

potassium acetate Sigma 

KCl (potassium chloride) Sigma 

MgSO4 (magnesium sulfate) Sigma 

NaCl (sodium chloride) VWR 

NaOH (sodium hydroxide) VWR 

Phenol/Chlorophorm/Isoamylalkohol-Mix Roth 

Rnase A Roche 

SDS (Sodium dodecyl sulfate) Roth 

Tris (α, α, α-tris (hydroxymethyl) methylamine) VWR 

Tris-Cl VWR 

tRNA Roche 

Xylencyanol Sigma 

FBS Biochrom 

DMEM 4,5 g Glc + Pyruvat, DMEM 1 g Glc + Pyruvat Invitrogen 

Proteinase K Roche 

ECL Santa Cruz 

Fugene Roche 

Restriction enzymes NEB \ Fermentas 

Ligation kit and Maxi kit Roche 

Protease-Inhibitor Roche 

Herculase Agilent 

Pen/Strep Biochrom 

PureYield™ Midiprep system  Promega 

REDTaqReadyMix  Sigma-Aldrich 

Phusion polymerase  Finnzymes 
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8.6 Summary of the electrophysiological measurements 

8.6.1 Voltages for half-maximum activation (V0.5,act) and slope values (kact) from 
the patch clamp measurements 

 

 

 

8.6.2 Voltages for half-maximum inactivation (V0,5,inact) and slope values (kinact) 
from the patch clamp measurements 
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8.7 List of Abbreviations 

 

A Adenine 

aa Amino acid 

Å Angstrom  (10−10 meter) 

AC Amacrine cells 

AIED Iceland Åland eye disease 

AmpR Ampicillin 

ANOVA Analysis of variance 

ApoCaM Apo-calmodulin 

APS Ammonium peroxosulphate 

ATP Adenosine triphosphate 

Ba2+ Barium 

BaCl2 Barium chloride 

BBS BES-buffered saline 

BES N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid 

bp Basepairs 

BP Bipolar cells 

BTZ Benzothiazepines 

BSA Bovine serum albumin 

C Cytosine 

c Concentration 

Ca2+ Calcium 

CaCl2 Calcium chloride 

CaM Calmodulin 

Cav Voltage gated calcium channel 

CACNA1F Gene of Cav1.4 channel 

CDI Calcium-dependent inactivation 

cDNA Complementary DNA 

CIP Calf intestinal phosphatase 

cm Centimeter 

CMV Cytomegalovirus 

CO2 Carbon Dioxide 

CORDX3 X-linked rod-cone dystrophy type 3 

CT Carboxyl terminus of proteins and peptides 

CSNB Congenital stationary night blindness 

DHP Dihydropyridines 

DMEM Dulbecco's modified Eagle medium 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

dNTP 2'-deoxynucleoside 5'-triphosphate 
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DTT Dithiothreitol 

eCFP Enhanced cyan fluorescent protein 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetic 

e.g. For example 

EGFP Enhanced green fluorescent protein 

EGTA Ethyleneglycol-bis (2-aminoethyl ether)-N, N-N'-N'-tetraacetic acid 

EtOH Ethanol 

ER Endoplasmic reticulum 

ERG Electroretinography 

FBS Fetal bovine serum (fetal bovine serum) 

FRET Fluorescence resonance energy transfer 

g Grams 

G Guanosine 

GC Ganglion cells 

h hour 

HC Horizontal cells 

HCl Hydrochloric acid 

HEK293 Human embryonic kidney cell line, clone 293 

HEPES 2 - [4 - (2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid 

H2O Water 

H3PO4 Phosphorous acid 

HVA High voltage-activated 

HZ Heterozygote 

ICDI Inhibitor of calcium-dependent inactivation 

IQ motif Isoleucine-glutamine motif 

IRES Internal ribosome entry site 

KanR Kanamycin 

kb Kilobases 

KCl Potassium chloride 

kDa Kilodaltons 

KH2PO4 Potassium dihydrogen phosphate 

KO Knock out 

L Liter 

LB Luria-Bertani 

LTCC L-type calcium channel 

LVA Low voltage-activated 

μ Micro (10-6) 

M Moles per liter  

m Millli (10-3) 

mA Milliamperes 
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MCS Multiple cloning site 

MgATP Magnesium-ATP 

MgCl2 Magnesium chloride 

MgSO4 Magnesium sulfate 

min Minutes 

n Nano (10-9) 

NaCl Sodium chloride 

NaOH Sodium hydroxide  

NCSs Neuronal Ca2+ sensors 

NeoR Neomycin 

n.s. Not significant 

O.D Optical density 

pA Picoamperes 

PAA Phenylalkylamine 

PAGE Polyacrylamide gel electrophoresis 

PB Phosphate buffer 

PBS Phosphate buffered electrolyte solution 

PCR Polymerase chain reaction 

PEG Polyethylene glycol 

PFA Paraformaldehyde 

Ph Photoreceptors 

rpm Rounds per minute 

RT Room temperature 

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

T Tyrosine 

TE Tris-EDTA buffer 

TBE Tris-borate-EDTA buffer 

TBS Tris-borate-NaCl buffer 

TEA Tetraethylammonium 

TEMED N, N, N ', N'-tetramethylethylenediamine 

Tris Tris (hydroxymethyl) aminomethane 

U Unit 

UV Ultraviolet 

V Volts 

VDI Voltage-dependent inactivation 

vs. Versus 

WT Wildtype 
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