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1 Introduction

Living organisms produce skeletons, teeth and shells, that show extraordinary properties [1, 2,

3, 4] compared to mineralogical formed crystals. The teeth of sea urchins for instance stand

out due to their self sharpening mechanism [5], the mother-of-pearl is characterized by an un-

usual high toughness [6] and it was shown that the spicules of glass sponges have remarkable

fibre-optical properties [7]. These examples show the highly advanced material properties of bio-

logically produced hard tissues. Therefore, biomaterials are of high interest in material sciences

and become a source of inspiration for material synthesis [8]. The aim is to understand how

these inorganic minerals form into precise functional architectures and to use this knowledge

for artificial architecture [8]. Tough, durable and adaptive polymer-ceramic can be obtained by

an organized assembly of calcium phosphate or calcium carbonate [8]. For the fabrication of

magnetic, gravity and storage devices a similar construction is used [9]. If biological archetypes

could be used in a synthetic context, inorganic mineral based nano- and microscale material and

composite production would be possible [8].

Regardless of whether biological hard tissues are carbonate-, phosphate- or silica-based, the

material properties will be achieved by the hierarchical organization of an inorganic and an

organic phase [7, 10, 11]. These hybrid composite materials are a mixture of biopolymer and

mineral components, which are nano-, micro- and macro-structurally combined [4, 12, 13]. Be-

sides the extraordinary material properties these materials show an enormous biodiversity. Their

structures are perfectly adapted to the function within the organism and/ or the requirements

of the habitat. Therefore, the hard tissues are of high interest for paleoclimatic research. Since

these materials are much more stable than soft tissues, they are used for biostratigraphic dating

as well [14].

One of the most common mineral compounds on earth, that is formed by classical crystal-

lization and as well by organisms, is calcium carbonate (CaCO3). This chemical compound

mainly occurs in the modifications calcite and aragonite but also as vaterite, that is basically

build as small crystals from supersaturated solutions. Calcite and aragonite are the principle

rock forming minerals of several sedimentary rocks like limestone and chalk [15]. In addition

these minerals can be produced by terrestrial species like snails and by marine organisms like

foraminifera. Since it is possible to gain information on the genetic specificity of different species,

e.g. to determine the composition of the organic matrix templates or any protein components

associated with the biomineral, carbonate biominerals are the target of many research groups

[16, 17]. Besides this biological questions the analysis of the biomineral for trace, minor and

major element composition, the evaluation of carbon and oxygen isotopic signatures and the
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CHAPTER 1. INTRODUCTION

combination of these data with global geological and geographical information is a valuable help

for the investigation of earth science problems [18, 19, 4, 20, 21].

Coccolithophores are the most famous and magnificent example of unicellular marine organism

groups that build an exoskeleton of CaCO3 [19]. These small marine algea first occurred during

the Triassic around 250 million years ago. In earth history they formed big rock massives like the

White Cliffs of Dover [14]. Recent coccolithophore species are the most important ingredient of

the calcareous deep sea sediments [22]. Their skeletons show the typical hierarchical architecture

of biologically formed materials. They build a micrometer sized sphere, that shelters the living

cell inside. This coccosphere is composed of small CaCO3 platelets, the coccoliths, which possess

extraordinary structures. These elements consist of two even smaller crystal units, the R- and

V- units, which alternate in their crystallographic c-axis orientation [23]. While the c-axis of the

R-units are oriented parallel to the coccolith plane, the V-units c-axis are perpendicular to the

coccolith plane oriented [23]. So far, it is assumed that each of these units behave as a single

calcite crystal [24]. This differs from other marine calcifiers like molluscs that seemed to be single-

crystalline, but were found to consist of small crystals with almost the same orientation, the so

called mesocrystals [25]. Therefore a detailed investigation of the coccolith crystal structure is

a fascinating challenge.

Coccolithophores influence the global carbon cycle of the oceans since the calcification, the

process that produces the coccoliths and the photosynthesis are symbiotic processes [26]. The

carbon dioxide (CO2), that is produced during the calcification can be used as educt for the

photosynthesis [26]:

calcification:

Ca2+ + 2 HCO3
− −→ CaCO3 + CO2 ↑ + H2O

photosynthesis:

6 CO2 + 6 H2O −→ C6H12O6 + 6 O2 ↑

It is important to mention that the global oceans absorb a significant amount of the atmo-

spheric CO2 including one-third of the anthropogenic CO2 [27]. For the last two centuries

human activities like the use of fossil fuel and deforestation have increased the atmospheric CO2

concentration by approximately 31 % [28, 29]. This trend is predicted to continue, and CO2

levels might exceed 800 ppm by the end of the century [30]. The increase in atmospheric CO2

concentration due to the anthropogenic emissions might cause a change in the global climate.

The CO2 absorption of the ocean has its consequences as it lowers the pH value of the ocean

water body and leads to alterations in fundamental chemical balances, known as ocean acidifica-

tion [31]. The influence of the ocean acidification on marine organisms with a CaCO3 shell, like

coccospheres, is important to study [31]. In laboratory experiments it was shown that calcifying

species reduce calcification and growth rates under high-CO2 conditions [31] but the potential of

marine organisms to adapt to the increasing CO2 level is not well known todate [31, 32]. Since
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1.1. AIM

coccolithophores have great potential e.g. for CO2 fixation, it is important to investigate their

behavior under high-CO2 conditions in the laboratory.

There are two species that allow laboratory experiments concerning the CO2 level, Emiliania

huxleyi (E. huxleyi) and Calcidiscus leptoporus (C. leptoporus). Both species are cosmopolitian

and can be found in the world wide oceans [26]. They tolerate large temperature ranges and

E. huxleyi is in the group of coccosphere species that tolerate the highest temperature ranges

(between 1 ◦C and 30 ◦C) [26]. This species can also live with different light rates, it can

grow in eutrophic as well as in oligothrophic water masses and in different water depths [26].

Therefore, it is very well suited for laboratory experiments. Both species are relatively large

and the coccospheres of C. leptoporus belong, with an average size of 17 µm, to the biggest

coccolithophore species [26].

1.1 Aim

The first goal of this thesis was the determination of the precise and reliable hierarchical structure

of coccoliths at the nanoscale using electron microscopy and electron diffraction techniques.

Pioneer work in this field done by many different groups proposed that the small crystal units

that build up the coccoliths consist of single-crystalline calcite [33, 34, 23, 35]. The abundant

coccolithophore species E. huxleyi was chosen for this part of the thesis because it is the most

common and best investigated species. One aim was to study the crystallographic orientation

of the c-axis of the R- and V- unit. The latter is challenging since in fully grown E. huxleyi

coccoliths the R- and V-unit possess sizes under 100 nm and the V-unit is overgrown by the

R-unit [23]. So far the description of the crystallographic orientation of the V-unit of E. huxleyi

was only based on analogy to other coccoliths. An other aim was to determine whether the

individual coccoliths are mesocrystalline ore single-crystalline, since many marine calcifiers show

single-crystalline behavior, but consist of many nano crystals with almost the same orientation

instead.

The obstacle in this attempt is the artifact free target preparation of the coccoliths and their

elements. Therefore, the second goal of this thesis was the development and optimization of

preparation techniques for coccolith plan-view and cross-section samples. In addition, optimal

parameters for the transmission electron microscopy (TEM) measurements needed to be found.

Here E. huxleyi coccoliths were used and the results compared to those of Iceland spar (single-

crystalline calcite crystals) samples.

The third goal of this thesis was the determination of the reaction of this micro organisms to

environmental conditions with respect to ocean acidification. The main aim was to investigate

the influence of a rising CO2 concentration on the morphology and crystal structure of the

coccolith R- and V- units. Therefore, laboratory experiments were performed. Here two different

coccolith species, E. huxleyi grown in three different CO2 levels and C. leptoporus grown in five

different CO2 levels, were used. To discover changes in the morphology of the calcite crystals

scanning electron microscopy (SEM) imaging was used.
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In this regard this thesis provides an important contribution in the following research fields:

1. Mineralization of biocarbonates, with the main focus on calcite.

2. Crystallographic assembly of calcite shells of marine organisms, especially of coccolitho-

phores.

3. Preparation and parameters for high resolution electron microscopy methods for beam

sensitive biological materials.

4. Influence of environmental parameters such as temperature, pH-value or salinity on marine

biocarbonates.

5. Knowledge concerning the role of the coccolithophore species E. huxleyi and C. leptoporus

with respect to the global carbon cycle.
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per, G., and Field, C. B. Global and regional drivers of accelerating CO2 emissions.

Proceedings of the National Academy of Sciences of the United States of America 104, 24

(2007), 10288–10293.

[31] Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. Ocean acidification:

the other CO2 problem. Annual Review of Marine Science 1 (2009), 169–192.

[32] Boyd, P. W., Doney, S. C., Strzepek, R., Dusenberry, J., Lindsay, K., and

Fung, I. Climate-mediated changes to mixed-layer properties in the Southern Ocean:

assessing the phytoplankton response. Biogeosciences 5 (2008), 847–864.

6



1 Bibliography

[33] Watabe, N. Crystallographic analysis of the coccolith of Coccolithus huxleyi . Calcified

Tissue Research 1 (1967), 114–21.

[34] Mann, S., and Sparks, N. H. C. Single crystalline nature of coccolith elements of

the marine alga Emiliania huxleyi as determined by electron diffraction and high-resolution

Transmission. Proceedings of the Royal Society B: Biological Sciences 234 (1988), 441–453.

[35] Saruwatari, K., Ozaki, N., Nagasawa, H., and Kogure, T. Comparison of crystal-

lographic orientations between living (Emiliania huxleyi and Gephyrocapsa oceanica) and

fossil (Watznaueria barnesiae) coccoliths using electron microscopes. American Mineralo-

gist 93 (2008), 1670–1677.

7





2 Theoretical background

2.1 Biomineralization

The ability of organisms to form mineralized hard tissues started million of years ago during the

Proterozoic when first prokaryotes and then eukaryotes developed this mechanism [1]. During

the beginning of the Cambrian around 540 million years ago organisms from many different phyla

evolved the ability to form minerals. Most of these first mineralized tissues were in composition

comparable to the 64 different minerals known by now [2].

The term biomineralization summarizes all processes by which organisms form minerals [1]

and has its roots in the late 17th century with the advent of the light microscope [3]. The study

of mineralized tissues began with the investigations of van Leeuwenhoek, who identified the

osteons common in many bones using a magnification of about 400 times [4] and Havers, who

found lamellae, that have a size of about 3 µm [5]. In 1924 a first book on biomineralization was

published [6]. Since that time biomineralization studies have become more and more interesting

for scientists. This research field combines biological, chemical, and earth sciences disciplines

[1]. With the advances in the development of suitable tools for structural studies, which were

in the beginning optical microscopy, then polarized light microscopy and X-ray diffraction and

nowadays SEM and TEM, the understanding of biomineralization processes has made much

progress [3].

The term biomineral refers not only to a mineral produced by organisms, it also describes

that almost all of these materials are composites, combining a mineral and an organic compound

[1]. Since these materials form under controlled conditions, they often reveal properties such

as shape, size, crystallinity, isotopic and trace element compositions that are different from the

properties of the inorganically formed counterparts [3]. All this complexity is represented by the

terms biomineral and biomineralization [3].

The classification of biominerals is based on composition of the inorganic constituents and

there can be found representatives in many of the 78 mineral classes [7]. The greatest number

of biominerals can be allocated to the classes of sulfides, sulfates, carbonates and phosphates

[7]. Carbonate biomineralized forms like molluscs, clams, oysters, gastropods, or corals are

present in the earth crust due to their appearance in limestones or marble deposits. The listed

organisms are multi-cellular with several organs that can employ separate mechanism for the

carbonate deposition [8]. In multi-cellular organisms biomineralized tissues are adapted for

specific functions [7]. Echinoids for example use their spines for protection and although these

spines can break they are able to regenerate them by using the same biomineral, calcite while
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maintaining the original pattern of the macro-structure [9].

Biomineralization as research field is interested in understanding the ultrastructure and the

mineral phase, the macromolecules that make up the framework in which the minerals form and

the interphase that links the two [7].

2.2 Mesocrystals

During the last years the alignment of nanoparticle building blocks into ordered superstructures,

the so called mesocrystals, gain more and more attention of chemists, material scientists and

physicists [10, 11]. Due to the mesoscopic structure of these materials new opportunities for

material design are provided [11]. In this research field much can be learned from biomineraliza-

tion, which produces organic-inorganic hybrid materials with outstanding properties, complex

morphologies and a hierarchical order [1].

The term mesocrystal is used for ordered superstructures of co-oriented crystallites in the

mesoscopic size range (1-1000 nm) [11]. They are often in almost perfect three dimensional

mutual order and show the same scattering pattern and behavior in polarized light like single-

crystals [11].

Figure 2.1 Schematic drawing that illustrates the nonclassical crystallization pathway to form
mesocrystals. Drawing modified from [12]. Primary nanoparticles get covered by
a biopolymer or other additives, that stabilizes them at the mesoscale [12]. The
resulting mesocrystals look like a brick wall.

The formation of a single-crystal is described by the classical crystallization model. Here

crystal growth is characterized as an amplification process, where stable nuclei are enlarged

by unit cell replication [13]. For the formation of mesocrystals several mechanisms can be
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employed, as described in [11]. The first possibility to form a mesocrystal is aligning nanopar-

ticles using an oriented organic matrix as illustrated in figure 2.1. An alternative way is the

alignment of the nanoparticles by magnetic or electric fields or mutual alignment of identical

crystal faces. A third method is employing a mineral bridge to connect two nanoparticles during

epitaxial growth. Nanoparticle alignment can be also achieved by spatial constraints. During

the growth of anisotropic nanoparticles in a constrained environment, the particles can be con-

nected by outgrowth under consideration of the space limitation. These mechanisms can also

occur simultaneously [11]. It is also worth to mention that mesocrystals can form pure inorganic

nanoparticles [12]. Amorphous particles can be formed, that may transform before or after their

assembly to complicated morphologies into crystalline ones [12].

The term mesocrystal has been used in literature to describe mutual three-dimensional trans-

lational order of various nanocrystals [10]. The porous internal structure of BaSO4 was one

of the first systems to be reported as mesocrystalline [14]. A further indication of mesorystals

was found in 1988 during a synthetic study on various CeIV compounds in absence of organic

additives [15]. Due to the improved analytical methods and the establishment of mesocrystal

and mesoscale organization concepts an increasing number of mesocrystal systems have been

reported recently [10, 16].

2.3 Calcium carbonate

Calcium carbonate is one of the most common compounds found in sedimentary rocks. These

include limestones and chalk, which build up whole mountains like the alps [17]. In history they

were used as building material and many famous historical monuments like the Cheops pyramids

are built from limestone [18]. But calcium carbonate can also be found in metamorphic rocks

like marble, which is used for several famous artworks [18]. This chemical compound occurs in

three mineral modifications: calcite, aragonite and the less common vaterite.

Calcite is a colorless mineral that can be found in igneous, sedimentary and as well metamor-

phic rocks [19]. This mineral crystallizes trigonal in the space group R3̄c (space group number:

167) with the lattice parameters a, b = 4.99 Å and c = 17.06 Å; α, β = 90◦ and γ = 120◦ [20]

(Fig. 2.2). It builds prismatic crystals of several varieties, that are commonly twinned, but also

occur nodular, granular, stalatitic compact and earthy [19]. Calcite can be formed organically

or inorganically and may contain a variety of impurities including iron, magnesium, manganese,

lead and strontium [19]. Particularly well formed crystal varieties of calcite are the so called

Dog tooth spar and Iceland spar [19].

Aragonite is the white yellowish or grey high-pressure form (polymorph) of calcite that is

found in sedimentary and hydrothermal depositions [19]. It can occur with sedimentary gypsum

deposits and can be formed by biomineralization as well [19]. Aragonite crystallizes orthorhombic

in the space group Pmcn (space group number: 62) with the lattice parameters a = 4.96 Å;

b = 7.97 Å; c = 5.74 Å and α, β, γ = 90◦ [20] (Fig. 2.3). This mineral occurs as sharp pointed

prismatic crystals that are often twinned but have a different shape compared to calcite [19].
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Figure 2.2 Schematic drawing showing the primitive cell of calcite. This figure was constructed
with the program Diamond. Ca+2 is represented by the grey, C+4 by the black and
O−2 by the red balls.

Figure 2.3 Schematic drawing showing the primitive cell of aragonite. This figure was con-
structed with the program Diamond. Ca+2 is represented by the grey, C+4 by the
black and O−2 by the red balls.

Aragonite crystals can also occur as radiating acicular needles, corals, stalactites and encrusting

forms [19].

The structure of the rare hexagonal modification vaterite, that is grown as small crystals

from supersaturated solutions, is not fully clarified [21]. Referring to Wang and Becker 2009

this mineral crystallizes in the space group P6522 (space group number: 179) with the lattice

parameters a = 7.290 Å; b = 7.290 Å; c = 25.302 Å; α, β = 90◦ and γ = 120◦ [22].
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2.4 Coccolithophores

Not only humans use calcium carbonate to build houses, also many creatures use this material

to make nails, spines, bones or skeletons in order to protect themselves or for adaption to the

living environment [23]. Since calcium is not very well soluble in freshwater, the oceans, which

absorb much higher calcium rates are a great environment for calcifiers [18]. Therefore many

marine microorganisms like algae, mollusks, corals or plankton are specialized to use the calcium

and the carbon content of the seawater to produce soft tissues [18]. One marine organism group

that builds its shells of calcium carbonate are the coccolithophores.

Coccolithophores are marine living algae, which belong to the division Haptophyta. The

surface of these single cell organisms is covered by small calcium carbonate platelets, which are

called coccoliths [24]. Coccolithophores utilize photosynthesis and therefore live in the light-

flooded surface region between 0 and 200 m water depth, called euphotic zone [25]. Their

distribution in the oceans is affected by the latitude, the ocean current and the characteristics of

the water masses like the amount of nutrients, the salinity, the temperature (usually between 12

and 27 ◦C) and the amount of trace elements and vitamins [26]. They have a high significance

for the carbon cycle in the global oceans. On one hand on the organic carbon pump through

the photosynthesis and the emission of dimethyl-sulfide (DMS) [27] and on the other hand on

the inorganic carbon pump through the coccolith formation [28]. Modern coccoliths produce

the main part of the calcareous deep sea sediments [29] and since 230 million years they are the

main component of the fine grained pelagic deep sea sediments [30].

Today there live about 280 different coccolithophore species [31], which are characterized by

the form of the coccosphere, the morphology of the flagellate, the form of the coccoliths and the

coccosphere assembly [32]. These structures can only be realized by directly controlled biominer-

alization [31]. For that the protoplasm of the single cell contains besides the chloroplasts, which

are important for the photosynthesis, also the typical cell organelles specific vesicles where the

coccoliths are formed [33]. The mineralization starts by the transportation of calcium and car-

bonate ions into the vesicles, where a preformed organic base plate is formed [34]. Since the

nucleation takes place on the distal rim of the base plate the ions are delivered specifically there

[34]. A complete closed ring of small crystallites develops during the calcite nucleation about

the rim [34]. These so called proto coccolith ring consist of small crystals with an alternating

orientation of the crystallographic c-axis [34]. The crystallographic c-axis of the R-unit crystals

is pointing parallel to the coccolith plane, while the c-axis of the V-unit crystals is perpendicular

to the coccolith plane oriented [35]. The grown coccoliths are transported from the inner cell to

the cell surface by the vesicles [33], where they build up the shell.

The function of the coccosphere is still discussed. Some species like Rhabdosphaera clavigera

seem to enlarge their outer diameter by needle like coccoliths. That might be a protection against

filter feeders, which select their food by the size [26]. For other species like Umbellosphaera tenuis

the coccosphere serves as a buffer zone between the sensitive cell and the environment [26]. An

other hypothesis is that the size and morphology of the coccosphere is part of the locomotion of
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the coccolithopheres that have no flagella [26].

2.4.1 Emiliania huxleyi

The coccolithophore E. huxleyi is the most common species within the around 200 recent species

[24]. The surface of the coccosphere is covered by overlapping coccoliths (Fig. 2.4a). The cells of

E. huxleyi coccolithophores are relative small compared to their large coccoliths [26]. Therefore

they produce only one coccolith at a time and new coccoliths will not be produced until the

mature coccolith is released [26]. The coccolith production in E. huxleyi is a light dependent

process and in actively growing cultures one coccolith is growing every two hours [36]. The

coccoliths of this species belong to the group of placoliths and have an average diameter of

around 2.5 µm and a weight of approximately 1.8*10−12 g [37]. The shape of the coccoliths

can be compared to that of a cable reel consisting of a central tube that connects the lower

proximal shield and the upper distal shield and encloses the central area (Fig. 2.4b) [33]. With

this morphology the coccoliths can interlock closely on the coccosphere and therefore form a

robust structure [33].

Figure 2.4 SEM micrographs showing a complete coccosphere and a single coccolith of the coc-
colithophore species E. huxleyi.
a) A complete coccosphere is shown.
b) A single coccolith is given.

The model of Young et al. [35] assumes that the coccoliths of this species consist of two crystal

units with differently oriented crystallographic c-axis. The radial R-unit is built up of crystals

with the c-axis oriented parallel to the coccolith plane and the c-axis of the vertical V-unit

is pointing perpendicular to the coccolith plane (Fig. 2.5) [35]. In the case of E. huxleyi the

biomineralization starts with the formation of a proto coccolith ring with alternating sequences

of R- and V-units [35]. The species specific morphology forms during crystal growth, where the

V- unit crystals will be overgrown by the crystals of the R-unit (Fig. 2.5) [35].

Besides the common coccolith bearing cells, the so called C-cells, other cell types can be found

in E. huxleyi culture samples, like naked cells called N-cells, flagellate cells with organic body

scales but without coccoliths called S-cells and amoeboid cells, which are rare [26]. All these
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Figure 2.5 Schematic drawing to illustrate the crystallographic assembly of an E. huxleyi coccol-
ith. The area given in light grey is the R-unit with the c-axis parallel to the coccolith
plane and the smaller white area corresponds to the overgrown V-unit, where the
c-axis is oriented perpendicular to the coccolith plane. This figure was modified from
[38].

cell types represent different life cycle stages of E. huxleyi [39]. For this species it was shown

that the life cycle is always an alternation between a non-motile stage and one or more motile

stages [40].

2.4.2 Calcidiscus leptoporus

With an average coccosphere size of around 17 µm C. leptoporus belongs to the biggest cocco-

sphere species (Fig 2.6a). The cell is surrounded by around 15 - 30 coccolith plates [41]. Based

on the morphology of the coccoliths this species belongs as well as E. huxleyi to the placoliths

[41]. The coccoliths have an average size of 5-8 µm and consist of flat, overlapping elements

with curved radial edges (Fig. 2.6b) [33].

Figure 2.6 SEM micrographs showing a complete coccosphere and a single coccolith of the coc-
colithophore species C. leptoporus.
a) SEM image showing a complete coccosphere of C. leptoporus (courtesy of Gerald
Langer).
b) A single coccolith of this species is given in this SEM image.

The V-unit of this species builds the distal shield and the tube element, and is extended to

the proximal surface, whereas the R-unit forms the proximal shield element (Fig. 2.7) [41].
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The proto coccolith ring of C. leptoporus becomes embedded within the structure of the grown

coccolith [41]. The ring is only visible if the proximal shield element has broken off, which is

happening frequently since the connection between the proximal and the distal shield element

is weak (Fig. 2.7) [41].

Figure 2.7 Schematic drawing to illustrate the crystallographic assembly of a C. leptoporus
coccolith. The area given in light grey is the R-unit, where the c-axis is oriented
parallel to the coccolith plane and the white area corresponds to the V-unit, with
the c-axis pointing perpendicular to the coccolith plane. The encircled area mark the
position of the proto coccolith ring. This figure was modified from [35].

.

Within the life cycle of C. leptoporus two biomineralization phases occur [33]. A diploid

phase, that is characterized by heterococcoliths that show a radial symmetry and are formed of

a limited number of calcite crystals with complex, strongly modified shapes [33]. This live stage

form is termed as C. leptoporus. In contrast there is also a haploid phase in C. leptoporus, that

is characterized by holococcoliths, which are formed of numerous tiny (around 0.1 µm) calcite

crystallites [33]. This life form was first described and named as separate species and is therefore

called Syracolithus quadriperforatus[42].

2.5 Ocean acidification

Within the last 150 years the average global temperature has increased from 13.7 ◦C in 1850

to 14.5 ◦C in the year 2000 and this trend is predicted to continue until in 2100 the average

temperature will increase further by about 1.1 to 6.4 ◦C [43]. This phenomena is caused by the

increased atmospheric CO2 concentration, which is mainly produced by the human activities

within the last two centuries like the use of fossil fuel and the deforestation [43, 44]. This so

called global warming has large-scale consequences such as rising sea-levels, melting glaciers,

drifting vegetation zones and hence the destruction of living environments [43]. In comparison

with the terrestrial vegetation that is not able to bind the rising CO2, the rising CO2 level

is slowed down by the global oceans, which absorb a significant amount of the CO2 including

one-third of the anthropogenic CO2 [45].

Besides the CO2 concentration density differences of the ocean water, which are the main pa-
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rameter that defines ocean stratification, water masses and deep water thermohaline circulation

are interesting for climate studies [46]. The density differences are caused by oscillations in salin-

ity and temperature of the water, which also have a main influence on the climate system [46].

Therefore the detailed knowledge of the ocean salinity and temperature is of high significance

to understand mechanisms that affect the climate system [46]. The morphological variability of

marine organisms have great potential for these studies [47, 48, 49].

The calcium carbonate production of marine organisms is an important factor in the global

carbon circle. Feely et al. [50] for example calculated a yearly calcium carbonate sequestration

by marine sediments of 0.23-0.31 petagramms carbon. Since the main part of the calcium

carbonate produced by marine organisms will dissolve during the sinking process and at water

depths below the carbonate compensations depth, this value corresponds to only around 30 %

of the biologically formed calcium carbonate [50].

But the absorption of the rising CO2 by the oceans has its consequences, it causes a decrease in

ocean pH, an effect referred to as ocean acidification. The consequence of the ocean acidification

is a change in the ocean carbonate system and thus in the distribution pattern and diversity of

carbonate shelled organisms that at present occur in the oceans [45]. Marine organisms with

CaCO3 shells like corals, mollusks, echinoderms and foraminifera will be directly influenced by

ocean acidification [51]. The potential of these marine organisms to adapt to the increasing CO2

level under natural long term conditions is not well known yet [52, 51]. Therefore laboratory

experiments under defined CO2 concentrations can help to gain knowledge about the adaptability

of marine calcifiers.
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[15] Hsu, W. P., Rönnquist, L., and Matijević, E. Preparation and properties of monodis-

persed colloidal particles of lanthanide compounds. 2. cerium(iv). Langmuir 4, 1 (1988),

31–37.

[16] Cölfen, H., and Antonietti, M. Mesocrystals and nonclassical crystallization. John

Wiley & Sons, New York, 2008.

[17] Selley, R. C. Applied sedimentology. No. 2nd. ed. Academic Press, San Diego, San

Francisco, New York, Boston, London, Sydney, Tokyo, 2000.

[18] Schmidt, W. J. Calcit, Baustein des Lebens. Münchner Mineralientage Fachmesse,

München, 1990.

[19] Jones, A. Collins Wild guide. Rocks & minerals. HaperCollinsPublisher, London, 2000.

[20] Strunz, H., and Nickel, E. H. Strunz mineralogical tables, 9 ed. Schweizerbart’sche
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3 Materials and preparation methods

3.1 Iceland spar

In this thesis mineralogical single-crystalline calcite samples were used for comparison with

biologically formed calcite. Iceland spar crystals were bought from the company “Stein-depot”.

These crystals were colourless and had a size of about 5 to 30 mm (Fig. 3.1).

Figure 3.1 Iceland spar crystal that was used to prepare TEM samples.

3.2 Coccolithophores

Within this work two different coccolithophore species E. huxleyi and C. leptoporus were studied.

Six different sample series were used, which will be described in more detail in the following

chapter.

3.2.1 Emiliania huxleyi

To investigate the ultrastructure and the influence of the habitat on the morphology and the

crystallographic assembly of E. huxleyi five different samples were used.

The first sample series (POS 334 stat.4 MSN K7) was provided by Dr. Hartmut Schulz (Eber-

hard Karls University Tübingen). This sample contained North Atlantic material from 0-100 m,

100-200 m, 200-300 m, 300-500 m and 500-700 m water depth. After the sample taking the

water samples were preserved with formalin and hexamine to avoid bacterial growth and to

buffer the carbonate system. The samples were provided in 250 ml bottles containing seawater

and plankton particles with sizes smaller than 100 µm.
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A second sample series form the South Atlantic (PMT 18, CTD 89) was provided by Dr. Jeremy

Young (Earth Sciences, University College London, UK). This series likewise contains samples

from three different water depths, 0 m, 48 m and 96 m. As described above the samples were

treated with formalin and hexamine. Afterwards the samples were sieved so only particles

smaller than 20 µm were left. The sieved sample material was then dispersed onto a Millipore

filter using a Vacuum pump.

Dr. Hartmut Schulz also provided the third sample series stemming from the Arabian Sea

(Met 31/1 stat.113 MSN 971). The sample derives from 0-100 m water depth. Like the other

samples it was treated with formalin and hexamine and provided in a 250 ml bottle seawater

and particles with sizes smaller than 100 µm.

The fourth sample series were cultured specimens provided by Dr. Gerald Langer (University

of Cambridge, UK). The sample was filtered directly after the collection with a vacuum pump

onto an Omnipore polycarbonate membrane filter (diameter: 47 mm, pore size: 0.45 µm) and

dried at 60 ◦C. The growth parameters are listed below:

1. Strain: RCC1238 from the Roscoff Culture Collection (www.sb-roscoff.fr/Phyto/RCC)

2. Nutrients:

– 100 µmol L−1 nitrate

– 6.25 µmol L−1 phosphate

– trace metals and vitamins according to f/2 [1]

– aged, sterile-filtered (0.2 µm pore-size cellulose-acetate filters) North Sea seawater

3. Light concentration: 400 µmol/m−2s−1

4. Temperature: 20 ◦C

5. Salt concentration: 35

A fifth sample series grown under different CO2 values was provided by Dr. L. Miersch (Geo-

mar, Kiel). The samples were provided as triplicates in approximately 100 ml bottles containing

the culture in seawater. formaldehyde was used to avoid bacterial growth and to conserve the

sample. The growth parameters are listed below:

1. average CO2 (microatm):

– 400

– 1100

– 2200

2. Strain: ]62

3. Nutrients:
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3.2. COCCOLITHOPHORES

– 64 µmol kg−1 nitrate

– 4 µmol kg−1 phosphate

– trace metals and vitamins according to f/8

– 10 nmol kg−1 selenium

– 2 ml kg−1 sterile filtered North Sea water

4. Light concentration: 150 µmol photons m−2s−1

5. Temperature: 15 ◦C

6. Salt concentration: 35

7. Cell concentration: 40 000 - 120 000 cell/ml

8. formaldehyde concentration: 2.7 %

3.2.2 Calcidiscus leptoporus

The C. leptoporus sample series were cultured specimens provided by Dr. Gerald Langer (Uni-

versity of Cambridge, UK). The samples were provided as triplicates in approximately 200 ml

bottles containing the culture in seawater. To avoid bacterial growth and to conserve the sample

formaldehyde was used. The growth parameters are listed below:

1. average CO2 (microatm):

– 200

– 477

– 834

– 1082

– 1530

2. Strain: RCC1130 from the Roscoff Culture Collection (www.sb-roscoff.fr/Phyto/RCC)

3. Nutrients:

– 100 µmol kg−1 nitrate

– 14 µmol kg−1 phosphate

– trace metals and vitamins according to f/2 [1]

– aged, sterile-filtered (0.2 µm pore-size cellulose-acetate filters) North Sea seawater

4. Light concentration: 300 µmol/m−2s−1

5. Temperature: 20 ◦C
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6. Salt concentration: 35

7. Cell concentration: 3 000 - 4 000 cell/ml

8. formaldehyde concentration: 2.7 %

3.3 TEM Sample preparation methods

For TEM measurements a sample thickness of around 20 to 100 nm is required. This can be

achieved using different preparation techniques. The preparation of suitable TEM coccolith

samples is challenging due to their small size (between 2 and 3 µm). In addition, the distinction

of the different species is important. Different methods to obtain cross-section and plan-view

TEM samples were tested:

1. Cross-section preparation

– Embedding of the sample in electron stable glue (LR-White) and glueing it into a metal

tube, slicing the tube, grinding and dimpling the discs, and ion-milling them in the end.

– Dropping of the sample onto a silicon (Si)-Wafer and glueing into a metal tube followed

again by slicing, grinding, dimpling and ion-milling in the end.

– Dropping of the sample onto a very thin glass plate and embedding of the glass plate into

a metal tube followed by the procedure described above.

The obtaind metal tubes were prepared following the procedure described by [2]. In order to

protect the organic content temperatures above 40 ◦C were prevented.

2. Plan-view preparation

– Dropping the sample onto a copper TEM grid with a holey carbon film.

– Ultrasonicate the sample for two minutes and dropping it onto a copper TEM grid with a

holey carbon film.

– Dropping the sample onto a copper TEM grid with a holey carbon film and etching it

afterward with hydrochloric acid (HCl) for a few seconds.

The listed preparation methods were not successful. However during this work it was possible

to develop and improve preparation methods for TEM cross-section and for plan-view samples.

They will be described in the chapters 3.3.2, 3.3.3, 6.2.1, 7.3.1, 8.2 and 9.2 in more detail.
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3.3.1 Sample pretreatment

The E. huxleyi samples from the North Atlantic and the Arabian Sea were sieved using a sprinkler

and sieves with a mesh size of 50 and 20 µm to leave only particles smaller than 20 µm in the

sample. To reduce the water volume of these samples, they were left static for four days. After

that time the particles sank to the ground and the remaining water could be removed using a

pipette.

Figure 3.2 Comparison between samples with and without dialysis.
a) SEM image before dialysis with a clearly visible salt crust.
b) SEM image after dialysis. The salt crust is strongly reduced.

The samples which were not provided as filter samples contained a high amount of salt.

When the sample is dropped onto a substrate the salt will crystallize and form a massive crust

(Fig. 3.2a). To avoid this process two different methods to lower the salt concentration were

developed. Either the samples were dialyzed for around 140 hours using distilled water (dH2O)

(Fig. 3.2b) or the samples were filtered using a Nuclepore polycarbonate membrane filter (diam-

eter: 47 mm, pore size: 0.8 µm). After the filter dried, the sample was removed with a spattle

and dissolved in ethanol, dH2O or bi-distilled water (bi dH2O).

Figure 3.3 Comparison between samples with and without centrifugation.
a) SEM image before centrifugation with a low coccolith concentration.
b) SEM image after centrifugation. It can be seen that the coccolith concentration
was enhanced.
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An additional problem concerning the samples from the Noth Atlantic and the Arabian Sea

was the low coccolith concentration (Fig. 3.3a). A centrifugation of 5 min at 3000 rpm was gentle

enough to preserve the fine coccolith structure and to enhance the concentration (Fig. 3.3b).

3.3.2 Plan-view sample preparation

In general, plan-view samples can be prepared easily by dropping the sample which is dispersed

in a liquid, onto a TEM copper grid with a holey carbon film. It is important to note that an

appropriate concentration of the sample has to be found, and that the particles are not thicker

than 100 nm.

For the coccolith plan-view preparation copper finder grids with a holey carbon film were

used. These grids are marked with letters and numbers, which allow using the same specimen

for several analyses in the SEM and the TEM. Furthermore, the species of interest can be

selected. The coccoliths have a thickness of around 500 nm at the thickest area. So for the TEM

measurements they have to be thinned. This was performed by etching the samples. CaCO3 is

very sensitive to acid. Therefore the finder grid was kept in dH2O for 2 h to remove the salt

crust, which appears despite dialysis, and dried afterwards in air. Depending on the species the

samples were put in dH2O again. E. huxleyi was kept in dH2O for 36 h or for 5 h in bi dH2O

and C. leptoporus for 16 h in bi dH2O until the coccoliths were thin enough for analyses using

the TEM. This method is very gentle and the fine coccolith structure is preserved. More details

are given in chapter 7.

For comparison Iceland spar samples were prepared in a similar way but the crystals were

pulverized first using a mortar. The received powder was kept in bi dH2O for 26 h before it was

dropped on a TEM copper grid with a lacey carbon film. These samples were air dried at room

temperature and could be used immediately without further etching. To avoid contamination

these samples were plasma cleaned for 20 s directly before the TEM investigations.

3.3.3 Cross-section sample preparation

The coccolith cross-section samples were prepared using the focused ion beam (FIB) microscope.

The samples used in this work were prepared in cooperation with Sonja Matich (Walter Schottky

Institut, TUM, Garching).

Before the FIB sectioning starts a thin carbon layer is deposited on the coccolith using electron

beam induced deposition (EBID) at 2.5 keV and ion beam induced deposition (IBID) with a

beam current of 300 pA at 30 keV to avoid radiation damage under gallium ion bombardment [3].

The resulting layer has a thickness of about 1 µm and will protect the coccolith from radiation

damage during the lamellae cutting process. Afterwards two trapezes before and behind the

coccolith are cut into the substrate e.g. filter paper or Si-Wafer (Fig. 3.4a). This is done under

an angle of 54◦ with a beam current of 6.5 nA at 30 keV. Then the edges except of one will be

cut using a beam current of 700 pA at 30 keV and a manipulator needle is fixed with amorphous

carbon at the lamellae surface at 0◦ tilt (Fig. 3.4b). The remaining edge will be cut free and
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the lamellae can be transferred to a TEM lamellae grid, where it will be fixed using amorphous

carbon (Fig. 3.4c). After that the manipulator needle is cut off using a beam current of 700 pA

at 30 keV. Now the lamellae is thinned and polished from both sides under an angle of 54◦ and

54.8◦ using a beam current of 300 and 80 pA at 30 keV for thinning and of 40 pA at 30 keV

for polishing. In the end the lamellae has a thickness of around 70 to 100 nm (Fig. 3.4d). More

details are given in chapter 7.

Figure 3.4 Four selected steps of the FIB lamellae preparation process of the coccolithophore
species E. huxleyi.
a) Cutting out a TEM lamellae of E. huxleyi (marked by white circle).
b) Fixing the lamellae to the tip of the preparation nozzle with amorphous carbon.
c) Transfering the lamellae (marked by white circle) onto the TEM grid.
d) Prepared TEM lamellae of E. huxleyi (marked with a circle) with a final thickness
of around 70 nm.

To study the influence of the FIB cutting process, samples of the Iceland spar crystals were

prepared in a similar way. At the beginning the crystals were pulverized and then dissolved

in approximately 1 ml ethanol. The sample was dropped on a Si-Wafer and dried at room

temperature. The Si-Wafer was glued with a carbon sticker to a SEM holder and finally a thin

carbon film was deposited on the samples with a BAL-TEC coating system. The Iceland spar

samples were then FIB sectioned as described above for the coccoliths.
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4 Characterisation methods

4.1 Electron microscopy

To investigate the nanostructure and the crystallographic assembly of small organisms like coc-

colithospheres optical microscopes become more and more replaced by high resolution electron

microscopes. These microscopes use electrons to irradiate the sample and to produce a magnified

image [1, 2]. Since the wavelength of electrons is about 100,000 times shorter than visible light,

this method allows a resolution of about 0.1 Å [1, 2]. In comparison the resolution of conven-

tional light microscopes is limited by diffraction to approximately 200 nm [1, 2]. The electron

microscope types and the corresponding analytical methods used in this thesis are described in

more detail in the following chapters.

4.2 Scanning electron microscopy

A SEM is mainly used to study surface and near surface structures of bulk and nanostructured

materials. It employs a beam of electrons, which is generated either by a tungsten filament

(thermionic emission) or by a LaB6-crystal (field emission) and is focused on the sample [1].

Electrons are usually accelerated to an energy between 1 and 30 keV in the SEM [1]. The inter-

Figure 4.1 Interaction between primary electron beam and the bulk material.
a) Signals which can occur in the SEM. Figure modified from [1].
b) Interaction volume modified from [1] with the escape depth of the signals used in
the SEM marked.

action between the primary electron beam and the sample generates several signals (Fig. 4.1a),
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which can be used for imaging or for analytical purposes. These signals will be generated within

the interaction volume, but can only escape from different sample depths [1] (Fig. 4.1b).

The condenser and objective lenses bundles the electron beam, so that it has a diameter of

around 2 to 10 nm when it hits the sample [1]. This fine electron beam is scanned over the

sample by the scanning coils [1]. For the image generation mostly secondary electrons (SE)

are used. These electrons have an energy between 0 and 50 eV and are generated by inelastic

scattering between the primary electron and the specimen [1]. They are emitted from a sample

depth of a view tens of nanometers and therefore give information about the surface [1]. The

higher energetic back-scattered electrons (BSE), which are emitted from a large depth and hence

have a lower spatial resolution, can also be used for the image generation [1]. The laterally fixed

Everhardt-Thornley detector counts the number of SE emitted from each point of the sample

surface [1]. The signal is amplified by a photomultiplier and transformed into grey scale value

information [1]. The main components of a SEM are given in figure 4.2. The three-dimensional

Figure 4.2 Schematic drawing indicating the main components of a SEM modified from [3].

appearance of objects in the SEM is caused by so called edge effects (a large number of electrons

can escape) and by shadowing effects [4]. The detector is laterally fixed in the microscope,

so electrons which are emitted from a detector abandoned side can not reach it and this side

appears dark, while areas facing the detector appear brighter [4]. Therefore, all objects look like

they are illuminated from one side [4]. This effect correlates with the rate of light and shadow

in the classical light optics [4].
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4.3 Focused ion beam microscopy

The FIB is mainly used for surface analytics and surface modification. FIB microscopes allow

a controlled erosion of surface material and sputtering [5]. Instead of electrons ions are used

(mainly Gallium and Helium). Hence this instrument is not really an electron microscope but

nevertheless it has many structural features in common with a SEM [6].

Figure 4.3 Schematic drawing indicating the main components of a FIB microscope modified
from [6].

In figure 4.3 the general assembly of a FIB microscope is illustrated. The ions are generated in

a liquid metal ion source (LMIS) that operates by field evaporation of liquid metal at a tungsten

tip which is maintained at a high positive potential [5]. A big difference between an electron

microscope and a FIB microscope is the design of the microscope column. Due to the large

mass of the ions electrostatic lenses instead of electromagnetic are used to focus the beam [6].

A sequence of beam-blanking plates with both variable and fixed apertures is used to minimize

the sputtering damage [6]. The eucentric stage permits tilting along all three coordinate axes

and a full Cartesian, x, y and z, control of the sample position with respect to the optical axis of

the ion beam [6]. It is also ensured that the axes of specimen tilt remain perpendicular to, and

33



CHAPTER 4. CHARACTERISATION METHODS

pass through, the optical axis [6]. For FIB microscopes many accessories are available like gas

injection system (GIS) for chemical-assisted etching of the surface or for deposition of thin films

in selected areas [5]. Another useful tool are nano-manipulator needles consisting of a sharp

tungsten needle mounted at the end of a piezoelectric drive [5].

In material science microscopes that include both ion beam and electron beam are often used.

These machines are often referred to as dual beam instruments. The SEM column is usually

mounted vertically above the sample, while the ion beam source and column are mounted at

an inclined angle to the sample chamber [6]. With this instrument it is possible to monitor

the progress of the ion-beam milling or deposition by the electron beam and the two types of

secondary images achieved from either the ion- or the electron-probe provide microstructural

information [6].

4.4 Transmission electron microscopy

A TEM is mainly used to analyze inorganic samples (like investigations of the microstructure

or grain boundaries of metals, ceramics etc.) [1]. But it is also a helpful tool to study biological

samples. It allows investigating the hard tissues like shells or bones as well as the soft tissues

like cells or organic membranes [7].

The assembly of a TEM is related to a light microscope but instead of light, electrons are used

and electromagnetic coils are employed instead of glass lenses. To avoid interactions between the

electron beam and gas particles a high vacuum of around 10−6 Torr is necessary [2]. Figure 4.4

shows the general assembly of a TEM with the main components. The electron beam is generated

either by thermionic emission or by cold or thermal field emission. For thermal field emission

guns the term Schottky emitter is used as well. The wavelength of the generated electron beam

depends on the acceleration voltage [2]. In this thesis an acceleration voltage of either 300 or

80 keV was used. With the condenser lens system, which is located below the electron gun, the

electron beam is bundled [2].

Below the condenser lens system the sample is located. Since the electrons will pass through

the specimen the samples have to be electron transparent (between 100 and 10 nm thickness)

[2]. The sample is located between the objective lenses which are used to obtain the first image.

This image is further magnified by the projector lenses in the conventional TEM [2]. The

magnified image is detected by a charge-coupled device (CCD) camera or will by projected on

a fluorescence screen. The image is generated by using the scattering effects of electrons at the

sample atoms [2]. This can be elastic scattering without energy loss, Rutherford scattering or

inelastic scattering where kinetic energy is lost [2]. These different scattering processes have

different scattering angles. They lead to different contrast in the image.
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Figure 4.4 Schematic drawing of the main components of a TEM modified from [6].

4.4.1 Bright field and high resolution imaging

The most common imaging mode in the conventional TEM is bright field (BF) imaging. Here

the contrast is due to mass-thickness and diffraction effects and is enhanced by the use of the

objective aperture [2]. Thicker regions, crystals in a specific zone axis or regions with higher

atomic numbers will appear dark while regions with no sample appear bright [2].

By using high resolution (HR)TEM imaging it is possible to display the periodicity of the

crystallographic structure of crystalline materials and is therefore a common tool to investigate

the nanostructure of samples [8]. Modern microscopes equipped with chromatic and spherical

aberration correctors can resolve details ∼ 0.1 nm [2]. For this imaging technique very thin

samples are necessary (10-50 nm) [2]. For the imaging elastic, coherent electron waves scattered

on lattice atoms are used. By interference of the transmitted and diffracted electron waves in the

image plane the contrast is formed [8]. The phase contrast diffracted image contains information

about the atomic structure [8].

4.4.2 Electron diffraction

Electron diffraction in TEM is often used for structure analysis of solids [8]. When electrons

pass through a thin sample they behave wave like rather than particle like [2]. The crystal acts

as a periodic structure and electrons are diffracted into different directions [2]. Constructive
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interference is observed for diffraction angles Θ, which fulfill the Bragg condition (Eq. 4.1) [2].

nλ = 2d · sin Θ (4.1)

In this equation n is an integer that gives the order of the scattering, λ is the wavelength of

the incident beam, d is the spacing between the planes in the crystal lattice and Θ is the angle

between the incident beam and the scattering planes. As a result diffraction pattern are a series

of spots. They can be observed if the projector lens is differently excited [2]. Each of these spots

corresponds to a specific plane of the samples crystal structure [2]. By tilting the sample, the

crystal will stay under illumination but different diffraction conditions will be achieved [2].

4.4.3 Electron energy low loss spectroscopy

Since the interest in the characterization of organic and inorganic materials at the nano scale is

increasing, electron energy-loss spectroscopy (EELS) has become an established analysis method

[9]. This technique allows the chemical and electronic characterization of different materials. It

is based on measuring the transmitted electrons as function of their energy loss [2]. As figure 4.5

indicates an electron energy-loss (EEL) spectrum can be divided into three parts.

Figure 4.5 Schematic drawing of an EEL spectrum modified from [9].

The first part of the spectrum is the zero loss region, which contains the unscattered or

elastically scattered electrons (0 eV). The zero loss peak is used to determine the experimental

energy resolution and it allows together with the low loss region to determine the thickness of

the sample [9].

It is followed by the low loss region that contains energy losses up to 50 eV. This region is
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dominated by the plasmon peak which is caused by the collective oscillations of valence electrons,

but it also contains interband transitions (excitations of valence electrons to unoccupied states

above the Fermi level) [9]. This feature of the spectra can be used for thickness determination,

thickness deconvolution of the core-loss region and phase identification via the position of the

plasmon peak [9].

The third region is the core loss region that contains energy losses above 50 eV. By excitations

of inner shell electrons to unoccupied states above the Fermi level the element-specific ionization

edges will occur [9]. The element specific ionization edges are used for phase identification,

determination of chemical composition and the analysis of electronic structure, e.g. bonding

behavior or oxidation state [9].
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5 Experimental details

The following chapter gives a short overview about the used equipment and about chemicals

and substrates used during this work.

5.1 Instrumentation

The equipment used during this work is listed in table 5.1.

Instrument Model Producer

Precision diamond wire saw 3242 Well
Disc grinder 623 Gatan
Dimple grinder 656 Gatan
Precision ion polishing system (PIPS) 691 Gatan

Carbon coating system BAL TEC

Enviromental SEM XL40 FEI

SEM NSVision40 Zeiss

SEM JSM-6500F JEOL
EDX detector INCA ENERGY Oxford Instruments

SEM Leo Modell 1450 Zeiss

Field emisssion SEM UltraPlus Zeiss
EDX detector INCA ENERGY Oxford Instruments

Dual FIB and SEM NSVision40 Zeiss
Manipulator Kleindiek

Dual FIB and SEM Auriga Zeiss

Conventional TEM 200 keV 2010 JEOL

Field emission S/TEM 80-300 keV Titan FEI
EDX detector EDAX
Tridiem Electron EELS detector Gatan
HAADF detector 3000 FISCHIONE

INSTRUMENTS

Table 5.1 Overview of the equipment used during this work. The instrument, the model and
the producer are listed.
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5.2 Chemicals and substrates

In table 5.2 the chemicals and substrates used during this work are listed.

Chemicals/ Substrates Supplier

Ethanol 99,9% Merck

Si-Wafer

Millipore polycarbonate membrane filter
diameter: 47 mm, pore size: 0.45 µm

Millipore

Omnipore polycarbonate membrane filter
diameter: 47 mm, pore size: 0.45 µm

Whatman

Dialysis membrane Zellu Trans ROTH

copper finder grid with holey carbon film Plano

Table 5.2 Overview of the chemicals and substrates used during this work.
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6 Nanoprobe crystallographic orientation

studies of isolated shield elements of the

coccolithophore species Emiliania huxleyi

This chapter is based on the following publication:

Hoffmann R., Wochnik A. S., Heinzl C., Betzler S. B., Matich S., Griesshaber E., Schulz H.,

Kuc̆era M., Young J., Scheu C. and Schmahl W. W. (2014): European Journal of Mineralogy,

26 (4) 473-483

6.1 Introduction

Coccolithophorids are one of the most important groups of primary producers in the oceans

[1]. They live in almost all marine habitats and are present from arctic to tropical waters

[2, 3, 4]. They contribute about 15 % to the global ocean phytoplankton biomass and their

calcite exoskeletons are one of the major components of deep sea sediments [5]. Due to their high

abundance in sedimentary rocks [6] coccolithophorids are of high interest for biostratigraphic

dating and paleoclimate studies [7, 8].

Typical coccoliths are formed inside the cell and show a radial structure. The segment of

these coccolith rings are characteristically formed by two alternating types of crystal units

with sub-vertical crystallographic c-axes (V-units) and sub-radial c-axes (R-units), respectively

[9, 10, 11]. The R-unit of E. huxleyi consists of distal- and proximal shield elements and a central

area element connected through the inner- and outer tube elements (Fig. 6.1) [12]. Transmission

electron microscopy and scanning electron microscopy investigations showed that in the earliest

growth stage of E. huxleyi coccoliths, the proto-coccolith ring is an elliptical ring of alternating

larger and smaller calcite crystals, which were predicted to also alternate in crystallographic

orientation [9, 12, 10]. However, only one of these sets of elements develops during growth of the

coccolith, so they constitute almost the entire mature coccolith (Fig. 6.1d). These units have

radial c-axes and so are R-units hence the alternate units of the proto-coccolith ring were in-

ferred to be V-units. Although these putative V-units have been imaged by electron microscopy

in proto-coccolith rings [9], their crystallographic orientation has never been determined directly

but only inferred by analogy from other coccoliths. Recent studies used the SEM based electron

back-scattered diffraction (EBSD) method [13, 14] and Kikuchi pattern orientation in TEM
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[15] for a more accurate determination of crystal orientations of the R- units of several coccol-

ithophore species [13, 14, 15]. Even though the orientation of the crystal units were investigated

to some degree in E. huxleyi [16, 17, 18, 9, 11, 14] the exact nature of their nanostructure and

nanoscale architecture is not fully understood. This includes the crystallographic orientation of

the V-unit element.

Many carbonate-sequestering marine shelled organisms such as sea urchins, corals and mol-

lusks have skeletons that show a mosaic like crystal assembly [19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29] where the biocarbonate crystals in their shells are constituted of co-oriented crystallites

in the mesoscopic size range (1-1000 nm) [30]. These mesoscale units are often in very good

three dimensional orientational register and show a scattering pattern and behavior in polarized

light comparable to that observed in single-crystals [30]. Thus, a further focus of our study was

to determine whether the segments of E. huxleyi consist of calcite crystals with a mosaic like as-

sembly or of conventional single-crystals. To obtain the required spatial resolution information,

we applied TEM and associated analytical techniques including selected area and nano probe

diffraction experiments, BF- and HR TEM imaging. To facilitate analysis in cross-section, FIB

sample preparation was used. We used coccolithophore specimens collected from oceanographic

samples.

6.2 Materials and methods

6.2.1 Samples and preparation

Plankton samples from the North- and the South Atlantic Ocean were investigated. The North

Atlantic sample (POS 334, stat. 4 MSN K7) material derives from 0-100 m, 100-200 m, 200-

300 m, 300-500 m and 500-700 m water depth and the South Atlantic sample (AMT 18, CTD 89)

consists of three samples from 0 m, 48 m and 96 m water depth. Both sample series were

preserved with formalin and hexamine after collection to avoid bacterial growth and to buffer

the carbonate system.

The target prepared TEM samples were obtained by FIB sectioning. Radiation damage under

ion bombardment can easily occur [31]. In order to protect and preserve the structure of the

coccolith, a thin (50 nm) carbon layer was deposited by EBID at 3 kV. A further, thicker

protection layer was deposited with IBID with a beam current of 300 pA at 30 kV. Here

carbon was used as well. The resulting layer thickness of around 1.0 µm was found to be thick

enough to protect E. huxleyi from radiation damage during the following lamella cutting process.

Additional plan-view samples of E. huxleyi were prepared from the North Atlantic sample series.

The sample was dropped on a copper TEM grid with a holey carbon film. Afterwards the samples

were thinned according to the procedure developed by Wilbur and Watabe and Watabe [16, 17].

Instead of using HCl we performed thinning with dH2O for several h. This has the advantage of

being gentler than the HCl treatment, so the fine structure and the full assembly of the coccolith

stay intact.
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6.2.2 Instrumentation

For SEM imaging and FIB sectioning a Zeiss NVision40 FIB microscope was used, which com-

bines the technologies of a GEMINI electron column, with a focused ion beam (zeta FIB column

- operated at 30 kV) and single-injector multi-channel GIS. Secondary electron images were ac-

quired at a low acceleration voltage of 2.5 kV. For TEM investigations we used a FEI Titan 80-

300 kV field emission scanning (S)/TEM equipped with an energy-dispersive X-ray spectrometer

and a Gatan imaging filter. The measurements were performed at 80 kV. The crystallographic

orientations within the coccolith were investigated by BF imaging, selected area electron diffrac-

tion (SAED), nano probe diffraction and HR imaging. For the selected area electron diffraction

an aperture of approximately 150 nm was used and for the nano probe experiments a beam

diameter of around 6 nm was applied.

6.3 Results

A secondary electron image of a complete coccosphere of E. huxleyi is given in figure 6.1a. To

obtain crystallographic information of the R- and V-unit [9] (model given in Fig. 6.1d) cross-

section samples are required. The V-unit can only be seen in the cross-section view as the

R-unit overgrows the V-unit during the crystal growth phase of the coccolith formation [9].

The FIB sectioning allowed us to analyze the specimen in the SEM mode and to get a cross-

section of the area of interest. Figure 6.1b shows a secondary electron image of a cross-section

through a complete coccosphere, where several (minimum 4) concentric layers of coccoliths can

be observed. The coccoliths are relatively densely packed. The cell cavity, where the living cell

resides, has a diameter of around 4 µm and is clearly visible. The concentric coccolith skeleton

has a thickness of about 2.5 µm.

For the TEM investigations we used 6 different cross-section lamellae through single coccoliths.

The BF TEM image of figure 6.1c shows exemplary one of those cross-sections. The 0-100 m

and 100-200 m sample from the North Atlantic and the three samples from the South Atlantic

series (0 m, 48 m, 96 m) were used for this preparation method. We found the optimal thickness

of the TEM lamellae to be between 70 nm and 90 nm. With thicker lamellae problems due to

double diffraction during electron diffraction experiments occurred, while thinner samples were

easily damaged by the electron beam bombardment.

First TEM measurements were performed at 300 kV and a low electron dose, meaning that

a low number of electrons hit the sample per m2. Our experiments using these parameters

indicate that the calcite shell of the coccoliths is very sensitive to beam bombardment, especially

during HR imaging and SAED experiments. After a few s of 300 kV electron bombardment

the calcite transformed to a poly-crystalline material with d-spacings indicating the formation

of calcium oxide (CaO). Since the kind of beam damage differs between 80 kV and 300 kV

[32], the parameters for the TEM measurements were changed to an acceleration voltage of

80 kV and a low dose. All experiments shown were performed under these conditions. These
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Figure 6.1 Calcite skeleton of the marine algae E. huxleyi.
a) SE image of a complete coccosphere of E. huxleyi.
b) Cross-section obtained by FIB ion-milling through the coccosphere shown in a.
The cross-section of a single coccolith is colored white and highlighted by the white
frame.
c) TEM BF image of a cross-section of a single E. huxleyi coccolith prepared by FIB
sectioning. The coccolith is outlined by a white line. The fully white colored left side
of the coccolith cross-section is directly comparable with the schematic model in d).
d) Simplified schematic drawing modified from [12] of one coccolith segment of E. hux-
leyi to visualize the model of [9]. The R-unit is given in light grey. The longer white
arrow pointing parallel to the coccolith plane is indicating the direction of the crys-
tallographic c-axis in the R-unit. The V-unit is marked dark grey, with the c-axis
oriented perpendicular to the coccolith plane (shorter white arrow).

conditions allowed HR imaging and electron diffraction measurements, while the sample stayed

intact. However, even under these conditions electron bombardment for more than three min

transformed the calcite to CaO.

At 80 kV and a low dose, diffraction patterns of different areas of the cross-section of coccolith

segments of E. huxleyi were taken from 6 different TEM lamellae. The achieved diffraction

patterns were indexed, the lattice orientation was calculated and the c-axis was projected into

the corresponding BF image (Fig. 6.2). The rotation between image and diffraction pattern

is compensated in the used FEI Titan TEM. Our experiments showed that the c-axes of the

different elements (proximal-, distal- and central area element) within the R-unit of E. huxleyi
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Figure 6.2 V/R unit of E. huxleyi coccolith shield elements.
a) BF TEM image of the proximal shield element of E. huxleyi. The white arrow
shows the projection of the crystallographic c-axis determined from the diffraction
pattern given in b. The b-axis lies perpendicular to the coccolith plane and the c-axis
is oriented parallel to the coccolith plane. The angle between the zone axis and the
b-axis is approximately 14◦.
b) Electron diffraction pattern of the marked area (white circle in a). The diffraction
pattern indicates calcite tilted close to the [1 3 0] zone axis. During the experiments
the tilt angles were α = 11.6◦ and β = 3.1◦.
c) A BF TEM image of the V-unit of E. huxleyi. The V-unit [1 1 0] direction is in
tangential direction of the coccolith ring and the c-axis (white arrow) direction is
pointing perpendicular to the coccolith plane.
d) Electron diffraction pattern of the marked area (white circle in c) indicating calcite
tilted to the [1 1 0] zone axis. Compared to the diffraction pattern in b, the sample
was tilted to α = 0.7◦ and β = 4.6◦.
e) Crystallographic orientation of the R- and the V-unit in a three dimensional sketch
of coccolith segment of E. huxleyi.
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lie within the coccolith plane. For the R-unit the b-axis is perpendicular to the coccolith plane

(Fig. 6.2e). A representative BF image of an R-unit area is given in figure 6.2a.

In figure 6.2b the corresponding electron diffraction pattern of the encircled area in figure

6.2a is shown. The electron diffraction pattern taken from the area where the V-unit should

occur (Fig. 6.2c) reveals that here the [0 0 1] direction is perpendicular to that of the R-unit

(marked by the white arrow in figure 6.2d). This orientation was predicted by Young et al.,

based on analogy with other coccoliths [9]. The analysis of our diffraction experiments revealed

that the [1 1 0] direction of the V-unit is in tangential direction of the coccolith ring and its

[1 1 0] direction is radial with respect to the coccolith ring (Fig. 6.2e)

Figure 6.3 Three dimensional structure of E. huxleyi segments.
a) BF TEM image of an incomplete grown coccolith of E. huxleyi, in plan-view. The
white rectangle marks the area enlarged in b.
b) Three visible elements composing one segment (distal shield element, proximal
shield element and central area element) are outlined by a thin white line and labeled
by B. The white rectangle marks the position of a potential FIB-section cutting
through the elements of 3 different coccolith segments (A, B, and C). Such a FIB
lamella would contain the distal shield element of the coccolith segment C, the prox-
imal shield element of the coccolith segment B, and the central area element of the
coccolith segment A.
c) Three dimensional model to illustrate the complex three dimensional structure of
a coccolith segment.

The mesoscale crystallographic constitution of the E. huxleyi calcite was investigated by nano

probe electron diffraction experiments, as well as by BF and HR imaging with the same param-
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eters as given above. Due to the complex three dimensional structures of the coccolith segments

(Fig. 6.3c), the FIB cross-section can pass through three different segments instead of one (see

BF plan-view image Fig. 6.3). The visible elements (distal shield-, the proximal shield- and the

central area element), of one coccolith segment, are labeled as B. The white rectangle marked in

figure 6.3b is a potential position for a FIB cross-section. This cross-section would pass through

the distal shield element of the segment labeled as C, the proximal shield element of the segment

labeled as B, and the central area element of the segment labeled as A. If the c-axis is expected

to be precisely radial with respect to the ring, measurements using such a cross-section would

show different crystal orientations for the elements, as they belong to differently oriented seg-

ments (A, B, C). To avoid these problems samples viewed perpendicular to the coccolith ring

(plan-view samples) were used in the experiments.

Figure 6.4 Nano probe diffraction within the distal shield element of E. huxleyi.
a-d) Nano probe electron diffraction patterns of the distal shield element of E. huxleyi
marked in the BF image given in 6.4f. The Kikuchi lines are colored in yellow (a), in
red (b), in green (c) and in blue (d).
e) Overlain diffraction patterns a-d of the distal shield element. The Kikuchi lines
show no evidence of relative misorientations between the patterns a-d within the
experimental uncertainty of circa 1◦.
f) BF image of a plan-view sample with the position of the diffraction patterns (a-d)
marked by white dots.

To investigate the orientation within one coccolith segment and to study the arrangement

of the calcite crystals we performed nano probe diffraction experiments on plan-view samples.

For these experiments the samples from the North Atlantic series taken from 200-300 m and

300-500 m were used. With this method a high spatial resolution (around 6 nm in our experi-
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ments) could be achieved. The measurements were started by tilting one area of the coccolith

cross-section to a zone axis. Then these goniometer angles were kept while the whole element

was investigated in the diffraction mode by translation of the sample holder. The nano probe

diffraction patterns obtained were overlain using a color code for the Kikuchi lines. If any crys-

tallographic orientation variations occurred within one coccolith element, this procedure would

enable us to detect this mosaic structure.

Figure 6.5 Nano probe diffraction of the distal- and the proximal shield element of E. huxleyi.
a) Nano probe electron diffraction pattern of the distal shield element of E. huxleyi
marked in the BF image given in c. The Kikuchi lines are marked by black lines.
b) Nano probe diffraction pattern of the proximal shield element marked in the image
given in c. The Kikuchi lines are marked by white lines.
c) BF image of a plan-view sample with the position of the diffraction patterns a and
b marked. The white dots mark the location where the nanoprobe electron diffraction
patterns were taken and the white cross shows the area where the shift in the Kikuchi
lines starts.
d) Overlaid diffraction patterns of the distal and the proximal shield elements. The
overlaid Kikuchi lines show a parallel translation for two pairs of Kikuchi lines. This
is caused by tilting of 4◦ ± 1◦ around the (1 0 1) plane normal.

We studied 7 distal- and proximal shield elements using 2 different plan-view samples. We took

21 nano probe diffraction patterns of the distal shield elements and 11 nano probe diffraction

patterns of the proximal shield elements. Within the distal shield element we only used the

area, where the proximal shield element did not contribute to the diffraction pattern. Figure 6.4

shows the results of one diffraction experiment in the distal shield element (Fig. 6.4f). The

Kikuchi lines in the nano probe diffraction patterns 6.4a-d are marked by different colors. These
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patterns were overlain (Fig. 6.4e) and the overlain Kikuchi lines of this area do not reveal tilting

or rotation of the Kikuchi lines. An experimental uncertainty of 1◦ must be considered for this

method [32]. Accordingly the tip of the distal shield element of E. huxleyi has a coherent single-

crystal-like lattice, as no indication of misorientations or a mosaic like crystalline constitution

within a precision of ± 1◦ was found.

Figure 6.6 Diffraction experiments to determine the angle between different segments of E. hux-
leyi.
a) BF image of E. huxleyi, with the position of the measurement marked by the grey
square.
b) BF image with the position of the nano probe diffraction pattern 1, 2 and 3 marked
by white dots.
c) Overlain diffraction patterns of position 1 (Kikuchi lines are marked in white) and
2 (Kikuchi pattern marked in black). The Kikuchi lines indicate a rotation of 8◦ ± 1◦

between these segments around the direction normal to the coccolith ring.
d) Overlain diffraction patterns of position 2 (Kikuchi lines are marked in black) and
3 (Kikuchi pattern marked in white). The Kikuchi lines indicate a rotation of 7◦ ± 1◦

between these segments around the direction normal to the coccolith ring.

The same result was obtained for the outer rim of the proximal shield element. In order

to investigate if the distal- and the proximal shield element together form one single-crystal
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additional nano probe diffraction experiments with plan view samples were performed. As given

in figure 6.5, we tilted the distal shield element to a zone axis (Fig. 6.5a) and, while keeping

the goniometer angles constant, acquired a diffraction pattern of the proximal shield element

(Fig. 6.5b). The positions where the diffraction patterns were taken are marked in the BF image

in figure 6.5c. These diffraction patterns were overlain (Fig. 6.5d). Two out of three Kikuchi

pairs were found to be shifted with respect to each other. Using the calibrated camera constant

we calculated from these shifts a relative tilt angle [32] of 4◦ ± 1◦ around the (1 0 1) plane normal

direction. These observations are based on the investigation of 3 different pairs of distal- and

proximal shield elements. Further investigations of the Kikuchi lines showed that these shifts

start already within the middle of the distal shield element (white cross in Fig. 6.5c) with a tilt

angle of approximately 1-2◦.

We also investigated the change of lattice orientation between different coccolith segments

(Fig. 6.6). The BF image in figure 6.6a shows the entire E. huxleyi coccolith with the area

where we measured the rotation between three different segments marked by a grey square. The

location of the diffraction patterns on the three segments are given in the BF image in figure 6.6b.

In figure 6.6c the nano probe diffraction patterns of the distal shield elements of segment 1 and

segment 2 are overlaid. Using the Kikuchi lines of both segments (white for segment 1 and black

for segment 2), we found that the segments are rotated by 8◦ ± 1◦ relative to each other around

the direction normal to the coccolith ring. The same experiment was performed with the nano

probe diffraction pattern of segment 2 (Kikuchi lines given in black) and segment 3 (Kikuchi

lines given in white), where we obtained a rotation of 7◦ ± 1◦ between the segments (Fig. 6.6d).

This is in accordance to the value which we obtain geometrically from the elliptical shape of the

coccolith.

Figure 6.7 HR image of E. huxleyi.
a) BF TEM image showing the area for HR imaging marked by the grey square. The
protection layer is the carbon coating applied before FIB sectioning.
b) The HRTEM image of the coccolith element contains no crystal boundaries. The
differences in contrast are due to the bending of the element.
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For detailed analyses of the coccolith segments such as distal shield-, proximal shield- and

central area element HR imaging was performed. Within the elements, the HR images showed

no evidence for a nano-mosaic or for intra-crystalline organic matrix. Figure 6.7b is an example

of a HR image taken of an area of the distal shield element, which is indicated in the BF image

shown in figure 6.7a.

6.4 Discussion

Investigations of coccoliths by TEM were done in previous studies [17, 18, 12, 33, 15], which

applied different methods to prepare electron-transparent TEM samples. Several groups washed,

centrifuged and dispersed the culture samples on TEM grids and finally used etching to obtain

sufficiently thin samples [16, 17]. This sample preparation method could produce only plan-

view TEM samples. Another preparation method was to sonicate the coccolith suspension for

one minute and disperse this suspension on a TEM grid [18, 12, 33]. This method allowed to

obtain plan-view and cross-section samples, which represented randomly-oriented cuts through

coccolith segments. Wilbur and Watabe and Watabe used a preparation method to gain only

cross-section samples: dried cultured samples were embedded in Vestopal H and cut with a

diamond knife [16, 17]. However, the coccolith rings disintegrated such that the sample consisted

of a random distribution of coccolith segments so that a well-defined cross-section could not be

obtained. Our results show that the preparation method using FIB sectioning is able to produce

site specific, oriented beam-transparent cross-sections through coccoliths.

Previous studies revealed that crystals of the V- unit could be found in very early growth

stages in proto-coccolith rings [9]. These crystals were reported to have an average size of 30

to 60 nm [9]. Due to their size and the fact that they will be overgrown by R-crystals in later

stages of development it was not possible to determine the crystallographic orientation of the V-

units by light microscopy or electron diffraction [9] so far. With the target-preparation method

we applied, we were able to detect the overgrown V-unit in fully grown coccolith segments of

E. huxleyi . With the help of SAED and BF imaging in TEM we found the [0 0 1] direction of the

R-unit parallel and the [0 1 0] direction perpendicular to the coccolith plane. The V-unit [0 0 1] di-

rection is perpendicular while the [1 1 0] direction is parallel to the coccolith plane oriented. Our

electron microscopy study thus confirms the V- and R-model of the c-axis orientation obtained

by light microscopy of Young et al. for E. huxleyi and it complements the full crystallographic

orientation [9]. Mann and Sparks described in their study that the crystallographic c-axis of

the proximal shield element is parallel to the coccolith plane and the b-axis is perpendicular to

the coccolith plane [18]. Our electron diffraction patterns taken from isolated shield elements

confirmed the single-crystal nature and the absence of a mosaic spread for both the proximal-as

well as the distal shield element of E. huxleyi . However, in 1988 the mosaic like assembly of

biomaterial crystals was not known. So in this study the possibility that the coccolith calcite

consists of a mosaic like assembly was considered during the diffraction experiments.
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Modern high-resolution studies of carbonate materials constituting the shells, spines, and teeth

of marine organisms such as brachiopods, sea urchins, corals and mollusks showed that their

carbonate crystals have a mosaic like crystalline constitution [19, 20, 21, 34, 35, 26, 29]. Therefore

we aimed to test if a mosaic-like crystalline structure is present in the calcite shell of E. huxleyi .

Other studies [18] had used SAED, where the size of the illuminated area is determined by the

SAED aperture typically 150 nm in diameter. In our study we performed experiments using nano

probe electron diffraction and Kikuchi lines, where tilting angles ≥ 1◦ can be detected at high

spatial resolution of around 6 nm. This method revealed no misorientations within the tip of the

distal- and proximal shield element of E. huxleyi but we found a clear shift of the Kikuchi lines

starting from the middle of the distal shield element leading to a crystallographic misorientation

of 4◦ ± 1◦ around the (1 0 1) plane normal direction. This is necessary to obtain the spherical

shape of the coccosphere. In principle, different scenarios can account for this. First, the upper

and lower shield element might be separated by a small angle tilt grain boundary. In that case,

we would expect an abrupt change in the orientation visible in a clearly resolvable shift of the

Kikuchi lines. Experimentally, we do not observe an abrupt change but instead we measure a

continuous change in orientation when taking nano probe diffraction pattern along the upper

shield elements towards the central element. Second, the tilt could be obtained by geometrically

necessary dislocations and we estimated that they should have a distance of around 7 nm to lead

to an angle of 4◦. These dislocations could be edge, screw or of mixed type. We did not observe

strain fields associated with such dislocations; however, they could be invisible in the viewing

directions used. Furthermore, the associated lattice distortion might be below the resolution

limit of our microscope. A third possible explanation would be that the element is elastically

bent due to a chemical gradient leading to a change in lattice parameters from top to bottom,

due to stresses from the surrounding organic and/ or due support by the surrounding organic

or due to gravitational forces. This would lead to a continuous orientation change. However,

assuming a Youngs modulus of 70 GPa [36] for the shield elements a stress (load per area) of

around 4.6 GPa would be required to induce the 4◦ distortion mechanically. This essentially

excludes mechanical stress as the origin of the misorientation, and since there is no evidence

for a chemical gradient, dislocations seem to be the most likely explanation. A single coccolith

is shaped like a flat domed bowl, which is necessary to create the spherical coccosphere by an

assembly of these bowls. The relative misorientation between the proximal- and the distal shield

elements of E. huxleyi serves to obtain the flat domed character of the coccoliths.

The different segments of the coccolith ring are also rotated with respect to each other around

the normal of the coccolith ring, in order to form the circumference of the ellipsoidal ring. For

the segments which we measured the angle is in the order of 7-8◦ ± 1◦. These values fit nicely

with results of former studies using Kikuchi lines in TEM [14]. In the study of Saruwatari et

al. for each shield element one Kikuchi pattern was taken [14]. Furthermore, they did not use

several electron patterns within one shield element to investigate orientation changes.

Multi-cellular calcifiers, for which a mosaic like crystalline constitution of the carbonate crys-

tals has been demonstrated [19, 21, 37, 24, 23, 26, 27, 28] are formed in an extracellular process,
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where vesicles containing amorphous calcium carbonate are exocytosed and attach to the car-

bonate shell, spines, or teeth, where they crystallize with a slight misorientation to form a crystal

with a mosaic-spread [38]. In Contrast the whole coccolith ring is produced in a vesicle inside

the cell [11]. So far our high-resolution imaging gave no evidence for organic layers within one

crystal unit, nor of any nanomosaicity. If the tilt of 4◦ between the distal- and the proximal

shield element is caused by a chemical gradient, gravitational forces and/or by support of the

surrounding organic the coccoliths would differ from the multi-cellular marine calcifiers.

6.5 Conclusion

In this study it has been shown that FIB sectioning of coccoliths can be used to gain pristine site

specific cross-sections of the coccoliths of E. huxleyi . The described methods allowed to image

and analyze the orientation of the overgrown V-unit. The analysis revealed that the [1 1 0]

direction of the V-unit is in tangential direction of the coccolith ring and the [1 1 0] direction is

radial with respect to the coccolith ring.

Our nanoprobe electron diffraction experiments with a precision of 1◦ reveal that the distal-

and the proximal element of the R-unit show a relative tilt of 4◦ ± 1◦ around the (1 0 1) plane

normal direction. This misorientation starts already within the middle of the distal shield

element. This tilt within and between the shield elements serves to obtain the flat domed

character of the coccoliths, which is necessary to form a coccosphere. The HRTEM images do

not show evidence of a mosaic like assembly of the calcite crystals of the shield elements that

build up the coccoliths of E. huxleyi .

For the future applying the techniques developed here to other coccoliths has great potential to

elucidate the structure of coccolith species which are too small to study with optical microscopy

and SEM. Hence we are confident that these techniques can significantly advance our knowledge

of the range biomineralisation patterns in coccoliths and the degree to which variation in such

patterns is responsible for the extraordinary diversity in coccolith forms.
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7 TEM preparation methods and their

influence on radiation damage on the

beam sensitive CaCO3 shell of

Emiliania huxleyi

This chapter is based on the following publication:

Hoffmann R., Wochnik A. S., Betzler S. B., Matich S., Griesshaber E., Schmahl W. W. and

Scheu C. (2014): Micron 62 28-36

7.1 Introduction

Since the industrial revolution 250 years ago the atmospheric carbon dioxide level increased by

nearly 40% [1]. This trend is predicted to continue, and by the end of the century CO2 levels

might exceed 800 ppm [2]. The current atmospheric CO2 rate is driven by the use of fossil fuel

and deforestation, which is known as the anthropogenic CO2 rate [3]. This is very different to

the changes in the past, since temperatures are rising at a much greater rate [4]. The rising

CO2 level is slowed down by the global oceans, which absorb a significant amount of the CO2

including one-third of the anthropogenic CO2 emission [3]. But the CO2 absorption of the ocean

has its consequences as it lowers the pH value of the ocean water body and leads to alterations in

fundamental chemical balances, known as ocean acidification [5]. Marine organisms which build

calcium carbonate shells like corals, mollusks, echinoderms, foraminifera and coccolithophores

will be directly influenced by ocean acidification [5]. Laboratory experiments show that many

calcifying species reduce calcification and growth rates under high-CO2 conditions [5]. However,

the potential of marine organisms to adapt to the increasing CO2 level under natural long term

conditions is not well known yet [5, 6]. To investigate the potential of marine organisms with

CaCO3 shells for CO2 storage, the understanding of the ultrastructure and the crystallographic

assembly is very important. Therefore high resolving methods like TEM and related techniques

like HR imaging, electron diffraction and EELS are necessary. The TEM studies require very thin

electron transparent samples. In this regard the sensitivity of the material must be considered

during the sample preparation. Different types of electron interaction can lead to different kinds

of radiation damage in the TEM [7, 8]. Atomic displacement (knock-on damage) and electron-
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beam sputtering of atoms from the surface often occur due to (quasi) elastic scattering, which

at the same time gives rise to electron-diffraction patterns and phase contrast images [7, 8]. In

addition, inelastic scattering, which is used for EELS, can lead to radiolysis effects (breaking

atomic bonds and thus changing the structure of a specimen) or remove material, which leads

to mass loss and to hydrocarbon contamination [7, 8].

CaCO3, which is investigated in this study, is very sensitive to electron bombardment, mechan-

ical load and thermal treatment. Several studies already revealed that the single-crystalline cal-

cite will transform to poly-crystalline lime during illumination with an electron beam [9, 10, 11].

Therefore, several precautions have to be considered during sample preparation and structural

investigations of CaCO3 shells, which protect living organisms for example, the coccolithophores.

Since coccolithophores live in almost all marine habitats [12] and are one of the most im-

portant primary producers in the oceans [13], they are of high interest for CO2 studies. These

small organisms are formed in a vesicle inside the cell and show a radial structure, which is

characteristically formed by two alternating types of crystal units [14]. These are the V-unit

with a sub-vertical crystallographic c-axis and the R-unit with a sub-radial c-axis [14]. The

TEM sample preparation for coccolithophores is in particular demanding since their skeletal

elements possess sizes smaller than 10 µm as visible in the SEM image in figure 7.1.

In this work we studied the abundant coccolithophore E. huxleyi. This species was already

investigated with high spatial resolution methods such as SEM and TEM and its analytical tech-

niques by several groups [15, 16, 17, 18] but still open questions remain concerning e.g. influence

of the CO2 content on the assembly. Very thin samples should be prepared and the sensitivity of

the material should be considered during the sample preparation. Different methods were used

in literature to obtain TEM samples. Culture samples were washed, centrifuged and dispersed

on TEM grids and finally etched with 0.1 M HCl for 5 min [19, 15]. This sample preparation

method allowed producing only plan-view TEM samples. Another preparation method which

was applied is to sonicate the coccolith suspension for one minute and disperse this suspension

on a TEM grid [16, 20, 17]. This method allowed obtaining plan-view and cross-section samples,

which represented randomly-oriented cuts through coccolith segments. Watabe and Wilbur and

Watabe used a preparation method to gain only cross-section samples [19, 15]. They dried cul-

tured samples embedded in Vestopal H (a copolymer between a polyester of maleic and fumaric

acids, esterified with di- and tri- hydroxyalcohols and styrene) and cut them with a diamond

knife. However, the coccolith rings disintegrated such that the sample consisted of a random

distribution of coccolith segments and a well defined cross-section could not be obtained.

In this study preparation techniques for TEM plan-view and cross-section samples were in-

vestigated and adjusted for the sensitive CaCO3 shell of E. huxleyi. Furthermore the electron

beam sensitivity of the coccolith calcite was compared to the sensitivity of geological single

calcite crystals (Iceland spar). This was done for all preparation methods. The experiments

were done by TEM and associated analytical techniques including SAED experiments, EELS,

BF- and HRTEM imaging. These investigations serve as a pre-requisite for further studies of

E. huxleyi which concentrate on the pH-value dependence of the coccoliths and on the amount
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and distribution of trace elements within the calcite.

7.2 Materials and methods

7.2.1 Samples

Two different Plankton sample series from the Atlantic Ocean were used during this study. The

first sample series provided by M. Kuc̆era and H. Schulz is stemming from the North Atlantic

(POS 334, stat. 4 MSN K7). The material derives from five different water depth intervals:

0-100 m, 100-200 m, 200-300 m, 300-500 m and 500-700 m. The second series was provided by

J. Young and was collected from the South Atlantic (PMT 18, CTD 89). This series contained

samples from three different water depths: 0 m, 48 m and 96 m.

To avoid bacterial growth and to buffer the carbonate system the samples were preserved

with formalin and hexamine after the collection. They were sieved to reduce the particles to a

size smaller than 20 µm. The South Atlantic samples were filtered with a vacuum pump onto a

Millipore polycarbonate membrane filter (diameter: 47 mm, pore size: 0.45 µm).

7.2.2 Instrumentation

For SEM imaging and FIB sectioning a Zeiss NVision40 FIB microscope was used, which com-

bines the technologies of a GEMINI electron column with a focused ion beam (zeta FIB column

- operated at 30 kV) and a single-injector multi-channel GIS needle. Secondary electron images

were acquired at a low acceleration voltage of 2.5 kV.

For TEM investigations we used a FEI Titan 80-300 kV field emission (S)/TEM equipped with

an energy-dispersive X-ray spectrometer and a Gatan Tridiem imaging filter. The measurements

were performed at 300 kV.

The analytical and imaging methods used in this study were SAED experiments, EELS, BF-

and HR imaging. For the SAED an aperture of 160 nm diameter was used. The full width at

half maximum (FWHM) of the zero loss peak (ZLP) was around 0.9 – 1.2 eV for the EELS mea-

surements. energy loss near edge structure (ELNES) analysis was done in diffraction mode with

a dispersion of 0.3 eV/channel. A 2 mm spectrometer entrance aperture and a camera length

of 130 mm were used resulting in a collection semi-angle of 13.5 mrad. Channel-to-channel gain

variation and dark current correction was done for all EEL spectra. For background subtraction

a power-law fitting procedure was used [21]. All EELS data were acquired in locations where

no carbon film was present.
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7.3 Results

7.3.1 Preparation methods

In this study two different kinds of materials were investigated, on the one hand biological

built calcite and on the other hand calcite geologically formed (Iceland spar). To investigate

biologically formed calcite the coccolithophore species E. huxleyi was used. The general assembly

of these marine organisms is indicated in figure 7.1 which shows a SEM image of a complete

coccosphere with a single coccolith platelet zoomed in.

Plan-view samples of E. huxleyi and the Iceland spar crystal should be prepared as gently as

possible. Therefore we modified the preparation method developed by Wilbur and Watabe and

Watabe [19, 15]. They used 0.1 M HCl for 5 min to thin the sample, which was dropped on a

copper TEM grid, while we applied dH2O for the thinning procedure as described in detail below.

To prepare coccolith plan-view samples the 200-300 m and the 300-500 m sample of the North

Atlantic series were used. For the preparation of TEM samples the coccolith concentration had

to be increased, while the salt concentration needed to be reduced. In this regard two different

preparation methods were applied. One method used dialysis in dH2O for 48 h to reduce

the salt concentration followed by centrifugation (3000 rpm, 5 min) to increase the particle

concentration. The second method was based on filtration. By using a Nuclepore polycarbonate

membrane filter (diameter: 47 mm, pore size: 0.8 µm) the samples were dispersed. After the

filter was dried the sample was removed with a spattle and dissolved in ethanol.

Figure 7.1 SEM image of a complete coccosphere of E. huxleyi. The zoomed in area shows a
SEM image of a single coccolith.

The plan-view samples were prepared by dropping the samples on a copper TEM finder grid

coated with a holey carbon film. This allowed determining the position of a well preserved

coccolith of E. huxleyi in the SEM, which was then studied in detail in the TEM. To gain the

requested sample thickness the TEM grids were etched by floating coated side down in dH2O for

several hours. This has the advantage of being gentler than the HCl treatment. The thinning

time has to be adjusted for each species. For E. huxleyi a thinning time of 30 h was found to
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be adequate and resulted in a thickness between 60 nm and 90 nm.

For the Iceland spar plan-view samples the crystals were pulverized first using a mortar.

Afterwards the powder was kept in bi dH2O for 26 h and then dropped on a TEM copper grid

with a lacey carbon film. These samples were dried and could be used immediately without

further etching. To avoid contamination problems these samples were plasma cleaned for 20 s

directly before the TEM investigations.

For the coccolith cross-section preparation the 0-100 m and 100-200 m sample from the North

Atlantic and the three samples from the South Atlantic series were used. To remove the salt and

to enhance the coccolith concentration the North Atlantic samples were dialyzed and centrifuged

as described above for the preparation of the plan-view samples. Afterwards the samples were

dropped onto a Si-Wafer. The south Atlantic samples were used directly for the cross-section

preparation. This allows us to compare whether the thinning/dialysis in dH2O causes deminer-

alization.

To obtain cross-sectional TEM samples, conventional preparation methods were not successful

and therefore the target prepared TEM samples were obtained by FIB sectioning. It is known

that radiation damage under ion bombardment can easily occur [22]. In order to protect the

sensitive sample material a carbon layer of a total thickness of around 1 µm was deposited on

the sample surface. Firstly, an approximately 50 nm thin carbon layer was deposited by EBID

at 2.5 kV, using the high current mode and an 120 µm aperture for a total of 15 min. Secondly,

the thicker protection layer was deposited on top of that for 5 min via IBID, using a beam

current of 300 pA at 30 kV. In this study carbon was used instead of platinum, since it turned

out that platinum affected adversely the sample’s behavior because it deeply penetrated into

the sample. The sectioning with Ga+-ions was done at a working distance of 4.9 mm while the

stage was tilted at 54◦. A lamella of a size of 2 µm x 20 µm x 5 µm was cut from the coccolith

and transferred to a lift out copper grid by a manipulator needle. Carbon was used to fix the

lamella onto the grid. The final polishing of the lamella was done with 40 pA at 30 kV from

both sides of the lamella until the lamella had a final thickness of around 70 nm.

To prepare a crosssection of the Iceland spar crystals the sample was pulverized first and

then dissolved in ethanol. Afterwards the sample was dropped on a Si-Wafer and dried. A thin

carbon film using a BAL-TEC coating system was deposited on the samples, which were then

FIB sectioned as described above for the coccoliths. The final sample thickness was around

70 nm as well.

7.3.2 Material transformation

In the present work, besides investigating suitable sample preparation techniques, we were also

interested in the material stability under electron beam bombardment using 300 kV electrons.

For the assessment of damage we used changes in the diffraction pattern, formation of randomly

oriented nano-crystals (nanomosaic) and changes in the low-loss and core-loss EELS data. The

accumulated electron dose was calculated from the beam current,the size of the illuminated area
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and the time after the irradiation had started [21, 8]. Images and EELS data obtained with

the maximum tolerable dose, above which the first visible material transformation occurred, are

shown. To illustrate the effect of damage and associated material change, we also present images

and data with clearly visible changes taken after long acquisition times and a high accumulated

dose exceeding the tolerable value by several magnitudes. A detailed time dependent damage

study was beyond the scope of the present work.

The intention to use 300 kV was motivated by the fact that a higher spatial resolution can be

achieved compared to 80 kV measurements and that radiolysis is expected to be lower [8]. In a

very recent study, we have successfully performed nanoprobe electron diffraction investigations

at 80 kV on coccoliths to determine their crystallographic assembly [23], however, the quality

of the HR images was low. Thus it will be beneficial for future studies e.g. to detect defect

structures in the coccoliths, if we can demonstrate the successful use of 300 kV electrons.

The TEM measurements of the coccolith plan-view samples have been performed on four

different samples. Figure 7.2a exemplary shows a BF TEM image of a plan-view sample at

higher magnification segments before beam damage occurred and the material transformed.

Selected area electron diffraction pattern of the undamaged samples revealed that the coccoliths

consist of single-crystalline calcite (Fig. 7.2b). Corresponding HRTEM images confirmed that

the untransformed material is single-crystalline (Fig. 7.2c). The maximum tolerable dose above

which damage was observed was 105 e/nm2 . As Figure 7.2d reveals the material clearly changes.

The diffraction patterns taken after 5 min exposure time corresponding to a accumulated dose

of 3×107 e/nm2 show a transformation from single-crystalline calcite into a poly-crystalline

material (Fig. 7.2e). This can be also seen in the HRTEM micrographs like in Figure 7.2f.

The analysis of the SAED patterns exhibits the d-spacings of the transformed material. The

values indicate the formation of poly-crystalline calcium oxide, lime. In principle, considering

an error of 3% of the determined d-values the transformed material could be assigned to poly-

crystalline aragonite (a CaCO3 modification) as well, even this is very unlikely since calcite is

thermodynamically much more stable than aragonite. Nevertheless, using electron diffraction

only, it cannot be excluded.

The beam damage experiments were done at two different coccolith cross-section samples. In

Figure 7.3a an exemplary BF TEM image of an E. huxleyi segment prepared by FIB sectioning

without prior beam damage is given. The SAED pattern of undamaged areas of the sample,

as exemplary shown in Figure 7.3b reveal d-spacings that indicate single-crystalline calcite.

Also the HRTEM images (Fig. 7.3c) of the undamaged sample confirm that the sample is

single-crystalline. In Figure 7.3d the BF image of the same sample as in figure 7.3a after an

exposure to a dose of ∼3×107 e/nm2 of electron beam bombardment is given. Obviously, beam

damage occurred and the corresponding diffraction patterns (Fig. 7.3e) reveal a transformation

from a single into a poly-crystalline material. This can be confirmed by HRTEM imaging

as figure 7.3f shows exemplary. For the plan-view coccolith samples the analysis of the poly-

crystalline diffraction pattern indicates that the transformed material is lime or aragonite.

Similar measurements as described for the E. huxleyi coccolith plan-view and cross-section
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Figure 7.2 TEM investigations of a representative plan-view sample recording the beam sensi-
tivity of the material at an acceleration voltage of 300 kV.
a) BF image of an E. huxleyi coccolith plan-view sample (North Atlantic 200-300 m)
before beam damage occurs.
b) Selected area electron diffraction pattern of an undamaged area of the coccolith
indicating single-crystalline calcite.
c) An area of the coccolith without beam damage is shown in this HRTEM image.
It is indicating that the material is single-crystalline. The white lines highlight the
position of the (2 1 3) lattice plane. The accumulated dose was ∼105 e/nm2.
d) BF image of an E. huxleyi coccolith plan-view sample after 5 min under electron
beam bombardment.
e) The transformation of the coccolith calcite can be seen in this selected area electron
diffraction pattern. The transformation of crystalline calcite to a poly-crystalline ma-
terial after 5 min under electron beam bombardment is given here. The accumulated
dose was ∼3×107 e/nm2. Since the diffraction patterns d-spacings show a smaller
error for lime the hkl- values for lime are given here.
f) HRTEM image showing an area of the coccolith after 5 min of beam bombard-
ment. It is indicating that the material is transformed from a single-crystalline to
a poly-crystalline material. To illustrate the transformation different lattice plane
distances are highlighted by white lines.

samples were performed with mineralogical single-crystalline calcite (Iceland spar). These ex-

periments were used to verify if calcite from geological and biological sources behave differently

under electron beam bombardment.

For the beam damage experiments four different plan-view samples were investigated. The

results of these studies are exemplarily shown in figure 7.4. A BF image of an undamaged area
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Figure 7.3 The analysis of a cross-section coccolith sample recording the beam sensitivity of the
material by TEM. The measurements were done at an acceleration voltage of 300 kV.
a) This BF image illustrates how an E. huxleyi coccolith cross-section sample appears
before beam damage occurs (South Atlantic 48 m).
b) A SAED pattern of an undamaged area of the coccolith is given. The analysis of
the d-spacings indicate single-crystalline calcite in the [1 1 0] zone axis.
c) HRTEM image taken at an area of the coccolith without beam damage. It is
indicating that the material is single-crystalline and the position of the (0 0 3) lattice
plane is marked.
d) The E. huxleyi coccolith cross-section sample after 2 min under electron beam
bombardment is shown in this BF image. The damaged area is marked by the white
circle.
e) Selected area electron diffraction pattern of a damaged area of the coccolith in-
dicating the transformation of crystalline calcite to a poly-crystalline material after
2 min under electron beam bombardment corresponding to an accumulated dose of
∼107 e/nm2. The hkl values for lime are given here, since the diffraction patterns
d-spacings show a smaller error for lime.
f) An area of the coccolith after 2 min of beam bombardment is shown in this HRTEM
image. This result reveals that the material is transforming from a single-crystalline
to a poly-crystalline material. The white lines highlight the different lattice plane
distances.

of the single calcite crystal is given in figure 7.4a. The corresponding diffraction pattern given

in figure 7.4b indicates single-crystalline calcite in the [1 1 1] zone axis. The HRTEM image

given in figure 7.4c confirms that the sample material is single-crystalline. The Iceland spar

plan-view samples changed under electron beam bombardment, as clearly shown in figure 7.4d.
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Figure 7.4 The beam sensitivity of the Iceland spar plan-view sample investigated by TEM at
an acceleration voltage of 300 kV.
a) The calcite sample before beam damage occurs is shown in this BF image.
b) The SAED pattern of an undamaged area of the calcite single-crystal is acquired
in the [1 1 1] zone axis.
c) The single-crystalline character of the material is also shown in this HRTEM im-
age of an untransformed sample. The (1 1 0) lattice plane is highlighted by the white
lines.
d) A BF image of the Iceland spar crystal after electron beam bombardment corre-
sponding to an accumulated dose of ∼107 e/nm2 is given here. The beam damage
area is marked by the white circle.
e) The SAED pattern of the damaged area of the crystal shows the material transfor-
mation. The single-crystalline calcite transforms to a poly-crystalline material, which
can be indicated as lime by the d-spacings. The hkl values are given in the image.
It is worth to mention that considering an error of 3 % the d-spacings could indicate
aragonite as well.
f) In the HRTEM image the crystal after less than 2 min of beam bombardment
is shown. It confirms the transformation of the crystal from a single-crystal into a
poly-crystal. The transformation is illustrated by the different lattice plane distances,
which are highlighted by white lines.

The diffraction pattern (Fig. 7.4e) taken in that area reveals a transformation from single-

crystalline calcite into a disordered poly-crystalline material. In the corresponding HRTEM

image (Fig. 7.4f) this transformation is also clearly visible. The d-spacings of the transformed

material were analyzed and revealed that the calcite transforms also into lime or aragonite under

electron beam bombardment.
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Figure 7.5 TEM investigations of the Iceland spar cross-section samples done at an acceleration
voltage of 300 kV to record the beam sensitivity of the material.
a) This BF image shows an untransformed Iceland spar cross-section sample.
b) The SAED pattern of the undamaged sample reveals a single calcite crystal in the
[1 1 0] zone axis.
c) The corresponding HRTEM image is showing an area of the Island spar without
beam damage. The lattice planes confirm that the material is single-crystalline and
the position of the (0 0 3) lattice plane is highlighted by white lines.
d) The crystal after 5 min under electron beam bombardment corresponding to an
accumulated dose of ∼3×107 e/nm2 can be seen in this BF image. The damaged
area is clearly visible.
e) Selected area electron diffraction pattern of a transformed area of the calcite crys-
tal. Here the transformation of single-crystalline calcite to a poly-crystalline material
can be seen. Since the diffraction patterns d-spacings show a smaller error for lime
the hkl values for lime are given here.
f) After 5 min of beam bombardment the sample clearly changed, which can be re-
vealed in the HRTEM image. It confirms the transformation from single-crystalline
calcite to a poly-crystalline material. To illustrate this transformation different lattice
plane distances are highlighted by white lines.

The beam stability of the Iceland spar FIB prepared sample was investigated as well. Therefore

TEM measurements at different areas of one cross-section sample were performed. Figure 7.5a

shows an exemplary BF TEM image of an Iceland spar cross-section without beam damage. In

the SAED pattern of the undamaged area the material could be identified as single-crystalline

calcite in the [1 1 0] zone axis (Fig. 7.5b). This was confirmed by HRTEM imaging of the

undamaged sample as shown in figure 7.5c.
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An example of a cross-section sample after 5 min of electron beam bombardment corresponding

to an accumulated dose of ∼3×107 e/nm2 is given in figure 7.5d. The area where the beam

damage occurred and the material changed can clearly be seen. The corresponding diffraction

pattern (Fig. 7.5e) of this area shows the transformation from a single-crystal into a poly-crystal.

The HRTEM image taken in this area (Fig. 7.5f) confirms that the material is becoming poly-

crystalline. As for the coccolith and the Iceland spar plan-view samples the analysis of the

diffraction pattern revealed that the material also transformed into poly-crystalline lime or

aragonite.

Figure 7.6 EELS measurements acquired in diffraction mode of plan-view coccolith samples
showing the low-loss region, the carbon K-edge, the calcium L2,3-edge and the oxygen
K-edge before and after beam damage occurred. The measurements were performed
at an acceleration voltage of 300 kV.

Figure 7.7 EELS measurements taken in diffraction mode on the Iceland spar plan-view samples
giving the low-loss region, the carbon K-edge, the calcium L2,3-edge and the oxygen
K-edge before and after beam damage occurred. The investigations were done at an
acceleration voltage of 300 kV.
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EELS measurements were performed in diffraction mode using the plan-view and the cross-

section coccolith and Iceland spar samples. Since the spectra of the plan-view and the cross-

section samples are similar, the spectra of the plan-view samples are exemplarily shown here

(Figs. 7.6 and 7.7). The performed EELS measurements as well as the SAED experiments

and HR imaging show that the material is changing under electron beam bombardment. This

transformation can be observed for the E. huxleyi coccolith (Fig. 7.6) and the Iceland spar

samples (Fig. 7.7). For the Iceland spar samples the acquisition time was shortened to 1 s with

10 read-out cycles for the carbon C-K and calcium Ca-L2,3 edge and to 1 s with 100 iterations

for the oxygen O-K edge. With these parameters the calcite did not transform during the

measurement. The EELS measurements for the E. huxleyi coccolith were performed for 1 s with

100 interactions for the C-K and the Ca-L2,3 edge and with 10 s with 20 interactions for the O-K

edge. Due to the lower acquisition times the element specific edges are noisier for the Iceland

spar samples (Fig. 7.7) compared to the spectra of the coccolith plan-view samples (Fig. 7.7).

The low-loss region reveals a dominant peak at around 36 eV belonging to the Ca-M2,3 edge

(edge onset at around 25.5 eV) superimposed on the plasmon peak. The low-loss region of the

coccolith and the Iceland spar appear clearly different after material transformation. While the

features in the low-loss region of the undamaged samples show a small intensity peak followed

by a high intensity peak at around 36 eV with a small width, the small peak splits into two

peaks and gets more prominent in the damaged samples (Figs. 7.6 and 7.7). Within the energy

resolution of our EELS experiments, the ELNES of the C K-edge as well as the Ca-L2,3 ELNES

do not significantly change (except for a change in the intensity ratio between the peaks of the

C-K-edge). In contrast the O-K edge does clearly change (Figs. 7.6 and 7.7). The O-K edge

of the undamaged samples reveals two characteristic features at the beginning of the edge, a

small pre-peak followed by a high intensity main peak with a shoulder at the high energy side

(Figs. 7.6 and 7.7). After material transformation the intensity of the pre-peak increases and

the shape of the main peak changes (Figs. 7.6 and 7.7).

7.4 Discussion

Radiation damage occurring during TEM investigations is a well known phenomenon and various

observations are described in literature [7, 8, 24, 25]. Egerton et al. reviewed different ways in

which the electron beam can affect inorganic and organic samples during electron microscopic

examination [7]. This study confirmed that the amount of radiation damage is proportional to

the electron dose and the amount of energy deposited in the specimen [7]. They found that

a highly condensed electron beam can induce severe beam damage. Egerton reported in 2013

about the control of radiation damage for soft materials and organic specimen by low-dose

techniques, cooling or encapsulating procedures. In addition the choice of the imaging mode,

incident-beam diameter as well the incident-electron energy was discussed [24].

Srot et al. demonstrated the strong influence of the electron beam on mineralized dental tissues

and dental pulp. In their study the changes in composition and the associated differences in the
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ELNES were shown for different sample preparation methods [26]. They used FIB sectioning

by Ga+ ions, ultramicrotomy, pulverization and tripod polishing followed by Ar+ ion-milling

performed with liquid nitrogen cooling. They found tripod polishing followed by low Ar+ ion

energy milling (at low temperature) is best suited for their material [26].

Our investigation of the biological and mineralogical formed calcite prepared with two different

techniques revealed that all samples have similar stability and behavior under electron bombard-

ment. The transformation of single-crystalline calcite into a poly-crystalline material could be

observed for all four samples with SAED and HRTEM. The analysis of the diffraction pattern

revealed, considering a systematic error of 3 %, that the material is either poly-crystalline lime

or poly-crystalline aragonite. The latter is unlikely to form, however, only additional EELS

measurements allow to determine uniquely, which material is formed during the transformation.

In comparison with the low-loss data for lime of Mkhoyan et al. [27] and for aragonite of Katti

et al. [28] it turned out that the poly-crystalline material is lime. The peaks in the low-loss

region of CaO show significant characteristics, which are comparable with the features of our

measurement, while the low-loss region of aragonite is similar to the low-loss region of calcite.

This result could be confirmed by comparison of the oxygen K-edge ELNES with the data for

lime of Mkhoyan et al. [27] and for aragonite of Srot et al. [29]. The oxygen K-edge ELNES of

lime shows similar features as observed in our data after beam damage had occurred (Figs. 7.6

and 7.7), while the oxygen K-edge ELNES of aragonite possesses different characteristic features.

The transformation of calcite to lime under electron beam bombardment was already described

by Boynton [30]. Ruiz-Agudo et al. [9] and Rodriguez-Navarro et al. [10] used two dimensional

X-ray diffraction and TEM diffraction experiments to study the phase transformation of cal-

cite by thermal decomposition as well as by electron beam bombardment. They also observed

the formation of lime. Reyes-Gasga and Garcia-Gacia [25] studied the electron-beam-sample

interaction using an accelerating energy range from 0.1 to 2 MeV. The analysis was based on

the standard theory for fast electrons. This theory was applied for the systems YBA2Cu3O7−x,

Al62Cu20Co15Si3 and the tooth enamel hydroxylapatite. In this study it was shown that in sam-

ples consisting of different atomic species, atoms with small binding energy are displaced first.

The remaining atoms are displaced at higher acceleration voltages and amorphization could be

observed [25]. Beside that the acceleration voltage and the temperature are important factors.

The developed theory described the individual atomic behavior in crystals before disordering

takes place [25]. In the case of the tooth enamel hydroxyapatite a transformation to lime under

expulsion of (OH)− ions was observed [25]. In our work the transformation of calcite to lime was

also noticed. Here the transformation occurs under CO2 dispersion, which was also described

by Rodriguez-Navarro et al. [10]. This material change can be attributed to heating processes

in the TEM and the binding energy of the material [10].

In our study the electron beam stability of biological and mineralogical grown calcite was com-

pared. We found no significant differences in stability for the biological calcite of E. huxleyi and

the mineralogical single-crystalline calcite (Iceland spar). In addition a similar transformation

behavior was observed. This is mostly related to the finding that an organic layer is surrounding
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the coccoliths and organic is not present within the crystal units or between nanosized calcite

crystals. This is different compared to other multi-cellular marine calcifiers [23]. Accordingly

the coccoliths behave similar as geological calcite and this explains why they resist a relatively

high accumulated dose.

A further aim was to investigate if the sample preparation has an influence on the stability

of the samples. Our findings reveal that the E. huxleyi and Iceland spar plan-view samples

prepared by etching with dH2O as well as the cross-section samples prepared by FIB sectioning

behave similar under electron bombardment and show beam damage above an accumulated dose

of ∼105 e/nm2. In conclusion, we did not find any significant effect of the preparation techniques

for the sample stability.

Our results show that it is possible to investigate calcite samples at 300 kV by fast using a

moderate maximum dose of ∼105 e/nm2. Recently we have studied E. huxleyi samples with an

acceleration voltage of 80 kV and a low dose, with a focus on the crystallographic orientation of

the R-unit and the V-unit and the assembly of the R-unit [23]. Herby we reduced the knock-on

damage and the material transformation to lime occurred after longer acquisition times [23]. It

is worth to mention that other types of beam damage might occur at 80 kV. Nevertheless, the

resolution especially for HRTEM imaging is much better for 300 kV and thus the finding of the

present study will allow us to observe structural changes caused by pH variations in the future.

The results of this study show that both sample preparation methods are very well suitable

for biological and mineralogical calcite samples. Cross-section preparation for the E. huxleyi

coccoliths by FIB sectioning is very appropriate. Pronounced artifacts or defects caused by the

ion milling could not be observed in the TEM, at least in the interior of the coccolith segments

(Fig. 7.3a-c) and the stability of the crystals is not affected, as confirmed by comparison with the

plan-view samples (Fig. 7.2a-c). The sample preparation of the plan-view coccolith samples by

etching with distilled water turned out to be a very gentle method to obtain adequate electron

transparent samples for TEM investigations. In comparison with the more aggressive HCl our

study reveals that by etching with distilled water the coccolith assembly stays intact and the

delicate structure of E. huxleyi can be preserved. In addition, the comparison between the results

of the South Atlantic samples prepared by FIB and the ones obtained by thinning with dH2O

show that demineralization does not occur.

7.5 Conclusion

Preparation methods for TEM plan-view and cross-section samples were successfully developed

and adjusted for the sensitive shell of E. huxleyi and Iceland spar. The electron beam sensitivity

of the biological and mineralogical calcite was investigated by HRTEM, electron diffraction

and EELS in order to find suitable parameters for TEM measurements. The results show that

both preparation techniques, FIB sectioning for cross-section and dH2O etching for plan-view

studies, lead to samples which can be illuminated with an parallel electron beam up to an

accumulated dose of ∼105 e/nm2 without altering the ultrastructure. For longer acquisition
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times, the diffraction pattern indicated a change from single-crystalline calcite into a poly-

crystalline material. This was confirmed by HRTEM, where the formation of nano-crystals

was observed. Changes in the low loss region of EEL spectra as well as in the ELNES of the

element specific O-K edges indicate the formation of lime. No significant differences in the

electron beam stability of the biological and mineralogical grown calcite were found. With these

findings, studies of the CaCO3 shell of E. huxleyi in dependence on the environmental conditions

become feasible.
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8 Insight in Emiliania huxleyi coccospheres

by focused ion beam sectioning

This chapter is based on the following publication:

Hoffmann R., Kirchlechner C., Langer G., Wochnik A. S., Griesshaber E., Schmahl W. W.

and Scheu C. (2015): Biogeosciences 12 825-834

8.1 Introduction

In the context of the current climate change debate, understanding ecosystem response to envi-

ronmental disturbances has become a matter of unprecedented urgency. To predict how ecosys-

tems in general and groups of organisms in particular will respond to ongoing changes such as

global warming and ocean acidification, an understanding of past climate changes and the cor-

responding response of organisms is pivotal [1, 2]. The marine sedimentary archive potentially

provides an enormous database of past organismal responses to climate change [3]. In particular,

the calcium carbonate shells of the major pelagic calcifiers – coccolithophores and foraminifera –

constitute an archive that extends for tens of millions of years [4, 5]. Coccolithophores are

surrounded by a sphere (termed coccosphere) of interlocking calcareous platelets, the coccoliths

which consist primarily of a radial array of complexly shaped crystals of calcite [6, 7, 8]. Both

the chemical composition of coccoliths and the morphology of the coccosphere as well as of the

coccoliths provide information about physiological parameters such as growth and calcification

rate at different times in the geological past [9, 2]. The morphological analysis of coccospheres

and coccoliths relies on SEM, a tool which renders the accurate determination of size and mor-

phological modification possible [10, 11]. Until now, SEM samples were often prepared by means

of conventional sample preparation methods – either smearing coccoliths onto sample holders

or using the microtome to create single cross sections through the cells. However, advances in

technology now allow us to serially image and section through the coccospheres, opening up a

whole new way of observing coccosphere architecture. This is important since some features

cannot be revealed by classical SEM. The number of coccoliths per cell, for instance, can only

be estimated on the basis of the coccoliths that can actually be seen [11]. The coccolith quota

is needed to calculate particulate inorganic carbon (PIC) quota. The inner coccosphere diame-

ter, which equals the cell diameter, can be used to calculate particulate organic carbon (POC)

quota. Both coccolith quota and inner coccosphere diameter cannot be determined using con-
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ventional SEM, but can be obtained accurately by FIB sectioning combined with SEM. The

PIC/POC ratio determines whether coccolithophores act as a source or a sink of CO2 relative to

the atmosphere [12, 13, 14] and therefore is an important variable for modeling carbon cycling

in the oceans [15]. Moreover, coccolithophore response to climate change is often expressed in

terms of PIC and POC quotas. Shedding light on these features and gaining further insight into

coccosphere architecture requires step-by-step cross sectioning of complete coccospheres.

A helpful tool to gain information on the interior architecture of samples is FIB-SEM [16, 17,

18, 19, 20]. This combination enables bulk samples to be locally sectioned by means ion milling

and subsequently imaged at high resolution [21]. This application of FIB-SEM instruments is

commonly referred to as FIB tomography [16, 22]. Using FIB-SEM tomography to investigate

insulators like biological, geological and ceramic samples is challenging because of charging effects

that disturb the sectioning as well as the imaging [21]. Nevertheless the FIB-SEM microscope

is often used to analyse biological materials which are difficulty to cut, such as teeth [23] and

bones [24]. Another application for FIB-SEM microscopes in biology is the preparation of thin

lamellae which can be analysed in a TEM [21, 25, 26]. Using BSE instead of SE for the image

formation allows for discrimination of differently aligned crystals with the same mass contrast

due to channelling contrast mechanisms, which depend on the crystallographic orientation of

the investigated volume [21].

In the present work FIB-SEM sectioning and SE as well as BSE imaging were used to study the

coccosphere’s internal architecture and to determine the coccolith quota of the abundant coccol-

ithophore species E. huxleyi . The so obtained information was used to calculate the PIC/POC

ratio and to estimate the density as well as the sinking velocity of individual coccolithophore

cells.

8.2 Materials and methods

8.2.1 Samples

Clonal cultures of E. huxleyi type A (strain RCC1238) [27] were grown in aged, sterile-filtered

(0.2 µm pore-size cellulose-acetate filters) North Sea seawater enriched with 100 µmol L−1

nitrate, 6.25 µmol L−1 phosphate, trace metals and vitamins as in f/2 medium [28]. The

strains were obtained from the Roscoff Culture Collection (www.sb-roscoff.fr/Phyto/RCC). The

cultures were grown under a 16 : 8 hour light–dark cycle at a light intensity of 400 µmol photons

m−2s−1 in an adjustable incubator (Rubarth Apparate GmbH, Germany) at 20 ◦C. Cells were

grown in dilute batch cultures, ensuring a quasi-constant seawater carbonate system over the

course of the experiment [29].

The sample was filtered directly after the collection with a vacuum pump onto an Omnipore

polycarbonate membrane filter (diameter: 47 mm; pore size: 0.45 µm), which was dried at 60 ◦C.

The material was then removed with a spatula from the dried filter and dissolved in ethanol.

Next the sample was dropped on a Si-Wafer and dried. In order to protect the sensitive sample
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material from electron beam damage and to avoid charging effects, a thin carbon film using a

BAL-TEC coating system was deposited.

8.2.2 Serial sectioning and imaging

Serial sectioning was performed with a Zeiss Auriga R© crossbeam, using the SEM for imaging

and the FIB microscope for cutting roughly 50 nm thick slices from the coccolithophore samples.

The acceleration voltage of the SEM was set to 2 kV, and a 30 µm aperture was chosen, resulting

in a 20 pA imaging current. The Auriga R© is equipped with SE, BSE and in-lens detectors, which

were used to image the cross-sectional slices at constant contrast and brightness settings.

The FIB gun was operated with 30 kV Ga+ ions and a current of 240 pA. During the cutting

process the FIB gun is inclined by 54◦ with respect to the SEM gun and no sample rotation

or tilt is required for imaging the cross section of the cut sphere. In order to minimize the ion

beam damage, a local electrode was used to avoid charging and drift correction was performed

before and after each slice. Drift correction and slice thickness measurement were carried out

using a cross-marker in a post-processing step.

8.2.3 Carbon quota and density estimates

The cellular PIC quota was calculated using the following equation [29, 10]:

PIC[pg]

cell
= n×m× MC

MCaCO3

= n× ρ× MC

MCaCO3

× V = n× ρ× MC

MCaCO3

× ks × L3. (8.1)

Here, n is the number of coccoliths per cell (coccosphere); m is the mass of one coccolith; MC
MCaCO3

is the molar mass ratio of C and CaCO3, which is equal to 0.12; ρ is the density of the coccolith;

and V is the volume of one coccolith. V can be estimated using the coccolith length L and the

shape constant ks [10]. To compare our results to those of the literature, we used a coccolith

length of L = 3.5 ± 1.0 µm and the E. huxleyi morphotype A shape constant value ks = 0.020

± 0.004 [10]. In addition, a density value of ρ = 2.7 pg/µm3 was used, which is based on the

assumption that the coccoliths are pure calcite [10]. The parameter n, the number of coccoliths

per cell, was determined experimentally by using the FIB sectioning.

The cellular POC quota can be calculated according to the literature as follows [30]:

POC[pg]

cell
= a× V b

cell. (8.2)

Here, Vcell is the volume of the cell (protoplast), which is calculated from the inner coccosphere

diameter, and a and b are constants which vary depending on the investigated species. For

plankton the literature values obtained via log–log plots are b = 0.939 (with a 95% confidence

interval of 0.041) and log a = -0.665 (with a 95% confidence interval of 0.132), resulting in a

value of a = 0.216 [30]. For better comparison with the literature, we have used these values

for our calculations. The inner coccosphere diameter was obtained experimentally by using the
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FIB cross sections.

The overall cell density was calculated from the total cell volume and mass. The total cell vol-

ume was estimated using the outer coccosphere diameter. The total cell mass was calculated as

follows: the density of the protoplast was assumed to be equal to the density of seawater. Using

this assumption and the inner coccosphere diameter, i.e. the maximum protoplast diameter, the

mass of the protoplast was calculated. The mass of the coccosphere, i.e. the calcite extracellular

matrix mass and the non-calcite extracellular matrix mass, was calculated by using the cellular

PIC quota, converted to the cellular calcite quota. The cellular calcite quota divided by the

density of calcite yields the volume of the coccosphere occupied by calcite. The volume derived

from the outer coccosphere diameter minus the volume derived from the inner coccosphere di-

ameter yields the total coccosphere volume, precisely the volume of the extracellular matrix.

The latter minus the volume of the coccosphere occupied by calcite equals the volume of the

coccosphere not occupied by calcite. This residual volume was assumed to have the density of

seawater. Using the non-calcite coccosphere volume and the density of seawater, the mass of the

non-calcite coccosphere volume can be calculated. The total cell mass was therefore the sum

of the protoplast mass, the non-calcite extracellular matrix mass and the calcite extracellular

matrix mass. The total cell mass divided by the volume derived from the outer coccosphere

diameter equals the overall cell density. The sinking velocity was calculated according to Stokes

law [31] using the overall cell density, the outer coccosphere radius, the density of seawater

(1.024 pg/µm−3) the dynamic viscosity of seawater (0.00107 kgms−1) and the acceleration due

to gravity (9.81 ms−2).

8.3 Results

To investigate the 3D morphology of the coccolithophore species E. huxleyi serial sectioning

in the SEM-FIB was used. SE images acquired at different stages of the milling (the video

of the whole sequence can be found in the supplementary information) illustrate the complex

morphology of E. huxleyi (Fig. 8.1). Starting from a single complete coccosphere (Fig. 8.1.1), the

individual coccoliths are milled by Ga+ ions (Fig. 8.1.2). When the interior of the cell is reached,

it becomes obvious that the individual coccolith platelets are layered (Fig. 8.1.3 and 8.1.4). For

the shown example, the layers of coccoliths are uneven (Fig. 8.1.5 and 8.1.6.); however this is

only visible after the middle of the coccosphere is reached. These results imply that the whole

coccosphere has to be milled (Fig. 8.1.7 and 8.1.8), and it is not sufficient just to mill part of the

organism. Our methodology also enables us to visualize the organic residues and intracellular

coccoliths within the coccospheres (Fig. 8.1). However, for a detailed study of the intracellular

coccolith, it would be necessary to reduce beam damage of the organic material even further by

using, for example, a He source instead of a Ga source in the FIB.

To get reliable information of the coccosphere architecture of a specific strain, it is not suf-

ficient to mill only one sample. Exemplary SE images of six sliced E. huxleyi coccospheres are

summarized in Fig. 8.2. To illustrate the size distribution of the cell cavity, the images used for
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Figure 8.1 SEM-FIB sectioning sequence of the coccolithophore species E. huxleyi. Image 1
shows the complete coccosphere before slicing, and in 2 the sectioning has just be-
gun. Images 3 and 4 reveal the interlocked layers of coccoliths which make up the
coccosphere. The coccosphere is formed by three coccolith layers at the upper region
and one in the lower region (5). An organic residue of the coccolithophores cell in
the upper area of the sphere is visible in 6. In 7 and 8 the last steps of the sectioning
can be seen.
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Figure 8.2 Six exemplary SE images of cross sections through the coccolithophore species E.
huxleyi. The coccosphere in image 1 is composed of four coccolith layers and shows the
highest shell thickness. In 2 a coccosphere composed of three coccolith layers given.
A coccosphere that indicates that the coccolith layers are not equally spread over the
sphere is shown in image 3 and 4. Images 5 and 6 reveal that the shell thickness of
the coccospheres is different depending on the number of coccolith layers.
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this figure show the maximum diameter of the cavity. The architecture, i.e. the interlocking

of individual coccoliths, as well as the diversity in coccolith layer numbers and the assembly

of the coccolith layers can be seen. We found that the coccospheres of our cultured clone are

quite heterogeneous. Some have three layers of coccoliths (Fig. 8.2.2 and 8.2.4), whilst others

have only two (Fig. 8.2.3). Only one coccosphere was found which had four layers of coccoliths

and a smaller inner coccosphere diameter compared to the others (Fig. 8.2.1). Whether this

represents a trend, however, cannot be decided on the basis of a single observation. Most of the

coccospheres have an unequal number of layers (Fig. 8.2.3–8.2.6), which may correspond had

coccoliths that were evenly distributed. The FIB-SEM data indicate that the thickness of the

coccospheres is related to the coccolith layer number.

The number of coccoliths that make up the sphere were also counted and used for the calcu-

lation of the POC quota. Two different approaches were used to determine the coccolith quota.

In one approach only one SEM image was used. Here all visible coccoliths were counted and

the coccoliths on the reverse side were estimated. An average of 15 coccoliths were found for

the coccospheres containing 2–3 layers. In a second approach the total coccolith number was

counted by using the FIB section series. This method showed that the 2–3-layer coccospheres

consist of around 20 coccoliths per cell.

Serial SEM-FIB sectioning was performed at 27 different E. huxleyi coccolithophores to com-

pare the inner and outer diameters, the number of the coccoliths and layers, and their influence

on the shell thickness. The SE images which showed the maximum diameter of the cavity were

used to measure the diameter of the outer and inner coccosphere shell. The correlation between

inner and outer diameter of the coccosphere shell is given in Fig. 8.3. The open circles denote

the outer diameter and the filled circles the inner sphere diameter, which are plotted in Fig. 8.3a

as a function of the maximum number of layers (in the case of non-equally distributed number

of coccoliths). The gray lines correspond to the fitted slope as well as to the calculated 0.9,

0.95, and 0.99 confidence levels. The inner diameter of the coccosphere, which equals the cell

diameter, is independent of the maximum number of coccolith layers, while the outer diameter

increases linearly with the maximum number of coccolith layers. In addition, in Fig. 8.3b we

have plotted the inner and outer diameter of the coccosphere as a function of the number of

coccoliths forming this shell. A similar trend can be observed with the inner diameter remaining

nearly constant and the outer diameter increasing with increasing number of coccoliths.

Figure 8.4 shows the relationship between coccosphere thickness (outer–inner diameter) and

the number of coccolith layers. As described above, the number of coccolith layers is evenly

distributed over the coccosphere in only one of three cases. For the coccospheres where the

coccoliths were not evenly distributed, the maximum number of layers was used in the plot.

Coccospheres with 1–4 coccolith layers were observed and since most measured points are given

for 2–3 layers, the average coccolith layer number for the strain used is 23 (Fig. 8.4). The

plot also reveals that the coccosphere thickness increases by about 1 µm per coccolith layer

(Fig. 8.4a). The thickness of the coccosphere as a function of the number of coccoliths forming

this shell is given in Fig. 8.4b. It can be seen that the thickness is increasing linearly with
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Figure 8.3 The correlation between inner and outer coccosphere diameter is illustrated. The
filled blue circles in (a) show the measured values for the inner diameter, while the
open red circle display the data for the outer diameter of the coccosphere. In (b)
the dots with a blue shell refer to the outer and the ones with a red shell to the in-
ner coccosphere diameter. The black filling relates to coccospheres with a maximum
thickness of one layer, the yellow to those with a maximum of two layers, the blue
to those with a maximum of three layers and the white to those with a maximum of
four layers. The fitted slopes as well as the calculated 0.9, 0.95 and 0.99 confidence
levels are given by the grey lines.

Figure 8.4 (a) The relationship between the number of coccolith layers which make up the sphere
and the thickness of the coccosphere shell is given. A maximum four layers was found
in this strain. It can be observed that the thickness increases by approximately 1 µm
with each coccolith layer. (b) In this plot the thickness is plotted as a function of the
number of coccoliths. The black dots refer to coccospheres with a maximum of one
layer, the yellow to those with a maximum of two layers, the blue to those with a
maximum of three layers and the white to those with a maximum of four layers. The
fitted slopes as well as the calculated 0.9, 0.95 and 0.99 confidence levels are given
by the grey lines.
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increasing number of coccoliths. The fitted slope as well as the confidence level is given by the

grey lines.

To gain detailed information of the coccosphere structure, different detectors were used for the

imaging. In Fig. 8.5 a coccosphere cross section imaged using two different imaging methods is

shown. An image obtained by a SE detector using the surface near secondary electrons is given

in 8.5.1. Here the surface topography is illustrated and the SE image gives a three-dimensional

impression due to the effect that surfaces which are inclined towards the detector appear brighter

than surfaces that are turned away [32]. In Fig. 8.5.2 a BSE in-lens detector was used to

create the micrograph. These images reveal information about the elements distribution. Light

elements like carbon appear darker than elements or materials with a higher atomic number.

Due to this so-called material/ compositional contrast the organic residue on the left side of

the coccosphere appears dark gray (Fig. 8.5.2). Besides material contrast, channelling contrast

can occur in BSE images, which depends on the crystallographic orientation of the investigated

volume and allows for differentiating of differently aligned crystals with the same mass-contrast.

Thus, the contrast differences of the coccoliths in the BSE image (brighter area at the lower

right side of the coccosphere in Fig. 8.5) can be caused by differences in the crystallographic

orientation of the calcite crystals and/or by differences in the angle of the exposed face relative

to the beam.

Figure 8.5 SEM images of the same coccosphere cross section taken using secondary electrons
(1) and backscattered electrons (2). Secondary electrons are generated closer to the
surface, so image 1 shows a lot more of the finer surface features. Backscattered
electrons are sensitive to chemical composition, and are generated deeper in the
sample.
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8.4 Discussion

In the present study, FIB-SEM sectioning was used to obtain detailed information about the

architecture of E. huxleyi coccospheres. FIB-SEM sectioning was shown to be appropriate for

biological samples for the first time in 1993 [33]. Since this seminal study this method has

improved and several groups have reported about the use of FIB-SEM microscopes for material

sciences and biological materials [34, 18, 24, 35, 36, 37]. Nevertheless, the investigation of

biological and non-conductive materials remains challenging due to the radiation-sensitive nature

of these samples and their interaction with the electron and ion beam [36]. The quality of the

imaging is limited by charging effects of the material [36]. In our study, charging was reduced

by depositing a thin carbon film and using a local electrode close to the imaged area. Thus,

drift due to charging during the FIB milling as well as SEM imaging was considerably reduced

and a continuous drift correction before and after each slice was not necessary. Slice thickness

evaluation and drift correction were only performed as a post-processing step using the SE images

and a cross-marker. The combination of these methods allowed us to increase the imaging quality

and to gain a relatively stable FIB section series. Nevertheless, charging effects could not be

avoided completely.

In any case, we have shown that FIB-SEM sectioning is an appropriate method for analysing

coccosphere architecture in a way which is impossible using conventional SEM. For instance,

the number of coccoliths per cell can only be estimated on the basis of conventional scanning

electron micrographs, because not all coccoliths can be seen. In an experimental study using

C. leptoporus the number of visible coccoliths per coccosphere was analysed in this way [38].

This approach might yield a satisfactory result for C. leptoporus, which typically produces one

layer of coccoliths only. However, the situation is more complicated in E. huxleyi , because the

species does not stop coccolith production upon cessation of cell division [11] or completion of

a coccosphere, resulting in multiple layers of coccoliths [39]. These multiple layers can even be

seen in exponentially growing cultures such as the one analysed here. We showed that E. huxleyi

RCC1238 features 2–3 layers of coccoliths, corresponding to 20 coccoliths per cell. Using the

conventional SEM view of a coccosphere, only 15 coccoliths can be seen, which underestimates

coccolith quota by 25%.

Another interesting aspect of multi-layer coccospheres is the diameter of the coccosphere. The

outer coccosphere diameter was positively correlated with the number of layers (Fig. 8.3). Our

results show that coccospheres composed of 1–3 coccolith layers have a quasi-constant inner

diameter of about 4.36 µm (Fig. 8.3).

Since the cell diameter is positively correlated with the POC quota [30], the inner sphere

diameter can be used to estimate POC quota. The corresponding PIC quota can be estimated

using coccoliths per sphere and converting the coccolith size to mass [10]. Hence, these data

render it possible to estimate the PIC/POC ratio of individual cells. We calculated a cellular

POC quota of 7.2 (standard deviation (SD) 2.1) pg/cell and a PIC quota of 5 (SD 1.5) pg/cell.

Both the POC and the PIC quota are lower than values determined on bulk samples using
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elemental analysis via dynamical flash combustion [29]. The difference between our estimates

and the data in [29], however, is very small considering the two radically different approaches

used to determine carbon quotas. First, we used a small sample of individual cells as opposed

to an average of millions of cells. Second, our estimates are based on standardised conversion

factors, which might not be perfectly suited for this particular set of samples. Third, our raw

data are biometrical as opposed to the chemical-analytical raw data on which the [29] data set

is based. The PIC/POC ratio estimated here, i.e. 0.72 (SD 0.24), falls well within the range

of values reported in [29]. The high, by comparison with data in [29], standard deviation of

0.24 reflects the fact that we picked a small number of cells comprising a considerable range

with respect to number of coccolith layers or number of coccoliths (Fig. 8.6). Despite the large

scatter in the data, a clear positive correlation between the PIC/POC ratio and the number of

coccoliths and coccolith layers occurs (Fig. 8.6).

Figure 8.6 The calculated PIC/POC ratio as a function of (a) maximum layer of coccoliths and
(b) number of coccoliths is given. In (b) the black dots refer to coccospheres with a
maximum of one layer, the yellow to those with a maximum of two layers, the blue
to those with to maximum of three layers and the white to those with a maximum of
four layers. The fitted slopes as well as the calculated 0.9, 0.95, and 0.99 confidence
levels are given by the gray lines.

At first glance this suggests that a higher PIC/POC ratio entails a higher overall density of

the cell [40]. This assumption is important in the ongoing debate on the question of nutrient

limitation of coccolithophores in particular and the function of coccoliths in general. It has been

proposed that coccoliths may have a ballasting function by increasing the cell’s density [31]. A

widely held, but by no means uncontested [41, 42], notion is that nutrient limitation leads to

increased calcification rate, which in turn leads to a higher overall cell density and thus increased

sinking rate [43]. Indeed, several studies have shown an increase in E. huxleyi ’s PIC/POC ratio

due to nutrient limitation regardless of the calcification rate [44]. Our data set renders it possible

to test the hypothesis that an increase in the PIC/POC ratio entails an increase in overall cell

density and therefore sinking rate [40].

The overall cell density and the sinking velocity are plotted as a function of the PIC/POC

ratios in Fig. 8.7. While the sinking velocity is linearly increasing with increasing PIC/POC
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ratio, there is no good correlation between overall cell density and the PIC/POC ratio. Hence,

a change in PIC/POC ratio alone is not sufficient to infer a change in overall cell density. While

this might seem counter-intuitive, it reflects the fact that cell architecture plays an important

role in defining overall cell density. This role of cell architecture has, understandably, been

overlooked so far.

In the context of a standard culture experiment, the number of analyses required is at least

an order of magnitude greater than the one performed in the present study. This is far too

time-consuming for the scope of a standard culture experiment, which usually focuses on other

parameters such as organic carbon production. However, density and sinking rate estimates

might alternatively be based on light microscopy data [2], which are easier to obtain than FIB-

SEM data. It would be worthwhile to perform a comparative study to figure out whether

densities and sinking velocities based on light microscopy agree with those based on FIB-SEM

data. The fossil material used by [2] would in fact be ideal for further studies, because it

features, quite unusually, many complete coccospheres. Thus this material would additionally

render it possible to apply the FIB-SEM method to fossil material. PIC and POC quotas

as well as overall cell density and sinking rate are a very interesting amendment to the data

presented by [2], because the authors showed that Coccolithus displays peak- Paleocene-Eocene

Thermal Maximum (PETM)-specific cell geometry, namely higher coccolith quota and bigger

coccospheres. PIC/POC ratios would allow for assessing this important calcifier’s feedback on

carbon cycling over the PETM, the closest geological approximation to current climate change.

Sinking rates give insights into the nutrient-limitation-sinking-rate debate [43], because nutrient

availability during the PETM was presumably considerably altered [2].

Our measurements have indicated that the overall cell density is not a linear function of the

PIC/POC ratio but instead the data are scattering around a nearly constant value (Fig. 8.7a).

In contrast, the sinking velocity is increasing linearly with increasing PIC/POC ratio (Fig. 8.7b).

The reason for this is that Stokes’ law, which was used to calculate the sinking rate, features

not only particle density but also particle diameter. Hence only the combination of the latter

two parameters allows for statements to be made about the sinking rate. Therefore it seems as

if the PIC/POC ratio is a poor indicator of density, but possibly a useful one of sinking rate.

That would vindicate the conclusion, if not the reasoning, of [40].

Is the method of estimating density employed here accurate enough? We argue that it is. First,

the values calculated here agree well with the ones calculated by [45] based on a fundamentally

different approach. Second, the assumptions made here are reasonable. Most marine phyto-

plankton cells have, indeed, a protoplast density which equals that of seawater [46]. Moreover

it is reasonable to assume that the non-calcite space in the coccosphere (i.e. the extracellular

matrix) has the density of seawater, because it actually is seawater in a polysaccharide matrix,

and even if the polysaccharides present [47] should lower the density, this would only affect the

absolute value of overall cell density and not the relationship of overall cell density and the

PIC/POC ratio (Fig. 8.7a). In summary, our cell-architecture-based approach allows us to esti-

mate, with sufficient accuracy, the overall density of an individual coccolithophore cell. Taken
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Figure 8.7 The overall cell density as function of the PIC/POC ratio is plotted in (a). The
black line illustrates a linear trend that was assumed in the literature [44]. The
linear regression is described by: density = 0.08 × (PIC/POC) + 1.16 (r2 = 0.10).
In (b) the sinking velocity is plotted as a function of the PIC/POC ratio. The fitted
slopes as well as the calculated 0.9, 0.95 and 0.99 confidence levels are given by the
grey lines. The linear regression is described by: sinking rate = 2593 × (PIC/POC)
+ 1986 (r2 = 0.50).

together with individual cell PIC/POC ratios, this sheds new light on the old question of the

relationship between coccolithophore nutrient limitation and sinking rates.

8.5 Conclusion

In the present work we studied the shells of E. huxleyi coccoliths by using a combination of FIB

sectioning and SEM imaging. We showed that the combination of a thin carbon film coating

and drift correction by using a cross-marker in a post-processing step is a useful method to

reduce charging effects and drift when imaging E. huxleyi coccospheres by means of FIB-SEM.

By using this preparation and imaging technique we were able to get information about the

inner assembly of E. huxleyi coccospheres. The culture (Strain RCC1238) studied here, was

found to consist of 2–3 coccolith layers and an average number of 20 coccoliths per cell. The cell

cavity for these coccospheres shows a constant diameter of about 4.36 µm. It was demonstrated

that FIB sectioning is a useful tool to elucidate coccosphere architecture, rendering accurate

determination of cellular coccolith quota and estimates of single cell PIC/POC ratio, density

and sinking rate possible.
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9 Influence of CO2 on growth and

crystallographic assembly of Emiliania

huxleyi and Calcidiscus leptoporus

coccospheres

9.1 Introduction

By the end of the next century, the expected atmospheric CO2 level will be nearly 40% above

the pre-industrial level, 250 years ago [1]. The global oceans can absorb a significant amount of

the rising CO2 level, but this will cause changes of the seawater chemistry [2]. These changes

will have a direct influence on marine organisms that build CaCO3 shells like corals, mollusks,

echinoderms, foraminifera and particularly coccolithophorids [3]. Laboratory experiments have

shown that many calcifying species reduce calcification and growth rates under high-CO2 con-

ditions [3].

To understand the adaptation potential of coccolithophorids to changing pH-values is interest-

ing, since the biogenic carbonate precipitation is mainly (nearly 80 %) carried out by planktonic

microorganisms [4] and particularly by these small marine algae [5]. The most common species

E. huxleyi forms different morphotypes as a function of the habitat [6]. Temperature, salinity and

the nutrient amount of the water body affects the morphology of this coccolith species [6]. Fur-

thermore a study of de Bodt et al. showed that the pH value of the oceans has also an influence

on the morphology of E. huxleyi coccoliths [7]. Culture samples of E. huxleyi were grown under

different pH levels and temperatures. The coccoliths were divided into four different categories

based on the shape of the crystals. It was shown that the number of well formed crystals of cat-

egory one was reduced with rising pH values, while the temperature had no significant influence

on the coccolith morphology [7]. Another study performed on cultured samples of Coccolithus

pelagicus (C. pelagicus) and C. leptoporus revealed that the PIC of C. leptoporus changes with

increasing CO2 concentration in a nonlinear relationship, while the POC remains constant over

the range of CO2 concentrations investigated. The PIC/POC ratio shows an optimum curve

[8]. In contrast neither PIC nor POC of C. pelagicus cultures changes significantly over the

CO2 range tested and the PIC/POC ratio was constant during the experiment [8]. Hence the

two investigated species have shown different behavior during the experiment and therefore it

is important to consider species-specific effects when evaluating whole ecosystem responses [8].
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The aim of the present study is to correlate the morphological variations of E. huxleyi and

C.leptoporus to defined environmental parameters. Therefore cultured E. huxleyi and C.lepto-

pous coccoliths were grown under different pH values. To gain information about shape and

size of the coccoliths SEM imaging was applied. In future experiments TEM imaging will be

used to investigate the diameter, size and thickness of coccolith segments on the nanoscale and

EELS measurements will be performed to gain information of the chemical composition. For

this measurements electron transparent samples are required. Thus, in this work suitable TEM

preparation techniques were developed, which pave the way for the planned TEM studies.

9.2 Materials and methods

9.2.1 Samples

To study the influence of the seawater chemistry on the shells of different coccolithophorids two

different species were used. Since it is possible to grow the most common species E. huxleyi and

one of the biggest coccosphere species C. leptoporus in culture experiments these species were

chosen. The cultures were grown in seawater with different CO2 levels.

A first series containing an E. huxleyi strain was provided by Dr. Lothar Miersch (IFM-

GEOMAR, Kiel). These clonal cultures of E. huxleyi (strain: ]62) were grown in aged, sterile-

filtered North Sea seawater enriched with 64 µmol kg−1 nitrate, 4 µmol kg−1 phosphate, trace

metals and vitamins according to f/8 and 10 nmol kg−1 selenium. The temperature was 15 ◦C

and the light concentration was 150 µmol photons m−2s−1. The samples were provided as trip-

licates in approximately 100 ml bottles. formaldehyde was used to avoid bacterial growth and

to conserve the samples. This culture was grown under three different average CO2 levels, 400,

1100 and 2200 microatm.

A second series provided by Dr. Gerald Langer (University of Cambridge, UK) contained clonal

cultures of C. leptoporus from the Roscoff Culture Collection (www.sb-roscoff.fr/Phyto/RCC)

(strain:RCC1130) grown in aged, sterile-filtered (0.2 µm pore-size cellulose-acetate filters) North

Sea seawater. The water was enriched with 100 µmol kg−1 nitrate, 14 µmol kg−1 phosphate

and trace metals and vitamins according to f/2 [9]. The temperature was 20 ◦C and the light

concentration was 300 µmol photons m−2s−1. The samples were provided as triplicates in ap-

proximately 200 ml bottles. To avoid bacterial growth and to conserve the sample formaldehyde

and heat treatment were applied. The five different average CO2 levels used for this experiment

are 200, 400, 800, 1200 and 1600 microatm.

Both sample series were filtered with a vacuum pump onto an Omnipore polycarbonate mem-

brane filter (diameter: 47 mm, pore size: 0.45 µm), that was dried at room temperature. The

material was then carefully removed with a spattle from the dried filter and dissolved in bi dH2O

for a specific amount of time depending on the species, the scientific question and the analysis

method. Afterwards the samples were either dropped on a Si-Wafer or a TEM finder grid with

a holey carbon film and then dried at room temperature. To avoid charging effects during the
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SEM investigations the Si-Wafers were sputtered with a thin carbon film using a BAL-TEC

coating system.

9.2.2 Instrumentation

For the SEM imaging four different microscopes were used, that are listed below:

• SEM (JSM-6500F) from JEOL, equipped with an energy dispersive x-ray spectroscopy

(EDS) detector (INCA ENERGY ) from Oxford Instruments,

• Field emisssion SEM (NVision40) from Zeiss,

• Field emisssion SEM (UltraPlus) from Zeiss equipped with an EDS detector (INCA EN-

ERGY ) from Oxford Instruments and

• SEM (Leo Modell 1450 VP) from Zeiss.

To avoid beam damage effects the SE images were taken at an acceleration voltage of 2.5 kV to

5 kV.

9.3 Results

In a first step the coccolithophore samples have to be conserved. One sample series of the

C. leptoporus culture was conserved with formaldehyde and a second series was heated to a

temperature of 40 ◦C. By using formaldehyde the coccospheres are still connected but calcium

sulfate precipitates form. In contrast, the formation of calcium sulfate is hindered by heating,

but the spheres break and only single coccoliths remain in the sample. Furthermore it could

be observed that the bacterial growth is not stopped by heating the samples and the calcite is

dissolved after some time. Hence for this study formaldehyde was used to conserve the sample

and avoid bacterial growth.

To gain information about shape and size of the coccoliths grown under different pH-values

SEM investigations were performed. The cultured series of C. leptoporus was taken and for each

average CO2 concentration twenty SEM images were acquired. In figure 9.1 a representative

image for each CO2 level is given. In figure 9.1a and in the zoomed-in area in figure 9.1b a

well formed C. leptoporus coccolith is displayed. The crystal size is around 3 µm in length and

1 µm in width. It can be seen that the crystals start to deform at 400 microatm CO2 (Fig. 9.1c

and d). The single crystals grow bigger in width and thickness at a CO2 concentration of 800

microatm. The length and shape is mostly the same like for lower CO2 values (Fig. 9.1e and f).

Like figure 9.1g and the zoomed-in area in figure 9.1h show, the crystal size increases at a CO2

concentration of 1200 microatm. At the same time, the shape of the crystals started to change

to a rectangular form. In this sample well formed coccoliths, that look like the coccoliths found

at 200 microatm CO2 concentration were additionally observed. This is shown in figure 9.2, were

both coccolith types are displayed. Figure 9.2a and the zoomed-in area in 9.2b show the well
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Figure 9.1 Representative SEM images of the C. leptoporus culture grown at five different CO2

levels. The scale bar for each image is 1 µm.
a) SEM image revealing the morphology of a coccolith grown at 200 microatm CO2.
b) The coccolith given in a) imaged with a higher magnification to illustrate the
crystal morphology.
c) SEM image of a C. leptoporus coccolith grown at 400 microatm CO2.
d) Zoom-in of the same coccolith as in c).
e) C. leptoporus coccolith grown at 800 microatm CO2.
f) To reveal the morphology of the deformed crystals of the coccolith given in e) a
higher magnified image is displayed.
g) SEM image showing a coccolith grown at a CO2 level of 1200 microatm.
h) Higher magnified image of the coccolith given in g).
i) This image reveals the morphology of a coccolith grown at 1600 microatm CO2.
k) Higher magnified image of the coccolith shown in i).
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formed coccolith, while in figure 9.2c and 9.2d the deformed coccolith is displayed. At an average

CO2 value of 1600 microatm even more crystals appear in an rectangular form (Fig. 9.1i and k).

To summarize, we found that the length of the coccoliths remained nearly constant during the

pH experiment while the width and thickness increased with a rising CO2 concentration. The

crystal shape also changed from a rectangular form to a quadratic form with an increase in the

CO2 concentration. Prelimenary studies of E. huxleyi coccoliths revealed that the morphological

variations as a function of the CO2 value are less distinct for this species in comparison with

C. leptoporus coccoliths (these images are not shown here). However, further investigations are

necessary to confirm this observation.

Figure 9.2 Two different morphologies of C.leptoporus coccoliths were observed at a CO2 level
of 1200 microatm. The scale bar for all images is 1 µm.
a) SEM image revealing the well formed morphology of a C. leptoporus coccolith at
a CO2 level of 1200 microatm.
b) SEM image of the same coccolith as in a) taken with a higher magnification to
illustrate the crystal morphology.
c) SEM image of a deformed C. leptoporus coccolith grown at 1200 microatm CO2.
d) To illustrate the crystal morphology of the coccolith given in c) a higher magnified
image is displayed.

For TEM investigations thin samples are required. Since coccoliths have a maximum thickness

of around 500 nm, the thickness has to be reduced. For the thinning procedure bi dH2O was

used. The coccolith samples were filtered with a vacuum pump onto a polycarbonate membrane

filter and dried at room temperature. The remaining coccoliths were removed with a spattle

and transferred into bi dH2O. This solution was dropped on a TEM copper finder grid with a

holey carbon film and dried afterwards at room temperature. The calcite shell of coccoliths is

sensitive to bi dH2O and when the thinning times are not well enough adjusted it can easily

happen that the coccoliths dissolve completely. Therefore the thinning times have to be adapted

for E. huxleyi and C. leptoporus. In a first experiment coccoliths of both species were kept for
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5, 24, 31 and 50 hours in bi dH2O and were dropped afterwards onto a Si-Wafer.

With the help of SEM imaging it turned out that for C. leptoporus the best thinning times

are between 10 and 20 hours and for the more sensitive shell of E. huxleyi between one and five

hours. A further experiment with thinning times between 10 and 20 hours in one hour steps

revealed that the optimum thinning time is between 16 and 18 hours depending on the CO2

level for C. leptoporus.

9.4 Discussion

In this study heat treatment as an alternative method for the sample conservation was tested. It

was noticed that the heat treated coccospheres were disconnected, while the samples conserved

with formaldehyde are still connected. Heating the samples up to 40 ◦C might have destroyed the

organic material that surrounds the coccoliths and helps to build the coccosphere. The bacterial

growth is not stopped at this low temperature and thus will affect the calcite of the coccoliths

after a while. But this conservation method is adequate if coccoliths instead of coccospheres are

required for e.g. nanodiffraction experiments and if the samples will be used immediately after

the collection. Due to the findings, all other SEM experiments were done on samples which had

been conserved by formaldehyde.

In this study SE images of 20 different C. leptoporus coccoliths for each CO2 value were taken.

It turned out that the morphology of the coccoliths changes significantly with an increase of

the CO2 level. However in the sample with a CO2 value of 1200 microatm deformed as well

as well formed coccoliths were found. That might be caused by the fact that the coccoliths of

C. leptoporus can adopt to this CO2 value and therefore, appear in the well formed shape. But

it can not be excluded that this effect is caused by a change in sample composition. To exclude

this, the samples should be prepared again and at least SE images of 50 different coccoliths

should be taken.

The SEM investigation of the coccoliths of C. leptoporus showed that the crystal morphology

changes significantly by changes of the CO2 amount, while for the coccoliths of E. huxleyi the

changes in the morphology were only small. This observation indicates that the coccoliths of

E. huxleyi adapt much better to a rising CO2 amount than the coccoliths of C. leptoporus. For a

more quantitative understanding, further SEM investigations are necessary. It would be useful

to take at least SE images of 50 different coccoliths for each CO2 level. In addition, the crystal

morphology at the nano scale should be investigated in the TEM, since it is possible that the

changes caused by the CO2 level occur at the internal structure of the crystals. For such TEM

measurements the sample preparation parameters found in this work can be taken.

Different thinning times for E. huxleyi and C. leptoporus were tested to obtain electron trans-

parent samples. Here we found an optimum thinning time of 3 hours for E. huxleyi and 16 to

18 hours for the much bigger coccoliths of C. leptoporus. These parameters were achieved by

SEM studies, which revealed that in the case of C. leptoporus the crystals grow by an increase

of the CO2 level in microatm. Hence, for TEM sample preparation stepwise thinning times are
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required. For the samples with the lowest CO2 values (200 and 400 microatm) thinning for 16

hours was found to be adequate. The sample with an CO2 level of 800 microatm was thinned for

17 hour and the samples that were grown at the highest CO2 amount (1200 and 1600 microatm)

and therefore possessed the thickest crystals were thinned for 18 hours. With these samples,

TEM investigations can be performed to obtain information on the nanoscale concerning the

crystallographic orientation and chemical composition.

9.5 Conclusion

In this study sample preparation methods for E. huxleyi and C. leptoporus coccoliths grown

under different CO2 conditions were developed. First of all an alternative for conservation with

formaldehyde was searched. Heating the samples up to 40 ◦C was tested but it turned out

that the individual coccoliths of the coccospheres separate. Thus, to determine the morphology

of the coccolith crystals conserving the samples with formaldehyde is more appropriate. Since

coccoliths have an initial thickness of around 500 nm at their thickest region and for TEM

investigations a thickness of around 100 nm is required, they have to be thinned. For this,

bi dH2O was used and the thinning times for E. huxleyi and C. leptoporus were adjusted. For

E. huxleyi a thinning time of three hours in bi dH2O was found to be adequate. Since the

coccoliths of C. leptoporus are larger and even grow thicker by an increase of the CO2 level the

thinning times had to be increased and range between 16 and 18 hours. This recipe can be

used to prepare TEM samples for future experiments. Prelimenary SEM investigations showed

that the morphology of the crystals of the C. leptoporus coccoliths is changing strongly with

the pH value, while the morphology of the E. huxleyi coccoliths seems to be mostly unaffected.

This hints to the conclusion that the coccoliths of E. huxleyi can adopt better to an increase of

the CO2 value. Since in this present study the SEM investigations concentrated on the sample

preparation, more detailed studies concerning the morphology are necessary, where besides SEM

imaging TEM should be applied. By TEM investigations changes of the internal nanostructure

can be detected which might be invisible in SEM.
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10 Summary

This thesis had three different aims. The first aim was the precise and reliable determination of

the hierarchical structure of coccoliths at the nanoscale using electron microscopy and electron

diffraction techniques. The artifact free target preparation of the coccoliths and their elements

is challenging and therefore the second aim was the development and optimization of prepara-

tion techniques for coccolith plan-view and cross-section TEM samples. In addition, optimal

parameters for the TEM measurements needed to be found. The third aim was the determina-

tion of the influence of a rising CO2 concentration on the morphology and crystal shape of the

coccoliths. Furthermore, FIB sectioning was used to obtain information on the inner assembly

of the coccolithosphere.

In order to understand calcite crystallization and assembly in a coccosphere with nanoscale

resolution, the crystal orientation and interdigitation of the structural units was investigated by

TEM imaging, selected-area and nano probe electron diffraction. For this purpose the abundant

coccolithophore species E. huxleyi was chosen because it is the most common and best investi-

gated species. FIB sectioning of coccoliths of this species was applied to obtain target-prepared

specimens in suitable orientation. It was possible to detect and analyze the V-unit, which is

overgrown by the R-unit in the case of E. huxleyi . The [0 0 1] direction of the V-unit points

perpendicular to the coccolith plane while the [1 1 0] axis is tangential to the coccolith ring. The

c-axis of the R-unit is parallel and the b-axis is perpendicular to the c-axis to the coccolith plane.

These results verified the R- and V-model of Young et al. 1992, which was based on SEM and

optical microscopy. Furthermore it was shown that the distal- and the proximal shield element

of an individual R-unit of a single segment is tilted by 4◦ ± 1◦ with respect to each other. This

orientation change is required to obtain the flat domed character of the coccoliths. This in turn

allows to form the sphere like coccosphere. The orientation change between the distal- and the

proximal shield element seems to appear continuously. In a further study it would be interesting

to investigate the structure of the R- and V-unit of further coccolith species like C. leptoporus.

For a detailed understanding of the crystal structure and chemical composition of coccoliths

at the nanoscale, high resolution methods like TEM can be used, given that sufficiently thin

samples can be prepared. In this thesis sample preparation techniques for cross-section and

plan-view investigations for E. huxleyi coccoliths were developed. The results show that both

preparation techniques, FIB sectioning for cross-section and dH2O etching for plan-view studies,

produce suitable TEM samples. Furthermore the sample stability under electron bombardment

was tested. Coccoliths of E. huxleyi were choosen and in addition to the biological sample min-

eralogical samples (Iceland spar) were prepared for comparison. The HRTEM imaging, electron
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diffraction and EELS studies revealed that all prepared samples are relatively stable under elec-

tron bombardment at an acceleration voltage of 300 kV when using a parallel illumination.

Above an accumulated dose of ∼105 e/nm2 the material, independent of its origin, transformed

to poly-crystalline calcium oxide.

Coccolithophores are able to fix dissolved inorganic carbon either through photosynthesis

POC or through calcification PIC. The ratio of calcification to photosynthesis (PIC/POC ratio)

is an important factor for modeling carbon cycling in the oceans and therefore is significant for

climate change discussions. In a third study coccospheres of a cultured E. huxleyi clone were

sampled in the exponential growth phase and sectioned using a FIB microscope with the purpose

to gain detailed information on the internal structure that could be used for the PIC/POC ratio

calculations. An average of 69 sections were taken. The corresponding SE micrographs per

coccosphere provided detailed information on the coccosphere architecture. The latter features,

2-3 layers on average and 20 coccoliths per cell, of which only 15 can be seen in conventional

SEM images. It was found that the outer coccosphere diameter is positively correlated with the

number of coccolith layers. By contrast, the inner coccosphere diameter (around 4.36 µm), and

hence the cell diameter was found to be quasi-constant. A further finding was that the coccoliths

were not evenly distributed across the coccosphere, resulting in one part of the coccosphere

displaying more coccolith layers than the other. The architectural data allowed to calculate,

with sufficient accuracy, the PIC/POC ratio and the density of the individual cells.

Since the ultrastructure of biologically formed CO2 crystals depends on environmental con-

ditions such as pH value, temperature and salinity they can be used as indicator for climate

changes. Therefore, it is important to investigate the ability of marine organisms to adapt to

changing environmental parameters. In the last part of this thesis E. huxleyi and C. leptoporus

grown under different CO2 conditions were studied. The sample preparation parameters were

adjusted for these species in a first step. It was found that for E. huxleyi a thinning time of three

hours in bi dH2O is adequate while for the thicker coccoliths of C. leptoporus the thinning times

were between 16 and 18 hours depending on the CO2 level. The morphology of the E. huxleyi

coccoliths seems to be not affected by an increase of the CO2 value while the morphology of the

C. leptoporus coccoliths changes strongly with an increase of the CO2 amount. This indicates

that the coccoliths of E. huxleyi can adopt better to an increase of the CO2 level compared to

the ones of C. leptoporus. But these observations are only based on preliminary studies using

SEM imaging. In future TEM investigations can be used to study changes of the nano structure.
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die Arbeitsgruppe. Bei Markus Döblinger möchte ich mich für die Zeit, Ruhe und Geduld

bedanken die er mir bei der Erlernung der Mikroskopbedienung entgegengebracht hat. Danke

für die zahlreichen Tipps beim Arbeiten mit strahlsensitiven Materialien. Ein Dank geht auch

an Steffen Schmidt für viele wertvolle Tipps bei der Probenpräparation und für das Arbeiten am
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fantastischen C. leptoporus Proben aussprechen. Gerne hätte ich weitere Untersuchungen an

diesen schönen Proben vorgenommen. Des Weiteren möchte ich mich für die E. huxleyi Proben
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