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Zusammenfassung

Freie-Elektronen-Laser (FEL) zur Erzeugung kurzwelliger Strahlung sind bisher Anlagen
mit einer Größe von Hunderten Metern bis hin zu mehreren Kilometern. Aufgrund von
Fortschritten in der Laser-Plasma-Beschleunigung innerhalb der letzten Jahren ist diese
Art von Beschleunigern eine vielversprechende Alternative zum Betreiben einer Synchro-
tronstrahlungsquelle der fünften Generation geworden – eines Freie-Elektronen-Lasers
auf Laborgröße.

Bisher war es, wegen der für diese Art von Beschleuniger typischen breiten Energievertei-
lung, nicht möglich, ein Demonstrationsexperiment umzusetzen. Diese Arbeit behandelt
mit analytischen Methoden und Simulationen die wichtigsten Herausforderungen des
Konzeptdesigns für eine erste Demonstration eines Freie-Elektronen-Lasers auf Labor-
größe.

Die breite Energieverteilung der Elektronen beeinträchtigt die FEL-Leistung direkt durch
eine Verringerung des Microbunching und indirekt durch einen, vom Fokussiersystem
verursachten, chromatischen Emittanzzuwachs. Beide Effekte können durch eine Dekom-
pression des Elektronenpulses in einer magnetischen Schikane reduziert werden, wobei die
Elektronen nach Energien sortiert werden. Dies verringert sowohl die lokale Breite der
Energieverteilung, als auch den lokalen chromatischen Emittanzzuwachs und reduziert
Leistungsverluste, die durch die kurze Elektronenpulsdauer verursacht werden. Des Wei-
teren sorgt die energieabhängige Fokusposition für eine Bewegung der Strahltaille durch
den Elektronenpuls, welche mit dem Lichtpuls synchronisiert werden kann und somit zu
einer Erhöhung der Stromdichte im Wechselwirkungsbereich führt. Dieses Konzept wird
als chromatische Fokusanpassung (chromatic focus matching) bezeichnet. Die Vorteile
der longitudinalen Dekompression gegenüber dem alternativen Ansatz der transversalen
Dispersion werden in einem Vergleich aufgezeigt.

Bei Elektronenpulsen, wie sie typischerweise von einem Laser-Plasma-Beschleuniger er-
zeugt werden, tragen kohärente Synchrotronstrahlung und Raumladung gleichermaßen
zum Emittanzzuwachs während der Dekompression bei. Es wird gezeigt, dass daher eine
mittlere Schikanenlänge erforderlich ist und die Schikane somit nicht so schwach und lang
wie möglich sein darf um ausschließlich Synchrotronstrahlung zu unterdrücken.

Ferner wird das Zusammenspiel der einzelnen Konzepte und Komponenten mit einer Si-
mulation des vollständigen Systems untersucht und damit die generelle Machbarkeit be-
stätigt. Zusätzlich werden Toleranzen für ein erstes Demonstrationsexperiment ermittelt,
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Zusammenfassung

um die Praxistauglichkeit sicherzustellen. Die aufgezeigten Herausforderungen, jenseits
der Breite der Energieverteilung, betreffen vor allem die Stabilität des Beschleunigers
und die Präzision der Elektronenoptik.
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Abstract

Up to now, short-wavelength free-electron lasers (FEL) have been systems on the scale of
hundreds of meters up to multiple kilometers. Due to the advancements in laser-plasma
acceleration in the recent years, these accelerators have become a promising candidate
for driving a fifth-generation synchrotron light source – a lab-scale free-electron laser.

So far, demonstration experiments have been hindered by the broad energy spread typical
for this type of accelerator. This thesis addresses the most important challenges of the
conceptual design for a first lab-scale FEL demonstration experiment using analytical
considerations as well as simulations.

The broad energy spread reduces the FEL performance directly by weakening the mi-
crobunching and indirectly via chromatic emittance growth, caused by the focusing sys-
tem. Both issues can be mitigated by decompressing the electron bunch in a magnetic
chicane, resulting in a sorting by energies. This reduces the local energy spread as well as
the local chromatic emittance growth and also lowers performance degradations caused
by the short bunch length. Moreover, the energy dependent focus position leads to a focus
motion within the bunch, which can be synchronized with the radiation pulse, maximiz-
ing the current density in the interaction region. This concept is termed chromatic focus
matching. A comparison shows the advantages of the longitudinal decompression concept
compared to the alternative approach of transverse dispersion.

When using typical laser-plasma based electron bunches, coherent synchrotron radiation
and space-charge contribute in equal measure to the emittance growth during decom-
pression. It is shown that a chicane for this purpose must not be as weak and long as
affordable to reduce coherent synchrotron radiation, but that an intermediate length is
required.

Furthermore, the interplay of the individual concepts and components is assessed in a
start-to-end simulation, confirming the feasibility of the envisioned experiment. More-
over, the setup tolerances for a first demonstration experiment are determined, confirming
the general practicability. The revealed challenges, besides the energy spread, especially
concern the source stability and the precision of the beam optics setup.
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1 Introduction

Since its first observation in 1947 [1], synchrotron radiation has become an invaluable
tool for many different research areas ranging from solid-state physics to medical appli-
cations.

Over the years, different synchrotron radiation sources have been developed and built. In
the early days, during the first generation of synchrotron radiation sources, the emission
of radiation was a by-product of bending magnets in circular accelerator structures built
for high-energy physics. The second generation still relied on simple bending magnets
as radiation sources; however, these facilities were built with the focus on radiation
production and not on particle physics.

Later generations of synchrotron radiation facilities used dedicated insertion devices, un-
dulators and wigglers, in addition to bending magnets. Undulators and wigglers provide
a periodic magnetic field, leading to a sinusoidal electron motion. This allows for inter-
ference of waves emitted in the individual periods, resulting in an increase of flux and
brightness when compared to bending magnets.

Advancements of accelerator technology over the years further increased the electron
beam quality in terms of the emittance and therefore also improved the photon beam
quality, leading to the latest, fourth generation of synchrotron radiation sources. One
type of these sources are short-wavelength free-electron lasers (FEL) operating in the
ultraviolet and X-ray range.

Free-electron lasers not only produce spontaneous radiation as the other sources do but
have undulators or wigglers long enough to allow for an interaction of electrons and pre-
viously emitted radiation. This interaction causes the build-up of an energy modulation
on the scale of the light wavelength that gets converted to a density modulation by the
dispersive character of the magnetic field. The rising amplitude of this density modula-
tion allows for more and more coherent emission to occur, increasing the brightness by
several orders of magnitude.

The major limitation of such sources today is the large size, as they consist of a kilometer-
scale accelerator as well as beam transport sections and undulators on the order of tens
to a hundred meters. The large size and the resulting high costs on the order of a billion
euros restrict the availability of such sources to a few world wide. Operational are the
UV and soft-X-ray systems TTF-FEL (FLASH) [2] and FERMI@Elettra [3], as well as
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1 Introduction

the hard-X-ray sources LCLS [4] and SACLA [5]. Several other sources like the European
XFEL [6] and SwissFEL [7] are currently under construction, but the number of these
sources is and will be very limited.

In order to increase their availability, new ways have to be followed. One such path has
been provided by the invention of laser-plasma acceleration by Tajima and Dawson in
1979 [8]. This concept harnesses the power of intense laser pulses to accelerate electrons
with fields three orders of magnitude stronger than those of conventional accelerators.
With this technique compact accelerators delivering peak energies comparable to large
scale systems used for driving FELs became feasible. A major breakthrough was achieved
in 2004 by the groups of Geddes, Mangles, and Faure providing high-quality electrons
from laser-plasma accelerators for the first time [9–11].

The availability of the new acceleration technique triggered the idea of a free-electron laser
driven by such an accelerator [12], which would be a first source of the fifth generation.
The basic feasibility of a soft-X-ray synchrotron radiation source driven by this new type
of accelerator was demonstrated by Fuchs [13] and Maier [14]. The major challenge on the
path to a first laser-plasma accelerator driven free-electron laser is, up to now, the high
energy spread of the electrons. Over the recent years the design parameters required for a
first demonstration experiment have advanced from the optimistic, initial parameters [12]
closer to the results of state-of-the-art laser-plasma accelerator experiments [15–17].

In this thesis the current design concept for a laser-plasma accelerator driven free-electron
laser to be built at the Centre for Advanced Laser Applications (CALA) is discussed in
detail including the individual challenges and optimization concepts. Chapter 2 provides
an overview over the basic FEL physics as a foundation for the later optimization consid-
erations. In Chap. 3 the electron parameter set currently envisioned is introduced, and
two optimization concepts reducing the performance degradation due to a broad energy
spread (longitudinal decompression and transverse dispersion) are compared. Based on
the design parameters and the chosen optimization concept, longitudinal decompression,
the tolerances of the FEL with respect to different error sources, like field errors and
alignment errors, are evaluated in Chap. 4. Chapter 5 introduces the basics of longitu-
dinal phase space manipulation and the degrading effects leading to emittance growth.
Based on the most important degrading effects, the decompressor layout is optimized in
Chap. 6. The fundamentals of electron optics as well as setup tolerances that are based
on the FEL tolerance study and an optimization concept for high energy spread scenar-
ios are discussed in Chap. 7. Finally the full setup performance and the interplay of the
individual components and effects is assessed using a start-to-end simulation discussed
in Chap. 8.
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2 FEL Theory

The basic physics of a free-electron laser completely differ from the concepts of a con-
ventional laser. The radiation generation mechanism does not rely on bound electrons
in a gain medium but uses freely propagating electrons from a particle accelerator. This
allows to avoid one of the biggest limitations of conventional lasers, the availability of
suited gain media for the desired wavelength range. FELs can operate in all spectral
regions from the far-infrared down to hard X-rays. This advantage is complemented by
the possibility to avoid the need for any mirrors potentially restricting the system in its
spectral properties due to limited reflectivity.

In an FEL highly relativistic electrons propagate through the periodic magnetic field of
an undulator. The magnetic field forces the electrons onto a sinusoidal path, leading to
the emission of synchrotron radiation. The radiation wavelength depends on the period
length of the magnetic structure as well as the energy of the electrons, and is therefore
tunable, leading to a further advantage when compared to conventional lasers. The
electron motion causes a Doppler frequency up-shift of the emitted radiation, making
FELs perfectly suited for the generation of short-wavelength radiation like X-rays.

Due to the high velocity close to the speed of light, the electrons propagate within the
radiation field and interact with it due to their transverse motion. This leads to an
energy exchange and therefore an energy modulation of the electrons on the scale of the
radiation wavelength. Since the trajectory of a charged particle in a magnetic field is
energy dependent, the energy modulation gets converted to a density modulation called
microbunching, again on the scale of the wavelength of the emitted radiation. This
can change the emission process from incoherent to coherent during the propagation
through the undulator, given a long enough interaction distance. The radiation power
rises exponentially along the undulator and reaches a maximum before the microbunching
gets smeared out due to the energy dependent trajectories and an overshooting of the
electrons over their ideal positions within the bunch.

This mechanism enables free-electron lasers to produce coherent X-ray pulses with a du-
ration of a few femtoseconds and multi-gigawatt peak power, making them the brightest
currently available source of synchrotron radiation [18]. Due to these radiation char-
acteristics, FELs are a key-member of the fourth generation light sources and will in
combination with advanced accelerator concepts also be the basis for the fifth genera-
tion.

3



2 FEL Theory

In this chapter, the basic theory of a high-gain FEL in the 1D approximation as well as
degrading effects, including 3D effects, are reviewed. These basic scalings are the basis
for the design considerations of the laser-plasma accelerator driven FEL demonstration
experiment discussed subsequently.

Several resources are the basis for this chapter and are recommended for further reading
[18–23]. The major part of this chapter follows the reasoning of [19, 20].

2.1 Electron Motion in the Undulator

The heart of every FEL is the undulator. It provides a periodic magnetic field forcing the
electrons onto an oscillatory trajectory, leading to the emission of synchrotron radiation.
In its simplest form, the undulator consist of a series of dipole pairs separated by a small
gap. If the plane of the dipole field is fixed, the device is called a planar undulator.
Systems with a field plane rotating along the setup are termed helical. In this thesis
all discussions will be restricted to planar layouts, although the basic physics are also
applicable for helical structures.

In order to increase the field strength in the undulator, often hybrid devices are used. In
this case each undulator half does not consist of a series of dipoles with a field pointing
in the direction of the gap, but the magnets are placed with the field parallel to the
undulator axis. Poles consisting of iron or other high permeability materials are used to
guide the flux into the gap increasing the density of the field lines with respect to a pure
permanent magnet design. Many more undulator concepts [23] like electromagnet based
systems and all-optical setups [24, 25] exist. The construction details, however, have no
impact on the basic FEL theory.

The coordinate system used in the FEL discussion is shown in Fig. 2.1. The undulator
axis and therefore the main propagation direction of the electrons defines the s-axis. The
dipole field points along the y-axis, and the electron deflection occurs in the x-direction.

2.1.1 Magnetic Field

Within the undulator gap the field has to fulfill Maxwell’s equations for a static magnetic
field ∇×B = 0 and ∇ ·B = 0. Consequently, the field can be expressed as the gradient
of a scalar potential B = −∇φ which has to fulfill Laplace’s equation ∇2φ = 0. A
reasonable ansatz for the potential is given by [20,26]

φ =
B0

ky
cos (kxx) sinh (kyy) sin (kus), (2.1)

4



2.1 Electron Motion in the Undulator

using the wave numbers kx, ky, ku = 2π/λu with the period length of the undulator λu,
and the peak field B0. To fulfill Laplace’s equation, the relation

k2
u = k2

y − k2
x, (2.2)

has to hold. This implies that the focusing strength of an undulator in both transverse
directions is conserved. For many cases it is sufficient to assume the poles to be infinitely
broad, resulting in kx = 0 and ky = ku, i.e. a pure vertical focusing. Outward bent pole
surfaces, leading to a defocusing in the x-direction, can be modeled by a real value of kx.
This can also be used to imitate the effect of finite, flat poles which result in a defocusing
effect in the horizontal plane, too. The case of inward bent poles, leading to a focusing
effect in the x-direction, is described by an imaginary value of kx reducing the focusing
strength in the y-direction.

The peak field of the undulator is material and geometry dependent. An approximation
taking both dependencies into account has been found by Elleaume et al. [27]

B0 = a1 exp

(
a2

g

λu
+ a3

(
g

λu

)2
)
. (2.3)

The material characteristics are included by means of the coefficients ai, the geometry
dependence is described by the gap g and the undulator period λu. Typical hybrid
undulators using NdFeB permanent magnets and vanadium permendur poles can be
described with a1 = 3.694, a2 = −5.068, and a3 = 1.520. The approximation is valid for
the parameter range 0.1 < g/λu < 1.

Using the potential above, the magnetic field is given by

B = −∇φ

= −B0

ky

−kx sin (kxx) sinh (kyy) sin (kus)

ky cos (kxx) cosh (kyy) sin (kus)

ku cos (kxx) sinh (kyy) cos (kus)

 . (2.4)

Since typical transverse particle offsets are small when compared to the undulator period,
i.e. sub-mm-scale offsets compared to cm-scale period lengths, the transverse dependen-
cies can be expanded up to the second order yielding

B = −B0

 −k2
xxy sin (kus)(

1− (kxx)2

2 +
(kyy)2

2

)
sin (kus)

kuy cos (kus)

 . (2.5)

All basic properties of an FEL can be described by using the on-axis magnetic field
By = −B0 sin(kus) only. However, to describe the more detailed particle motion within
the undulator, including focusing effects, the general expression is required.
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2 FEL Theory

s

x

y

s

y

x

λu

g

Figure 2.1: Schematic drawing of a planar undulator and the corresponding, ideal electron tra-
jectory (blue) shown from a top-down view (top) and a side view (bottom). The
coordinate system is chosen so that the undulator axis and the mean electron tra-
jectory coincide with the s-axis. The magnetic field is oriented in the y-direction,
resulting in an electron deflection in the x-direction.

2.1.2 Electron Motion

The exact particle motion in the undulator distracts from the dominant and important
features. To get a better insight into the different effects, it is useful to separate the
motion in a fast component describing the oscillatory motion on the scale of the undulator
period and a slow component resembling a slow drift of the whole beam and focusing
effects influencing the beam envelope with a typical scale of several undulator periods [20].
The complete particle motion can then be expressed as the sum of both contributions

rtot(t) = r(t) + rslow(t). (2.6)

The particle trajectory due to the fast motion is given by [19]

x(t) =
K

γku
sin(ωut), (2.7)

y(t) = 0, (2.8)

s(t) = cβ̄st−
K2

8γ2ku
sin(2ωut), (2.9)

using the oscillation frequency ωu = kuβ̄sc, the normalized, average longitudinal velocity
β̄s = 1− (1 +K2/2)/2γ2, the normalized energy γ, and the undulator parameter defined
as

K =
eB0

mcku
, (2.10)
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2.1 Electron Motion in the Undulator

using the electron mass m and the elementary charge e. For a typical undulator with a
period length of a centimeter and a peak field of one tesla the parameter is on the order
of unity. The oscillation of the forward velocity can be neglected for many practical
cases as its amplitude is proportional to γ−2. A sketch of the fast electron motion in the
undulator is shown in Fig. 2.1.

Assuming kx and ky to be real numbers, i.e. modeling a planar undulator with finite pole
width, the slow electron motion is given by [20]

xslow(t) = xslow,0 cosh(κxβ̄sct) +
x′slow,0
κx

sinh(κxβ̄sct), (2.11)

yslow(t) = yslow,0 cos(κyβ̄sct) +
y′slow,0
κy

sin(κyβ̄sct), (2.12)

using the wave numbers κx,y = Kkx,y/
√

2γ characterizing the scale of each motion. The
types of motion correspond to the (de)focusing properties of the undulator. Assuming
kx and ky to be real leads to a defocusing effect in the horizontal direction, resulting in a
hyperbolic motion. The vertically increasing field, however, has a focusing effect giving
rise to an oscillatory motion in the vertical plane.

The focusing force can be used to maintain a constant vertical beam size along the
undulator. Requiring 〈y〉 = 〈y′〉 = 0, i.e. a beam propagating along the undulator axis,
and using the definition of the beam emittance∗ measuring the area occupied by the
particles in the transverse phase space ε2y = 〈y2〉〈y′2〉− 〈yy′〉2 the vertical beam envelope
is given by

σy(s) =

√√√√
σ2
y0 cos2(κys)±

√
σ2
y0σ

2
y′0
− ε2y

κy
sin(2κys) +

(
σy′0
κy

)2

sin2(κys). (2.13)

Here σy0 is the initial vertical beam size and σy′0 the initial vertical divergence. The “+”
indicates an initially diverging beam, whereas the “−” holds for a converging beam. A
constant beam size along the undulator is reached for a beam waist at the undulator
entrance, i.e. σ2

y0σ
2
y′0

= ε2y, with a beam size of σy0 =
√
εy/κy. In the case of inward

bent poles, i.e. an imaginary kx, the same reasoning holds for the horizontal component.
If planar or even outward bent poles are used, a constant horizontal beam size along the
undulator is not possible and the beam envelope is usually controlled by the means of
additional electron optics. This can also be necessary in order to reach an acceptable
beam size in the vertical component if the focusing strength of the undulator is not
sufficient. This is usually the case at high electron energies due to the energy dependence
of the wavenumbers κx,y.

∗For more details about the emittance definition see Sect. 7.1.
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2 FEL Theory

2.2 Spontaneous Undulator Radiation

The source of the spontaneous undulator radiation is the fast oscillation of the electrons.
In an intuitive picture an electron can be seen as a relativistic, oscillating dipole. Due
to the relativistic speed, the radiation is Doppler frequency up-shifted and concentrated
into a narrow cone with opening angle θ = 1/γ around the longitudinal direction of flight.
Although undulator radiation is a kind of synchrotron radiation, its spectral and spatial
characteristics are significantly different.

The probably most interesting property of any radiation is its wavelength. The exact
radiation characteristics could be derived by starting with the Liénard-Wiechert poten-
tials, but as in the case of the electron motion in the undulator this distracts from the
most relevant, basic characteristics.

An intuitive approach is to see the undulator as a series of emitters [23], i.e. each undu-
lator period is the source of a plane wave. These waves interfere with one another and,
depending on the setup characteristics, only allow for certain wavelengths to be found

λl ≈
λu

2nγ2

(
1 +

K2

2
+ γ2θ2

)
, (2.14)

which depend on the angle of observation θ. Here it can easily be seen why undulator
based sources like FELs are suited for the production of short-wavelength radiation. The
γ−2-scaling allows to produce few-nm-radiation with an undulator period length on the
order of a centimeter and electron energies of only a few hundred MeV. Furthermore, the
equation shows why these sources can provide an easily tunable wavelength. There are
multiple knobs to turn on:

• Electron energy – Depending on the accelerator, the electron energy can be
adjusted within a certain range to yield the desired wavelength. This is limited
by the maximum acceleration gradient and the tuning range of the electron optics
controlling the beam size.

• Field amplitude – Most undulators are designed such that the magnetic field
amplitude can be varied. In the case of electromagnets this can be done by changing
the applied current, but it is also possible for permanent magnet based devices by
changing the gap. It is interesting to note that the wavelength increases with the
undulator parameter and therefore the magnetic field. This is in contrast to the
properties of synchrotron radiation in simple bending magnets where the achievable
wavelength decreases with the field strength.

• Period length – Usually the undulator period can only be chosen prior to the
construction since a fixed period length allows the best control over the field quality.
However, undulator designs with a variable period length exist [28].
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2.3 High-Gain Theory

In addition to the fundamental wavelength also higher harmonics, caused by the an-
harmonic motion due to the longitudinal velocity oscillations, are produced. On the
undulator axis only odd harmonics are detectable, whereas even harmonics are found
off-axis. These extend the usable wavelength range significantly if the source is designed
appropriately.

The bandwidth of the radiation is limited due to the interference of the individual waves
and is given by [23]

∆λ

λl
=

1

1 +Nun
, (2.15)

with Nu being the number of undulator periods. Since the number of undulator periods
is high in most cases, the bandwidth is approximately inversely proportional to it. As-
suming a typical undulator period of one centimeter and a length of one meter results in
a bandwidth of 1%. This is an important difference when compared to the continuous
spectrum of synchrotron radiation from bending magnets, ensuring the high brightness
of fourth- and fifth-generation synchrotron radiation sources.

The high brightness is further supported by the narrow opening angle [23]

|θ| =
√

2λl
Nuλu

=
1

γ

√
1 + K2

2

Nu
, (2.16)

which is again a result of interference. The opening angle drops slower with the undulator
length than the bandwidth, nevertheless, a reduction of an order of magnitude when
compared to the opening angle of radiation from a bending magnet can easily be reached
for Nu = 100.

The total emitted power integrated over all angles and frequencies is [29]

Pint,tot =
Ieγ2K2kuNu

6ε0
, (2.17)

using the current of the electron beam I. It rises linearly along the undulator and can
reach high values; however, it is still based on an incoherent process – the spontaneous
emission of photons by randomly distributed electrons. It is not to be confused with the
power that can be reached with an FEL where the electrons can emit coherently.

2.3 High-Gain Theory

In this section the mechanism of a high-gain FEL is reviewed. When compared to the
previous section discussing the spontaneous undulator radiation, now the interaction be-
tween electrons and radiation plays a major role. The term “high-gain” refers to systems
where the power growth per pass through the undulator is not negligible. Ideally even

9



2 FEL Theory

the full radiation power is reached during a single pass through the undulator. A “low-
gain” theory also exists but is only applicable for systems with a negligible amplification
per pass and relying on multiple passes through the undulator. Since resonators are not
yet available with a sufficient quality in the X-ray range, this theory will not be covered
in this thesis. It can, however, be derived based on the high-gain theory in the limit of
small gain.

2.3.1 Resonance

In any undulator based radiation source the electrons co-propagate with their own emit-
ted radiation. Due to the oscillating motion of the electrons in the radiation field, each
electron is subject to energy changes depending on its position relative to the phase of
the field. The energy change can be expressed as [19]

dW

dt
= −ecK̂Ex(s)

2γ
(cos Ψ + cosχ), (2.18)

using the position dependent radiation field amplitude Ex(s), the modified undulator
parameter K̂∗, and the phases

Ψ = (ku + kl)s− ωlt+ φ0 and χ = (ku − kl)s− ωlt+ φ0. (2.19)

Here ωl is the radiation frequency, kl the corresponding wave number, and φ0 an arbitrary
phase offset. The first phase Ψ is called ponderomotive phase and plays an important
role in the whole FEL theory. It can be interpreted as a longitudinal position of an
electron within the bunch and also characterizes the electrons position with respect to
the radiation field.

Depending on its position with respect to the light wave a particle will either gain or
lose energy. For an FEL a constant energy transfer is desired to ensure an amplification
of the light wave. Therefore, the ponderomotive phase should ideally remain constant
during the pass through the undulator

dΨ

dt
= (ku + kl)β̄sc− ωl

!
= 0. (2.20)

Solving for the light wavelength leads to the resonance condition of the free-electron
laser

λl =
λu
2γ2

(
1 +

K2

2

)
. (2.21)

∗The modified undulator parameter takes the longitudinal velocity oscillations of the electrons into
account and is given by K̂ = K

(
J0
(

K2

4+2K2

)
− J1

(
K2

4+2K2

))
.
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2.3 High-Gain Theory

This is exactly the wavelength of the spontaneous undulator radiation for θ = 0, i.e. on-
axis. This allows an FEL to work in a self seeding mode, i.e. amplifying the spontaneous
emission produced in the first few undulator periods.

The energy exchange between the electrons and the radiation field results in an energy
modulation of the electrons on the scale of the radiation wavelength. Due to the energy
dependence of the electron motion, the energy modulation will translate into a current
density modulation called microbunching. Since this modulation is periodic on the
scale of the light wavelength, the radiation gets more and more coherent, resulting in an
exponential growth of the field amplitude. A sketch of the process is shown in Fig. 2.2.

The exact behavior of an FEL can either be described using first-order equations, which
describe the whole phase space dynamics but do not allow for an analytical solution
of the field evolution, or by an analytically solvable third-order differential equation
characterizing the evolution of the field amplitude. Both approaches are covered in the
following two sections.

2.3.2 First-Order Equations

The dynamics of the individual electrons caused by the electron-radiation interaction
as well as the evolution of the field amplitude can be described by the first-order
equations [19]

dΨn(s)

ds
= 2kuηn, (2.22)

dηn(s)

ds
= − e

γrmc2
<

((
K̂Ẽx(s)

2γr
− ic2µ0

ωl
j̃1(s)

)
exp(iΨn)

)
, (2.23)

dẼx(s)

ds
= −µ0cK̂

4γr
j̃1(s), (2.24)

j̃1(s) = 2j0
1

N

N∑
n=1

exp(−iΨn), (2.25)

with n = 1 . . . N identifying the individual particle within one radiation wavelength∗,
ηn = ∆γn/γr characterizing the energy detuning of an electron with respect to the res-
onance energy γr, and j̃1(s) being the position dependent amplitude of the current density
modulation in addition to the unperturbed current density j0. Complex quantities are
indicated by a tilde and are used to simplify the mathematics.

This set of 2N+1 coupled differential equations and one algebraic equation includes all
important features of the 1D FEL theory for infinitely long, periodic bunches. The
∗Here other parts of the bunch are assumed to be identical copies of the described region, however, the
model can be extended to nonperiodic cases [19].
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Figure 2.2: Sketch of the FEL process and typical orders of magnitude. The electron bunch
oscillates during its propagation through the undulator (top). Due to the high electron
velocity, it co-propagates with the radiation produced by itself and interacts with it
(middle). The oscillation of the electrons in the radiation field causes an energy
modulation on the scale of the light wavelength that gets converted into a density
modulation due to the dispersive character of the undulator (bottom). The build-up
of this density modulation results in an increase of coherent emission, leading to an
exponential power rise.
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2.3 High-Gain Theory

equations can be solved numerically for a suited set of initial conditions and are the
foundation of 1D FEL codes; however, due to the large number of electrons per slice
no analytical solution is possible. Nevertheless, the individual equations can provide a
deeper understanding of the underlying mechanisms.

The amplitude of the current density modulation can be cast into a new form

j̃1(s) = 2j0 · |〈exp(−iΨn)〉| · exp(−iΦj1). (2.26)

Here the bunching factor [20] |〈exp(−iΨn)〉|, with 〈. . .〉 indicating an average over all
particles, and the bunching phase Φj1 were used. The bunching factor resembles the root-
mean-square distance to the origin of a random walk in the complex plane. For a uniform
random distribution, e.g. the electron distribution at the undulator entrance, it scales as
1/
√
N . In simulations this property is of special interest since usually not single electrons

but macro particles, replacing a large number of electrons each, are used to model the
FEL process. This several orders of magnitude smaller number of macro particles has
to have the same statistical properties as the simulated bunch. Consequently, no simple
random distribution can be used, but special care has to be taken to reduce the initial
noise [20, 30]. During the propagation through the undulator the microbunching builds
up and the bunching factor rises. For realistic cases the bunching factor at saturation of
the FEL process is on the order of 10−2 [20].

Using the bunching factor, the change of the field amplitude can be expressed as

dẼx(s)

ds
= −µ0cK̂

4γr
j̃1(s) ∝ |〈exp(−iΨn)〉| · exp(−iΦj1). (2.27)

The growth rate of the field amplitude is directly proportional to the bunching factor.
Whether the field is amplified or reduced, however, crucially depends on the phase of
the current density modulation with respect to the phase of the complex field amplitude.
The absolute value of the field amplitude change |∆Ẽx(s)| per integration step ∆s is
small compared to the existing field amplitude. Using the phase of the complex field
amplitude ΦẼx

, this leads to the requirement |Φj1 − ΦẼx
| < π/2 according to the law

of cosines. In the phase space picture this is equivalent to requiring the majority of the
electrons in a bucket to be located in the right half where they will lose energy, leading
to field amplitude growth.

The rate of energy change of an electron neglecting space-charge effects is proportional
to

dηn(s)

ds
= − e

γrmc2
<

((
K̂Ẽx(s)

2γr

)
exp(iΨn)

)
∝ −|Ẽx(s)| cos(ΦẼx

(s) + Ψn(s)). (2.28)

The rate of energy change therefore depends on the position dependent amplitude of the
radiation field and the phase relation between field amplitude and electron. For field
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Figure 2.3: Phase space close to the undulator center (top) and exit (bottom) assuming a sys-
tem that reaches a maximum of field amplification at the undulator exit. Initially
the electrons were homogeneously distributed in Ψ (the color code represents the
starting bucket) with all electrons starting on resonance η0 = 0. During the interac-
tion the quasi-separatrix (black) surrounding the buckets grows and moves towards
lower phases Ψ. The electron distribution becomes asymmetrically distributed in each
bucket, allowing for field amplification.

14



2.3 High-Gain Theory

amplification the condition |ΦẼx
(s) + Ψn(s)| < π/2 has to hold. So far this is equivalent

to the requirement for the phase of the current modulation above. However, a closer look
reveals two important characteristics of the phase space: First, field amplification will
also lead to a growth of the energy change rate, changing the phase space structure over
time and resulting in a growth of the quasi-separatrix height. Second, any change of the
phase of the complex field amplitude ΦẼx

(s) will shift the phase space structure, moving
the regions of energy loss and gain. It can be shown that during the amplification process
the phase velocity of the radiation field is reduced (see Sect. 2.3.4) what is equivalent to
growth of ΦẼx

(s), resulting in a bucket motion towards lower phases. The combination
of these two effects allows a high-gain FEL to operate with on-resonance electrons. Two
steps of the phase space evolution close to the start and end of the amplification process
are shown in Fig. 2.3.

2.3.3 Third-Order Equation – Analytical Solution

In order to obtain an analytical solution of the field amplification in an FEL, one has
to switch from the description of individual particles to an ansatz using a phase space
density [19]

f̃(s, η,Ψ) = f0(η) +
(
f̃1(s, η) exp(iΨ)

)
. (2.29)

The first summand f0(η) is the energy distribution of the electron bunch and does not
depend on the propagation distance. The second summand resembles the density mod-
ulation periodic in Ψ with a position dependent amplitude. To allow for an analyti-
cal solution, the additional assumption of small density modulations is necessary
|f̃1(s, η)| � |f0(η)|.

An advantage of the collective description of the particles using a density is that it has
to follow a continuity equation, in this case the Vlasov equation

df

ds
=
∂f

∂s
+
∂f

∂Ψ

dΨ

ds
+
∂f

∂η

dη

ds
= 0. (2.30)

This allows to express the change of the field amplitude as [19]

dẼx(s)

ds
= i

kuµ0K̂nee
2

2mγ2
r

∫ s

0

(
K̂Ẽx(σ)

2γr
+ 4i

cγr

ωlK̂

dẼx(σ)

dσ

)
. . .

×
∫ +δ

−δ
f0(η)(s− σ) exp(−2ikuη(s− σ))dηdσ, (2.31)

with the electron density ne. This integro-differential equation is valid for all energy
distributions fulfilling f0(|η| ≥ δ) = 0 with δ � 1. To continue with a scenario that is
as general as possible, it would be desirable to approximate the energy distribution by a
Gaussian; however, no analytical solution exists for this case [22].
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2 FEL Theory

Assuming a monoenergetic energy distribution f0(η) = δ(η−η0) centered at an arbitrary
detuning η0

∗ and introducing new variables characterizing the FEL properties allows to
recast the integro-differential equation to [19]

Ẽ′′′x
Γ3

+ 2i
η

ρ

Ẽ′′x
Γ2

+

((
kp
Γ

)2

−
(
η

ρ

)2
)
Ẽ′x
Γ
− iẼx = 0. (2.32)

This is the third-order differential equation characterizing the field amplitude evo-
lution in a high-gain free-electron laser in the one-dimensional approximation including
space-charge and detuning as degrading effects. The new parameters used are the gain
parameter Γ, the space-charge parameter kp, and the Pierce parameter ρ [31]
They are defined as:

• Gain parameter

Γ =

(
µ0K̂

2e2kune
4γ3

rm

)1/3

. (2.33)

As the name already indicates the gain parameter is a measure for the FEL gain,
i.e. the growth rate of the field amplitude, and therefore the achievable radiation
power.

• Space-charge parameter

kp =

(
2kuµ0nee

2c

γrmωl

)1/2

. (2.34)

The space-charge parameter measures the impact of local space-charge effects caused
by the microbunching. Due to the scaling kp ∝ (γrωl)

−1/2 ∝ γ
−3/2
r , space-charge

effects are often negligible for short-wavelength FELs.

• Pierce parameter

ρ =
Γ

2ku
=

1

2γr

Ipeak
IA

(
K̂λu√
22πσr

)2
1/3

. (2.35)

Here the Alfvén current IA = 4πmc/µ0e ≈ 17 kA is used. Ipeak is the peak current
of a finite electron pulse and σr its rms radius. The Pierce parameter is the probably
most important parameter in the FEL theory. Due to its proportionality to the
gain parameter, it is also related to the rate of field amplification. In addition,
it is a measure for the efficiency of the FEL in terms of its capability to transfer
power stored in the electron beam to the radiation field. The typical range for
linear accelerator based FELs is ρ = 10−3–10−4. Furthermore, it characterizes the

∗To simplify the further notation η0 will be replaced by η.
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2.3 High-Gain Theory

bandwidth (see Sect. 2.3.4) and consequently is a measure for the sensitivity of the
setup to errors and degrading effects (see Sect. 2.4).

Due to these relations, it is of high importance to ensure a high Pierce parameter.
This is limited by the short design wavelengths of ultraviolet and X-ray systems due
to the competing scalings of both. The only wavelength independent parameters
are the current Ipeak and the beam size σr; however, these are limited by the
capabilities of the accelerator and the focusing system.

The general solution of the third-order differential equation has the form

Ẽx(s) =
3∑
i=1

ci(η, kp) exp(αi(η, kp)s), (2.36)

with the coefficients ci depending on both, the initial conditions and the degrading effects,
whereas the exponents depend on the degrading effects only.

For an ideal system the third-order equation can be simplified by assuming:

• The beam to be on resonance, i.e. the detuning to be negligible η = 0. This
approximation is well justified for self seeding systems since the on-axis undulator
radiation wavelength fulfills the resonance condition.

• That space-charge effects are negligible kp = 0, which is reasonable for a short-
wavelength system due to the high energy.

Neglecting these effects leads to the simple equation

α3

Γ3
− i = 0, (2.37)

which is solved by

α1 =
(i +
√

3)Γ

2
, α2 =

(i−
√

3)Γ

2
, α3 = −iΓ. (2.38)

All three solutions contain an oscillatory behavior with the first providing an additional
exponential growth due to the positive real part, whereas the second shows an additional
exponential decay. Consequently, the first solution will dominate the field amplitude
evolution for sufficiently long systems, i.e. s� Γ−1, and will result in the power scaling

P (s) ∝ |Ẽx(s)|2 ≈ |c1|2 exp
(√

3Γs
)
. (2.39)

Here not only the meaning of the gain parameter becomes obvious but also one of the
major deficits of the simplified theory – it predicts an infinite, exponential power growth.
This is owed to the assumption of small density modulations |f̃1| � |f0| used in the

17



2 FEL Theory

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

10
10

s/L
g,1D

p
o
w

e
r 

[a
.u

.]

Figure 2.4: Power as a function of the longitudinal position for a seeded FEL based on the first-
order equations (2.22)–(2.25) neglecting all degrading effects. The power curve can be
divided into three sections: s ≤ 3Lg,1D, here no significant amplification is found due
to the competing solutions (exponential growth and decay). In the range 3Lg,1D <

s ≤ 23Lg,1D the power rises exponentially until saturation is reached for s > 23Lg,1D
and the power starts to oscillate.

derivation which does not hold when strong bunching and, therefore, the highest field
amplification is reached.

Although the gain parameter is well suited to characterize the amplification process, the
more often used quantity characterizing the power gain is the e-folding length of the
system, the one-dimensional power gain length (or just gain length∗) defined as

Lg,1D =
1√
3Γ

=
λu

4π
√

3ρ
. (2.40)

The coefficients ci used in the exponential ansatz solving the general third-order differen-
tial equation depend on the initial conditions. In general, two major classes of high-gain
FELs can be distinguished in terms of their initial conditions:

• Seeded FELs – In these systems the initial radiation field is provided by an
external source. In terms of initial conditions this corresponds to a nonvanishing
initial field amplitude while all derivatives of the field amplitude are zero. In
experiments the major challenge for the case of short-wavelength FELs is to provide
a strong enough seed pulse at the resonant wavelength that is synchronized with
the electron bunch.

∗In the literature different definitions of the gain length are used. In some cases the term refers to
the field gain length Lg,1D,field = 2Lg,1D, and in other manuscripts the gain length is defined as the
inverse of the gain parameter Lg,1D,alt. = Γ−1 =

√
3Lg,1D.

18
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• SASE FELs – Here self amplification of spontaneous emission (SASE) is used to
drive the FEL, i.e. the spontaneous undulator radiation produced on the first few
undulator periods gets amplified by the interaction process. The initial conditions
here only contain the first and second field amplitude derivatives since they are
related to the current modulation driving the spontaneous emission, and the initial
field amplitude is zero. This is the most common way of operation for short-
wavelength FELs up to now.

Although the initial conditions differ significantly, the gain mechanism is not influenced
by them and, therefore, the gain lengths are identical.

2.3.4 Properties

Besides the scale of amplification, there are further important properties of free-electron
lasers and their radiation.

Saturation

An important effect not included in the third-order differential equation is saturation.
The linearization of the theory introduced by the assumption of small modulations |f̃1| �
|f0| eliminated this feature from the theory. It is, however, included in the first-order
equations.

The linearized theory only allows for an estimate of the saturation properties. Due to
the exponential growth of the field amplitude, the bulk of the power is generated on
the last few gain lengths. In addition, the highest possible growth rate is reached at
the maximum of microbunching. The saturation power can consequently be estimated
by assuming maximum current density modulation |j̃1| = |j0| and integrating the field
amplitude growth over one field gain length, i.e. two power gain lengths.

The resulting estimate for the saturation power is [19]

Psat ≈ ρPbeam, (2.41)

using the power of the electron beam given by Pbeam = γmc2Ipeak/e. This shows that
the Pierce parameter is a measure for the efficiency of an FEL.

The undulator length needed to reach the maximum power, i.e. the saturation length,
can be approximated by [18]

Lsat ≈
λu
ρ
. (2.42)

If the setup length exceeds this length, the power growth is not only stopped, but electrons
start to regain energy from the radiation field, leading to a reduction of the radiation
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power. Consequently, care has to be taken in the setup design – a longer undulator does
not necessarily result in a better performance.

Bandwidth

A further interesting characteristic of FEL radiation is its bandwidth. This is not to be
confused with the bandwidth of the undulator radiation depending on interference only.
In order to characterize the bandwidth of a free-electron laser its capability to amplify
detuned radiation has to be taken into account. In general the power growth is given
by

P (s, η) ∝ exp (<(2α1(η))s), (2.43)

with α1(η) characterizing the detuning dependent solution of the third-order equation
leading to exponential growth (see Sect. 2.4.1). The growth rate can be approximated
by [19]

<(2α1(η)) ≈
(

1− η2

9ρ2

)
1

Lg,1D
. (2.44)

This allows to express the power growth as

P (s, η) ∝ exp

(
s

Lg,1D

)
exp

(
−(ω − ωl)2

2σ2
ω(s)

)
, (2.45)

using the radiation bandwidth

σω(s) = 3
√

2ωlρ

√
Lg,1D
s

. (2.46)

Similar to the spontaneous undulator radiation, the FEL bandwidth drops with the setup
length; however, it is proportional to 1/

√
s. Assuming a system operating in saturation,

the relative bandwidth can be approximated by the Pierce parameter

σω,sat
ωl

≈ ρ. (2.47)

This is not only a characteristic of the radiation but also sets limits to the tolerances the
setup has to fulfill (see Sect. 2.4).

Cooperation Length

An important characteristic of an FEL is the cooperation length. It is defined as the
distance slipped by a photon with respect to the electrons during the bunch propagation
over one gain length [32]

lco =
Lg,1D
λu

λl. (2.48)
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Figure 2.5: Probability density functions for M = 1 (dashed red), M = 5 (solid blue), and
M = 20 (dash-dotted green) based on Eq. (2.50). In the limiting case of short
bunches, i.e. low number of modes, the distribution becomes a negative exponential
distribution, whereas for long bunches, i.e. high numbers of modes, the distribution
converges against a Gaussian distribution.

This sets the scale over that communication in the bunch can occur during one gain
length and consequently limits correlations to this range. It is, therefore, also a measure
for the coherence length. The corresponding coherence time can be approximated by
tco ≈ lco/c. The gain length is used as scale since it is the characteristic length of the
FEL process, defining features of the final radiation pulse.

Since SASE FELs start from the shot-noise of the initial electron distribution, the pro-
duced radiation has the properties of chaotic polarized radiation [33]. Depending on the
ratio of bunch duration to coherence time

M =
tbunch
tco

, (2.49)

on averageM independent modes will exist in the time and frequency domain [33]. In the
extreme case of tbunch ≤ tco only one single mode will exist, resulting inM = 1; however,
in this regime also the FEL performance will significantly be affected [32, 34, 35]. This
will be discussed in Sect. 2.4.6.

A further characteristic feature of an FEL pulse depending on the number of modes is
the fluctuation of the radiation energy W . For completely chaotic polarized light, the
probability density distribution of the radiation energy p(W ) in the exponential gain
regime s� Γ−1 is given by [33]

p(W ) =
MM

Γ(M)

(
W

〈W 〉

)M−1 1

〈W 〉
exp

(
−M W

〈W 〉

)
, (2.50)
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here 〈W 〉 is the average of the radiation energy over many pulses, Γ is the gamma
function, and M is the number of modes defined above. Different examples are shown in
Fig. 2.5. Two extreme cases can be distinguished:

• M = 1 – resulting in a negative exponential distribution

• M � 1 – allowing to approximate the distribution by a Gaussian

Independent of the extreme cases, the distribution shows that significant shot-to-shot en-
ergy fluctuations can be expected in the exponential gain regime. This is a characteristic
feature of an FEL, and can be used as evidence for an FEL process in first demonstration
experiments.

Velocities

Slippage of the light wave with respect to the electrons is a fundamental characteristic of
an FEL. The right amount of slippage ensures a constant field amplification and is the key
to a resonant behavior. Up to now, all calculations assumed the phase velocity to be the
vacuum speed of light vph = c. However, this cannot hold since the radiation field is not
propagating in vacuum but in an electron bunch with an increasing density modulation,
i.e. a medium; hence, a modification of the phase velocity is to be expected.

In the exponential gain regime s� Γ−1 the radiation field can be approximated by [19]

Ẽx(s, t) = c1 exp (<(α1)s) exp (i (kl,effs− ωlt)) , (2.51)

with the effective wave number kl,eff = =(α1) + kl. Using the solution of the third-order
differential equation α1 = (i +

√
3)Γ/2 the phase velocity can be approximated by

vph =
ωl
kl,eff

≈ c
(

1− λl
Lsat

)
, (2.52)

using the approximation Lsat ≈ λu/ρ. This relation shows that a light wave slips by
one light wavelength with respect to a wave propagating with the vacuum speed of light
over the saturation length. This characteristic is the reason for the bucket motion in
the phase space mentioned earlier (see Sect. 2.3.2) and, therefore, essential for the on-
resonance operation of a high-gain free-electron laser.

Using the same approximation of the radiation field as above, also the group velocity can
be approximated [19]

vg =
dωl

dkl,eff
≈ c

(
1− 1

3γ2
r

(
1 +

K2

2

))
. (2.53)
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Figure 2.6: Power normalized to the peak power P/Ppeak for each position in the undulator as a
function of the bunch internal position obtained with Genesis [36]. At the beginning
of the FEL process (lower half of the figure) the major part of the power is caused
by spontaneous emission that slips through the bunch, i.e. to the right, with one
light wavelength per undulator period. As soon as the FEL amplification reaches the
exponential gain regime the slippage gets reduced as explained by the reduced group
velocity in Eq. (2.54).

To get a more instructive picture, the resulting slippage of a wave packet with respect to
the electron bunch can be compared to the corresponding slippage occurring in vacuum
[22]

vg − β̄sc
c− β̄sc

=
c 1

6γ2r

(
1 + K2

2

)
c− c

(
1− 1

2γ2r

(
1 + K2

2

)) =
1

3
. (2.54)

This relation shows that, although a wave packet is still faster than the electron bunch,
the velocity difference between wave packet and electron bunch is significantly reduced
during the exponential growth regime. The data obtained with a time-dependent Gene-
sis [36] simulation shown in Fig. 2.6 clearly shows the difference in slippage velocities for
the startup and exponential growth regime. This effect is of importance when optimizing
a system with respect to slippage effects (see Sect. 7.3).

2.4 Degrading Effects

The theory discussed so far did not only use several assumptions but also neglected all
degrading effects. The goal of this section is to discuss the most important degrading
effects. Some effects are already included in the third-order differential equation (2.32) or
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2 FEL Theory

the more general integro-differential equation (2.31) and an exact discussion is possible.
Other effects not included in the theory can only be estimated in this frame.

2.4.1 Detuning

An effect included in the third order-equation is the detuning characterized by the pa-
rameter η. Detuning has been introduced in terms of an energy deviation of the electrons
from resonance. It can, however, also be used to characterize a frequency deviation of
the light wave from the resonant frequency

η = −ω − ωr
2ωr

. (2.55)

The minus sign takes into account that a too high frequency corresponds to a too low
electron energy and the factor two in the denominator is caused by the γ2

r dependence
of the frequency on the electron energy.

Using the ansatz Ẽx(s) =
∑3

i=1 ci(η) exp(αi(η)s) and the third-order equation (2.32)
neglecting space-charge effects yields the eigenvalue equation

α3

Γ3
+ 2i

η

ρ

α2

Γ2
−
(
η

ρ

)2 α

Γ
− i = 0, (2.56)

in the case of detuning. From this equation it can already be seen that the Pierce
parameters is a scale for the detuning. This equation can be solved analytically, resulting
in the eigenvalue leading to exponential growth

α1 =
1

6

(
u− 4

u

(
η

ρ

)2

− 4i
η

ρ

)
Γ, (2.57)

with the helper function

u =

108i− 8i

(
η

ρ

)3

+ 12

√
12

(
η

ρ

)3

− 81

1/3

. (2.58)

The comparison of the growth rate in the case of detuning and the ideal growth rate
shown in Fig. 2.7 shows important characteristics: First, the dependence of the growth
rate on the detuning is not symmetric. This can be understood as a result of the bucket
motion in the phase space, leading to different relative velocities between bucket and
electron depending on the sign of detuning. Second, a threshold exists at η ≈ 1.88ρ. Any
higher detuning will result in a breakdown of the amplification process. In the phase
space this can be understood as the consequence of the high rate of phase change leading
to a vanishing net energy change.
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Figure 2.7: Normalized growth rate of the FEL power Lg,1D/Lg(η) as a function of the relative
detuning η/ρ. A threshold is found at η ≈ 1.88ρ. Consequently, too high electron en-
ergies or too low photon frequencies cause a complete breakdown of the amplification
process. In these cases the location and relative motion of separatrix and electrons
differ so much that no resonant interaction is possible. This sets tight limits to the
acceptable errors of seeded FELs.

It is in the nature of things that detuning is of high importance for seeded systems. Here
the energy jitter of the accelerator as well as the the frequency jitter of the seed source
are limited by the requirement η ≈ 1.88ρ. With typical Pierce parameters in the range
ρ = 10−3–10−4 this is a challenging requirement.

Detuning can also become important for SASE FELs when other degrading effects are
taken into account, e.g. in the presence of a Gaussian energy spread the highest gain does
not occur on resonance but for an energy spread dependent detuning (see below).

2.4.2 Energy Spread

Energy spread∗ is of importance for every system since a perfectly monoenergetic beam
cannot be created at any accelerator, although, very low energy spreads are possible with
state-of-the-art linear accelerators. Consequently, energy spread is of high importance for
all free-electron lasers. The effect is not included in the third-order differential equation
due to the assumption of a monoenergetic beam. Therefore, the integro-differential
equation (2.31) has to be used to obtain an analytical solution.

∗In this section the width and center of the energy distribution are assumed to be constant along the
bunch. If the mean energy or the energy spread vary along the bunch, the effective energy spread
integrated over one cooperation length has to be used as long as no further correction mechanisms
in the setup, like a taper of the undulator, are used.

25
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For an arbitrary energy distribution the eigenvalue equation can be shown to be [19]

α = (iΓ3 − k2
pα)

∫
f0(η)

(α+ 2ikuη)2
dη. (2.59)

This relation can only be solved analytically for a few distributions not including the
typical Gaussian distribution [20]. A Lorentz distribution

f0(η) =
1

π

∆

η2 + ∆2
, (2.60)

with the half-width at half maximum ∆ = ση/ρ can be used as an approximation of a
Gaussian with width ση = σγ/γ. The normalization using the Pierce parameter already
introduces a scale for the energy spread. The resulting eigenvalue equation neglecting
space-charge effects and detuning reads [20]

α3

Γ3
+ 2∆

α2

Γ2
+ ∆2α

Γ
− i = 0. (2.61)

This relation has the same structure as in the case of detuning (2.56) and again allows for
an analytical solution. The eigenvalue leading to an exponential amplification is given
by

α1 =

(
u

6
+

2

3u
∆2 − 2

3
∆

)
Γ, (2.62)

using the helper function

u =
(

108i + 8∆3 + 12
√

12i∆3 − 81
)1/3

. (2.63)

The resulting growth rate in comparison to the ideal case is shown in Fig. 2.8. Already
an energy spread of ση ≈ 0.75ρ result in a doubling of the gain length. This range is
usually seen as not acceptable due to the larger setup size and higher costs.

As stated above, the more realistic case of a Gaussian energy distribution given by

f0(η) =
1√

2πση
exp

(
−1

2

(
η − η0

ση

)2
)
, (2.64)

with the relative energy spread ση and the mean energy detuning η0 cannot be solved
analytically; however, asymptotic expressions for the case of small and large energy
spreads in combination with detuning can be derived [22]. Assuming a small energy
spread, i.e. ∆ � 1, and optimizing the detuning for maximum amplification yields the
eigenvalue

<(α1) ≈
√

3

2

(
1−∆2

)
Γ. (2.65)
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Figure 2.8: Normalized growth rate of the FEL power Lg,1D/Lg(∆) as a function of the normal-
ized energy spread ∆ = ση/ρ. The dependence for a Lorentzian energy distribution is
shown in solid blue, solid green and red show the asymptotic dependence for a Gaus-
sian energy distribution based on Eqs. (2.65) and (2.66). The dashed black line uses
the approximation (2.67) and results in a good approximation for the shown ∆-range.

The detuning maximizing the growth rate is given by ηopt ≈ 3∆2ρ. For the case of a
broad energy spread, i.e. ∆� 1, the maximum growth rate is given by

<(α1) ≈ 0.76

∆2
Γ, (2.66)

for an optimum detuning of ηopt ≈ ∆ρ. An approximation connecting both asymptotic
cases is [37]

<(α1) ≈
√

3

2

1

1 + ∆2
Γ. (2.67)

Comparing the resulting growth rate to the ideal case shows a quick drop already for
∆ = 0.5. This leads to the typical requirement

ση <
ρ

2
. (2.68)

The impact of energy spread in general, as well as this limit, can also be motivated in
the phase space. In general energy spread will smear out the microbunching due to the
population of a larger phase space region, reducing the current modulation, leading to
a gain reduction. The limit can be motivated as follows: In an undisturbed FEL the
quasi-separatrix moves with the rate dΨ/dt ≈ −ckuρ in the exponential growth regime
as can be shown using the reduced phase velocity and the first-order equations. In terms
of the electron motion this rate corresponds to a detuning of η = −ρ/2 [16]. Electrons
with an initial detuning of η ≤ −ρ/2 will therefore on average end up in the left half of
a bucket where their net energy change is positive, resulting in a reduction of the field
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amplitude. Requiring ση < ρ/2 consequently prevents these phase space regions from
being populated.

As in the case of detuning, the energy spread requirement is challenging due to the
typically small Pierce parameter and pushes the limits of accelerator technology. Conse-
quently, free-electron lasers can be seen as a benchmark for accelerator performance.

2.4.3 Space-Charge

So far all discussions assumed a vanishing impact of space-charge on the FEL perfor-
mance. This might be justified in many cases; however, space-charge effects will always
be present, although they may be small.

In general, space-charge effects can be grouped in two categories: local space-charge
effects that are included in the theory derived so far and are based on microbunching
and the corresponding charge density modulation on the scale of the light wavelength,
and global space-charge effects caused by the finite extension of a real electron bunch.
The later will cause an energy chirp within the whole bunch, finally leading to a Coulomb
explosion.

Local Effects

To study the impact of local space-charge effects, the third-order differential equation can
be solved by using the exponential ansatz. The resulting eigenvalue equation including
space-charge effects but neglecting detuning reads

α3

Γ3
+

(
kp
Γ

)2 α

Γ
− i = 0. (2.69)

The structure of the equation already indicates that the scale for local space-charge effects
is given by the gain parameter Γ instead of the Pierce parameter as in the case of energy
detuning and spread.

The eigenvalue leading to exponential growth can be determined analytically yielding

α1 =

(
u

6
− 2

u

(
kp
Γ

)2
)
, (2.70)

using the function

u =

108i + 12

√
12

(
kp
Γ

)6

− 81

1/3

. (2.71)
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Figure 2.9: Normalized growth rate of the FEL power Lg,1D/Lg(kp) as a function of the normal-
ized space-charge parameter kp/Γ. A threshold is found at kp ≈ 1.38Γ. At this point
the space-charge forces prevent a build-up of microbunching and therefore prevent
the FEL process.

Comparing the so obtained growth rate <(2α1) to the ideal case, as shown in Fig. 2.9,
reveals a fast drop, leading to vanishing gain at approximately kp ≈ 1.38Γ. In this
case the space-charge driven debunching counteracting the microbunching prevents it
completely and therefore suppresses the FEL process. For short-wavelength FELs this
effect is usually negligible due to the high energies and the different energy scalings of
the space-charge parameter kp ∝ γ−3/2 and the gain parameter Γ ∝ γ−1.

Global Effects

Global space-charge effects are not included in the theory discussed so far, neither in the
first-order equations nor in the third-order or integro-differential equation. Even most
numerical codes are not capable of taking this effect into account; however, the impact
on the FEL performance can be estimated analytically.

The major space-charge induced effect on the bunch scale is the buildup of a longitudinal
energy chirp. Electrons at the bunch head get accelerated while electrons at the bunch
tail get decelerated. This energy modulation can reduce the efficiency of the FEL process.
To maintain the FEL performance the width of the detuning range traversed by a photon
during one gain length has to be smaller than the Pierce parameter [12]. Since a photon
slips by one cooperation length per gain length with respect to the electrons, this is
equivalent to the requirement

lco
dη

dz
< ρ, (2.72)
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with dη/dz being the relative energy chirp along along the internal bunch coordinate
z. The energy modulation will also lead to a longitudinal bunch expansion reducing the
peak current and the slope of the induced chirp [38].

For most short-wavelength systems global space-charge effects are negligible due to the
energy scaling discussed above, but they can become important for systems as they
are discussed in this thesis due to moderate energies and extremely high peak currents
[38,39].

2.4.4 Emittance

The beam emittance is a parameter characterizing the transverse beam phase space and
is therefore not included in the one-dimensional theory. Any real electron beam will have
a finite transverse size and also a transverse momentum spread, leading to changes of the
beam envelope along the setup. The beam emittance characterizes the area occupied by
the beam in the transverse phase space and is defined as

εx =
√
〈x2〉〈x′2〉 − 〈xx′〉2, (2.73)

using the transverse particle offset x with respect to the ideal trajectory and the slope
of the particle trajectories x′ = dx/dz. For this definition to hold the condition 〈x〉 =

〈x′〉 = 0 has be fulfilled. The same formalism can be applied to the y component. As
long as acceleration and degrading effects are neglected the emittance is a conserved
quantity.

A finite emittance is always linked to a finite beam divergence, which is equivalent to
a transverse velocity spread. This transverse velocity spread gives rise to a longitudinal
velocity spread

σṡε = c
ε

βav
, (2.74)

using the average β-function along the setup βav (for more details see Chap. 7). This
velocity spread causes any structures in the phase space to be smeared out reducing the
microbunching in the same way as an energy spread does. The corresponding effective
energy spread is given by

σγ,ε =
1

c

(
dβ̄s
dγ

)−1

σṡε ≈
γ3ε

βav
. (2.75)

Applying the energy spread limit derived above (2.68) leads to an emittance limit

ε <
βavρ

2
√

2γ2
, (2.76)

that has to be fulfilled to ensure a minimal degradation of the FEL performance due
to emittance. This can be rewritten using the more convenient normalized emittance
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εn = γε, which is conserved during acceleration and holds for any position inside an
accelerator as long as degrading effects are neglected. The normalized emittance has to
fulfill

εn <
βavρ

2
√

2γ
. (2.77)

Assuming an average β-function of βav ≈ 10 m, a Pierce parameter of ρ = 10−3, and an
energy of γ = 103 as typical parameters for linear accelerator based free-electron lasers
requires a normalized emittance on the order of εn < 4 · 10−7 m rad. This requirement
is pushing the beam quality limits of state-of-the-art linear accelerators.

2.4.5 Diffraction

An assumption implicitly included so far is the perfect overlap of electrons and radiation
field. However, even in cases with a constant electron beam size the radiation field will
undergo diffractive widening. The radiation produced by an FEL can be described using
Gaussian modes as in the case of conventional lasers. Using this formalism the beam
widening can be characterized by means of the Rayleigh length

sR =
4πσ2

r

λl
, (2.78)

defined as the length over which the beam cross section doubles. Here the transverse
electron beam size σr is used since the electrons are the source of the radiation.

An effect counteracting the diffractive losses is the amplification of the radiation in the
electron beam leading to so-called gain guiding [19]. For this effect to compensate the
diffractive losses, however, a gain length sufficiently short when compared to the Rayleigh
length has to be ensured. Due to the opposing requirements on the gain length Lg,1D ∝
σ

2/3
r , which should be as short as possible, and the Rayleigh length sR ∝ σ2

r , which should
be as long as possible, a compromise is needed. A typical requirement is a Rayleigh length
equaling the field gain length [19]

sR = 2Lg,1D. (2.79)

Using the corresponding definitions (2.40) and (2.78), the emittance requirement (2.76),
and the relation λu/2γ2 < λl leads to an alternative version of the emittance requirement
based on the radiation wavelength

ε ≤ λl
4π
. (2.80)

This relation emphasizes the special challenge in terms of the emittance when aiming for
short-wavelength systems.
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2.4.6 Bunch Length

Besides the 3D effects also the impact of a finite bunch length has been neglected. For
short-wavelength FELs this assumption is usually well justified due to bunch lengths on
the order of tens of micrometers and radiation wavelengths on the angstrom scale. For
such systems the bunch length σz is much longer than the total slippage of the radiation
until saturation σz � 20lco. In the case of laser-plasma accelerator based systems,
however, this assumption is not always justified. Due to the extremely short bunches on
the order of a micrometer and less in combination with radiation wavelengths reaching up
to the 100-nm-range, light can slip out of the bunch well before saturation is reached. This
parameter range is called the superradiant regime [34,35] with characteristics significantly
differing from the steady-state regime [32]. One major issue in this regime is the gain
reduction, i.e. the increase of the gain length. An analytical solution of the power growth
for flat-top current profiles has been derived by Bonifacio et al. [32] for the two extreme
cases of a:

• Long bunch with lb � 2πlc, resulting in the normalized emitted power EL =

P/(ρPbeam) to grow like

EL(s̄) =
1

3
√

4π
√

3s̄Nlc

exp
(√

3s̄
)
, (2.81)

using the normalized position along the undulator s̄ = s/Lg, with the gain length
defined as Lg = λu/4πρ, and the number of electrons within a cooperation length
Nlc = Nλlc/λl using the cooperation length lc = λl/4πρ and the number of electrons
within on radiation wavelength Nλ.

• Short bunch with lb ≤ 2πlc with the normalized power scaling as

EL(s̄) =

√
l̄b

12π
√

3Nλ

exp
(
3
√

3(y/2)2/3
)

(y/2)5/3
, (2.82)

with the normalized bunch length l̄b = lb/lc and y =
√
l̄bs̄. The scaling of short

bunches does not show a typical exponential growth any more but a more complex
dependence. Consequently, it is not possible to define a gain length in the sense
used so far.

These scalings provide a deeper insight in the FEL physics but are limited by the as-
sumption of a flat-top current profile that is far from the structure of realistic bunches.

An empirical scaling of the gain length and saturation power for short bunches and
Gaussian current profiles has been found by S. Bajlekov based on one-dimensional non-
period-averaged FEL simulations [35]. The correction of the gain length has been chosen
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Figure 2.10: Normalized growth rate of the FEL power Lg,1D/Lg(σz) as a function of the nor-
malized bunch length σz/lco. If the bunch length is on the order of the cooperation
length or even shorter, the growth rate drops due to the reduced interaction time of
electrons and light wave.

so that a scaling converging to the ideal behavior in the case of long bunches is en-
sured. According to the simulations for different parameter ranges, the gain length is
well approximate by

Lg = Lg,1D (1 + ηz) , (2.83)

with the bunch length dependent degradation parameter ηz defined as

ηz = b1 exp

(
b2

(
σz
lco

)b3)
, (2.84)

and the fit coefficients

b1 = 16.7512, b2 = −3.0420, b3 = 0.3267. (2.85)

The resulting gain length scaling is shown in Fig. 2.10. As can be expected from theory
the scale for slippage effects is given by the cooperation length. A bunch length on the
order of the cooperation length leads to a significant increase of the gain length due to
the reduced interaction time.

2.5 Ming Xie’s Fit

So far all degrading effects have been discussed independently. One widely used scaling
combining multiple degrading effects of importance for short-wavelength free-electron
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α1 = 0.45 α2 = 0.57 α3 = 0.55 α4 = 1.6

α5 = 3 α6 = 2 α7 = 0.25 α8 = 2.9

α9 = 2.4 α10 = 51 α11 = 0.95 α12 = 3

α13 = 5.4 α14 = 0.7 α15 = 1.9 α16 = 1140

α17 = 2.2 α18 = 2.9 α19 = 3.2

Table 2.1: Fit parameters derived by Xie for the gain length scaling (2.86).

lasers has been derived by Xie [37]. The scaling is based on an interpolation of a vari-
ational approximation of the evolution of the fundamental mode. The scaling assumes
space-charge to be negligible, as is usually justified for short-wavelength systems, and the
detuning is optimized for the highest growth rate. For these conditions the gain length
can be approximate by

Lg,3D = Lg,1D (1 + Λ) , (2.86)

using the degradation factor Λ. The degradation factor is a function of the three scaled
parameters characterizing the impact of:

• Diffraction via the ratio of ideal gain length and Rayleigh length

ηd =
Lg,1D
sR

. (2.87)

• Emittance assuming a constant β-function βav along the undulator

ηε =
Lg,1D
λl

4πε

βav
. (2.88)

• Energy spread via the ratio of relative energy spread and the Pierce parameter

ηγ = 4π
Lg,1D
λu

ση =
1√
3ρ
ση. (2.89)

Using these parameters the degradation factor is given by

Λ = α1η
α2
d + α3η

α4
ε + α5η

α6
γ

+ α7η
α8
ε ηα9

γ + α10η
α11
d ηα12

γ + α13η
α14
d ηα15

ε

+ α16η
α17
d ηα18

ε ηα19
γ . (2.90)

The saturation power for a specific parameter set can be approximated by

Psat ≈ 1.6ρ

(
Lg,1D
Lg,3D

)2

Pbeam, (2.91)
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using the electron beam power Pbeam.

This formalism allows to obtain quick performance estimates for short-wavelength FELs
without the need for simulations. It is therefore an invaluable tool for parameter scans
and preliminary setup optimizations.

The original scaling can be extended to include the gain length correction for a finite
bunch length. The extended scaling is given by [35]

Lg,3D,σz = Lg,1D (1 + Λ) (1 + ηz) , (2.92)

using the modified bunch length correction

ηz = b1 exp

(
b2

(
σz

lco,3D

)b3)
. (2.93)

Here the cooperation length including 3D effects, i.e. based on the 3D power gain
length,

lco,3D =
Lg,3D
λu

λl, (2.94)

has to be used.

This extended scaling is of special interest for laser-plasma based setups operating in, or
close to, the bunch length limited regime.

2.6 Summary

In this chapter the physics of a high-gain free-electron laser in the 1D approximation has
been reviewed.

The discussion started with the electron motion within the undulator and the gener-
ation of spontaneous undulator radiation. It was followed by an overview of the one-
dimensional high-gain FEL theory. Subsequent, extensions of the ideal theory taking
different degrading effects into account were discussed.

The basic scalings presented in this chapter are the foundation for the design of every
high-gain free-electron laser and allow to find a suited parameter range depending on the
setup requirements. They will be used in the following chapter in order to motivate a
reasonable parameter set allowing for a first FEL demonstration experiment driven by a
state-of-the-art laser-wakefield accelerator.

In addition to the ideal FEL characteristics also the inclusion of degrading effects in
the design considerations is crucial to assess the feasibility. The effect of energy spread
on the FEL performance takes center stage in the design of laser-plasma accelerator
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driven systems due to typical energy spreads on the multi-percent-level that exceed the
acceptance limits of typical FEL designs by about one order of magnitude. Besides
the energy spread also space-charge and diffraction play an important role in the design
concept due to the extreme parameter combinations typical for laser-wakefield accelerator
based setups.

The setup optimization discussed in the next chapter will rely on the here discussed
scalings especially on the extended version of Xie’s scaling law taking energy spread,
diffraction, emittance, and bunch length effects into account.
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3 Concepts for a Laser-Plasma Driven
FEL

State-of-the-art X-ray free-electron lasers like the Linac Coherent Light Source (LCLS)
are all driven by conventional, radio-frequency (RF) based linear accelerators. They
allow to provide high quality electron beams with currents on the kA-level and energies
of multiple GeV. In these accelerators the electron bunch is usually generated using a
photocathode electron source [6, 40, 41]. Here an ultraviolet (UV) laser illuminates the
cathode and extracts the electrons from the surface. The laser properties in combination
with the surface geometry define the initial bunch properties. Therefore, this part of
the accelerator is crucial for the successful operation of an FEL. Due to the low initial
energies, the maximum charge is limited to about 1 nC for state-of-the-art systems [6,
40, 41]. Otherwise, space-charge forces lead to a Coulomb explosion of the bunch and a
degradation of the emittance. The resulting currents are on the order of tens of ampere.
Afterwards, the bunch is accelerated using RF cavities providing accelerating electrical
fields on the order of 10 MV/m. To reach the high electron energies on the order of 10
GeV needed for the operation of a hard-X-ray FEL in the angstrom wavelength range,
an accelerator length of about 1 km is needed.

In order to reach short gain lengths, high currents are needed. To increase the cur-
rent from the few-ampere-level to the kA-range, bunch compressors are used at linear
accelerator based facilities. First, an approximately linear, longitudinal energy-position
correlation is introduced by off-crest acceleration, resulting in the bunch head to have a
lower energy than the bunch tail. Due to the vanishing velocity differences, a dispersive
section, a magnetic chicane, is used to introduce energy dependent trajectories. The
path length differences lead to a compression of the electron distribution. The maximum
achievable compression is, amongst others, limited by the following two points: First,
the maximum allowed energy chirp leading to path length differences is limited by the
maximum acceptable energy spread of the FEL. Second, emission of synchrotron radia-
tion in the magnetic chicane results in a degradation of the bunch in terms of emittance,
and consequently limits the strength of the chicane. The achievable peak currents are
on the order of a few kA [6, 41], and allow to reach Pierce parameters on the order of
ρ ≈ 5 · 10−4. In combination with undulator periods of a few centimeters, this leads to a
typical saturation length on the order of 100 m (see Eq. (2.42)). Parameter sets of LCLS
and the European XFEL are shown in Table 3.1.
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LCLS XFEL

Peak current [kA] 3.4 5
Energy [GeV] 14.4 17.5
Slice energy spread 6 · 10−5 9 · 10−5

Undulator period [mm] 30 35.6
Undulator parameter 3.7 3.3
Radiation wavelength [Å] 1.5 1.0
Pierce parameter 5 · 10−4 5 · 10−4

Saturation length [m] 86 133
Saturation power [GW] 8 20

Table 3.1: Parameters of LCLS [40] in the high energy mode and the SASE-1 beamline of the
European XFEL [6].

These typical numbers show that short-wavelength free-electron lasers are large facilities,
leading to high cost and space requirements. Due to these requirements, only few systems
of this kind exist and/or are under construction, significantly limiting the availability of
their unique radiation.

In order to increase the availability of such sources, drastic changes to the setup have
to be made in order to reduce the size as well as the costs. Further improvements of
the currently used technology do not allow for significant changes since the systems are
already working close to physical limitations, e.g. breakdown effects in the case of the
accelerator. To reduce the size of the biggest part of the system, the accelerator, a
completely different technology has to be used. A promising candidate is laser-wakefield
acceleration [8, 42].

In this chapter the basics of laser-wakefield acceleration, motivating the most important
scalings, are reviewed. Based on the parameters of state-of-the-art laser-wakefield ac-
celerators a design parameter set for a first FEL demonstration experiment based on
such accelerators is discussed. For the basic parameter set two optimization concepts,
longitudinal decompression and transverse dispersion, are compared.

3.1 Laser-Wakefield Acceleration

Laser-wakefield acceleration relies on the intense power of short-pulse lasers allowing to
excite plasma waves of high amplitude in gas. These waves, i.e. the charge separation,
gives rise to electrical fields three orders of magnitude higher than in conventional, RF-
based, linear accelerators, allowing to reduce the acceleration distance by the same factor.
Wavebreaking and other injection mechanisms can be used to place electrons in the
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3.1 Laser-Wakefield Acceleration

accelerating field. The concept of laser-wakefield acceleration has been proposed by
Tajima and Dawson in 1979 [8], but only with the availability of high power lasers it has
been possible to realize the idea. Since 2004 electron bunches of high quality, charge,
and energy have become available [9–11].

3.1.1 Basic Principles

When an intense laser pulse propagates through a plasma, electrons are expelled from
the high intensity region of the pulse due to the ponderomotive force [42]

F p = −mc2∇
(
a0

2

2

)
. (3.1)

Here a0 = eA/mc is the normalized vector potential of the laser. The positive ions
will remain at rest due to their greater mass and result in a restoring force, leading to
an oscillation of the electrons around their initial position with the relativistic plasma
frequency

ωp =

√
e2ne
γmε0

, (3.2)

with ne being the electron density of the plasma and γ the normalized energy of the
oscillating electrons. A plasma wave with the wavelength approximately given by [42]

λp[µm] ≈ 3.3 · 1010
√
ne[cm−3]

−1
, (3.3)

is set up behind the laser pulse – a so-called wakefield is created. Assuming a density of
ne = 1018 cm−3 yields λp = 33 µm. This length not only characterizes the wave but also
limits the bunch length that can get accelerated∗. Since this wave is directly linked to
the laser pulse, it propagates with its group velocity. A schematic representation of the
process is shown in Fig. 3.1.

The electrons contributing to the wave will not get accelerated themselves but set up an
intense longitudinal field [42]

E0[V/m] = 96
√
ne[cm−3]. (3.4)

Assuming the same plasma density as above yields a field of E0 = 96 GV/m. This
exceeds fields achievable in RF-based linear accelerators by approximately three orders
of magnitude. This field can be used for the acceleration of electrons on ultra-short
length scales, however, a suited injection mechanism for the electron to be accelerated is
required.
∗The actual bunch length will be a fraction of the plasma wavelength since only one fourth of the wave
provides an accelerating and focusing field [42], and the bunch slips with respect to the wave during
acceleration.
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Figure 3.1: Schematic representation of the acceleration process. Electrons of the plasma (blue)
get expelled from the high intensity region of the laser pulse (red) that propagates to
the right. A plasma wave is created, resulting in an electron density peak trailing the
laser pulse. If the laser is intense enough for the given electron density, wave breaking
occurs and electrons get trapped in the accelerating region behind the laser pulse.

As in the case of a surfer on a water wave, an electron that is to be accelerated has to
have a high enough initial velocity/energy to catch the wave. If the laser intensity is
too low, the electrons of the plasma do not have sufficient energy to get trapped and an
additional injection mechanism or an external electron source are needed. Schemes for
controlled injection are inter alia based on the combination of multiple laser pulses [43,44],
ionization-injection [45–47], and plasma density variations [48, 49].

Another possibility to reach injection is to use an intense enough driver laser to set up a
nonlinear wakefield and ultimately reach wave breaking that causes electrons originally
contributing to the plasma wave to get trapped and accelerated. This is the case in
the so-called bubble regime [50]. Given enough laser intensity, this approach is easier
to realize than controlled injection since no fs-timing and/or µm-positon-control are
required; however, it also results in less control over the trapping. This is an important
point since the trapping mechanism ultimately determines the energy spread that can be
achieved.

The achievable energy is limited by several effects [42]:

• Depletion – The laser pulse will over time transfer its energy to the plasma wave
and the accelerating electrons. Consequently, the distance over that the wakefield
can be sustained is limited by the available pulse energy.

• Dephasing – Due to the acceleration, the trapped electrons overtake the acceler-
ating wave and reach the decelerating part of the wave after a propagation distance
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dominantly depending on the plasma wavelength.

• Diffraction – If no optical guiding is used, the laser pulse will widen during the
propagation and, after some distance on the order of the Rayleigh length, drop
below the intensity required to drive the wakefield.

• Beam loading – The trapped electrons reduce the accelerating field due to their
own Coulomb field and can even cancel it completely.

The combination of injection mechanism and acceleration distance determines the fi-
nal energy distribution. Typically, a local energy spread as well as an energy-position
correlation, an energy chirp, are to be expected.

3.1.2 State-of-the-Art

Since the first demonstration of high quality electron beams with a well defined energy
distribution in 2004 [9–11], huge steps in the direction of a source with beam parameters
comparable to large scale linear accelerators have been made.

Over the years, the achievable energy has been increased from about hundred MeV to
the multi-GeV-range. The latest published energy record is 4.2 GeV [51], achieved with a
laser power of 300 TW within an acceleration distance of nine centimeters. This is only
a factor of four below the energy-range used at linear accelerator driven free-electron
lasers operating in the hard-X-ray regime and therefore more than sufficient for driving a
lab-scale FEL in the UV and X-ray range. With the increased availability of high-power
lasers in the PW-range even higher energies are to be expected in the near future.

The energy spread of the produced beams has been reduced from tens of percents down
to one percent [52]. New beam diagnostics even indicate a slice energy spread of less than
0.5% [53]. This progress brings a laser-plasma based free-electron laser within grasp.

In addition to the improvements regarding the achievable energy spectra also the beam
quality in terms of the normalized emittance has been improved from the multi-mm-mrad-
range down 0.1 mm mrad [54]. Here laser wakefield accelerators can even outperform
state-of-the-art linear accelerators.

The achievable bunch charges reach up to hundreds of pC [9] and allow in combination
with ultra-short bunches on the order 0.5 µm [55, 56] peak currents of multiple kA.
At linear accelerators such high currents are – if at all – only available after bunch
compression.

This combination of high peak currents, high beam quality, and reasonable energy spread,
achievable within ultra-short acceleration distances on the order of a few centimeters
makes laser-plasma accelerators a promising candidate for driving compact free-electron
lasers. The high currents exceeding the peak currents of conventional linear accelerators
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by up to an order of magnitude further lead to a short gain length, allowing for a reduction
of the total undulator length. Hence, this technology can be seen as the key to lab-scale
free-electron lasers, i.e. fifth-generation synchrotron light sources.

3.2 Parameter Choice

The goal of the parameter set discussed in this section is to allow for a first FEL demon-
stration experiment using electron bunches produced by a state-of-the-art laser-wakefield
accelerator and a compact undulator in the spirit of a lab-scale system. The radiation
wavelength is required to be in the ultraviolet or even X-ray range. All electron pa-
rameters are chosen so that they are within reach for current generation laser-wakefield
accelerators. The undulator and optics parameters are based on existing and recently
developed technology. The whole parameter set is chosen to allow for an demonstration
of amplification, i.e. the FEL power should exceed the power of the spontaneous undula-
tor radiation by at least an order of magnitude, but it is explicitly not required to reach
saturation.

3.2.1 Electrons

Based on experimental results obtained at state-of-the-art laser-wakefield accelerators,
several similar parameter sets suited for the operation of a free-electron laser have recently
been discussed [17, 57, 58]. The parameters used in this thesis are based on the scheme
by Maier et al. [17], and have already been achieved individually, but the combination of
all has still to be demonstrated.

The major limiting factor of bunches produced by laser-wakefield accelerators from an
FEL point of view is the large relative energy spread typical for these accelerators. A
relative projected and slice energy spread of ση = 1% has been set as a requirement
for a first FEL demonstration experiment, and has already been achieved by Wiggins
et al. [52]. This value is still challenging for the further FEL design due to the typical
requirement ση < ρ/2 consequently requiring a Pierce parameter on the percent-level (see
Sect. 2.4.2). Any initial energy chirp has been neglected although it is predicted by the
laser-plasma accelerator theory and indications for its existence have been obtained in
first experiments [53]. Neglecting the initial chirp and assuming the slice energy spread
to be as broad as the projected energy spread resembles a worst case scenario in terms
of the expected FEL performance and, therefore, results in conservative performance
estimates [17]. Assuming an initial chirp in combination with the same projected energy
spread leads to a lower slice energy spread and better FEL performance. All concepts
discussed in this thesis are also applicable in this case.
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The normalized electron energy has been chosen to be γ = 600. This energy level has
already been achieved and even exceeded in multiple experiments [51, 59–62] and is no
challenge for the acceleration. It is motivated not only by the availability of such beams
but also by the compromise between a short radiation wavelength λl ∝ γ−2 and a high
Pierce parameter ρ ∝ γ−1.

The current profile is assumed to be a Gaussian with an rms length of σz = 0.5 µm in
agreement with recent measurements [55,56,59]. While this allows for high peak currents
with already moderate amounts of charge, which is beneficial for the FEL process, the
short bunch also results in a challenge for a first FEL demonstration experiment due to
the requirement lco � σz for negligible degrading effects due to the finite bunch length
(see Sect. 2.4.6).

The bunch charge for the subsequent study is set to Q = 15 pC and is a compromise
between the different cases discussed in [17]. There either a charge of Q = 20 pC and an
initially uncorrelated energy spread was required, or a charge of Q = 5 pC in combination
with an initial chirp and a reduced initial slice energy spread with all cases having a
projected energy spread of ση = 1%. The amount of charge is not a challenge itself
and has already been achieved [59–61]; however, the combination with a small energy
spread is challenging for current laser-wakefield accelerators. In combination with the
short Gaussian bunch this leads to a peak current of I = 3.6 kA, comparable with linear
accelerator based systems after compression [6, 40].

Based on recent measurements at the accelerator to be used for the experiments the
normalized emittance is set to εn = 0.2 mm mrad [63]. This rather low value, even when
compared to RF-based linear accelerators, allows for a small beam size σx,y ∝ ε

1/2
n and

conversely a high current density and Pierce parameter ρ ∝ (σxσy)
−1/3 in agreement

with the energy spread requirement.

3.2.2 Undulator

The undulator is the heart of every FEL and its parametrization is crucial for the FEL
performance. For a first demonstration of a laser-plasma based free-electron laser three
aspects are of major importance: First, as mentioned above, the FEL design has to
accommodate for the broad energy spread and consequently maximize the Pierce param-
eter. Second, the gain length should be as short as possible to allow for a demonstration
of the FEL process using a short undulator. Third, the cooperation length and hence
the radiation wavelength should be in a reasonable range to minimize the performance
degradation by slippage effects.

The Pierce parameter scales as ρ ∝ (λuK)2/3. This suggests to increase both, the period
length as well as the undulator parameter, which is itself proportional to the period
length, to increase the energy spread acceptance.
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The power gain length, however, scales as Lg,1D ∝ λ
1/3
u K−2/3. To allow for a gain

demonstration within a reasonable undulator length; therefore, the period length should
be minimized while keeping the undulator parameter as high as possible.

The cooperation length is proportional to lco ∝ λl/ρ. Assuming K2 � 1, as required
by the previous two scalings, leads to the approximate proportionality lco ∝∼ λ

1/3
u K4/3

favoring a small period length and undulator parameter.

The gain length scaling of Xie [37] taking energy spread into account combined with the
bunch length scaling suggested by Bajlekov [35] can be used to estimate the interplay
of the various effects. Figure 3.2 shows the resulting gain length scaling based on the
electron parameters discussed above. Indeed the combination of a short period length
and a high undulator parameter is favorable. However, both are coupled via

K =
e

2πmc
λuB0 =

e

2πmc
λua1 exp

(
a2

g

λu
+ a3

(
g

λu

)2
)
, (3.5)

using the definition of the undulator parameter and Elleaume’s model for the on-axis
field [27]. The parameter range accessible for a conventional hybrid undulator using
NdFeB permanent magnets and vanadium permendur poles (a1 = 3.694, a2 = −5.068,
and a3 = 1.520) is indicated by the dashed line in Fig. 3.2. For the first demonstration of
laser-plasma driven free-electron laser it has been suggested to use a cryogenic undulator
to maximize the undulator parameter for a given undulator period and gap [17]. Recently
developed cryogenic undulator designs using praseodymium based magnets and vanadium
permendur poles, developed by the Helmholtz-Zentrum Berlin [64, 65], can reach an
undulator parameter of K = 3.3 at a temperature of T = 50 K, with a period length of
λu = 15 mm and an undulator gap of g = 3.0 mm [65]. The fit parameters for the peak
field estimate are a1 = 4.023, a2 = −3.117, and a3 = 2.012 [17]. This parameter set
has been chosen for the FEL design by Maier et al. [17] with a similar parameter choice
made by Couprie et al. [57]. The in general possible parameter combinations accessible
by using a cryogenic undulator are indicated by the solid line in Fig. 3.2 clearly showing
the advantage of a cryogenic system over conventional designs. The figure also shows
that a further increase of the undulator period would only result in small reductions of
the gain length while the radiation wavelength would be increased significantly due to
the impact of λl ∝∼ K

2. Consequently, the combination of λu = 15 mm and K = 3.3 is a
good compromise.

The undulator length has been set to Lu = 2 m in the spirit of a lab-scale device.
The short length allows to avoid any additional electron optics within the undulator
or between multiple undulator modules and consequently reduces the number of error
sources.
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Figure 3.2: Gain length as a function of the undulator period length and undulator parameter
for the electron parameters discussed above obtained with the gain length scaling by
Xie [37] and the additional bunch length correction by Bajlekov [35] (see Sect. 2.5).
The solid line represent parameter combinations accessible by recent cryogenic undu-
lator designs, whereas the dashed line represents the parameter range of conventional
NdFeB based undulators.

3.2.3 Optics

The electron optics controlling the beam size have to be designed such that the average
beam size along the undulator is minimized, conversely maximizing the Pierce parameter
ρ ∝ (σxσy)

−1/3.

For the horizontal beam size the undulator can be treated as a free drift having no impact
on the beam evolution. To minimize the average beam size along the undulator given by
σ̄x ≈

√
β̄xεx it is convenient to minimize the average β-function along the undulator

β̄x = βx,0 − αx,0Lu +
(1 + α2

x,0)L2
u

3βx,0
, (3.6)

using the initial Twiss parameters (for more details see Sect. 7.1 and [66]) αx,0, βx,0,
and the undulator length Lu. For a 2-meter-long undulator a minimum of the average
β-function is reached for the initial values βx,0 =

√
4/3Lu ≈ 2.31 m and αx,0 =

√
3. The

corresponding beam size is σ̄x ≈ 20 µm.

In the vertical direction the smallest average beam size can be reached by using the fo-
cusing properties of the undulator (see Sect. 2.1). The Twiss parameters of a matched
beam are βy,0 =

√
2γ/(Kky) ≈

√
2γ/(Kku) ≈ 0.61 m and αy,0 = 0 for the discussed

setup, resulting in a matched beam size of σy ≈ 14 µm. The comparison of horizon-
tal and vertical beam size shows the advantage of using the focusing properties of the
undulator.
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This parametrization of the beam optics is well accessible with appropriate beam optics
but only holds for the design energy of γ = 600 and neglects chromatic effects that
are to be expected due to the broad energy spread. The resulting degradations and
corresponding optimization concepts are discussed in Chaps. 7 and 8 and are neglected for
the basic concept considerations in order to be independent of a specific optics design.

3.2.4 Summary

Summed up, the chosen parameter set is reasonable in terms of each individual param-
eter; however, the combination of all electron parameters has not yet been achieved.
The derived FEL parameters (see Table 3.2) are reasonable for a first demonstration
experiment requiring a few gain lengths only. Regarding the design wavelength and the
electron energy the demonstration case is pretty close to the parameters of the first lasing
of the TTF-FEL [67]. The comparison with the parameters of the first experiment at
the TTF-FEL and the design parameters of LCLS (see Table 3.2), however, shows some
noteworthy differences regarding the FEL performance. They are the:

• Ratio of energy spread to the Pierce parameter. In the case of the lab-scale FEL the
chosen parameters lead to a ratio on the order of unity, which is close to the energy
spread limit ση < ρ/2, leading to a significant gain reduction. For the TTF-FEL
and LCLS the ratio is up to an order of magnitude smaller, resulting in negligible
limitations of the FEL performance due to energy spread.

• Ratio of cooperation length to bunch length. The parameter set of the lab-scale
FEL clearly violates the criterion lco � σz, which is conversely fully satisfied in both
other cases. This relation leads to significant limitations due to slippage effects.

• Ratio of Rayleigh length to gain length. For the lab-scale FEL the typical require-
ment of sR ≥ 2Lg is not fulfilled at all, resulting in significant diffractive losses
reducing the interaction between radiation and electrons. In the case of the TTF-
FEL the criterion is also not fulfilled, but it is a near miss, whereas in the case
of LCLS the Rayleigh length is an order of magnitude longer than the gain length
due to the extremely short wavelength.

All three limitations could be mitigated by increasing the required charge, leading to a
higher Pierce parameter and a shorter gain and cooperation length. However, this would
result in a more challenging requirement for the accelerator, bringing a first demonstra-
tion experiment further away from currently available beams. An alternative to the
increase of the required charge is a redistribution of the electrons in the phase space,
which will be beneficial in terms of the first two points and is discussed in the next
section.
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Lab-Scale FEL TTF-FEL LCLS

Electrons

Peak current [kA] 3.6 0.4 3.4
Energy [GeV] 0.306 0.233 14.4
Energy spread 1 · 10−2 1.3 · 10−3 6 · 10−5

norm. Emittance [mm mrad] 0.2 6 1.2
Bunch length [µm] 0.5 240 23

Undulator

Undulator period [cm] 1.5 2.73 3
Undulator parameter 3.3 1.17 3.7

FEL

Radiation wavelength [nm] 135 109 0.15
Pierce parameter 1.7 · 10−2 2.8 · 10−3 5 · 10−4

Rayleigh length [m] 0.037 1.72 32
Cooperation length [µm] 3.7 5.4 0.048
Gain length [m] 0.41 1.35 4.7
Saturation length [m] 6.4 27 86
Saturation power [GW] 2.2 0.05 8

Table 3.2: Parameters of a lab-scale FEL estimated with the formalism of Xie [37] including
the bunch length correction of Bajlekov [35] in comparison with the parameters of the
first TTF-FEL experiments [67] and the design parameters of LCLS in the high energy
mode [40].

The third limitation, the ratio of Rayleigh length to gain length can be optimized by
increasing the beam size if a fixed electron parameter set and undulator are assumed. Any
increase of the beam size, however, reduces the current density and, therefore, worsens
energy spread and slippage effects via an increased 1D gain length and a reduced Pierce
parameter. For the given parameter set, minimizing the transverse beam size is the way
to go to ensure the best overall performance.

3.3 Decompression Concept

The decompression concept [17, 57, 68, 69] originally intended as a countermeasure for
broad energy spreads actually addresses two of the major limitations of the discussed
parameter set for a first laser-plasma driven FEL demonstration experiment: the broad
energy spread and the short bunch length. The impact of both effects can be significantly
reduced using this concept [69]. The idea is to make use of the high phase space density
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Figure 3.3: Gain length as a function of the normalized energy spread assuming a Gaussian energy
distribution based on Eq. (3.7). For an energy spread on the order of the Pierce
parameter, i.e. ∆ = 1 the gain length gets doubled.

of laser-wakefield accelerator based bunches, and optimize the electron distribution in
the longitudinal phase space. Using a dispersive section the bunch can be stretched and
effectively sorted by energies, resulting in a reduction of the local energy spread at the
cost of a reduced peak current. The interplay of both effects can be optimized. Further-
more, the increased bunch length in combination with the optimized FEL performance
minimizes the performance degradation due to slippage effects. This section is completely
based on the corresponding publication [69].

3.3.1 Energy Spread Scaling

As discussed in Sect. 2.4.2, the normalized gain length, i.e. the ratio of the gain length
taking energy spread into account to the ideal gain length, in the case of a Gaussian
energy spread can be approximated by

Lg(∆)

Lg,1D
≈ (1 + ∆2), (3.7)

using the normalized energy spread ∆ = ση/ρ and the ideal, one-dimensional gain length
Lg,1D. This fast increase of the gain length with the normalized energy spread, shown
in Fig. 3.3, is one of the major limiting aspects of the parameter set suggested for the
laser-plasma driven FEL demonstration experiment.

Assuming an uncorrelated energy spread on the order of the Pierce parameter, as it is the
case for the discussed parameter set, allows to reduce the gain length by decompressing
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Figure 3.4: Longitudinal phase space of a bunch before (blue) and after (red) decompression. The
decompression reduces the local energy spread and the peak current and introduces
an energy chirp. To make use of the reduced local energy spread in an FEL, the chirp
has to be compensated by a matching taper of the undulator.

the bunch using a dispersive beam transport section like a magnetic chicane. Elongating
the bunch by a factor n

σz(n) = nσz,0, (3.8)

in a dispersive beam transport section (see Chap. 5 for more details) leads to a reduction
of the local energy spread at every longitudinal position along the bunch as well as the
current proportional to n−1

ση(n) =
ση,0
n
, (3.9)

I(n) =
I0

n
. (3.10)

The projected energy spread of the whole bunch is conserved as long as degrading ef-
fects in the dispersive section are neglected, but an energy chirp along the bunch is
introduced

dη

dz
(n) ≈ ση,0

nσz,0
. (3.11)

Figure 3.4 shows the longitudinal phase space of a bunch with an initially uncorrelated
energy spread before and after decompression.

The chirp can be compensated by a matching taper of the undulator, i.e. a linear, longi-
tudinal variation of the undulator parameter [70]

dK

ds
=

(
1 +

K2
0

2

)2

K0γ2

dη

dz
, (3.12)
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with K0 being the mean undulator parameter. Due to the taper, the resonance energy
for a given wavelength changes along the undulator and allows to maintain resonance for
photons propagating through the chirped bunch during the whole interaction time.

The reduced current after the decompression leads to an increase of the ideal gain length
Lg,1D ∝ ρ−1 ∝ I−1/3 ∝ n1/3. However, at the same time the normalized, local energy
spread is decreased ∆ ∝ n−2/3. The different proportionalities allow to find an optimum
of the gain length by balancing the performance gain due to the reduced energy spread
with the performance loss caused by the reduced current. The normalized gain length
for an initial, normalized energy spread ∆ including the decompression factor n reads

Lg(n,∆)

Lg,1D
=

(
1 +

∆2

n4/3

)
n1/3. (3.13)

The resulting scaling of the normalized gain length as a function of the initial normalized
energy spread and the decompression factor is shown in Fig. 3.5 in combination with the
ideal decompression factor minimizing the gain length for each energy spread given by

nopt = 33/4∆3/2. (3.14)

A reduction of the gain length via bunch decompression is consequently possible for
cases of ∆ > 0.6. For the case of an initial, normalized energy spread of unity ∆ = 1 the
normalized gain length is minimized for a decompression factor of n ≈ 2.3 and results
in a decrease of the gain length by 13% when compared to the initial gain length. For
cases with a small, initial, normalized energy spread ∆ < 0.6 the well known bunch
compression is favored, which is the case for most linear accelerator based free-electron
lasers.

The lab-scale parameter set has a normalized energy spread of ∆ ≈ 0.57, so in the one-
dimensional theory neglecting all further degrading effects no gain length reduction using
decompression is possible. For a more realistic estimate of the usability of decompression
the second major degrading effect, the bunch length on the order of the cooperation
length, has to be taken into account.

3.3.2 Bunch Length Scaling

As discussed in Sect. 2.4.6, the FEL performance can be significantly reduced for bunch
lengths on the order of the cooperation length since the radiation slips out of the bunch
before being fully amplified. The normalized gain length as a function of bunch length
is given by [35]

Lg(σz)

Lg,1D
= (1 + ηz), (3.15)
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Figure 3.5: Normalized gain length as a function of the initial, normalized energy spread and
the decompression factor based on the energy spread scaling (3.13). The solid black
line indicates the ideal decompression factor for each initial energy spread minimizing
the gain length. A gain length reduction is only possible for cases with an initial
normalized energy spread of ∆ > 0.6.

using the correction parameter

ηz = b1 exp

(
b2

(
σz

lco,1D

)b3)
, (3.16)

with the bunch length σz, the cooperation length lco,1D = λlLg,1D/λu, and the fit pa-
rameters

b1 = 16.7512, b2 = −3.0420, b3 = 0.3267. (3.17)

As in the energy spread scaling, a decompression affects the relevant quantities, the
normalized bunch length σz/lco,1D and the gain length, in different ways. The gain length
increases as Lg,1D ∝ n1/3, whereas the normalized bunch length increases proportional
to σz/lco,1D ∝ n2/3. This again suggests the possibility of an optimization of the gain
length for cases limited by the bunch length using decompression. The normalized gain
length is given by

Lg(n, σz)

Lg,1D
=

(
1 + b1 exp

(
b2

(
σz

lco,1D
n2/3

)b3))
n1/3, (3.18)

using the initial bunch length σz and the decompression factor n. Evaluating this re-
lation shows that for all values of σz > 0 and n ≥ 1 this is a monotonically increasing
function of n (see Fig. 3.6); consequently, decompression cannot be used to optimize the
FEL performance of bunch length limited cases as long as other degrading effects are
neglected.
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Figure 3.6: Normalized gain length as a function of the initial, normalized bunch length and the
decompression factor based on the bunch length scaling Eq. (3.18). The gain length
rises significantly for σz/lco ∼ 1. It can clearly be seen that no gain length reduction
by decompression is possible independent of the initial normalized bunch length.

3.3.3 Combined Scaling

Both effects discussed above, energy spread and slippage in combination with the short
bunch, are of high importance for the lab-scale FEL demonstration experiment. Conse-
quently, a combined scaling taking both effects into account is necessary. This can be
achieved by applying the energy spread scaling first and using the corrected gain length
for the bunch length scaling

Lg (n,∆, σz) =

(
1 + b1 exp

(
b2

(
nσz

lco(n,∆)

)b3))(
1 +

∆2

n4/3

)
n1/3Lg,1D, (3.19)

using the initial bunch length σz, the initial energy spread ∆, the decompression fac-
tor n, and the cooperation length for the case of energy spread and decompression
lco(n,∆) = λlLg(n,∆)/λu. The combined scaling shows that decompression can be
even more efficient than indicated by the individual scalings. For cases that are limited
by both effects, even the bunch length scaling can be improved using decompression. The
reduction of the gain length in the case of energy spread and decompression Lg(n,∆)

leads to a decrease of the associated cooperation length lco(n,∆) in contrast to the simple
bunch length scaling where a decompression leads to an increase. The combination of
the reduction of the cooperation length and the increase of the bunch length allows for
a further reduction of the final gain length in the combined scaling. Figure 3.7 shows
the combined scaling as a function of the energy spread and the decompression factor for
different ideal ratios of bunch length to cooperation length σz/lco,1D.

For an initial energy spread of ∆ = 1 and a normalized bunch length of σz/lco,1D = 1
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Figure 3.7: Normalized gain length as a function of the normalized energy spread ∆ and the
decompression factor n calculated with the combined scaling Eq. (3.19) for a nor-
malized bunch length of σz/lco,1D = 3 (top) and σz/lco,1D = 1 (bottom). The solid
black line indicates the ideal decompression factor for a given initial energy spread,
and the dash-dotted black line indicates the ideal decompression factor obtained with
the simple energy spread scaling Eq. (3.7). The comparison of both cases shows a
significant increase of the gain length for short normalized bunch lengths as well as
an increase of the ideal decompression factor.
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the ideal decompression factor increases to n ≈ 5.5, allowing for a gain length reduction
by 52%. Comparing this to the scaling taking only energy spread into account where
a reduction of 13% was possible shows the importance of including the bunch length
scaling.

The lab-scale scenario has a ratio of bunch length to cooperation length of σz/lco,1D = 1.4.
Taking the energy spread of ∆ ≈ 0.57 into account it decreases to σz/lco(∆) = 1.1. The
individual scalings allowed for no reduction of the gain length with these parameters.
However, the combined scaling shows a reduction of the gain length of approximately 17%
for an optimized decompression factor of nopt ≈ 2.7. This can be understood as follows:
the normalized energy spread, although it is not high enough to allow for optimization via
decompression in the individual scaling, leads to a slower increase of the energy spread
affected gain length Lg(n,∆) during decompression when compared to a case neglecting
energy spread. This translates into a slower growth of the corresponding cooperation
length lco(n,∆), altering the bunch length scaling so that it is not monotonously growing
anymore, leading to the afore mentioned optimum.

3.3.4 3D Scaling and Simulation

The combined scaling has been tested with a period-averaged 1D code [71] and the
period-averaged 3D code Genesis [36]. Both test were based on the parameter set for
the FEL demonstration experiment discussed above (Table 3.2). The decompression
has been modeled using Eqs. (3.9)–(3.11). In both simulations the undulator has been
tapered according to Eq. (3.12) to compensate the energy chirp.

The resulting gain length scaling as a function of the decompression factor n is shown
in Fig. 3.8. For both simulations 10 independent runs have been performed for each
decompression factor, and the results have been averaged. The combined scaling and
the result of the 1D simulation are in good agreement indicating the possibility of a gain
length reduction with an optimum decompression factor in the range nopt ≈ 2–3. A slight
deviation in the absolute numbers is found for small decompression factors which can be
attributed to the fact that the bunch length scaling has been obtain with a non-period-
averaged code [35,72] in contrast to the here used period-averaged code since this type of
simulation has been shown to underestimate the FEL performance for short bunches [73].
The simple energy spread scaling (3.7), in contrast to the combined scaling (3.19), shows
a monotonous growth of the gain length with the decompression factor as expected. This
confirms the importance of the bunch length correction for the here discussed case.

The significantly higher gain lengths obtained with Genesis are the result of the addi-
tional degrading effects like diffraction, space-charge, emittance, and the evolution of the
beam envelope taken into account. Without decompression n = 1 the emitted power was
dominated by the spontaneous emission, leading to a linear power growth only, allowing
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Figure 3.8: Gain length Lg(n) as function of the decompression factor obtained with the energy
spread scaling (dash-dotted black) and the combined scaling including the bunch
length correction (solid black). For the verification of the analytical scaling a 1D
simulation with 10 runs per decompression setting has been used, resulting in the
mean gain length shown by the solid blue line, the standard deviation of the runs
is indicated by dashed blue line. The result of a 3D scan obtained with Genesis is
shown in green, again the mean of 10 runs is indicated by the solid line, the standard
deviation is shown by the dashed line.

no gain length to be estimated. In general, the 3D scaling confirms the applicability of the
decompression concept. The effect is even more pronounced than in the 1D case making
decompression essential to obtain an FEL signal at all. Besides the general increase of
the gain length when compared to the 1D simulations also the optimum decompression
factor increases to nopt ≈ 4.

The more pronounced decompression factor dependence in the three-dimensional simula-
tions can be motivated using Xie’s analytical model [37] in combination with the bunch
length scaling (see Sect. 2.5). Figure 3.9 shows the individual degradation coefficients
of Xie’s formula including the fit parameters as a function of the decompression factor.
The four most important degradation factors are related to the bunch length, energy
spread, diffraction, and the combined effect of diffraction and energy spread. All other
factors are at least two orders of magnitude smaller in the nondecompressed case n = 1.
The significant impact of diffraction has been neglected so far and explains the higher
gain lengths obtained in 3D simulations in comparison to the 1D values. The additional
degradation factors, especially the diffraction related contributions, lead to a shift of the
ideal decompression factor to nopt ≈ 4. For the lab-scale parameter set, decompression
consequently leads to a reduction of the bunch length correction as well as all energy
spread related terms, overcompensating the growth of the diffraction contribution and
the further, smaller degradation factors for the discussed parameter range.
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Figure 3.9: Degradation coefficients of Xie’s formula with bunch length correction (see Sect. 2.5)
including fit parameters, i.e. the diffraction coefficient corresponds to α1η

α2

d etc., as a
function of the decompression factor for the lab-scale parameter set. Solid lines char-
acterize individual contributions, whereas dashed lines refer to the combinations of
two degrading effects. The most important degrading effects are the already discussed
energy spread and bunch length limitation, but also diffraction plays an important
role. The combined coefficient of diffraction and energy spread even overcomes both
individual coefficients in the nondecompressed case n = 1. All other correction fac-
tors are at least one order of magnitude smaller. Decompression reduces the bunch
length correction as well as all energy spread related coefficients. This reduction
overcompensates the growth of the diffraction term.
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Figure 3.10: Ratio of power at the end of the undulator to spontaneous emission simulated with
Genesis. The power is evaluated within 100% bandwidth around the fundamental.
Blue dots represent individual runs with different shot-noise seeds for the same gen-
eral configuration. The solid red line is the mean value of the independent runs for
each scenario. As in the gain length scaling in Fig. 3.8 an optimum decompression
factor of nopt ≈ 4 is found.

The figure of merit for a first lab-scale FEL demonstration experiment is the demon-
stration of gain, i.e. a significantly higher output power than in the case of spontaneous
emission. As a design goal a ratio of Ptotal/Pspont. ≥ 10 at the end of the undulator
has been suggested [17]. Figure 3.10 shows this ratio at the end of the undulator ob-
tained with Genesis as a function of the decompression factor. The power is evaluated
within 100% bandwidth around the fundamental. As in the gain length scaling above
(see Fig. 3.8) an optimum decompression factor of nopt ≈ 4 is found maximizing the
power ratio. The design goal of a ratio of at least an order of magnitude is fulfilled over
a wide range of decompression factors n = 3–10. Since the design goal is exceeded by an
order of magnitude for the ideal decompression factor, one could relax the requirements
on the initial bunch, but the excess will be kept as a safety margin since all degrading
effects in the beam transport system, consisting of the electron optics and the dispersive
section, have been neglected so far.

In the discussion of the energy spread scaling (Sect. 3.3.1) it has been stated that the
electron energy chirp can – and has to – be compensated by a matching taper. For the
parameter set of the lab-scale system with a decompression factor of n = 4 the energy
chirp is dγ/dz = 3 µm−1 requiring a relative taper of dK/(K0ds) ≈ 5.3%/m according to
to Eq. (3.12). Figure 3.11 shows the power ratio of total power to spontaneous emission
at the undulator exit for a decompression factor of n = 4 as a function of the relative
taper. The power scaling confirms the theoretical model and shows that a matching
taper is crucial for the decompression concept. Without taper the power ratio drops by
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Figure 3.11: Ratio of total power to spontaneous emission at the end of the undulator as a function
of the relative taper simulated with Genesis. The blue dots represent independent
runs with different shot-noise seeds for each undulator configuration. The red line
indicates the average for each setup. As expected from the analytical calculation
Eq. (3.12), the power is maximized for dK/(K0ds) ≈ 5.3%/m. The simulation result
demonstrates that a correct taper of the undulator is essential for the decompression
concept and the demonstration of radiation amplification.

more than one order of magnitude to P (s = 2 m)/Pspont. ≈ 11 just above the desired
limit.

The required gap variation for a given taper can be approximated based on Elleaume’s
formula (2.3) and is given by

∆g = exp

(
a2

λu
+ 2a3

g0

λ2
u

)−1 ∆B

B0
. (3.20)

For the case of a cryogenic undulator with the coefficients a1 = 4.023, a2 = −3.117, and
a3 = 2.012 [17], and a nominal gap g0 = 3 mm the desired taper along a 2-meter-long
undulator leads to a gap variation of 690 µm. The required taper is feasible for the
discussed setup [74] but also limits the maximum undulator length. Longer undulators
can only support slower variations of K along the undulator which either requires a
stronger decompression leading to a reduction of the chirp or an operation at a higher
energy, with both approaches reducing the slippage and the required taper for a given
chirp.

Figure 3.12 shows the growth of the power normalized to the spontaneous emission
along the undulator for the unstretched case, a decompressed case without taper, and
a decompressed case with taper. The unstretched case leads to spontaneous emission
only, whereas both decompressed cases show a significant power growth due to the FEL
process. The correct taper significantly reduces the gain length as previously shown
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Figure 3.12: Total power normalized to the spontaneous emission as a function of the position
along the undulator simulated with Genesis for an unstretched bunch (red), a
stretched bunch with n = 4 and an untapered undulator (blue), and a stretched
bunch with a tapered undulator (green). Solid curves show the mean of ten inde-
pendent runs, dashed lines indicate the standard deviation of the runs. Only in the
stretched and tapered case an exponential power growth can be ensured along the
whole undulator.

and also ensures an exponential power growth along the whole undulator, whereas the
untapered case shows a reduction of the power growth from s ≈ 1.5 m on. This can
be understood as a loss of resonance between radiation and electrons due to the missing
taper.

The decompressed case stretched by a factor of n = 4 and the corresponding tapered
undulator will from now on be used as the reference case for all further discussions.
A comparison of the initially suggested parameter set and the modified, decompressed
version is shown in Table 3.3. So far, all degrading effects occurring during the beam
transport and especially the decompression have been neglected. A detailed discussion of
the decompression itself including degrading effects like coherent synchrotron radiation
is presented in Chaps. 5 and 6. The influence of the optics, especially the chromaticity,
is assessed in Chap. 7, and the interplay of the various setup parts and degrading effects
is discussed in Chap. 8.

3.3.5 Coherent Spontaneous Emission

A characteristic of laser-plasma based bunches is the short bunch length on the microme-
ter or even sub-micrometer scale. Depending on the radiation wavelength and the current
profile this can lead to coherent spontaneous emission (CSE) of radiation in the undu-
lator without any microbunching [75, 76]. The so produced high output power could be
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Lab-Scale FEL (basic) Lab-Scale FEL (decomp.)

Electrons

Peak current [kA] 3.6 0.9
Energy [MeV] 306
Energy spread (relative) 1 · 10−2 0.25 · 10−2

Chirp (relative) [%/µm] 0 0.5
norm. Emittance [mm mrad] 0.2
Bunch length [µm] 0.5 2

Undulator

Undulator period [cm] 1.5
Undulator parameter 3.3
Taper [%/m] 0 5.3

FEL

Radiation wavelength [nm] 135
Pierce parameter 1.7 · 10−2 1.1 · 10−2

Rayleigh length [m] 0.037
Cooperation length [µm] 3.7 1.4
Gain length [m] 0.41 0.17
Saturation length [m] 6.4 2.8
Saturation power [GW] 2.2 1.4

Table 3.3: Parameters of a lab-scale FEL estimated with the formalism of Xie [37] including the
bunch length correction of Bajlekov [35] for the basic case and the decompressed case
with a decompression factor n = 4.
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mistaken for an FEL signal. The total power of spontaneous emission is given by the
sum of coherent and incoherent power and can be written as

P (k) = P1 (Ne +Ne(Ne − 1)f(k)) ≈ NeP1 +N2
eP1f(k), (3.21)

using the number of electrons in the bunch Ne, the power emitted by an individual
electron P1, and the longitudinal form factor f(k). The form factor depends on the
wavenumber k = kl − ku [76], kl and ku being the wavenumber of the radiation and the
undulator, as

f(k) =

∣∣∣∣∫ λ(z) exp (ikz)dz

∣∣∣∣2 , (3.22)

using the normalized current profile λ(z), i.e.
∫
λ(z)dz = 1.

Since the figure of merit for a lab-scale FEL demonstration experiment is the power ratio
Ptotal/Pspont., it has to be ensured that the ratio of coherent to incoherent emitted power
of the spontaneous emission given by

Pspont., coh.
Pspont., incoh.

≈ Nef(k), (3.23)

is significantly smaller so that CSE cannot be mistaken for an FEL signal. Depending
on the number of electrons and the current profile, however, this ratio can reach high
numbers. Assuming a smooth Gaussian current profile the form factor is given by

fGaussian(k) = exp(−k2σ2
z), (3.24)

using the wavenumber k as defined above and the rms length of the bunch σz. Even for
an unstretched bunch with a length of σz = 0.5 µm and setup parameters as in Table
3.2 the form factor is of the order of fGaussian ≈ exp(−547) � 1/Ne and consequently
coherent emission is negligible for any reasonable number of electrons. However, a smooth
Gaussian is highly idealized and a bunch could have steeper edges better resembled by a
parabolic or even flat-top distribution. For these cases the form factors are given by

fparabola(k) =

∣∣∣∣38 sin(kl/2)

k3l3
− 3

4

cos(kl/2)

k2l2

∣∣∣∣2 , (3.25)

fflat-top(k) =

∣∣∣∣ 2

k2l2
(1− cos(kl))

∣∣∣∣2 , (3.26)

using the full length l in both cases. Assuming the same full width at half maximum as in
the case of the Gaussian for all distributions the form factors become fparabola ≈ 1.6·10−7

and fflat-top ≈ 2.8 · 10−3. In the lab-scale case the electron number is approximately
Ne ≈ 108 and hence the power of the coherent spontaneous emission can reach the same
order of magnitude as the FEL power and even exceed it by several orders of magnitude.
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Figure 3.13: Power ratio of coherent to incoherent spontaneous emission as a function of the
decompression factor for a flat-top distribution (green), a parabola shaped bunch
(blue), and the convolution of flat-top bunch with a narrow Gaussian having a width
of 2 · 10−8 µm (red). All distributions have the same full width at half maximum
as the originally proposed Gaussian bunch with an rms length of σz = 0.5 µm. The
limit for the demonstration of FEL amplification of Ptotal/Pspont. = 10 is shown in
black. A decompression by a factor of n = 4, as aimed at according to the previous
optimization of the FEL performance, leads to a reduction of CSE below the critical
detection level of the FEL signature.

Using the decompression approach the bunch length and therefore the form factor can
be manipulated, allowing for a reduction of the coherent emission while at the same time
increasing the FEL power. Figure 3.13 shows the ratio of coherent to incoherent sponta-
neous emission for three different bunch profiles: flat-top, parabola like, and smoothed
flat-top. In all smooth cases the power ratio drops below the proposed FEL detection
limit for a decompression factor of n ≥ 3. Only in the extreme case of a sharp flat-top
bunch a high power ratio is maintained for all discussed decompression factors n ≤ 10.

For all cases discussed so far the basic bunch shape has been fixed while only varying
its length. Assuming a Gaussian energy distribution in combination with the current
profiles discussed above and a decompression in a dispersive section, e.g. a magnetic
chicane, changes the situation. As soon as the bunch length is changed significantly
in the chicane R56ση ≥ l, with R56 being the linear transport matrix element of the
chicane linking longitudinal position and energy deviations (see Chaps. 5 and 7 for more
details), and the bunch length l, the current profile converges to a Gaussian with a
length of σz ≈ R56ση. This leads to an exponential drop of the coherently emitted power
independent of the exact initial bunch shape.

The analytical scaling is confirmed by tracking individual electrons; however, the noise of
a realistic electron distribution limits the minimum achievable power ratio to Nef(k) ≈ 1
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for all discussed distributions. Since this level is an order of magnitude below the limit for
an FEL signature, decompression can still provide a valuable tool to avoid the problem
of mistaking a CSE signal for an FEL.

If necessary, further options to distinguish between a CSE and an FEL signal exist [77].
Since CSE only depends on the longitudinal form factor, the beam diameter can be
varied without affecting the CSE power level. On the contrary the FEL gain length is
proportional to Lg ∝ (σxσy)

1/3, leading to a high sensitivity to any changes of the beam
size. Furthermore, the taper of the undulator can be varied dominantly affecting the
FEL performance (see Fig. 3.11) but not the power level of the spontaneous emission.

To sum up, coherent spontaneous emission can in general be mistaken for an FEL signal
especially in scenarios with radiation wavelengths on the order of the bunch length as
in the demonstration FEL concept. However, the decompression concept inherently sup-
presses CSE and provides several possibilities to distinguish it from an FEL signature.

3.4 TGU Concept

An alternative to the decompression concept in high energy spread cases is the transverse
gradient undulator (TGU) suggested by Huang et al. [58]. The concept is based on an
idea by Smith et al. [78] originally intended to reduce the sensitivity of FEL oscillators
with respect to energy jitter. The goal of the scheme is again a reduction of the local
energy spread at the cost of a loss of current density. In contrast to the decompression
scheme the bunch is not dispersed in the longitudinal direction but in the transverse
direction matching the wiggle plane of the electrons.

Using a dispersive section the beam can be sorted by energies in the transverse direction,
leading to an increase of the bunch width of

n =
σx
σx,0

=

√
σ2
x,0 +R2

16σ
2
η,0

σx,0
, (3.27)

with σx,0 being the initial bunch width, ση,0 the initial, relative energy spread, and
the linear transport matrix element R16 linking the horizontal position and the energy
deviation. The resulting transverse energy-position correlation is given by

dη

dx
(n) =

ση,0
nσx,0

, (3.28)

in analogy with the decompression concept. Also here the energy-position correlation
can be compensated by an appropriate taper, although in this case in the transverse
direction

dK

dx
=

2 +K2
0

K0

dη

dx
. (3.29)
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A noteworthy difference when compared to the decompression concept is the scaling of the
taper with the energy. For the decompression case the taper required for a given relative
chirp is proportional to dK/ds ∝ γ−2, whereas in the TGU case the matching taper
dK/dx is energy independent. This significant difference is caused by the fact that in
the TGU case electrons and photons have to be kept in resonance at the same longitudinal
position. In the decompression case, however, the resonance has to be maintained as the
photons slip through the bunch, significantly reducing the required taper depending on
the slippage distance and therefore the energy.

The full cant angle between the undulator halves 2Φ = ∆y/∆x can be approximated
using Elleaume’s formula (2.3) yielding

dK

dx
= 2Φ

∂K0

∂g
= 2ΦK0

(
a2

1

λu
+ 2a3

g

λ2
u

)
. (3.30)

The maximum taper supported by a given undulator is consequently limited by the
maximum cant angle. A reasonable limit for the cant angle of an individual pole in a
conventional undulator is Φ = 0.1 rad [58].

The scaling of the gain length in the TGU concept can be derived in analogy to the
decompression case. The ideal gain length scales as Lg,1D ∝ ρ−1 ∝ (σxσy)

1/3 ∝ n1/3.
The local energy spread decreases as ∆ ∝ n−2/3. Hence, in the one-dimensional model
taking only energy spread into account the relation for the normalized gain length is the
same as in the decompression case

Lg(n,∆)

Lg,1D
=

(
1 +

∆2

n4/3

)
n1/3. (3.31)

The ideal dispersion factor is therefore given by

nopt = 33/4∆3/2, (3.32)

and is a function of the initial normalized, relative energy spread ∆. Using the normalized
energy spread of the lab-scale scenario of ∆ ≈ 0.57, consequently, allows no reduction of
the gain length via transverse dispersion.

In analogy with the combined scaling in the decompression case, the energy spread based
scaling can be extended to also include the bunch length correction. In the TGU concept,
however, the bunch length remains constant and the bunch length scaling is only affected
via the modified cooperation length lco(n,∆). The expression for the normalized gain
length including energy spread and bunch length correction for the transverse dispersion
reads

Lg (n,∆, σz)

Lg,1D
=

(
1 + b1 exp

(
b2

(
σz

lco(n,∆)

)b3))(
1 +

∆2

n4/3

)
n1/3. (3.33)
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Figure 3.14: Normalized gain length as a function of the normalized energy spread ∆ and the
transverse dispersion factor n calculated with the combined scaling Eq. (3.33) for
a normalized bunch length of σz/lco,1D = 3 (top) and σz/lco,1D = 1 (bottom).
The black line indicates the ideal dispersion factor for a given initial energy spread.
The comparison shows a significant increase of the gain length for short bunches;
however, the ideal dispersion factor is nearly independent of the initial normalized
bunch length.
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3 Concepts for a Laser-Plasma Driven FEL

Note the missing factor n in front of σz when compared to the scaling of the decompression
scenario (3.19).

Figure 3.14 shows the normalized gain length as a function of the initial energy spread and
the transverse dispersion factor for different initial ratios of bunch length to cooperation
length. For long bunches the scaling is identical to the decompression case; however,
for short bunches the gain length increases significantly also for dispersed cases. The
ideal dispersion factor is still well estimated by the simple energy spread scaling and
nearly independent of the initial normalized bunch length σz/lco,1D. As in the case of
the longitudinal decompression, a transverse dispersion is only of use for cases with a
normalized energy spread of ∆ > 0.6, however, here this holds approximately independent
of the initial bunch length. For the case of an initial energy spread of ∆ = 1 and a ratio
of initial bunch length to ideal cooperation length of unity the gain length is minimized
for a dispersion factor of n ≈ 2.3 and results in a gain length drop of about 20%. For
the lab-scale case also the combined scaling suggest no reduction of the gain length due
to the too low initial energy spread.

The inclusion of further degrading effects changes the situation. As shown in Fig. 3.15
(top) the gain length is in general higher when further degrading effects are included,
but a transverse dispersion allows to optimize the performance. This can be explained
with Xie’s scaling. In Fig. 3.15 (bottom) the degradation coefficients including the fit
parameters are compared for the lab-scale case as a function of the transverse dispersion
factor. The transverse dispersion can only approximately be included in Xie’s scaling by
setting σx = σy =

√
nσx,0 since a round beam is assumed in Xie’s analytical model. As in

the longitudinal decompression concept, the dominating correction factors are related to
bunch length, energy spread, diffraction, and the combined impact of energy spread and
diffraction. The impact of all other effects is at least four orders of magnitude smaller and
thus negligible. In contrast to the longitudinal decompression, the impact of the bunch
length is nearly independent of the transverse dispersion factor. Due to the approximate
model assuming a round beam in the transverse dispersion case, the impact of diffraction
on the FEL performance gets slightly reduced with increasing n. The effect is even more
pronounced for the degradation factor measuring the combined effect of energy spread
and diffraction on the gain length. It decreases by three orders of magnitude when
varying n by one order of magnitude and is therefore even stronger influenced than the
energy spread scaling. This reduction of the degradation factors characterizing energy
spread and diffraction leads to the applicability of the TGU concept also for the here
discussed scenario.

To further assess the use of the TGU concept for the here discussed parameters set
aiming for a first lab-scale FEL demonstration experiment, the power ratio of total
to spontaneously emitted power has been evaluated with Genesis. For this purpose,
Genesis has been modified to support a linear dependence of the undulator parameter
on the transverse position for routines calculating electron-radiation interaction. The
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Figure 3.15: Top: Gain length of the demonstration FEL case as a function of the transverse dis-
persion factor estimated with the combined scaling (3.33) (dashed blue) and Xie’s
scaling including the bunch length correction (solid green). Bottom: Degradation
coefficients of Xie’s formula and bunch length correction including fit parameters,
i.e. the diffraction coefficient corresponds to α1η

α2

d etc., as a function of the disper-
sion factor. Solid lines characterize individual contributions, whereas dashed lines
refer to the combinations of two degrading effects. The most important degrading
effects are energy spread, bunch length limitation, and diffraction. The combined
coefficient of diffraction and energy spread overcomes both individual coefficients in
the nondispersed case n = 1. All other correction factors are at least four orders
of magnitude smaller. Transverse dispersion reduces all energy spread and diffrac-
tion related coefficients. The bunch length correction is nearly independent of the
transverse dispersion factor.
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Figure 3.16: Ratio of power at the end of the undulator to spontaneous emission for the case
of a transverse gradient undulator as a function of the transverse dispersion factor
simulated with a modified version of Genesis. Blue dots represent individual runs
with different shot-noise seeds for the same general configuration. The solid red line
is the mean value of the independent runs for each scenario. As in the longitudinal
decompression scenario, an optimum dispersion factor of nopt ≈ 4 is found.

effect of the transverse gradient on the beam trajectory has been assumed to be com-
pensated by a matching external dipole field. Figure 3.16 shows the power ratio as
function of the transverse dispersion factor using a transverse gradient undulator with
matching taper (see Eq. (3.30)). For transverse dispersion factors of n = 3–9 a ratio of
P (s = 2 m)/Pspont. > 10 is obtained as required for the demonstration experiment. The
ideal transverse dispersion factor is nopt ≈ 4 as in the case of longitudinal decompression.
The highest power ratio reached in the TGU case, however, is only one fourth of the op-
timum in the longitudinal decompression case. This can be understood as a consequence
of the still significant impact of the bunch length correction that cannot be compensated
by the improved situation with respect to energy spread and diffraction.

A major limitation of the TGU concept is the maximum achievable cant angle of the
undulator. Typically an upper limit of Φ = 0.1 is regarded as reasonable [58]. This
drastically limits the accessible taper and consequently the decompression parameter
range. Figure 3.17 shows the power gain as a function of the transverse taper for a
transverse dispersion factor of n = 4. Deviations from the ideal taper cause a fast
reduction of the power growth. Figure 3.18 shows the required cant angle as a function
of the decompression factor. Assuming the limit for the cant angle to hold, limits the
decompression factors to n ≥ 20 bringing the ideal parameter range n = 3–9 out of
reach.
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Figure 3.17: Power ratio at undulator exit as a function of the transverse taper for a transverse
dispersion factor of n = 4. The dependence shows the high importance of the correct
taper in order to mitigate the introduced transverse energy-position correlation.
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Figure 3.18: Cant angle of an individual pole required to create a transverse gradient matching
the energy-position correlation introduced by a transverse dispersion by a factor of
n based on Eqs. (3.27), (3.29), and (3.30), and the cryogenic undulator parameters
a1 = 4.023, a2 = −3.117, and a3 = 2.012. For the ideal dispersion factor nopt ≈ 4 a
cant angle of Φ ≈ 0.48 would be required which is not feasible. Typically cant angles
of Φ ≤ 0.1 are expected to be realistic [58] and would result in a dispersion factor
range of n ≥ 20.
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3.5 Conclusion

In the sections above, one possible parameter set regarding the electrons and the undu-
lator and two different setup concepts to allow for a first laser-plasma driven lab-scale
FEL demonstration experiment with currently available electron beam parameters have
been discussed. The design goal of the experiment is a first demonstration of gain, i.e. an
output power at least one order of magnitude higher than in the case of spontaneous
emission. Neither saturation nor a certain wavelength are required.

All electron parameters have been chosen in agreement with recent experiments at laser-
plasma accelerators but have not yet been demonstrated in combination. The corner-
stones of the parameter set are an intermediate energy of γ = 600 allowing for wave-
lengths in the UV range for typical undulator parameters and a rather high Pierce pa-
rameter, a low but already demonstrated energy spread of ση = 1%, an ultra-low nor-
malized emittance of εn = 0.2 mm mrad recently measured, and a total bunch charge of
Q = 15 pC routinely achieved in multiple experiments. Furthermore, a low bunch length
of σz = 0.5 µm has been assumed, leading to high peak currents but also a significant
impact of slippage effects.

The undulator design is based on recent achievements in the development of cryogenic
undulators. To optimize the FEL performance, an intermediate period length of λu =

15 mm has been chosen in combination with a high undulator parameter of K = 3.3.
This parameter combination is accessible with an undulator gap of g = 3 mm due to the
cryogenic design, allowing for higher peak fields than in conventional hybrid undulators
at a given gap. The undulator length has been limited to Lu = 2 m in the spirit of a
lab-scale system.

This parameter set on its own does not allow for a first FEL demonstration since the
spontaneous emission dominates over the FEL signal along the whole undulator. The
FEL performance is subject to three major degrading effects: energy spread, slippage, and
diffraction. Two concepts, longitudinal decompression and transverse dispersion, both
trading a performance loss due to a current density reduction against a performance gain
due to a local energy spread reduction have been compared.

In the longitudinal decompression concept the bunch is stretched in the longitudinal
direction by a factor of n using a dispersive section like a magnetic chicane. This leads
to a reduction of the local energy spread and the current proportional to n−1. The
introduced energy chirp can be compensated by a matching taper of the undulator. The
loss of current density on the one side and the reduced local energy spread and longer
interaction distance on the other side can be balanced, leading to an ideal decompression
factor of nopt ≈ 4 and an increase of the output power by two orders of magnitude.
For the correct estimate of the ideal decompression factor and the applicability of the
decompression concept at all, it has been shown to be crucial to take the combined impact
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of energy spread, bunch length, and diffraction into account. Individual scalings cannot
explain the ideal decompression factor – they not even suggest an increase of the gain
length under decompression. The taper required to compensate the relative energy chirp
at the ideal decompression is dK/(K0ds) ≈ 5.3%/m, which limits the applicability of
the concept to rather short undulators but is compatible with the suggested undulator
for the demonstration experiment. The required taper drops with higher decompression
factors dK/ds ∝ n−1 and the electron energy dK/ds ∝ γ−2 for a fixed relative energy
chirp allowing for an extension of the applicability range.

The transverse gradient undulator concept, while following the same basic idea as the
longitudinal decompression, features some noteworthy differences. The motivation is the
same as in the case of longitudinal decompression: a reduction of the local energy spread
proportional to n−1 is balanced against a reduction of the current density with the same
proportionality. In high energy spread scenarios this concept allows to reduce the gain
length. Due to the transverse dispersion, the beam width is increased further reducing
diffractive losses, leading to an additional increase of the FEL performance. In contrast
to the longitudinal decompression, however, slippage effects are only reduced due to the
gain length reduction but not via changes of the bunch length. The transverse energy-
position correlation introduced by the dispersion has to be compensated with a matching
transverse taper to ensure resonance across the full bunch width. In opposition to the
longitudinal decompression, photons and electrons have to be kept in resonance at the
same longitudinal position within the bunch; therefore, the slope of the taper does not
depend on the slippage of the radiation field with respect to the electrons. Consequently,
the required taper can only be reduced by increasing the transverse decompression factor
n. Since the typical cant angle of a pole is limited to Φ ≤ 0.1, this restricts the range
of matching dispersion factors to n > 20 for the here discussed parameter set, leading to
an FEL gain over the spontaneous background lower than the design goal of an order of
magnitude. Due to these limitations, the transverse gradient undulator concept is not
applicable to the parameter set of the lab-scale FEL demonstration experiment.

Due to the differences in the applicability of the two concepts, the longitudinal decom-
pression concept is favored for the here discussed parameter range and will be used in
all following discussions. So far, no degrading effects like the emission of coherent syn-
chrotron radiation occurring during the decompression have been included. This will be
addressed in detail in Chaps. 5 and 6.
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In the previous section a basic concept allowing for a first laser-plasma based FEL demon-
stration experiment using currently available electron beams from laser-wakefield accel-
erators has been discussed. While all basic parameters required for the electron beam as
well as the undulator have already been demonstrated and can be seen as feasible, no
statement about setup tolerances has been made so far.

Since the FEL bandwidth is characterized by the Pierce parameter, the errors of all
parameters affecting the electron-radiation interaction can roughly be limited to this
range, already indicating strict setup tolerances for all free-electron lasers. This limitation
is of special importance for systems operating in the hard-X-ray range with typical Pierce
parameters on the order of ρ = 10−3–10−4.

The parameter set for the the lab-scale FEL demonstration experiment has been chosen
so that the Pierce parameter is maximized to increase the energy spread acceptance,
resulting in ρ ≈ 10−2, leading to a relaxation of the basic requirements. Nevertheless, for
a first demonstration experiment operating close to the detection threshold special care
has to be taken to ensure the verifiability of an FEL amplification.

The setup tolerances can be grouped in three basic categories regarding the:

• Undulator construction in terms of random and systematic field variations.

• Alignment of the electron beam with respect to the undulator.

• Optics mismatch, resulting in a nonideal evolution of the beam envelope.

These types of errors will be addressed in the following, allowing to assess the feasibility
of a first laser-plasma based free-electron laser demonstration experiment with respect
to requirements on the construction of the individual components as well as the setup
precision.

4.1 Tolerance Budget

In order to set the individual tolerances, the sensitivity of the FEL with respect to
the discussed error source has to be determined. This is done by evaluating the power
ratio P (s = 2 m)/Pspont. as a function of each individual error parameter and fitting
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the dependence by a Gaussian yielding the individual sensitivity σi. Assuming all error
sources to be independent, the power ratio in the presence of all errors is given by the
product of the individual dependencies

P (s = 2 m)

Pspont.
=
Pref.(s = 2 m)

Pspont.,ref.

∏
i

exp

(
− x2

i

2σ2
i

)
, (4.1)

with the notation ∗ref. indicating the reference value neglecting all errors and the error
sensitivities σi [79].

Restricting the drop of the power ratio to less than 40%, i.e. to stay within the one-σ-
range, determines the tolerance budget. This requires the individual errors to be smaller
than a fraction fi of the individual sensitivity σi. The tolerances are therefore given by

ti = fiσi, (4.2)

while the requirement
∑

i f
2
i = 1 has to hold in order to stay within the one-σ-range. This

requirement still allows to balance the coefficients fi of the individual errors depending
on their sensitivity and the practicability of the resulting requirements.

The error sources taken into account are:

• Undulator errors

– Phase shake,

– Beam wander,

– Parabolic girder deformation,

– Sinusoidal girder deformation,

– Taper error,

• Alignment errors

– Beam offset in x and y,

– Beam angle in x and y,

• Optics mismatch in x and y.

Assigning all eleven errors the same weight results in the tolerances to be 30% of the
individual sensitivity. Should further error sources be identified in the future the effect
on the individual weight is minor since all errors are added in square. The weights can
further be modified to balance the individual errors if necessary.
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Figure 4.1: Support structure of the planned cryogenic undulator with a length of two meters.
The actual undulator is located in the vacuum tube. Each of the undulator halves is
mounted on six rods that are fed through the vacuum chamber. This allows to control
the undulator gap and introduce a longitudinal taper but also causes a systematic de-
formation of the undulator. Undulator design courtesy of Helmholtz-Zentrum Berlin.

4.2 Sensitivities and Tolerances

All sensitivities and tolerances are characterized using time-dependent Genesis simula-
tions. Every error source is studied individually since the error sources are assumed to
be independent. The preliminary tolerances are determined assuming equal weights for
all errors.

4.2.1 Undulator

The heart of the free-electron laser is the undulator. Despite its simple description using
a periodic magnetic field, it is a complex system with multiple error sources. In the case
of the lab-scale demonstration experiment a cryogenic hybrid undulator with a variable
gap is planned. The undulator will consist of 133 periods each being made up by two
magnets and two poles per undulator half. The gap between the undulator halves is
variable and allows to introduce a linear, longitudinal taper. This leads to various error
sources ranging from mechanical construction tolerances of the support structure, over
inhomogeneities of the heat flow, to errors of the magnetization direction of the magnets.
Figure 4.1 shows the planned undulator support structure. The errors can be grouped
into different categories: random magnet errors characterized by the resulting phase
shake and beam wander [80], systematic errors caused by the girder deformation, and
taper errors.
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Phase Shake

The phase shake is a measure for the loss of the longitudinal synchronization between
electrons and radiation. As discussed above (see Chap. 2) the position of the electrons
with respect to the light wave is crucial for the FEL process since it determines the
direction and amplitude of the electron energy change and conversely the energy transfer
to or from the radiation field.

According to the resonance condition a photon slips by

z =
λl
2

=
λu
4γ2

(
1 +

K2

2

)
, (4.3)

with respect to the electrons per half undulator period. Assuming the field in each half-
period to be a perfect half of a sine curve but allowing the amplitude to vary between
half-periods results in a slippage error caused by the i-th half-period due to a change of
the electron path length

∆zi =
λu
4γ2

(
K2
i

2
− K2

0

2

)
. (4.4)

Here Ki is the actual undulator parameter of the i-th half-period and K0 is the ideal
undulator parameter including the longitudinal taper. The resulting phase shift caused
by the i-th half-period is then given by

∆Ψi = kl∆zi = kl
λu
4γ2

(
K2
i

2
− K2

0

2

)
. (4.5)

Summing up the individual phase shifts results in the phase offset at the n-th half-
period

∆Ψn =

n∑
i=1

∆Ψi = kl
λu
4γ2

n∑
i=1

(
K2
i

2
− K2

0

2

)
. (4.6)

The figure of merit for the FEL process is the rms phase error, the so-called rms phase
shake or phase jitter, evaluated along the whole undulator [81]

Ψ =

√√√√ 1

2Nu

2Nu∑
n=1

∆Ψ2
n, (4.7)

with the number of undulator periods Nu.

Any realistic magnet error will always lead to a combination of phase shake and a trans-
verse deflection of the beam. In order to study the isolated impact of the phase shake
without any other degrading effects, a correlated field error has been used in the Gen-
esis simulations. Here neighboring half-periods are correlated in their strength so that
no net deflection of the beam occurs (see Fig. 4.2). To cover a broad range of phase
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Figure 4.2: Sketch of the two basic types of undulator errors. The green half-periods have a
correlated field error, resulting in a path length difference between ideal trajectory
(dashed blue) and actual trajectory (solid blue) and hence a phase shake. The field
error of the red half-period is not correlated with its neighbors and, therefore, results
in a beam deflection, i.e. a beam wander.

errors, randomly generated undulator configurations with correlated relative rms field
amplitude errors in the range σK/K = 0–2.5% have been scanned. Figure 4.3 shows
the normalized power as a function of the phase shake. A Gaussian fit to the simulation
results yields a sensitivity of σΨ = 1.02 rad. The corresponding tolerance assuming equal
weights for all error sources is tΨ = 0.31 rad. This criterion is on average met for an rms
undulator strength error of σK/K ≈ 0.5% and is comparable to the requirement found
for the TESLA Test Facility FEL (TTF-FEL) [82].

The phase shake tolerance can be compared to the phase spread caused by the energy
spread over one gain length [82]. The phase change of a detuned electron per gain length
is given by

∆Ψ =
dΨ

ds
Lg = 2kuηLg =

4π

λu
ηLg, (4.8)

resulting in the energy spread induced rms phase spread of

σΨes =
4π

λu
σηLg. (4.9)

For a gain length of Lg ≈ 17 cm and a local energy spread of ση = 0.25% this results
in a phase spread of σΨes ≈ 0.36 rad. When the undulator error based phase shake is
reduced below this level, the gain reduction is dominated by the energy spread induced
phase spread. Note, the usually used approximation for the energy spread based phase
spread [82] σΨes = ση/(ρ

√
3) ≈ 0.14 rad is not applicable for the lab-scale FEL case since

the significant impact of degrading effects on the FEL performance in terms of the gain
length growth has to be taken into account.
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Figure 4.3: Normalized power as a function of the phase shake obtained with Genesis. Each
blue dot represents the mean normalized power for a given undulator configuration
averaged over ten independent runs. All undulators have been generated assuming
a correlated error, resulting in a pure phase shake without any beam wander. The
dashed black line is the Gaussian fit measuring the sensitivity of the FEL process
with respect to the phase shake. The found sensitivity is σΨ = 1.02 rad.

The estimated energy spread induced phase shake is in good agreement with the tolerance
limit for the field error based phase shake, confirming the simulation result. The required
upper limit for the phase shake of tΨ = 0.31 rad is believed to be feasible for a cryo-
genic system [74]. This expectation is supported by studies regarding the construction
tolerances [83].

Beam Wander

Besides a loss of longitudinal synchronization, the FEL performance can be degraded by
a reduction of the transverse overlap of electron bunch and radiation field. This can be
characterized by means of the acceptable beam wander.

In general the electron motion in a magnetic field is described by the Lorentz force

γmr̈ = −eṙ ×B. (4.10)

Assuming the longitudinal velocity ṡ to be constant and the magnetic field to consist
of a y-component only, allows to write the equation of motion for the x-component,
i.e. the component describing the electron oscillation in the undulator, as a function of
the longitudinal position

x′′(s) =
e

γmṡ
By(s). (4.11)
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Figure 4.4: Period averaged bunch motion in the undulator based on random undulator config-
urations with σK/K = 0.5% and two steering correction at the undulator entrance
and center minimizing the field integral at the undulator center and exit.

Integrating along the setup yields the slope at every position

x′(s) =
e

γmṡ

∫ s

0
By(s1)ds1, (4.12)

whereas a second integration yields the position

x(s) =
e

γmṡ

∫ s

0

∫ s2

0
By(s1)ds1ds2. (4.13)

Consequently, angle and offset of the electron trajectory are determined by the first and
second field integral. For an ideal undulator the second field integral, i.e. the electron
offset should vanish every half-period. Trajectory errors can therefore be linked to the
field integrals allowing for a specification of the undulator quality and corresponding
tolerance requirements.

The beam wander can be defined as the rms deviation of the electron trajectory from
the ideal path [81]

xbw =

√√√√ 1

2Nu

2Nu∑
n=1

x2
n, (4.14)

with xn being the second field integral evaluated up to the n-th half-period.

The impact of the beam wander has been studied with Genesis using an uncorrelated
field error per half-period. The relative field error has been fixed to σK/K = 0.5% to
ensure a minimal performance loss due to the phase shake. Each randomly generated
undulator configuration has been modified assuming two steering corrections located
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Figure 4.5: Normalized power as a function of the beam wander obtained with Genesis. Each
blue dot represents the mean normalized power for a given undulator configuration
averaged over ten independent runs. For all undulator configurations the relative
field error has been set to σK/K = 0.5% in order to minimize the impact of the
phase error. Each undulator has been assumed to have two steering corrections at
the undulator entrance and center yielding an vanishing beam offset at the undulator
center and exit (see Fig. 4.4). The dashed black line is the Gaussian fit measuring the
sensitivity of the FEL process with respect to the beam wander. The found sensitivity
is σxbw = 109 µm.
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at the undulator entrance/center in order to ensure a vanishing second field integral
at the undulator center/exit. The resulting bunch trajectories are shown in Fig. 4.4.
This resembles an undulator with a minimum of field tuning, if necessary more steering
corrections could be added to improve the performance.

Figure 4.5 shows the normalized FEL power as a function of the beam wander. The
sensitivity based on a Gaussian fit is σxbw = 109 µm, corresponding to a tolerance of
txbw = 33 µm. For the used electron parameters this is equivalent to a second field
integral of 34 T mm2. This is comparable to the requirements on the undulator of the
TTF-FEL [82] and is assumed to be challenging but feasible for a cryogenic undulator [74].
Despite the similarity in terms of the field integral requirement, there is a noteworthy
difference. For the TTF-FEL the beam wander limit corresponds to 0.2σr with σr being
the electron beam radius. In the case of the lab-scale demonstration experiment the
beam size is on the order of σx ≈ 20 µm and the amplitude of the electron trajectory
is xmax ≈ 13 µm. Comparing these numbers to the beam wander tolerance limit of
txbw = 33 µm shows that a rather large beam wander is acceptable. This can, inter alia, be
understood as an effect of the very short Rayleigh length of only sR ≈ 3.8 cm in this case.
This leads to a fast transverse expansion of the radiation field, leading to good overlap
of radiation and electrons even in the case of significant trajectory fluctuations. This is
in stark contrast to the situation at systems based on conventional linear accelerators
like the TTF-FEL [82] and LCLS [40]. A further difference between the here discussed
system and larger facilities is that in the case of a lab-scale system using a single 2-
meter-long undulator no electron optics within the undulator are required. If optics are
used within the undulator any beam offset gets amplified when traversing a quadrupole
off-axis, consequently tightening the acceptable beam wander limits.

Girder Deformation

Besides random magnet errors leading to a phase shake and beam wander, systematic
errors are expected. The undulator halves are mounted on steel rods (see Fig. 4.1)
to ensure a minimum of heat flow between the cooled undulator and the rest of the
support structure. This leads to a combination of a sinusoidal girder deformation with
a period length of λsine = 350 mm and parabolic bending of the whole girder [84].
Both deformations result in a peak field variation along the undulator in addition to the
required linear taper. The undulator parameter as function of the longitudinal position
can be expressed as

K(s) = K0 +
dK

ds

(
s− Lu

2

)
+ ∆Ksine sin

(
2πs

λsine

)
−∆Kpar

(
s− Lu

2

)2

, (4.15)

using the undulator length Lu, the amplitude of the sine-like error ∆Ksine, and the
amplitude of the parabola-like error ∆Kpar. The effect of both error types has been
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Figure 4.6: Normalized power as a function of the two systematic error amplitudes, the sine-like
error and the parabola-like error caused by girder deformation. The effect of both
errors on the FEL performance is in good approximation independent.

simulated with Genesis independently as well as in combination. The effect of both
errors on the FEL performance is uncorrelated and can be characterized individually.
The simulation result is shown in Fig. 4.6. Both errors can be fitted by a Gaussian
in order to characterize the sensitivities. The sensitivity with respect to the sine-like
error is σ∆Ksine = 0.04, leading to a tolerance of t∆Ksine = 0.012. For the parabola-like
error a sensitivity of σ∆Kpar = 0.09 is found, resulting in a sensitivity of t∆Kpar = 0.027.
These tolerances can directly be related to gap variations using Elleaume’s formula (2.3),
leading to ∆g∆Ksine = 24 µm and ∆g∆Kpar = 53 µm. Since a precision on the sub-10-µm
level is expected [84], this is acceptable.

Both error types affect the FEL in different ways. The sine-like error increases the band-
width of the emitted radiation and the acceptable maximum is limited by the maximum
bandwidth supported by the FEL process

∆Ksine

K0
=

1 +
K2

0
2

K2
0

∆λl
λl

<
1 +

K2
0

2

K2
0

ρ. (4.16)

This estimate leads to the requirement ∆Ksine < 0.02 which is in good agreement with
the simulation results.

The parabola-like error results in a change of the effective taper along the undulator.
In the first undulator half the slope of the taper is increased, whereas it is decreased in
the second half. A linear fit to one undulator half having a field variation matching the
tolerance limits results in a deviation of the taper from the reference of ∆dK/(Kds) =

0.8%/m. This lies in the range of the taper sensitivity and tolerance and is therefore
reasonable.
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4.2 Sensitivities and Tolerances

Taper

The undulator taper is crucial for an FEL concept relying on the decompression concept.
Any deviation of the taper from the design value results in a nonideal cancellation of
the energy chirp and, consequently, a reduction of the FEL performance. In Fig. 4.7
the result of a Genesis scan is shown. The dependence of the normalized power on the
taper is well described by a Gaussian. The sensitivity obtained is σdK/(Kds) = 1.6%/m,
leading to a tolerance of tdK/(Kds) = 0.48%/m. Since this tolerance requires a relative
taper precision on the 10-%-level, it is regarded as feasible.

The taper limit can be motivated using the typical energy spread limit. Any taper
deviation results in an only partial cancellation of the energy chirp and can therefore be
expressed in terms of an effective energy chirp

dη

dz
=

K0γ
2

1 +
K2

0
2

dK

ds
. (4.17)

The remaining energy chirp can be converted to an effective energy spread by integrating
over the cooperation length

ση,ef =

∫ lco

0

dη

dz
dz =

∫ λl
λu
Lg,3D

0

dη

dz
dz. (4.18)

Using the tolerance limit as source of the effective taper and a cooperation length of
lco = λlLg,3D/λu = 1.5 µm, based on a gain length of Lg,3D ≈ 17 cm, results in an
effective, relative energy spread of ση,ef ≈ 0.44% in good agreement with the energy
spread limit of ση < ρ/2 = 0.53%.

4.2.2 Alignment

Besides undulator construction related errors, also the alignment of the electron beam
with respect to the undulator is crucial to ensure a minimum of performance loss. Any
offset or angle of the bunch with respect to the undulator axis, e.g. caused by a source
jitter, will lead to an oscillating motion in the field direction due to the focusing effect
of the undulator, whereas it will cause a hyperbolic motion in the wiggle plane because
of the transverse field dependence caused by the finite pole width (see Sect. 2.1). This is
expressed by

x(s) = ∆x cosh (κxs) +
θx,0
κx

sinh (κxs), (4.19)

y(s) = ∆y cos (κys) +
θy,0
κy

sin (κys), (4.20)
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Figure 4.7: Normalized power as a function of the linear undulator taper obtained with Genesis.
Each blue dot represents the mean normalized power for a given undulator configu-
ration averaged over ten independent runs. The dashed black line is the Gaussian fit
measuring the sensitivity of the FEL process with respect to the taper. The found
sensitivity is σdK/(Kds) = 1.6%/m.
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Figure 4.8: Period averaged trajectories for an initial offset (blue) ∆x = ∆y = 500 µm or
angle (red) θx = θy = 500 µrad of the x-component (solid) and the y-component
(dashed) based on Eqs. (4.19) and (4.20), and the parameter set of the demonstration
experiment.
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Figure 4.9: Normalized power as a function of the beam offset with respect to the undulator center
for both components. Each blue dot/red cross represents the mean normalized power
for a given x/y-offset averaged over ten independent runs. The dashed black line is
the Gaussian fit measuring the sensitivity of the FEL process with respect to the x-
offset, whereas the dash-dotted line corresponds to the fit to the y-offset-dependence.
The found sensitivities are σ∆x = 1.1 mm and σ∆y = 310 µm.

using the initial beam positions and angles ∆x, ∆y, θx,0, and θy,0, as well as the spatial
frequencies κx,y = Kkx,y/(

√
2γ).

For the lab-scale case the period length of the vertical motion is λy ≈ 3.8 m, whereas the
characteristic length of the horizontal, hyperbolic motion is λx ≈ 24 m. Deviations in the
field direction will therefore typically lead to a half, slow oscillation of the beam along
the undulator, whereas errors in the horizontal component will result in a mainly straight
motion dominated by the initial angle. Typical trajectories are depicted in Fig. 4.8.

Offsets

The offset sensitivity in both directions has been studied with Genesis by varying the
initial beam offset in the range ∆x = 0–1 mm. The scan results are shown in Fig. 4.9.
Fitting the normalized power as a function of the offset with Gaussians in both cases
results in the sensitivities σ∆x = 1.1 mm and σ∆y = 310 µm, corresponding to the
tolerances t∆x = 332µm and t∆y = 93µm.

The approximately factor of three difference between the tolerances can be understood
as a consequence of the qualitatively different types of beam motion in both planes.
A horizontal offset leads to a mainly straight trajectory parallel to the undulator axis,
resulting in a shift of the central radiation wavelength to shorter wavelengths but having
a minor impact on the FEL performance. Offsets in the vertical direction give rise to half
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4 FEL Tolerances

an oscillation around the undulator axis with extrema at the undulator entrance and in
the vicinity of the undulator exit. The gain reduction can consequently be understood
as a mix of:

• The resulting beam wander reducing the overlap of radiation and electrons. How-
ever, in this case the trajectory changes are not randomly distributed but follow
a smooth curve, allowing the radiation field to partially adapt to the changes and
reducing the impact on the FEL performance.

• A variation of the peak field traversed by the bunch changing the effective taper.
The effective change of the taper, however, does not reach the tolerance limit.

Only the combination of the different effects can explain the found tolerance limit.

The tolerances are feasible in terms of the undulator alignment given a fixed reference
axis since a sub-10-µm positioning precision can be reached. The resulting requirements
on the optics and the source, however, are demanding, especially regarding the source
jitter. More details are discussed in Sect. 7.2.

Angles

In contrast to the offset dependence the dependence of the normalized power on an initial
angle is comparable for both dimensions. Figure 4.10 shows the result of the Genesis
runs. Both cases can be fitted by a Gaussian, leading to the sensitivities σθx = 600 µrad
and σθy = 520 µrad. The derived tolerances are tθx = 181 µrad and tθx = 157 µrad. As
in the offset analysis, the alignment constraints of the x-component are less strict than
those of the y-component; however, the difference is smaller than expected with regard
to the qualitative trajectory differences.

As in the case of the offset discussion, the trajectories resulting from the initial angles
differ qualitatively. An initial angle in the vertical direction leads to an oscillatory motion,
whereas a horizontal angle results in a linear motion. For the y-component the effect on
the FEL performance can again be understood as a combination of reduced overlap of
radiation and electrons and a change of the effective taper. In the case of the x-component
the linear motion gives rise to an approximately quadratic drop of the magnetic peak
field; however, the drop using the maximum allow allowed angle tθx is on the order of
0.03% over the full undulator length and therefore well below the tolerance limit of the
taper tdK/(Kds) = 0.48%/m. The mostly linear trajectory will also lead to negligible
perturbations of the overlap of radiation field and electrons and can hence also not be
seen as the source of the power drop.

The unexpected strict tolerance for the horizontal angle could be caused by approxima-
tions of the equations used in Genesis, e.g. the use of the paraxial wave equation, and
has been cross-checked using a different simulation approach suggested by S. Reiche [85].
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Figure 4.10: Normalized power as a function of the beam angle with respect to the undulator axis
for both components. Each blue dot/red cross represents the mean normalized power
for a given x/y-angle averaged over ten independent runs. The dashed black line is
the Gaussian fit measuring the sensitivity of the FEL process with respect to the x-
angle, whereas the dash-dotted line corresponds to the fit to the y-angle-dependence.
The found sensitivities are σθx = 600 µrad and σθy = 520 µrad.
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Figure 4.11: Normalized power as a function of the tilt angle of the undulator in x-direction with
respect to the ideal beam trajectory. Due to the very weak defocusing effect of the
undulator in the x-direction, this should be equivalent to an angle of the beam with
respect to the undulator axis as shown in Fig. 4.10; however, the power dependence
differs significantly. Each blue dot represents the mean normalized power for a given
angle averaged over ten independent runs. The dashed black line is the Gaussian fit
measuring the sensitivity of the FEL process with respect to the angle. The found
sensitivity is σθx = 1.6 mrad.
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The mostly linear electron motion can be modeled using a bunch propagating along the
undulator axis combined with a linear shift of the undulator half-periods in the hor-
izontal direction corresponding to the expected electron offset. The simulation result
is shown in Fig. 4.11 and shows a completely different picture. The sensitivity of the
power ratio with respect to the angle is drastically reduced, resulting in a sensitivity of
σθx = 1.6 mrad, leading to a tolerance of tθx = 480 µrad. Comparing these numbers to
the case of angles in the y-direction yields a factor of three difference as in the case of
the offset errors which is more plausible than the previous result given the different types
of trajectories. The quadratic field evolution along the undulator half can be fitted with
a straight line in the second half, resulting in an effective taper deviation of 0.15%/m
when using the tolerance limit tθx = 480 µrad and a taper deviation of 1.7%/m when
using the sensitivity σθx = 1.6 mrad. These effective taper changes are in the range of
the determined taper sensitivity and tolerance and can, consequently, explain the major
fraction of the performance loss.

The significant differences in the simulation results depending on the simulation approach
indicate that all scenarios dealing with high angles of the electron beam with respect to
the undulator axis should be considered with care. This includes simulations with initial
offsets, angles, and beam wander. The alternative simulation approach by introducing
undulator offsets instead of beam offsets can only be used when the period-averaged
trajectory is approximately independent of the passed magnetic field. This limits the
concept to the here discussed horizontal angles. In all other cases the electron path is
significantly influenced by the position dependence of the magnetic field. The convention-
ally determined tolerances can in any case be seen as the most demanding requirement
while the real situation could be more relaxed. Consequently, only the conventionally
obtained results will be used for the tolerance limits.

4.2.3 Optics Mismatch

Besides undulator construction and alignment errors, the evolution of beam envelope has
a significant effect on the FEL performance and has to be kept close to the ideal enve-
lope. So far, the Twiss parameters have been designed to ensure an as small as possible
average cross section along the undulator in order to maximize the Pierce parameter and,
therefore, the energy spread acceptance as much as possible.

The sensitivity with respect to errors of the Twiss parameters of both planes has been
evaluated using Genesis runs. The results are shown in Figs. 4.12 and 4.13. The β-
mismatch cannot directly be fitted by a Gaussian, but a good approximation is reached
when using a base-10 logarithm of the β-function as parameter for the fit [79]. The found
sensitivities and optima for both components are: βx,min = 1.23 m, βx,max = 3.44 m,
βx,0 = 2.04 m and βy,min = 0.23 m, βy,max = 2.00 m, βy,0 = 0.67 m. The sensitivities
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Figure 4.12: Normalized power as a function of the ratio βx/βx, ref with βx, ref = 2.31m (blue dots)
and βy/βy, ref with βy, ref = 0.61m (red crosses). The Gaussian fits to log10(β/βref)

measuring the sensitivity are given by the dashed (x-component) and dash-dotted
black lines (y-component).
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Figure 4.13: Normalized power as a function of the initial α-function. Each blue dot/red cross
represents the mean normalized power for a given αx/αy averaged over ten indepen-
dent runs. The dashed black line is the Gaussian fit measuring the sensitivity of the
FEL process with respect to αx whereas the dash-dotted line corresponds to the fit
to the αy-dependence. The found sensitivities are σαx

= 1.04 and σαy
= 1.14.
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Figure 4.14: Mismatch for the x-component (left) and the y-component (right) as a function of
the initial Twiss parameters at the undulator entrance. The white line indicates the
tolerance limit in both cases. The different Twiss parameter dependencies are the
direct result of the requirement for a converging beam in the x-direction and a beam
waist in the y-direction.

and optima for the α-functions can be assessed by direct Gaussian fits, resulting in
αx,0 = 1.94, σαx = 1.04 and αy,0 = 0, σαy = 1.14.

The found optima of the Twiss parameters are in good agreement with the initial design
considerations aiming at a beam waist of the x-component at the undulator center and a
matched beam size in the y-component utilizing the focusing of the undulator. The new
optima will be used for the final design discussed in Chaps. 7 and 8.

In contrast to the other error sources, the effects of Twiss parameter errors of one di-
mension are not independent, i.e. starting with a too big but converging beam in the
x-component is better than starting with the same beam size and a diverging beam.
Consequently, not the individual errors but the specific combinations determine the FEL-
performance. This can be expressed in terms of the deviation from the ideal beam shape
measured by a deviation of the mismatch parameter [86] from unity

∆ζ = ζ − 1 =
1

2
(βγ0 − 2αα0 + γβ0)− 1, (4.21)

using the ideal Twiss parameters α0, β0, and γ0 of the discussed component and the
actual Twiss parameters α, β, and γ. Using the minimum or the maximum numbers for
βx and the sensitivity of αx leads in both cases to a mismatch sensitivity of σ∆ζx = 0.67.
For the y-component both combinations result in a sensitivity of σ∆ζy = 0.65. Converting
to tolerances yields t∆ζx ≈ t∆ζy ≈ 0.2. This result shows that indeed deviations from
the ideal beam shape of both components have the same effect on the FEL-performance
since in any case the current density along the undulator gets reduced in the same way.
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4.3 Conclusion

Error source sensitivity tolerance dimension

Phase shake 1.02 0.31 rad
Beam wander 109 33 µm
Girder deformation (sine) 0.04 0.012 -
Girder deformation (parabola) 0.09 0.027 -
Taper 1.6 0.48 %/m
Horizontal offset 1100 332 µm
Vertical offset 310 93 µm
Horizontal angle 600 181 µrad
Horizontal angle (based on undulator tilt) 1600 480 µrad
Vertical angle 520 157 µrad
Mismatch deviation (horizontal) 0.67 0.2 -
Mismatch deviation (vertical) 0.65 0.2 -

Table 4.1: Sensitivities and tolerances for the FEL demonstration experiment with respect to the
most important error sources.

Figure 4.14 shows the mismatch of both components depending on the initial Twiss
parameters.

Although the mismatch tolerances are comparable to conventional, linear accelerator
based free-electron lasers [40, 41], they are challenging for the optics layout of laser-
plasma based systems as well as the energy stability of the accelerator. More details
regarding the resulting optics requirements are discussed in Sects. 7.2 and 7.4.

4.3 Conclusion

In this chapter, the tolerances for a laser-plasma based FEL demonstration experiment
have been determined and discussed. A summary of the tolerances is shown in Table
4.1. The total error budget has been limited to the one-σ-range, consequently allowing
a maximum reduction of the power ratio of 40%, assuming that the dependence of the
output power on the error source can be modeled as a Gaussian for all discussed types
of errors. All errors are assumed to be independent in order to set individual tolerance
limits. The error sources taken into account are undulator errors, resulting from random
magnet or pole errors as well as systematic errors due to the support structure, alignment
errors of the electron beam with respect to the undulator, and optics errors, resulting in
deviations of the electron beam from the ideal beam shape.

Despite the operation of the demonstration case in a challenging parameter range and
far from saturation, the found tolerances for the undulator construction are comparable

91



4 FEL Tolerances

to those of linear accelerator based free-electron lasers in many aspects [81,82], and even
less demanding in some cases. The requirement on the phase shake is rather relaxed
due to the broad energy spread that dominates phase errors for small undulator errors.
In terms of the beam wander the found sensitivity is even significantly weaker than at
large scale systems due to the high divergence of the radiation in this extreme parameter
set, leading to good overlap of radiation and electrons even for trajectory errors on the
order of the beam size. This is further relaxed due to the missing electron optics within
the undulator in the lab-scale case, which would amplify beam offsets caused by magnet
errors. All requirements are within the range of state-of-the-art cryogenic undulator
concepts.

The alignment tolerances are in the 100-µm and 100-µrad range and hence acceptable
in terms of the undulator alignment with respect to a fixed beam axis. The situation is
more challenging regarding optics tolerances and source jitter. The tolerances found for
the optics mismatch are similar to those of large scale system [40, 41] and are therefore
basically feasible; however, the extreme optics configurations required for laser-plasma
based systems result in a challenge. More details regarding the consequences for optics
and source requirements are discussed in Chap. 7.

In summary no show-stoppers have been found in the tolerance study, but the require-
ments are challenging in view of the full setup.
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5 Bunch Decompression

A key element of the laser-plasma driven free-electron laser demonstration concept is the
longitudinal bunch decompression. The goal of the decompression is to sort the bunch
by energies, resulting in a reduction of the local energy spread, i.e. the energy spread of
an infinitesimal longitudinal section of the bunch. This comes at the cost of a reduced
peak current and an energy chirp.

The most efficient way to reach this effect is to use a dispersive beam transport section
consisting of multiple magnets, leading to the desired path length differences due to the
energy dependent deflection in the magnets. In general, a bunch decompression could
be reached by simply using a long drift where the velocity differences of the particles
will result in the position changes. This concept, referred to as velocity (de)bunching,
however, is only of feasible at low energies since otherwise extremely long distances are
needed.

A typical dispersive element used to manipulate the bunch length at large scale, linear
accelerator based facilities is the so-called chicane [2,6, 7, 40,87]. A chicane is a series of
dipoles leading to an energy dependent detour of the electron beam. Particles with the
highest energy will take the shortest path through such a system, whereas the particles
with the lowest energy will get deflected most, resulting in the longest path. At linear
accelerator based systems this concept is used to decrease the bunch length by introducing
an energy chirp prior to the passage through the chicane, leading to an increase of the
peak current. The same magnet configuration can also be used to introduce an energy
chirp when starting with an uncorrelated energy spread.

Since the particle motion in the chicane is energy dependent, any energy changes oc-
curring inside the chicane will result in a perturbation of the particle trajectories and
consequently lead to a degradation of the beam quality in terms of the emittance.

This chapter will address the basic concepts of a chicane based bunch (de)compressor,
followed by a discussion of energy spread inducing effects and the resulting emittance
growth mechanism.
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5 Bunch Decompression

5.1 (De)compression in Chicanes

Bunch length manipulations can in general be described independent of the specific setup.
The individual setups have different advantages when degrading effects are included.
These will be discussed in Sect. 5.3.

5.1.1 General

The coordinate system used within this chapter differs from the global coordinate system
used in the FEL part. Since any beam transport system is designed to keep particles on
a design orbit, it is customary in particle optics to use a coordinate system co-moving
with a particle on the ideal orbit. Hence, all coordinates characterize deviations from
this path∗.

In this system the evolution of the particle offset with respect to the design position
can be expressed using a matrix formalism characterizing the effect of a beam transport
section on the particle coordinates. Using this formalism the energy dependence of the
final, longitudinal particle position zf can be expressed as

zf = zi +R56ηi + T566η
2
i +O(η3

i ), (5.1)

using the initial, longitudinal particle position zi, the initial, relative energy deviation
ηi, the linear transport matrix element R56, and the second order matrix element T566.
Elements higher than second order can usually be neglected.

The initial energy deviation for the here discussed cases can be seen as a combination of
an energy deviation ηi,loc caused by an uncorrelated energy spread and a contribution by
an energy chirp dη/dz

ηi =
dη

dz
zi + ηi,loc. (5.2)

This resembles the basic energy distribution of a bunch as it is expected from laser-
wakefield accelerators.

Using this initial energy distribution the final particle position can be obtained using the
matrix formalism

zf =

(
1 +R56

dη

dz

)
zi +R56ηi,loc. (5.3)

The rms bunch length after this transformation is given by

σzf =

√(
1 +R56

dη

dz

)2

σ2
zi +R2

56σ
2
ηi,loc

, (5.4)

∗For more details about the coordinate system and the basics of beam topics see Chap. 7.
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using the initial rms bunch length σzi and the initial, local, relative energy spread σηi,loc .
Three extreme cases can be distinguished:

• A completely uncorrelated initial, energy distribution, i.e. a vanishing initial energy
chirp dη/dz = 0. Such a bunch will always be decompressed in a dispersive section.

• A pure positive chirp without any local energy spread σηi,loc = 0. In a chicane this
case leads to a decompression independent of the chicane strength in terms of its
transport matrix element R56.

• A negative chirp with a vanishing local energy spread. This is the case usually
discussed in the context of bunch compression at linear accelerator based facilities.
Here two sub-cases can be discussed:

– |R56dη/dz| ≤ 1: the bunch will be compressed.

– |R56dη/dz| > 1: the bunch will be over compressed, resulting in a flipped
chirp sign and possibly a longer bunch.

In any case the chicane strength has to be adjusted to control the desired final bunch
length. The dependence of chicane strength R56 on the setup parameters like magnet
strength and drift lengths is layout dependent.

5.1.2 C-Chicane

The probably most common chicane layout is the so-called C-chicane. A C-chicane
consists of four magnets sending the beam on a C-shaped detour (see Fig. 5.1). Usually
all bending magnets have the same length Lb, but the field strength and, therefore, the
deflection angle φi can be chosen independently. Besides the simple symmetric layout this
allows to build arbitrary, asymmetric chicane layouts; however, the common asymmetric
layout consists of magnets with pairwise identical deflection angles φ1 = φ2 and φ3 = φ4,
and different initial and final drift lengths L12 6= L34. In the special case of a symmetric
layout all deflection angles as well as initial and final drift are identical. In terms of
the basic (de)compression mechanism there is no advantage of asymmetric layouts with
respect to the simple symmetric layout. The layout differences are only of use when
taking degrading effects into account.

The chicane strength, i.e. the longitudinal dispersion R56, can be determined by evaluat-
ing the energy dependence of the path length difference introduced by the chicane [88].

The path length difference with respect to a straight line introduced by the i-th bending
magnet ζb,i for a particle with the reference energy is given by

ζb,i = Rφ− Lb ≈
Lbφ

2

6
, (5.5)
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Figure 5.1: Schematic layout of a symmetric C-chicane. Typical asymmetric configurations can
be obtained by shifting the central pair of magnets in the longitudinal direction.

using the radius of curvature of the trajectory within the magnet R, the deflection angle
φ, and the magnet length Lb. Further path length differences ζd,ij between magnets i
and j are caused by the drifts between the first two an the last two bending magnets

ζd,ij =
Lij

cosφ
− Lij ≈

Lijφ
2

2
, (5.6)

using the drift length Lij and the deflection angle of the preceding magnet φ. The central
drift L23 of all discussed C-chicane layouts is parallel to the reference beam path and
does not contribute to any path length differences. The total path length difference with
respect to the straight path without the chicane is given by the sum over all contributing
elements

ζ =

(
1

3
Lb +

1

2
L12

)
φ2

1 +

(
1

3
Lb +

1

2
L34

)
φ2

2. (5.7)

Given the path length difference of a particle with the reference energy, the longitudinal
dispersion can be evaluated by taking the energy dependence of the deflection angle for
small energy deviations η � 1 into account. The energy deviation dependent deflection
angle can be approximated by

φ(η) ≈ φref
1 + η

≈ φref(1− η + η2), (5.8)

using the ideal deflection angle φref. With this approximation the path length difference
taking energy deviations into account can be expressed as

ζ ≈
(

1

3
Lb +

1

2
L12

)
φ2

1

(
1− η + η2

)2
+

(
1

3
Lb +

1

2
L34

)
φ2

2

(
1− η + η2

)2
. (5.9)
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Consequently, the two lowest order dispersion contributions are well approximated by

R56 ≈
(

2

3
Lb + L12

)
φ2

1 +

(
2

3
Lb + L34

)
φ2

2, (5.10)

T566 ≈ −
(
Lb +

3

2
L12

)
φ2

1 −
(
Lb +

3

2
L34

)
φ2

2 = −3

2
R56. (5.11)

Although the second order matrix element T566 is off the same order as the linear element
R56, its contribution can well be neglected for the cases discussed in this thesis.

Another interesting characteristic of a chicane is the transverse trajectory offset and the
corresponding transverse dispersion. The transverse offset introduced by the i-th bending
magnet is given by

χb,i = Lb tan

(
φ

2

)
≈ Lb

(
φ

2
+

1

3

(
φ

2

)3
)
, (5.12)

including the angular dependence up to the third order. The offset change caused by the
first or last drift within the chicane is

χd,ij = Lij tan(φ) ≈ Lij
(
φ+

φ3

3

)
. (5.13)

Summing up the individual contributions, the total offset at the chicane exit results in

χ ≈ 2Lb

(
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2
+

1

3

(
φ1

2

)3
)
−L12

(
φ1 −

φ3
1
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)
−2Lb

(
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1

3

(
φ2

2

)3
)
−L34

(
φ2 +

φ3
2

3

)
.

(5.14)
Here again the assumption of a central drift parallel to the ideal beam path was used.
In general, it is desired to have no final transverse offset of the beam in order to be
independent of the chicane operation and strength. The offset relation χ = 0 cannot
exactly be solved for one of the angles due to the mixed dependence on tan(φ) and
tan(φ/2). Assuming small angles, what is reasonable for most realistic cases, leads to
the approximation

φ2 ≈
Lb + L12

Lb + L34
φ1, (5.15)

linking the two deflection angles.

Including the lowest order energy dependence of the deflection angle yields the final offset
at the chicane exit as a function of the energy deviation

χ = 2Lb

(
φ1

2
(1− η) +

1

3

(
φ1

2

)3

(1− 3η)

)
+ L12

(
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φ3
1

3
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− 2Lb
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φ2

2
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1

3

(
φ2

2

)3

(1− 3η)

)
− L34

(
φ2(1− η) +

φ3
2

3
(1− 3η)

)
. (5.16)
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The lowest order transverse dispersion is approximated by

R16 ≈

((
Lb + L12

Lb + L34

)3(Lb
4

+ L34

)
−
(
Lb
4

+ L12

))
φ3

1. (5.17)

This term only vanishes for symmetric layouts with φ1 = φ2, L12 = L34. In the decom-
pression scenario the induced transverse dispersion remains negligible for all reasonable
chicane layouts. A typical parameter set for the decompression concept, yielding a bunch
elongation by a factor of four in an asymmetric chicane, is L12 = 7 cm, L34 = 27 cm,
Lb = 7.5 cm, and a deflection angle of φ1 = 0.034 rad, resulting in a transverse dispersion
at the chicane exit of R16 ≈ −3 µm. Combined with a bunch width on the order of tens
of micrometers the transverse dispersion is negligible for all practical decompression cases
discussed in this thesis and is also in good agreement with the tolerance limits.

Further interesting properties of a C-chicane are the transverse beam offset and the
dispersion at the chicane center. A sufficient offsets allow to use the chicane to merge
the electron beam with a photon beam when considering seeding schemes for an FEL.
Furthermore, the dispersion at the chicane center is the key to the TGU concept discussed
above, as well as the idea of energy filtering [16].

Based on the considerations above the beam offset at the chicane center is given by

χcenter = 2Lb tan

(
φ1

2

)
+ L12 tan(φ1) ≈ (Lb + L12)φ1. (5.18)

Taking the detuning dependence into account yields the linear dispersion

R16,center ≈ −(Lb + L12)φ1. (5.19)

Using the typical numbers mentioned above yields an offset of χcenter ≈ 5 mm and a
dispersion of R16,center ≈ −5 mm.

For the TGU concept applied to the demo FEL parameter set a dispersion of |R16,TGU| ≥
8 mm is needed for a stretching factor of n ≥ 4 and an assumed bunch radius of σx =

20 µm. Hence, a slightly longer drift or an increased deflection angle would be needed for
the TGU concept; however, the orders of magnitude would remain comparable, allowing
for a reasonable, compact setup.

In contrast, the discussed configuration does not allow for a reasonable energy filtering.
Requiring a monochromatization to the level ση ≤ ρ/2, i.e. ση ≤ 0.5% in the lab-scale
case, requires these energy ranges to be separated by at least ∆x = 6σx. However, for
the given setup the separation amounts to ∆x = R16,center∆γmax/γ ≈ 25 µm which is
approximately the beam size and therefore a factor of six too small. A suited increase
of the transverse dispersion at the chicane center would also result in an increase of the
longitudinal dispersion at the chicane exit and hence result in an unwanted bunch prolon-
gation even for the remaining energy range after monochromatization. A chicane layout
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Figure 5.2: Schematic layout of a symmetric S-chicane. Typical asymmetric configurations can be
obtained by shifting the central pair of magnets along the initial deflection direction.

for this purpose consequently has to be modified to be isochronous requiring additional
quadrupoles within the chicane, significantly increasing the setup complexity. Further-
more, the increased dispersion also leads to an increase of degrading effects rendering
this concept unfeasible [16].

In the further frame of this thesis the chicane will only be discussed in the context of
bunch decompression.

5.1.3 S-Chicane

A common alternative to the C-chicane discussed above is the so-called S-chicane. The
basic S-chicane configurations can be realized using either six or four magnets. In this
thesis only setups consisting of four magnets with equal length will be discussed as shown
in Fig. 5.2. This requires stronger deflections in the central magnets when compared to
the outer ones but allows to consider configurations that can be built using the same
magnets as in the C-chicane. As in the case of the C-chicane symmetric and asymmetric
configurations will be considered. The asymmetric layout will be restricted to cases with
identical deflection angles for all magnets, relying only on shifts of the central pair of
magnets along the initial deflection direction.

In an S-chicane the length of the central drift L23 cannot be chosen arbitrarily anymore
if a vanishing final beam offset is required. To reach a further on-axis propagation after
the chicane, the central drift length has to be set to

L23 = L12 + L34 + 2Lb
tan φ

2

tanφ
≈ L12 + L34 + Lb. (5.20)
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The longitudinal dispersion can be derived evaluating the path length difference intro-
duced by the chicane in analogy with the discussion above. Summing up the contributions
of the individual components yields

ζ =

(
7

6
Lb + L12 + L34

)
φ2, (5.21)

using the deflection angle of the outer magnets φ. The path length contributions from
central magnets, despite having the doubled deflection angle, are identical with those of
the outer magnets. Including the energy dependence up to second order results in

ζ =

(
7

6
Lb + L12 + L34

)
φ2(1− η + η2)2, (5.22)

giving rise to the two lowest order longitudinal dispersion contributions

R56 ≈
(

7

3
Lb + 2L12 + 2L34

)
φ2, (5.23)

T566 ≈ −
(

7

2
Lb + 3L12 + 3L34

)
φ2 = −3

2
R56. (5.24)

The relation between the first and second order dispersion found for the C-chicane is
retained for the case of the S-chicane. The basic scaling does not show any significant
differences when compared to the C-chicane. Both layouts result in comparable setup
lengths when using magnets with a comparable deflection angle. The advantage of the
modified layout only becomes clear when degrading effects are taken into account (see
Sect. 5.3 and Chap. 6).

As for the C-chicane, the transverse offset and dispersion at the chicane exit can be
evaluated

χ ≈ −Lbφ
3

4
+
Lbφ

2
0φ

4
. (5.25)

Here φ0 is the angle used for the design determining the length of the central drift L23, and
φ is the actual angle depending on the setup and beam properties. As long as the chicane
is operated with the design parameters, i.e. φ = φ0, no net deflection occurs; however,
any scan of the longitudinal dispersion by means of the deflection angle will result in
an additional beam offset. A typical parameter set for the decompression scenario using
an S-chicane is L12 = L34 = 15 cm, Lb = 7.5 cm, and φ0 = 0.016 rad. Reducing the
actual deflection angle of this configuration to φ = φ0/2 induces an offset of χ ≈ 30 nm,
whereas an increase of the deflection angle to φ = 2φ0 leads to an offset of χ ≈ −0.5 µm.
For both cases the effect is negligible and does not result in any conflict with the desired
setup tolerances discussed in Chap. 4 (see Table 4.1).

The transverse dispersion at the chicane exit is given by

R16 ≈
3Lbφ

3

4
− Lbφ

2
0φ

4
. (5.26)

100



5.2 Energy Spread Generation

In contrast to the C-chicane, the transverse dispersion never vanishes for an S-chicane.
Using the same setup parameters as above and an increased deflection angle of φ = 2φ0

results in a transverse dispersion of R16 ≈ 17 µm which is approximately a factor of five
higher than in the C-chicane but still negligible for all discussed cases.

Both chicane layouts, the C-chicane as well as the S-chicane, are suited for the decom-
pression concept. The required setup parameters and the resulting setup lengths are
comparable and suited for a lab-scale system. The final beam offsets and residual disper-
sion are negligible for all practical cases. The differences and advantages of the individual
layouts emerge when taking energy spread induced emittance growth into account and
are discussed below.

5.2 Energy Spread Generation

So far, the effects of different chicane layouts on the electron bunch have only been dis-
cussed in terms of the introduced dispersion and offsets. The electron energy distribution
has been assumed to be constant. However, an electron bunch propagating through the
chicane is a source of strong electromagnetic fields, causing the build-up of an energy
modulation during the pass through the chicane.

Any energy change of an electron occurring within the chicane will result in additional
changes of the trajectory due to the dispersive character of the chicane. Effects to be
considered are:

• The emission of synchrotron radiation

• Direct electron-electron interaction via space-charge forces

• Indirect electron-electron interaction via wall wakefields

In this section the characteristics and basic scalings of the different effects are discussed.
The emittance growth caused by the energy modulations will be the subject of the next
section.

5.2.1 Synchrotron Radiation

The most prominent degrading effect, discussed in the context of most bunch (de)compressors,
is the emission of synchrotron radiation. This effect cannot be avoided in any magnetic
structure.
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5 Bunch Decompression

To understand the basic effects it sufficient to study the process in an individual magnet
independent of the complete setup layout. The radiation spectrum emitted by a single
electron moving in an arc of a circle is given by [23]

dP1

dω
=
P1

ωc
S

(
ω

ωc

)
, (5.27)

using the total power emitted by an electron P1, the critical frequency defined as ωc =

3cγ3/(2R), and the spectral power density S (ω/ωc). The total power emitted by a single
electron reads

P1 =
1

6πε0

e2cγ4

R2
, (5.28)

using the bending radius R, and the spectral power density is given by

S

(
ω

ωc

)
=

9
√

3

8π

ω

ωc

∫ ∞
ω/ωc

K5/3(x)dx, (5.29)

using the modified Bessel function K5/3. Depending on the bunch length and shape the
low frequency part of the spectrum can get amplified coherently. Assuming a Gaus-
sian bunch profile with an rms length σz the spectrum including coherent amplification
reads

dP

dω
=

dP1

dω

(
Ne +Ne(Ne − 1) exp

(
−
(σzω

c

)2
))

, (5.30)

using the number of electrons in the bunch Ne. Coherent amplification is relevant for
all kinds of (de)compression systems operating with short electron bunches. For laser-
plasma based systems using bunches of a few micrometers or less, i.e. about an order
of magnitude shorter than the shortest bunch at linear accelerator based systems like
LCLS [89], this is of special importance. The synchrotron spectrum with and without
coherent amplification for a bunch with the parameters of the lab-scale FEL case is shown
in Fig. 5.3.

If the emission is completely incoherent the total emitted power is given by

Pic =
1

6πε0

e2cγ4

R2
Ne, (5.31)

whereas in the case of fully coherent emission the power scales according to

Pfc =
1

6πε0

e2cγ4

R2
N2
e . (5.32)

In the case of the lab-scale FEL demonstration experiment using a total charge of Q =

15 pC, corresponding to approximately 108 electrons, this is a significant difference.

For the here discussed scenario, and most other systems, none of the two extreme cases is
a good approximation since neither full coherence nor total incoherence can be reached.
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Figure 5.3: Synchrotron spectrum of a bunch with a total charge of Q = 15 pC and normalized
energy γ = 600 moving on a circle with radius R = 3.5 m. The solid blue line shows
the incoherent spectrum based on Eqs. (5.28) and (5.29), whereas the dashed red line
shows the coherent amplification assuming a Gaussian bunch with length σz = 0.5 µm
based on Eq. (5.30).

The total emitted power, however, is dominated by the coherent fraction of the spec-
trum with the amount of coherent emission depending on the bunch length. It can be
approximated by the partially coherent power [90,91]

Ppc ≈
31/6Γ(2/3)2

8π2ε0

e2c

R2/3σ
4/3
z

N2
e , (5.33)

using the gamma function Γ. For a fixed radius of curvature the emitted power is, conse-
quently, independent of the electron energy. Any increase of the energy for a given radius
leads to an increase of the critical frequency and results in an extension of the emitted
spectrum into the high frequency range which is incoherent and usually negligible.

If the radiation emission would only result in a uniform energy loss of the electrons,
the effect would be relatively easy to handle since the downstream sections of the setup
could be adapted to the reduced energy, e.g. by reducing the field strength in the following
magnets. The actual situation, however, is more complex. Radiation emitted by one part
of the bunch can propagate forward through the rest of the bunch and interact with other
electrons modulating their energy. The analytical description of this effects is usually
restricted to one-dimensional cases, i.e. cases fulfilling the criterion [91]

σr
σz
�
(
R

σz

)1/3

, (5.34)

with σr = σx = σy being the bunch radius. If this requirement is fulfilled, the bunch can
be approximated by a normalized line-charge distribution λ(z) with

∫
λ(z)dz = 1.
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A

B

Figure 5.4: Interaction of bunch head and tail due to emission of CSR in a bending magnet. A
photon emitted by the bunch tail at point A (red dot) can overtake a fraction of the
bunch (blue) during the passage through the magnet and interact with electrons at
the bunch head at point B. This leads to the build-up of an energy modulation within
the bunch.

Assuming an electron of the bunch to emit a photon at point A on its way through a
bending magnet, the photon can overtake electrons located ahead due to the path length
difference of the electron bunch moving on the arc of a circle and the emitted radiation
propagating on a straight line. Finally, it can interact with another electron at point
B as shown in Fig. 5.4. The distance between these two electrons is given by the path
length difference, i.e. the slippage distance,

∆z ≈ arc(AB)− |AB| = Rφ− 2R sin

(
φ

2

)
≈ Rφ3

24
. (5.35)

All electrons of a bunch of length σz can interact if the path length through the magnet
is longer than the overtaking distance lov = arc(AB) ≈ (24σzR

2)1/3. For a typical
decompression setup with an initial bunch length of σz = 0.5 µm and radius of curvature
of R = 3.5 m the overtaking length amounts to lov ≈ 3.5 cm. When using a typical
magnet length of Lb = 7.5 cm, consequently, all electrons of the bunch are located within
the interaction distance.

The rate of energy change for electrons in the bunch can be expressed as [90]

dE(z)

cdt
= − Nee

2

31/32πε0R2/3

(
λ(z −∆z)− λ(z − 4∆z)

∆z1/3
+

∫ z

z−∆z

1

(z − z′)1/3

dλ(z′)

dz′
dz′
)
,

(5.36)
using the slippage distance ∆z as defined above and the normalized, one-dimensional
current profile λ(z). The first summand is an entrance transient that drops to zero for
sufficiently long magnets. The second summand usually dominates the rate of energy
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Figure 5.5: Rate of energy change due to CSR as a function of the longitudinal position within
the bunch obtained with the steady state version of Eq. (5.36). A typical bunch
with a length of σz = 0.5 µm, a bunch charge of Q = 15 pC, and a normalized
energy of γ = 600 has been assumed to traverse a magnet with a deflection angle of
Φ = 0.0212 rad equivalent to a radius of curvature of R = 3.5 m. Electrons at the
bunch tail and center lose energy, whereas electrons at the bunch head gain energy.

change. The limits of the integral indicate that only electron within the slippage distance
∆z can interact. For long magnets, i.e. ∆z → ∞, all electrons within the bunch can
interact and the rate of energy change converges to a steady state. The dominant effect
is the build-up of an energy chirp along the bunch. Electrons at the head gain energy,
whereas electrons at the tail lose energy, resulting in an energy chirp. On average this can
be characterized by a reduction of the mean energy and an additional energy spread.

Using the electron parameters of the lab-scale case, i.e. a Gaussian bunch with a length
of σz = 0.5 µm, containing a charge of Q = 15 pC, and an average energy of γ = 600,
in combination with a magnet length of Lb = 7.5 cm with a deflection angle of Φ =

0.0212 rad equivalent to a bending radius of R = 3.5 m the integrated, relative energy
spread induced during the propagation through a single magnet in the steady-state model
is ση,CSR = 8.6 · 10−4. The corresponding CSR wake based on the steady state model
is shown in Fig. 5.5. Although the additional energy spread, which is mainly an energy
chirp, is well below the energy spread of the electron bunch and therefore negligible in
its impact on the FEL performance, it can have a significant influence on the beam
emittance due to the chromaticity of the chicane as will be discussed in Sect. 5.3.

5.2.2 Space-Charge

An effect usually neglected in the design of bunch compressors at linear accelerator
based facilities is space-charge. For laser-plasma accelerator based systems, however,
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space-charge effects can become intense [38, 39] due to the unique combination of high
peak currents and intermediate electron energies.

In the context of bunch decompression the most important effect caused by space-charge
forces is an energy modulation along the bunch as in the case of CSR. In an intuitive
picture the process can be understood as the bunch tail being decelerated by the electrons
ahead, whereas the bunch head gets accelerated by the trailing electrons. The on-axis
energy change for a cylindrically symmetric beam can be expressed as [38]

dE(z)

cdt
=

e2Ne

2π2ε0γ2σ2
z

Λ(z), (5.37)

using the helper function

Λ(z) =
1

σz

∫ z

−∞
Λ′(τ)dτ, (5.38)

with

Λ′(z) =

∫
exp

(
− ik̄z

σz

)
exp

(
k̄2b2

4

)
Γ

(
0,
k̄2b2

4

)
k̄2

4
f(k)dk̄, (5.39)

using k̄ = kσz, with k being the wave number, b = σr/(γσz), the upper incomplete
gamma function Γ not to be confused with the gamma function used in the CSR dis-
cussion above, and the longitudinal form factor of the bunch f(k) =

∫
λ(z) exp(ikz)dz

based on the longitudinal beam profile λ(z).

For the demonstration parameter set assuming a Gaussian bunch with the parameters
as above and a radius of σr ≈ 20 µm, the resulting energy modulation caused by space-
charge can be estimated, and is shown in Fig. 5.6. As in the case of CSR the energy
modulation is dominated by a longitudinal chirp. The energy spread introduced within
a typical magnet assuming a fixed bunch length and a magnet length of Lb = 7.5 cm is
ση,SC = 3.7 · 10−4. This is on the same order as the CSR induced energy spread and,
therefore, of importance for the here discussed case.

5.2.3 Wall Wakefields

Besides the direct interaction of the electrons via radiation and electrostatic fields, an-
other way of interaction exists. The electric field of the bunch can be scattered at surfaces
in the vicinity of the electron trajectory and act back on the bunch again causing an en-
ergy modulation. This effect only becomes important for bunches propagating in narrow
beam tubes since otherwise the field amplitude at the surface becomes negligible.

Laser-plasma based systems are often designed as fully in-vacuum setups where all struc-
tures like the undulator, focusing optics, and additional components like a chicane are
placed within the vacuum chamber. For those cases wall wakefields are usually negligible
since no surfaces like beam tubes in the direct vicinity of the electron bunch are required.
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Figure 5.6: Space-charge induced rate of energy change as a function of the longitudinal position
within the bunch based on Eq. (5.37). A typical bunch with a length of σz = 0.5 µm,
a bunch charge of Q = 15 pC, and a normalized energy of γ = 600 was assumed. The
rate of energy change is of the same order of magnitude as in the case of CSR.

However, depending on the vacuum and spatial requirements larger structures like the
chicane might have to be placed outside of the vacuum, therefore, requiring the use of
a beam tube. The gap of the dipoles used for a typical chicane in the here discussed
decompression scenarios is on the order of 1 cm and would require a beam tube with a
radius of r ≈ 5 mm. Under these conditions wall wakefields can also become important
for laser-plasma based systems.

Resistive Wall Wakefields

A class of wakefields that can never be avoided during the propagation through a con-
ducting beam pipe are the resistive wall wakefields. The most typical case is the effect
occurring during the propagation through a round beam tube. In this case the wakefield
is characterized by the conductivity and radius of the beam tube as well as the peak
current of the electron beam.

The on-axis wakefield of a single electron moving in a round beam tube is given by [92]

wz(z)[V/m] = − 4e

πε0r2

exp
(
− z
z0

)
3

cos

(√
3z

z0

)
−
√

2

π

∫ ∞
0

x2 exp
(
−x2z

z0

)
x6 + 8

dx

 ,

(5.40)
using the radius of the beam tube r, the distance behind the test particle causing the
wakefield z, the characteristic length z0 = (2r2ε0c/σ)1/3 with the conductivity of the
beam tube σ.
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Figure 5.7: Rate of energy change due to a resistive wall wakefield caused by a bunch with a
length of σz = 0.5 µm and a bunch charge of Q = 15 pC propagating through a
round copper beam pipe with conductivity σ = 58.1 · 106 A/(V m) and a radius of
r = 5 mm. Due to the short bunch length, the major effect is the build-up of a linear
energy chirp.

The wakefield of the whole electron bunch is obtained by convolution of the single electron
wake with the longitudinal beam profile

Wz(z)[V/m] =

∫ ∞
0

wz(z)N(z − z′)dz′. (5.41)

Here the beam profile is normalized to
∫
N(z)dz = Ne. The so-obtained wakefield is

a longitudinal electric field modulating the electron energy depending on the internal
bunch coordinate z.

The situation is special for typical laser plasma-based bunches with a length of less than
σz ≤ 1 µm. They are shorter than the characteristic length of the wakefield z0, leading
to the build-up of a mostly linear energy chirp along the bunch. Regarding the FEL
performance this chirp can be compensated in the undulator by adapting the taper.

Using the electron parameters of the demonstration case and assuming a bunch to pass a
copper beam tube with radius r = 5 mm, i.e. matching the gap of the bending magnets,
the conductivity σ = 58.1·106 A/(Vm), and the length of a magnet of Lb = 7.5 cm results
in an additional, projected energy spread of ση,res = 1.5 ·10−6. This is two orders of mag-
nitude smaller than the previously discussed energy spreads due to synchrotron radiation
and space-charge, and is hence negligible regarding the beam propagation through the
chicane.

108



5.2 Energy Spread Generation

Geometric Wall Wakefields

Another class of wakefields are the geometric wall wakefields caused by sudden changes
of the beam tube geometry. Analytical solutions for this kind of problem exist for very
simple cases only, in general numerical algorithms are needed.

One simple but often encountered case is a so-called step transition (see Fig.5.8), e.g.
occurring at the transition between vacuum tubes of different size. An effect on the beam
is only found for a step-out transition, i.e. when moving from a narrow to a wide tube
[93]. The effect on the beam can be characterized by either the longitudinal impedance
[93,94]

Z‖ =
Z0

π
ln

(
r2

r1

)
, (5.42)

with the radii fulfilling r2 > r1, or the corresponding longitudinal single particle wake
obtained via an inverse Fourier transform

w‖(z)[V/C] = Z‖cδ(z) =
Z0c

π
ln

(
r2

r1

)
δ(z). (5.43)

In both cases Z0 is the impedance of free space. The resulting energy change is obtained
by convolution of the single particle wake with the longitudinal charge distribution

W‖(z)[V] =

∫ z

∞
Q(z′)w‖(z − z′)dz′ = Z‖cQ(z). (5.44)

Here the longitudinal charge distribution is normalized according to
∫
Q(z)dz = Nee.

Using the typical demonstration case bunch and a step out transition from r1 = 5 mm
to r2 = 10 mm, as it could occur in the chicane after leaving a magnet and switching
to a wider beam tube on a drift, results in an additional, projected energy spread of
ση,step = 2.7 · 10−4. This is on the same order of magnitude as CSR and space-charge
based effects and, therefore, has to be taken into account if the beam tube diameter
changes within the chicane.

A second, similar case that can be described analytically is a tapered transition between
two round beam tubes. Here the analytical model is restricted to small tapering angles,
i.e. cases fulfilling the condition |r′(s)| � 1 with r′ being the derivative of the beam
radius with respect to the longitudinal position. The longitudinal impedance for this
type of transition is given by [94,95]

Z‖ = − iωZ0

4πc

∫ ∞
−∞

(r′(s))2ds. (5.45)

Assuming a linear taper over the length L from radius r1 to r2 yields the single particle
wake

w‖(z)[V/C] =
Z0c

4π

(r2 − r1)2

L
δ′(z). (5.46)
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r1 r2 r1 r2

L

Figure 5.8: The two typical types of transitions occurring in beam tubes, resulting in geometric
wall wakefields, a step transition (left) and a tapered transition (right).

The total energy change due to the whole bunch obtained via convolution reads

W‖(z)[V] =

∫ z

∞
Q(z′)w‖(z − z′)dz′ =

Z0c

4π

(r2 − r1)2

L
Q′(z). (5.47)

In contrast to the step-out transition the tapered transition depends on the derivative of
the longitudinal charge distribution.

Considering the same scenario as in the step transition but with a linear taper over a
length of L = 1 m results in an additional energy spread of ση,taper = 7.7 · 10−3, which
is even larger than in the case of the step transition. This is caused by the dependence
of the energy change on the derivative of the longitudinal charge distribution combined
with the ultra-short bunches. In this case a tapered transition is, consequently, not of
advantage when compared to a step transition and should be considered with care. The
introduced energy spread exceeds that of all previously discussed effects.

In summary, sources of both types of geometric wakefields should be avoided if possible
since the short bunches cause significant energy changes when traversing such structures
spoiling the emittance as discussed in the next section.

5.3 Emittance Growth

The major problem of any bunch (de)compression system is the induced emittance
growth. Since up to now all X-ray FELs are emittance limited (see Sect. 2.4.4), any
emittance growth in a bunch (de)compressor is critical for the operation of the whole
system.
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5.3 Emittance Growth

5.3.1 Basic Mechanism

The emittance growth mechanism in a chicane can be explained with a simple model.
During the passage through the chicane, every electron is subject to various sources of
energy changes, as discussed in the section above. Due to the dispersive properties of the
chicane, any energy change will affect the electron trajectory in the subsequent magnets
and alter the final particle position and angle.

Reducing this continuous process to a single kick model with each energy changes oc-
curring at the end of a magnet or following drift, the final particle coordinate can be
expressed as

xf = xf,0 +
∑
i

∆xi(ηi), (5.48)

x′f = x′f,0 +
∑
i

∆x′i(ηi), (5.49)

using the ideal, final particle position xf,0 and angle x′f,0 as well as the energy change

induced offsets ∆x
(′)
i (ηi). In the single kick model the energy change ηi = ∆γi/γ occurs

at the end of the i-th magnet or drift. Consequently, it will have no influence on the
particles angle or transverse position up to the magnet i + 1 as shown in Fig. 5.9. The
energy change induced offsets and angles can be written as

∆xi(ηi) = Ri16ηi, (5.50)

∆x′i(ηi) = Ri26ηi. (5.51)

Here Ri16 and Ri26 are the transport matrix elements from the i-th magnet to the end of
the chicane.

Using the definition of the emittance

εx =
√

Var(xf ) Var(x′f )− Cov2(xf , x
′
f ), (5.52)

this allows to estimate the impact of a certain chicane configuration on the final emit-
tance. The variance terms in the single kick model can be expressed as

Var(xf ) = Var(xf,0) +
∑
i

Var(∆xi) + 2
∑
i

Cov(xf,0,∆xi) + 2
∑
i

∑
j>i

Cov(∆xi,∆xj),

(5.53)

Var(x′f ) = Var(x′f,0) +
∑
i

Var(∆x′i) + 2
∑
i

Cov(x′f,0,∆x
′
i) + 2

∑
i

∑
j>i

Cov(∆x′i,∆x
′
j),

(5.54)
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Figure 5.9: Schematic of the emittance growth mechanism. The electron bunch is subject to
energy changes during its whole propagation. Due to energy changes occurring in
the chicane the deflections of the magnets before and after the energy change do not
cancel anymore. Here an energy modulation occurring at the exit of the first magnet
has been assumed. Up to the second magnet no effect on the trajectories is found.
Starting from the second magnet on the beam widens due to the energy dependent
deflections.

whereas the covariance can be expanded into

Cov(xf , x
′
f ) = Cov(xf,0, x

′
f,0) +

∑
i

Cov(xf,0,∆x
′
i) +

∑
i

∑
j

Cov(∆xi,∆x
′
j). (5.55)

The offset dependent terms can further be written as

Var(xf,0) = σ2
xf,0

= βxεx,0, (5.56)

Var(∆xi) = σ2
xi = (Ri16)2σ2

ηi , (5.57)

Cov(xf,0,∆xi) = Ri16 Cov(xf,0, ηi), (5.58)

Cov(∆xi,∆xj) = Ri16R
j
16 Cov(ηi, ηj), (5.59)

as well as the relations for the angles

Var(x′f,0) = σ2
x′f,0

= γxεx,0, (5.60)

Var(∆x′i) = σ2
x′i

= (Ri26)2σ2
ηi , (5.61)

Cov(x′f,0,∆x
′
i) = Ri26 Cov(x′f,0, ηi), (5.62)

Cov(∆x′i,∆x
′
j) = Ri26R

j
26 Cov(ηi, ηj). (5.63)
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The covariance terms including offsets and angles can be simplified using

Cov(xf,0, x
′
f,0) = −αxεx,0, (5.64)

Cov(xf,0,∆x
′
i) = Ri26 Cov(xf,0, ηi), (5.65)

Cov(∆xi,∆x
′
j) = Ri16R

j
26 Cov(ηi, ηj). (5.66)

Using these relations, all contributions can be related to the ideal Twiss parameters αx,
βx, and γx at the chicane exit, the ideal final emittance εx,0, the linear transport matrix
elements, and covariances of either the ideal positions/angles and the individual energy
changes or of two energy changes. The covariances between two different energy changes
can in general not be obtained analytically.

Neglecting higher order contributions of the induced energy spread O(σ4
η) and any co-

variances involving energy changes allows for a simple emittance estimate

εx ≈

√√√√ε2x,0 + εx,0
∑
i

σ2
ηi

βx

((
Ri16

)2
+
(
βxRi26 + αxRi16

)2)
, (5.67)

using the energy spread created at the i-th magnet or drift σηi . This scaling has also been
suggested by Di Mitri et al. [96] but further simplified, taking only the effect of a single
magnet and CSR based energy changes into account. In the more general scaling above
the energy spreads can be caused by a mix of all previously discussed effects. These
different sources of energy changes are again correlated. For the two most important
effects that cannot be neglected for any decompression system, coherent synchrotron
radiation and space-charge, the combined energy spread can be approximated by

σηi =
√
σ2
ηi,CSR

+ σ2
ηi,SC

+ 1.22σηi,CSRσηi,SC , (5.68)

using the covariance of CSR and space-charge induced energy spread Cov(σηi,CSR , σηi,SC) ≈
0.61, which has been obtained with the analytical models above (Eqs. (5.36) and (5.37)).

Since all effects leading to energy changes are bunch length dependent, an important point
to be taken into account when estimating the energy changes induced in the chicane is
the projected bunch length [97]

σz,proj. =
√
σ2
z +R2

51σ
2
x,w + (R52 −R51s)2σ2

x′,w +R2
56σ

2
η, (5.69)

using the initial bunch length σz, the bunch size and divergence at the waist σx,w and
σx′,w, the initial, relative energy spread ση, the linear transport matrix elements R51,
R52 and R56 from the chicane entrance, and the distance between entrance and waist
s. This is crucial due to the significant bunch length dependence of all energy spread
inducing effects and the pancake-like shape of laser-plasma based bunches that leads to
significant changes of the projected bunch length during the deflection in a magnet even
when monoenergetic bunches are considered [98].
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5.3.2 C-Chicane

Besides the energy changes, also the rest of the emittance growth mechanism depends on
the linear transport matrix elements and consequently the specific chicane geometry. For
a C-chicane the matrix elements characterizing the dependence of the horizontal offset
on the energy deviation are

R1
16 = φ1

(
5

2
Lb + L23 + L34

)
+ φ2 (Lb + L34) , (5.70)

R2
16 = φ2 (Lb + L34) , (5.71)

R3
16 = −φ2

Lb
2
, (5.72)

R4
16 = 0. (5.73)

The matrix elements linking the horizontal angle and the energy deviations are given
by

R1
26 = φ1, (5.74)

R2
26 = 0, (5.75)

R3
26 = −φ2, (5.76)

R4
26 = 0. (5.77)

In both sets the fourth element vanishes since in the single kick model the last energy
change occurs at the end of the fourth magnet, resulting in all transport matrix elements
to be zero.

The resulting final particle offsets and angles are

∆x = φ1

(
5

2
Lb + L23 + L34

)
η1 + φ2

(
(Lb + L34) η1 + (Lb + L34) η2 −

Lb
2
η3

)
, (5.78)

∆x′ = φ1η1 − φ2η3. (5.79)

In general, the offset contributions can only cancel each other in the case of alternating
signs of the energy changes ηi sinceR1

16 andR2
16 have the same sign andR3

16 is significantly
smaller and usually negligible. For the case of decreasing energy change amplitudes
of the same sign along the setup |η1| > |η2| > |η3|, which approximately holds for a
decompression scenario due to the lengthening of the bunch, a compensation of the offset
contributions is not possible. The situation is different for a compression system where the
absolute energy changes rise along the chicane due to the shortening of the bunch. There a
partial cancellation of the individual contributions is possible. The angular contributions
cannot cancel in a symmetric chicane φ1 = φ2 due to the increasing/decreasing energy
changes along the chicane. In an asymmetric configuration with φ1 > φ2 operating as a
bunch compressor the increasing energy changes due to the shortening of the bunch and
the lower deflection angle can result in a cancellation of the contributions from the first
and third magnet.
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5.3.3 S-Chicane

The matrix elements characterizing the energy dependence of horizontal offsets and angles
in the case of the S-chicane differ significantly from their counterparts of the C-chicane.
The energy dependence of the offsets is given by

R1
16 = φ

(
9

2
Lb + 2L12 + 2L34

)
, (5.80)

R2
16 = −φ

(
5

2
Lb + 2L34

)
, (5.81)

R3
16 = φ

Lb
2
, (5.82)

R4
16 = 0. (5.83)

The dependence of the horizontal angle on the energy deviations reads

R1
26 = φ, (5.84)

R2
26 = −φ, (5.85)

R3
26 = φ, (5.86)

R4
26 = 0. (5.87)

Again the last transport matrix elements vanish.

The final particle offsets and angles are

∆x = φ

((
9

2
Lb + 2L12 + 2L34

)
η1 −

(
5

2
Lb + 2L34

)
η2 +

Lb
2
η3

)
, (5.88)

∆x′ = φ (η1 − η2 + η3) . (5.89)

In contrast to the case of the C-chicane, a (partial) cancellation of the individual offset
contributions is also possible in the case of nonalternating signs of the energy changes ηi.
In a symmetric S-chicane, i.e. L12 = L34, assuming energy changes of the same sign and
similar amplitude after the first and second magnet η1 ≈ η2 allows the contribution from
the second magnet to compensate approximately 50% of the offset introduced by the
first magnet R1

16η1 +R2
16η2 ≈ 0.5R1

16η1. This ratio can even be improved by switching to
an asymmetric layout and shortening of the initial drift L12. A further difference when
compared to the C-chicane is the doubled deflection angle of the central magnets in a
four-magnet S-chicane. This increases the energy changes η2 and η3 for a given bunch
length and facilitates the possibility to reach a configuration with η1 ≈ η2 despite the
increased bunch length in the second magnet and the corresponding reduction of energy
changes. This idealized cancellation might not fully be reached in real life systems;
however, it already indicates the advantage of the S-chicane. How the chicane layouts
can be optimized in order to minimize the emittance growth will be discussed in the next
chapter.
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5.4 Compression vs. Decompression

Emittance growth plays a major role for bunch compressors, as they are used at con-
ventional linear accelerator based free-electron lasers, as well as bunch decompressors, as
planned for laser-plasma accelerator based systems. Although the underlying physics is
the same, the two scenarios differ significantly.

The most obvious difference between the two kinds of systems is the evolution of the
bunch length. In bunch compressors the bunch length reduces along the setup, result-
ing in more intense effects, like the emission of synchrotron radiation, at the end of
the chicane. In these system the minimum achievable bunch length and the resulting
bunch degradation due to emittance growth can be balanced, i.e. the emittance growth
can be reduced at the cost of a lower peak current after compression. On the contrary,
decompression systems start with the shortest bunch, resulting in the most intense ef-
fects, occurring in the first chicane sections, to be unavoidable. This difference becomes
important when using merit functions to optimize the setup performance. For linear
accelerator based systems usually only the effects occurring in the last magnet are con-
sidered [96]. When optimizing a decompressor, the situation not only changes to the first
magnet dominating, but also the second and third magnet cannot be neglected anymore
in an optimization. Moreover, the optimization has not only to be carried out in terms
of minimizing the appropriate transport matrix elements linking energy, position, and
angle; also the layout dependence of the energy spread causing effects has to be taken into
account (see Chap. 6). Furthermore, the two cases not only differ in where the shortest
bunch length is reached in the setup but also in the minimum bunch length itself. The
shortest, compressed bunch at linear accelerator based facilities is usually at least one
order of magnitude longer than the longest bunch in a laser-plasma accelerator based
system using decompression [17,69,89,96].

A further difference is given by the difference in typical energies in combination with the
bunch length. Both types of systems usually operate in the partially coherent regime of
synchrotron radiation. Linear accelerator based facilities can, due to their higher ener-
gies, however, operate in parameter ranges where the incoherent fraction of the spectrum
contributes significantly to the total energy changes [99]. In contrast, laser-plasma accel-
erator based systems for first FEL demonstration experiments will operate at energies at
least one order of magnitude below those of linear accelerator based free-electron lasers,
and will be dominated by the coherent synchrotron radiation. This difference is even
intensified by the bunch length difference.

The situation changes when considering space-charge effects. These can usually be ne-
glected in bunch compressors at linear accelerator facilities. In the case of a compressor
located in the vicinity of the electron gun the long initial bunch length suppresses these
effects despite the moderate energy. Further downstream the accelerator these effects get
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Figure 5.10: Comparison of energy spread caused by CSR and space-charge in a bending magnet
as a function of the bunch length and energy based on Eqs. (5.36) and (5.37). The
magnet has been assumed to have a field typical for the here discussed cases of
B ≈ 0.3 T. The markers indicate the parameter ranges for the here discussed laser-
plasma based case (LWFA) and for LCLS in the two compressors BC1 and BC2 [89].

mitigated due to the high energies on the multi-GeV-level, although the bunch length
reduces. A typical laser-plasma based free-electron laser demonstration will use mod-
erate energies of a few hundred MeV in combination with bunches at least one order
of magnitude shorter than the shortest bunch at linear accelerator based facilities, re-
sulting in space-charge effects to become important for the setup design. Comparing
the energy spread caused by coherent synchrotron radiation to the space-charge induced
contribution as a function of bunch length and energy as shown in Fig. 5.10 indicates
that linear and laser-plasma accelerator driven systems differ drastically. Laser-plasma
accelerators produce bunches on the order of one micrometer and operate in the energy
range γ = 102–103. Linear accelerators, however, start with bunch lengths on the order
of millimeters before a first bunch compression and comparable energies, and end up at
the 10-µm-range after the last compression but with energies on the order of γ = 104.
Consequently, laser-plasma accelerators are in a range where CSR and space-charge in-
duced energy spread are of the same order of magnitude, whereas for linear accelerators
CSR clearly dominates during the whole acceleration and compression process.

Besides the bunch length, a further difference of importance is the initial energy distri-
bution. The initial electron bunches at linear accelerator based systems are well approxi-
mated by a vanishing local energy spread and a linear energy chirp introduced by off-crest
acceleration just before the compression stage. Due to this correlation, longitudinal slices
of the electron bunch do not get mixed during the compression. Hence, all electrons of a
slice are subject to the same energy changes and no additional, local energy spread builds
up. Therefore, the slice emittance is conserved as long as higher order effects as well as
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the projected length of a slice can be neglected [97]. Only the projected emittance of
the bunch grows due to the different energy changes along the bunch. This growth can
be minimized by using compensating effects of layouts like an S-chicane or combinations
of C-chicanes [97, 100]. Laser-plasma based accelerators are, up to now, not capable of
producing bunches with energy spreads as low as it is possible with linear accelerators.
Depending on the injection mechanism the projected energy spread is a mix of an energy
chirp and an uncorrelated energy spread. So far no exact phase space information are
available and a completely uncorrelated energy spread has to be assumed as a worst case.
This uncorrelated spread results in significant longitudinal position changes during the
decompression and a mixing of the initial longitudinal slices. Consequently, not only the
projected but also the slice emittance grows significantly. Furthermore, the use of layouts
like the S-chicane gets reduced.

Due to these differences, the well established optimization concepts developed for bunch
compressors cannot directly be transferred to decompression systems. The merit func-
tions for the design have to be adapted and the different concepts have to be re-evaluated
(see Chap. 6).

5.5 Conclusion

In this chapter, the basics of longitudinal phase space manipulation using chicanes have
been introduced.

The most important parameter in the context of a (de)compression system is the lon-
gitudinal dispersion R56 which measures the energy dependence of the path length and
therefore the chromatic effect of a chicane on the bunch length. The same effect can be
reached using different layouts like symmetric and asymmetric C- and S-chicanes.

The differences and advantages of the different layouts emerge when degrading effects
are taken into account. The most important issue is the emittance growth induced by
energy changes occurring during the pass through the chicane.

The two strongest sources of energy changes in a decompression system as it is discussed
here are coherent synchrotron radiation and space-charge. This is in stark contrast to
compression systems used at linear accelerator based facilities which can usually neglect
any space-charge effects. Further sources of energy changes are resistive and geometric
wall wakefields that become important if beam tubes are used. Since they can reach and
even exceed the other effects, they should be avoided by using an in-vacuum setup.

The differences of a compression and decompression system regarding the typical param-
eter sets as well as the evolution of the bunch in the chicane require a re-evaluation of
optimization concepts in order to minimize the emittance growth discussed in the next
chapter.
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For the planned demonstration experiment of a laser-plasma accelerator based free-
electron laser a bunch decompression is required. The bunch has to be stretched by
a factor of four in order to obtain an optimum balance between local energy spread,
slippage and peak current (see Sect. 3.3).

During the bunch decompression the ultra-low emittance has to be preserved as far as
possible to ensure the highest possible current density in the undulator. The expected
rise of the energy spread due to effects like synchrotron radiation is negligible in terms of
the FEL performance since it is about one order of magnitude below the initial energy
spread and is not considered as an optimization goal.

In addition to the preservation of the beam quality, a compact setup layout is required
to be suited for a lab-scale system. All discussed layouts will consist of four magnets
based on an already existing chicane.

All optimizations rely on 3D simulations of the bunch propagation through the chicane
since the analytical model above can only give rough performance estimates due to the
used simplifications.

6.1 Simulation

For the setup optimization the well tested code CSRtrack [101, 102] has been used. It
allows to use different simulation concepts ranging from a simple 1D algorithm to a fully
3D model including the full field evolution and particle interaction.

The 1D model is based on the analytical CSR formula discussed above (see Eq. (5.36)).
Here only the longitudinal current profile of the bunch is taken into account. Using the
analytical 1D formalism the longitudinal field is obtained and the particle energies are
changed accordingly. The advantage of this approach is the low simulation effort that
only depends linearly on the particle number O(N). Due to its high speed, this approach
is well suited for parameter scans. The problem in the context of the here discussed cases
is twofold: First, the bunches studied do not strictly fulfill the 1D criterion [91]. In these
cases the 1D model is assumed to give an upper limit for the emittance growth [79] but
is not reliable anymore. Second, space-charge effects are neglected. Since the analytical
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discussion above showed that this effect is on the same order of magnitude as coherent
synchrotron radiation, it will lead to significant deviations from the actual situation.

Besides the 1D model, different 3D models are supported by CSRtrack. In all models
all particles are treated as three-dimensional sub-bunches. The fields of all these sub-
bunches get calculated based on their trajectory taking retardation effects into account.
For all cases in this thesis the “Pseudo Green’s Function Approach” has been used [101].
It provides a good compromise between the exact point to point interaction and the 1D
model. The numerical effort is of the order O(N2) and, consequently, significantly larger
than in the 1D model limiting the size of parameter scans.

In all simulations 4k macro particles were used. The initial distribution consisted of 20
longitudinal slices each containing 200 particles with an appropriate weighting to model
the Gaussian current profile. Convergence tests with up to 16k macro particles did
not yield any significant changes. The transverse coordinates as well as the momentum
were represented by Gaussian distributions cut off at the three-σ-range. The sub-bunch
dimensions were set to σlong = 0.3 µm and σrad = 5.0 µm. Tests with larger sub-bunches
resulted in an artificial smoothing of the current profile distorting the results. The use
of self-scaling sub-bunches showed no significant effect and was therefore discarded. In
general these simulation parameters are in good agreement with the results of [103].

The electron parameters are those of the decompression setup (see Table 3.3). All sim-
ulations start at the chicane entrance and neglect any chromatic effects of an upstream
focusing system to allow for a discussion independent of a specific optics layout. Fur-
thermore, any degrading effects caused by the setup geometry like wall wakefields are
neglected in the spirit of an in-vacuum system and in order to be as general as possible.

6.2 Twiss Optimization

One optimization possibility is the adjustment of the Twiss parameters at the chicane
entrance [97,104,105] characterizing the beam in the transverse phase space. Any change
of the initial Twiss parameters also changes the shape and orientation of the final phase
space ellipse at the chicane exit.

In the single kick model (see Sect. 5.3) each energy change leads to an additional particle
offset and angle at the chicane exit characterized by the amount of energy change and the
linear transport matrix elements according to Eqs. (5.50) and (5.51). In the transverse
phase space this translates into a shift of all particles along the direction

θiCSR = tan−1

(
Ri26

Ri16

)
, (6.1)
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Figure 6.1: Sketch of the transverse phase space of a bunch at the chicane exit. Two longitudinal
slices (blue and red) have been displaced along the direction θCSR with respect to the
reference slice (grey) due to an energy modulation occurring at one position in the
chicane. Both shifts in the transverse phase space were caused by the same absolute
energy change but opposite signs. For an optimized orientation of the phase space
ellipse (solid) the emittance growth is minimized. Other orientations (dashed) result
in a reduction of the overlap of the individual ellipses and therefore result in a larger
emittance growth [105].

with the amplitude of the shift given by

aCSR =

√(
Ri16

)2
+
(
Ri26

)2
ηi. (6.2)

If only a single energy change is considered, all longitudinal slices, defined at the time of
the energy kick, get shifted along the same direction but with different amplitudes. The
emittance growth in this case depends on the shape and orientation of the ideal, final
phase space ellipse, given by the Twiss parameters, with respect to the shift direction
θiCSR. The effect is illustrated in Fig. 6.1.

In general the transverse ideal phase space coordinates can be characterized by

x(Ψ) =
√
εβ cos (Ψ) , (6.3)

x′(Ψ) = −
√
ε

β
(α cos (Ψ) + sin (Ψ)) , (6.4)

using the particle phase Ψ. For α 6= 0 the semi axes of the so described ellipses do not
coincide with the coordinate axes. The particle phase matching the semi-major axis is

Ψmaj = tan−1

(
−β2 − α2 + 1 +

√
(β2 + α2)2 − 2β2 + 2α2 + 1

2α

)
. (6.5)
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Hence, the orientation of the semi-major axis is

θmaj = tan−1

(
x′(Ψmaj)

x(Ψmaj)

)
= − tan−1

(
−β2 + α2 + 1 +

√
(β2 + α2)2 − 2β2 + 2α2 + 1

2αβ

)
. (6.6)

For a single kick and a given energy change of the particles the emittance growth can
consequently be minimized by aligning the semi-major axis of the phase space ellipse
with the kick direction θmaj = θiCSR and maximizing the length of the semi-major axis
rmaj =

√
x2(Ψmaj) + x′2(Ψmaj). In this case the total phase space volume occupied after

the shift of the longitudinal slices gets minimized.

This ideal optimization, however, is only feasible in the case of a single kick dominating
the phase space evolution. In the decompression scenario all contributions from the first
three magnets have to be taken into account; furthermore, the broad uncorrelated energy
spread causes a mixing of the longitudinal slices over time significantly restricting this
idealized optimization concept.

The use of the optics optimization has been tested with CSRtrack for a reference chicane
layout, a symmetric C-chicane with a magnet length of Lb = 7.5 cm and a drift length of
approximately L12 = L34 ≈ 17 cm. Figure 6.2 shows the projected and slice emittance
growth as a function of the Twiss parameters at the chicane entrance. The projected
emittance growth varies from ∼ 35% up to ∼ 80% and is minimized for small, initial
β-functions in combination with low, positive values of α. The slice emittance growth
of the central slice defined at the chance exit varies from ∼ 15% up to ∼ 85%. Besides
the difference in absolute numbers also a qualitative difference of the dependence of the
emittance growth on the Twiss parameters is found.

The scaling difference can be explained as follows: Electrons of the final central slice
at the chicane exit are distributed over the full bunch length at the chicane entrance
(see Fig. 6.3). Therefore, these electrons sample the full CSR and space-charge fields
during their pass through the first magnet and drift. This leads to energy changes with
a high variance, causing a significant contribution to the emittance growth according to
Eq. (5.67). In the subsequent magnets downstream the chicane the bunch has already
been decompressed, resulting in the electrons of the final central slice to be distributed
over a shorter longitudinal fraction of the bunch and a general reduction of the degrading
effects. The electrons consequently only sample a small fraction of these weaker fields,
resulting in smaller energy changes with a lower variance. The resulting contributions to
the emittance growth reduce along the chicane. Accordingly, the slice emittance growth
is dominated by the initial energy changes occurring in the first magnet and drift. The
projected emittance growth, however, is a combined effect of all energy changes occurring
within the chicane. Hence, the optimum Twiss parameter region minimizing the projected
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Figure 6.2: Relative growth of the normalized, projected emittance (top) and the normalized
emittance of the central slice (bottom) as a function of the Twiss parameters at the
chicane entrance obtained with CSRtrack.
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Figure 6.3: Longitudinal phase space at the chicane entrance (left) and exit (right). The red dots
indicate particles located in a final central slice. At the entrance these electrons are
distributed along the whole bunch and are, therefore, subject to a broad range of
energy changes.

emittance growth is narrowed down when compared to the region minimizing the slice
emittance growth.

The scaling difference can also be understood in terms of the alignment of the phase
space ellipses semi-major axis θmaj with respect to the directions of the CSR kicks θiCSR.
For the case of the slice emittance a broad range of Twiss parameter combinations (small
β and arbitrary α), resulting in the same orientation of the final phase space ellipse,
is favored. This orientation matches, or is close to, the direction of the first CSR kick
θmaj = θ1

CSR ≈ 57◦. Furthermore, this Twiss parameter range maximizes the semi-major
axis length at the chicane exit. This combination of matching orientation and long semi-
major axis results in a low emittance growth. The ellipse orientation and the semi-major
axis length for this case are shown in Fig. 6.4. In contrast, the projected emittance is
subject to all CSR kicks θ1−3

CSR. Orienting the major-semi axis along the first CSR kick
direction and maximizing its length conflicts with the kick directions of the subsequent
magnets. These additional kicks can, in the worst case, lead to a shift perpendicular
to the ellipse orientation and significantly increase the emittance. This effect becomes
more pronounced if the semi-major axis of the phase space ellipse is much longer than
the semi-minor axis rmaj � rmin. Only a small range of Twiss parameters minimizes the
combined effect of the different kicks.
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Figure 6.4: Orientation of the phase space ellipse (top) and length of the semi-major axis nor-
malized to its minimum (bottom) as a function of the initial Twiss parameters for
a C-chicane with L12 = L34 ≈ 17 cm, L23 = 5 cm, and Lb = 7.5 cm and a bunch
according to the FEL demonstration parameter set.
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6.3 Layout Optimization

Besides the Twiss parameter optimization for a given setup, also the general chicane
layout can be varied for a given R56. This allows to modify the linear transport matrix
elements Ri16 and Ri26 contributing to the emittance growth as well as the induced energy
spreads σηi . For the decompression concept symmetric and asymmetric C- and S-chicane
configurations are discussed. For all cases the longitudinal dispersion is fixed to R56 =

193 µm. For each layout the Twiss parameters have been optimized individually in the
ranges α ∈ [0, 3] and β ∈ [0.2 m, 3 m] which are feasible for realistic setups and cover the
vicinity of the optimum found in the Twiss parameter optimization.

6.3.1 C-Chicane

The simplest layout is the symmetric C-chicane. The parameters that have been varied
are the outer two drift lengths L12 = L34 as well as the length of the bending magnets
Lb. In order to ensure a constant final bunch decompression, the magnet strength has
been adjusted for each case. The central drift has been fixed to L23 = 5 cm which is the
minimum distance for an already existing magnet set due to the housing and coil size.
This drift does not have any effect on the longitudinal dispersion and only elongates
the setup; therefore, it should be kept as short as possible in any layout. Across all
simulations the total simulated distance has been fixed to 2.65 m by adding a drift after
the last magnet to ensure comparable results independent of the chicane length.

Figure 6.5 shows the projected emittance growth as a function of the setup parameters
L12 and Lb obtained with CSRtrack using the 3D and the 1D model. For each chicane
configuration the Twiss parameters have been scanned and optimized individually∗. Both
scans not only show a significant difference in the absolute numbers but also in the
qualitative features. The 1D model only including CSR effects favors setups consisting
of long magnets and drifts. This reflects the typical optimization approach used at linear
accelerator based facilities, leading to a reduction of CSR emission and the associated
energy spread by only using as weak as possible bending magnets although the transport
matrix elements Ri16 and Ri26 get increased. This is in stark contrast to the optimization
concept suggested by the simulations using the 3D model. Here the emittance growth
is minimized for moderate drift lengths L12 ≈ 20 cm and short bending magnets. The
reason for the different dependencies is the inclusion of space-charge effects in the 3D
simulations. The space-charge induced energy spread grows proportional to the traversed
path length. Therefore, the setup configuration resulting in a minimum emittance growth
is a compromise of minimizing CSR effects by using weak magnets and long drifts and
minimizing space-charge effects by reducing the overall setup length. Both scalings can

∗This is the reason for the limited plot resolution since each data-point in the figures represent a whole
Twiss parameter scan.
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Figure 6.5: Relative growth of the normalized, projected emittance in a symmetric C-chicane as
a function of the setup parameters at the chicane entrance obtained with CSRtrack
using the 3D model (top) and the 1D model (bottom). For each configuration the
Twiss parameters have been optimized individually, consequently limiting the number
of reasonably accessible data-points in terms of the computation time. The qualitative
and absolute differences are dominantly caused by the inclusion of space-charge effects
in the 3D model. This leads to a higher emittance growth for longer setups in the 3D
model despite the reduction of CSR that leads to a lower emittance growth in the 1D
model.
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Figure 6.6: Relative growth of the normalized slice emittance in a symmetric C-chicane as a
function of the setup parameters at the chicane entrance obtained with CSRtrack
using the 3D model. Despite the increased noise the result confirms the optimization
concept suggested by the scaling of the projected emittance shown in Fig. 6.5 (top).

be qualitatively confirmed by using the analytical model (5.67) and either including or
neglecting space-charge effects. The optimized configuration in the 3D model results
in an emittance growth of ∼ 40%. The optimization concept also holds for the slice
emittance as is shown in Fig. 6.6.

The emittance growth can be further minimized by using an asymmetric layout via
shifting the central two magnets by Loff towards the chicane entrance or exit. At bunch
compressors located at linear accelerator based facilities usually the final drift L34 is
increased at the same time leading to a decrease of the field strength and deflection angle
of the last two magnets φ2. This allows to reduce the emission of CSR when the bunch
is shortest [106]. Transferring this concept to a CSR dominated bunch decompressor
starting with the shortest bunch length would consequently require to elongate the initial
drift L12 since this reduces the deflection angle φ1, leading to a reduction of the largest
transport matrix element R1

16 as well as the CSR induced energy contributions of the
first two magnets ση1,CSR and ση2,CSR .

The concept has been tested using a reference setup with Lb = 7.5 cm and L12 = L34 ≈
17 cm in the symmetric case. The offset of the central dipole pair with respect to the
chicane center Loff has been scanned with negative offsets corresponding to a shift of the
magnets towards the chicane entrance. The expected CSR dominated behavior is, if at
all, confirmed by the 1D model based simulation. As shown in Fig. 6.7 the 3D model
indicates a reduction of the emittance growth for negative offsets, i.e. a shortened initial
drift and elongated final drift. The optimum is reached for an offset of Loff ≈ −10 cm
reducing the emittance growth to ∼ 30%. The reason for this scaling is given by the
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Figure 6.7: Relative growth of the normalized, projected emittance in an asymmetric C-chicane
as a function of the longitudinal offset of the central magnets based on the 3D model
(blue circles) and the 1D model (red crosses).

space-charge induced energy spread. Due to the bunch length dependence of the space-
charge effect, an early bunch decompression is favorable. A reduction of the initial drift
beyond Loff ≈ −10 cm results in a slight increase of the emittance growth compared
to the optimum. Here CSR dominates over space-charge again due to the rise of the
deflection angle φ1.

6.3.2 S-Chicane

A promising alternative to the C-chicane is a four-magnet S-chicane. As discussed in
Sect. 5.3.3, an advantage of the S-chicane is the possibility of a partial cancellation of
offset contributions from the first two magnets due to opposite signs of the transport ma-
trix elements R1

16 and R2
16. As a first test symmetric configurations have been simulated

by varying the outer two drifts L12 = L34 and the length of the bending magnets Lb. In
contrast to the scans of the C-chicane the length of the central drift has to be adapted
too and is always set to L23 = L12 +L34 + 2Lb tan(φ/2)/ tan(φ) in order to ensure a van-
ishing bunch offset at the chicane exit. The total longitudinal dispersion of the chicane
has been kept constant by adjusting the magnet strength for each configuration. The
total simulation distance has been fixed to 2.33 m.

Figure 6.8 shows the scan result obtained with CSRtrack. The projected emittance has
been evaluated as a function of the setup parameters L12 and Lb using the 1D and 3D
model. The scan range for the drift length L12 has been reduced when compared to the
C-chicane to ensure a comparable total setup length when correctly scaling the central
drift L23. For each setup layout the Twiss parameters have been optimized in order to
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Figure 6.8: Relative growth of the normalized, projected emittance in a symmetric S-chicane as
a function of the setup parameters at the chicane entrance obtained with CSRtrack
using the 3D model (top) and the 1D model (bottom). As in the case of the C-chicane,
the qualitative and absolute differences are dominantly caused by the inclusion of
space-charge effects in the 3D model. Compared to the C-chicane the emittance
growth is reduced by 50% on average.
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Figure 6.9: Relative growth of the normalized, slice emittance in a symmetric S-chicane as a
function of the setup parameters at the chicane entrance obtained with CSRtrack
using the 3D model. The scan confirms the optimization strategy found for the
projected emittance growth.

ensure a minimum emittance growth. Both models show a similar result as in the case of
the C-chicane scan; however, the emittance growth has been reduced by approximately
50%. This can be understood as an effect of the opposing signs of the transport matrix
elements and the resulting CSR kicks. Still, the 1D model suggests to increase drift and
magnet lengths in order to reduce the CSR emission. The 3D model, taking space-charge
into account, indicates that space-charge and CSR effects have to be balanced, resulting
in a minimum emittance growth of ∼ 20% for intermediate drift lengths of L12 ≈ 14 cm
and as short as possible magnets. The optimization also holds for the slice emittance as
indicated by Fig. 6.9.

As in the case of the C-chicane, the emittance growth can be further reduced by using an
asymmetric layout. As discussed in Sect. 5.1.3, the asymmetric layout variations of the S-
chicane in this thesis are restricted to shifts of the central two magnets along the initial
direction of deflection φ. All shifts are characterized by the introduced longitudinal
offset Loff as in the case of the C-chicane. As reference a symmetric layout with a
magnet length of Lb = 7.5 cm and drift lengths L12 = L34 = 14 cm has been chosen.
The scan result obtained with CSRtrack is shown in Fig. 6.10. The 1D model does
not show any significant offset dependence of the emittance growth. The 3D model,
however, shows a similar result as in the case of the C-chicane. Moderate longitudinal
shifts of the central magnets towards the chicane entrance are favored. A minimum is
found for Loff ≈ −10 cm, resulting in an emittance growth of ∼ 15%. The effect can
again be understood as a result of reducing the space-charge induced energy spread by
an early decompression and is further supported by the better cancelation of the offset
contributions R1

16η1 and R2
16η2.
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Figure 6.10: Relative growth of the normalized, projected emittance in an asymmetric S-chicane
as a function of the longitudinal offset of the central magnets based on the 3D model
(blue circles) and the 1D model (red crosses).

6.3.3 Influence of an Energy Chirp

So far, all discussed cases were based on a completely uncorrelated energy spread which
can be seen as a worst case scenario. According to laser-wakefield acceleration theory an
energy chirp is to be expected contributing to the projected energy spread. The structure
of the energy-position correlation will depend on the acceleration parameters, e.g. the
amplitude of the accelerating field and whether dephasing is reached or not. As a more
realistic scenario bunches with a projected energy spread as above made up by a smaller
local energy spread ση,loc and a linear energy chirp dη/dz can be assumed.

In general, for a fixed projected energy spread, a linear energy chirp is of advantage
in two ways: First, the energy-position correlation reduces the mixing of longitudinal
slices and in the case of a pure chirp eliminates the mixing completely. This lowers the
slice emittance growth and increases correlations between energy changes ηi caused in
different sections of the chicane, allowing for a mutual cancellation of individual CSR
kicks as in an S-chicane. Second, for a given chicane configuration and projected energy
spread a positive chirp will lead to a faster decompression with the bunch length given
by

σz(s) =
√

(1 +R56(s)dη/dz)2 σ2
z +R2

56(s)σ2
η,loc, (6.7)

using the initial local energy spread ση,loc and the initial bunch length σz. Furthermore,
the final bunch length will be increased. This reduces the energy changes caused by CSR
and space-charge, leading to a reduction of the projected and slice emittance growth. If
the chicane is modified to ensure the same final bunch length as in the case of a completely
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uncorrelated energy spread, i.e. the R56 gets reduced, also the emission of CSR will be
reduced, again lowering the resulting emittance growth.

All setups discussed above have also been tested for the case of a bunch having the
same projected energy spread as before, i.e. ση = 1%, but this time made up by the
combination of a local energy spread of ση,loc = 0.5% [53] and a linear energy chirp
of dη/dz = 1.73 · 104 m−1. In the setup scan of the symmetric C- and S-chicane all
qualitative features are retained, but the average projected emittance growth is reduced
by 29% in the case of the C-chicane and by 33% in the case of the S-chicane when
compared to the results obtained with a completely uncorrelated energy spread. The
higher performance improvement of the S-chicane is based on the increased correlations,
allowing for a better mutual compensation of CSR as well as space-charge kicks caused
in the first and second magnet. The optimization concept in general does not depend on
the initial chirp and a positive linear chirp always reduces the emittance growth.

The influence of the chirp becomes more pronounced in the case of asymmetric chicane
configurations (see Fig. 6.11). The asymmetry scan of the C-chicane shows an average
reduction of the emittance growth by 35% with a weak offset dependence. The effect
becomes stronger in the case of the asymmetric S-chicane, resulting in average reduction
of the projected emittance growth by 44% with a strong offset dependence in favor of
negative offsets. This is again a result of the increased correlations between energy
changes occurring in the first and second magnet and the mutual compensation of offsets
(see Sect. 5.3.3). The minimum emittance growth achievable with an asymmetric S-
chicane gets reduced to approximately 5%.

6.4 Scalability

An interesting question regarding the decompression concept is its scalability towards
combinations of higher initial energy spreads and bunch charges, which are believed to
be easier accessible [107]. Keeping the chicane strength in terms of R56 unmodified the
decompression factor is given by

n =
σz,f
σz,i
≈ R56σηi

σz,i
, (6.8)

using the initial and final bunch length σz,i and σz,f , and the initial relative energy spread
σηi . This results in a final local energy spread of

σηsl,f =
σηi
n
≈ σz,i
R56

, (6.9)

and a final peak current of

Ipeak,f =
Ipeak,i
n
≈
Ipeak,iσz,i
R56σηi

. (6.10)
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Figure 6.11: Relative growth of the normalized, projected emittance in an asymmetric S-chicane
and C-chicane as a function of the longitudinal offset of the central magnet pair
obtained with the 3D model. The marker represent: red circles: C-chicane, no
chirp; magenta stars: C-chicane, chirp; blue diamonds: S-chicane, no chirp; green
triangles: S-chicane, chirp.

Both, the final local energy spread σηsl,f and the final peak current Ipeak,f are independent
of the initial energy spread and current, as long as the ratio of initial peak current and
energy spread Ipeak,i/σηi is constant. Under this condition the only difference affecting
the FEL performance is the final bunch length σz,f , which will be increased for higher
initial energy spreads and improve the performance in slippage limited cases. This scaling
of the decompression concept is, however, limited by the rising emittance growth caused
by the increased CSR and space-charge effects when operating with higher initial peak
currents.

A scan of the initial bunch charge for a fixed ratio of peak current to energy spread
has been performed with the reference C-chicane layout in combination with a Twiss
parameter optimization for each case. The result is shown in Fig. 6.12. A linear rise
of the emittance growth as a function of the bunch charge is found for the projected
as well as the slice emittance. This is caused by the linear dependence of the energy
change caused by CSR and space-charge on the bunch charge. However, also the change
of the decompression rate due to the different energy spreads has an effect on the system
performance. For higher energy spreads the difference between the bunch length in the
first and the later magnets increases. Therefore, the impact of the effects occurring in
the first magnet and drift relative to the rest of the chicane rises, leading to a change
of the ideal Twiss parameters favoring smaller initial values of α and β. This has to be
considered in the optics design.

Any change of the horizontal slice emittance affects the FEL performance via the change
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Figure 6.12: Relative growth of the normalized, projected (blue circles) and slice (red squares)
emittance as a function of the bunch charge for a fixed ratio of charge to energy
spread at the chicane entrance corresponding to Q = 15 pC and ση = 1%. Projected
and slice emittance both grow approximately linearly as suggested by Eq. (5.67).

of the horizontal beam size∗. The power gain length depends on the beam size as

Lg ∝ (σxσy)
1/3 . (6.11)

Expressing the horizontal beam size as a function of the emittance yields

σx =
√
εxβx, (6.12)

and shows that any change of the horizontal emittance by a factor m affects the gain
length according to

Lg ∝ m1/6. (6.13)

The final FEL power reduction as a function of the longitudinal position s and the scaling
factor of the emittance m is then given by

P (s,m)

Pref.(s)
= exp

(
− s

Lg,3D

(
1−m−1/6

))
. (6.14)

Doubling the horizontal slice emittance m = 2 in the demonstration case relying on
decompression with a total undulator length of s = 2 m and a gain length of Lg,3D ≈
17 cm results in a power reduction of approximately 72%. This scaling has been confirmed
with Genesis as shown in Fig. 6.13. Furthermore, any change of the emittance in the
chicane is accompanied by a change of the Twiss parameters, resulting in a mismatch at
the undulator entrance that reduces the FEL performance if it is not compensated by
adapting the optics. This is discussed in the context of the start-to-end simulation in
Chap. 8.
∗In general, also the effective energy spread due to emittance has to be taken into account (see
Sect. 2.4.4); however, for the here discussed parameters this effect is negligible.
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Figure 6.13: Normalized power as a function of the normalized emittance obtained with Genesis.
For each emittance 10 independent runs have been performed (blue dots), their
average is indicated by the solid red line. The analytical model (6.14) is shown as
the dash-dotted black line and holds very well although it neglects any 3D effects.

6.5 Conclusion

The emittance growth in the chicane can be minimized in different ways. For a given
chicane layout it depends on the Twiss parameters of the beam. They describe the size
and orientation of the phase space ellipse. Orienting the phase space ellipse at the chicane
exit so that it coincides with the dominant CSR-kick direction minimizes the emittance
growth. This works best for the case of the slice emittance growth which is dominated
by the first magnet and the corresponding CSR-kick. The projected emittance growth,
however, is affected by all magnets and therefore the optimum Twiss parameter region
is narrowed down. In general a converging beam is favored for the slice as well as the
projected emittance.

In addition to the Twiss parameters also the chicane layout in terms of magnet and
drift lengths and the resulting required magnetic fields can be optimized. At large scale
facilities the optimization concept can usually be reduced to the idea of decreasing CSR
effects by using as weak as possible bending magnets and long drifts. This does not hold
for the here discussed scenario due to the non-negligible impact of space-charge induced
energy modulations. Hence, an optimized setup is a compromise between using weak
bending magnets in order to minimize CSR effects and using a short setup to minimize
the impact of space-charge. The chicane lengths on the order of one meter resulting
from this compromise fortunately are in the spirit of a lab-scale system and can be used
in upcoming setups. Comparing C- and S-chicanes shows that for comparable chicane
lengths the emittance growth in an S-chicane is reduced by 50% when compared to a
C-chicane.
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Both types of chicanes can be modified to asymmetric configurations. At linear accel-
erator based facilities using bunch compression, the idea is to reduce the strength of
the final bending magnets and elongate the last drift to reduce CSR emission where the
bunch is shortest. For a decompressor the inverse concept could be expected due to
the short initial bunch length; however, 3D simulations show that stronger magnets and
short drifts in the first chicane half are favored. This is again the result of space-charge
effects that can be reduced by decompressing the bunch as soon as possible. The best
setup, resulting in the lowest emittance growth, is an asymmetric S-chicane causing a
relative, projected emittance growth of less than 20%.

If an initial chirp is assumed in combination with the same projected energy spread, the
emittance growth gets reduced for all cases. This is based on the faster decompression
of the bunch in the case of a chirp, resulting in lower CSR and space-charge effects
and the reduced position changes within the bunch, allowing for a better cancellation of
individual CSR-kicks. This can especially be exploited in asymmetric S-chicanes, making
a relative projected emittance growth as low as approximately 5% possible.

Extending the decompression concept to cases with higher bunch charges and broader
energy spreads for a fixed ratio of charge to energy spread is ultimately limited by the
emittance growth. Doubling the charge and energy spread in a simple symmetric C-
chicane nearly doubles the resulting emittance growth. The full effect can only be assessed
in a start-to-end simulation also taking the chromatic effects of the optics into account
and is discussed in Chap. 8.
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This chapter addresses the last missing piece of the demonstration FEL puzzle – the
transverse electron optics.

The beam optics are a crucial part of every accelerator needed to control the transverse
and longitudinal beam dynamics. In the frame of the this thesis they have, so far, only
been used in terms of the chicane manipulating the longitudinal phase space. How the
desired transverse dynamics assumed in the previous discussion can be achieved will be
discussed here.

First, the basics of electron optics theory are reviewed followed by an overview over
the most important error sources. Then the concept of chromatic focus matching is
introduced as a countermeasure for chromatic effects. Finally, an optics concept for the
demonstration FEL case is presented and discussed.

7.1 Electron Optics Theory

In this section the basics of beam optics, including the typical magnets, the transport
matrix formalism, and the Twiss parameters, are reviewed. They are the basis for the
later considerations and are based on the book by Wille [21] and the course by Rossbach
[108].

7.1.1 Coordinate System

For the description of the particle motion in an arbitrary beam transport system one
could use the laboratory system. However, if one considers circular or other curved
transport sections and is interested in describing the beam shape and small deviations
from a reference path the laboratory system is not suited. It is therefore customary
in beam optics to use a coordinate system co-moving with a reference particle. In this
thesis the following naming convention is used: The z-component of the coordinate
system points in the instantaneous direction of flight of the reference particle, x is the
horizontal, and y the vertical offset with respect to the reference particle. The reference
particle is characterized by {0, 0, 0} for all times, and its path is called the orbit. All
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x

y

z

design electron

electron

r0(s)

orbit

Figure 7.1: Coordinate system relative to the reference path as it is customary in beam optics.

other particles can be described by the triple {x(s̃), y(s̃), z(s̃)} with s̃ measuring the path
length along the orbit. A sketch of the coordinate system is shown in Fig. 7.1.

7.1.2 Magnets

In general arbitrary magnetic fields can be used to manipulate the beam shape and di-
rection; however, any magnetic field can be expanded in a Taylor series in the vicinity
of the orbit. The lowest orders of this expansion are the dipole, the quadrupole, and
the sextupole. These magnets have distinct effects on the beam and can be built as
“separated-function” magnets providing, a field corresponding to one of the aforemen-
tioned orders of the expansion, or as “combined-function” magnets combining multiple
orders. The later type is dominantly found at older facilities whereas modern systems
usually rely on “separated-function” magnets [108]. A sketch of the three basic mag-
nets is shown in Fig. 7.2. Although combined function magnets exist, they will not be
considered in the further discussion.

The probably most well known magnet is the dipole. It is used to steer the beam and
is consequently an essential component for circular structures like synchrotrons but is
also the key component of undulators and chicanes. An idealized dipole has a constant
magnetic field By∗ and is typically characterized by either the inverse radius of curvature
1/R of an electron moving in its field

1

R
=
eB

p
≈ 0.2998

B[T]

W [GeV]
, (7.1)

∗All dipoles will be assumed to have a purely vertical field in this thesis as it is customary in beam
optics. This is sufficient for most real life setups, but the derived equations can also be extended to
more complex configurations.
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using the electrons momentum p and its energy W , or the corresponding deflection angle
Φ for a given dipole length LB

Φ =
LB
R
≈ 0.2998

B[T]LB[m]

W [GeV]
. (7.2)

Both ways of describing a dipole explicitly characterize its influence on an electron tra-
jectory and therefore provide a direct insight in the resulting setup geometry.

The next higher order of the magnetic field series is the quadrupole. In general quadrupoles
are used to focus a beam, i.e. to control the transverse beam shape∗. The field of an
ideal quadrupole is given by [21]

Bx = gy, (7.3)

By = gx, (7.4)

using the field gradient g. One important characteristic of a quadrupole is that its
effect on both transverse planes is decoupled. A significant difference when compared
to focusing lenses in light optics is that a quadrupole always focuses one plane but
defocuses the other. Consequently, multiple quadrupoles rotated with respect to each
other around the beam axis by 90◦ are needed to focus a beam†. In analogy to the inverse
radius of curvature characterizing the dipole strength, the quadrupole strength can be
characterized by

k =
eg

p
≈ 0.2998

g[T/m]

W [GeV]
, (7.5)

again characterizing the effective strength of the magnet for a given electron energy. By
convention the sign of k is chosen to be negative if the quadrupole is focusing in the
horizontal plane, and positive if the quadrupole is defocusing. Using the strength of the
quadrupole k and its length l, its focal length is given by

f =
1

kl
. (7.6)

The next higher order of magnet type is the sextupole. It can be used for the correction
of chromatic effects in dispersive sections [21,109]. The field of a sextupole is nonlinear

Bx = g′xy, (7.7)

By =
1

2
g′(x2 − y2), (7.8)

and results in a coupling of both planes in contrast to the previous two types of magnets.
The strength of the sextupole can be characterized in analogy to the previous two cases

m =
eg′

p
≈ 0.2998

g′[T/m2]

W [GeV]
. (7.9)

∗More specialized use cases, like dispersion control, exist (see e.g. [109]).
†“Don’t rotate quadrupoles unless you know what you are doing!” [108]
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Figure 7.2: Sketches of the most common types of magnets used in beam optics: dipole,
quadrupole, and sextupole (left to right). Black arrows indicate the field lines, blue
arrows the force acting on an electron bunch moving into the projection plane.

In this thesis all discussions will be restricted to linear beam optics where horizontal
and vertical motion are decoupled; therefore higher order magnets like sextupoles are
excluded∗.

7.1.3 Equations of Motion

When considering the description of the particle motion in beam optics, the most impor-
tant information regard the transverse particle positions with respect to the orbit.

Assuming deviations from the design orbit to be much smaller than the radius of cur-
vature, i.e., x � R and y � R, purely transverse magnetic fields B = (Bx, By, 0), and
allowing only small deviations from the reference momentum, i.e., ∆p/p � 1 leads to
two second-order differential equations describing the particle motion with respect to the
orbit [21,108]

x′′(s̃)−
(
k(s̃)− 1

R2(s̃)

)
x(s̃) =

1

R(s̃)

∆p

p
, (7.10)

y′′(s̃) + k(s̃)y(s̃) = 0. (7.11)

Neglecting energy deviations both differential equations are of the same type and can be
written as

x′′(s̃)− k̃(s̃)x(s̃) = 0, (7.12)

∗The use for chromatic correction purposes in the chicane has been evaluated and discarded since the
introduced perturbations of the beam exceeded the effect of the chromatic correction.
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with k̃(s̃) = k(s̃)− 1/R2(s̃). Assuming k̃ to be constant along the section under consid-
eration, i.e. within an idealized magnet or drift, yields the solution

x(s̃) = x0 cosh
(√

k̃s̃
)

+
x′0√
k̃

sinh
(√

k̃s̃
)
, (7.13)

x′(s̃) = x0

√
k̃ sinh

(√
k̃s̃
)

+ x′0 cosh
(√

k̃s̃
)
, (7.14)

with the initial position x0 and the initial angle x′0. This solution allows to express the
effect of each section of a beam line with a constant k̃ and length s̃, i.e. each element or
drift, by a matrix.

The matrix formalism can be extended to include both transverse components as well
as the longitudinal offset and the energy deviation. A particle is then characterized by
(x, x′, y, y′, z, η). All transport matrices then have the form

R =



R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0

0 0 R43 R44 0 0

R51 R52 0 0 1 R56

0 0 0 0 0 1


. (7.15)

The matrix elements for a drift, dipole, and quadrupole are given in Table 7.1. This
formalism can be extended to include higher order effects. The transformation of a
particle in the extended formalism reads

ri = Rijr0,j + Tijkr0,jr0,k + . . . . (7.16)

This formalism is implemented in most beam optics codes and can also be used for
analytical discussions. A disadvantage of the formalism is that all particles have to be
treated individually and it gives no insight into the evolution of the beam envelope.

The envelope evolution can be determined by solving the differential equation (7.12) only
considering drifts and quadrupoles [21]

x′′(s̃)− k(s̃)x(s̃) = 0. (7.17)

This differential equation of Hill’s type is solved by

x(s̃) =
√
ε
√
β(s̃) cos(Ψ(s̃) + Φ), (7.18)

x′(s̃) = −
√
ε√
β(s̃)

(α(s̃) cos(Ψ(s̃) + Φ) + sin(Ψ(s̃) + Φ)) , (7.19)

using the Twiss parameters [66], i.e. the setup dependent β-function β(s̃) and the α-
function α(s̃) = −β′(s̃)/2, the beam emittance ε, the electron phase Ψ(s̃) and the initial
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drift dipole quadrupole (focusing)

R11 1 cos
(
s̃
R

)
cos
(√
|k|s̃
)

R12 s̃ R cos
(
s̃
R

)
1√
|k|

cos
(√
|k|s̃
)

R16 0 R
(
1− cos

(
s̃
R

))
0

R21 0 − 1
R sin

(
s̃
R

)
−
√
|k| sin

(√
|k|s̃
)

R22 1 cos
(
s̃
R

)
cos
(√
|k|s̃
)

R26 0 sin
(
s̃
R

)
0

R33 1 1 cosh(
√
|k|s̃)

R34 s̃ s̃ 1√
k

sinh
(√
|k|s̃
)

R43 0 0
√
k sinh

(√
|k|s̃
)

R44 1 1 cosh
(√
|k|s̃
)

R51 0 − sin
(
s̃
R

)
0

R52 0 R
(
cos
(
s̃
R

)
− 1
)

0
R56

s̃
γ2

s̃
γ2
− s̃+R sin

(
s̃
R

)
s̃
γ2

Table 7.1: Elements of the linear transport matrix R for drift, dipole, and focusing quadrupole
[110].

phase offset Φ. Combining both functions and introducing the third Twiss parameter
γ(s̃) = (1 + α2(s̃))/β(s̃) yields

γ(s̃)x2(s̃) + 2α(s̃)x(s̃)x′(s̃) + β(s̃)x′2(s̃) = ε. (7.20)

This equation describes an arbitrarily oriented ellipse in the x-x′ plane with area A = πε

(see Fig. 7.3). Consequently, the emittance is a measure for the phase space volume oc-
cupied by the electrons and is a conserved quantity as long as acceleration and degrading
effects are neglected. The resulting beam size and divergence are given by

σx(s̃) =
√
β(s̃)ε, (7.21)

σx′(s̃) =
√
γ(s̃)ε. (7.22)

For a given emittance it is hence sufficient to characterize the evolution of the Twiss
parameters along the setup to completely describe the beam.

The transport matrix formalism used above for the propagation of individual particles
can be adapted to the propagation of the Twiss parameters [21]. The transport matrix
linking initial and final Twiss parameters of the horizontal component for an arbitrary
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Figure 7.3: Phase space ellipse and Twiss parameters characterizing the shape and orientation
according to Eq. (7.20). The area of the ellipse is proportional to the emittance.

beam transport system is given byβfαf
γf

 =

 R2
11 −2R11R12 R2

12

−R11R21 R12R21 +R11R22 −R12R22

R2
21 −2R21R22 R2

22

βiαi
γi

 , (7.23)

using the transport matrix elements Rij of the particle transport matrix. Using this
formalism the evolution of the beam envelope along an arbitrary system can be deter-
mined.

7.2 Error Sources

The formalism above, intended for the description of the ideal particle propagation, can
be used to characterize the basic error sources of a beam transport system. The following
considerations are based on the demonstration FEL concept but can be applied to any
other system.

The estimated errors already indicate the order of magnitude that can be expected;
however, the exact dependence of the induced beam degradation on the errors of the
beam transport system depends on the specific layout of the focusing system and the
resulting interplay of the different quadrupoles and is discussed in Sect. 7.4.
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7.2.1 Transverse Quadrupole Offsets

Any transverse offset of a quadrupole will result in an effective dipole field, causing a
deflection of the electron beam. It is given by

Bx,eff = g∆y, (7.24)

By,eff = g∆x, (7.25)

using the gradient of the quadrupole g and the transverse offsets ∆x and ∆y. The
resulting deflection can be approximated by

φx/y ≈
leBx/y,eff

p
, (7.26)

with l being the quadrupole length, and p the particle momentum. Assuming typical
parameters for miniature permanent magnet quadrupoles [111] like g = 500 T/m, l =

1.5 cm, a normalized beam energy of γ = 600, and a positioning accuracy of ∆x =

∆y = 1 µm achievable with commercially available linear stages (e.g. [112]) results in a
deflection angle φx/y ≈ 7.3 µrad. Combined with a typical propagation distance from
the optics to the undulator entrance on the order of 1 m this results in an offset on the
order of 10 µm which is within the tolerance limits of the FEL (see Table 4.1).

The effect of a transverse offset of the full focusing system (or the source) can be estimated
as follows: In general the transport matrix describing the beam transport from the
accelerator to the undulator entrance in terms of the transverse coordinates is given
by (

xf
x′f

)
=

(
R11 R12

R21 R22

)(
xi
x′i

)
, (7.27)

using the transverse position and angle at the accelerator exit xi and x′i. Requiring the
optics to be imaging, i.e. R12 = 0, which approximately holds for the beam transport
from the accelerator to the undulator, the matrix can be expressed as [108](

xf
x′f

)
=

(
m 0

r 1
m

)(
xi
x′i

)
, (7.28)

with m being the magnification and r the overall refractive power of the optics system.
For the here discussed laser-plasma accelerator based experiment, the source size is on
the order of a micrometer; however, the beam size at the undulator entrance has to
be an order of magnitude larger in order to ensure a minimum beam diameter along
the undulator (see Sect. 3.2.3). This requires a magnification of m ≈ 10. This large
magnification will also amplify any offset of the source or the whole focusing system by
the same factor. With the offset tolerance being on the order of 100 µm this results in
acceptable source or focusing system offsets of ∆x ≈ ∆y < 10 µm. In terms of the optics
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positioning this is feasible; however, regarding the source stability this can be seen as a
challenge.

This issue is of importance for all laser-plasma based systems. Due to the injection and
acceleration mechanism, typical laser-plasma based electron beams are characterized by
a small source size and a high divergence [113, 114]. This leads to the requirement of
focusing systems with high magnification and refractive power when trying to ensure
a small average beam size over several meters like in an undulator. A possibility to
reduce the divergence and increase the beam size is the use of a density downramp at
the accelerator exit. In general the matched beam size during acceleration is given by
σx,m =

√
εx/kβ , with the betatron wave number in the blow-out regime kβ = kp/

√
2γ

[115], using the plasma wavenumber kp. Due to the scaling of the plasma wave number
with the electron density kp ∝

√
ne the beam size is proportional to σx,m ∝ n

−1/4
e . A

properly designed density downramp, i.e. a downramp with a roll-off scale comparable
to or greater than the betatron wavelength λβ , allows to increase the beam size while
keeping the emittance constant, leading to a reduction of the divergence at the same
time [114]. The feasibility of this concept still has to be tested.

7.2.2 Focusing Strength Errors

Focusing strength errors of a quadrupole can have different reasons: A deviation of the
field gradient or quadrupole length from the design parameters due to manufacturing and
measurement limitations, and deviations of the electron energy from the design energy.

The matrix of a quadrupole in the thin lens approximation including the dependence on
focusing strength errors can be written as [108]

Mq =

(
1 0

−kl(1− δ) 1

)
, (7.29)

using the quadrupole strength k, its length l, and the focusing strength deviation δ =

∆γ/γ = −∆l/l = −∆k/k.

The transport matrix linking initial and final Twiss parameters for a quadrupole in the
thin lens approximation including focusing strength errors is given byβf (δ)

αf (δ)

γf (δ)

 =

 1 0 0

kl(1− δ) 1 0

(kl)2(1− δ)2 2kl(1− δ) 1

βiαi
γi

 . (7.30)

The final Twiss parameter as a function of the initial Twiss parameters and the focusing

147



7 Electron Optics

strength error are

βf (δ) = βf (0) = βi, (7.31)

αf (δ) = αf (0)− klδβi = klβi + αi − klδβi, (7.32)

γf (δ) = γf (0)− 2k2l2δβi + k2l2δ2βi − 2klδαi. (7.33)

This allows to calculate the mismatch parameter [86] after the pass through the quadrupole

ζ =
1

2
(βf (δ)γf (0)− 2αf (δ)αf (0) + γf (δ)βf (0))

= 1 +
1

2
k2l2δ2β2

i . (7.34)

In order to stay below a given mismatch, the error δ has to fulfill the requirement

δ <

√
2(ζ − 1)

|k|lβi
. (7.35)

Assuming parameters typical for a laser plasma based setup βi = 20 m, l = 1.5 cm, and
k = 490 m−2 in combination with a tolerance limit of the mismatch parameter of ζ < 1.2

results in the requirement δ < 0.4%. Such strict requirements have also been found for
a triplet lattice considered for the beam transport at LCLS, resulting, in combination
with other reasons, in the rejection of this optics layout [116]∗. Based on these results,
focusing strength errors can be seen as a challenge regarding the optics setup and the
acceptable energy jitter of the source.

7.2.3 Longitudinal Offsets

Longitudinal offsets of quadrupoles in a focusing system have a similar effect as focusing
strength errors, a beam mismatch is introduced. The transport matrix linking initial and
final Twiss parameters for a drift including a length error is given byβf (∆s̃)

αf (∆s̃)

γf (∆s̃)

 =

1 −2(s̃+ ∆s̃) (s̃+ ∆s̃)2

0 1 −(s̃+ ∆s̃)

0 0 1

βiαi
γi

 . (7.36)

The final Twiss parameter as a function of the initial Twiss parameters and the drift
length error are

βf (∆s̃) = βf (0)− 2αi∆s̃+ 2γf (0)s̃∆s̃+ γf (0)∆s̃2, (7.37)

αf (∆s̃) = αf (0)− γi∆s̃, (7.38)

γf (∆s̃) = γf (0) = γi. (7.39)

∗The summary was short: “The triplet lattice for the LCLS undulator is a clear prescription for failure.”
[116]
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Using the relation αf (0) = αi − γis̃, the resulting mismatch at the end of the drift as a
function of the drift length error reads

ζ =
1

2
(βf (∆s̃)γf (0)− 2αf (∆s̃)αf (0) + γf (∆s̃)βf (0))

= 1 +
1

2
γ2
i ∆s̃2. (7.40)

To fulfill the mismatch requirements of the demonstration FEL scenario the relation

|∆s̃| <
√

2(ζ − 1)

γi
, (7.41)

has to hold. Considering the first drift between the exit of the laser-plasma accelerator
and the first quadrupole, the beam can be seen to start at a waist yielding γi = 1/βi.
Assuming βi ≈ 2 · 10−3 m which is typical for the here discussed system and ζ = 1.2,
based on the tolerance study in Chap. 4 (see Table 4.1), yields an acceptable length
precision requirement of ∆s̃ < 1 mm, which is rather easy to fulfill. The same holds
for the drift between the focusing system and the undulator where the situation is even
more relaxed due to the larger β-function. The requirements tighten within a focusing
system. In a quadrupole triplet consisting of miniature permanent magnet quadrupoles
the γ-function can reach values on the order of γi ∼ 104 m−1, resulting in a precision
requirement on the order of ∆s̃ < 100 µm. These requirements are feasible.

7.2.4 Roll errors

A further error source are roll errors of quadrupoles around the beam axis. Any deviation
from the ideal quadrupole orientation, that allows only ∆Φ = π/2 steps between focusing
and defocusing quadrupoles, leads to a coupling of the otherwise independent components
x and y and an emittance growth. In a quadrupole with a roll error the vertical field
component By is not only a function of the horizontal position but also depends on the
vertical position and vice versa. Consequently, the effect not only depends on the roll
error but also on the beam sizes.

The relative emittance growth of both components ∆ε = ∆εx = ∆εy in a thin lens with
a roll error can be estimated by [116]

∆ε

ε
≈ 2Φ2k2l2βxβy. (7.42)

Given an acceptable limit for the emittance growth, the roll error has to fulfill

|Φ| <
√

∆ε/ε

|k|l
√

2βxβy
. (7.43)
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Assuming parameters typical for a focusing system used at a laser-plasma accelerator
βx,max ≈ βy,max ≈ 20 m, l = 1.5 cm, and k = 490 m−2 and allowing an emittance growth
of 10% results in a roll tolerance of Φ < 1.5 mrad. This is challenging but feasible for
linear accelerator as well as laser-plasma accelerator based setups [116,117].

7.2.5 Chromatic Emittance Growth

Besides errors arising due to fabrication or positioning errors, also the intrinsic properties
of magnet based beam optics have to be considered. The effect of a magnet on the
beam always depends on the energy. This dependence is exploited in the decompression
concept using the path length differences in a chicane; however, it also leads to chromatic
focusing errors. Due to the broad energy spreads typical for laser-plasma accelerator
based systems, this has been regarded as a challenge [118].

Using the matrix formalism, the particle coordinates as a function of the energy deviation
after passing a quadrupole in the thin lens approximation are given by(

xf (η)

x′f (η)

)
=

(
1 0

−kl(1− η) 1

)(
xi
x′i

)
. (7.44)

Using the definition of the emittance

εx,f =
√

Var(xf ) Var(x′f )− Cov2(xf , x
′
f ), (7.45)

and assuming the initial transverse particle position and energy deviation to be un-
correlated, i.e. 〈x2

i η〉 = 〈x2
i 〉〈η〉 = 0 as well as 〈x2

i η
2〉 = σ2

x,iσ
2
η, which is fulfilled for

the initial particle distribution only, one obtains the emittance after passing through a
quadrupole [119]

εx,f = εx,i

√√√√1 +

(
klσ2

x,iση

εx,i

)2

= εx,i

√
1 + (klβx,iση)

2. (7.46)

Assuming βx,i = 20 m, l = 1.5 cm, k = 490 m−2, and a relative energy spread of ση = 1%

results in an increase of the emittance by 78%. The effect can be partially compensated
by the optics located further downstream the beamline but will not be negligible in any
case due to the broad energy spread and high gradient quadrupoles typically used in a
laser-plasma accelerator based experiment.
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7.2.6 Conclusion

The basic error sources discussed in this section (transverse and longitudinal offsets,
focusing strength errors, and roll errors) already indicate challenging requirements on
the focusing system for a laser-plasma accelerator based system, but all errors are within
a feasible range and no show-stoppers have been found. The exact requirements depend
on the specific layout of the focusing system and are assessed in Sect. 7.4.2.

A rough estimate already suggested that chromatic effects can be severe for the considered
parameter set. A possible compensation scheme is discussed in the following section.

7.3 Chromatic Focus Matching

In a setup using the decompression concept the effect of the projected chromatic emit-
tance growth on the FEL performance can be reduced by chromatic focus matching. This
concept has independently been suggested by Loulergue et al. [120].

Due to the decompression and the resulting sorting of the bunch by energies, the total
chromatic effect can be separated in a chromatic growth of the slice emittance and a
mismatch of the Twiss parameters of each slice. The chromatic growth of the slice
emittance depending on the slice energy spread cannot be avoided; however, the mismatch
caused by the mean energy offset of each slice can be controlled and optimized. Since
after the decompression the bunch is sorted by energies, the chromaticity of the focusing
system can be used to create a moving focus within the bunch synchronized with the
slippage of a radiation pulse. This continuously minimizes the beam size in the interaction
region and boosts the FEL performance. The situation is illustrated in Fig. 7.4.

7.3.1 Matching Goal

The slippage of a power spike within the bunch during exponential amplification is given
by (see Sect. 2.3.4)

∆z =
1

3

λl
λu

∆s, (7.47)

with ∆s being the longitudinal distance covered by the bunch in the setup. A longitudinal
distance travelled by the bunch corresponds to a slippage distance of the radiation pulse
within the bunch. Due to the chirp induced by the decompression, this is equivalent to
a change of the detuning at the position of the pulse

∆η =
dη

dz
∆z =

dη

dz

1

3

λl
λu

∆s, (7.48)
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Figure 7.4: Energy dependent focus in the undulator. The chromaticity of the focusing system can
be matched so that the energy dependent focus always coincides with the position
of the radiation pulse that slips through the chirped electron bunch. The lowest
energy (purple) corresponding to the bunch tail is focused first generating the initial
radiation pulse. The radiation pulse slips through the bunch and interacts with the
higher energies (blue and red) each having the highest current density in the particular
interaction region.

with dη/dz being the relative energy chirp. To increase the FEL gain, the chromaticity of
the focusing system can be used to ensure a minimum beam cross section at the position
of the power spike, i.e. for the corresponding mean energy. The required dependence of
the focus position on the energy is characterized by

ds

dη
=

3λu
λl

(
dη

dz

)−1

. (7.49)

Consequently, the ideal focus position as a function of the energy reads

sfocus(η) = sfocus,0 +
ds

dη
η, (7.50)

using the ideal focus position of the resonance energy sfocus,0.

The effect of a planar undulator with a field in the y-direction on the beam envelope
evolution in the x-direction is usually negligible and it can be approximated by a drift.
The resulting energy dependent focus position of the horizontal component with respect
to the undulator entrance is given by

sfocus,x(η) =
αx(η)

γx(η)
, (7.51)

with αx(η) and γx(η) being the horizontal Twiss parameters at the undulator entrance.
The appropriate energy dependence can therefore be achieved by requiring the Twiss
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parameters at the undulator entrance to fulfill

αx(η)

γx(η)
=
αx,0
γx,0

+
3λu
λl

(
dη

dz

)−1

η, (7.52)

with the ideal focus position in the undulator given by sfocus,x,0 = αx,0/γx,0 using the
Twiss parameters obtained in the tolerance study in Chap. 4 (see Table 4.1). Since the
focal length of a quadrupole can be approximated by f = 1/(k(η)l) ≈ (1 + η)/(kl), the
requirement can be fulfilled by a suited optics design.

For the y-component, i.e. the direction of the magnetic field, the focusing effect of the
undulator is in general not negligible. The effect of the undulator on the beam can be
described using the transport matrix based on Eq. (2.12)

Mund =

(
cos(κys)

1
κy

sin(κys)

−κy sin(κys) cos(κys)

)
. (7.53)

The evolution of the vertical Twiss parameters in the undulator is consequently given
by βf (η)

αf (η)

γf (η)

 = Mund, Twiss

βi(η)

αi(η)

γi(η)

 , (7.54)

using the transport matrix for the Twiss parameters

Mund, Twiss =

 cos2(κys) − 2
κy

sin(κys) cos(κys)
1
κ2y

sin2(κys)

κy sin(κys) cos(κys) − sin2(κys) + cos2(κys) − 1
κy

sin(κys) cos(κys)

κ2
y sin2(κys) 2κy sin(κys) cos(κys) cos2(κys)

 .

(7.55)

By requiring the vertical component to have a waist at the beginning of the undulator
αf,y(sfocus,y = 0) = 0 and solving for the position, one obtains the focus position with
respect to the undulator entrance as a function of the initial, energy dependent Twiss
parameters

sfocus,y(η) =
1

κy

nπ/2− tan−1


√

4α2
y(η)κ2

y +
(
βy(η)κ2

y − γy(η)
)2 − βy(η)κ2

y + γy(η)

2αy(η)κy

 ,

(7.56)
with n = 1, 3, 5, . . .. This relation is in general not compatible with the desired linear
dependence of the focus position on the energy deviation. However, with increasing
energies the focusing effect of the undulator drops due to the proportionality κy ∝ γ−1.

When the scale of the slow oscillation caused by the undulator reaches the order of the
undulator length, i.e. κ−1

y > Lu/2, the focus motion can be approximated by

sfocus,y(η) ≈ αy(η)

γy(η)
, (7.57)
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resembling the motion on a drift. In this limit the focus motion can be matched.

In the limiting case of a very low energy and, therefore, strong focusing of the undulator,
i.e. κ−1

y � Lu/2, the beam propagation becomes independent of the initial divergence,
i.e. independent of γi, and only depends on the initial beam size and the correlations
within the beam. In this case the focus position is given by

sfocus,y(η) =
1

κy

nπ/2− tan−1


√

4α2
y(η)κ2

y + β2
y(η)κ4

y − βy(η)κ2
y

2αy(η)κy

 , (7.58)

and cannot be synchronized with the radiation slippage. In order to reach a minimum
beam size along the undulator for this case, the energy dependence of the β-function
should be minimized, and the β-function of the reference energy should be matched to
the undulator focusing so that a constant beam size is ensured. This results in an as
large as possible part of the bunch to have the constant, matched beam size along the
undulator.

7.3.2 Matching Concept

If chromatic focus matching is possible for a component, e.g. the horizontal one, it can be
reached as follows: The beam transport from the accelerator exit to the focus position of
the reference energy sfocus,0 can be expressed as a combination of drifts and quadrupoles.
The corresponding chromatic transport matrix can be approximated by

M(η) =

(
R11 + T116η R12 + T126η

R21 + T216η R22 + T226η

)
, (7.59)

using the energy independent transport matrix elements Rij and the energy related,
higher order terms Tij6 with i, j ∈ {1, 2}. Assuming the initial Twiss parameters at the
accelerator exit to be energy independent results in an energy dependent evolution of the
Twiss parameters according toβf (η)

αf (η)

γf (η)

 = MTwiss(η)

βiαi
γi

 , (7.60)

using the transport matrix for the Twiss parameters

MTwiss(η) =

 M2
11(η) −2M11(η)M12(η) M2

12(η)

−M11(η)M21(η) M12(η)M21(η) +M11(η)M22(η) −M12(η)M22(η)

M2
21(η) −2M21(η)M22(η) M2

22(η)

 .

(7.61)
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Provided that the beam transport starts at a waist αi = 0, and requiring a focus for
the reference energy at the target αf (0) = 0, e.g. the undulator center, yields the Twiss
parameter relations

αf (η) =− (R11T216η +R21T116η + T116T216η
2)βi

− (R12T226η +R22T126η + T126T226η
2)γi, (7.62)

and

γf (η) = γf (0) + (2R21T216η + T 2
216η

2)βi

+ (2R22T226η + T 2
226η

2)γi, (7.63)

using γf (0) = R2
21βi+R

2
22γi. Particles without an energy offset clearly fulfill the criterion

αf (0) = 0, i.e. they end at a beam waist and have a divergence measured by γf (0). Any
detuned electrons will either be diverging αf (η) < 0, or converging αf (η) > 0 at this
position.

To reach a focus for the detuned energy η, requires an additional drift relative to the
focus position of the reference energy, i.e. 0 = αfocus = αf (η) − γf (η)∆s. The required
additional drift length is given by

∆s(η) =
−(R11T216η +R21T116η + T116T216η

2)βi − (R12T226η +R22T126η + T126T226η
2)γi

γf (0) + (2R21T216η + T 2
216η

2)βi + (2R22T226η + T 2
226η

2)γi
.

(7.64)
Linearizing the relation with respect to η yields

∆s(η) ≈ −(R11T216 +R21T116)βi − (R12T226 +R22T126)γi
R2

21βi +R2
22γi

η. (7.65)

Since typical laser-plasma based systems have a very small source size, i.e. a small initial
β-function β ≈ 10−3 m, the initial divergence is high γi = 1/βi ≈ 103 m−1 and the
γi-dependent terms dominate∗

∆s(η) ≈ −R12T226 +R22T126

R2
22

η. (7.66)

In order to obtain chromatic matching the beam transport has to fulfill the condition

− R12T226 +R22T126

R2
22

=
3λu
λl

(
dη

dz

)−1

, (7.67)

which can be ensured by a suited optics design. In order to control the Twiss parameters
of the reference energy of both components at the undulator entrance, as well as the focus

∗The differences of the matrix elements are negligible when compared to the differences of the Twiss
parameters γi/βi ≈ 106.
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motion, sufficient degrees of freedom in the optics system have to be ensured. This can
only fully be achieved by using at least two triplets or doublets of quadrupoles for the
focusing system as suggested by [120]. A single focusing system, either doublet or triplet,
however, can still provide an approximate matching due to the intrinsic chromaticity (see
Chap. 8).

In the case of a non-negligible, vertical focusing strength of the undulator, the energy
dependence of the vertical beam size should be minimized, in order to ensure a matched
beam size for a wide energy range. The β-function after the propagation through the
beam transport system is given by

βf (η) = βf (0) + (2R33T336η + T 2
336η

2)βi

+ (2R34T346η + T 2
346η

2)γi, (7.68)

using βf (0) = R2
33βi + R2

34γi. Consequently, to ensure a minimal energy dependence,
the matrix elements T336 and T346 have to be minimized. If this is to be achieved in
combination with the horizontal matching, sufficient degrees of freedom in the beam
transport system have to be ensured. A good approximation can, however, be achieved
with a simple triplet as demonstrated in Chap. 8.

7.3.3 Performance Estimate

The effect of chromatic matching in detail can only be determined by time-dependent
3D simulations taking radiation slippage and the beam envelope evolution into account.
However, a rough analytical estimate of the effect is possible. As a reference an idealized,
achromatic system with a minimized, average β-function along the undulator can be
considered (see Sect. 3.2.3). The average β-function is given by

β̄ = β0 − α0Lu +
1

3
γ0L

2
u, (7.69)

using the undulator length Lu. It is minimized by the Twiss parameters at the undulator
entrance β0 =

√
4/3Lu, α0 =

√
3, and γ0 = 2

√
3/Lu, resulting in an average β-function

of β̄ = Lu/
√

3. The minimum beam size reached at the undulator center is βmin =

Lu/(2
√

3) = β̄/2.

For the case of the achromatic system, i.e. no chromatic matching, the beam size can be
approximated by using the average β-function along the undulator for both components.
In this case the gain length is proportional to

Lg,3D ∝
(√

β̄xβ̄y

)1/3

. (7.70)
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If perfect chromatic matching of both components is achieved, the electron beam size at
the radiation pulse position is always minimized and the gain length scales as

Lg,3D,matched ∝
(√

βx,minβy,min

)1/3
. (7.71)

The power ratio of these two cases is therefore given by

Pmatched(s)

P (s)
= exp

(
s

Lg,3D

(
21/3 − 1

))
. (7.72)

As an extreme case an operation close to saturation can be assumed. Setting s = 20Lg,3D
results in a power boost by a factor of ∼ 180. The effect can be even greater, if other
degrading effects are considered whose impact can be reduced by the increased current
density. However, the accompanying chromatic slice emittance growth has also been
neglected which will lead to a performance reduction.

If chromatic matching can only be achieved for one component, e.g. due to a strong
focusing effect of the undulator, the scaling becomes

Pmatched(s)

P (s)
= exp

(
s

Lg,3D

(
21/6 − 1

))
, (7.73)

since only one β-function differs. Assuming an undulator length of s = 2 m, a reference
gain length of Lg,3D = 17 cm and chromatic matching of one component, which resembles
the situation of the demonstration case, results in a power increase by a factor of four
due to chromatic matching.

The energy dependence of the focus position of the horizontal component dsfocus,x/dη

has been scanned with Genesis by artificially generating bunches with the suited energy
dependent Twiss parameters. The result is shown in Fig. 7.5. The power is increased by
approximately 26% at the optimum when compared to the case with no energy depen-
dence of the focus position dsfocus,x/dη = 0 m. The effect is weaker than in the analytical
estimate which can be explained by the chromatic slice emittance growth that was ne-
glected in the analytical scaling and the short bunch length (see below). The maximum
of the Gaussian fit is located at dsfocus,x/dη ≈ 89 m which is slightly higher than the
analytically estimated optimum of dsfocus,x/dη ≈ 67 m. This can be understood as an
effect of the short bunch length that affects the slippage dependent focus optimization.
A higher value of the energy dependence of the focus position dsfocus,x/dη is equivalent
to a focus staying longer in the vicinity of the bunch center∗.

Assuming the bunch center to be focused at the undulator center, a bunch of σz = 2 µm,
and an focus-energy-dependence of dsfocus,x/dη ≈ 67 m, results in the bunch part located
at z = 3 µm to be focused at the undulator exit. Consequently, the focus leaves the
∗This might seem contradicting but is explained by the relation zfocus ∝ ηfocus ∝ (dsfocus/dη)−1∆s. An
example is shown in Fig. 8.7.
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Figure 7.5: Normalized power at the undulator exit as a function of the energy dependence of the
focus position of the horizontal component. The vertical component has been assumed
to be energy independent. Each blue dot has been averaged over ten Genesis runs,
the dashed black line is a Gaussian fit to the simulation data.

central one-σ-range. Using dsfocus,x/dη ≈ 89 m results in a focus of the bunch fraction
at z = 2.2 µm at the undulator exit. Here the focus nearly stays within the central
one-σ-range, resulting in a better performance due to the minimized beam size of the
bunch part containing most of the charge and despite the worse synchronization with
the slippage of an ideal radiation pulse. This indicates that chromatic focus matching is
only fully usable in cases that are not slippage limited.

7.3.4 Conclusion

In this section the concept of chromatic focus matching has been discussed and tested.
The basic idea is to synchronize the movement of the focus through the bunch caused by
the chromaticity of the focusing system with the slippage of the FEL radiation pulse in
a chirped electron bunch.

For the here discussed parameter set the chromatic focus matching has a non-negligible
effect on the FEL performance and should be taken into account in the optics design.
However, the full potential, when compared to the idealized case of no energy dependence
of the focus position, cannot be tapped. Limiting factors are the strong focusing of the
undulator allowing only the horizontal component to be matched and the short bunch
length limiting the usable interaction range of photons and electrons due to slippage. The
short bunch length even causes a higher focus-energy-dependence dsfocus,x/dη to be of
advantage when compared to the analytical estimate based on the idea of synchronizing
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focus position and radiation pulse slippage. More details regarding the interplay of the
different effects are discussed in Chap. 8.

Comparing the two FEL demonstration concepts discussed in Chap. 3 it is worth to note
that chromatic focus matching can only be combined with the longitudinal decompression
concept but not the TGU concept relying on transverse dispersion. In a TGU system
chromatic effects will not only spoil the FEL performance via the envelope variations and
corresponding current density changes, but the beam size evolution along the undulator
can also result in an increase of the effective, local energy spread at a given transverse
position.

7.4 Layout Concept

The beam transport layout discussed in this thesis is designed with the spatial limitations
of the upcoming facility Centre for Advanced Laser Applications (CALA) in mind, where
a first lab-scale FEL demonstration experiment is planned. The full beamline will be 16
meters long, which might seem long for a lab-scale system; however, this includes the
focusing of the laser, the gas target for the electron acceleration, the beam transport,
the undulator, as well as electron and radiation diagnostics. The suggested layout will
take these boundary conditions into account, but it can be adapted to other facilities as
well.

7.4.1 General Concept

The requirements on the beam transport system for a first demonstration experiment
can be characterized as follows:

• Mismatch free – The setup has to be designed such that the desired Twiss param-
eters at the undulator entrance βx,0, βy,0, αx,0, and αy,0, obtained in the tolerance
study (see Table 4.1), are reached. This defines the minimum number of needed
quadrupoles in order to provide sufficient degrees of freedom.

• Simplicity – It should be as simple as possible in order to minimize the degrading
effects caused by the optics. Therefore, a minimum of components with reasonable
parametrization should be used. This is of high importance due to the tight lim-
its for errors of the focusing systems expected based on the estimates above (see
Sect. 7.2).

• Compactness – Due to the spatial limitations of most laser facilities and in the
spirit of a lab-scale system, the setup length should be kept short. For the beamline
layout in CALA a beam transport section on the order of ∼2 m is planned.
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Strictly following these principles rules out the use of multiple focusing positions in the
setup, e.g. two doublets or triplets, as they would be needed to match an electron beam
to the chicane as well as the undulator, or in order to achieve perfect chromatic focus
matching. These more complex layouts double the number of optical elements and,
consequently, the error sources and lead to approximately twice as long setups.

Restricting the setup to a single focusing station results in two options: If all quadrupole
strengths in terms of the k parameters, as well as all drift lengths can be freely chosen, a
mismatch free setup can be achieved by a quadrupole doublet. The next better solution,
allowing for more degrees of freedom, is the quadrupole triplet. In the case of a triplet
also an adaption to changes of the mean energy for a fixed setup length is possible which
is of advantage given the limited source stability expected for a first demonstration
experiment.

If only a single focusing position is considered, the setup parametrization and dimensions
can roughly be estimated by discussing a single lens only. The evolution of the Twiss
parameters from the accelerator to the quadrupole is given by

βquad, in = βacc +
s2

1

βacc
, (7.74)

αquad, in = − s1

βacc
, (7.75)

γquad, in =
1

βacc
, (7.76)

with the drift length between accelerator and quadrupole s1 and assuming a beam waist
at the accelerator exit, i.e. αacc = 0. Conversely, the parameters at the quadrupole exit
are defined by the requirements at the undulator

βquad, out = βund +
s2

2

βund
, (7.77)

αquad, out =
s2

βund
, (7.78)

γquad, out =
1

βund
. (7.79)

Here again a beam waist at the undulator has been assumed, i.e. αund = 0. This assump-
tion either holds at the undulator entrance, if a matching of the beam to the undulator
focusing is desired, or at the undulator center for the case of a minimized average beam
size along the undulator. Using the thin lens approximation, these sets of equations are
linked by

βquad, out = βquad, in, (7.80)

αquad, out = klβquad, out + αquad, in, (7.81)

γquad, out = k2l2βquad, in + 2klβquad, in + γquad, in, (7.82)
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using the quadrupole strength k and its length l.

In this simple model the length of the second drift is a function of the first drift length
and the Twiss parameters at the undulator as well as the accelerator

s2 =

√
βund

(
βacc − βund +

s2
1

βacc

)
. (7.83)

The focusing strength of the quadrupole is given by

kl =
s2

βund

(
βacc +

s21
βacc

) +
s1

βacc

(
βacc +

s21
βacc

) . (7.84)

Requiring a beam transport length of s1 + s2 on the order of 2 m results in s1 ≈ 0.11 m,
s2 = 1.89 m and an integrated quadrupole strength of kl = 9.5 m−1. This can be
achieved by a quadrupole with a length of l = 2 cm, and a gradient of g ≈ 480 T/m.

Since a doublet or triplet is needed to achieve focusing in both planes, the relations
above can only be used for a rough estimate, but they already indicate that high gradient
quadrupoles [111, 117] are needed in order to build a setup in the spirit of a lab-scale
system. Within limits quadrupole length and gradient can be traded off against each
other; however, for low gradients ultimately longer setups are needed and the average
beam size in the beam transport rises. Any increase of the beam size for a fixed integrated
quadrupole strength kl will, however, tighten the precision requirements of the optics
in terms of rotation and focusing strength errors. Therefore, the use of high gradient
quadrupoles is strongly recommended.

7.4.2 Single Triplet Layout

Based on the estimates above a beam transport relying on a single triplet consisting
of high gradient permanent magnet miniature quadrupoles (PMQ) has been designed.
The layout and β-functions along the setup are shown in Fig. 7.6, with the setup pa-
rameters shown in Table 7.2. All quadrupoles have been assumed to have a gradient
of g = 480 T/m and be available with length increments of millimeters. Furthermore,
micrometer precision for the quadrupole placement has been assumed. Since up to now
no free tuning of the gradient is available for the PMQs, matching of the optics has been
achieved by varying quadrupole lengths and positions.

Basic Performance

The basic setup performance has been evaluated for the reference energy of γ = 600

neglecting all degrading effects. The Twiss parameters of a monoenergetic bunch ob-
tained at the undulator entrance are βx = 2.39, αx = 2.41, and βy = 0.67, αy = 0.01.
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Figure 7.6: Evolution of β-functions of horizontal (solid blue) and vertical (dashed red) component
as a function of the position in the setup between accelerator exit and undulator
entrance obtained for the reference energy. The quadrupole configuration is indicated
by the black line above.

name length [mm] k [m−2]

quadrupoles

Q1 38 469.342
Q2 36 -469.342
Q3 11 469.342

drifts

L1 93.877 -
L2 16.710 -
L3 51.293 -
L4 1953.12 -

Table 7.2: Parameters of the matched beam transport system using a single triplet consisting of
high gradient PMQs. The setup and resulting evolution of the β-functions are shown
in Fig. 7.6.
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Figure 7.7: Transverse phase spaces at the undulator entrance obtained with Elegant taking
chromatic effects of the optics into account. The black ellipses indicate the the three-
σ-range of the ideal phase space ellipses.

Comparing these parameters with the design parameters obtained in the tolerance study
of the FEL (see Chap. 4) results in a deviation of the mismatch parameters from unity
of ∆ζx = 2 · 10−2 and ∆ζy = 5 · 10−5. Since the induced mismatch is at least one order
of magnitude below the tolerance limit of t∆ζx = t∆ζy = 0.2 in both cases, the setup
can be seen as mismatch free. Consequently, it fulfills the first two design requirements
above, it is mismatch free and simple. Given a total length of only 2.2 m it also fulfills
the requirement of compactness.

The situation changes with the inclusion of energy spread. Based on the parameters
of the demonstration experiment (see Table 3.3) a relative energy spread of 1% has
been assumed. Due to the chromaticity of the optics, a significant chromatic emittance
growth is found. The impact differs significantly between the x- and y-component. The
vertical emittance increases by ∆εy/εy =28%, whereas the horizontal emittance grows
by ∆εx/εx =260%. The effect can clearly be seen in the transverse phase space diagrams
shown in Fig. 7.7. The chief cause of this difference is the interplay of the individual
quadrupoles and the resulting differences in the transverse beam sizes. The maximum
vertical beam size is characterized by βy,max ≈ 6 m, whereas the horizontal component
reaches βx,max ≈ 39 m. For any system not relying on the decompression concept this
chromatic emittance growth can be seen as a show stopper.

As discussed above, degrading chromatic effects can be reduced by chromatic focus
matching when using the decompression concept (for details see discussion of chromatic
focus matching in Sect. 7.3 and the full beam transport analysis in Sect. 8.1). As already
indicated by the low vertical emittance growth, also the energy dependence of the ver-
tical beam size at the undulator entrance is weak, a 1% energy deviation increases the
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beam size by approximately 40%. Consequently, the vertical beam size is close to the
matched beam size of the undulator for a wide energy range. Since the vertical beam
size within the undulator is mainly given by the beam size at the undulator entrance
and is only weakly dependent on the initial divergence due to the moderate energy (see
Sect. 7.3), the low energy dependence of the initial beam size results in low vertical beam
size variations within the undulator, allowing for a high current density independent of
the energy.

The energy dependence of the horizontal focus position is dsfocus,x/dη ≈ 123 m which
is approximately two times higher than ideal for the demonstration experiment (see
Eq. (7.49)); however, it is still within reasonable limits according to Genesis simulations
(see Fig. 7.5) and will only result in a power loss of less than 10% when compared to the
optimum. Given the limited degrees of freedom of the optics layout this is considered
well suited.

Error Tolerances

For the simple triplet fulfilling the design requirements the basic error tolerances regard-
ing the:

• Transverse positioning accuracy of the quadrupoles,

• Roll error of each quadrupole around the beam axis,

• Longitudinal positioning accuracy of the quadrupoles,

• Focusing strength accuracy requirements of the quadrupoles,

have been evaluated in order to assess the feasibility of the setup. Here perfect hard-edge
magnets without higher order magnetic moments and other degrading effects have been
assumed.

The transverse lens positioning error is limited by the maximum acceptable beam
offset at the undulator (see Table 4.1). In addition to lens positioning errors with re-
spect to the undulator, any source jitter will contribute to the final beam offset at the
undulator entrance. Assigning the same weight to the source jitter and the transverse
lens positioning accuracy leads to the requirements σ∆x < 5 µm and σ∆y < 2 µm for all
quadrupoles (see Fig. 7.8 (left)). As can be seen, the vertical direction with the stricter
tolerance requirement coincides with the less sensitive plane of the optics. A basic con-
trol of the sensitivity for a quadrupole triplet is given by the sequence of (horizontally)
focusing (F) and defocusing (D) lenses. For this setup the D-F-D sequence resulted in
the desired lower sensitivity of the vertical plane.

In addition to a beam offset, any transverse positioning error will also result in an ad-
ditional beam angle with respect to the undulator axis. The resulting requirements on
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the positioning accuracy are, however, more relaxed than those given by the beam offset
and do therefore not limit the lens positioning requirements.

An advantage of the here proposed compact setup is the use of a single focusing triplet.
This allows to pre-align all quadrupoles in the setup with respect to each other prior
to the implementation in the beamline. Assuming a perfect internal alignment of the
triplet, the acceptable offset error of the whole triplet is given by σ∆x,full < 23 µm and
σ∆y,full < 3 µm. If an internal alignment error of σ∆x,int = σ∆y,int = 1 µm can be
achieved, the tolerance requirement for the full triplet drops to σ∆x,full < 21 µm and
σ∆y,full < 3 µm. Since the pre-alignment significantly reduces the precision required
for the positioning of the lenses with respect to the undulator, this approach should be
considered. In general the transverse alignment requirements are challenging and up to
an order of magnitude stricter than those of LCLS [40] but still within the feasible range
regarding positioning control with commercially available linear stages (e.g. [112]).

One alignment concept used at large scale facilities, like synchrotrons and linear acceler-
ators, is beam based alignment (BBA). This concept usually relies on the tunability of
the quadrupole strength of electromagnet based quadrupoles. By varying the quadrupole
strength and analyzing the effect on the beam trajectory, e.g. via beam position monitors
(BPMs), the position of the quadrupole can be optimized until the effect of a strength
variation on the trajectory is minimized. The fixed strength of the here used PMQs re-
quires a slightly different concept. While the basic BBA concept above can be used with
all magnets in place, here the magnets have to be inserted into the beam path individually
what is not compatible with the idea of an internal pre-alignment of the triplet. Compar-
ing the reference beam trajectory, i.e. without any magnets, and the trajectory perturbed
by a quadrupole allows to minimize the final beam offset from the reference trajectory
and hence the PMQ offset. Assuming a few meter distance between the quadrupole
and the detection position also requires µm-scale precision for the beam position mea-
surement which is feasible with state-of-the-art cavity BPMs [121]; however, any beam
position jitter caused by the source will complicate the alignment and reduce the achiev-
able accuracy. An internal pre-alignment of the triplet could be achieved by means of
the pulsed-wire-method [122] or variations of it like the vibrating-wire-method [123]. In
any case the optics alignment can be seen as a challenge.

Assuming equal weights for the transverse triplet and source position/angle tolerances for
the given setup regarding the resulting beam offsets and angles at the undulator entrance
results in the source position tolerance given by σ∆x,source < 23 µm and σ∆y,source <

4 µm, limited by the x-angle and y-offset at the undulator entrance, as well as the angle
tolerances σθx,source < 2 mrad and σθy ,source < 3 mrad, both limited by the angle at the
undulator entrance. As discussed in Sect. 7.2.1, the high sensitivity with respect to initial
offsets is a direct consequence of the required magnification of the optical system. Since
the optics layout is imaging, the restrictions on the initial angles are relaxed. While the
requirements on the angles at the source are feasible given a typical pointing stability
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Figure 7.8: Left: Beam offset (rms) in the horizontal (solid) and vertical (dashed) direction at the
undulator entrance as a function of the rms quadrupole offset assuming no internal
alignment of the triplet (red) and an internal alignment precision of 1 µm (blue).
The black lines indicate the tolerance limits. Right: Average normalized emittance
as a function of the rms quadrupole roll angle. The red line indicates the case with
no internal pre-alignment, whereas the blue curve assumes an internal alignment
precision of 0.5 mrad. The black line represents the tolerance limit.

on the order of 1 mrad [124], the offset tolerances at the source are very challenging
assuming a position jitter on the order of the laser waist size and a typical laser waist
size at the gas target on the order of tens of micrometers [125].

Roll errors of the quadrupoles around the beam axis result in an emittance growth as
well as a Twiss parameter mismatch. Limiting the emittance growth to 10% results in
a rotation error limit of σΦ < 1 mrad for each quadrupole (see Fig. 7.8 (right)). Using
the mismatch limit of the FEL tolerance study and taking into account that rotation
as well as focusing strength errors and longitudinal lens offsets contribute to the final
mismatch independently leads to the rotation error requirement σΦ < 3 mrad which
would be accompanied by an emittance growth of 50%. This is not acceptable since it
exceeds the emittance growth caused by other degrading effects like CSR and chromatic
focusing, consequently the stricter limit above has to be used.

A perfect internal pre-alignment of the quadrupole triplet reduces the roll tolerance of
the full assembly to σΦ,full < 280 mrad limited by the emittance growth. Assuming
an internal alignment precision of σΦ,int = 0.5 mrad results in a tolerance for the full
triplet of σΦ,full < 250 mrad. Comparing the tolerances for the individual roll error
and the full, pre-aligned triplet shows that the limiting factor is the alignment of the
quadrupoles with respect to each other and not relative to the undulator. Since a pre-
alignment significantly reduces the required roll precision of the whole triplet with respect
to the undulator when compared to the individual alignment, it should be preferred. The
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Figure 7.9: Left: Average mismatch of the horizontal (solid) and vertical (dashed) component
as a function to the rms longitudinal quadrupole offset error. The red lines assume
no internal alignment of the triplet, the blue lines show the case of an internal align-
ment precision of 20 µm. The solid black line is the tolerance limit of both compo-
nents. Right: Average mismatch as a function of the relative rms quadrupole focusing
strength error for the horizontal component (blue) and the vertical component (red).
The solid black line is the tolerance limit of both components.

internal alignment is assumed to be feasible using Hall probe measurements [126].

Like the transverse offset tolerances also the roll error limits for the individual quadrupoles
are stricter than those found at linear accelerator based facilities, e.g. LCLS. There only
a roll tolerance of 10 mrad [40, 116] is required. From this point of view, the required
tolerance can be seen as a challenge for the quadrupole alignment in a lab-scale setup.
However, the unique advantage of the compact setup allowing for a pre-alignment of all
quadrupoles with respect to each other relaxes the situation.

An issue linked to any mismatch discussion is the problem of the mismatch character-
ization. The well established method of a quadrupole scan in order to determine the
Twiss parameters and the emittance is hindered by the energy spread [119]. Although
the method can be extended to include the energy dependence [63], a precise charac-
terization of the Twiss parameters and therefore the possibility to diagnose a mismatch
caused by alignment errors is limited.

In addition to the roll error, also longitudinal positioning errors of the quadrupoles
cause a Twiss parameter mismatch. The error is limited by the mismatch of the x-
component due to the significantly larger beam size of this component in the quadrupoles
and the resulting larger effects of quadrupole errors on the beam. In order to fulfill the
mismatch criterion, the longitudinal positioning accuracy has to fulfill σ∆s < 34 µm (see
Fig. 7.9 (left)).
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Assuming a perfect internal alignment results in a longitudinal positioning requirement
of the full triplet of σ∆s,full < 820 µm. Setting the internal alignment precision to
σ∆s,int = 10 µm reduces the alignment tolerance of the full triplet to σ∆s,full < 580 µm.
Assuming micrometer precision for linear stages, these requirements can well be met with
already existing equipment.

The last error source contributing to a Twiss parameter mismatch is the focusing
strength error of quadrupoles. The relative focusing strength error limit is given by
σkl/(kl) < 7 · 10−4 (see Fig. 7.9 (right)) with k being the quadrupole strength and l

the length. Translating this to a gradient error and the related error of the aperture
again leads to a micrometer precision but this time regarding the radial position of the
quadrupole magnet segments. As in the case of longitudinal positioning errors, the fo-
cusing strength error is limited by the x-component due to the larger beam size. Again
this requirement is about one order of magnitude stricter than that required for a lin-
ear accelerator based system like LCLS [40, 116]. Although high precision measurement
and tuning concepts for PMQs have already been developed [117], these still have to
be further improved in order to reach the precision required for a first lab-scale FEL
demonstration experiment.

Besides the electron optics related errors, the source stability in terms of the energy
jitter has to be improved by two orders of magnitude when compared to state-of-the-art
experiments [124] since energy deviations are equivalent to focusing strength errors of
the quadrupoles. This is a major challenge on the path to a first laser-plasma based
free-electron laser and cannot be mitigated by adapting the optics if chromatic focus
matching is used because in this case the energy dependence of the focusing system is a
desired property.
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Error source scope tolerance dimension

Horizontal offset quad., pre-align.: none 5 µm
triplet, pre-align.: ideal 32 µm
triplet, pre-align.: 1 µm 22 µm

Vertical offset quad., pre-align.: none 2 µm
triplet, pre-align.: ideal 3 µm
triplet, pre-align.: 1 µm 3 µm

Roll error quad., pre-align.: none 1 mrad
triplet, pre-align.: ideal 280 mrad
triplet, pre-align.: 0.5 mrad 250 mrad

Longitudinal offset quad., pre-align.: none 34 µm
triplet, pre-align.: ideal 820 µm
triplet, pre-align.: 20 µm 580 µm

Relative strength error quad. 0.07 %

Table 7.3: Tolerance requirements for the individual quadrupoles and the full triplet (see scope
column) based on the FEL tolerances (see Table 4.1).

7.5 Conclusion

For the planned FEL demonstration experiment not only the characteristics of the ac-
celerator and the resulting optimization concept plays an important role, but also the
layout of the electron optics has to be considered carefully.

Various effects make designing a suited optics configuration a challenge. Closely related
to the decompression concept minimizing the energy spread induced performance loss is
the chromatic emittance growth caused by the optics. This effect cannot be avoided since
an achromatic focusing with quadrupole lenses is not possible [127]. In combination with
the decompression concept, however, it is possible to exploit this effect. To lowest order,
the chromatic focusing of the quadrupoles causes a linear dependence of the focus position
on the energy. This moving focus can be synchronized with the photon pulse slipping
through the electron bunch maximizing the current density in the interaction region. By
employing this concept, chromatic effects of the focusing system can be mitigated.

Besides the chromatic properties also the precision requirements for the focusing system
play an important role (see Table 7.3). An as simple and compact as possible focusing
system consisting of a permanent magnet quadrupole triplet has been designed. It ful-
fills all basic requirements derived from the demonstration FEL concept. The required
alignment precision for this setup is up to one order of magnitude stricter than at linear
accelerator based sources like LCLS. The strict requirements are in many cases a direct
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result of the required magnification of the optics system and are therefore typical for
laser-plasma accelerator based sources.

A major challenge is given by the requirement on the precision of the focusing strength.
Here the extremely high gradients and small apertures of the PMQs result in a major
challenge.

An interesting characteristic of the required positioning tolerances is that the require-
ments on the alignment of the quadrupoles with respect to each other are significantly
stricter than those found for the alignment of the whole triplet with respect to the un-
dulator. Here the compactness of the setup can be exploited by pre-aligning the whole
triplet with additional diagnostics or even at other facilities and benefitting from the less
strict requirements when it comes to the positioning of the triplet within the beamline.

A crucial criterion for the satisfiability of the – basically feasible – precision requirements
are reliable and precise beam diagnostics. These are hindered by the extreme beam
parameters like the energy spread and source fluctuations typical for laser-wakefield ac-
celerator based systems.

Besides the tolerances of the optics, also the precision requirements on the accelerator
which are linked to the optics design are very challenging. Here the magnification of the
optical system amplifies any offsets, resulting in very strict limits for the position jitter
of the accelerator. Since the position jitter is dominantly determined by the pointing of
the laser driving the acceleration, with typical focus position fluctuations on the order
of the waist size, this limit is a critical issue for all laser-plasma accelerator based FELs.
Furthermore, the energy jitter has to be reduced by two orders of magnitude when com-
pared to the state-of-the-art, down to an unprecedented level for this type of accelerator,
clearly pushing the limits of this accelerator technology.
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8 Start-to-End Simulation

In the previous chapters the individual components needed for a first laser-plasma acceler-
ator based FEL demonstration experiment and their design concepts have been discussed
individually. To test the applicability of the individual concepts and evaluate the inter-
play of the different effects, a complete start-to-end simulation of the setup is required
which is presented in this chapter.

The layout sketch of the simulated setup is shown in Fig. 8.1. The simulations do not
include the laser-wakefield acceleration itself since particle-in-cell simulations used to
model laser-wakefield acceleration and real life experiments show significant deviations
in the bunch charge – one of the most critical parameters regarding the FEL as well
as all degrading effects – up to now [128]. The electron parameters used are the same
as in the discussion of the general FEL concept (see Table 3.3). For the simulation of
the electron optics and the chicane Elegant [129] has been used. Although Elegant
only supports a 1D CSR model, it allows to combine it with a 1D space-charge model,
resulting in a good approximation of the most important effects that have been identified
in the previous chapters∗. The electron distributions obtained with Elegant have been
imported into Genesis allowing to maintain all details of the phase space distribution
built up during the beam transport. The setup parameters are shown in Table 8.1.

8.1 Beam Transport

The beam transport consisting off the focusing optics and the chicane is based on the
concepts and optimizations discussed in Chaps. 6 and 7. The choice of a single focusing
quadrupole triplet for the optics does not allow to use the ideal Twiss parameters required
for minimizing the emittance growth in the chicane since this would require a beam waist
within the chicane for most chicane configurations which is not compatible with the Twiss
parameters and the corresponding tolerances required at the undulator entrance. The
Twiss optimization for the chicane is also limited for more complex optics due to the
chromaticity of the optics and can only be achieved for one energy.

∗For a more precise simulation Elegant and CSRtrack could be combined; however, the high particle
number (N > 105) required for an import of the final phase space into the FEL simulation Genesis
leads to a drastic increase of the required computation time making any numerical optimization and
parameter scan unfeasible.
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name value dimension

drifts

L1 length 93.469 mm
L2 length 16.934 mm
L3 length 52.017 mm
L4 length 25.000 mm
L12 length 50.000 mm
L23 length 355.000 mm
L34 length 230.000 mm
L5 length 992.580 mm

quadrupoles

Q1 length 38 mm
Q2 length 36 mm
Q3 length 11 mm
all gradients 478.729 T/m

dipoles

all lengths 75 mm
D1 deflection angle 0.0162 rad
D2 deflection angle -0.0325 rad
D3 deflection angle 0.0325 rad
D4 deflection angle -0.0162 rad

undulator

length 2 m
mean undulator parameter 3.3 -
linear taper 5.3 %/m
period length 15 mm
horizontal wavenumber kx 66.7 m−1

vertical wavenumber ky 424.2 m−1

Table 8.1: Setup parameters used for the start-to-end simulation. All elements are consecutively
numbered. Drifts in the chicane are identified by a double index. The electron param-
eters are identical with those shown in Table 3.3.
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LWFA undulatorchicaneoptics
electron
spectro-
meter

photon
spectro-
meter

Figure 8.1: Sketch of the conceptual design of the setup shown from the top (top) and side (bot-
tom). The electrons (blue) are produced and accelerated by a high-power infrared
laser beam (red) which is focused into a hydrogen gas target. A quadrupole triplet
is used to focus the electron beam. After the optics an asymmetric S-chicane de-
compresses the bunch reducing the slice energy spread in order to optimize the FEL
performance. The undulator produces an intense VUV beam (purple) and is longitu-
dinally tapered to compensate for the energy chirp introduced by the decompression.
Finally electrons and photons are characterized by the corresponding spectrometers.

The position of the chicane has been chosen so that the drift length before the chicane
is as short as possible, i.e. only limited by geometric constraints like the coil size of
the dipole magnets. This allows to minimize space-charge effects, e.g. the build-up of a
longitudinal energy chirp (see Sect. 5.2.2 and [38, 39]), which would otherwise directly
degrade the FEL performance as well as increase the emittance growth [98]. Due to the
placement of the chicane in the vicinity of the optics, the space-charge induced energy
changes are an order of magnitude below the energy spread (see Fig. 8.2). Moving
the chicane closer to the undulator, however, would increase the energy changes by a
factor of four proportional to the drift between accelerator exit and chicane entrance.
This would bring the energy deviations to a level on the order of the energy spread,
resulting in significant changes of the decompression characteristics and a degradation of
the resulting FEL performance.

In the previous chapter the optics layout has been designed so that the horizontal and
vertical mismatch were minimized for the reference energy. The combination of the
original optics with the chicane, however, leads to emittance changes and consequently
also alterations of the Twiss parameters. This results in a non-negligible mismatch for
the reference energy at the undulator entrance. The effect has to be taken into account
for the quadrupole positioning. A comparison of the mismatch parameters as a function
of the longitudinal, bunch internal coordinate for both optics layouts is shown in Fig. 8.3.
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Figure 8.2: Longitudinal phase space at the chicane entrance. The color code indicates the en-
ergy changes with respect to the initial distribution at the accelerator exit caused
by space-charge. The energy changes are an order of magnitude smaller than the
energy spread. However, a placement of the chicane further downstream, close to the
undulator entrance, would increase the changes by a factor of four, proportional to
the change of the upstream drifts, resulting in an effect on the order of the energy
spread. This would significantly alter the decompression characteristics and reduce
the FEL performance.

The rise of the mismatch when moving from the center towards the head or tail of the
bunch is a direct result of the chromatic focusing combined with the decompression. Due
to the decompression in the chicane, the energy dependence of the Twiss parameters and
therefore the mismatch is converted to a dependence on the longitudinal position.

The significant difference between the dependence of the horizontal and vertical mismatch
on the longitudinal position is directly linked to the difference in the emittance growth
of both components found for the original optics setup (see Sect. 7.4.2). The link is
given by the orientations of the phase space ellipses of the different energies shown in
Fig. 8.4. The chromatic focusing results in an energy dependence of the phase space
ellipse orientation. Since each each energy corresponds to a certain longitudinal position
within the bunch after the decompression, the phase space ellipse orientation is directly
linked to the longitudinal position. The orientation of the phase space ellipse defines the
corresponding Twiss parameters and consequently the local mismatch. In terms of the
emittance the combination of different ellipse orientations results in a larger populated
area in the phase space corresponding to an emittance growth. Chromatic effects are
therefore directly linked to the local mismatch as well as the emittance. The significant
difference between horizontal and vertical plane shown in Fig. 8.3 is hence also found in
Fig. 8.4 and the corresponding difference in the emittance growth.

The difference between the two planes is also noticeable when comparing the slice emit-
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Figure 8.3: Mismatch parameter at the undulator entrance for x-component (blue) and y-
component (red) as a function of the longitudinal position within the electron bunch.
The dashed lines show the mismatch when using the initially designed optics (see
Sect. 7.4.2) in combination with the chicane. Although the optics have originally
been designed such that a minimum of the mismatch is reached for the reference en-
ergy, i.e. at the bunch center, the minimum of the mismatch curve of the x-component
is shifted towards the bunch tail. This shift is caused by the emittance growth and
the corresponding changes of the Twiss parameters in the chicane. The effect on
the y-component is negligible. A correction is possible by adapting the quadrupole
positions (solid lines).
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Figure 8.4: Transverse phase spaces of the x-component (left) and y-component (right) at the
undulator entrance. The color code represents the particle energy. The different
orientations of the phase space ellipses corresponding to the different energies resulting
in the chromatic emittance growth are very pronounced for the x-component. This
is also directly linked to the slice mismatch shown in Fig. 8.3.

175



8 Start-to-End Simulation

−3 −2 −1 0 1 2 3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

z/σ
z

n
o
rm

. 
s
lic

e
 e

m
it
ta

n
c
e
 [
m

m
 m

ra
d
]

Figure 8.5: Normalized emittance of x-component (blue) and y-component (red) as a function
of the longitudinal position within the electron bunch evaluated at the undulator
entrance. The fluctuations at the bunch head and tail are caused by the low particle
number in these regions and the resulting statistics. The emittance growth of the
y-component is negligible as already indicated by the low mismatch along the bunch
(see Fig. 8.3).

tances shown in Fig. 8.5. When it comes to the chromatic slice emittance growth the
energy range to be taken into account is given by the slice energy spread which is only
ση = 0.25% after the decompression. This reduction of the energy range and the corre-
sponding phase space area results in the low, average slice emittance of the horizontal
component of εx,n,slice = 0.26 mm mrad, in contrast to the projected emittance of the
whole bunch εx,n = 0.88 mm mrad. The slice emittance growth of the vertical component
is negligible, which is a direct result of the smaller differences between the phase space
ellipse orientations above. The position dependence of the slice emittance within the
bunch is caused by the different phase space ellipse orientations in the chicane and the
resulting differences in the emittance growth (see Chap. 6).

The emittance has so far only been discussed in the context of chromatic effects, but it
is also affected by coherent synchrotron radiation and space-charge in the chicane (see
Chap. 5). The chicane layout has been chosen to be asymmetric, as suggested by the
optimization concept discussed in Chap. 6, in order to minimize the emittance growth.
Simulations without CSR and space-charge result in a pure chromatic emittance growth
yielding εn,x = 0.74 mm mrad. The inclusion of space-charge and CSR leads to a further
emittance growth, resulting in the final horizontal emittance of εn,x = 0.88 mm mrad.
Compared to the chromatic effects the emittance growth within the chicane is minor
and only contributes approximately 20% to the total emittance growth. This shows
another advantage of the chosen layout: both mostly independent∗ sources of significant

∗The different phase space ellipse orientations caused by the chromatic focusing have an effect on the
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emittance growth (chromatic focusing and energy changes in the chicane) dominantly
affect the same plane, whereas the emittance of the other plane is conserved. This leads
to a minimum of the total emittance growth and therefore a maximum of the achievable
current density in the undulator.

The final bunch geometry at the undulator entrance affected by chromatic focusing,
CSR, as well as space-charge is shown in Fig. 8.6. The effect of the chromatic focusing
and the decompression can clearly be seen. In the longitudinal direction the bunch is
sorted by energies. The horizontal plane has a beam waist for energies slightly below
the reference energy γwaist ≈ 592. Lower energies are already diverging, whereas higher
energies are still converging. This directly represents the position dependent mismatch
shown in Fig. 8.3. During the propagation through the undulator the beam waist will
slip forward through the bunch and result in the chromatic focus matching discussed
above (see Sect. 7.3). Consequently, the large mismatch values found at the bunch head
and tail are no issue as long as the mismatch of the reference energy is minimized and
the focus motion is within reasonable limits (see Fig. 7.5). In the vertical plane only a
very small dependence of the beam size on the longitudinal position is found, as already
indicated by the less pronounced position dependence of the mismatch. The reference
energy reaches a waist at the undulator entrance with bunch head and tail being slightly
larger. Due to the moderate mean energy, these slight beam size deviations allow for a
nearly constant beam size within the undulator for all energies, i.e. all longitudinal slices
of the bunch (see Sect. 7.3), independent of the divergence.

8.2 Undulator – FEL

The undulator is the same as in the discussion of the decompression concept (see Sect. 3.3).
The final figure of merit for the FEL demonstration experiment is an output radiation
power exceeding the spontaneous power by at least one order of magnitude. To achieve
this goal using the decompression concept, the undulator has to be tapered in order to
compensate for the energy chirp introduced by the chicane, and the current density has
to be kept as high as possible.

As stated above, the optics design ensures a well suited bunch shape allowing for a
reasonable chromatic focus matching and an overall minimized beam size along the un-
dulator. Figure 8.7 shows the evolution of the beam size in both planes as a function of
the bunch internal coordinate and the position within the undulator. The focus motion
of the x-component resembles an approximately linear motion as desired, although the
slope does not perfectly match the ideal curve. The energy dependence of the horizontal
focus position is dsfocus,x/dη ≈ 104 m. This exceeds the analytical ideal focus motion

emittance growth of the different energy ranges in the chicane causing differences in the contributions
to the final slice emittance but can be seen as independent regarding the projected emittance growth.
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Figure 8.6: Electron distribution at the undulator entrance. The top view (center) shows the
significant energy dependence of the beam size in the x-direction in contrast to the
dependence of the y-component on the energy (bottom).
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characterized by dsfocus,x/dη ≈ 67 m (see Eq. (7.49)) and the optimum according to
Genesis simulations at dsfocus,x/dη ≈ 89 m. Despite the deviation the reduction of the
FEL performance is minor according to the Genesis scan (see Fig. 7.5).

The evolution of the radiation power in the undulator normalized to the spontaneous
emission within 100% bandwidth is shown in Fig. 8.8. A clear exponential growth along
the undulator is achieved with a final, average amplification over the spontaneous emis-
sion of P (s = 2 m)/Pspont. = 57, fulfilling the design goal. The mean gain length is
Lg = 20 cm. When compared to the FEL design concept discussed in Chap. 3 the
amplification is reduced by a factor of about three with the chief cause being the slice
emittance growth. According to Eq. (6.14) a power reduction by a factor of two can be
expected due to the emittance growth itself. Since this equation was only based on the
ideal FEL theory, the further degradations, e.g. caused by the increased sensitivity to
energy spread due to the reduced current density, are not included and can explain the
remaining fraction of the power loss. While the gain reduction is significant, it should
be noted that this simulation takes all important degrading effects occurring during the
beam transport into account, including chromatic emittance growth, the space-charge
induced energy chirp, and emittance growth caused by the decompression. The decom-
pression concept can therefore be seen as feasible despite the challenges caused by the
usage of the extreme bunches produced by laser-wakefield accelerators.

On average an FEL pulse reaches a peak power of Ppeak = 1.1 MW with an average
rms pulse duration of σt = 4.2 fs. The spectral power peak is not located at the design
wavelength of λl = 135 nm but is shifted towards longer wavelengths and is on average
found at 147 nm (see Fig.8.9 (left)). This spectral shift is explained by the tapered
undulator and the short bunch. Due to the short bunch, the radiation pulse is mainly
built up by the leading edge of the electron bunch where the maximum microbunching
is found. This region of the bunch amplifies radiation produced by trailing electrons
which has a longer wavelength due to the lower electron energies at the tail of the bunch.
This mechanism also explains the asymmetric pulse shape shown in Fig. 8.9 (right). The
average bandwidth is σω = 5 · 1014 Hz which is larger than expected from the analytical
model (Eq. (6.14)) σω,analytical = 1.9 · 1014 Hz. This difference is a result of the chirped
electron bunch which results in a broadening of the emitted spectrum.

The coherence time of the FEL pulse (based on Eq. (2.48) using the parameters obtained
with the simulations) is tco,3D ≈ 6.5 fs. Combined with the short bunch duration of
tbunch ≈ 6.7 fs this results in an average number of modes of M = 1.0. Evaluating the
pulse energy distribution shown in Fig. 8.10 (see Eq. (2.50)) suggests a nearly exponential
distribution, confirming the low number of modes. A fit of the gamma distribution yields
M = 1.2 in good agreement with the estimate above. This characteristic feature of the
FEL could be used as one of the indicators for a working FEL process in a first FEL
demonstration experiment.
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Figure 8.7: Beam size in x-direction (top) and y-direction (bottom) as a function of the longi-
tudinal position within the bunch and the longitudinal position along the undulator.
Note the different scales. For the x-component an approximately linear focus motion
is achieved as desired for the chromatic focus matching (see Sect. 7.3). The ideal
focus position of the horizontal component according to Eq. (7.49) is indicated by
the dashed black line. The vertical beam size is well matched to the focusing of the
undulator over the central section of the bunch, allowing for a small, constant beam
size along the undulator.
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Figure 8.8: Normalized average pulse power as a function of the longitudinal position within the
undulator. The solid line is averaged over 100 independent Genesis runs. The dashed
lines indicate the best and worst case. All runs result in an exponential power growth
with an average gain length of Lg ≈ 20 cm.
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Figure 8.9: Spectrum of an FEL pulse (left) and time structure (right) at the end of the undulator.
The pulse has a bandwidth of σω = 4.5·1014 Hz and is peaked at 146 nm in contrast to
the design wavelength of λl = 135 nm. This shift of the wavelength can be explained
by the taper. The time structure shows a significant shift of the radiation pulse
(solid blue) with respect to the electron bunch (dashed black) which is only shown
for reference purposes and is not to scale. The pulse duration is σt = 4.2 fs.
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Figure 8.10: Pulse energy distribution as a function of the normalized pulse energy using the
individual pulse energy W and the average over 100 independent runs 〈W 〉 (blue
bars). The red curve represents the fit of the gamma distribution (see Eq. (2.50)) to
the simulation data. The obtained number of modes is M = 1.2.

A further point, besides the general setup performance, that can only be addressed in
start-to-end simulations is the scalability of the decompression concept towards higher/
lower bunch charges and energy spreads. Combinations of higher charges and energy
spreads are assumed to be easier accessible in upcoming experiments [107]. For a fixed
ratio of energy spread to charge the FEL performance in an ideal decompression setup
would remain unaltered. Given a fixed chicane strength R56, an increase of the initial
energy spread by a factor n results in a scaling of the final bunch length by the same factor.
If the initial bunch charge is also scaled by the same factor the final slice energy spread
and peak current remain unchanged, resulting in the same FEL performance. For slippage
limited cases the increasing bunch length could even be beneficial (see Sect. 2.4.6). For
any real setup this scaling, however, results in an increase of CSR and space-charge effects
due to the increased peak current in the chicane, leading to an increase of the projected
and slice emittance (see Chap. 5). The interplay of the different effects and the resulting
FEL performance can only be evaluated in the start-to-end simulation. Figure 8.11 shows
the result of a charge and energy spread scan for a fixed ratio of initial energy spread to
bunch charge ση/Q. The reference case is given by ση = 1% and Q = 15 pC, and the
setup has been the same for all runs. Lower charge and energy spread combinations are
favorable down to approximately Q = 10 pC. Here the drop of CSR and space-charge
effects due to the lower charge can be exploited. Below this range the final bunch length
gets so short that the FEL performance gets degraded due to slippage effects. Increasing
charge and energy spread results in a drop of the FEL performance due to the rise of
the slice emittance as shown in Fig. 8.12. Due to the emittance changes, also the Twiss
parameters at the undulator entrance get modified depending on the initial charge. This
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Figure 8.11: Normalized power as a function of the initial bunch charge for a fixed ratio of bunch
charge and energy spread ση/Q. The reference case is given by ση = 1% and Q =

15 pC. Individual runs are represented by blue dots, the red line indicates the average
for each case. All cases are equivalent as long as degrading effects are neglected, but
CSR and space-charge during the beam transport limit the acceptable charge and
energy spread range (see Fig. 8.12).

results in a mismatch at the undulator entrance further reducing the FEL performance.
In summary, the scan shows that the decompression concept is applicable for the charge
range Q = 5–35 pC for a fixed ratio of charge to energy spread. Consequently, the
initial energy spread can be doubled bringing the demonstration concept closer to the
performance of state-of-the-art laser-wakefield accelerators.
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Figure 8.12: Normalized emittance (left) and mismatch (right) of the central slice at the undulator
entrance as a function of the initial bunch charge for a fixed ratio of bunch charge
and energy spread ση/Q. The x-component (solid blue) is the limiting factor when
compared to the y-component (dashed red) in both cases.

8.3 Conclusion

The combination of all individual concepts and optimizations discussed in the previ-
ous chapters by means of a start-to-end simulation allowed to assess the interplay of
the various components and effects which was impossible in the individual discussions.
The feasibility of a laser-plasma accelerator driven demonstration experiment has been
successfully demonstrated.

The start-to-end simulation shows that the electron optics have to be readjusted when
compared to the initial optics design in order to ensure a minimum mismatch at the
undulator entrance. Here the emittance growth and resulting Twiss parameter changes
caused by the chicane have to be taken into account. The adjustment has been shown
to be possible by a simple repositioning of the quadrupole lenses which makes this a
reasonable concept of operation for a first demonstration experiment. A major challenge
in this context is given by the requirement of precise phase space information to be able
to identify and correct an occurring mismatch. These setup corrections are, however, not
applicable to shot-to-shot fluctuations, resulting in the requirement of a stable source
and precise charge measurements.

Due to the decompression, the chromatic slice emittance growth could be reduced from
∆εx/εx = 260% down to ∆εx/εx ≈ 35%. For the vertical components the slice emittance
growth even dropped from ∆εy/εy = 28% to ∆εy/εy = 1%. The decompression trans-
lates the remainder of the chromatic effect into a mismatch depending on the internal,
longitudinal position within the bunch. For the x-component this position dependent
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mismatch finally results in the desired chromatic focus matching within the undulator.
The vertical beam size is only weakly energy dependent and allows for a nearly matched
beamsize for all energies.

The chicane was positioned as close to the focusing system as possible to minimize the
space-charge induced energy chirp by an early decompression. Although the simple
triplet layout and the chromatic effects did not allow for an optimization of the Twiss
parameters in the asymmetric S-chicane, the contribution of the chicane to the total
emittance growth was only 20% and therefore regarded as acceptable.

The moderate emittance growth and the chromatic focus matching allowed to reach a
ratio of FEL power to spontaneous emission of P (s = 2 m)/Pspont. = 57 > 10, clearly
fulfilling the design goal even with the inclusion of all important degrading effects. This
shows that the decompression concept is indeed feasible.

The FEL simulations showed that ultra-short pulses σt = 4.2 fs with a peak power of
Ppeak = 1.1 MW are already possible with a first demonstration experiment. The broad
bandwidth σω = 5 · 1014 Hz even allows for a compression down to 1 fs when a Fourier
limited pulse is assumed.

The start-to-end simulation allowed to assess the scalability of the decompression con-
cept to higher and lower charges for a fixed ratio of energy spread to charge. Towards
low charges the decompression concept is ultimately limited by slippage effects and the
ultra-short electron bunch. Higher charges, which are assumed to be easier to realize
in upcoming experiments, result in an increase of the emittance growth due to CSR
and space-charge. This makes the decompression concept studied in this thesis appli-
cable for the charge range Q = 5–35 pC and the corresponding initial energy spreads
ση = 0.33%–2.33%.

On the whole, the start-to-end simulation has shown that the decompression concept is
not only feasible from an FEL physics point of view but also when the full beam transport
is included. Moreover, it is capable of delivering ultra-short high-power UV pulses which
could already be used for first applications.
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In the previous chapters the different challenges of a laser-plasma accelerator driven FEL
demonstration experiment have been identified and addressed, and new setup optimiza-
tion concepts have been studied.

The first and probably most prominent issue of a laser-plasma accelerator driven system
is the gain reduction due to the broad energy spread typical for bunches produced by
state-of-the-art laser-wakefield accelerators. For the envisioned parameter set the FEL
performance can be increased by multiple orders of magnitude using the decompression
concept. Here the local energy spread is reduced at the cost of a reduced peak current
via sorting the bunch by energies using a magnetic chicane. Balancing both effects
allows to boost the FEL performance. In addition to the reduction of energy spread this
concept also minimizes the impact of slippage issues caused by the rather long radiation
wavelength (∼ 100 nm) which is nearly on the order of the initial bunch length of only 500
nm. The requirements on the taper of the undulator, needed to compensate the energy
chirp induced by the decompression, are challenging but feasible for the here considered
2-meter-long undulator. For longer undulators the required taper cannot be sustained.

The alternative optimization concept using transverse dispersion of the electrons, also
lowering the local energy spread, has been ruled out for two reasons: First of all, this
scheme does not reduce the impact of slippage effects. Second, the transverse field gradi-
ents of the undulator, needed to compensate the transverse energy-position correlations
at the ideal dispersion range, are not feasible for conventional undulator designs. Ad-
vantages of the setup, given a suited parameter range, are, however, a higher saturation
power and no sensitivity regarding energy jitter∗.

For the chosen concept the general precision requirements on the setup and especially
the undulator have been studied. They are of high importance for a first demonstration
experiment since even in the design case it will operate close to the detection limit. In
general the found requirements are comparable to, or less strict than, those of large scale
systems like the TTF-FEL or LCLS. The strong diffraction actually limiting the FEL
performance even becomes an advantage when it comes to the undulator errors which
cause a beam wander. The requirements on the undulator construction ranging from
random magnet errors to systematic errors due to girder deformation are all within reach

∗This only refers to the FEL process itself and not the inevitable performance degradation due to the
chromaticity of the beam transport.
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of state-of-the-art cryogenic undulator design. A cryogenic undulator adhering to the
design criteria of the decompression concept and the tolerance study is currently under
construction and will be commissioned in 2015. The results of field measurements are
still pending, but first tests of a prototype are promising [130].

Besides the basic concept and its tolerances, the actual decompression mechanism has
been studied and optimized. The limiting factor of the decompression is the induced
emittance growth that can spoil the beam quality and make it unusable for an FEL.

In the demonstration scenario two effects causing energy changes in the chicane and
therefore leading to emittance growth have to be considered: coherent synchrotron radi-
ation and space-charge. The impact of space-charge is owed to the moderate energies and
the ultra-short bunch length. Due to the build-up of the space-charge induced energy
modulation, the typical optimization concept used at linear accelerator based facilities
of using long setups with weak magnets becomes unusable and a compromise is needed.
The resulting setups have a chicane length on the order of one meter and rely on short
and strong magnets. A fully optimized setup, i.e. an asymmetric S-chicane, allows for an
emittance growth of less than 10% which is regarded as acceptable. Care has to be taken
when extending the concept to higher bunch charges since this will lead to an inevitable
rise of the emittance growth that cannot be mitigated by adapting the chicane layout
and will ultimately prevent the FEL process at all.

Even more care has to be taken if the decompression setup is not built as a fully in-
vacuum system but uses a narrow beam tube. In this case also resistive and geometric
wall wakefields have to be taken into account. Their effects can even exceed those of
synchrotron radiation and space-charge. Usually tapered sections are used to minimize
effects of beam tube transitions on the bunch; however, since the wall wakefield of a
tapered transition depends on the derivative of the beam profile, the effect of short
bunches becomes even more intense. Depending on the beamline layout this should be
considered with great care and the use of beam tubes should be avoided.

A chicane consisting of 7.25-cm-long magnets providing a maximum field of about 0.6 T
is being commissioned and will be used for first phase space manipulation and character-
ization tests. It provides a 1-cm-gap and can be used as an in-vacuum device but could
also be operated with a reasonably sized beam tube if necessary and if the geometric and
resistive wall wakefields can be kept at bay.

The last missing component of the big picture, the electron optics, have also been ad-
dressed. Besides their general need for the control of the beam size, they are closely
connected to two points discussed earlier, the energy spread and the setup tolerances.

Since the focusing strength of the quadrupoles is energy dependent, the broad energy
spread results in a chromatic emittance growth. If no energy-position correlation exists
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within the bunch, this effects can spoil the FEL performance drastically. In the decom-
pression concept, however, this effect can even be exploited by chromatic focus matching.
The electron optics can be designed such that the chromatic focus slips through the bunch
at the same rate as the light pulse, resulting in a continuous maximization of the current
density in the interaction region.

In addition to the energy spread related optimization, beam alignment tolerances have to
be considered for the electron optics design. The small source size of the laser-wakefield
accelerator requires a beam magnification of an order of magnitude in order to ensure a
minimum average beam size during the propagation through the undulator. This high
magnification factor also amplifies offset errors caused by either the optics or the source
itself, resulting in tight alignment tolerances of the optics and the source. The absolute
tolerances are further tightened due to the high gradients and small apertures. The
resulting requirements are challenging in terms of the optics and beam diagnostics as
well as the source stability but are feasible in terms of the available positioning precision.
Similar optics have already been successfully used in various experiments [13,63,131] and
precise characterization methods exist [117]; however, a demonstration of the required
measurement and alignment precision is still pending.

The requirements on the source stability regarding position and energy jitter are the
major points to be addressed in the future development. Here improvements of about
one order of magnitude are required to ensure a reliable FEL demonstration.

In a nutshell, the current status of a first laser-plasma accelerator driven FEL demon-
stration experiment based on this thesis is:

• The decompression concept for the improvement of the FEL performance bal-
ancing energy spread, bunch length, and peak current, in the case of a broad energy
spread and slippage limited bunches, has been characterized and optimized. It can
be adapted to any set of initial conditions.

• An optimized chicane layout for bunch decompression reaching the design goal of
the decompression concept and taking the characteristics of laser-plasma accelerator
based bunches into account has been designed. The setup is a compromise of
minimizing CSR as well as space-charge effects and the resulting setup dimensions
are in the spirit of a compact, lab-scale system.

• Chromatic focus matching mitigating the chromatic effects of a quadrupole
based focusing system has been proposed. This concept can be used at any setup
relying on the decompression concept.

• The setup tolerances have been determined and assessed. They are feasible in
terms of the undulator design but challenging regarding the optics alignment and
the source stability.
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• The combination of all assumed electron beam parameters has still to be demon-
strated and further improvements of the source stability are required.

• The electron optics characterization, fiducialization, and alignment has to be
enhanced.

This work lays down the path to be followed for a first laser-plasma accelerator based
lab-scale free-electron laser demonstration experiment. Still several challenges have to
be met, but a first fifth-generation light source is within grasp.
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