Aus dem Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie Lehrstuhl: Bakteriologie der Ludwig-Maximilians-Universität München

Kommissarische Leitung: Prof. Dr. Rainer Haas

# Analysis of *Helicobacter pylori* VacA-containing vacuoles and VacA intracellular trafficking

Dissertation

zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München

> vorgelegt von Beate Kern aus Schrobenhausen

> > 2014

## Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München

Betreuer: Prof. Dr. Rainer Haas

Zweitgutachter: Prof. Dr. Heinrich Jung

Dekan: Prof. Dr. med. Dr.h.c. Maximilian Reiser, FACR, FRCR

Tag der mündlichen Prüfung: 03.06.2015

## **Eidesstattliche Versicherung**

Ich, Beate Kern, erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema

Analysis of Helicobacter pylori VacA-containing vacuoles and VacA intracellular trafficking

selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe.

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde.

Ort, Datum

Unterschrift

Teile dieser Arbeit werden veröffentlicht:

Kern B., Jain U., Utsch C., Otto A., Busch B., Jiménez-Soto L.F., Becher D., Haas R.: Characterization of *Helicobacter pylori* VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T-lymphocytes. *Cell Microbiol* 2015, doi: 10.1111/cmi.12474 (accepted)

Publikation im Promotionszeitraum, die nicht in der Arbeit enthalten ist:

Fischer W., Breithaupt U., Kern B., Smith S.I., Spicher C., Haas R.: A comprehensive analysis of *Helicobacter pylori* plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. *BMC Genomics* 2014, 15:310

## Table of Contents

| Eidesstattliche Versicherung                       | III  |
|----------------------------------------------------|------|
| Table of Contents                                  | v    |
| List of Figures                                    | VIII |
| Summary                                            | IX   |
| Zusammenfassung                                    | XI   |
| 1 Introduction                                     | 1    |
| 1.1 <i>H. pylori</i> Epidemiology                  | 1    |
| 1.2 Overview of the Infection Process              | 1    |
| 1.3 <i>H. pylori</i> Immune Evasion                | 2    |
| 1.4 The Vacuolating Cytotoxin VacA                 | 3    |
| 1.4.1 Vacuolation                                  | 3    |
| 1.4.2 VacA Protein Structure and Channel Formation | 4    |
| 1.4.3 Allelic Diversity of VacA                    | 6    |
| 1.4.4 VacA Internalization and Trafficking         | 7    |
| 1.5 VacA-Induced Effects on Host Cells             | 8    |
| 1.5.1 Mitochondrial Effects and Apoptosis          | 8    |
| 1.5.2 Immunomodulatory Effects                     | 9    |
| 1.5.3 CagA Effects and CagA-VacA Interplay         | 10   |
| 1.5.4 VacA and Intracellular Calcium Signaling     | 11   |
| 1.5.5 VacA - A Multifunctional Mystery             | 12   |
| 1.6 Endosomes as Signaling Platforms               | 14   |
| 1.7 Aim of This Study                              | 14   |
| 2 Materials and Methods                            | 17   |
| 2.1 Materials                                      | 17   |
| 2.1.1 Chemicals                                    | 17   |
| 2.1.2 Standard Buffers                             | 17   |
| 2.1.3 Bacterial Strains and Cell Lines             | 17   |
| 2.1.4 Growth Media, Supplements and Antibiotics    | 18   |
| 2.1.5 Commercially Available Kits                  | 19   |
|                                                    | V    |

| 2.1.6    | Plasmids                                                  | 19 |
|----------|-----------------------------------------------------------|----|
| 2.1.7    | Oligonucleotides                                          |    |
| 2.1.8    | Enzymes and Proteins                                      | 20 |
| 2.1.9    | Antibodies and Antisera                                   | 20 |
| 2.2 Met  | hods                                                      | 21 |
| 2.2.1    | Escherichia coli Methods                                  | 21 |
| 2.2.2    | Helicobacter pylori Cultivation and Strain Maintenance    | 22 |
| 2.2.3    | Cell Culture                                              | 22 |
| 2.2.4    | Cloning                                                   | 24 |
| 2.2.5    | Protein Biochemical Methods                               |    |
| 2.2.6    | Purification of VacA                                      |    |
| 2.2.7    | Preparation of Concentrated Culture Supernatant (CCS)     |    |
| 2.2.8    | Vacuolation Assay                                         |    |
| 2.2.9    | Vacuolation Time Course                                   |    |
| 2.2.10   | Production of $\alpha$ -VacA_nat                          |    |
| 2.2.11   | Vacuolation Inhibition Assay                              |    |
| 2.2.12   | Pull-Down Experiments                                     |    |
| 2.2.13   | Immunostaining Experiments                                |    |
| 2.2.14   | Microscopy and Image Analysis                             |    |
| 2.2.15   | Homogenization of Jurkat E6-1 Cells                       |    |
| 2.2.16   | Sequential VCV Centrifugation                             |    |
| 2.2.17   | TurboBeads Methods                                        |    |
| 2.2.18   | Vacuole Sorting by Flow Cytometry                         |    |
| 2.2.19   | Isolation of VCVs by Immunomagnetic Separation            |    |
| 2.2.20   | Mass Spectrometry                                         |    |
| 2.2.21   | Mass Spectrometry Data Processing                         |    |
| 2.2.22   | Isolation of Endoplasmic Reticulum from Jurkat E6-1 Cells |    |
| 3 Resu   | lts                                                       |    |
| 21 17.   |                                                           | 41 |
| 5.1 Vac  | A Purincation and Labeling                                | 41 |
| 3.2 Cha  | racterization of α-VacA_nat                               |    |
| 3.2.1    | α-VacA_nat in Immunoblotting                              |    |
| 3.2.2    | Inhibition of Vacuolation by Various Antisera             |    |
| 3.2.3    | α-VacA_nat in Immunostaining Experiments                  | 45 |
| 3.3 Stat | ole Cell Line Jurkat E6-1 EGFP-Rab7                       | 45 |
| 3.4 VC   | V Isolation                                               | 46 |
| 3.4.1    | Strategies                                                | 46 |
| 3.4.2    | General Optimization Steps                                |    |
|          | -                                                         |    |

| 3.4.3 Strategy A: TurboBeads Strategy                                              | 50  |
|------------------------------------------------------------------------------------|-----|
| 3.4.4 Strategy B: VCV Sorting by Flow Cytometry                                    | 53  |
| 3.4.5 Strategy C: Immunomagnetic Purification of VCVs                              | 55  |
| 3.5 Mass Spectrometry Results                                                      | 58  |
| 3.6 Investigation of Possible Interactions of VacA with STIM1                      | 61  |
| 3.7 VacA Localization in Intoxicated Cells                                         | 63  |
| 3.7.1 Colocalization of VacA with ER and Golgi Apparatus Markers and CTxB          | 63  |
| 3.7.2 Isolation of Endoplasmic Reticulum                                           | 64  |
| 4 Discussion                                                                       | 67  |
| 4.1 VCV Isolation Strategies and Tools                                             | 67  |
| 4.2 The VCV Proteome                                                               | 69  |
| 4.2.1 VCV Analysis by MS - Strengths and Weaknesses                                | 69  |
| 4.2.2 Individual Proteins Found on VCVs                                            | 71  |
| 4.2.3 The VCV Proteome Decoded by Subcellular Localization and Biological Function | n77 |
| 4.2.4 Interorganellar Crosstalk between VCVs and Mitochondria/ER                   | 78  |
| 4.2.5 VCVs as Multifunctional Platforms                                            | 79  |
| 4.3 Influence of VacA on Store-Operated Calcium Entry (SOCE)                       | 79  |
| 4.4 VacA Partially Localizes to the ER and the Golgi Apparatus                     | 82  |
| 4.5 Is VacA Transported in a Retrograde Manner?                                    | 83  |
| 4.6 Conclusion and Outlook                                                         | 87  |
| 5 List of Abbreviations                                                            | 89  |
| 6 Appendix                                                                         | 91  |
| 6.1 VCV-specific proteins                                                          | 91  |
| 6.2 Wild-type sample 1 (WT1) proteins                                              | 95  |
| 6.3 Wild-type sample 2 (WT2) proteins                                              | 123 |
| 6.4 Background proteins                                                            | 146 |
| 7 Literature                                                                       | 169 |
| 8 Danksagung                                                                       | 183 |
| 9 Lebenslauf                                                                       | 185 |
|                                                                                    | 103 |

## List of Figures

| Figure 1: Structure of VacA and cellular vacuolation                                       |
|--------------------------------------------------------------------------------------------|
| Figure 2: VacA uptake, intracellular trafficking, and effects13                            |
| Figure 3: VacA gel filtration                                                              |
| Figure 4: Characterization of α-VacA_nat                                                   |
| Figure 5: Creation of the stable cell line Jurkat E6-1 EGFP-Rab746                         |
| Figure 6: Three different strategies for VCV isolation                                     |
| Figure 7: Optimization of VCV isolation conditions                                         |
| Figure 8: TurboBeads strategy, internalization, and aggregation                            |
| Figure 9: VCV homogenate prepared for flow cytometry sorting                               |
| Figure 10: Analysis of VCV fractions sorted by flow cytometry                              |
| Figure 11: Monitoring the VCV isolation process                                            |
| Figure 12: Mass spectrometry data sets                                                     |
| Figure 13: Graphic and numerical display of the composition of VCV-specific and background |
| subsets60                                                                                  |
| Figure 14: Investigation of a possible VacA-STIM1 interaction62                            |
| Figure 15: VacA localization in intoxicated cells                                          |
| Figure 16: Internalization and trafficking of bacterial toxins                             |
| Figure 17: VacA uptake, intracellular trafficking, and effects, continued87                |

Summary

## Summary

The human pathogen *Helicobacter pylori* colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases like gastritis, duodenal and gastric ulcers, and gastric cancer. It has evolved a range of mechanisms to aid in colonization and persistence, manipulating the host immune response to avoid clearance. A major factor in this is the secreted vacuolating cytotoxin VacA which has a variety of effects on host cells. VacA is endocytosed and forms anion-selective channels in the endosome membrane, causing the compartment to swell. The resulting VacA-containing vacuoles (VCVs) can take up most of the cellular cytoplasm. Even though vacuolation is VacA's most prominent and namesake effect, the purpose of the vacuoles is still unknown.

VacA exerts influence on the host immune response in various ways, both pro- and antiinflammatorily. Most importantly, it disrupts calcium signaling in T-lymphocytes, inhibiting T-cell activation and proliferation and thereby suppressing the host immune response. Furthermore, VacA is transported to mitochondria, where it activates the mitochondrial apoptosis pathway. Within the cell, VacA has only been shown to localize to endocytic compartments/VCVs and mitochondria. Considering its diverse effects, however, the existence of other cellular sites of action seems plausible.

In this study, the VCV proteome was comprehensively analyzed for the first time in order to investigate VCV function. To this end, three different strategies for VCV purification from T-cells were devised and tested. Eventually, VCVs were successfully isolated via immunomagnetic separation, using a VacA-specific primary antibody and a secondary antibody coupled to magnetic beads. The purified vacuoles were then measured by mass spectrometry, revealing not only proteins of the endocytic system, but also proteins usually localized in other cellular compartments. This apparent recruitment of proteins involved in all kinds of cellular pathways indicates a central function of VCVs in VacA intoxication effects.

In a global evaluation, the VCV proteome exhibited an enrichment of proteins implicated in immune response, cell death, and cellular signaling; all of these are processes that VacA is known to influence. One of the individual proteins contained in the sample was STIM1, a calcium sensor normally residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry (SOCE). This corroborates the findings of a concurrent report, in which VacA severely influenced SOCE and colocalized with STIM1. A direct interaction of STIM1 with VacA was examined in a pull-down assay, but could be neither shown nor excluded.

Immunofluorescence experiments conducted in HeLa cells confirmed the presence of VacA in the ER and also found it to traffic to the Golgi apparatus, identifying these two cellular compartments as novel VacA target structures. The exact route of VacA transport remains unclear, but the involvement of both the ER and the Golgi suggests the possibility of retrograde trafficking, analogous to other bacterial toxins like shiga and cholera toxins.

In summary, the elucidation of the VCV proteome and the discovery of the ER and the Golgi apparatus as VacA target structures have generated intriguing starting points for future studies. The detection of many proteins implicated in VacA intoxication effects in the VCV proteome leads to the proposal of VCVs as signaling hubs that may coordinate the complex meshwork of VacA effects. Further investigation of individual proteins is expected to help greatly in illuminating this matter.

## Zusammenfassung

Etwa die Hälfte der Weltbevölkerung ist mit dem humanpathogenen Bakterium *Helicobacter pylori* infiziert. Es kolonisiert das Magenepithel und trägt dort zur Entstehung von Krankheiten wie Gastritis, Magen- und Zwölffingerdarmgeschwüren und Magenkrebs bei. Um erfolgreich zu kolonisieren und zu persistieren, hat *H. pylori* eine Reihe von Mechanismen entwickelt, die unter anderem die Immunantwort des Wirts manipulieren und so die Beseitigung durch das Immunsystem verhindern. Ein wichtiger Faktor hierbei ist das sekretierte vakuolisierende Zytotoxin (*vacuolating cytotoxin*) VacA, das vielfältige Auswirkungen auf Wirtszellen hat. Nach der Endozytose bildet VacA Anionenkanäle in der Endosomenmembran, was zum Anschwellen der Endosomen zu sogenannten VacA-beinhaltenden Vakuolen (*VacA-containing vacuoles*, VCVs) führt. Diese können fast das gesamte Zytoplasma einnehmen. Obwohl Vakuolisierung der markanteste und namensgebende Effekt von VacA ist, konnte die Funktion der Vakuolen bislang nicht geklärt werden.

VacA beeinflusst die Immunantwort des Wirts sowohl stimulierend als auch supprimierend. Am wichtigsten erscheint dabei, dass VacA den Calcium-Stoffwechsel in T-Lymphozyten stört, dadurch die T-Zell-Aktivierung und -Proliferation hemmt und so die Immunantwort unterdrückt. Des Weiteren wird VacA zu Mitochondrien transportiert, wo es den mitochondrialen Apoptoseweg aktiviert. Bisher wurde VacA nur dort und in endosomalen Kompartimenten/VCVs beobachtet. Angesichts der diversen Auswirkungen der VacA-Intoxikation liegt es jedoch nahe, dass das Toxin auch anderswo in der Zelle agiert.

Um die Funktion von VCVs herauszufinden, wurde in der vorliegenden Arbeit das VCV-Proteom erstmals umfassend charakterisiert. Zu diesem Zweck wurden drei Strategien für die VCV-Aufreinigung aus T-Zellen entworfen und getestet. Die erfolgreiche Isolation von VCVs erfolgte mittels einer immunomagnetischen Methode, bestehend aus einem VacA-spezifischen primären Antikörper und einem sekundären Antikörper, der an magnetische Kügelchen gebunden ist. Anschließend wurden die aufgereinigten Vakuolen massenspektrometrisch gemessen. In den analysierten Proben befanden sich nicht nur Proteine des endozytischen Systems, sondern auch Proteine, die normalerweise in anderen zellulären Kompartimenten lokalisiert sind. Diese Rekrutierung von Proteinen vieler zellulärer Vorgänge impliziert, dass VCVs in der VacA-Intoxikation eine zentrale Rolle spielen.

Eine allgemeine Untersuchung des VCV-Proteoms zeigte eine Anreicherung von Proteinen, die an Immunantwort, Zelltod und Signaltransduktion beteiligt sind; all dies sind Prozesse, die VacA bekanntermaßen beeinflusst. Eines der in der Probe vorhandenen Proteine war STIM1, ein Ca<sup>2+</sup>-Sensor, der sich gewöhnlich im endoplasmatischen Retikulum (ER) befindet und wesentlich für den speicherabhängigen Calciumeinstrom (*store-operated calcium entry*, SOCE) ist. Dies unterstützt die Ergebnisse einer gleichzeitig durchgeführten Studie, in der VacA SOCE beeinträchtigte und mit STIM1 kolokalisierte. Eine direkte Interaktion von STIM1 mit VacA wurde mit Hilfe von *pull-down* Experimenten analysiert, konnte aber weder nachgewiesen noch widerlegt werden.

Immunfluoreszenzversuche in HeLa-Zellen bestätigten die Anwesenheit von VacA im ER und zeigten es außerdem auch im Golgi-Apparat. Dadurch wurden ER und Golgi-Apparat als neue Zielstrukturen von VacA identifiziert. Der genaue Transportweg von VacA ist noch ungeklärt, doch die Beteiligung von ER und Golgi-Apparat deutet auf die Möglichkeit des retrograden Transports hin, analog zu anderen bakteriellen Toxinen wie Shiga oder Cholera Toxin.

Zusammenfassend liefern die Aufklärung des VCV-Proteoms und die Entdeckung von ER und Golgi-Apparat als VacA-Zielstrukturen interessante Startpunkte für zukünftige Studien. Da im VCV-Proteom viele Proteine aufgefunden wurden, die für VacA-Intoxikationseffekte von Bedeutung sind, ist es denkbar, dass VCVs als Signalplattformen das komplizierte Geflecht von VacA-Effekten koordinieren. Weiterführende Untersuchungen der einzelnen Proteine im VCV-Proteom könnten bei der Erforschung dieser Hypothese von großem Nutzen sein.

## 1 Introduction

The relationship between humans and *Helicobacter pylori* is a complex one. The human stomach is *H. pylori*'s ecological niche, and it has been for at least 60 000 years, when humans emigrated from Africa [1]. By contrast, it has only been thirty years since the discovery of *H. pylori* as a colonizer of the human stomach [2], which was thought to be sterile before. In these thirty years, *H. pylori* infection has been found to be a major factor in various gastric diseases like gastritis, gastric ulcers and gastric cancer [3,4], and antibiotic therapy is readily available [5]. But lately, more and more evidence is emerging for its beneficial role for the host *- H. pylori* infection may protect from inflammatory bowel disease and immune disorders like asthma [6–8]. Elucidation of this ambivalent relationship may therefore not only help treat and cure *H. pylori*-induced diseases, but also enable the constructive use of its favorable effects.

## 1.1 H. pylori Epidemiology

About half of the world's population is infected with this Gram-negative pathogen, with the prevalence varying between 20% in developed countries and 90% in some developing countries [9,10]. Infection always leads to a chronic gastritis that remains asymptomatic in most carriers [11]. About 10-20% of infected individuals develop symptoms ranging from peptic ulcer disease to atrophic gastritis to gastric adenocarcinoma [9]. The implication of *H. pylori* in carcinogenesis lead to its classification as a group 1 carcinogen by the World Health Organization in 1994 [12]. Infection usually happens in early childhood, is transmitted via the gastric-oral route within families [13,14], and persists for life if not eradicated with antibiotics [9]. Therapy is only administered in symptomatic patients or in individuals with an increased risk for gastric cancer. It consists of two antibiotics and a proton pump inhibitor and is about 80% effective, with the growing problem of resistant strains [5].

### 1.2 Overview of the Infection Process

*Helicobacter pylori* has evolved a variety of features that help the bacterium colonize and persist in the hostile environment of the human stomach. It is not an acidophile and can only survive for minutes in the acidic stomach lumen where the pH is as low as 2 [15]. For this reason, it

must quickly relocate to the mucus layer lining the gastric epithelial surface. The mucus is about 300 µm thick and its pH increases gradually, reaching neutral conditions at the epithelium [16]. H. pylori employs chemotaxis to navigate towards the epithelium. Its namesake spiral shape and its flagella enable the bacterium to move through the mucus in a corkscrew-like motion [17]. A further aid in this process is the urease enzyme expressed by H. pylori: it permits the organism to buffer its microenvironment and periplasm [18], thereby resisting the acidic conditions and modifying the mucus texture, making it less gel-like and thus easier to penetrate [19]. A small number of bacterial cells has been detected inside of epithelial cells, but H. pylori is generally considered an extracellular pathogen [20]. Attachment to the epithelium is facilitated by several adhesins, the most well-researched among them being BabA and SabA. Both bind glycosylated blood group antigens [21,22]. When adherent, *H. pylori* uses a type IV secretion system to inject CagA, a protein encoded by the cytotoxin-associated gene A (cagA), into the host cell [23,24]. CagA has various effects on epithelial cells, altering cell signaling, cell polarity, extrusion, motility, and proliferation, and is heavily implicated in the development of cancer [4,25,26]. Another protein toxin of *H. pylori* and central to this work is the **vac**uolating cytotoxin VacA, which is secreted and then affects different host cell types in diverse ways, contributing to initial colonization and immune evasion, and thereby persistence [27]. Among other things, it can act on both pro- and anti-inflammatory pathways, modulating the host immune response. The complex interplay of CagA, VacA, and other factors to manipulate the host suggests that an escalation is usually avoided to prevent clearance by the host's immune system [14]. The effects of these two main H. pylori toxins on host cells, with particular focus on VacA, will be outlined in further detail below.

#### 1.3 H. pylori Immune Evasion

In order to persist, *H. pylori* escapes, manipulates, and counteracts the host immune response, employing diverse strategies. Usually, bacteria are recognized by pattern recognition receptors on cells of the innate immune system, but *H. pylori* avoids this with modified pathogen-associated molecular patterns. Examples of this are modifications in flagellins and lipopolysaccharide [28,29], two bacterial components that are usually detected by the host. *H. pylori* also actively modulates the immune response by activating the adaptor protein Myd88, causing expression of the anti-inflammatory cytokine IL-10 [30]. The adaptive immune system produces antibodies against *H. pylori*, but these do not confer sufficient immunity, which is also

a problem in vaccination research [31]. In fact, antibodies and B-cells can be neglected in the immune response to *H. pylori* infection [32]. Macrophages are recruited to the site of infection and produce nitric oxide that is toxic to bacteria, but *H. pylori*-induced arginase II and ornithine decarboxylase also cause macrophage apoptosis [33,34]. Neutrophils infiltrate and release reactive oxygen species, which is simultaneously induced and combated by the *H. pylori* factor NapA [35]. Another instance where the bacterium actively interferes is the T-cell response. By acting on dendritic cells, *H. pylori* can cause the preferential development of regulatory T-cells ( $T_{reg}$ ) over immunostimulatory  $T_H 1/T_H 17$  cells, again downregulating the immune response [36]. These are just a few examples of how *H. pylori* avoids clearance by the host immune system. At the same time, a low level of inflammation is maintained, which may be necessary for persistence by providing nutrients for the bacteria [14,27,37]. This complex evasion and manipulation of innate and adaptive immune responses, together with its supply of virulence factors, enable *H. pylori* to establish an optimal niche for colonization.

## 1.4 The Vacuolating Cytotoxin VacA

#### 1.4.1 Vacuolation

As is evident from its name, one effect of VacA on intoxicated cells is the induction of large cytoplasmic vesicles, also termed vacuoles [38,39]. Vacuolation has been observed in various types of cultured and primary cells [38,40,41]. Even though this effect was the first one to be noticed, and remains important as a convenient phenotype for assessing toxin activity and susceptibility, its purpose continues to be unknown. It is still unclear whether vacuolation is an effect in and of itself, or whether it is just a by-product of other processes.

In contrast to most other vacuole-inducing bacteria, vacuoles do not serve as the main site for survival or replication of *H. pylori*. Although it is capable of invading cells, it does so rarely [20], and vacuolation is purely a result of the VacA toxin, not the presence of bacteria.

In the current model of the process of vacuole formation (reviewed in [27]), VacA binds to host cells, and during or after internalization, inserts into the membrane of the newly formed endocytic compartments. In these membranes, it oligomerizes to form anion-selective channels [42] that facilitate the influx of Cl<sup>-</sup> ions, a process that the vacuolar ATPase (vATPase) compensates by importing protons. This results in a low lumenal pH, which is balanced by the diffusion of membrane-permeable weak bases like ammonia into the endocytic compartments,

3

where they become protonated and therefore trapped. Finally, osmotic swelling leads to the expansion of the formerly small vesicles into vacuoles with a diameter of up to 5  $\mu$ m that can take up a large part of the cytoplasm (see Figure 1C). The membranes of these vacuoles carry markers of late endosomes and lysosomes like Rab7 and Lamp1 and 2 [43,44], and are therefore hypothesized to be a hybrid endo-lysosomal compartment [45], but VacA avoids lysosomal degradation [46]. Other proteins that can be found on vacuoles include Rac1 and syntaxin-7 [47,48]. Rab7 and Rac1 are both small GTPases. Rab7 plays an important role in vesicle transport, particularly in the late endocytic pathway, while Rac1 is implicated in actin cytoskeleton reorganization and intracellular signal transduction. Both have been shown to be required for VacA-induced vacuolation [49,47]. The same is the case for the aforementioned vATPase [50–52], but reports differ in the case of syntaxin-7 [53,48].

Regarding the question whether vacuolation is an intermediate step in VacA-induced processes or a by-product, some effects have been shown to be vacuolation-independent. For most effects, however, this has not been specifically investigated. A closer look at the vacuoles themselves may help answer this question.

#### 1.4.2 VacA Protein Structure and Channel Formation

The protein toxin VacA is encoded by a chromosomal gene, *vacA*, which is carried by virtually all *H. pylori* isolates, suggesting an important role in colonization [27]. A 140 kDa protoxin is produced, comprising a signal sequence, a passenger domain, and an autotransporter domain (Figure 1A). Both the signal sequence and the autotransporter domain are cleaved during transport of the protein across the inner and outer bacterial membranes [55–57]. The resulting 95 kDa mature toxin molecules then self-assemble into high molecular weight, flower-shaped structures with six- or seven-fold symmetry (Figure 1B). While water-soluble two-layered dodecamers have been imaged in high resolution [58], membrane channels are probably single-layered hexameric structures with a diameter of about 30 nm [59–61]. Interestingly, when preformed oligomers are added to cells, they do not show vacuolating activity. Instead, they have to be 'activated' by acidic or basic pH, which causes dissociation into monomers [61,62]. This suggests that cell binding depends on the monomeric form of the toxin and has to happen before channel formation can occur.



VacA hexamer/channel

#### Figure 1: Structure of VacA and cellular vacuolation.

(A) Signal sequence (also called s-region) and autotransporter domain are cleaved during VacA secretion. The remaining mature toxin consists of the p33 and p55 domain. The p33 domain contains the i-region and a hydrophobic stretch of about 30 aa, which is essential for channel formation. The p55 domain contains the m-region, which is implicated in cell binding specificity. Amino acid counts of *H. pylori* strain 60190 VacA are indicated at the top. (B) VacA channels comprise six monomers and are shaped like flowers, with the p33 domains making up the channel core and the p55 domains representing the petals. (A) and (B) modified from [54]. (C) VacA intoxication in the presence of weak bases causes the formation of large cytoplasmic vacuoles that take up most of the cytoplasm and can reach a diameter of up to 5  $\mu$ m. Vacuoles are acidic and can therefore be stained with neutral red. Top image, Jurkat E6-1 cells; bottom image, HeLa cells. Scale bars represent 10  $\mu$ m.

The mature VacA protein can be further subdivided into two domains termed p33 and p55 according to their approximate molecular weights (Figure 1A). The crystal structure of the p55 domain has been solved, showing secondary structural features characteristic for autotransporter passenger domains [63]. Structural information on the p33 domain is still lacking, but the p55 crystal structure in combination with multiple electron microscopy studies on VacA oligomers allows at least some inferences. VacA has been called sock-shaped, with the p55 domain being the heel and foot and the p33 domain representing the calf portion (see Figure 1B; [63]). To continue the analogies, in the flower-shaped oligomer or channel, p33 subunits make up the core, while p55 subunits form the petals. The two subunits have been assigned different functions over the years. The p33 domain was originally considered responsible for VacA channel formation and therefore vacuolation [64], consistent with its

position at the center of oligomeric structures. However, p55 was later also found to play a part in this [65]. On the other hand, p33 was observed to contribute to host cell binding [65], a function initially assigned to the p55 domain [66]. Apparently, the two domains' functions cannot easily be separated. Still, p33 is commonly considered the toxic subunit and p55 the cell binding subunit, analogously to AB toxin terminology. Proteolytic cleavage can naturally separate the two domains, but they remain non-covalently attached [56]. When the subunits are expressed independently and then mixed before addition to cells, the wild-type effect is preserved [67,68,65], and the biological significance of cleavage is not clear.

An interesting detail is the protein's only strongly hydrophobic region. It is contained within the first thirty amino acids of p33, and it is presumed to insert into membranes for channel formation [69]. A mutant version of VacA lacking this hydrophobic region (VacA $\Delta$ 6-27) forms channels considerably more slowly than the wild-type, and fails to induce vacuolation [70]. Recently, electron microscopy experiments have shown that oligomers containing VacA $\Delta$ 6-27 have organization defects at their core that may account for this [71]. The fact that mixed mutant/wild-type oligomers exhibit these defects, too, helps explain the dominant negative effect of the mutant that was observed early on [70]. This hydrophobic region contains three tandem repeats of a GXXXG motif characteristic for membrane dimerization domains, one of which (G14XXXG18) was found to be essential for channel formation and cytotoxicity [69,72].

#### 1.4.3 Allelic Diversity of VacA

*H. pylori* are genetically extremely diverse, due at least in part to their natural DNA uptake competence, which facilitates horizontal gene transfer. This diversity is mirrored in VacA sequences. VacA does not show significant homology to any other known protein [39]. Three regions exhibit a particular allelic diversity: the N-terminal signal region (with s1 and s2 alleles), the intermediate region in the p33 domain (i1, i2, and possibly i3), and the mid-region in the p55 domain (m1 and m2) [73–75]. The s1, i1, and m1 alleles are associated with more severe diseases in humans (summarized in [76]) and the s1 and i1 alleles also correlate with the presence of CagA, which also means more severe disease outcomes [75]. The varying medical consequences have at least partially been explained by experimental findings. Different VacA variants affect different cell types in vitro, and a stretch of 148 amino acids within the m-region was found to determine cell type specificity through binding [40,77]. This agrees with earlier reports mentioned above that p55 mediates binding to host cells. The s2 allele has an additional hydrophilic segment at the N-terminus that the s1 allele lacks; these 12 amino acids seem to

prevent vacuolation by altering channel formation [78,79], concurring with the lowered toxicity of s2 VacA. The i-region was only discovered recently and has not been thoroughly studied on a molecular level, but seems to determine VacA toxicity specifically for T-cells [76]. Taken together, the molecular differences of distinct forms of VacA may explain the variance in strain pathogenicity, especially in combination with other virulence factors like CagA (see 1.5.3).

The VacA protein produced by the strain 60190 is somewhat of a standard in VacA research. It has s1/i1/m1 alleles, is highly toxic, and is produced in comparatively large amounts by the bacterium. The sequence details depicted in Figure 1 refer to this variant.

#### 1.4.4 VacA Internalization and Trafficking

A substantial amount of research has focused on VacA binding to host cells and its subsequent internalization, and even though much is now known about both processes, they are far from clear. Multiple studies have searched for the VacA receptor and have yielded different results. Cellular structures that bind VacA include phospho- and glycosphingolipids [80,81,60,82], sphingomyelin [83], and heparan sulphate [84]. Several protein receptors have also been found, some conferring cell-type specificity. The epidermal growth factor receptor (EGFR) was observed to mediate VacA uptake in HeLa cells [85]. Receptor protein-tyrosine phosphatases  $\alpha$ and  $\beta$  (RPTP $\alpha/\beta$ ) were also identified as receptors on kidney and stomach epithelium cells, respectively [62,86]. The  $\beta$ 1 integrin subunit CD29 acts as a complemental receptor on epithelial cells [87]. On T-cells, VacA is endocytosed via the  $\beta$ 2 integrin subunit CD18 [88], and most recently, VacA was reported to bind to multimerin-1 on platelet cells [89]. Additionally, VacA is known to bind the extracellular matrix protein fibronectin [90]. Whatever the receptor may be, there is consensus that VacA localizes to lipid rafts in the host cell membrane, which are necessary for internalization [91,92]. Since for example RPTP $\alpha/\beta$  usually reside outside lipid rafts, it has been speculated whether the VacA-receptor complex relocates to lipid rafts after VacA binding [93]. Glycosylphosphatidylinositol-anchored proteins (GPI-APs), a specific component of lipid rafts, also play a role in VacA internalization, although they are probably not an actual receptor [94,95]. VacA presumably does not induce its own uptake, but instead exploits a constitutive cellular pathway [96,88].

The VacA uptake process appears to be similar in epithelial cells and lymphocytes [97] and is dependent on temperature, energy, and actin, but independent of clathrin and dynamin [98,99,95,94,100]. One group of researchers specifically investigated the VacA-containing compartments shortly after uptake and found these compartments to lack common markers for

known types of endosomes. Also, uptake unusually was independent of most known endocytosis modulators. Due to the presence of the above mentioned GPI-APs, these compartments were therefore identified as a relatively new type of compartments called GEECs (GPI-AP-enriched early endosomal compartments) [96,101]. Most VacA is contained in GEECs approximately 10 min after uptake. Later on, the GPI-APs are transported to recycling endosomes, while VacA is sorted to the degradative pathway, arriving in early endosomes after about 30 min. By way of late endosomes, after 120 min it finally reaches the endo-lysosomal hybrid compartments that then become vacuoles (time points taken from [96,102]) (see Figure 2).

## 1.5 VacA-Induced Effects on Host Cells

Generally, for many intoxication effects, the internalization of VacA seems to be required, but they may also be the result of signaling cascades triggered by VacA binding to receptors. The latter is most probably the case for rapid effects that occur before internalization can even be complete (30-60 min after intoxication) [27]. In some cases, however, the distinction between the two has not been established. This study's focus on VacA-induced vacuoles naturally puts an emphasis on internalization-dependent effects, but does not omit those caused purely by cell binding in order to give a thorough overview.

#### 1.5.1 Mitochondrial Effects and Apoptosis

Besides endosomal compartments, VacA is known to localize only to mitochondria. It first accumulates in endosomes and is later transported to the organelle [103–105], but how the toxin gets there is still a matter of debate. When it was discovered that VacA-containing endosomal compartments attract actin, which forms tails and is able to move the endosomes through the cytosol [102], a way of transport to mitochondria appeared to be found. However, how VacA is then translocated from the endosome to the mitochondria is still unclear. Membrane fusion and direct membrane-to-membrane transfer have both been speculated about, especially since endosomes and mitochondria come into very close physical contact upon VacA intoxication [106]. Emergence into the cytosol and subsequent uptake into mitochondria is also still a possibility [107]. In any case, targeting of VacA to mitochondria depends on the first 32 amino acids in the protein's N-terminus, the same stretch that is responsible for correct channel formation, and this seems to function analogously to a signal sequence [103,105]. The most

prominent effect of the VacA-mitochondria interaction is the induction of apoptosis. The molecular mechanism of this has not been fully clarified, but a current model integrating the available experimental evidence is as follows [108]: VacA is imported into the inner mitochondrial membrane (IMM) [105], where it forms channels. This leads to the influx of Cl<sup>-</sup> ions into the mitochondrial matrix and consequential loss of the mitochondrial membrane potential [109,104]. Mitochondria with a defect membrane potential recruite Drp1, which induces their fission and also the fragmentation of the mitochondrial network [110]. Alongside Drp1, the pro-apoptotic factor Bax is recruited to mitochondria via VacA-containing endosomes [106] and triggers the release of cytochrome c, eventually causing the cell to undergo apoptosis [103,111,112]. Localization of VacA to mitochondria can happen as early as 60 min after intoxication, but is most evident after at least 12 h and has been reported to precede the induction of both mitochondrial fission and apoptosis [106,110].

Mitochondrial effects of VacA and vacuolation are independent of each other, but both depend on VacA channel forming activity [111,106]. This was shown by using channel blocking substances, which abolished apoptotic effects [111]. The use of mutant VacA $\Delta$ 6-27 is not meaningful in this context, because the mutant protein also lacks the sequence necessary for mitochondrial import, causing it to accumulate in endosomes [106]. However, it has not been investigated whether the mitochondrial effects depend on VacA forming a channel in the IMM, or whether VacA needs to form a channel to escape from endosomes [113].

Apoptosis caused by *H. pylori* infection has been observed in epithelial cells and cells of the immune system, including T-, B-, and dendritic cells [112,114,115]. It has been argued to be a major reason for ulcer formation in the stomach, but this is unlikely since a parallel hyperproliferative response maintains epithelial integrity [116]. However, apoptosis of epithelium does lead to faster turnover of cells, possibly providing more nutrients for the bacteria and preventing cancer formation due to damaged cells, while apoptosis of immune cells helps suppress the immune response [108]. VacA-induced apoptosis may therefore be an important factor in persistence.

#### 1.5.2 Immunomodulatory Effects

VacA effects on the host immune response are both pro- and anti-inflammatory. The clustering of endocytic compartments in response to VacA intoxication [44] may purely be a way of getting VacA to its destination, but such hijacking of host vesicular trafficking greatly disrupts natural cellular transport processes and could also explain some of the effects observed in

immune cells. In macrophages, VacA impairs vesicular maturation, leading to the formation of large vesicular compartments called megasomes. This may prevent efficient killing of phagocytosed bacteria [117] and therefore contribute to intracellular survival. In B-cells, VacA interferes with antigen presentation, likely also due to alterations in vesicular trafficking [118]. As mentioned before, *H. pylori* influences the host T-cell response, partly through VacA. Intoxication leads to a downregulation of IL-2 production, which is important for T-cell viability and proliferation [119–121]. VacA inhibits the Ca<sup>2+</sup>-calmodulin-dependent phosphatase calcineurin and, as a consequence of this, the nuclear translocation of the transcription factor NFAT, which controls IL-2 expression. In the T-cell line Jurkat, altered expression of 46 genes was observed following VacA intoxication [119]. VacA is also involved in skewing the T-cell response, causing the differentiation of naïve T-cells into T<sub>reg</sub> cells instead of immunostimulatory types of T-cells [36]. Fascinatingly, both T<sub>reg</sub> cells isolated from *H. pylori* infected individuals and purified VacA can be used to prevent asthma in mice [7,8,122], again illustrating the complex relationship of the bacterium and its host.

#### 1.5.3 CagA Effects and CagA-VacA Interplay

Unlike VacA, the cytotoxin-associated gene (*cag*) product CagA is not a secreted toxin, but is injected into the host cell via a type IV secretion system (T4SS) apparatus [24]. Both the toxin and the T4SS are encoded on the *cag* pathogenicity island (*cag* PAI), a 40-kb-sequence that was probably acquired through horizontal gene transfer [123]. The T4SS pilus and CagA itself interact with  $\beta$ 1 integrin on host cells [124,125]. After translocation of CagA into the host cell cytosol, it is phosphorylated by the host kinases Src and Abl [126,127]. CagA binds at least 20 known host cell proteins in either its phosphorylated or unphosphorylated form. One current hypothesis is that phosphorylated CagA acts like a masterkey, mimicking a phosphorylated host cell protein and thereby hijacking various cellular signaling pathways [128]. The most visually impressive effect of CagA intoxication is the so-called hummingbird phenotype, a distinctive cellular morphology characterized by cell elongation and cell scattering [128]. Other CagA effects are the disruption of cell-cell junctions, loss of cell polarity, changes in motility and proliferation, and the induction of a pro-inflammatory response, namely IL-8 expression (reviewed in [128,4,25]).

From an epidemiological point of view, the presence of the *cagA* gene in *H. pylori* strains infecting humans is associated with more severe forms of disease and cancer [129,130], and there seems to be a connection between CagA and VacA. *H. pylori* strains have been grouped

into two categories, where type I strains produce an active VacA and carry the *cag* PAI and type II strains produce a non-functional (mutated or truncated) VacA and lack the *cag* PAI. Type I strains cause more severe clinical outcomes [131], further highlighting the importance of both pathogenicity factors.

Interestingly, on a cellular level, CagA and VacA have some opposing effects. This starts with the two effects that were observed first for both toxins: cells that show VacA-induced vacuolation show less CagA-induced hummingbird cell morphology, and vice versa [132]. Even though vacuolation and hummingbird phenotype have no meaning per se, this illustrates on an easily comrehensible level that the two toxins counteract each other's effects in the cell. It has been observed that CagA activates and VacA downregulates the pleiotropic transcription factor NFAT [133,119,120]; similarly, VacA induces apoptosis, while CagA suppresses it, leading to its classification as an oncoprotein [26,134]. Moreover, CagA was shown to inhibit VacA uptake into cells and also to interfere with intracellular VacA trafficking, stopping VacA in GEECs and preventing its advancement into late endosomes and mitochondria [135,136], thereby controlling the apoptotic effects of VacA. This suggests that H. pylori may, via CagA, control the intracellular distribution of VacA and its resulting effects. Considering that VacA is a secreted toxin that can diffuse away from bacteria while physical contact between bacteria and host cells is necessary for CagA injection, an interesting possibility emerges: H. pylori may harness VacAinduced effects like apoptosis for initial colonization or to dispose of immune cells recruited to the site of infection [132,135,136,113]. At the same time, directly infected epithelial cells would be protected to avoid loss of bacterial attachment and to limit overall tissue damage.

In most instances where VacA and CagA exert influence on the same pathway, their effects seem to be antagonistic, but one example of a synergistic effect has also been reported. CagA promotes uptake and transcytosis of the iron transporter transferrin while VacA provokes mislocalizatiocan of transferrin to sites of bacterial attachment - the two toxins seem to collaborate to make iron available to *H. pylori* [37]. Another case of collaboration, albeit not on the same pathway, is that the disruption of the epithelial cell layer by CagA (and also VacA) may enable VacA to reach and affect immune cells in lower cell layers [137,138,108].

#### 1.5.4 VacA and Intracellular Calcium Signaling

A role of VacA in intracellular Calcium (Ca<sup>2+</sup>) signaling has been suggested by several groups, but their results are somewhat contradictory. VacA was shown to cause a rapid, transient increase in cytosolic calcium concentrations in epithelial cells, leading to pepsinogen secretion

[139]. In another report, the intracellular Ca<sup>2+</sup> concentration was found to oscillate as a response to VacA intoxication in mast cells, resulting in TNF $\alpha$  transcription and granule secretion [140]. In both cases, the additional calcium was shown to come, at least in part, from intracellular stores. A third publication investigated the increase in cytosolic calcium concentrations following stimulation with the ionophore ionomycin in the Jurkat T-cell line and found that pre-incubation with VacA abrogated this increase [120]. As mentioned in 1.5.2, VacA blocks the proliferation of T-cells at the level of the Ca<sup>2+</sup>-calmodulin-dependent phosphatase calcineurin [119-121]. Usually, during T-cell activation, intracellular calcium is abundant and binds calmodulin, enabling it to activate calcineurin. Calcineurin then dephosphorylates nuclear factor of activated T-cells (NFAT), exposing a nuclear localization sequence. This leads to translocation of NFAT into the nucleus, where it induces the expression of several genes important for T-cell activation, among them IL-2 (reviewed in [141]). What exactly VacA does to inhibit calcineurin is not clear. Some have suggested that VacA channels depolarize the T-cell cytoplasmic membrane, thereby disrupting calcium signaling altogether [120,121]. This hypothesis is supported by the fact that these effects depend on VacA channel forming activity. In conclusion, calcium signaling is essential in T-cell activation, and by disrupting such an important process, VacA can severely impact the host immune response. The molecular details of this, however, need to be further investigated.

#### 1.5.5 VacA - A Multifunctional Mystery

As is evident from all these examples, VacA intoxication has diverse consequences in host cells (see Figure 2). Channel formation has been proposed to be VacA's key mechanism as it is essential for those effects presumed to be most important, namely, vacuolation, induction of apoptosis, and inhibition of T-cell proliferation [92]. There are, however, other effects that are channel-independent, including degradation of epithelial growth factor (EGF), inhibition of procathepsin D maturation, clustering and redistribution of late endocytic compartments, and impaired antigen presentation [142,44,118]. For others, channel dependency has not been shown (all this is reviewed in [92]). It has also been speculated that all VacA-induced effects may in fact be attributed to the hijacking of the host vesicular trafficking system which may cause an extensive disruption of natural intracellular transport processes [113]. Also, importantly, for several effects, the site of VacA action inside the cell remains unclear. There are still many details to be learned to fully understand the complex array of VacA effects.



#### Figure 2: VacA uptake, intracellular trafficking, and effects.

This diagram shows a general overview of what happens after VacA encounters a host cell, starting at the top with VacA binding to the cell surface receptors and channel formation. VacA is endocytosed into GPI-AP-enriched early endosomal compartments (GEECs) and then transported to early endosomes (EE) carrying the EE marker Rab5. These associate with polymerized actin structures (depicted in green) that move them through the cytosol. VacA-containing endocytic compartments can be found in close proximity to mitochondria, where VacA inserts into the inner mitochondrial membrane (IMM) and induces apoptosis. Directed trafficking of VacA to other cellular organelles might also occur. Where VacA influences intracellular calcium signaling, for example, is unclear. Most VacA, however, accumulates in late endosomes (LE) carrying the LE marker Rab7. In the presence of weak bases, VacA causes the swelling of these compartments to easily visible, large vacuoles by forming a channel in the LE membrane. It is conceivable that VacA-containing vacuoles (VCVs) then proceed to recruit host cell proteins and in this fashion, or otherwise, cause the other known VacA effects.

## 1.6 Endosomes as Signaling Platforms

The endosomal network is conventionally viewed as a sorting and trafficking system. It is responsible for the transport of a wide variety of cargo from the cell surface to sites of degradation or recycling. Depending on the cargo, this implies an indispensable role of endosomes in such essential cellular processes as nutrient absorption and hormone-mediated signal transduction [143]. Moreover, a role of endosomes as signaling platforms is now recognized, assuming that signaling complexes are assembled on endocytic vesicles as a way of locally arranging all molecules necessary to trigger a specific signaling cascade [143–145]. The protein content of an endosome may therefore allow conclusions about the signaling pathway or network that the endosome is currently acting on. In the context of VacA intoxication, the presence of VacA on endocytic vesicles alters vesicular protein content [45], thereby possibly changing cellular signaling processes. The elucidation of the proteome of VacA-containing vacuoles (VCVs) could therefore provide information on signaling cascades influenced by VacA intoxication.

### 1.7 Aim of This Study

Even though a large amount of research done on *H. pylori* is concerned with VacA, it is still unclear whether the toxin's most prominent effect, cellular vacuolation, is an effect in and of itself, or just a by-product. Also, for some VacA effects, the cellular site of action is unknown. Integrating these two problems, a hypothesis is proposed: that VacA-containing vacuoles (VCVs) may function as a control center, constituting a platform for intracellular signaling to aid in VacA's multiple actions (see Figure 2). The idea that VCVs do in fact have a purpose is particularly supported by four experimental findings: a) VacA greatly alters vesicular trafficking [142,44,118]; b) VacA causes changes in the protein content of endocytic compartments in intoxicated cells [45], both indicating more than simple toxin endocytosis; c) VacA-containing vesicles acquire an actin tail that propels them through the cell cytoplasm [102]; and d) physical proximity of VacA-containing vesicles and mitochondria may explain how VacA reaches mitochondria [106], and may be how VacA gets to other, yet unknown, sites of action.

The aim of this work was therefore to isolate VCVs from VacA-intoxicated cells and investigate their proteome by mass spectrometric analysis. The types of proteins found on VCVs could help understand not only the purpose of VacA-induced vacuolation, but also elucidate more of the

cellular processes that VacA influences. These experiments were to be conducted in T-cells, which are an important target of VacA. Also, under physiological conditions, T-cells are not usually directly infected by *H. pylori*, so the antagonistic effects of CagA and other infection-related consequences do not have to be considered.

Additionally, the intracellular localization of VacA in intoxicated cells was to be investigated further (see Figure 2). This may lead to a better understanding of known VacA effects and the identification of possible new VacA target structures.

## 2 Materials and Methods

## 2.1 Materials

#### 2.1.1 Chemicals

Chemicals were generally purchased from Roth, Merck, or Sigma-Aldrich unless specified otherwise. Double-distilled water was purchased from Roth and used for PCR reactions, enzymatic digestions and other sensitive applications. Regular distilled water was used for other purposes like the preparation of buffers.

#### 2.1.2 Standard Buffers

| Buffer                 | Ingredients                                                                                             |  |
|------------------------|---------------------------------------------------------------------------------------------------------|--|
| SDS sample buffer (2x) | 100 mM Tris-HCl pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol, 10% (v/v) $\beta\text{-}$                     |  |
|                        | mercaptoethanol, 0.2% (w/v) bromphenol blue                                                             |  |
| PBS                    | 2.7 mM KCl, 138 mM NaCl, 1.5 mM KH <sub>2</sub> PO <sub>4</sub> , 8 mM Na <sub>2</sub> HPO <sub>4</sub> |  |
| TBS                    | 150 mM NaCl, 20 mM Tris-HCl, pH 7.5                                                                     |  |
| HS                     | 20 mM HEPES, 250 mM sucrose, 0.5 mM EGTA, pH 7.2                                                        |  |

Commercially available, cell culture grade PBS (Dulbecco's PBS with calcium and magnesium, Gibco Invitrogen, Life Technologies) was used for all cell and vacuole related experiments, while self-prepared PBS was used for everything else.

An asterisk (\*) denotes the addition of protease inhibitors to a buffer at the following concentrations: 1 mM PMSF, 1 mM sodium vanadate, 1  $\mu$ M leupeptin, 1  $\mu$ M pepstatin.

## 2.1.3 Bacterial Strains and Cell Lines

|                 | Internal ID | Properties/plasmid carried                                              | Source/reference |
|-----------------|-------------|-------------------------------------------------------------------------|------------------|
| E. coli strains |             |                                                                         |                  |
| DH5a            |             | F- $\Phi$ 80d lacZ $\Delta M15 \Delta$ (lacZYA-argF) U169 deoR          | Invitrogen, Life |
|                 |             | recA1 endA1 hsdR17 (rK-, mK+) phoA supE44                               | Technologies     |
|                 |             | λ-thi-l gyr A96 relA1                                                   |                  |
| TOP10           |             | F-mcrA $\Delta$ (mrr-hsdRMS-mcrBC) $\Phi$ 80lacZ $\Delta$ M15           | Invitrogen, Life |
|                 |             | $\Delta lacO74 \ recA1 \ ara \Delta 139 \ \Delta (ara-leu) 7697 \ galU$ | Technologies     |
|                 |             | galK rpsL (StrR) endA1 nupG                                             |                  |

|                   | Internal ID | Properties/plasmid carried                               | Source/reference   |
|-------------------|-------------|----------------------------------------------------------|--------------------|
| BL21(DE3)pLysS    |             | F- ompT hsdS_B (r_B-, m_B-) dcm gal $\lambda(DE3)$ pLysS | Stratagene         |
|                   |             | Cm <sup>r</sup>                                          |                    |
| STIM1-ER          | BK-E19      | BL21DE3 pLysS pET28a(+)-ER-STIM1 (pBK5)                  | This work          |
| STIM1-Cyt         | BK-E21      | BL21DE3 pLysS pET28a(+)-CT-STIM1 (pBK6)                  | This work          |
| GFP               | BK-E22      | BL21DE3 pLysS pET28a(+)-GFP1-10 (pFS1)                   | F. Schindele;[146] |
| H. pylori strains |             |                                                          | ·                  |
| 60190             | BK-H6       | Strain producing an slilml VacA                          | ATCC 49503         |
| 60190∆6-27        | BK-H11      | Strain producing s1i1m1 VacA∆6-27                        | [70]               |
| P12               | BK-H7       | Clinical isolate strain                                  | [147]              |
| P12ΔVacA          | BK-H8       | Clinical isolate strain lacking vacA                     | W. Fischer         |
| Cell lines        |             |                                                          |                    |
| HeLa              |             | Human epithelial cell line                               | ATCC CCL-2         |
| Jurkat E6-1       |             | Human T-cell line                                        | ATCC TIB-152       |
| Jurkat E6-1       |             | Human T-cell line stably expressing EGFP-                | This work          |
| EGFP-Rab7         |             | Rab7                                                     |                    |

## 2.1.4 Growth Media, Supplements and Antibiotics

| Item                      | Supplier                         |
|---------------------------|----------------------------------|
| LB Broth base             | Life Technologies                |
| LB agar                   | Life Technologies                |
| BB medium                 | Oxoid, Thermo Fisher Scientific  |
| GC agar base              | Oxoid, Thermo Fisher Scientific  |
| RPMI medium               | Life Technologies                |
| DMEM medium               | Life Technologies                |
| FCS                       | Life Technologies                |
| Calf serum (bovine serum) | Life Technologies                |
| Horse serum               | Life Technologies                |
| Cholesterol               | Gibco, Invitrogen                |
| Ampicillin                | Sigma-Aldrich                    |
| G418                      | PAA, GE Healthcare Life Sciences |
| Kanamycin                 | Sigma-Aldrich                    |
| Nystatin                  | Sigma-Aldrich                    |
| Penicillin / Streptomycin | Life Technologies                |
| Trimethoprim              | Sigma-Aldrich                    |

## 2.1.5 Commercially Available Kits

| Kit name                                           | Supplier      |
|----------------------------------------------------|---------------|
| Amaxa Cell Line Nucleofector Kit V                 | Lonza         |
| QIAprep Spin Miniprep Kit                          | Qiagen        |
| illustra GFX PCR DNA and Gel Band Purification Kit | GE Healthcare |
| Alexa Fluor 647 Monoclonal Antibody Labeling Kit   | Invitrogen    |

#### 2.1.6 Plasmids

| Plasmid name   | Properties                                                                                       | Source    |
|----------------|--------------------------------------------------------------------------------------------------|-----------|
| pET28a(+)      | E. coli expression vector with N- and C-terminal 6xHis-tags                                      | Novagen   |
| pBK5           | pET28a(+)-ER-STIM1 (ER-luminal part of STIM1) with N- and C-<br>terminal 6xHis-tags              | This work |
| pBK6           | pET28a(+)-CT-STIM1 (cytoplasmic part of STIM1) with N-<br>terminal 6xHis-tag                     | This work |
| pEGFP-C1 Rab7A | Eukaryotic expression vector carrying an EGFP-Rab7 fusion protein and a G418 resistance cassette | X. Sewald |

## 2.1.7 Oligonucleotides

| Name | Sequence                                                | Purpose and properties                             |
|------|---------------------------------------------------------|----------------------------------------------------|
| BK11 | TTC TCT ACA CTC TCT TTT TTT TTT                         | Coupled to TurboBeads (see 2.2.17)                 |
|      | TTT TTT-C <sub>6</sub> H <sub>12</sub> -NH <sub>2</sub> |                                                    |
| BK16 | GAT C <u>GC GGC CGC</u> CTA CTT CTT AAG                 | RP for the cytoplasmic part of STIM1; <u>NotI</u>  |
|      | AGG CTT C                                               |                                                    |
| BK29 | GAT C <u>GA ATT C</u> TC TGA GGA GTC CAC                | FP for the ER-luminal part of STIM1; <u>EcoRI</u>  |
|      | TG                                                      |                                                    |
| BK30 | GAT C <u>GC GGC CGC</u> GCG AGT CAA                     | RP for the ER-luminal part of STIM1; <u>NotI</u>   |
|      | GAG AGG A                                               |                                                    |
| BK32 | GAT C <u>GA ATT C</u> CG TTA CTC CAA GGA                | FP for the cytoplasmic part of STIM1; <u>EcoRI</u> |
|      | GCA C                                                   |                                                    |

All oligonucleotides used in this work were purchased from Biomers.net without modifications, except for BK11 which was modified with an amino linker at the 3' end to enable covalent coupling. Oligonucleotide sequences are written  $5' \rightarrow 3'$ . Restriction enzyme recognition sites are underlined. FP = forward primer, RP = reverse primer.

## 2.1.8 Enzymes and Proteins

| Enzyme/protein                        | Source                                            |
|---------------------------------------|---------------------------------------------------|
| Restriction enzymes                   | Roche Applied Science or Thermo Fisher Scientific |
| Trypsin-EDTA                          | Gibco, Invitrogen                                 |
| T4 DNA ligase                         | Thermo Fisher Scientific                          |
| Ex Taq polymerase                     | Takara, Clontech                                  |
| LA Taq polymerase                     | Takara, Clontech                                  |
| VacA from <i>H. pylori</i> strain P76 | Purified by I. Barwig                             |

## 2.1.9 Antibodies and Antisera

| Antibody/antiserum   | Antigen                                  | Origin                  | Supplier/reference      |  |  |
|----------------------|------------------------------------------|-------------------------|-------------------------|--|--|
| Primary antibodies   |                                          |                         |                         |  |  |
| α-VacA_rec (AK197)   | Recombinant H. pylori P3 His-VacA aa     | Rabbit                  | [147]                   |  |  |
|                      | 92-723                                   |                         |                         |  |  |
| α-RecA (AK263)       | Recombinant whole H. pylori P1 His-      | ri P1 His- Rabbit [148] |                         |  |  |
|                      | RecA                                     |                         |                         |  |  |
| α-BabA (AK277)       | Recombinant H. pylori 26695 His-BabA     | Rabbit                  | [149]                   |  |  |
|                      | aa 123-431                               |                         |                         |  |  |
| α-VacA_nat (AK297)   | Native whole <i>H. pylori</i> 60190 VacA | Rabbit                  | This work               |  |  |
| Pre-immune serum     | Taken from same animal as AK297          | Rabbit                  | This work               |  |  |
| α-Alexa488           | Alexa488                                 | Rabbit                  | Molecular Probes, Life  |  |  |
|                      |                                          |                         | Technologies (A-11094)  |  |  |
| $\alpha$ -calnexin   | Human calnexin peptide (aa 116-301)      | Mouse                   | BD Biosciences (610524) |  |  |
| α-GFP                | Aequorea victoria GFP (aa 3-17)          | Rabbit                  | Sigma (G1544)           |  |  |
| α-giantin            | Human giantin peptide (aa 1-469)         | Rabbit                  | Abcam (ab24586)         |  |  |
| α-His                | Polyhistidine-tag                        | Mouse                   | Antibodes Online        |  |  |
|                      |                                          |                         | (ABIN387699)            |  |  |
| Secondary antibodies |                                          |                         |                         |  |  |
| α-rabbit-POX         | Rabbit IgG                               | Goat                    | Sigma-Aldrich (A0545)   |  |  |
| α-mouse-POX          | Mouse IgG                                | Goat                    | Sigma-Aldrich (A9917)   |  |  |
| α-mouse-Alexa555     | Mouse IgG                                | Goat                    | Molecular Probes, Life  |  |  |
|                      |                                          |                         | Technologies (A21422)   |  |  |
| α-rabbit-Alexa555    | Rabbit IgG                               | Goat                    | Molecular Probes, Life  |  |  |
|                      |                                          |                         | Technologies (A21428)   |  |  |

POX = horseradish peroxidase

## 2.2 Methods

### 2.2.1 Escherichia coli Methods

## 2.2.1.1 Cultivation and Strain Maintenance

*E. coli* were grown either on LB agar plates (LB Agar, Life Technologies) at 37 °C for cloning and other routine experiments or in LB liquid medium (LB Broth Base, Life Technologies) at 200 rpm and 27 °C for protein expression; see table below for concentrations of relevant antibiotics. Culture stocks were generated by collecting the bacteria from agar plates with sterile cotton swabs, resuspending in LB liquid media supplemented with 20% glycerol, and freezing at -70 °C in cryogenic tubes (Nalgene, Thermo Fisher Scientific).

| Antibiotic | Final concentration |
|------------|---------------------|
| Ampicillin | 100 mg/l            |
| Kanamycin  | 50 mg/l             |

## 2.2.1.2 Preparation of Chemically Competent E. coli

*E. coli* DH5 $\alpha$  and BL21(DE3)pLysS were rendered chemically competent using the method of Hanahan 1983. Aliquots of 50 µl were stored at -70 °C until further use. For higher transformation efficiencies, commercially obtained One Shot TOP10 competent cells (Invitrogen, Life Technologies) were used in some experiments.

## 2.2.1.3 Transformation of Chemically Competent E. coli

Aliquots of all strains of chemically competent *E. coli* were thawed on ice, mixed with DNA (100-500 ng of a ligation reaction or 10-100 ng plasmid DNA) and incubated on ice for another 30 min, followed by a heat shock of 30-90 s at 42 °C. 1 ml warm LB medium was added to enable bacterial recovery (37 °C, 200 rpm, 1 h). Bacteria were then plated on selective LB agar plates containing the appropriate antibiotic for selection of transformants.

#### 2.2.2 Helicobacter pylori Cultivation and Strain Maintenance

Serum agar plates for *H. pylori* were made from GC Agar Base (36 g/l, Oxoid, Thermo Fisher Scientific) and supplemented after autoclaving with horse serum, vitamin mix, nystatin and trimethoprim as detailed in the table below.

*H. pylori* were always cultivated at 37 °C under microaerobic conditions (5% O<sub>2</sub>, 10% CO<sub>2</sub>, 85% N<sub>2</sub>). Culture stocks were plated on serum agar plates and left to grow for 2-3 days. Cultures were then passaged onto fresh plates every day and at least once before experiments. From plates, they were transferred to liquid BB medium (Oxoid, Thermo Fisher Scientific) supplemented with cholesterol, nystatin and trimethoprim (respective concentrations see table) and agitated at 90 rpm. Culture stocks were generated by collecting the bacteria from agar plates with sterile cotton swabs, resuspending in BB medium supplemented with 20% glycerol and 10% FCS, and freezing at -70 °C in cryogenic tubes (Nalgene, Thermo Fisher Scientific).

| Additive                                                                           | Final concentration |
|------------------------------------------------------------------------------------|---------------------|
| Horse serum (Invitrogen)                                                           | 8%                  |
| Vitamin mix (100 g/l a-D-glucose, 10 g/l L-glutamine, 26 g/l L-cysteine, 1.1 g/l   | 1%                  |
| L-cystine, 0.15 g/l L-arginine, 0.1 g/l cocarboxylase, 20 mg/l iron(III)nitrate, 3 |                     |
| mg/l thiamine, 13 mg/l p-aminobenzoic acid, 0.25 g/l NAD, 10 mg/l vitamin          |                     |
| B12, 1 g/l adenine, 30 mg/l guanine, 0.5 g/l uracil)                               |                     |
| Nystatin                                                                           | 4400 U/l            |
| Trimethoprim                                                                       | 5 mg/l              |
| Cholesterol                                                                        | 1:250               |

#### 2.2.3 Cell Culture

#### 2.2.3.1 <u>Cultivation and Cell Line Maintenance</u>

All cell lines were maintained at 37 °C and 5% CO<sub>2</sub> with the appropriate media as indicated in the table below and subcultured every 2-3 days. Cell culture media, buffers and additives were obtained from Life Technologies unless otherwise stated. Generally, cells were grown in 75 cm<sup>2</sup> tissue culture flasks (BD Falcon) and in 6-, 12- and 24-well plates (tissue culture treated cell culture clusters, Costar, Corning Inc.). Culture stocks were prepared by centrifuging approximately 10<sup>7</sup> cells at 250 x g for 5 min and resuspending them in 4 ml freezing medium consisting of 50% culture medium, 45% FCS, and 5% DMSO. 1 ml aliquots were stored in cryogenic tubes (Nalgene, Thermo Fisher Scientific) at -70 °C for at least 24 h and then transferred to liquid nitrogen tanks for long term storage.

Cell stocks taken from nitrogen storage were incubated at 37 °C until thawed, washed twice with prewarmed culture medium (centrifugation at 250 x g, 5 min) and then incubated and subcultured at least once before experiments. Jurkat E6-1 EGFP-Rab7 cells were cultured without antibiotic for one day after thawing for better recovery.

Adherent cells (HeLa) were detached from cell culture dishes by treatment with trypsin-EDTA for 3-5 min at 37 °C after a PBS wash step.

| Cell line             | Source       | Medium                                          |
|-----------------------|--------------|-------------------------------------------------|
| HeLa                  | ATCC CCL-2   | DMEM with 10% FCS, 2mM glutamine                |
| Jurkat E6-1           | ATCC TIB-152 | RPMI with 10% FCS                               |
| Jurkat E6-1 EGFP-Rab7 | This work    | RPMI with 10% FCS, 10 mM HEPES, 1 mM sodium     |
|                       |              | pyruvate, 1 mg/ml G418 (PAA, GE Healthcare Life |
|                       |              | Sciences)                                       |

#### 2.2.3.2 Transfection of Jurkat E6-1 Cells

Jurkat E6-1 cells were transfected by electroporation using the Amaxa Cell Line Nucleofector Kit V and a Nucleofector I device (both Lonza) according to the manufacturer's recommendations for this cell line. RPMI medium for transfected cells was supplemented with additional additives (see 2.2.3.1)

Transfection efficiency was examined via microscopy (Leica TCS SP5) or flow cytometry (FACSCanto II, BD Biosciences).

#### 2.2.3.3 Production of a Stable Jurkat E6-1 EGFP-Rab7 Cell Line

Rab7 is a late endosomal marker known to line the membranes of VCVs [43]. A stable Jurkat E6-1 cell line expressing an EGFP-Rab7 fusion protein was created as a tool for better monitoring of the VCV isolation process. The plasmid pEGFP-C1 Rab7A codes for this fusion protein and a G418 resistance cassette.

In order to perform selection of transfected cells with G418, the antibiotic tolerance of untransfected wild-type Jurkat E6-1 cells was examined by treating cells with varying concentrations of G418 (0-1.4 mg/ml in steps of 0.2 mg/ml). A concentration of 1 mg/ml was chosen for selection and applied to cells 24-48 h after transfection. To enrich EGFP-Rab7 expressing cells, the mixed culture was subjected to cell sorting via flow cytometry. Ksenija

Jovanovic at the Institute for Immunology (Ludwig-Maximilians-Universität München) kindly did this with a FACSAria I. Since cell sorting took place in a non-sterile environment, a mixture of penicillin and streptomycin was added to the cells after sorting to avoid bacterial contamination (final concentrations 100 U/ml and 100µg/ml, respectively).

#### 2.2.4 Cloning

#### 2.2.4.1 Isolation of Plasmid DNA from E. coli

Plasmid DNA was prepared from *E. coli* using the QIAprep Spin Miniprep Kit (Qiagen) according to the manufacturer's instructions with the exception that bacteria were grown on plates and first resuspended in PBS before being centrifuged (1000 x g, 5 min) and then resuspended in P1. DNA was eluted with double-distilled water and DNA concentration in the eluate was measured with a NanoDrop ND-1000 spectrometer (PeqLab).

#### 2.2.4.2 <u>Restriction Digestion</u>

Plasmid DNA and PCR amplicons were digested with restriction endonucleases obtained from Thermo Fisher Scientific or Roche Applied Science and the corresponding buffers following the manufacturers' recommendations. Approximately 100 ng DNA were used for restriction digestion analysis and up to 5  $\mu$ g for preparative purposes, with 0.5-1 U/ $\mu$ l enzyme in the reaction and reaction times of 2-16 h.

#### 2.2.4.3 Agarose Gel Electrophoresis

For both analytical and preparative purposes, DNA fragments were separated according to length on 1% agarose gels cast with and run in TAE buffer in horizontal agarose gel electrophoresis chambers (Bio-Rad). Agarose NEEO ultra-quality was purchased from Roth. DNA samples were mixed with 0.17-0.5 volumes of GEBS loading buffer before application to the gel. Gels were either stained with ethidium bromide (1 mg/l) and inspected under UV light or stained with methylene blue (0.1% (w/v)) and destained with water. Relevant DNA bands were excised with a scalpel and purified as detailed in 2.2.4.6.

TAE buffer: 40mM Tris, 20 mM acetic acid, 1 mM EDTA

**GEBS loading buffer**: 20% (w/v) glycerol, 50 mM EDTA, 0.05% (w/v) bromphenol blue, 0.5% sarkosyl
## 2.2.4.4 Ligation

Vector and insert DNA were combined at a molar ratio of 1:3 to 1:7 in a total reaction volume of 10  $\mu$ l containing 5 U of T4 DNA ligase (Thermo Fisher Scientific). The reaction was incubated at 4-20 °C for 4-24 h.

## 2.2.4.5 Polymerase Chain Reaction (PCR)

For this work, DNA was amplified via Polymerase Chain Reaction (PCR) solely for preparative purposes with Ex Taq and LA Taq polymerases (Takara, Clontech). Generally, the manufacturer's protocols were followed. A standard annealing temperature of 54 °C was used. PCR amplicons were analyzed via agarose gel electrophoresis (see 2.2.4.3).

# 2.2.4.6 Purification of DNA from Enzymatic Reactions and Agarose Gels

The illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare) was used according to the manufacturer's instructions to extract DNA from enzymatic reactions (2.2.4.2, 2.2.4.5) or agarose gels (2.2.4.3). The DNA was eluted in double-distilled water.

## 2.2.4.7 DNA Sequencing

Plasmids were sequenced by GATC Biotech AG to confirm the absence of problematic mutations. Sequence data was analyzed with CLC DNA Workbench 6 software.

# 2.2.4.8 <u>Cloning of Polyhistidine-Tagged STIM1 Fragments for Pull-Down Experiments</u>

STIM1 fragments were amplified with specific primers (see table below) and subcloned into pET28a(+) (Novagen), introducing N-terminal polyhistidine-tags for easy purification and detection of the proteins. Restriction enzyme recognition sites are underlined.

| Primer | Sequence                             | Properties                                         |
|--------|--------------------------------------|----------------------------------------------------|
| BK16   | GAT C <u>GC GGC CGC</u> CTA CTT CTT  | RP for the cytoplasmic part of STIM1; <u>NotI</u>  |
|        | AAG AGG CTT C                        |                                                    |
| BK29   | GAT C <u>GA ATT C</u> TC TGA GGA GTC | FP for the ER-luminal part of STIM1; <u>EcoRI</u>  |
|        | CAC TG                               |                                                    |
| BK30   | GAT C <u>GC GGC CGC</u> GCG AGT CAA  | RP for the ER-luminal part of STIM1; <u>NotI</u>   |
|        | GAG AGG A                            |                                                    |
| BK32   | GAT C <u>GA ATT C</u> CG TTA CTC CAA | FP for the cytoplasmic part of STIM1; <u>EcoRI</u> |
|        | GGA GCA C                            |                                                    |

## 2.2.5 Protein Biochemical Methods

## 2.2.5.1 SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Proteins were separated according to size via SDS polyacrylamide gel electrophoresis (SDS-PAGE). The size of the proteins of interest determined the polyacrylamide concentration of the separating gel (6-10%). Gel composition was taken from [150]. Gels were cast and run with a Mini-Protean III vertical gel electrophoresis system (Bio-Rad).

Protein samples were mixed with SDS sample buffer and boiled (10 min, 98 °C) before application to the gel. After electrophoresis, the proteins in the gels were either stained directly (see 2.2.5.3) or transferred to membranes and analyzed by immunoblotting (see 2.2.5.4 and 2.2.5.6, respectively).

SDS-PAGE running buffer: 5 mM Tris-HCl pH8.3, 50 mM glycerol, 0.02% SDS

**SDS sample buffer (2x)**: 100 mM Tris-HCl pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol, 10% (v/v)  $\beta$ -mercaptoethanol, 0.2% (w/v) bromphenol blue

## 2.2.5.2 Preparation of Standardized Bacterial and Cell Lysates for SDS-PAGE

In order to be able to compare different bacterial and cell lysates on an SDS polyacrylamide gel or a Western Blot, the samples were prepared in a standardized manner. For bacteria, 1 ml of a bacterial suspension with an  $OD_{550}$  of 0.2 (corresponding to approximately 6 x 10<sup>7</sup> bacterial cells) was centrifuged at 1000 x g for 5 min. For mammalian cells, 10<sup>6</sup> cells were centrifuged at 425 x g for 5 min at 4 °C. The cell pellets were resuspended in 20 µl RIPA buffer supplemented with protease inhibitors and mixed with 25 µl SDS sample buffer before boiling (98 °C, 10 min). Usually, 5 µl of bacterial and 3 µl of mammalian cell lysates were used for SDS-PAGE.

RIPA buffer: 50 mM Tris-HCl pH 7.4, 125 mM NaCl, 1 mM EDTA, 1% NP-40, 6 mM sodium deoxycholate

## 2.2.5.3 <u>Coomassie Staining of SDS Polyacrylamide Gels</u>

In order to visualize proteins on SDS polyacrylamide gels directly, the gels were stained in a Coomassie solution (0.275% (w/v) Coomassie Brilliant Blue R250 (Biomol), 50% methanol, 10% acetic acid) and subsequently treated with destaining solution (10% methanol, 10% ethanol, 7.5% acetic acid) until all relevant bands were visible. Stained gels were photographed with a Bio-Rad ChemiDoc XRS.

# 2.2.5.4 Transfer of Proteins from SDS Polyacrylamide Gels onto Membrane

For the purpose of immunostaining, proteins were transferred from SDS polyacrylamide gels onto membrane (Immun-Blot PVDF Membrane, Bio-Rad) using semi-dry blotting chambers (Biotec-Fischer). Gel and membrane were sandwiched between pieces of filter paper that had been soaked in anode I/II and cathode buffers on the anode/cathode side of gel and membrane, respectively. A current of 1.2 mA/cm<sup>2</sup> was applied for 60-70 min. After transfer, the membrane was either dried (1 h at 37 °C or over night at RT) or directly used for immunoblotting. Dried membrane was briefly reactivated with methanol before further use.

Anode I buffer: 300 mM Tris-HCl pH 10.4, 10% methanol

Anode II buffer: 25 mM Tris-HCl pH 10.4, 10% methanol

Cathode buffer: 25 mM Tris-HCl pH 9.6, 40 mM 6-amino caproic acid, 10% methanol

# 2.2.5.5 Spotting of Protein Samples onto Membrane for Dot Blots

Purified protein samples were also spotted directly onto membrane without prior SDS-PAGE in order to keep the proteins' native conformation. To this end, PVDF membrane (Immun-Blot PVDF Membrane, Bio-Rad) was briefly activated in methanol and kept moistened with TBS. A self-made dot blot apparatus was used to immobilize the membrane and to administer samples (1-10 ng of protein mixed with 50-100  $\mu$ l of TBS for better dispersal of sample within the well). Vacuum was applied to remove excess liquid and the membrane was subsequently used for immunoblotting.

# 2.2.5.6 Immunoblotting (Western Blot)

Membranes were incubated in blocking solution (5% skim milk in TBS) for at least 1 h to saturate unspecific binding sites. Primary and secondary antibodies were applied as detailed in the table below. Primary antibodies were diluted in blocking solution and incubated for at least 1.5 h at RT (or for longer periods at 4 °C), while secondary antibodies were diluted in 1% skim milk in TBS and incubated for 45-60 min at RT. After antibody incubation steps, membranes were washed with TBS-T (TBS containing 0.075% Tween 20), usually three times for 7 min each. Addition of substrate (Immobilon Chemiluminescent HRP Substrate, Millipore) initiates a chemiluminescence reaction which is catalyzed by horseradish peroxidase (POX) bound to the secondary antibody. This reaction was detected with X-ray films (Fuji Medical X-Ray Films Super RX, Fujifilm) or via a Bio-Rad ChemiDoc XRS.

|                                                     | Origin | Dilution |  |  |
|-----------------------------------------------------|--------|----------|--|--|
| Primary Antibodies (diluted in 1% skim milk in TBS) |        |          |  |  |
| α-VacA_rec (AK197)                                  | Rabbit | 1:2000   |  |  |
| α-VacA_nat (AK297)                                  | Rabbit | 1:10 000 |  |  |
| α-His                                               | Mouse  | 1:10 000 |  |  |
| α-calnexin                                          | Mouse  | 1:2500   |  |  |
| α-GFP                                               | Rabbit | 1:3000   |  |  |
| Secondary Antibodies (diluted in TBS-T)             |        |          |  |  |
| α-mouse-POX                                         | Goat   | 1:10 000 |  |  |
| α-rabbit-POX                                        | Goat   | 1:10 000 |  |  |

# 2.2.5.7 Determination of Protein Concentration

A colorimetric assay was employed to measure the concentration of protein solutions, e.g. purified VacA. Varying dilutions of the protein solution of interest and a dilution series of BSA (0-0.6 mg/ml) were assayed with Protein Assay Dye Reagent Concentrate (Bio-Rad) according to the manufacturer's instructions. Absorbance at 595 nm was measured in 96-well plates (Costar EIA/RIA plate, flat well, medium binding, Corning) using a Tecan Sunrise microplate reader.

In some instances, most notably after labeling with Alexa dyes (see 2.2.5.9), samples were measured with the UV-VIS module of a NanoDrop ND-1000 spectrometer (PeqLab) because the label would have interfered with the colorimetric assay. In these cases, protein concentration was calculated using the relevant protein's specific extinction coefficient.

# 2.2.5.8 Protein Precipitation for SDS-PAGE

To precipitate proteins, 450  $\mu$ l protein solution were successively mixed with 900  $\mu$ l methanol, 300  $\mu$ l chloroform, and 300  $\mu$ l water, with thorough mixing after each addition. Centrifugation (20 000 x g, 2 min) separated hydrophobic and hydrophilic phases, and the upper phase was removed. After addition of 1.5 ml methanol to the remaining liquid, the sample was mixed and centrifuged again for 5 min. All supernatant was discarded, and the precipitate was dried in a vacuum concentrator and resuspended in 1x SDS sample buffer. Agitation for 10-60 min ensured complete solution before boiling and analysis by SDS-PAGE and Western Blot (see 2.2.5.1, 2.2.5.4, and 2.2.5.6).

### 2.2.5.9 Labeling of VacA with Alexa Dyes

Purified VacA was labeled with different Alexa fluorophores obtained from Invitrogen, using either the Alexa Fluor 647 Monoclonal Antibody Labeling Kit or individually bought Alexa Fluor carboxylic acid succinimidyl esters. The kit was used according to the manufacturer's instructions while the separate dyes were used following a modified protocol. The desiccated dye was resuspended in 100  $\mu$ l MeOH for aliquoting into four portions and re-dried in a vacuum concentrator. 112  $\mu$ g VacA were mixed with 50  $\mu$ l 1 M NaHCO<sub>3</sub> before adding PBS(-) to a total volume of 500  $\mu$ l. One portion of dye (250  $\mu$ g) per labeling reaction was solved in 20  $\mu$ l DMSO and added to the mix, which was then incubated at RT in the dark for 45 min under gentle agitation. To remove unbound dye, the sample was extensively dialyzed against PBS(-) at 4 °C (over night against 4 l and another 4 h against 1 l) in Slide-A-Lyzer dialysis cassettes (100K MWCO, Thermo Fisher Scientific). Protein concentration and degree of labeling were assessed using a NanoDrop ND-1000 spectrometer according to Invitrogen's instructions, and toxin activity was assayed via neutral red uptake (see 2.2.8)

**PBS(-)**: 7.7 mM Na<sub>2</sub>HPO<sub>4</sub>, 2.5 mM NaH<sub>2</sub>PO<sub>4</sub>, 150 mM NaCl

### 2.2.6 Purification of VacA

To produce large amounts of VacA, H. pylori was grown in sequential liquid cultures of 30-250 ml for total final culture volumes of about 1 l. These cultures typically had a final OD<sub>550</sub> of around 0.35 and were harvested by centrifugation (6000 x g, 20 min, 4 °C). All further steps were performed at 4 °C or on ice. The cell pellet was discarded and the supernatant, containing the secreted toxin, was sterile-filtrated (Nalgene Rapid-Flow Sterile Disposable Bottle Top Filters with PES Membrane, 0.45 µm pore size, Thermo Fisher Scientific). VacA was precipitated by the slow addition of one volume of cold, saturated ammonium sulfate solution under continuous slow stirring. After 4-16 h of further stirring, the precipitate was sedimented by centrifugation (20 000 x g, 30 min, 4 °C) and thoroughly resuspended in a total volume of 30 ml cold PBS. Sample volume was reduced to 4 ml with a centrifugal filter unit (Amicon Ultra, Ultracel, 100K MWCO, Millipore) (4000 x g, 4 °C) to simplify gel filtration, which was carried out with a Sephacryl S300 16/60 column on an ÄKTAexplorer system (Amersham Biosciences, GE Healthcare Life Sciences), using a running buffer containing 100 mM NaCl and 50 mM NaPO<sub>4</sub> at pH 7.4. The resulting fractions were examined for purity via SDS-PAGE and Coomassie staining, pooled accordingly, and again concentrated by centrifugation to a final volume of about 1-1.5 ml. The final protein concentration was determined as described in 0 and usually

ranged between 0.4 and 1 mg/ml in a volume of 0.5-1.5 ml. For every preparation of VacA, the toxin's activity was tested in a vacuolation assay (see 2.2.8).

After purification, VacA is oligomerized and thus biologically inactive. Before all intoxication experiments, purified VacA was therefore acid-activated. This was done by adding 0.2 volumes of 0.3 M HCl, incubating at 37 °C for 20-30 min, and neutralizing with 0.2 volumes of 0.3 M NaOH.

### 2.2.7 Preparation of Concentrated Culture Supernatant (CCS)

Concentrated *H. pylori* culture supernatant (CCS) was prepared as a faster and cheaper alternative to purified VacA for experiments that did not necessitate absolute purity of the toxin. To this end, liquid cultures were grown and subjected to ammonium sulfate precipitation as described in 2.2.6. The resuspended precipitate was then directly dialyzed against PBS (dialysis tubing purchased from Medicell) (over night against 5 l and another 4 h against 1 l). Vacuolating activity of CCS was also verified in a vacuolation assay (see 2.2.8) every time, and the volume of CCS to be used in experiments was adjusted so that its vacuolating activity equaled that of 1  $\mu$ g/ml purified VacA. Contrary to purified VacA, CCS does not have to be acid-activated.

### 2.2.8 Vacuolation Assay

Cytotoxic activity of newly prepared VacA or CCS, or activity of labeled VacA, was confirmed in a vacuolation assay. The fact that VacA-induced vacuoles can be stained with neutral red enables the quantification of toxin activity via neutral red uptake. This assay was performed on HeLa cells with a confluency of 70-90%, usually seeded one or two days before the experiment in 12-well tissue culture plates. VacA was acid-activated and added to cells to a final concentration of 1 µg/ml. In the case of CCS, different volumes were used (5-20 µl/ml) and compared to the last preparation of VacA. As a non-intoxicated control, one well was treated with 'acid-activated' water instead of VacA. After 4 h of incubation, NH<sub>4</sub>Cl was added to a final concentration of 2 mM to enlarge vacuoles (30-60 min). The cell medium was then replaced with RPMI supplemented with 10% FCS and 1:50 neutral red solution (0.4% in PBS, Merck). After another 10 min, the cells were washed twice with PBS containing 0.5% BSA. The neutral red taken up into vacuoles was then extracted with 70% ethanol/0.37% HCl and its absorbance was measured in a 96-well plate (Costar EIA/RIA plate, flat well, medium binding, Corning) at 534 nm (reference wavelength 405 nm) using a Tecan Sunrise microplate reader. A simpler variation of this approach was also used to ensure successful intoxication in other experiments, e.g. before vacuole isolation (see 2.2.19). Here, neutral red was added directly to a small aliquot of intoxicated cells and vacuolation was confirmed via microscopy.

# 2.2.9 Vacuolation Time Course

In order to ensure ideal VCVs for vacuole isolation, vacuolation in Jurkat E6-1 cells was observed over time. Neutral red uptake was used as an indicator for both number and size of vacuoles, and a variation of the neutral red uptake vacuolation assay (2.2.8) was performed with Jurkat E6-1 cells for different periods of intoxication.  $2 \times 10^5$  cells were seeded in 1 ml medium in 12-well plates. For each time point (4, 8, 24h), one well was intoxicated with 20 µl CCS (see 2.2.7), while another well was not. NH<sub>4</sub>Cl was added to a final concentration of 2 mM to all wells at the time of intoxication. After 4, 8, and 24 h, neutral red solution was added directly to the cells (1:50), and another 10 min later, the cells were washed twice with PBS/0.5% BSA by centrifuging at 200 x g for 5 min. Neutral red was extracted from vacuoles with 70% ethanol/0.37% HCl and its absorbance was measured in a 96-well plate at 534 nm (reference wavelength 405 nm). The arithmetic mean of the absorbance of all non-intoxicated wells was used as a blank value to normalize the measurements of the intoxicated cells. A one way ANOVA was performed on the data, followed by a Kruskal-Wallis test and a comparison of all pairs of columns. The data was analyzed with GraphPad Prism 5.

### 2.2.10 Production of α-VacA\_nat

An antiserum was raised against purified, native VacA in a rabbit by Gramsch Laboratories according to their standardized protocol. Purified VacA (see 2.2.6) was injected on day one and 21 (75  $\mu$ g, in dorsum, neck and shoulder) and again on day 42, 49, and 56 (50  $\mu$ g, intramuscularly in the hind thigh). Serum was taken on day 63 (boost #1) and on day 70 (boost #2), stabilized with azide, and received from Gramsch Laboratories. The second boost was named AK297 ( $\alpha$ -VacA\_nat) and characterized for this work. Also, pre-immune serum of the same animal was used for comparison (see 2.2.11).

## 2.2.11 Vacuolation Inhibition Assay

It was investigated whether  $\alpha$ -VacA\_nat had the capacity to inhibit VacA-induced vacuolation through binding to VacA. To this end, a vacuolation assay was performed as in 2.2.8 but with

two added elements: one, heat-inactivation of complement proteins in antisera (56 °C, 30 min) parallel to VacA acid-activation, and two, incubation of (acid-activated) VacA with (heat-inactivated) sera to allow binding (30 min on ice). Prior to this experiment, the total protein content of all antisera was measured (2.2.5.7). For each antiserum, a volume equivalent to 600  $\mu$ g protein was used to (potentially) inhibit 1  $\mu$ g VacA.

Since neutral red uptake of unintoxicated cells varies considerably from one experiment to the next, absolute measured values cannot be used. Instead, an unintoxicated cell sample treated with NH<sub>4</sub>Cl served as a negative background control. Another sample intoxicated with VacA and treated with NH<sub>4</sub>Cl but without any antiserum served as a positive control that was set to 100%, while all other samples were expressed in relation. This was done for all three independent experiments separately. The data was analyzed with Graph Pad Prism 5.

### 2.2.12 Pull-Down Experiments

Pull-down experiments with the aim of investigating a possible interaction of VacA with STIM1 were performed in two directions for verification. For both directions, VacA was incubated with lysates of *E. coli* expressing STIM1 protein fragments. In the first approach, Ni-NTA agarose (Qiagen) was used to precipitate the His-tagged STIM1 fragments, while in the second,  $\alpha$ -VacA\_nat and Protein G agarose (Roche Applied Science) were used to precipitate VacA.

To express the polyhistidine-tagged STIM1 fragments or controls, the relevant *E. coli* strains (BK-E19, 21, 22, 23) were grown at 27 °C and 200 rpm in LB medium supplemented with kanamycin until they reached an  $OD_{550}$  of 0.5-0.6, at which point expression was induced by the addition of IPTG to a final concentration of 1 mM. Three hours later, the cultures were centrifuged (4000 x g, 20 min, 4 °C) and the bacterial pellet was resuspended in 1/50 volume lysis buffer (specified below). Samples were handled on ice from here onwards. Cells were lysed via sonication (Sonifier 250, Branson; 10-50% duty cycle, output control 5, three 20 s intervals followed by 20 s rest) and the lysate was centrifuged (15 000 x g, 30 min, 4 °C) to remove cell debris.

For the precipitation of 6xHis-tagged STIM1 fragments, PBS\* was used as lysis buffer. The debris-free lysate was mixed with acid-activated VacA at 10  $\mu$ g/ml and one volume of Ni-NTA beads that had been washed with PBS twice (centrifugation at 500 x g, 5 min, 4 °C). Samples were incubated over night at 4 °C under gentle agitation. After three washes with PBS\*, the beads were resuspended in 1/2 volume of PBS\*, of which 10  $\mu$ l (1/50 of the total sample) were applied to an SDS polyacrylamide gel for subsequent analysis via Western Blot.

For the precipitation of VacA, PBS\*/0.01% NP-40 was used as lysis buffer. After the removal of cell debris, the supernatant was incubated with acid-activated VacA at a final concentration of 4  $\mu$ g/ml for one hour at 4 °C under gentle agitation to enable the STIM1 protein fragments to bind to VacA.  $\alpha$ -VacA\_nat was then added (1:100) to bind VacA (over night, 4 °C), and 1/10 volume Protein G agarose was incubated with the samples for another 2 h to bind the primary antibody. The agarose beads were washed three times with PBS\*/0.01% NP-40 (centrifugation at full speed, 30-60 s) and resuspended directly in 2/25 volumes 2x SDS sample buffer. 10  $\mu$ l of this (1/5 of the total sample) were applied to an SDS polyacrylamide gel for subsequent analysis via Western Blot.

### 2.2.13 Immunostaining Experiments

To investigate the localization of VacA in intoxicated HeLa cells, cells were treated with Alexalabeled VacA and subsequently stained for Golgi apparatus marker giantin and ER marker calnexin. Similarly, co-intoxication with VacA and cholera toxin subunit B (CTxB), both fluorescently labeled, was performed.

Also, to further characterize the new antibody  $\alpha$ -VacA\_nat, it was used to stain Alexa-labeled VacA in intoxicated HeLa cells. Using a secondary antibody labeled with a different fluorophore than the one coupled to VacA facilitated a direct comparison of the signals of the immunostain with that of labeled VacA.

50 000 cells were seeded onto untreated glass cover slips (Menzel-Gläser, 12 mm, Omnilab) in 24-well plates on the day before the experiment. Before intoxication, the cell medium was changed to ensure equal volumes of 500  $\mu$ l in each well. 3  $\mu$ l VacA-Alexa488 or 2  $\mu$ l VacA-Alexa568 (all acid-activated) were applied per well; this had previously been titrated as the ideal volumes for these batches of labeled VacA. CTxB-Alexa555 (Molecular Probes, Life Technologies) was applied at a concentration of 1.6  $\mu$ g/ml. Samples were kept in the dark as much as possible to avoid fluorphore bleaching and washed three times with PBS between treatments and antibody incubation steps. Intoxication was done for 4 h at 37 °C and 5% CO<sub>2</sub>, as usual, but all subsequent incubation steps were carried out at room temperature and normal atmosphere. Cells were fixed with PFA (4% in PBS, 20 min), followed by permeabilization with Triton X-100 (0.1% in PBS, 10 min) and a blocking step with blocking buffer (8% calf serum in PBS, 30 min). Cover slips were then sequentially incubated with 70  $\mu$ l primary and secondary antibody solution on parafilm for 50-60 min. After a final wash, the cover slips were mounted

onto glass slides using VectaShield mounting medium (Vector Laboratories) supplemented with 1 µg/ml DAPI and fixed with nail polish.

|                                                   | Origin | Dilution |  |  |  |
|---------------------------------------------------|--------|----------|--|--|--|
| Primary antibodies (diluted in blocking buffer)   |        |          |  |  |  |
| α-calnexin                                        | Mouse  | 1:200    |  |  |  |
| α-giantin                                         | Rabbit | 1:400    |  |  |  |
| α-VacA_nat (AK297)                                | Rabbit | 1:5000   |  |  |  |
| Secondary antibodies (diluted in blocking buffer) |        |          |  |  |  |
| α-mouse-Alexa555                                  | Goat   | 1:1000   |  |  |  |
| α-rabbit-Alexa555                                 | Goat   | 1:1000   |  |  |  |

# 2.2.14 Microscopy and Image Analysis

Microscopy samples (most importantly samples produced with the methods detailed in 2.2.13 and 2.2.19) were examined with a Leica TCS SP5 confocal microscope. Routine image processing was done with ImageJ 1.45h (National Institutes of Health) while Volocity 6.0.1 (Perkin Elmer) was used for colocalization analyses.

# 2.2.15 Homogenization of Jurkat E6-1 Cells

For various purposes, most notably for all approaches of VCV isolation, Jurkat E6-1 cells were homogenized using a ball homogenizer (Isobiotec) and an exclusion size of  $10 \mu m$ .

Cells were handled on ice for the entire procedure and washed twice with cold PBS before being centrifuged (250 x g, 5 min) and resuspended in PBS\* (exemplarily,  $10^7$  cells were washed with 2 x 10 ml and resuspended in 3 ml). The cell suspension was transferred to disposable 3 ml Luer Lok syringes (BD Biosciences) and passaged 9 times through the ball homogenizer, which had previously been washed with distilled water and flushed with PBS\*. The homogenate was cleared of intact cells and large debris particles by centrifugation (200 x g, 10 min, 4 °C) before being processed further.

# 2.2.16 Sequential VCV Centrifugation

To analyze VCV sedimentation properties, Jurkat E6-1 EGFP Rab7 cells were treated with  $1 \mu g/ml$  VacA and 2mM NH<sub>4</sub>Cl for 5 h. 1 ml homogenate was then sequentially centrifuged (10 min, 4 °C) at 200, 600, 1000, 3000, 6000, 10 000, 15 000, and 20 000 x g. The pellets of all

steps were resuspended and boiled in 50  $\mu$ l SDS sample buffer, 10  $\mu$ l of which were applied to an SDS polyacrylamide gel. Another 1 ml each of cell suspension and homogenate were centrifuged and treated as described above to serve as controls. All fractions were analyzed for the presence of VacA and EGFP-Rab7 by Western Blot.

## 2.2.17 TurboBeads Methods

## 2.2.17.1 Coating of TurboBeads

One approach for the isolation of VCVs was to couple VacA to nanoscale magnetic beads (Carboxyl coated TurboBeads, TurboBeads LLC) that would be endocytosed along with VacA. The vacuoles were then supposed to be extracted from cell homogenate via magnetic separation. According to the manufacturer, the beads have a mean diameter of 30 nm, an average weight of  $1.26 \times 10^{-16}$ g, and 7560 carboxy groups per bead. 70 µg VacA and VacA-Alexa488 were coupled to 330 µl TurboBeads (approximately 0.12 µmol beads), aiming to couple one VacA molecule to one bead.

The manufacturer's protocol for the coupling of protein to the TurboBeads was modified slightly. Beads were subjected to an ultrasonic bath for a few minutes to dissipate aggregates and washed three times with PBS and twice with MES buffer before being resuspended in 1 volume MES buffer. To this were added 1 volume each of 52 mM CMC (1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) (substituted for EDC, solved in MES buffer) and 87 mM NHS (solved in MES buffer). This mixture was incubated for 20 min at RT under agitation to activate carboxyl groups. Protein ligand was added and the coupling reaction was again incubated for 20-60 min, after which the beads were washed three times with PBS-T<sub>beads</sub> and resuspended in 1 volume saturation solution (10 mM ethanolamine, 0.05% sodium azide in PBS). Another 20 min incubation period followed to ensure saturation.

MES buffer: 54 mM in H<sub>2</sub>O, pH 5.5

PBS-T<sub>beads</sub>: 3.7 mM NaH<sub>2</sub>PO<sub>4</sub>, 18 mM Na<sub>2</sub>HPO<sub>4</sub>, 314 mM NaCl, 0.05% Tween 20, pH 7.4

### 2.2.17.2 Intoxication with TurboBeads for Microscopy

VacA TurboBeads were subjected to sonication (10 min) and acid-activation before addition to cells. 10 µl of beads, corresponding to a theoretical 2.1 µg VacA, were used to intoxicate  $1.5 \times 10^5$  Jurkat E6-1 cells in 1 ml culture medium. 40 min of incubation on ice were followed by another 200 min at 37 °C for a total of the usual 4 h before addition of NH<sub>4</sub>Cl (30-60 min). Cells were then washed once with culture medium without FCS and centrifuged onto untreated glass cover slips (Menzel-Gläser, 12 mm, Omnilab). PFA was added to a final concentration of 15%. After 30 min incubation at RT, the cover slips were washed twice with PBS and once with distilled water and then mounted onto glass slides.

## 2.2.17.3 Intoxication of TurboBeads for Quenching Assay

2.5 x 10<sup>5</sup> Jurkat E6-1 cells were seeded in a volume of 500 µl in 24-well plates. VacA TurboBeads were again subjected to sonication (10 min) and acid-activation before addition to cells. 10 µl beads were used per well, as were 0.5 µg of VacA-Alexa488. Intoxication was carried out for 40 min at RT. After this, all samples were handled on ice and washed twice with cold PBS (centrifugation at 830 x g for 6 min). Cells were resuspended in 400 µl PBS supplemented with 4µg  $\alpha$ -Alexa488 where appropriate, followed by 30 min of gentle agitation at 4 °C. Fluorphor internalization was then analyzed by flow cytometry (FACSCanto II, BD Biosciences).

## 2.2.18 Vacuole Sorting by Flow Cytometry

One approach to purify VCVs was to make use of different fluorescent labels and sort VCVs from homogenate via flow cytometry. The late endosomal marker Rab7 is known to line VCV membranes [43], so a cell line stably expressing an EGFP-Rab7 fusion protein (2.2.3.3) was intoxicated with Alexa647-labeled VacA. In this setting, VCVs (and only VCVs) should be positive for both EGFP and Alexa647 fluorophores and therefore could be unambiguously sorted via flow cytometry.

Cells were intoxicated with varying amounts of labeled, acid-activated VacA (depending on the labeling batch and its specific activity) and 2 mM NH<sub>4</sub>Cl over night and homogenized as described above (2.2.15). The homogenate was sometimes centrifuged and resuspended in a smaller volume of PBS\* to increase VCV concentration; various centrifugation conditions were tried, for example 5000 x g, 15 min, 4 °C. Three different FACS devices were used with the generous help of Dr. Matthias Schiemann and Lynette Henkel at the Flow Cytometry Core Unit

of the Institute for Medical Microbiology, Immunology and Hygiene (Technische Universität München): a FACSAria IIIu (BD Biosciences), an S3 Cell Sorter (Bio-Rad), and a MoFlo Legacy (Beckman Coulter). All of these are equipped with the standard laser setup and filters needed, but differ regarding nozzle diameter (70-100  $\mu$ m), optical sensitivity, internal pressure and resulting shearing forces. Particles positive for both fluorophores were sorted into one tube, and particles positive for EGFP only were sorted into another. Sorted fractions were then analyzed by microscopy (Leica TCS SP5) and SDS-PAGE.

## 2.2.19 Isolation of VCVs by Immunomagnetic Separation

Generally, the protocol for the isolation of VCVs was adapted from [151] and modified as needed. For the purpose of mass spectrometric analysis of VCVs, eight 75 cm<sup>2</sup> flasks of cells (corresponding to approximately 8 x  $10^7$  cells) were used. The following protocol describes this scale of experiment.

Jurkat E6-1 or Jurkat E6-1 EGFP-Rab7 cells were intoxicated with CCS or VacA (1 µg/ml) with simultaneous administration of NH<sub>4</sub>Cl and incubated over night. Starting with homogenization (2.2.15), all steps were carried out on ice or at 4 °C. The homogenate was blocked with 2% calf serum (30 min) and then incubated with  $\alpha$ -VacA\_nat (1:500, 1 h). A centrifugation step was done to remove primary antibody (3000 x g, 30 min) and the pellet was resuspended in 4 ml PBS\*. MACS Anti-Rabbit IgG MicroBeads (Miltenyi) were added at 1:15 and incubated once more for 30 min (all binding incubation steps were performed under gentle agitation). The beads were then applied to three MACS MS separation columns (Miltenyi) equilibrated with 0.5 ml PBS\*. After sample binding, the columns were washed twice with 0.5 ml PBS\* and elution was achieved by removing the column from the magnetic holder and pressing with the supplied piston.

Intact cells, homogenate, column flowthrough and eluate were examined by microscopy and SDS-PAGE to monitor the procedure. For microscopy,  $200/200/33/13 \mu l$  of the respective fraction were applied to an 8-well slide ( $\mu$ -Slide 8 well ibiTreat microscopy chamber, Ibidi) in a total volume of at least 200  $\mu l$  per well, centrifuged (600 x g, 10 min, 4 °C) and analyzed shortly thereafter. Proportions of the individual fractions were kept similar to facilitate comparison of samples with respect to VCV numbers. For SDS-PAGE, the same fractions (250/250/750/750  $\mu l$ , respectively) were processed by centrifugation (15 000 x g, 10 min, 4 °C), resuspension in 50  $\mu l$  2x SDS sample buffer, and boiling. 20  $\mu l$  of each fraction were applied to SDS polyacrylamide gels. In this case, unequal proportions of the individual fractions were used to ensure that

protein would be visible in all samples after Coomassie staining for comparison of protein composition.

Finally, for analysis by mass spectrometry, 750  $\mu$ l eluate were centrifuged (15 000 x g, 10 min, 4 °C) and the supernatant was removed. The sample was rapidly frozen in liquid nitrogen before being stored at -70 °C until it was shipped to the mass spectrometry facility on dry ice.

### 2.2.20 Mass Spectrometry

Mass spectrometric analysis of isolated vacuoles (see 2.2.19) was kindly done by Andreas Otto at the Institute for Microbiology of the Ernst-Moritz-Arndt-University Greifswald as detailed in [152]. Data base searching was adjusted according to the organism of vacuole origin, using the human UniProt data base.

## 2.2.21 Mass Spectrometry Data Processing

The results of the mass spectrometic tests were obtained in the form of Excel files with the names of proteins matching identified peptides and corresponding UniProt accession numbers. Protein information was retrieved from UniProt using these accession numbers, and analysis was restricted to reviewed (Swiss-Prot) entries. Proteins' subcellular location was taken directly from UniProt's Subcellular Location column, while information about proteins' biological process was extracted from the Gene Ontology (GO) column and the GO tree provided at the UniProt web page.

### 2.2.22 Isolation of Endoplasmic Reticulum from Jurkat E6-1 Cells

A protocol established by Jo-Ana Herweg (Department of Microbiology, Biozentrum der Universität Würzburg) was adapted in order to investigate whether VacA localizes to the endoplasmic reticulum (ER) of intoxicated cells.  $2 \ge 10^7$  Jurkat E6-1 cells were seeded in a total volume of 20 ml (two 75 cm<sup>2</sup> flasks) and intoxicated with 3 µg/ml acid-activated VacA (see 2.2.6). After 4 h of incubation, the cells were washed twice with cold PBS and resuspended in a total of 5.5 ml of IEB\* before being homogenized with a ball homogenizer (see 2.2.15). All steps after this were performed on ice or at 4 °C. The homogenate was centrifuged three times, yielding three fractions: 1000 x g/10 min (pellet = nuclear fraction, NF), 12 000 x g/15 min (pellet = mitochondrial fraction, MF), and 540 000 x g/1 h (pellet = crude microsomal fraction, CF). MF and NF pellets were resuspended in 80 µl and the CF pellet was resuspended in 200 µl

2x SDS sample buffer. Part of the final supernatant (450  $\mu$ l) was subjected to protein precipitation (see 2.2.5.8) and the precipitate was solved in 120  $\mu$ l 1x SDS sample buffer. All samples were boiled and analyzed by SDS-PAGE and Western Blot (see 2.2.5.1, 2.2.5.4, and 2.2.5.6). Sample volumes applied to the SDS polyacrylamide gel were: 16  $\mu$ l NF/MF (representing 20% of the sample), 20 $\mu$ l CF (10%), 35 $\mu$ l supernatant (9.5%).

**IEB\***: 5 mM HEPES, 0.5 mM EGTA pH 8, 12.5 mM KCl, 125 mM sucrose, with added protease inhibitors

Materials and Methods

# 3 Results

# 3.1 VacA Purification and Labeling

The production of purified, active VacA was a necessary prerequisite for most of the experiments conducted for this work. *H. pylori* secretes the VacA precursor protein into the culture medium via a type Va autotransporter mechanism, after which it is cleaved to yield the 95 kDa mature toxin [55–57]. Its self-oligomerization into high molecular weight structures can be utilized for purification since it enables separation from other proteins by ammonium sulfate precipitation and subsequent gel filtration. After purification and before use in intoxication experiments, VacA has to be acid-activated. This dissociates the oligomers, and only monomers are biologically active [61,62].

VacA was isolated from liquid culture supernatant of the *H. pylori* strain 60190, which produces large amounts of a highly toxic, s1m1i1 VacA. An isogenic strain producing an inactive mutant VacA was also used. This protein variant, VacA $\Delta$ 6-27, lacks the hydrophobic region responsible for channel formation. VacA was precipitated from the culture supernatant using ammonium sulfate and further purified by gel filtration on a Sephacryl S300 column (see 2.2.6).

Figure 3 shows the chromatogram of such a gel filtration. The absorption at 280 nm (blue line) was monitored as a measure of protein concentration. VacA can be seen to elute from the column starting at about 36 ml. Fractions (indicated in red) were collected until the peak had passed and then examined via SDS-PAGE/Coomassie staining for purity. VacA monomer bands can be seen at approx. 100 kDa (Figure 3, lower panel). Also visible are bands at lower molecular weights, assumed to be VacA degradation products or contaminants, but purity was sufficient for the purpose of this work. All fractions containing VacA of adequate purity were pooled and concentrated to a final concentration typically ranging between 0.4 and 1 mg/ml in a volume of 0.5-1.5 ml. Every batch of purified VacA was analyzed for toxin activity in a vacuolation assay (see 2.2.8) before being used in experiments. VacA $\Delta$ 6-27 did not cause cellular vacuolation (data not shown).

Small amounts of purified VacA were routinely labeled with fluorescent Alexa dyes (see 2.2.5.9). The concentration of labeled VacA was measured spectrometrically with a NanoDrop instrument to calculate the degree of labeling, which usually ranged between 0.1 and 1 Alexa molecule per VacA molecule. For every labeled batch, toxin activity was again examined in a vacuolation assay. Activity of labeled VacA was considerably lower than that of unlabeled VacA

### Results

(data not shown), and the amount of labeled VacA to be used in an experiment was increased accordingly so as to ensure appropriate vacuolating activity.



### Figure 3: VacA gel filtration.

*H. pylori* 60190 culture supernatant was mixed with 50% ammonium sulfate and the precipitated proteins were subjected to gel filtration on a Sephacryl S300 column. The blue line represents protein eluting from the column, measured via the proteins' absorption at 280 nm (mAU = milli Absorbance Unit). The eluted fractions (indicated in red) were applied to a 10% SDS polyacrylamide gel and Coomassie stained. VacA bands can be seen just under 100 kDa. Fractions containing VacA at sufficient quantity and purity were then pooled and concentrated.

# 3.2 Characterization of α-VacA\_nat

Prior to this work,  $\alpha$ -VacA\_rec, an antiserum against a recombinantly expressed VacA fragment (aa 92-723), had been established [147]. Since  $\alpha$ -VacA\_rec was not sufficiently capable of recognizing native VacA in preliminary experiments conducted by U. Jain, a new antiserum was raised against native, purified toxin, here termed  $\alpha$ -VacA\_nat, with the aim of using it in applications like pull-down experiments or immunostaining. This serum was then characterized concerning its ability to recognize different forms of VacA in different settings.

### **3.2.1** α-VacA\_nat in Immunoblotting

 $\alpha$ -VacA\_nat was used in immunoblotting experiments to investigate its suitability for VacA detection under both native and denaturing conditions (Figure 4A and B). Purified VacA and lysates of different H. pylori strains were separated on an SDS polyacrylamide gel, denaturing all proteins, and transferred to PVDF membrane. The same membrane was sequentially probed with both VacA antisera, using  $\alpha$ -mouse-POX as a secondary antibody in both cases. Both sera clearly recognize both purified VacA from H. pylori strain 60190 and VacA in lysate of the same strain (Figure 4A). While  $\alpha$ -VacA\_rec also distinctly recognizes P12 VacA,  $\alpha$ -VacA\_nat does so only weakly. In another experiment, native conditions were maintained by spotting purified toxin directly onto membrane (Figure 4B). Subsequent probing with both antisera revealed that  $\alpha$ -VacA\_nat recognizes native VacA much better than  $\alpha$ -VacA\_rec, as expected. Purified VacA from strain P76 can serve as a proof of principle, since it is of the s1i2m2 variety [87]. Its sequence differs substantially from that of VacA from strain 60190, which is categorized as s1i1m1. This may explain why  $\alpha$ -VacA\_rec somewhat recognizes 60190 VacA but doesn't recognize P76 VacA. Some secondary structural properties of both VacA proteins, on the other hand, may be conserved, leading to  $\alpha$ -VacA\_nat recognizing both variants of the toxin under these conditions.

## 3.2.2 Inhibition of Vacuolation by Various Antisera

A functional assay was also devised to see whether  $\alpha$ -VacA\_nat binding to VacA interfered with VacA induced vacuolation (Figure 4C; see 2.2.11). The vacuolation assay routinely used to evaluate toxin activity was modified slightly, adding two steps before intoxication: inactivation of serum complement proteins in all antisera, and incubation of heat-inactivated antisera with acid-activated VacA to facilitate binding. After these steps, the VacA/antisera mixtures were added to HeLa cells, followed by the addition of NH<sub>4</sub>Cl four hours later to increase vacuole size for another 30-60 min. Subsequently, neutral red was added and taken up into vacuoles, which stain red due to their acidity. The neutral red was then extracted and its absorption was measured as an indicator of vacuolation. Five different sera were used:  $\alpha$ -VacA\_nat and pre-immune serum (PIS) from the same rabbit;  $\alpha$ -VacA\_rec;  $\alpha$ -RecA, directed against a cytoplasmic *H. pylori* protein; and  $\alpha$ -BabA, directed against an *H. pylori* outer membrane protein.  $\alpha$ -RecA and  $\alpha$ -BabA served as unspecific control sera. All sera's total protein content was measured in a Bradford assay and equivalent protein amounts of all sera were used in the experiment.



### Figure 4: Characterization of α-VacA\_nat.

(A) Lysates of different *H. pylori* strains as well as purified VacA from strain 60190 were analyzed by Western Blotting with  $\alpha$ -VacA\_rec and  $\alpha$ -VacA\_nat to compare the two antisera's ability to recognize different VacA variants (bands detected at approx. 100 kDa). (B) Purified VacA was spotted directly onto membrane to preserve its native conformation and subsequently analyzed by immunoblotting with both VacA antisera. (C) Various antisera, including those raised against VacA ( $\alpha$ -VacA\_rec and  $\alpha$ -VacA\_nat), were tested for their ability to inhibit VacA-induced vacuolation in HeLa cells. Pre-immune serum (PIS),  $\alpha$ -RecA and  $\alpha$ -BabA were used as unspecific controls. All sera were heat-inactivated to reduce complement effects and incubated with acid-activated VacA before intoxication. Vacuolation was measured via neutral red uptake after 4 h of intoxication and 1 h of NH<sub>4</sub>Cl treatment. All values were normalized to untreated cells and uninhibited vacuolation was set to 100%. Error bars represent standard errors of the mean of three independent experiments. (D) HeLa cells were intoxicated with VacA-Alexa568 for 4 h and subsequently stained with  $\alpha$ -VacA\_nat (and a secondary antibody labeled with Alexa488) so that both signals could be compared directly. Samples were analyzed by confocal microscopy. Scale bar represents 10 µm.

Figure 4C shows a complete inhibition of vacuolation by  $\alpha$ -VacA\_nat, indicating that binding of  $\alpha$ -VacA\_nat to VacA prior to intoxication interferes with either VacA binding to cells or VacA channel formation.  $\alpha$ -VacA\_rec also has a strong inhibiting effect, suggesting in accordance with Dot Blot data (Figure 4B) that  $\alpha$ -VacA\_rec is also capable of recognizing native VacA to a certain extent. The control sera, and even pre-immune serum, still show a weak inhibition that can be attributed to serum proteins or other unspecific effects.

To conclude,  $\alpha$ -VacA\_nat was able to completely prevent VacA-induced vacuolation in this setting. Its inhibitory effect was dose-dependent (data not shown). 44

### 3.2.3 **α**-VacA\_nat in Immunostaining Experiments

To analyze  $\alpha$ -VacA\_nat's ability to recognize VacA after uptake into cells, it was used in immunostaining experiments. HeLa cells were intoxicated with acid-activated VacA-Alexa568, fixed, permeabilized and additionally stained with  $\alpha$ -VacA\_nat and a secondary antibody coupled to Alexa488 (Figure 4D) (see 2.2.13). The choice of two different fluorophores in the same sample permitted a direct comparison of the signals of labeled VacA and the VacA stain. They can be seen to overlap for the most part, but the stain signal was usually stronger and not as regionally restricted. The fact that the stain gave a more widely distributed signal is not due to unspecific staining, which was confirmed by the relevant unintoxicated control sample (data not shown). Instead, it is likely that not every VacA molecule was labeled with enough Alexa molecules to be detectable, whereas an antibody stain always entails an amplification of signal. Importantly, it can be concluded that  $\alpha$ -VacA\_nat does recognize VacA in this setting.

## 3.3 Stable Cell Line Jurkat E6-1 EGFP-Rab7

With the objective to isolate VCVs from cell lysate, a way to monitor VCV distribution in samples over the course of the isolation process became necessary. Microscopy was chosen as a fast and reliable method. Rab7 is a late endosomal marker known to localize to VCV membranes [43], and fluorescently tagged Rab7 can conveniently serve as a VCV marker. A plasmid coding for an EGFP-Rab7 fusion protein and a G418 resistance cassette was transfected into Jurkat E6-1 cells and transformants were selected by the addition of 1 mg/ml G418 to the cell culture medium (see 2.2.3.3).

Transfection efficiency was checked via confocal microscopy and flow cytometry. Figure 5A shows a micrograph of Jurkat E6-1 cells expressing EGFP-Rab7; vacuoles are clearly visible in both the brightfield and the green channel images. As the initial transfection efficiency was low (approx. 10%), EGFP-Rab7 expressing cells were enriched by flow cytometry cell sorting (Figure 5B and C). The mean fluorescence intensity, measured as an indicator of transfection efficiency, was increased by a whole order of magnitude after sorting. The thusly created cell line stably expressing the VCV marker EGFP-Rab7 was a suitable tool for VCV isolation.



Figure 5: Creation of the stable cell line Jurkat E6-1 EGFP-Rab7.

Rab7 is a late endosomal marker known to line VCV membranes. (A) Jurkat E6-1 EGFP-Rab7 cells exhibiting vacuolation after intoxication with VacA and treatment with NH<sub>4</sub>Cl for at least 4 h / 1 h, respectively. VCVs can be seen in the brightfield image (top) and labeled with EGFP-Rab7 in the green channel (bottom). Scale bar represents 10  $\mu$ m. (B) Expression of EGFP-Rab7 in stably transfected Jurkat E6-1 cells was evaluated by flow cytometry. The gray area represents wild-type (untransfected) Jurkat E6-1 cells. The stable cell line was subjected to cell sorting and analyzed before (black line) and afterwards (green line), clearly showing an enrichment in EGFP-Rab7 expressing cells. (C) The bar graph shows mean fluorescence intensity (MFI) (geometric mean) calculated from the measurements obtained in (B). Both (B) and (C) illustrate one representative experiment.

# 3.4 VCV Isolation

## 3.4.1 Strategies

Three different strategies for the isolation of VCVs from cell lysate were considered over the course of this work and are depicted in Figure 6. They rely on different characteristics of VCVs, and while an overview is presented at this point, they will be discussed in detail in the following sections.

Strategy A (see 3.4.3) employs nanoscale magnetic beads of about the size of a VacA hexamer. After covalent coupling to VacA, these beads were to be internalized into cells along with VacA and then separated from cell homogenate with a magnet. Strategy B (see 3.4.4) utilizes the VCV marker EGFP-Rab7 described in 3.3 and the fact that VacA can be fluorescently labeled with Alexa dyes (see 2.2.5.9). VCVs were then to be sorted from homogenate via flow cytometry, being the only particles carrying both fluorophores. In strategy C (see 3.4.5), the antiserum raised against native VacA,  $\alpha$ -VacA\_nat, was to be used to bind VacA integrated into VCV membranes. Using a secondary antibody directed against  $\alpha$ -VacA\_nat coupled to magnetic beads, VCVs were to be pulled out of the homogenate.

The ultimate goal of all these strategies was to isolate enough VCVs to be able to analyze their proteome by mass spectrometry (MS). The MS method used for this purpose has a minimal detection limit of about 100 ng, which is the same amount that can be visualized in one single band on an SDS polyacrylamide gel stained with Coomassie Brilliant Blue. SDS-PAGE and Coomassie staining were therefore used to assess total protein content of isolation samples. The VCV proteome was then expected to shed light on the possible functions of VCVs.



### Figure 6: Three different strategies for VCV isolation.

Strategy **A**: Nanoscale magnetic TurboBeads coupled to VacA were to be internalized by intoxicated cells and then used to magnetically separate VCVs from homogenate. Strategy **B**: Cells expressing the GFP-labeled VCV marker Rab7 were to be intoxicated with Alexa-labeled VacA, resulting in VCVs carrying both fluorescent labels. These were then to be sorted from homogenate via flow cytometry. Strategy **C**: A primary antibody directed against VacA was to be used to bind to VacA inserted into the VCV membrane. A secondary antibody coupled to magnetic beads was then to be employed to separate VCVs from homogenate.

## 3.4.2 General Optimization Steps

Independent of the VCV isolation strategy, the conditions for preparing the starting material meaning the cell homogenate containing VCVs - had to be optimized. After finding the ideal conditions, the strategies could be tested to find the most suitable one.

## 3.4.2.1 Dependence of Vacuolation on Intoxication Period

Since the VCV purification process was to be monitored by microscopy, it was assumed that it would be easiest to isolate VCVs when they are large and numerous. To this end, different periods of intoxication were evaluated for degree of vacuolation (Figure 7A; see 2.2.9). Jurkat E6-1 cells were intoxicated with 1  $\mu$ g/ml VacA and NH<sub>4</sub>Cl (to osmotically increase VCV size) and incubated for 4, 8, and 24 h. Longer periods were not tested for fear of cell damage. As in other vacuolation assays (see 2.2.8), neutral red uptake was measured as an indicator of vacuole size and/or number. For every time point, a sample of unintoxicated (but NH<sub>4</sub>Cl treated) cells was also measured. In contrast to HeLa cells, neutral red uptake of unintoxicated Jurkat cells varies little from one experiment to the next, so absolute values can be used, and normalization was done differently. The arithmetic mean of all measured values of unintoxicated cells. Vacuolation was observed to be time-dependent, with the difference between 4 h and 24 h being statistically significant (p < 0.05, Kruskal-Wallis and Dunn's multiple comparison tests). Intoxication for VCV isolation was therefore always performed over night.

## 3.4.2.2 VCV Sedimentation Properties

All VCV isolation strategies necessitate the sedimentation of cell homogenate and VCVs by centrifugation. Therefore, VCV sedimentation properties were systematically investigated in a sequential centrifugation experiment (see Figure 7B; see 2.2.16). Jurkat E6-1 EGFP-Rab7 cells were intoxicated with VacA and treated with NH<sub>4</sub>Cl in parallel before homogenization. Homogenate was then sequentially centrifuged at 200, 600, 1000, 3000, 6000, 10 000, 15 000, and 20 000 x g. The pellets of all steps were then analyzed by Western Blot for the presence of VacA and EGFP. Cell suspension and homogenate served as controls for total VacA/EGFP-Rab7 content. While clearly not all VacA/EGFP-Rab7 sediments together with VCVs, both were detected in some of the fractions. VacA, which is expected to occur not just in VCVs but also in other cellular compartments and bound to plasma membrane, could be found in all fractions up

to 6000 x g. Most of EGFP-Rab7, on the other hand, was expected to be localized in VCVs, based on previous microscopy observations (see for example Figure 5A). It was detected most prominently in the 3000 x g fraction. Since this fraction was also positive for VacA, it was therefore concluded to contain the majority of VCVs. This experiment was monitored by microscopy in parallel, detecting only EGFP-Rab7, not VacA, and confirming this conclusion (data not shown).



### Figure 7: Optimization of VCV isolation conditions.

(A) As an indicator for vacuolation over time, neutral red uptake was measured in Jurkat E6-1 cells after 4, 8, and 24 h of intoxication with VacA and parallel treatment with NH<sub>4</sub>Cl. Measurements were normalized to unintoxicated cells. The graph was compiled with data obtained in three independent experiments. Error bars represent standard errors of the mean. \* = p < 0.05 (Kruskal-Wallis and Dunn's multiple comparison tests). (B) To investigate VCV sedimentation properties, Jurkat E6-1 EGFP-Rab7 cells were intoxicated with VacA and treated with NH<sub>4</sub>Cl (both 5 h) before homogenization. 1 ml homogenate was then sequentially centrifuged. One fifth of centrifugation pellets was loaded onto an SDS polyacrylamide gel and subsequently analyzed for the presence of VacA and EGFP-Rab7 by Western Blotting. (C) Different buffers were tested for homogenization of intoxicated, NH<sub>4</sub>Cl treated Jurkat E6-1 EGFP-Rab7 cells. VCVs are clearly in a better condition in PBS\*. The asterisk denotes addition of protease inhibitors to the buffer. (D) Various fixation methods were tested for both homogenized and intact intoxicated cells. Samples fixed with PFA for 10 min at RT are shown as representative examples. Scale bars in (C) and (D) represent 10  $\mu$ m.

### 3.4.2.3 <u>Homogenization and Fixation Conditions</u>

The idea to isolate VCVs originally stemmed from a cooperation with the group of Hubert Hilbi, who have established a protocol to isolate *Legionella*-containing vacuoles from cells infected with *Legionella pneumophila* [151]. Some of the conditions detailed in their protocol were used as initial starting points for this work, including the homogenization buffer, HS<sup>\*</sup> (20 mM

Results

HEPES, 250 mM sucrose, 0.5 mM EGTA, pH 7.2; with added protease inhibitors). However, this turned out to not be ideal for the purpose of isolating VCVs, as it did not preserve vacuole shape in homogenate (see Figure 7C), making it difficult to identify VCVs in the later steps of the isolation process. PBS\* (also supplemented with protease inhibitors) was found to fulfill this requirement. HS buffer seems to have the wrong osmotic pressure, leading to a collapse of VCVs, which is in agreement with the fact that it was developed for vacuoles containing whole bacteria unlike VCVs.

Fixation presented similar problems since vacuole shape was not retained in either intact cells or homogenate, but vacuole shape was a necessary identifying feature of VCVs alongside EGFP fluorescence. Various fixation reagents were tested at different concentrations and conditions, but none proved succesful. Among the reagents tested were glutaraldehyde, cyclohexylamine, methanol, ethanol, PFA with and without sucrose, PFA in HEPES, and commercially available CellFIX (BD Biosciences). Cells fixed with 0.5% PFA and homogenate fixed with 3% PFA for 10 min at RT are shown in Figure 7D as an example. During fixation, VCVs lost their characteristic round shape and shrank in size, making non-ambiguous identification impossible. The fact that fixation turned out to be unfeasible was especially problematic as it eliminated the possibility of validating the presence of specific proteins on isolated VCVs by immunostaining, as done in [151]. All monitoring of VCV isolation was henceforth performed with unfixed samples in 8-well slides.

## 3.4.3 Strategy A: TurboBeads Strategy

The first strategy for VCV isolation was based on nanoscale magnetic beads (Carboxyl coated TurboBeads, TurboBeads LLC). These beads have a mean particle size of 30 nm, about the same size as a VacA hexamer (see Figure 8A; [61]). Uptake of VacA coupled to beads was expected to happen normally, undisturbed by the extremely small beads. After intoxication and cell homogenization, the bead-containing VCVs were to be extracted from homogenate via magnetic separation.

## 3.4.3.1 <u>TurboBead Uptake</u>

For detection purposes, VacA was labeled with Alexa488 before being coupled to beads. Bead uptake into Jurkat E6-1 cells was investigated using two methods: confocal microscopy and flow cytometry (see 2.2.17.2 and 2.2.17.3). For the first, cells were intoxicated with VacA-Alexa488 coupled to TurboBeads for 40 min at 4 °C to minimize particle movement and therefore bead

aggregation (see 3.4.3.2) followed by 200 min at 37 °C to allow for complete internalization. Cells were fixed with 15% PFA and analyzed by confocal microscopy (see Figure 8B). Images were processed with ImageJ, using the Orthogonal View function to visualize XZ and YZ 'side views' of the stack of images taken. This made it easier to determine whether a particle was fully internalized, like the one shown in Figure 8B at the center of the crosshairs. Internalized particles were observed and appeared similar to internalized VacA-Alexa488 without beads (data not shown).

To verify this, a fluorescence quenching assay ways performed (see Figure 8C). Jurkat E6-1 cells were intoxicated with VacA-Alexa488 coupled to TurboBeads for 40 min, which is enough time for VacA internalization to happen, according to previous research [88]. Cells were then incubated with  $\alpha$ -Alexa488 to quench external fluorescence, leaving only internalized fluorophore molecules to be detected by flow cytometry. Figure 8C displays mean fluorescence intensity measurements (MFI; geometric mean) for cells treated as described above (black bar), untreated cells (gray), and cells intoxicated with VacA-Alexa488 but not incubated with  $\alpha$ -Alexa488 as a positive control (green). About half of the fluorescence was quenched with  $\alpha$ -Alexa488, meaning that the other half was internalized. VacA-Alexa488 not coupled to TurboBeads showed the same pattern (data not shown). Results from both methods, flow cytometry and confocal microscopy, agree that VacA-coupled TurboBeads are internalized into Jurkat E6-1 cells.

## 3.4.3.2 <u>TurboBead Aggregation</u>

While bead internalization data looked promising, bead aggregation was a problem that occurred in all TurboBeads experiments. In order to minimize aggregation and to keep bead uptake into cells as natural as possible, different buffers and various substances for coating the beads were tested (see 2.2.17.1). The initial choice for bead coating was NH<sub>4</sub>Cl, since it is small, chemically inert, non-toxic, and does not trigger any cellular uptake pathways. Also, it has the amino group necessary for coupling to the carboxyl coated TurboBeads. Another substance recommended by the TurboBeads manufacturer was ethanol amine. As a last approach, the beads were coated with ssDNA, as steric repulsion by non-complementary DNA can facilitate nanoparticle dispersion (Maye 2007). Buffers tested for TurboBead resuspension include PBS, cell culture medium (RPMI supplemented with 10% FCS) since it would have been present in an intoxication setting anyway, and HES buffer (Voluven 6%, Fresenius Kabi) as recommended by the TurboBeads manufacturer. However, none of these attempts yielded satisfactory results

### Results

(Figure 8D). Considering the likely possibility of bead aggregates influencing the natural VacA uptake pathway, and the low vacuolating activity of bead-coupled VacA (data not shown), this VCV isolation strategy was abandoned.



### Figure 8: TurboBeads strategy, internalization, and aggregation.

(A) Size comparison of VacA and TurboBead. TurboBeads have a diameter similar to that of VacA hexamers. VacA structure adapted from [54]. (B and C) TurboBead uptake was investigated via confocal microscopy and flow cytometry. (B) Jurkat E6-1 cells were treated with TurboBead-coupled VacA-Alexa488 (40 min at 4 °C followed by 200 min at 37 °C) and fixed. Shown here is a cell recorded on a stack of 12 slices at intervals of 9.57  $\mu$ m. Panel 1 shows the regular ('top') view of slice 7 while panels 2 and 3 show YZ and XZ projections of the whole stack ('side views'), respectively, computed with the Orthogonal View function of ImageJ. An internalized particle can be seen at the center of the crosshairs. Scale bar represents 5  $\mu$ m. (C) Jurkat E6-1 cells were treated with TurboBead-coupled VacA-Alexa488 for 40 min, then incubated with  $\alpha$ -Alexa488 to quench external fluorescence. Subsequent analysis by flow cytometry revealed internalization of about 50% of the total fluorescence, compared to the unquenched control (not treated with  $\alpha$ -Alexa488). The bar graph shows mean fluorescence intensity (MFI) measurements (geometric mean) from one representative experiment. (D) TurboBeads were coated with various substances and resuspended in various buffers to minimize aggregation. As examples, beads coated with ssDNA and ethanol amine resuspended in RPMI supplemented with 10% FCS are shown in a light microscopy image. Dark shapes are bead aggregates. Scale bar represents 200  $\mu$ m.

### 3.4.4 Strategy B: VCV Sorting by Flow Cytometry

The second approach to isolate VCVs was to sort them from homogenate on the basis of their fluorescence properties. The stable cell line Jurkat E6-1 EGFP-Rab7 provided one fluorescent VCV marker, while labeling of VacA with Alexa dyes provided another. In Jurkat E6-1 EGFP-Rab7 cells intoxicated with Alexa-labeled VacA, the only particles positive for both fluorophores were expected to be VCVs, and sorting was assumed to yield a highly pure VCV preparation. Sorting experiments were conducted in collaboration with flow cytometry experts Dr. Matthias Schiemann and Lynette Henkel at the Flow Cytometry Core Unit of the Institute for Medical Microbiology, Immunology and Hygiene (Technische Universität München).

To assess the quality of the starting material, Jurkat E6-1 EGFP-Rab7 cells were intoxicated with VacA-Alexa647 and treated with NH<sub>4</sub>Cl (both over night) and subjected to confocal microscopy before and after homogenization (see Figure 9A; details see 2.2.18). As expected, EGFP-Rab7 could be seen to line VCV membranes as before (see 3.3), while VacA-Alexa647 was found mainly in the VCV lumen. The homogenate contained numerous particles carrying both fluorophores (pointed out by white arrowheads in the rightmost images of Figure 9A) and was therefore deemed suitable for sorting. Control homogenates of Jurkat E6-1 cells not expressing EGFP-Rab7 and of cells intoxicated with unlabeled VacA were also imaged to confirm the absence of double positive particles (data not shown).

To determine which particles to sort, Jurkat E6-1 cells not expressing EGFP-Rab7 were intoxicated with unlabeled VacA, homogenized, and used as a negative control. A comparison of both homogenates analyzed with a FACSAria IIIu is shown in Figure 9B; the non-fluorescent negative control is depicted in black, the sample containing both EGFP and Alexa647 in orange. After selecting particles for the correct size according to their forward and sideward scattering properties, their fluorescence characteristics were inspected and positivity for both fluorphores was defined in relation to the negative control. The graph clearly shows that the sorting sample contains particles with much stronger fluorescence than the control in both channels, and the table details the percentages of particles registered in the respective quadrants. Double positive particles (quadrant 2) were then sorted and examined by microscopy and SDS-PAGE/Coomassie staining. In all cases, even though the sorting process itself seemed to work, the sorted fraction was found to contain nothing at all (Figure 10A), or no particles recognizable as VCVs.



Figure 9: VCV homogenate prepared for flow cytometry sorting.

(A) Jurkat E6-1 EGFP-Rab7 cells were intoxicated with VacA-Alexa647 and treated with NH<sub>4</sub>Cl (both over night) before homogenization. Aliquots of intact cells and homogenate were examined by confocal microscopy for VCVs positive for both EGFP and Alexa647 (highlighted by white arrowheads) as a prerequisite for VCV sorting by flow cytometry. Scale bars represent 10  $\mu$ m. (B) Cells were treated with VacA and NH<sub>4</sub>Cl over night and homogenized, and the homogenate was subjected to flow cytometry. Jurkat E6-1 cells not expressing EGFP-Rab7 were intoxicated with unlabeled VacA as a negative control (black); Jurkat E6-1 EGFP-Rab7 cells were intoxicated with VacA-Alexa647 (orange; compare bottom row in (A)). Particles in quadrant 2 were defined as VCVs, being positive for both EGFP and Alexa647, and were sorted. The table shows particle counts (%) of all quadrants; quadrant numbering as indicated in the graph. Representative sorting experiment performed on a FACSAria IIIu.



#### Figure 10: Analysis of VCV fractions sorted by flow cytometry.

(A) Homogenate of Jurkat E6-1 EGFP-Rab7 cells treated with VacA-Alexa647 was subjected to flow cytometry. Particles positive for both GFP and Alexa647 were sorted, but could not be detected by SDS-PAGE/Coomassie staining. (B) Homogenate of Jurkat E6-1 EGFP-Rab7 cells treated with unlabeled VacA was subjected to flow cytometry. In this experiment, particles were sorted into two fractions depending on the presence or absence of GFP. Small numbers of fluorescent particles were later found in both fractions. Scale bar represents 10 µm.

Because the use of labeled VacA somewhat limited the amount of starting material for this experiment, but to find out whether vacuole sorting is at all possible, another sorting attempt was made with large amounts of homogenate from Jurkat E6-1 EGFP-Rab7 cells intoxicated with unlabeled VacA. Here, all particles were sorted into two fractions, GFP positive and GFP negative. Both fractions were again examined by microscopy, and both were found to contain very few apparently fluorescent particles with no clear vacuole shape (Figure 10B), which were concluded to be unspecific. It seems that the vacuoles generally are not stable enough to be sorted, but it is not clear what exactly happens to them. Various sorting devices were tried, specifically a FACSAria IIIu (BD Biosciences), an S3 Cell Sorter (Bio-Rad), and a MoFlo Legacy (Beckman Coulter). These differ in nozzle diameter (70-100  $\mu$ m), optical sensitivity, internal pressure and resulting shearing forces, but none of them solved the problem. These circumstances do not allow the definite identification of VCVs in a sorted fraction and VCV sorting by flow cytometry was therefore rejected as a method for VCV purification.

# 3.4.5 Strategy C: Immunomagnetic Purification of VCVs

Strategy C was finally chosen for VCV purification (see 3.4.1). As mentioned before, it was adapted from a protocol published by Hilbi and coworkers for the isolation of *Legionella*-containing vacuoles from cells infected with *Legionella pneumophila* [151]. It relies on a primary antibody that recognizes a vacuole membrane component, which was established in  $\alpha$ -

VacA\_nat. A secondary antibody coupled to magnetic beads is then used in combination with magnetic columns to separate vacuoles from cell homogenate (see 2.2.19). The subsequent density gradient centrifugation as described in [151] to further enrich the vacuoles was unsuitable for this application because the gradient substance also caused vacuole collapse (data not shown), similar to the fixation reagents and homogenization buffers other than PBS (see Figure 7C and D).

To be specific, Jurkat E6-1 cells were treated with 1  $\mu$ g/ml VacA, wild-type or mutant ( $\Delta$ 6-27), and NH<sub>4</sub>Cl over night. After homogenization, the homogenate was cleared of cell debris, blocked with calf serum and incubated with  $\alpha$ -VacA\_nat. Centrifugation to remove unbound antibody was followed by incubation with secondary antibody coupled to magnetic beads. The sample was applied to pre-equilibrated magnetic separation columns and eluted after two wash steps. The VCV isolation process was monitored by confocal microscopy and SDS-PAGE/Coomassie staining of cells before homogenization ('intact cells'), homogenate after clearance ('homogenate'), material that had not bound to the magnetic column ('flowthrough'), and eluate (Figure 11). Fluorescent, round particles resembling vacuoles were found in all fractions when cells were treated with wild-type VacA, but not when cells were treated with VacA $\Delta$ 6-27 (Figure 11A). This was to be expected, as VacA $\Delta$ 6-27 is still able to bind to cells, but does not readily form membrane channels and therefore has no vacuolating activity [70]. Some non-fluorescent material is purified for both variants of VacA (brightfield images not shown), which is assumed to be mostly plasma membrane with VacA bound to it. This also explains the proteins visible in eluate of VacA $\Delta$ 6-27 treated sample when applied to SDS polyacrylamide gels (Figure 11B and C). Cells treated with VacA $\Delta$ 6-27 serve as a valuable background control for mass spectrometric analysis, as non-specific, non-VCV material is purified and can then be distinguished from VCV-specific proteins in the wild-type sample. For these reasons, wild-type and VacA $\Delta$ 6-27 eluted VCV fractions can be seen to have a largely congruent protein composition in a direct comparison (Figure 11C). However, both eluates' composition differs enough from that of intact cells to indicate enrichment of VacA-bound material or VCVs.





Aliquots were taken at different stages of the isolation process for monitoring: before homogenization ('intact cells'), after clearing of the homogenate ('homogenate'), material that did not bind to the magnetic column ('flowthrough'), and eluate. (**A**) Equal portions of each step were loaded into an 8-well slide and checked for vacuolation and number of VCVs by confocal microscopy. Intoxication with the inactive mutant VacA (VacA $\Delta$ 6-27) caused no vacuolation and resulted in no (fluorescent) VCVs being purified. Upper row, wild-type VacA treated cells; lower row, VacA $\Delta$ 6-27 treated cells. Scale bar represents 10 µm. (**B** and **C**) VCV isolation fractions were also analyzed by SDS-PAGE/Coomassie staining. (**B**) Protein composition of the individual fractions can be seen to differ. Arrowheads highlight the most prominent differences between eluate and the respective intact cells fractions. (**C**) Direct comparison of eluted VCVs of cells treated with VacA WT and VacA $\Delta$ 6-27. The most noticeable differences in protein composition between the two lanes are again indicated by arrowheads.

Results

# 3.5 Mass Spectrometry Results

Mass spectrometric experiments were conducted by Dr. Andreas Otto at the Institute for Microbiology of the Ernst-Moritz-Arndt-University Greifswald as detailed in [152] (see 2.2.20 and 2.2.21). Three VCV preparations were measured, two obtained from cells treated with wildtype VacA (WT1/2) and one from cells treated with VacA $\Delta$ 6-27 (BG, background). VacA $\Delta$ 6-27 is able to oligomerize, but does not form active membrane channels. Even though it binds to cells and is internalized, it does not cause vacuolation [70]. Analysis of mass spectrometry samples yielded lists of proteins identified with a probability of at least 96.3%. The accession numbers associated with these proteins were entered into the UniProt database and their information retrieved, but only reviewed entries were considered to ensure high reliability of information (www.uniprot.org).

Two subsets were analyzed in detail and compared: the background sample, representing proteins purified in the presence of mutant VacA $\Delta$ 6-27 but in the absence of VCVs (1606 proteins), and the VCV-specific subset of proteins detected in both wild-type samples, but not in the background sample (240 proteins) (Figure 12). Full lists of proteins can be found in the appendix (see Table 2 for VCV-specific proteins, Table 3 for WT1 proteins, Table 4 for WT2 proteins, and Table 5 for background proteins).





These Venn diagrams illustrate protein hits obtained for the three VCV preparations, two from wild-type VacA treated cells (WT1/2) and one from cells treated with VacA $\Delta$ 6-27 (background, BG). The diagram on the left shows counts of total proteins in all samples and subsets. Center diagram: proteins found in both wild-type samples, but not in the background sample, are expected to be VCV-specific. Right hand diagram: total background proteins. All numbers are reviewed UniProt entries only. Circles are not to scale.

The subset of proteins detected in both wild-type VCV preparations, but not in the background sample, was chosen for two reasons. Firstly, proteins found in the background sample are those that are unspecifically co-purified with this method and those that are purified with VacA $\Delta$ 6-27 associated with cell parts other than VCVs, for example plasma membrane. Proteins found in the wild-type samples but not found in the background sample can therefore be assumed to be specific for VCVs. Secondly, proteins found in both wild-type samples are more reliably specific than those found in only one. A comparison of this subset with the total background sample consequently provides an insight into what kind of proteins are enriched in VCVs.

Using the information provided by UniProt, the proteins included in these two subsets were investigated more closely regarding their subcellular location and biological function. A graphic representation comparing the two subsets is shown in the upper part of Figure 11, while the same information is provided in a table format in the lower part with the most important items highlighted in red. With regard to subcellular localization, the biggest differences between VCV-specific and background sample concern nuclear and mitochondrial proteins. The VCV-specific subset contains 23.1% proteins usually localized to the nucleus; the background sample contains only 14.9%. For mitochondrial proteins, the ratio is reversed, with 14.3% in the VCV-specific subset and 21.4% in the background sample. There are also notable differences in the other categories, showing an enrichment of endosomal and lysosomal proteins in VCVs (1.4- and 2-fold, respectively). Golgi proteins, on the other hand, are decreased in the VCV-specific subset compared to the background (3.6% compared to 5.7%) Looking at the biological function of the proteins, VCVs exhibit an enrichment of proteins involved in immune response (6.0% compared to 3.2%), cell death (8.7% compared to 5.6%), and signaling (18.2% compared to 12.9%).

Looking at individual proteins, it is more reasonable to consider the complete wild-type samples without subtracting the background. Background subtraction can lead to the loss of proteins that are known to locate to VCVs, if they are present in the background sample also. This can be illustrated by the example of Rab7. As mentioned before, it is a late endosomal marker known to be present on VCV membranes [43], and an EGFP-Rab7 fusion protein was used as a fluorescent marker to monitor VCV purification. Its presence in the VCV preparations was confirmed by microscopy (Figure 11A), and in accordance with this, Rab7 was detected by MS in both wild-type samples. It was not found during microscopic investigation of the background sample but was still detected there by MS, a fact that can be attributed to this method's much higher sensitivity. This means, however, that even though Rab7 is clearly present on purified VCVs, it does not appear in the VCV-specific protein subset. The same is true for almost all

other proteins known to locate to VCVs, including lysosomal markers Lamp1 and 2 [44,45] (Lamp2 is also known as Lgp110), the vacuolar ATPase [52], and the membrane fusion regulators Syntaxin-7 and Vamp7 [48,27,153]. All of these were found in all three samples (see Table 1).



### A VCV-specific set (240 proteins)

### Figure 13: Graphic and numerical display of the composition of VCV-specific and background subsets.

The composition of the two relevant protein subsets regarding subcellular localization and biological function is visualized in pie charts and listed in the table for clarity. Notable differences are highlighted in red in the table.

Two proteins known to occur in VCVs were not found in all fractions. The first is Rac1, a protein involved in actin cytoskeleton reorganization and intracellular signal transduction [47], which was detected in only one of the wild-type samples and in the background sample. The
second is β-glucosaminidase, an LE/lysosomal enzyme [45] that was found in none of the samples. Overall, the presence of almost all expected VCV-associated proteins in the wild-type samples validates the VCV purification method to a large extent. However, the above examples also illustrate that for some analyses, the background sample does not serve its purpose perfectly. The MS results lists were also scanned for host cell proteins known to be influenced by VacA or necessary for VacA-induced effects. Some of these were found in the VCV-specific sample, among them Cdc42, which is important for VacA uptake [96], Bak, a pro-apoptotic protein activated during VacA intoxication [154], the ER marker calnexin, and Drp1, a mitochondrial fission protein recruited and activated by VacA [110]. Others that were found in only one wild-type sample, or also in the background sample, include several members of the protein kinase C (PKC) family and Phosphoinositide-3 kinase (PI-3-K), which regulate T-cell activation, tubulin, and the small GTPase Rac1. PKCs, tubulin, and Rac1 are all known to play a role in VacA uptake [97,96]. Further analysis of MS measured samples can yield interesting targets for further investigation, as exemplified in the next section.

# 3.6 Investigation of Possible Interactions of VacA with STIM1

Previous work showed localization of VacA to the ER and an influence of VacA on intracellular calcium signaling in T-cells, where it disrupts store-operated calcium entry (SOCE) [155]. A closer look at ER proteins in the VCV-specific protein subset revealed the presence of classic ER markers calnexin and Sec61, indicating that ER was not generally co-purified unspecifically. Also found there were stromal interaction molecule 1 (STIM1) and the Inositol 1,4,5trisphosphate receptor type 3 (ITPR3), both of which play an essential part in calcium signaling. Stimulation of a T-cell through the T-cell receptor results in calcium efflux from the ER into the cytosol via ITPR3. STIM1 senses the ER luminal Ca2+ concentration, and in the event of low calcium initiates calcium influx from the extracellular milieu through activation of Orail, a SOCE channel [156]. The presence of STIM1 and ITPR3 in the VCV-specific subset provides additional evidence of an involvement of VacA in calcium signaling. Due to its role in SOCE, STIM1 seemed a likely candidate for VacA to interact with if VacA is transported to the ER and interferes with calcium signaling there. STIM1 (Figure 14) possesses an ER luminal EF hand domain, a helix-loop-helix motif common in calcium binding proteins which enables STIM1 to sense the ER luminal Ca<sup>2+</sup> concentration [156]. Another important feature is a region termed CAD ( $Ca^{2+}$  release-activated  $Ca^{2+}$  activation domain, [157]) or SOAR (STIM-Orai activating

#### Results

**r**egion, [158]), necessary for STIM1's interaction with and activation of the SOCE channel Orai1. As both the EF hand and the CAD/SOAR region seem plausible sites for VacA to bind when interfering with SOCE, potential interactions of VacA with STIM1 were investigated via pulldown experiments (see 2.2.12).



#### Figure 14: Investigation of a possible VacA-STIM1 interaction.

(A) Schematic representation of STIM1 residing in the ER membrane. The cytoplasmic part of STIM1 contains a domain called CAD/SOAR, which interacts with and activates Orai1, a calcium channel protein in the plasma membrane. The ER luminal part of STIM1 includes a calcium sensing EF hand domain. (B) For pull-down experiments, the cytoplasmic and ER luminal parts of STIM1 were expressed separately, omitting the transmembrane domain (TM). STIM1-Cyt and STIM1-ER were both tagged with a polyhistidine peptide and expressed in *E. coli*. (C and D) Lysates of *E. coli* expressing His-tagged STIM1 fragments were incubated with purified VacA or 'acid-activated' water (negative control samples in D) for pull-down experiments. (C) His-tagged bait proteins (His-STIM-ER, His-STIM-Cyt, His-GFP) were precipitated with Ni-NTA agarose and subsequently detected via Western Blotting at approx. 30, 60, and 30 kDa, respectively. VacA was unspecifically co-precipitated in all three samples, including the negative control sample which contained His-GFP instead of any STIM1 domains. (D) When the pull-down experiment was performed in the other direction, samples without VacA were used as additional negative controls. VacA was precipitated using the  $\alpha$ -VacA\_nat antibody and Protein G agarose. Irrespective of the presence or absence of VacA as bait, all three prey proteins were co-precipitated unspecifically. IP = immunoprecipitation (denotes protein that was specifically precipitated).

Previous attempts to immunoprecipitate native STIM1 from cell lysate had been unsuccessful (U. Jain, personal communication), presumably due to its transmembrane domain being difficult to solubilize. For this reason, a different approach was devised to express STIM1 recombinantly, separated into its cytoplasmic and ER luminal parts and omitting the transmembrane domain (Figure 14A and B). The ER luminal part contains the EF hand domain, while the cytoplasmic part contains the CAD/SOAR region. Both parts were cloned into pET28a(+), equipping them with polyhistidine-tags for easier purification and detection. An identically tagged truncated GFP (GFP1-10; [146]) expressed from the same plasmid backbone was used as a control for unspecific interactions. Lysates of E. coli expressing the 6xHis-tagged proteins were incubated with VacA to allow protein interactions to develop. Interactions were tested in both directions. First, the 6xHis-tagged proteins were used as bait, precipitating them with Ni-NTA agarose and then testing for co-precipitated VacA in a Western Blot (Figure 14C). VacA was detected in all three samples, indicating an unspecific interaction. Reciprocally, VacA was precipitated as bait with  $\alpha$ -VacA\_nat and Protein G agarose. Samples without VacA were handled the same way and served as additional negative controls. After the pull-down, the 6xHis-tagged proteins were detected via Western Blot (see Figure 14D). For each 6xHis-tagged protein (STIM1-ER, STIM1-Cyt, GFP), the signal in the  $\alpha$ -His blot is of comparative strength in samples with and without VacA, again suggesting unspecific interactions. In conclusion, interactions of VacA and the two parts of STIM1 could be neither shown nor refuted in this assay.

### 3.7 VacA Localization in Intoxicated Cells

## 3.7.1 Colocalization of VacA with ER and Golgi Apparatus Markers and CTxB

Late trafficking of VacA inside intoxicated cells is not very well-researched. VacA is taken up into endocytic compartments that were shown to be GEECs (GIP-AP-enriched early endosomal compartments, [96]) and is then routed through early and late endosomes, finally reaching compartments carrying both endosomal and lysosomal markers [45,44], but avoiding degradation [46]. After four hours, VacA is found in vesicles scattered throughout the cytosol (Figure 15A, first column), which become enlarged VCVs in the presence of weak bases [159]. VacA is also known to localize to mitochondria, more specifically to the inner mitochondrial membrane [103–105], and it may to be transported there via VCVs [106]. However, a

Results

localization of VacA to other intracellular compartments has not yet been reported. Evidence of VacA involvement in intracellular calcium signaling suggested a possible trafficking of VacA to the ER, which was investigated in immunostaining experiments (see 2.2.13). HeLa cells were intoxicated with VacA-Alexa488, fixed, permeabilized, and stained for the ER marker calnexin or the Golgi apparatus marker giantin. In a similar setup, cells were intoxicated simultaneously with Alexa-labeled cholera toxin subunit B (CTxB-Alexa555). Although its uptake differs from that of VacA [96,160], CTxB is transported via the retrograde endocytic pathway to the Golgi [161], and might therefore provide an interesting comparison. DAPI staining of cell nuclei served as a general indicator of cell health. The results are shown in Figure 15A. In all three instances, VacA and the marker protein exhibit partial colocalization, suggesting that at least part of the internalized VacA localizes to the ER and the Golgi apparatus, respectively. Colocalization of VacA and CTxB not only in the large area representing the Golgi implies similarities in the transport of both toxins, but this may only be the case for CTxB that has not yet reached its final destination.

Interestingly, a substantial amount of VacA was found to localize in compartments closely associated with the Golgi apparatus (Figure 15B). These compartments may represent VacA being transported to or from the Golgi, possibly on its way to the ER via retrograde trafficking.

## 3.7.2 Isolation of Endoplasmic Reticulum

Another approach to verify whether VacA indeed localizes to the ER was to purify ER from VacA-intoxicated cells. Jurkat E6-1 cells were intoxicated with VacA for 4 h, homogenized, and subjected to sequential centrifugation (see 2.2.22). This resulted in a nuclear fraction, a mitochondrial fraction, and a crude microsomal fraction expected to contain the ER. All fractions were analyzed for the presence of VacA and the ER marker calnexin by immunoblotting (Figure 15C). Calnexin was found mostly in the mitochondrial fraction, indicating that the protocol needs to be optimized for this specific purpose. However, mitochondria and the ER are known to associate (reviewed in [162]), and the presence of VacA in both the mitochondrial and crude microsomal fractions supports the notion that at least some toxin localizes to the ER.





(A) Localization of VacA in HeLa cells was examined after 4 h of intoxication in comparison to ER marker calnexin, Golgi apparatus marker giantin, and cholera toxin subunit B (CTxB). Colocalization was observed in all three cases to varying degrees (last column of images). Images were obtained with a confocal microscope. Scale bars represent 10  $\mu$ m. (B) This panel shows a detailed view of the Golgi apparatus (red) and numerous VacA signals (green) in close association. White arrowheads identify putative Golgi-associated vesicles. Scale bars represent 10  $\mu$ m in overview image and 5  $\mu$ m in close-up. (C) Jurkat E6-1 cells were intoxicated with VacA (4 h) and subjected to an ER purification protocol. Fractions were analyzed by Western Blotting for the presence of VacA and calnexin. For nuclear and mitochondrial fractions, 20% of the total sample were applied to the gel, but only 10% of the crude microsomal fraction and 9.5% of the supernatant, due to volume constraints.

Results

# 4 Discussion

The namesake cellular effect of intoxication with *Helicobacter pylori* vacuolating cytotoxin VacA is the formation of large cytoplasmic vacuoles [38,39]. Until now, the function of these vacuoles is not known. They arise from endocytic vesicles containing VacA channels in their limiting membrane, which allow the influx of chloride ions, causing acidification and subsequent osmotic swelling of the vesicles [27]. VacA also exerts a variety of other effects on intoxicated cells, including the induction of apoptosis, the inhibition of T-cell activation and proliferation, and interference with intracellular calcium signaling (see sections 1.5.1, 1.5.2, and 1.5.4 for details). All of these depend on VacA channel forming activity [92]. Whether vacuolation is only a by-product of VacA channel formation, or whether it is its own effect, remains to be elucidated. In this study, VacA-containing vacuoles (VCVs) were isolated and their proteome was analyzed by mass spectrometry. This revealed information about the vacuoles' specific protein content and may help understand their purpose. Another part of this study further investigated VacA involvement in calcium signaling. Moreover, additional possible cellular target structures of VacA, besides vacuoles and mitochondria, were investigated.

# 4.1 VCV Isolation Strategies and Tools

The bulk of research investigating pathogen-induced vacuoles naturally focuses on vacuoles containing the pathogen. In those cases, purification methods often rely on density gradient centrifugation to separate pathogen-containing vacuoles (PCVs) from other cellular organelles. The difficulty in this technique is to overcome the similarity of PCVs and other organelles regarding their density, often requiring multiple centrifugation steps. This can be addressed by adding an immunological step to specifically target vacuoles, as done by the group of Hubert Hilbi for the isolation of *Legionella*-containing vacuoles [151]. Another challenge is the fact that PCVs interact with other organelles, leading to PCV preparations with considerable impurities [163]. The purity of isolated fractions is commonly monitored by electron microscopy, a method that was not available for this study but which may help evaluate VCV preparations in future experiments.

Other researchers have published PCV proteomes containing anywhere between 140 to 2400 proteins. The large differences in numbers can be attributed to the varying species of pathogens

and of host cells used for the isolation experiments, and importantly, the sensitivity of the MS technology. A comparison of protein numbers between different systems is therefore not advisable (all this is reviewed in [164]).

In this study, three different strategies were devised for VCV purification. Strategy A consisted of nanoscale magnetic beads called TurboBeads coupled to VacA monomers (see 3.4.2.3). After uptake of bead-bound VacA and vacuolation, the cells were to be homogenized and the vacuoles isolated with the help of a magnet. The main reason why this strategy was abandoned was the tendency of the beads to aggregate, preventing natural uptake (see Figure 8D). This problem was approached by using several different coating substances, but could not be solved. Other researchers have noted it to be an effect of the high specific surface energy of nanoparticles, making their use in biological settings difficult [165]. Recently, the TurboBeads manufacturer released new, polyethylene glycol (PEG) coated beads, specifically recommended for biomedical applications. These may be helpful in future experiments.

Strategy B was to sort VCVs from cell homogenate via flow cytometry (see 3.4.4). A cell line stably transfected to produce the fluorescent VCV marker EGFP-Rab7 [43] (see below) and intoxication with Alexa-labeled VacA provided the necessary characteristics for sorting, since only VCVs were expected to carry both EGFP and Alexa fluorophores. However, VCVs are apparently not stable enough to withstand the physical strain of flow cytometry (see Figure 10), even though the sorting conditions were adjusted to make the process as gentle as possible. This strategy was expected to yield VCV preparations with the highest purity and is still worth pursuing for similar applications.

VCVs were eventually successfully purified immunomagnetically, adapting strategy C from a protocol published by the group of Hubert Hilbi for the isolation of *Legionella*-containing vacuoles (LCVs) [151]. To this end, two indispensable tools were established. The first is a polyclonal antiserum which was shown to recognize VacA in its native conformation by native immunoblotting, functional inhibition of VacA-induced vacuolation, and immunostaining in this study (see section 3.2 and Figure 4). It was also used in pull-down experiments investigating possible protein-protein interactions of VacA (see 3.6). The antiserum was conclusively shown to be suitable for VCV purification. The second tool is the Jurkat T-cell line Jurkat E6-1 EGFP-Rab7, which stably expresses an EGFP-Rab7 fusion protein (see 3.3). Rab7 is a late endosomal protein that lines VCV membranes [43] and it served as a VCV marker to monitor the vacuole purification process (see Figure 5 and Figure 11). This way, it was possible to follow the distribution of VCVs through the successive steps of purification. In conclusion, these two tools laid the foundation for immunomagnetic VCV isolation.

The immunomagnetic method for VCV purification has one considerable flaw in that VacA is not exclusively situated on the VCV membrane, but is also for example still bound to the cytoplasmic membrane (see Figure 9A). This is in contrast to the original *Legionella* protocol, which uses a bacterial effector protein exclusively present on the LCV membrane as target. An appropriate control consisting of cells treated with mutant VacA was used to address this factor. This mutant VacA $\Delta$ 6-27 lacks 22 aa in its N-terminus which are necessary for proper channel formation and therefore vacuolation, although cellular uptake still happens [70]. Treatment of cells with this mutant toxin and their subjection to the VCV isolation protocol was expected to yield a purified fraction containing regular endocytic vesicles unaltered by VacA channel activity, and of course the aforementioned cytoplasmic membrane and other cell parts binding VacA. It was also expected to contain proteins unspecifically purified by the method, for instance proteins or cell parts that bind to the magnetic beads. This sample served as a valuable background control for the mass spectrometric anaysis of VCVs (see 3.5).

## 4.2 The VCV Proteome

One past publication has reported an attempt to characterize the protein composition of VacAcontaining vesicles by purifying them [45]. This publication, like this study, reasoned that determining the vacuolar protein content would help to find intracellular targets of VacA and to understand the details of VacA intoxication. The researchers showed that VacA intoxication causes a redistribution of markers of the endocytic network, specifically the recruitment to VCVs of the late endosomal marker Rab7 and the lysosomal marker Lamp2 and the absence of the late endosomal marker CI-M6PR. This was the first indication of VCVs being endolysosomal hybrid compartments. Due to the methods used, however, the analysis was constricted to checking for the presence of individual proteins. The present study for the first time performed a comprehensive investigation of the total VCV proteome by mass spectrometric (MS) analysis, seeking to find not only proteins that can be expected on an endocytic compartment, but various proteins involved in VacA intoxication effects.

### 4.2.1 VCV Analysis by MS - Strengths and Weaknesses

Two biological replicates of purified VCVs resulting from intoxication with wild-type VacA were measured. The results showed high variations between samples, with the first (WT1) returning 2078 protein hits and the second (WT2) returning 1754 (see Figure 12). The two

samples overlapped for 1123 proteins, clearly showing success, but also hinting that the analysis has to be performed several times, and only proteins found every time should be regarded as definite hits. The numbers are comparable to the results reported for Legionella-containing vacuoles (LCVs) purified with the same method, and analyzed on the same mass spectrometry platform. Around 1000-2000 host and Legionella proteins were identified, occurring once, twice, or in all three preparations that were examined [166,152]. As a background control for VCV purification, cells were treated with inactive mutant VacA $\Delta$ 6-27, which still binds to cells and is internalized, but does not cause vacuolation [70]. Subjecting this sample to the VCV isolation protocol should purify anything that unspecifically co-purifies with this method and any VacAcarrying cellular compartments that aren't vacuoles, for instance plasma membrane. The background sample contained 1606 proteins, indicating that the purity of the isolated VCV fraction is suboptimal. The researchers working on LCVs did not report the performance of a similar control experiment, precluding a direct comparison of preparation purity. However, subtraction of the proteins found in the background sample from the wild-type protein sets solves this problem. Considering only the proteins found in both wild-type samples (1123) and subtracting those found also in the background sample (883) leaves 240 proteins in the VCVspecific subset which was used for further interpretation (see Figure 12).

It has to be noted that this method is not quantitative and therefore does not permit inferences about the amount of any particular protein present in a sample. Also, there was no possibility to validate protein hits. The original protocol [151] intends immunofluorescence staining to confirm the presence of individual proteins on isolated, fixed vacuoles. This setup allows looking for colocalization of a target protein with the vacuole membrane marker, in the case of this study, EGFP-Rab7. Unfortunately, due to problems with fixation, this could not be done in intact VacA-intoxicated cells or isolated VCVs (see 3.4.2.3 and Figure 7D). None of the fixation reagents and protocols that were tried could preserve VCV membrane shape, eliminating an important characteristic for the identification of VCVs. Other methods, for example immunoblotting, do not facilitate the distinction between proteins present on the vacuole membrane, within the vacuole lumen, or elsewhere in the sample. However, a method of validation is needed to verify individual hits. One possibility to do this is to use different cells for immunostaining experiments, for instance adherent cells like HeLa cells, which can be fixed in a vacuolated state, with VCVs retaining their shape (data not shown). This then of course precludes the analysis of processes specific to T-cells. Another possibility is the transfection of T-cells with plasmids coding for target proteins fused to a fluorescent protein. This is more laborious but would have the added bonus of allowing the microscopic analysis of unfixed cells.

The presence of a protein in a VCV preparation of course assumes the presence of the respective protein on VCVs. However, another possibility that has to be considered is the co-purification of compartments that VacA has already been transported to prior to cell homogenization. Since trafficking of VacA to mitochondria depends on its first 32 amino acids [103,105], the use of VacA $\Delta$ 6-27 eliminates the co-purification of mitochondria in the background control sample. In the wild-type sample, mitochondria may be co-purified, and proteins localized to mitochondria could then appear in the VCV-specific subset. In the case of possible trafficking of VacA to other, yet unknown, cellular compartments, co-purification (and detection after background subtraction) would again depend on whether the VacA N-terminus acts as a targeting sequence in each particular case. Even though the presence of a protein in a VCV preparation does not guarantee its presence on VCVs, it nevertheless provides valuable information on VacA-induced cellular processes.

## 4.2.2 Individual Proteins Found on VCVs

Table 1 shows a list of proteins whose presence in the three MS samples is of special interest. This includes: proteins that localize to VCVs; proteins that explicitly do not localize to VCVs; proteins that are required for VacA effects; proteins that are known not to be required for VacA effects; and other proteins of significance.

All but two proteins that are known to localize to VCVs were found in all MS samples: the small GTPase (and purification tool) Rab7 [43], the lysosomal markers Lamp1 and 2 (Lamp2 is also known as Lgp110) [44,45], the vacuolar ATPase (vATPase) [52], and the membrane fusion regulators Syntaxin-7 and Vamp7 [48,27,153]. The two exceptions are Rac1, a signal transductor [47], which was found in only one wild-type and the background sample, and  $\beta$ -glucosaminidase, an LE/lysosomal enzyme [45], which was not found at all. Rab7, vATPase, Vamp7, and Rac1 are also necessary for vacuolation [49,51,50,153,47]. The fact that virtually all proteins which are definitely known to be contained in VCVs were found in the MS measurements validates the isolation technique. The most notable exception,  $\beta$ -glucosaminidase, was only reported to reside in VCVs in a single study that used baby hamster kidney cells, which could explain the disagreement. Also, most proteins known not to localize to VCVs were not detected (these proteins are marked with the comment "not on VCVs" in Table 1), showing that VCVs were successfully enriched with this method.

The MS results were also scanned for individual proteins involved in VacA cell binding and internalization. Several protein receptors for VacA have previously been identified on different

cell types, including EGFR, RPTP $\alpha/\beta$ , CD18, CD29, and Multimerin-1 [85,62,86,88,87,89]. None of these were detected in the wild-type VCV samples. In T-cells, specifically, CD18 is known to mediate internalization as part of the lymphocyte function-associated antigen 1 (LFA-1) [88]. Its absence can be explained by the following findings: LFA-1 is recycled back to the plasma membrane in Rab11-positive structures, whereas VCVs never carry Rab11 [160]. This suggests that after joint uptake, LFA-1 (and thus CD18) and VacA part ways. It is unknown when exactly this happens, but since cells were treated with VacA over night before VCV isolation, it is quite possible that differential sorting of LFA-1 and VacA has already occurred at the point of cell homogenization.

VacA uptake is known to be independent of endocytic regulators clathrin, dynamin, and caveolin [94,96]. While dynamin and caveolin were not detected in any MS samples, clathrin was found in all three, indicating a possible unspecific co-purification. Interestingly, flotillin-2, a protein that forms microdomains in the plasma membrane and associates with lipid rafts, was detected in the VCV-specific subset. It is not clear whether flotillins actively participate in a distinct type of endocytosis, or if they are cargo, but they are required for the uptake and intracellular trafficking of cholera toxin [167–169]. An implication of flotillin-2 in VacA intoxication is especially intruiging, since VacA and cholera toxin uptake are thought to differ [96,160]. On the other hand, if VacA $\Delta$ 6-27 is indeed internalized just like wild-type VacA as the literature suggests [70], the absence of flotillin-2 in the background control sample raises the question where and when exactly VacA and VacA $\Delta$ 6-27 transport start to differ.

The cytoskeletal component actin is necessary for VacA uptake and known to polymerize at early endosomes containing VacA, moving them through the cytoplasm [95,102]. Even though no association of actin with late endosomes (including VCVs) could previously be shown via microscopy [102], this does not eliminate the possibility. Cytoplasmic actin was detected in the VCV-specific subset, strongly suggesting that VCVs still associate with actin to move through the cell. CD2AP, which was shown to bridge actin structures and endocytic vesicles [102], was not found in any of the MS samples. Its function could however simply be fulfilled by a different docking protein.

Other proteins involved in endocytic processes that have been investigated with regard to VacA uptake include: tubulin; the small GTPases Cdc42, Arf6, and RhoA; the RhoA-regulated kinases ROCK and MLCK; several members of the **p**rotein **k**inase **C** family (PKC); the protease calpain; and **p**hosphoinositide **3-k**inase (PI3K). Of these, calpain, PKC, and Cdc42 are required for VacA uptake [160,96]. All three were detected in at least one wild-type sample; Cdc42 is even in the VCV-specific subset. Again, as in the case of flotillin-2, the exact differences of VacA and 72

VacA $\Delta$ 6-27 uptake and transport need to be clarified. The others were found to have no influence on VacA internalization [160,96]. Some of the aforementioned proteins were not detected by MS at all (ROCK, MLCK), while another was found in all samples (RhoA), all in agreement with the fact that these proteins don't play a role in VCV formation. Of interest are PI3K and Arf6, both of which occur in one wild-type sample, but not in the background. This suggests a possible VCV specificity that needs to be verified in future experiments. Although PI3K is not required for VacA uptake, its inhibition resulted in a slight reduction in VacA internalization [160]. Both PI3K and Arf6 play a role in intracellular trafficking [170,171], which makes them appealing possible targets for VacA.

Regarding VacA-induced apoptosis, the mass spectrometry results reveal two out of three known mitochondrial effector proteins in the VCV-specific sample. The dynamin-related protein Drp1 and the multi-domain pro-apoptotic factors Bak and Bax are activated by VacA intoxication, leading to mitochondrial fission and cytochrome c release via two separate mechanisms, and eventually, to apoptosis [110,106]. Bax is recruited to mitochondria via early endosomes containing VacA, but was not found in late endosomes [106], consistent with its absence in MS samples. VacA also causes mitochondrial recruitment of Drp1, and the presence of Drp1 in the VCV-specific protein subset suggests that this may also happen via VacAcontaining vesicles. Bak, however, is naturally already located in mitochondria, and its endosomal localization was not observed by Calore and coworkers [106]. It is conceivable that their methods were not as sensitive as mass spectrometry, or that the investigated time points differed, as Bak was detected in the VCV-specific subset, clearly showing its presence on VCVs and making it an intriguing candidate for further inspection. Another regulator of mitochondrial fission, MTFR1 [172], was found in the VCV-specific subset, further substantiating the connection between VacA intoxication, mitochondrial fission, and the mitochondrial apoptosis pathway.

As previous reports and research conducted during the course of this study demonstrated an influence of VacA on intracellular calcium signaling [139,120,140,119,155], the MS results lists were also scanned for proteins involved in this process. Calcineurin, a phosphatase important in T-cell activation and reported to be inhibited during VacA intoxication [119,120], was not detected in any of the samples. This is unsurprising because it is a cytoplasmic protein, and a direct interaction with VacA was never shown. Two very interesting proteins found in the VCV-specific subset are STIM1 and ITPR3. Both usually locate to the ER and are essential in T-cell calcium signaling (reviewed in [141,156]). Their significance will be discussed in detail in

section 4.3, but the discovery of these two proteins in the VCV-specific subset further corroborates VacA's role in calcium signaling.

#### Table 1: List of individual proteins of interest and their presence in wild-type or background MS samples.

This table groups proteins that have been investigated regarding in four VacA-related aspects: presence in/on VCVs and involvement in vacuolation; VacA binding to cells and internalization; VacA effects on mitochondria and  $Ca^{2+}$  signaling; and colocalization or direct interaction with VacA. Detection of each protein in WT1, WT2, and BG MS samples is indicated with + (present) or – (absent). Proteins detected in the VCV-specific subset are shaded red, while possibly VCV-specific proteins (detected in one WT sample but not in the BG sample) are shaded orange. Proteins that occurred in all samples are highlighted in blue, and proteins found unspecifically or not at all are highlighted in green.

| Protein                          | Function                             | Comment                                                                                   | Reference        | WT1 | WT2 | BG |  |  |
|----------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|------------------|-----|-----|----|--|--|
| VCV localization and vacuolation |                                      |                                                                                           |                  |     |     |    |  |  |
| Lamp1                            | Lysosomal marker                     | On VCVs                                                                                   | [44]             | +   | +   | +  |  |  |
| Lamp2 (Lgp110)                   | Lysosomal protein                    | On VCVs                                                                                   | [45]             | +   | +   | +  |  |  |
| Syntaxin7                        | SNARE                                | On VCVs                                                                                   | [27]             | +   | +   | +  |  |  |
| Rab7                             | Small GTPase; LE<br>marker           | On VCVs; necessary for vacuolation;<br>necessary for redistribution of LE<br>compartments | [43,49,44]       | +   | +   | +  |  |  |
| V-ATPase                         | Vacuolar ATPase                      | On VCVs; necessary for vacuolation                                                        | [52,51,50]       | +   | +   | +  |  |  |
| Vamp7                            | SNARE                                | On VCVs; necessary for vacuolation;<br>interacts with syntaxin7 more when<br>VacA present | [153]            | +   | +   | +  |  |  |
| Rac1                             | Small GTPase                         | On VCVs, necessary for vacuolation;<br>necessary for VacA uptake                          | [47,160,96]      | +   | -   | +  |  |  |
| β-glucosaminidase                | Lysosomal and LE<br>marker           | In VCVs                                                                                   | [45]             | _   | -   | -  |  |  |
| Cathepsin B                      | Lysosomal marker                     | Not on VCVs                                                                               | [45]             | -   | -   | -  |  |  |
| CI-M6PR                          | Trans-Golgi and LE<br>marker         | Not on VCVs                                                                               | [45]             | -   | +   | -  |  |  |
| Caveolin                         | Lipid raft endocytic<br>marker       | Not on VCVs                                                                               | [96]             | -   | -   | -  |  |  |
| Rab5                             | Small GTPase; EE<br>marker           | Not on late VCVs but on early<br>compartments (after GEECs)                               | [96]             | +   | +   | +  |  |  |
| Rab9                             | Small GTPase; LE-<br>Golgi transport | Not influenced by VacA-induced endosomal redistribution                                   | [173,44]         | -   | +   | +  |  |  |
| VacA binding to ce               | lls and VacA uptake                  |                                                                                           |                  |     |     |    |  |  |
| EGFR                             | Receptor                             | VacA receptor on HeLa cells                                                               | [85]             | -   | -   | -  |  |  |
| RPTPα                            | Receptor                             | VacA receptor on kidney cells                                                             | [62]             | -   | -   | -  |  |  |
| RPTPβ                            | Receptor                             | VacA receptor on stomach cells                                                            | [86]             | -   | -   | -  |  |  |
| CD18                             | Integrin β <sub>2</sub>              | VacA receptor on T-cells                                                                  | [88]             | -   | -   | +  |  |  |
| CD29                             | Integrin $\beta_1$                   | Complemental VacA receptor on epithelial cells                                            | [87]             | -   | -   | +  |  |  |
| Multimerin-1                     | Unclear                              | VacA receptor on platelet cells                                                           | [89]             | -   | -   | -  |  |  |
| Actin                            | Cytoskeleton                         | Necessary for VacA uptake and endosome tails                                              | [160,95,102<br>] | +   | +   | -  |  |  |
| Calpain                          | Protease                             | Necessary for LFA-1 clustering and VacA uptake                                            | [160]            | +   | -   | -  |  |  |
| PKC (various)                    | T-cell activation                    | Necessary for VacA uptake                                                                 | [160]            | +   | +   | +  |  |  |

| Protein                                         | Function                                                    | Comment                                                   | Reference  | WT1 | WT2 | BG |  |
|-------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------|-----|-----|----|--|
| Cdc42                                           | Small GTPase                                                | Necessary for VacA uptake                                 | [160,96]   | +   | +   | -  |  |
| CD2AP                                           | Cytoskeleton                                                | Required for VacA transfer from<br>GEECs to EE            | [102]      | -   | -   | -  |  |
| Tubulin                                         | Cytoskeleton                                                | Not necessary for VacA uptake                             | [160]      | +   | +   | +  |  |
| Clathrin                                        | Clathrin-dependent<br>endocytosis                           | Not necessary for VacA uptake                             | [160,94]   | +   | +   | +  |  |
| Dynamin                                         | Clathrin-dependent<br>endocytosis                           | Not necessary for VacA uptake                             | [160,94]   | -   | -   | -  |  |
| РІЗК                                            | T-cell activation                                           | Not necessary for VacA uptake<br>(small effect)           | [160]      | -   | +   | -  |  |
| RhoA                                            | Small GTPase;<br>cytoskeletal dynamics                      | Not necessary for VacA uptake                             | [160]      | +   | +   | +  |  |
| ROCK                                            | RhoA-regulated kinase                                       | Not necessary for VacA uptake                             | [160]      | -   | _   | -  |  |
| MLCK                                            | RhoA-regulated kinase                                       | Not necessary for VacA uptake                             | [160]      | -   | _   | -  |  |
| Arf6                                            | Small GTPase                                                | Not necessary for VacA uptake                             | [96]       | +   | -   | -  |  |
| Mitochondrial and                               | Ca <sup>2+</sup> signaling effects                          |                                                           |            |     |     |    |  |
| Drp1                                            | Mitochondrial fission                                       | Recruited and activated by VacA                           | [110]      | +   | +   | -  |  |
| MTFR1 (CHPPR)                                   | Mitochondrial fission                                       |                                                           |            | +   | +   | -  |  |
| Bax                                             | Apoptosis                                                   | Activated by VacA; recruited to mitochondria via VacA-EE  | [154,106]  | -   | -   | -  |  |
| Bak                                             | Apoptosis                                                   | Activated by VacA                                         | [154]      | +   | +   | -  |  |
| Calcineurin                                     | Ca <sup>2+</sup> -dependent<br>phosphatase                  | VacA blocks T-cell proliferation here                     | [119]      | -   | -   | -  |  |
| Orai1                                           | SOCE channel                                                | VacA does not colocalize with Orai1                       | [155]      | -   | -   | -  |  |
| STIM1                                           | SOCE sensor                                                 | VacA blocks STIM1 clustering; VacA colocalizes with STIM1 | [155]      | +   | +   | -  |  |
| ITPR3 (IP3R)                                    | ER Ca <sup>2+</sup> channel                                 |                                                           |            | +   | +   | -  |  |
| Colocalization or in                            | teraction with VacA                                         |                                                           |            |     |     |    |  |
| Sec61a                                          | ER protein translocator                                     | VacA colocalizes with Sec61                               | [155]      | +   | +   | -  |  |
| Calnexin                                        | ER marker                                                   | Partial colocalization with VacA                          | This study | +   | +   | -  |  |
| Giantin (GOLGB1)                                | Golgi marker                                                | Partial colocalization with VacA                          | This study | +   | +   | +  |  |
| Rack1 (GNB2L1)                                  | Signaling protein,<br>interacts with PKC and<br>SRC kinases | Interacts with VacA in Y2H and pull-<br>downs             | [174]      | +   | +   | +  |  |
| Fibronectin                                     | Extracellular matrix,<br>binds to integrins                 | interacts with VacA in vitro                              | [90]       | -   | -   | +  |  |
| Vip54                                           | Putative filament                                           | interacts with VacA in Y2H and pull-<br>downs             | [175]      | -   | -   | -  |  |
| Vacuole-mitochondria contact (vCLAMPs) in yeast |                                                             |                                                           |            |     |     |    |  |
| Vps39 (Vam6)                                    | Vacuolar fusion;<br>vCLAMP formation                        |                                                           | [176–178]  | +   | +   | -  |  |
| Vam7 (SNAP25<br>homolog)                        | Vacuolar fusion                                             |                                                           | [179,177]  | -   | -   | -  |  |
| Mnr2                                            | Mg <sup>2+</sup> transporter;<br>localizes to vCLAMP        |                                                           | [180,177]  | -   | -   | -  |  |
| Pho91                                           | Phosphate transporter;<br>localizes to vCLAMP               |                                                           | [181,177]  | -   | -   | -  |  |
| Ypt7                                            | Small GTPase;<br>vCLAMP formation                           |                                                           | [178]      | -   | -   | -  |  |

Three proteins were reported to interact with VacA directly in biochemical assays *in vitro*: the receptor for activated **C** kinase **1** Rack1 [174]; the extracellular matrix component fibronectin [90]; and a putative filament protein termed Vip54 [175].

Rack1, also known as GNB2L1, interacts with multiple cellular targets, including PKC and Src kinases and the integrin subunits CD18 and CD29 [182–184]. Its additional capacity to bind VacA is thus especially intriguing. It was detected in all three MS samples, possibly implying unspecific co-purification, but in the light of its proven interaction with VacA, this seems unlikely. GNB2L1 modifies both PKC and Src activity, activating the first and inhibiting the latter [182,183]. Albeit indirectly, this connects VacA with CagA phosphorylation by these two kinases. GNB2L1 interaction with CD18 and CD29, on the other hand, is interesting because both are known receptors for VacA. Upon VacA binding to the extracellular integrin domains, GNB2L1 may trigger intracellular signaling cascades that cause VacA effects. It is however unclear at which point GNB2L1 and VacA interact with each other, since they should be located at opposing sides of the cellular or endocytic membrane. Cytoplasmic localization of VacA via outer membrane vesicle delivery [185,186] or after endosome escape may be a way for the two proteins to come into direct contact. The same is true for the phosphatase calcineurin mentioned above.

Fibronectin was unsurprisingly not found in the wild-type VCV preparations. It is part of the extracellular matrix and therefore not expected to occur inside cells in significant amounts. Even though it directly binds VacA [90], this interaction would likely take place outside of cells, not in the context of VCVs.

Vip54 is a novel protein assumed to be an intermediate filament component on the basis of its structural characteristics and its interaction and co-distribution with known filament proteins [175]. The investigators suggest that it may mediate interactions between cytoskeletal filaments and VacA-containing endocytic compartments, but could not show the presence of Vip54 on VCVs. In accordance with this, it was also not detected in any of the MS samples. The hypothesis of VCV-filament interaction is compelling, but cannot be supported by the present evidence. Nevertheless, the interaction may occur at different points in time, or it may get lost during the physically rigorous process of VCV isolation.

The two individual proteins that remain to be discussed are the Golgi apparatus marker giantin and the ER marker calnexin. Both showed partial colocalization with VacA in intoxicated HeLa cells in immunofluorescence experiments (see 3.7.1). Colocalization may stem from three occurrences: trafficking of VacA to the respective compartment; recruitment of the marker proteins to VCVs; or very close physical contact of Golgi or ER with VCVs beyond microscopic

resolution. VacA trafficking to the Golgi apparatus or the ER will be discussed in a later section, but the latter two may also explain the presence of the marker proteins in VCV preparations. Both calnexin and giantin were detected in the wild-type MS samples. Calnexin is even contained in the VCV-specific protein subset, indicating either its presence in VCVs or VacAinduced co-purification of calnexin-carrying compartments alongside VCVs. Both of these incidents would suggest a connection between VacA/VCVs and the ER that has not been shown so far, and which will also be discussed later in the context of VacA trafficking. Giantin, on the other hand, was also found in the background sample. This means that, although unspecific copurification cannot be ruled out, giantin may be present on VCVs. Alternatively, VacA $\Delta$ 6-27, although vacuolation-inactive, may still be transported to the Golgi and lead to the isolation of Golgi-derived compartments in the background control. Given the close proximity of VacAcontaining vesicles to the Golgi apparatus observed via immunofluorescence (Figure 15B), a copurification of Golgi-derived compartments also in wild-type samples is conceivable. Whether this happens in a VacA-dependent manner has to be investigated in future experiments. Surprisingly, the share of Golgi proteins was reduced in the VCV-specific sample compared to the background (see Figure 13). However, immunostaining experiments and VCV isolation were conducted after different periods of intoxication (4 h vs 16 h), leaving ample time for transport processes to occur, which could explain the seemingly low amount of Golgi proteins in VCVs.

### 4.2.3 The VCV Proteome Decoded by Subcellular Localization and Biological Function

When looking at the general composition of the VCV-specific protein subset in comparison with the background sample (see Figure 13), the largest differences can be seen for nuclear and mitochondrial proteins. Nuclear proteins are enriched in the VCV-specific subset (23.1% compared to 14.9% in the background sample). A recruitment of nuclear proteins to VCVs is imaginable, but unlikely to happen in such large numbers. This is more likely to be a side-effect of the method. The disruption of nuclei during homogenization leads to the presence of sticky DNA in the sample, as was observed in the isolation process (data not shown). This DNA may then co-purify with VCVs but not with the smaller particles in the background sample, bringing along DNA-bound nuclear proteins. Using DNase during homogenization may help minimize this problem in future experiments. The reduction of mitochondrial proteins (14.3% compared to 21.4%) may be explained by a similar unspecific effect. Originally, an enrichment of mitochondrial proteins in the VCV-specific sample was anticipated, since VacA localizes to

77

mitochondria, and VCVs have been speculated to transport it there directly and/or interact with mitochondria [103–106].

Considering that VacA is known to alter vesicular trafficking and to change the protein content of endocytic compartments [142,44,118,45], the increase of endo- and lysosomal and signaling proteins in VCVs is as expected. The same is true for the enrichment in proteins involved in immune processes and cell death, since VacA greatly modulates the host immune response and induces apoptosis [107,108].

## 4.2.4 Interorganellar Crosstalk between VCVs and Mitochondria/ER

Recent research, mostly conducted in yeast, has illuminated the importance of organelleorganelle contact sites for the transport of substances. Mitochondria are not connected to cellular metabolism via vesicular transport, but instead rely on direct contact with the ER for phospolipid and Ca<sup>2+</sup> transport through so-called ER-mitochondria encounter structures (ERMES) (reviewed in [187]). Earlier this year, an additional contact site termed vCLAMP (vacuole and mitochondria patch) was identified, connecting mitochondria with vacuoles, the yeast lysosomal compartment [178,177]. vCLAMPs and ERMES were found to be reciprocally regulated, implying that each can restore loss of the other, and only loss of both caused lethal deficiencies in phospholipid transport. Establishment of vCLAMPs depends on Vps39, a component of the yeast vacuolar fusion process, and Ypt7, a small GTPase. The authors of these studies speculate that such contact sites may be conserved in higher eukaryotes, and Vps39 was indeed detected in the VCV-specific protein subset. While this may imply the formation of a VCV-mitochondria contact site, Ypt7 was absent in all MS samples. Also not detected were three other proteins reported to be present in vCLAMPs: Mnr2, a Mg<sup>2+</sup> transporter, Pho91, a phosphate transporter, and Vam7, another vacuolar fusion contributor. VacA-containing vesicles and mitochondria have been shown to juxtapose [106], but whether this close proximity is used to form transport channels analogous to those found in yeast remains elusive. Further studies are needed to investigate putative contact sites, which can be expected to have a protein composition at least slightly different from vCLAMPs.

Similar contact sites have also been observed in cells infected with chlamydial organisms and *Legionella* [188–190]. These pathogens establish a replicative vacuole that associates closely with the ER, for example to obtain lipids necessary for bacterial growth. In the case of *Legionella*, fusion of ER vesicles with the bacterial vacuole has been reported [190]. Therefore, such contact

sites may not only serve in lipid or ion transport, but may be involved in the translocation of VacA from VCVs to mitochondria or the ER.

### 4.2.5 VCVs as Multifunctional Platforms

In general, the information obtained from VCV purification agrees with the literature. The sheer number of non-endocytic proteins detected specifically in VCVs strongly supports the hypothesis of VCVs having a purpose. Their identity as signaling hubs needs to be confirmed with experiments validating the presence of individual proteins on or in VCVs. An investigation of 'obvious' signaling regulators like members of the Rab superfamily [191] on VCVs proved difficult. Even though many Rab proteins were found, most are present on various compartments of the endo-membrane system and were therefore not detected specifically on VCVs. Besides signaling, some researchers are now suggesting an even bigger function for endosomes as assembly sites for molecular machinery. This has been described for instance for cytokinesis, where the abscission machinery that physically separates dividing cells is accumulated at the site of action by endocytic and secretory vesicles [143]. Observations like this have also been made for cell migration and polarity. This has lead to the proposal of endosomes as specialized multi-purpose platforms, able to coordinate in space and time all the molecular actors necessary to execute such complex cellular processes [143]. If we turn this around, the proteins carried by an endocytic vesicle may offer information on the vesicle's purpose. Taken further, the protein cargo of an endocytic vesicle or a subpopulation of vesicles could therefore allow conclusions on what is happening in a cell at a given time point. In this light, the VCV proteome should be investigated from all points of view, since it could potentially give insight into all VacA-induced cellular processes. A comparison of the VCV proteome after different periods of intoxication and after intoxication with different VacA variants could also provide valuable information on this question. Proteome data confirmed by several measurements and an improved bioinformatic evaluation approach are necessary to assist in this endeavour.

## 4.3 Influence of VacA on Store-Operated Calcium Entry (SOCE)

VacA has been reported to influence intracellular calcium signaling, severely disrupting T-cell activation and proliferation [139,120,140,119]. A possible intermediate in these processes is the Ca<sup>2+</sup>-calmodulin-dependent phosphatase calcineurin [119,120], which needs sustained high intracellular calcium levels in order to function properly [141]. During the course of the present

study, the VacA-induced inhibition of ionophore-stimulated Ca<sup>2+</sup> influx shown by Boncristiano and coworkers [120] was confirmed [155]. Additionally, a connection of this phenomenon with store-operated calcium entry (SOCE) was revealed. SOCE is defined as the influx of calcium into the cytosol from the extracellular milieu caused by the depletion of intracellular calcium stores, for instance the endoplasmic reticulum (ER). A main actor in this process, especially in T-cells, is the stromal interaction molecule STIM1, which localizes to the ER membrane and senses the calcium concentration in the ER lumen (see Figure 14A). Upon calcium depletion, STIM1 clusters in so-called puncta and relocates to ER-plasma membrane junctions. There, it interacts with and activates the plasma membrane-situated SOCE channel Orai1, which then opens to let Ca<sup>2+</sup> into the cytosol (reviewed in [156]). The expression of both STIM1 and Orai1 is upregulated during T-cell activation [192], confirming their substantial role in this process. VacA was shown to colocalize with STIM1 and to interfere with STIM1 clustering in immunofluorescence experiments, clearly implicating VacA in SOCE inhibition [155]. This also for the first time demonstrated a possible localization of VacA to the ER. In contrast to the studies mentioned before, mutant VacA deficient in channel forming activity (VacA $\Delta$ 6-27) also showed an effect on cytoplasmic calcium concentrations, albeit less pronounced than the wildtype. Since SOCE-induced high intracellular calcium levels are required for calcineurin activity, an interference of VacA with SOCE offers a new possible explanation for calcineurin inhibition. At this point, it is not clear whether VacA effects on calcium signaling are really due to VacA channels as has been suggested [120,121], and if so, whether these channels are located in the plasma membrane or in the membrane of a cellular compartment like VacA-induced vacuoles or even the ER. Alternatively, SOCE effects may be the result of an interaction of monomeric VacA with STIM1. Irrespective of whether VacA needs to be present as a functional channel or not, the finding that the toxin is apparently transported to the ER needs to be addressed and will be discussed in the context of this present study's results in section 4.4.

The study that discovered VacA's involvement in SOCE and VacA-STIM1 colocalization also investigated a possible direct protein-protein interaction between VacA and STIM1 [155]. An interaction observed in a yeast two-hybrid (Y2H) screen was later refuted, leading to reassessment via pull-down experiments in the present study (see 3.6). For these experiments, STIM1 was recombinantly expressed in *E. coli* in two separate parts, the cytoplasmic half and the ER luminal half. The cytoplasmic half included the CAD/SOAR domain that interacts with and activates the SOCE channel Orai1, and the ER luminal half contained the Ca<sup>2+</sup>-sensing EF hand domain (see Figure 14A and B). The central transmembrane domain of STIM1 was omitted. Preceding experiments attempted but failed to precipitate STIM1 from lysate of VacA- intoxicated kidney epithelium (HEK-293) cells, presumably because of the transmembrane domain being difficult to solubilize (U. Jain, personal communication). The two recombinantly expressed STIM1 parts were separately tested for VacA binding, but an interaction could neither be shown nor excluded. An interaction seems very likely considering VacA's colocalization with ER-situated STIM1 and its inhibition of STIM1 clustering, so several options remain to be investigated. Firstly, the interaction may be too weak to be detected with the techniques used so far. Secondly, the experimental environment, particularly the recombinant expression of STIM1 in E. coli, may be too different from physiological conditions to facilitate binding. This includes the possibility that the interaction may not be direct, but mediated by additional binding partners in a larger protein complex that are not present in this artificial setting. Thirdly, the interacting section of STIM1 may actually be the transmembrane domain itself. Since VacA is capable of inserting into membranes to form channels, this seems plausible. Many of these problems could be solved by pull-down experiments with VacA-intoxicated cells, but as mentioned before, this had been unsuccessful. A recent publication detailed a possible protocol for this purpose [193]. In this report, STIM1 was precipitated from both HEK-293 and Jurkat cells, revealing an interaction with thrombospondins, a family of matricellular proteins. The discovered interaction was reportedly robust, and it is not certain whether VacA and STIM1 bind as strongly. There are, of course, other methods to examine the interactions of membrane proteins, but many of them are not suitable for testing a protein like VacA. Expression of VacA in mammalian cells is difficult due to its cytotoxicity, and can also not guarantee its natural localization. This rules out experiments like mammalian membrane two-hybrid [194]. On the other hand, tagging VacA with larger fusion proteins, as would be required for techniques like fluorescence resonance energy transfer (FRET), is difficult in H. pylori, and might also compromise VacA activity. In these rather complex circumstances where the two proteins of interest come from two different kingdoms of life, and one of them is a cytotoxin, an experimental set-up like the HEK-293/Jurkat cell pull-down described by Duquette and coworkers [193] seems the most applicable.

Another interesting aspect in this is the link between mitochondria and cellular calcium homeostasis. Mitochondria can act as calcium buffers, taking up calcium from the cytosol if levels are high. This is the case especially at the immunological synapse and close to the ER. Ca<sup>2+</sup> release from the ER, for example during T-cell activation, leads to high local concentrations around release sites, deactivating release channels like ITPR3 as an act of self-regulation. By taking up some of this calcium, mitochondria can prolong calcium release from the ER, and reduce the amount of cytosolic calcium that is available for transport back into the ER. Together,

these effects result in a stronger activation of SOCE and a greater overall mobilization of calcium (all this is reviewed in [141]). Derogating mitochondrial buffering capacities is therefore an additional way to disrupt cellular calcium signaling and T-cell activation. This can be brought about by a reduction of the mitochondrial transmembrane potential, since this is the driving force behind mitochondrial Ca<sup>2+</sup> uptake. VacA has been shown to do exactly that (Kimura 1999, Willhite 2004). Mitochondrial depolarization also diminishes STIM1 relocation to puncta at ERplasma membrane junctions (Singaravelu 2011), which is necessary for Orai1 activation and therefore SOCE. For these reasons, it is conceivable that VacA influence on SOCE happens via binding to STIM1 or via the depolarization of mitochondria, or both. This further highlights the complexity and intricacy of the connections between mitochondrial function, calcium signaling, and VacA intoxication.

## 4.4 VacA Partially Localizes to the ER and the Golgi Apparatus

Immunofluorescence staining experiments were conducted in HeLa cells to analyze intracellular trafficking of VacA. Even though a substantial amount of research has focused on VacA trafficking, only a few basic points are clear (see Figure 2 and Figure 17). Shortly after endocytosis, VacA can be found in GPI-AP-enriched early endosomal compartments (GEECs), from where it is transported to Rab5-positive early endosomes and later Rab7-positive late endosomes (Gauthier 2005). After about four hours, VacA-containing compartments are distributed throughout the cytoplasm and carry endo- and lysosomal markers (Molinari 1997, Li 2004). These compartments then enlarge to become vacuoles. Whether VacA goes anywhere from here is unknown. Earlier VacA-containing vesicles acquire actin tails that confer mobility (Gauthier 2007) and come into close physical contact with mitochondria (Calore 2010), but it was not conclusively shown that this is VacA's mode of transportation. VacA does reach the inner mitochondrial membrane thanks to its hydrophobic N-terminus, which acts like a targeting sequence [103,105]. Prior to the present study, no other cellular target structures of VacA had been reported. Recently, VacA localization to the ER was shown via colocalization with STIM1 and the ER-membrane protein transporter Sec61 in immunofluorescence experiments (Jain 2013). This was confirmed in the present study by demonstrating a partial colocalization of VacA with the ER marker calnexin after four hours of intoxication (see 3.7.1 and Figure 15A). Both VacA and calnexin can be seen in vesicles scattered throughout the cytosol, with VacA being more prominent near the nucleus (Figure 15A, first row). Similarly, a

partial colocalization of VacA with the Golgi apparatus marker giantin showed for the first time that some VacA is trafficked to the Golgi (Figure 15A, second row). Since an effect of VacA on SOCE has been shown, the ER is likely to be an actual target structure of VacA. The Golgi apparatus, however, is completely uncharted territory in the context of VacA intoxication. Whether VacA localization to the Golgi has direct effects, or whether this organelle is only a transit point on the way to other destinations (see 4.5), awaits investigation. *Pseudomonas* exotoxin, for example, is activated in the Golgi apparatus, and bacterial LPS may affect cellular signaling by causing the disruption of vesicular trafficking after it accumulates in the Golgi apparatus [195,196]. But in the case of most other bacterial toxins, the Golgi is only a stop to be passed on the way to the ER, and finally, the cytoplasm.

## 4.5 Is VacA Transported in a Retrograde Manner?

VacA has repeatedly been analyzed in comparison with classical bacterial AB toxins regarding uptake and intracellular trafficking [96,160]. AB toxins are targeted to the host cell cytosol and can reach it via two routes: one, by endosome escape, and two, via the retrograde pathway (see Figure 16) (reviewed in [197]). Escape from endosomes is usually triggered by low endosomal pH, which causes a conformational change in the toxin and its translocation across the endosomal membrane. The paradigm for this is diphtheria toxin secreted by Corynebacterium diphtheriae [198]. Retrograde trafficking is more complex (for a review see [197]). After endocytosis into early endosomes, the toxins are transported to the Golgi apparatus and from there to the ER, following the usual trafficking route of proteins in reverse. In a process called retro-translocation, the toxins then exploit endogenous protein transporters to cross the ER membrane into the cytosol. A direct transport of toxins from endosomes to the ER, without passing through the Golgi, has been observed, but has not entered the scientific consensus [199]. Some of these toxins, most famously Shiga toxin (released by Shigella dysenteriae and some E. coli) and cholera toxin (Vibrio cholerae), are very well-studied and can be used as tools to investigate the trafficking of new proteins of interest. Even though VacA is unlikely to be targeted to the host cell cytoplasm, it has been compared to AB toxins due to its structure [92]. AB toxins possess a B subunit responsible for cell binding and intracellular transport, and an A subunit conferring toxic activity [197]. In VacA, A and B subunits superficially correspond to the p33 and p55 domains, respectively, but the distinction between toxic and binding subunits is not as clear as it is for AB toxins (see 1.4.2).



#### Figure 16: Internalization and trafficking of bacterial toxins.

Bacterial toxins can reach their target, the host cell cytoplasm, via two routes: First, by escape from early or late endosomes (EE/LE) (diphtheria toxin, anthrax toxin), or second, by retrograde transport. In the latter case, toxins are transported through the Golgi apparatus and to the ER, from where they are retro-translocated into the cytoplasm (cholera toxin, Shiga toxin). Arrows with filled arrowheads symbolize translocation of toxins across membranes. Reviewed in [197].

The cell binding subunit B of cholera toxin (CTxB) was used in this study in co-intoxication experiments with VacA to gain insight into VacA trafficking pathways (see 3.7.1 and Figure 15A). Although the final destination of the toxic A subunit of cholera toxin is the ER, the subunits dissociate in the Golgi and the bulk of CTxB molecules persist there [200]. CTxB can therefore serve as a marker for retrograde trafficking up to the Golgi. The intracellular localization of both VacA and CTxB in co-intoxicated cells was analyzed by immunofluorescence in HeLa cells and compared (Figure 15A, third row). The two toxins are taken up by different mechanisms [96,160], but it is still possible that they reach the same endosome and are then both trafficked to the Golgi from there [201]. Again, the two proteins exhibited partial colocalization. The majority of CTxB localized to the Golgi apparatus close to the nucleus, where some punctiform VacA signals were also detected. This confirms the results obtained with VacA/giantin colocalization. Interestingly, the two toxins also colocalized in spots distinct from the Golgi, implying that they travel along the same route at least to some extent.

Whether these spots represent toxin on the way to the Golgi, to the ER, or to a third location needs to be explored.

Strikingly, the ER membrane protein transporter Sec61 was found specifically in the VCV proteome. It is discussed as the possible transporter system responsible for cholera toxin retrotranslocation from the ER to the cytosol [202] and may therefore also be a candidate for a potential VacA retro-translocation. Further corroborating this possibility, Sec61 exhibited a limited colocalization with VacA in another study [155]. An additional intriguing detail are the VacA-containing compartments closely associated with the Golgi apparatus that were observed in the giantin colocalization experiments (Figure 15B). This resembles the juxtaposition of VacA-containing vesicles with mitochondria observed by Calore and coworkers [106]. VacA translocation from VCVs into mitochondria could happen via membrane fusion or direct membrane-to-membrane transfer, and the same is true for translocation to the Golgi. But again, it is not clear whether these compartments contain VacA on its way to or from the Golgi. A compelling possibility to examine in the future is whether VacA reaches the ER directly, withouth using the common route through the Golgi apparatus. Direct transport from endosomes to the ER seems unlikely, but remains possible [199]. Endosomes have been shown to form contact sites with the ER, especially as they mature [203]. This may facilitate the translocation of VacA as discussed for mitochondria and Golgi earlier. If this is the case, the Golgi apparatus and the ER may be two separate target structures of VacA (see Figure 17).

By investigating only one time point, this study focused on identifying novel VacA target structures. To fully elucidate VacA trafficking, different time points need to be analyzed, for instance using markers for different known trafficking pathways or time points. Preliminary experiments were conducted using the *Legionella* effector protein and inhibitor of retrograde trafficking RidL [204], but its presence did not seem to influence VacA localization (data not shown). This result is tentative and may be due to the small amounts of VacA that are potentially transported in a retrograde manner. Rab9, a small GTPase responsible for the transport between late endosomes and the Golgi [173], was detected by MS in one VCV preparation (see Table 1), supplying some evidence for retrograde transport.

Retrograde toxin trafficking is mediated by the transport of the respective toxin receptors. These receptors are often lipids, like the ganglioside GM1 in the case of cholera toxin [205]. VacA is known to bind many different receptor structures (see 1.4.3), including glycosphingolipids, a component of gangliosides [82]. This may account for its transport to the Golgi and the ER. Similarly, the wide variety of VacA receptors and their specific trafficking routes may explain VacA's multiple cellular targets. One way to find out whether this is the case is to use different

VacA allelic variants in experiments similar to the ones conducted for this study. The cell binding or receptor specificity conferred mostly by the p55 domain/the m-region (see 1.4.2 and 1.4.3) should then lead to a differing cellular distribution of different VacA variants. Moreover, VacA binding to different receptors may result in their crosslinking and the combinatorial activation of several internalization or signaling pathways [27].

The observation that VacA does indeed localize to the ER supports the idea that it influences intracellular calcium signaling from there (see 4.3). Interesting questions that need to be addressed are whether VacA does this as a monomeric toxin or as a hexameric channel, and whether it indeed interacts with STIM1 or instead forms pores in the ER membrane. One possibility to approach these questions is to conduct (cryo-)electron microscopy studies similar to those that gave great insight into VacA channel structure [61,58,71], but imaging fragments of intoxicated cells or their organelles instead of artificial membranes. Another possibility is stimulated emission depletion (STED) fluorescence microscopy, which brings the microscopic resolution down to 20 nm [206]. While this may not be sufficient to resolve VacA channel structure, it may still be precise enough to distinguish between VacA monomers and hexamers. To this end, it may be necessary to label VacA p33 and p55 with different fluorophores. This can be accomplished by expressing them separately in *E. coli* and mixing them to restore VacA activity before cell intoxication [65].

Performing the colocalization immunofluorescence experiments with mutant VacA $\Delta$ 6-27 as a control could be illuminating in two respects: First, it could give some hints as to whether channel formation is essential for VacA trafficking. Second, the VacA N-terminus acts as a targeting sequence for the transport to mitochondria [103,105]. There is evidence that some targeting sequences can facilitate so-called dual targeting to more than one cellular compartment [207], and it is conceivable that this is also the case for VacA. Analyzing the trafficking of mutant VacA lacking this sequence may therefore shed light on transport processes to various compartments. Isolation of ER, Golgi apparatus, or other organelles as tested briefly during this study (see 3.7.2), may also be useful to complement immunofluorescence experiments.



Figure 17: VacA uptake, intracellular trafficking, and effects, continued.

This diagram again presents what is known about VacA internalization and intracellular transport, as shown in Figure 2, integrated with the findings of this study. VacA is taken up into early endosomes (EE) which acquire an actin tail (depicted in green) that drives them through the cytoplasm. This may facilitate VacA transport to mitochondria, and possibly, the ER and the Golgi apparatus, where VacA was shown to localize for the first time. In which order VacA travels through these compartments and vacuoles is still unclear. The VCV proteome showed an enrichment in certain cellular proteins, supporting the notion of a VCV purpose.

## 4.6 Conclusion and Outlook

The present study attempted for the first time a comprehensive analysis of the complete proteome of VacA-containing vacuoles to find out whether VCVs are only a by-product of VacA intoxication, or whether they have a purpose. The evident existence of a VCV proteome which consists not only of endosomal proteins clearly indicates a purpose for VCVs, and the exact nature of this purpose is an intriguing subject for further study. An important part of this

will be the validation of the presence of individual proteins on VCVs with special focus on VCVs as putative signaling platforms. Numerous proteins involved in known VacA intoxication effects were detected in VCV preparations, and their validation will strengthen the connections between VacA effects and their underlying cellular pathways. Of particular interest are proteins that are implicated in cellular calcium homeostasis (including STIM1 and ITPR3), the mitochondrial apoptotic pathway (including Drp1 and Bak), and intracellular signaling and trafficking processes (including Rack1/GNB2L1 and Rab superfamily proteins), which may all contribute to immune modulation by VacA. VCV proteome analysis may therefore also prove to be a valuable tool to interconnect existing knowledge about VacA and its effects.

Additionally, the Golgi apparatus and the ER were identified as novel VacA target structures. The retrograde pathway is an obvious candidate for VacA transport to these compartments, analogous to the trafficking of other bacterial toxins. However, other routes, including direct endosome-ER transport, cannot yet be dismissed. In general, there are many details of VacA trafficking left to discover (see Figure 17). This encompasses the potential dependence of VacA transport on its N-terminus, and the matter of sequence: is VacA transported to all other compartments, including VCVs, from early endosomes? Or are vacuoles an intermediate step not only with regard to VacA function, but also with regard to transport? Also, which effects are caused by the trafficking of VacA to the Golgi and the ER? Does the toxin persist there, or is the cytoplasm its final target? And which effects are instead caused by the recruitment of cellular proteins to VCVs? All of these questions provide extensive potential for future investigations.

# 5 List of Abbreviations

| *         | Denotes the addition of protease inhibitors to a buffer                   |
|-----------|---------------------------------------------------------------------------|
| α-        | Anti-                                                                     |
| Δ         | Delta (deletion)                                                          |
| 6xHis-tag | Polyhistidine-tag                                                         |
| aa        | Amino acid(s)                                                             |
| BB        | Brucella broth                                                            |
| BSA       | Bovine serum albumin                                                      |
| СМС       | N-cyclohexyl-N'-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate |
| CTxB      | Cholera toxin subunit B                                                   |
| DAPI      | 4',6-diamidino-2-phenylindole                                             |
| DMSO      | Dimethyl sulfoxide                                                        |
| DNA       | Deoxyribonucleic acid                                                     |
| dNTP      | Deoxyribonucleotide                                                       |
| EDC       | 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride               |
| EDTA      | Ethylenediaminetetraacetic acid                                           |
| EGFP      | Enhanced green fluorescent protein                                        |
| ER        | Endoplasmic reticulum                                                     |
| FACS      | Fluorescence-activated cell sorting                                       |
| FCS       | Fetal calf serum                                                          |
| FP        | Forward primer                                                            |
| g         | Gravitational force                                                       |
| G418      | Geneticin                                                                 |
| GEBS      | Glycerol EDTA bromphenol blue sarkosyl buffer                             |
| GFP       | Green fluorescent protein                                                 |
| His       | Histidine; polyhistidine-tag                                              |
| Нру       | Helicobacter pylori                                                       |
| ID        | Identifier                                                                |
| IEB       | Isotonic extraction buffer                                                |
| IgG       | Immunoglobulin G                                                          |
| IL        | Interleukin                                                               |

| IPTG              | Isopropyl-1-thio-β-D-galactopyranoside         |
|-------------------|------------------------------------------------|
| kDa               | Kilodalton                                     |
| LB                | Luria-Bertani/lysogeny broth                   |
| MES               | 2-(4-morpholino)ethanesulphonic acid hydrate   |
| MWCO              | Molecular weight cut-off                       |
| NHS               | N-hydroxysuccinimide                           |
| NP-40             | Nonyl-phenoxypolyethoxylethanol                |
| OD <sub>550</sub> | Optical density at a wavelength of 550 nm      |
| PBS               | Phosphate-buffered saline                      |
| PCR               | Polymerase chain reaction                      |
| PFA               | Paraformaldehyde                               |
| PMSF              | Phenylmethylsulfonyl fluoride                  |
| РОХ               | Horseradish peroxidase                         |
| PVDF              | Polyvinylidene fluoride                        |
| RIPA              | Radioimmunoprecipitation assay buffer          |
| RP                | Reverse primer                                 |
| rpm               | Rotations per minute                           |
| RT                | Room temperature                               |
| SDS               | Sodium dodecyl sulfate / sodium lauryl sulfate |
| SDS-PAGE          | SDS polyacrylamide gel electrophoresis         |
| ssDNA             | Single-stranded DNA                            |
| TAE               | Tris base acetic acid EDTA buffer              |
| TBS               | Tris-buffered saline                           |
| TCR               | T-cell receptor                                |
| Tris              | Tris(hydroxymethyl)aminomethane                |
| U                 | Enzyme unit                                    |
| VacA              | Vacuolating cytotoxin A                        |
| VCV               | VacA-containing vacuole                        |
| WT                | Wild-type                                      |
|                   |                                                |

# 6 Appendix

# 6.1 VCV-specific proteins

Table 2: Proteins contained in the VCV-specific subset of mass spectrometry measurements (see 3.5). Listed are gene names, protein names, and UniProt accession numbers.

| Gene     | Protein name                                                        | Accession |
|----------|---------------------------------------------------------------------|-----------|
| ACAA2    | 3-ketoacyl-CoA thiolase, mitochondrial                              | P42765    |
| ACADSB   | Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial | P45954    |
| ACO2     | Aconitate hydratase, mitochondrial                                  | Q99798    |
| ACTB     | Actin, cytoplasmic 1                                                | P60709    |
| ACTG1    | Actin, cytoplasmic 2                                                | P63261    |
| ACTN1    | Alpha-actinin-1                                                     | P12814    |
| ADCK3    | Chaperone activity of bc1 complex-like, mitochondrial               | Q8NI60    |
| AGPAT5   | 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon              | Q9NUQ2    |
| ALDOA    | Fructose-bisphosphate aldolase A                                    | P04075    |
| ALOX5AP  | Arachidonate 5-lipoxygenase-activating protein                      | P20292    |
| ANP32E   | Acidic leucine-rich nuclear phosphoprotein 32 family member E       | Q9BTT0    |
| ANXA11   | Annexin A11                                                         | P50995    |
| ARHGDIB  | Rho GDP-dissociation inhibitor 2                                    | P52566    |
| ATP1B3   | Sodium/potassium-transporting ATPase subunit beta-3                 | P54709    |
| ATP5F1   | ATP synthase F(0) complex subunit B1, mitochondrial                 | P24539    |
| ATP6AP2  | Renin receptor                                                      | O75787    |
| ATP6V1C1 | V-type proton ATPase subunit C 1                                    | P21283    |
| ATP6V1E1 | V-type proton ATPase subunit E 1                                    | P36543    |
| B3GAT3   | Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3 | O94766    |
| BAG2     | BAG family molecular chaperone regulator 2                          | O95816    |
| BAG6     | Large proline-rich protein BAG6                                     | P46379    |
| BAK1     | Bcl-2 homologous antagonist/killer                                  | Q16611    |
| BCAP31   | B-cell receptor-associated protein 31                               | P51572    |
|          |                                                                     |           |

| Gene     | Protein name                                                                   | Accession |
|----------|--------------------------------------------------------------------------------|-----------|
| BDH1     | D-beta-hydroxybutyrate dehydrogenase, mitochondrial                            | Q02338    |
| BLVRA    | Biliverdin reductase A                                                         | P53004    |
| BPHL     | Valacyclovir hydrolase                                                         | Q86WA6    |
| C17orf62 | Uncharacterized protein C17orf62                                               | Q9BQA9    |
| C4A      | Complement C4-A                                                                | P0C0L4    |
| CALCOCO2 | Calcium-binding and coiled-coil domain-containing protein 2                    | Q13137    |
| CAPRIN1  | Caprin-1                                                                       | Q14444    |
| CAPZA2   | F-actin-capping protein subunit alpha-2                                        | P47755    |
| CBX5     | Chromobox protein homolog 5                                                    | P45973    |
| CCT3     | T-complex protein 1 subunit gamma                                              | P49368    |
| CCT4     | T-complex protein 1 subunit delta                                              | P50991    |
| CCT5     | T-complex protein 1 subunit epsilon                                            | P48643    |
| CD3E     | T-cell surface glycoprotein CD3 epsilon chain                                  | P07766    |
| CDK5     | Cyclin-dependent kinase 5                                                      | Q00535    |
| CDKAL1   | Threonylcarbamoyladenosine tRNA methylthiotransferase                          | Q5VV42    |
| CHCHD2   | Coiled-coil-helix-coiled-coil-helix domain-containing protein 2, mitochondrial | Q9Y6H1    |
| CUCUDADA | Putative coiled-coil-helix-coiled-coil-helix domain-containing protein         | 057115    |
| CHCHD2P9 | CHCHD2P9, mitochondrial                                                        | Q511J5    |
| CHID1    | Chitinase domain-containing protein 1                                          | Q9BWS9    |
| CMPK1    | UMP-CMP kinase                                                                 | P30085    |
| COX5B    | Cytochrome c oxidase subunit 5B, mitochondrial                                 | P10606    |
| CPT1A    | Carnitine O-palmitoyltransferase 1, liver isoform                              | P50416    |
| CTNNA1   | Catenin alpha-1                                                                | P35221    |
| DDAH2    | N(G),N(G)-dimethylarginine dimethylaminohydrolase 2                            | O95865    |
| DDX39A   | ATP-dependent RNA helicase DDX39A                                              | O00148    |
| DHCR24   | Delta(24)-sterol reductase                                                     | Q15392    |
| DHCR7    | 7-dehydrocholesterol reductase                                                 | Q9UBM7    |
| DHTKD1   | Probable 2-oxoglutarate dehydrogenase E1 component DHKTD1, mitochondrial       | Q96HY7    |
| DHX15    | Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15             | O43143    |
| DNAJA2   | DnaJ homolog subfamily A member 2                                              | O60884    |
| DNAJB6   | DnaJ homolog subfamily B member 6                                              | O75190    |
| ECI2     | Enoyl-CoA delta isomerase 2, mitochondrial                                     | O75521    |
| EEF1D    | Elongation factor 1-delta                                                      | P29692    |
| EIF3C    | Eukaryotic translation initiation factor 3 subunit C                           | Q99613    |
| EIF3CL   | Eukaryotic translation initiation factor 3 subunit C-like protein              | B5ME19    |
| EIF6     | Eukaryotic translation initiation factor 6                                     | P56537    |
| ELMO1    | Engulfment and cell motility protein 1                                         | Q92556    |
| EMC4     | ER membrane protein complex subunit 4                                          | Q5J8M3    |

| Gene       | Protein name                                                          | Accession |
|------------|-----------------------------------------------------------------------|-----------|
| EMC7       | ER membrane protein complex subunit 7                                 | Q9NPA0    |
| EMC8       | ER membrane protein complex subunit 8                                 | O43402    |
| EPHX1      | Epoxide hydrolase 1                                                   | P07099    |
| ERLEC1     | Endoplasmic reticulum lectin 1                                        | Q96DZ1    |
| ETFB       | Electron transfer flavoprotein subunit beta                           | P38117    |
| FASTKD2    | FAST kinase domain-containing protein 2                               | Q9NYY8    |
| FH         | Fumarate hydratase, mitochondrial                                     | P07954    |
| FKBP11     | Peptidyl-prolyl cis-trans isomerase FKBP11                            | Q9NYL4    |
| FLG2       | Filaggrin-2                                                           | Q5D862    |
| FLOT2      | Flotillin-2                                                           | Q14254    |
| GAA        | Lysosomal alpha-glucosidase                                           | P10253    |
| GABARAPL2  | Gamma-aminobutyric acid receptor-associated protein-like 2            | P60520    |
| GADD45GIP1 | Growth arrest and DNA damage-inducible proteins-interacting protein 1 | Q8TAE8    |
| GBAS       | Protein NipSnap homolog 2                                             | O75323    |
| GTPBP6     | Putative GTP-binding protein 6                                        | O43824    |
| H2AFV      | Histone H2A.V                                                         | Q71UI9    |
| H2AFZ      | Histone H2A.Z                                                         | P0C0S5    |
| H6PD       | GDH/6PGL endoplasmic bifunctional protein                             | O95479    |
| HAGH       | Hydroxyacylglutathione hydrolase, mitochondrial                       | Q16775    |
| HEXB       | Beta-hexosaminidase subunit beta                                      | P07686    |
| HIST1H1D   | Histone H1.3                                                          | P16402    |
| HIST1H2AC  | Histone H2A type 1-C                                                  | Q93077    |
| HK1        | Hexokinase-1                                                          | P19367    |
| HLA-E      | HLA class I histocompatibility antigen, alpha chain E                 | P13747    |
| HNRNPA2B1  | Heterogeneous nuclear ribonucleoproteins A2/B1                        | P22626    |
| HNRNPA3    | Heterogeneous nuclear ribonucleoprotein A3                            | P51991    |
| HNRNPH3    | Heterogeneous nuclear ribonucleoprotein H3                            | P31942    |
| HRNR       | Hornerin                                                              | Q86YZ3    |
| HSPA1A     | Heat shock 70 kDa protein 1A/1B                                       | P08107    |
| IDE        | Insulin-degrading enzyme                                              | P14735    |
| IMPDH2     | Inosine-5'-monophosphate dehydrogenase 2                              | P12268    |
| ITGA4      | Integrin alpha-4                                                      | P13612    |
| ITGA5      | Integrin alpha-5                                                      | P08648    |
| ITPR3      | Inositol 1,4,5-trisphosphate receptor type 3                          | Q14573    |
| KHSRP      | Far upstream element-binding protein 2                                | Q92945    |
| KIDINS220  | Kinase D-interacting substrate of 220 kDa                             | Q9ULH0    |
| KIF5B      | Kinesin-1 heavy chain                                                 | P33176    |
| KRT6C      | Keratin, type II cytoskeletal 6C                                      | P48668    |
| LAPTM5     | Lysosomal-associated transmembrane protein 5                          | Q13571    |

| Gene      | Protein name                                                  | Accession |
|-----------|---------------------------------------------------------------|-----------|
| LDLR      | Low-density lipoprotein receptor                              | P01130    |
| LMNB2     | Lamin-B2                                                      | Q03252    |
| LRPAP1    | Alpha-2-macroglobulin receptor-associated protein             | P30533    |
| LRRC8A    | Volume-regulated anion channel subunit LRRC8A                 | Q8IWT6    |
| LSM12     | Protein LSM12 homolog                                         | Q3MHD2    |
| LYPLAL1   | Lysophospholipase-like protein 1                              | Q5VWZ2    |
| LYRM7     | Complex III assembly factor LYRM7                             | Q5U5X0    |
| MACROD1   | O-acetyl-ADP-ribose deacetylase MACROD1                       | Q9BQ69    |
| MAN2B1    | Lysosomal alpha-mannosidase                                   | O00754    |
| MANF      | Mesencephalic astrocyte-derived neurotrophic factor           | P55145    |
| MAP2K2    | Dual specificity mitogen-activated protein kinase kinase 2    | P36507    |
| MCEE      | Methylmalonyl-CoA epimerase, mitochondrial                    | Q96PE7    |
| MCM3      | DNA replication licensing factor MCM3                         | P25205    |
| MESDC2    | LDLR chaperone MESD                                           | Q14696    |
| MOB1A     | MOB kinase activator 1A                                       | Q9H8S9    |
| MOB1B     | MOB kinase activator 1B                                       | Q7L9L4    |
| MRPL53    | 39S ribosomal protein L53, mitochondrial                      | Q96EL3    |
| MRPS30    | 28S ribosomal protein S30, mitochondrial                      | Q9NP92    |
| MRPS33    | 28S ribosomal protein S33, mitochondrial                      | Q9Y291    |
| MTFR1     | Mitochondrial fission regulator 1                             | Q15390    |
| MTPN      | Myotrophin                                                    | P58546    |
| MYBBP1A   | Myb-binding protein 1A                                        | Q9BQG0    |
| NAA50     | N-alpha-acetyltransferase 50                                  | Q9GZZ1    |
| NARS2     | Probable asparaginetRNA ligase, mitochondrial                 | Q96I59    |
| NCL       | Nucleolin                                                     | P19338    |
| NDUFAF6   | NADH dehydrogenase                                            | Q330K2    |
| NDUFS1    | NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial  | P28331    |
| NDUFV1    | NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial | P49821    |
| NIPSNAP3A | Protein NipSnap homolog 3A                                    | Q9UFN0    |
| NLRX1     | NLR family member X1                                          | Q86UT6    |
| NNT       | NAD(P) transhydrogenase, mitochondrial                        | Q13423    |
| NOP56     | Nucleolar protein 56                                          | O00567    |
| NT5DC2    | 5'-nucleotidase domain-containing protein 2                   | Q9H857    |
| NUDT21    | Cleavage and polyadenylation specificity factor subunit 5     | O43809    |
| NUDT8     | Nucleoside diphosphate-linked moiety X motif 8, mitochondrial | Q8WV74    |
| NUP160    | Nuclear pore complex protein Nup160                           | Q12769    |
| NUP188    | Nucleoporin NUP188 homolog                                    | Q5SRE5    |
| NUP93     | Nuclear pore complex protein Nup93                            | Q8N1F7    |
| ORMDL1    | ORM1-like protein 1                                           | Q9P0S3    |

| Gene     | Protein name                                                              | Accession |
|----------|---------------------------------------------------------------------------|-----------|
| OSBPL11  | Oxysterol-binding protein-related protein 11                              | Q9BXB4    |
| OSBPL9   | Oxysterol-binding protein-related protein 9                               | Q96SU4    |
| OSGEPL1  | Probable tRNA N6-adenosine threonylcarbamoyltransferase, mitochondrial    | Q9H4B0    |
| PAFAH1B1 | Platelet-activating factor acetylhydrolase IB subunit alpha               | P43034    |
| PAICS    | Multifunctional protein ADE2                                              | P22234    |
| PARK7    | Protein DJ-1                                                              | Q99497    |
| PBXIP1   | Pre-B-cell leukemia transcription factor-interacting protein 1            | Q96AQ6    |
| PDCD11   | Protein RRP5 homolog                                                      | Q14690    |
| PDIA3    | Protein disulfide-isomerase A3                                            | P30101    |
| PDK1     | [Pyruvate dehydrogenase                                                   | Q15118    |
| PLOD1    | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1                         | Q02809    |
| PML      | Protein PML                                                               | P29590    |
| POLDIP3  | Polymerase delta-interacting protein 3                                    | Q9BY77    |
| POLR2A   | DNA-directed RNA polymerase II subunit RPB1                               | P24928    |
| POLR2B   | DNA-directed RNA polymerase II subunit RPB2                               | P30876    |
| PPIH     | Peptidyl-prolyl cis-trans isomerase H                                     | O43447    |
| DDDDDD A | Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha | D(2151    |
| PPP2R2A  | isoform                                                                   | P63151    |
| PSAP     | Prosaposin                                                                | P07602    |
| PSMA1    | Proteasome subunit alpha type-1                                           | P25786    |
| PSMB1    | Proteasome subunit beta type-1                                            | P20618    |
| PSMC5    | 26S protease regulatory subunit 8                                         | P62195    |
| PTDSS1   | Phosphatidylserine synthase 1                                             | P48651    |
| PTPLAD1  | Very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase 3   | Q9P035    |
| PTPN11   | Tyrosine-protein phosphatase non-receptor type 11                         | Q06124    |
| PWP2     | Periodic tryptophan protein 2 homolog                                     | Q15269    |
| PXMP2    | Peroxisomal membrane protein 2                                            | Q9NR77    |
| PYCR1    | Pyrroline-5-carboxylate reductase 1, mitochondrial                        | P32322    |
| RAB22A   | Ras-related protein Rab-22A                                               | Q9UL26    |
| RAB33B   | Ras-related protein Rab-33B                                               | Q9H082    |
| RAB4B    | Ras-related protein Rab-4B                                                | P61018    |
| RAB5A    | Ras-related protein Rab-5A                                                | P20339    |
| RAN      | GTP-binding nuclear protein Ran                                           | P62826    |
| RANBP1   | Ran-specific GTPase-activating protein                                    | P43487    |
| RARS     | ArgininetRNA ligase, cytoplasmic                                          | P54136    |
| RBBP4    | Histone-binding protein RBBP4                                             | Q09028    |
| RBM25    | RNA-binding protein 25                                                    | P49756    |
| RFK      | Riboflavin kinase                                                         | Q969G6    |
| RHOG     | Rho-related GTP-binding protein RhoG                                      | P84095    |
|          |                                                                           |           |

| Gene     | Protein name                                               | Accession |
|----------|------------------------------------------------------------|-----------|
| RMDN1    | Regulator of microtubule dynamics protein 1                | Q96DB5    |
| RPL10    | 60S ribosomal protein L10                                  | P27635    |
| RPL13A   | 60S ribosomal protein L13a                                 | P40429    |
| RPL23    | 60S ribosomal protein L23                                  | P62829    |
| RPL4     | 60S ribosomal protein L4                                   | P36578    |
| RPS19BP1 | Active regulator of SIRT1                                  | Q86WX3    |
| RPS5     | 40S ribosomal protein S5                                   | P46782    |
| RRAS2    | Ras-related protein R-Ras2                                 | P62070    |
| RTN4IP1  | Reticulon-4-interacting protein 1, mitochondrial           | Q8WWV3    |
| SAFB     | Scaffold attachment factor B1                              | Q15424    |
| SCD      | Acyl-CoA desaturase                                        | O00767    |
| SEC61A1  | Protein transport protein Sec61 subunit alpha isoform 1    | P61619    |
| SF3A2    | Splicing factor 3A subunit 2                               | Q15428    |
| SFPQ     | Splicing factor, proline- and glutamine-rich               | P23246    |
| SIGMAR1  | Sigma non-opioid intracellular receptor 1                  | Q99720    |
| SIRT3    | NAD-dependent protein deacetylase sirtuin-3, mitochondrial | Q9NTG7    |
| SIT1     | Signaling threshold-regulating transmembrane adapter 1     | Q9Y3P8    |
| SLC12A2  | Solute carrier family 12 member 2                          | P55011    |
| SLC1A4   | Neutral amino acid transporter A                           | P43007    |
| SLC25A40 | Solute carrier family 25 member 40                         | Q8TBP6    |
| SLC25A5  | ADP/ATP translocase 2                                      | P05141    |
| SLTM     | SAFB-like transcription modulator                          | Q9NWH9    |
| SMARCA4  | Transcription activator BRG1                               | P51532    |
| SMC1A    | Structural maintenance of chromosomes protein 1A           | Q14683    |
| SMC3     | Structural maintenance of chromosomes protein 3            | Q9UQE7    |
| SNRPD1   | Small nuclear ribonucleoprotein Sm D1                      | P62314    |
| SNRPN    | Small nuclear ribonucleoprotein-associated protein N       | P63162    |
| SOD1     | Superoxide dismutase [Cu-Zn]                               | P00441    |
| SOD2     | Superoxide dismutase [Mn], mitochondrial                   | P04179    |
| SQLE     | Squalene monooxygenase                                     | Q14534    |
| SRPK1    | SRSF protein kinase 1                                      | Q96SB4    |
| STIM1    | Stromal interaction molecule 1                             | Q13586    |
| STRAP    | Serine-threonine kinase receptor-associated protein        | Q9Y3F4    |
| STX17    | Syntaxin-17                                                | P56962    |
| SYPL1    | Synaptophysin-like protein 1                               | Q16563    |
| TLN1     | Talin-1                                                    | Q9Y490    |
| TMED7    | Transmembrane emp24 domain-containing protein 7            | Q9Y3B3    |
| TMEM126B | Complex I assembly factor TMEM126B, mitochondrial          | Q8IUX1    |
| TMEM173  | Stimulator of interferon genes protein                     | Q86WV6    |

| Gene    | Protein name                                                 | Accession |
|---------|--------------------------------------------------------------|-----------|
| TMEM230 | Transmembrane protein 230                                    | Q96A57    |
| TMEM59  | Transmembrane protein 59                                     | Q9BXS4    |
| TMUB2   | Transmembrane and ubiquitin-like domain-containing protein 2 | Q71RG4    |
| TMX2    | Thioredoxin-related transmembrane protein 2                  | Q9Y320    |
| TMX3    | Protein disulfide-isomerase TMX3                             | Q96JJ7    |
| TMX4    | Thioredoxin-related transmembrane protein 4                  | Q9H1E5    |
| TOMM70A | Mitochondrial import receptor subunit TOM70                  | O94826    |
| TRIM28  | Transcription intermediary factor 1-beta                     | Q13263    |
| TSFM    | Elongation factor Ts, mitochondrial                          | P43897    |
| TSG101  | Tumor susceptibility gene 101 protein                        | Q99816    |
| TSN     | Translin                                                     | Q15631    |
| UBE4A   | Ubiquitin conjugation factor E4 A                            | Q14139    |
| UCHL5   | Ubiquitin carboxyl-terminal hydrolase isozyme L5             | Q9Y5K5    |
| UFSP2   | Ufm1-specific protease 2                                     | Q9NUQ7    |
| UPF1    | Regulator of nonsense transcripts 1                          | Q92900    |
| USP10   | Ubiquitin carboxyl-terminal hydrolase 10                     | Q14694    |
| VARS    | ValinetRNA ligase                                            | P26640    |
| VAV1    | Proto-oncogene vav                                           | P15498    |
| VPS39   | Vam6/Vps39-like protein                                      | Q96JC1    |
| WDR3    | WD repeat-containing protein 3                               | Q9UNX4    |
| WDR36   | WD repeat-containing protein 36                              | Q8NI36    |
| XRCC6   | X-ray repair cross-complementing protein 6                   | P12956    |
| YME1L1  | ATP-dependent zinc metalloprotease YME1L1                    | Q96TA2    |
| YWHAG   | 14-3-3 protein gamma                                         | P61981    |
| ZC3H11A | Zinc finger CCCH domain-containing protein 11A               | O75152    |

# 6.2 Wild-type sample 1 (WT1) proteins

Table 3: Proteins contained in the wild-type 1 VCV preparation (WT1) measured by mass spectrometry (see 3.5). Listed are gene names, protein names, and UniProt accession numbers.

|    | Gene     | Protein name                                                              | Accession |
|----|----------|---------------------------------------------------------------------------|-----------|
|    | AAAS     | Aladin                                                                    | P36639    |
|    | AARS2    | AlaninetRNA ligase, mitochondrial                                         | Q8NHG7    |
|    | AASDHPPT | L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase | Q9BRR6    |
|    | AASS     | Alpha-aminoadipic semialdehyde synthase, mitochondrial                    | P54619    |
|    | AATF     | Protein AATF                                                              | Q9UDR5    |
|    | ABAT     | 4-aminobutyrate aminotransferase, mitochondrial                           | P06744    |
|    | ABCB10   | ATP-binding cassette sub-family B member 10, mitochondrial                | Q9NUT2    |
|    | ABCB7    | ATP-binding cassette sub-family B member 7, mitochondrial                 | Q5VST6    |
|    | ABCB8    | ATP-binding cassette sub-family B member 8, mitochondrial                 | O75027    |
|    | ABCC1    | Multidrug resistance-associated protein 1                                 | Q6IN84    |
|    | ABCD3    | ATP-binding cassette sub-family D member 3                                | Q9NRK6    |
|    | ABCE1    | ATP-binding cassette sub-family E member 1                                | Q8NE71    |
|    | ABCF1    | ATP-binding cassette sub-family F member 1                                | P28288    |
|    | ABHD10   | Mycophenolic acid acyl-glucuronide esterase, mitochondrial                | Q8N2K0    |
|    | ABHD11   | Alpha/beta hydrolase domain-containing protein 11                         | Q9NUJ1    |
|    | ABHD12   | Monoacylglycerol lipase ABHD12                                            | P61221    |
|    | ABHD16A  | Abhydrolase domain-containing protein 16A                                 | Q8NFV4    |
|    | ABHD17B  | Alpha/beta hydrolase domain-containing protein 17B                        | Q9NY61    |
|    | ACAA1    | 3-ketoacyl-CoA thiolase, peroxisomal                                      | Q8WUY1    |
|    | ACAA2    | 3-ketoacyl-CoA thiolase, mitochondrial                                    | P24752    |
|    | ACAD10   | Acyl-CoA dehydrogenase family member 10                                   | P49748    |
|    | ACAD8    | Isobutyryl-CoA dehydrogenase, mitochondrial                               | O95870    |
|    | ACAD9    | Acyl-CoA dehydrogenase family member 9, mitochondrial                     | Q9UKU7    |
| 95 | ACADM    | Medium-chain specific acyl-CoA dehydrogenase, mitochondrial               | Q9H845    |
|    |          |                                                                           |           |

| Gene    | Protein name                                                          | Accession |
|---------|-----------------------------------------------------------------------|-----------|
| ACADS   | Short-chain specific acyl-CoA dehydrogenase, mitochondrial            | P11310    |
| ACADSB  | Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial   | Q6JQN1    |
| ACADVL  | Very long-chain specific acyl-CoA dehydrogenase, mitochondrial        | P16219    |
| ACAT1   | Acetyl-CoA acetyltransferase, mitochondrial                           | P09110    |
| ACBD3   | Golgi resident protein GCP60                                          | Q96CW5    |
| ACIN1   | Apoptotic chromatin condensation inducer in the nucleus               | P45954    |
| ACN9    | Protein ACN9 homolog, mitochondrial                                   | O96019    |
| ACO2    | Aconitate hydratase, mitochondrial                                    | O00767    |
| ACOT13  | Acyl-coenzyme A thioesterase 13                                       | Q9NRP4    |
| ACOT7   | Cytosolic acyl coenzyme A thioester hydrolase                         | Q6Y288    |
| ACOX1   | Peroxisomal acyl-coenzyme A oxidase 1                                 | Q99798    |
| ACP1    | Low molecular weight phosphotyrosine protein phosphatase              | P62136    |
| ACSF3   | Acyl-CoA synthetase family member 3, mitochondrial                    | Q9NUB1    |
| ACSL1   | Long-chain-fatty-acidCoA ligase 1                                     | Q4G176    |
| ACSS1   | Acetyl-coenzyme A synthetase 2-like, mitochondrial                    | O14561    |
| ACTB    | Actin, cytoplasmic 1                                                  | P33121    |
| ACTG1   | Actin, cytoplasmic 2                                                  | P60709    |
| ACTL6A  | Actin-like protein 6A                                                 | Q9UKV3    |
| ACTN1   | Alpha-actinin-1                                                       | P63261    |
| ACTN4   | Alpha-actinin-4                                                       | P12814    |
| ACTR1A  | Alpha-centractin                                                      | O43707    |
| ACTR2   | Actin-related protein 2                                               | Q86WX3    |
| ACTR3   | Actin-related protein 3                                               | P61160    |
| ADAM10  | Disintegrin and metalloproteinase domain-containing protein 10        | P61163    |
| ADCK3   | Chaperone activity of bc1 complex-like, mitochondrial                 | O00116    |
| ADCK4   | AarF domain-containing protein kinase 4                               | Q8NI60    |
| ADPGK   | ADP-dependent glucokinase                                             | Q96D53    |
| ADPRHL2 | Poly(ADP-ribose) glycohydrolase ARH3                                  | Q92974    |
| AEBP1   | Adipocyte enhancer-binding protein 1                                  | P10109    |
| AGK     | Acylglycerol kinase, mitochondrial                                    | P06280    |
| AGPAT1  | 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha                  | Q9UG56    |
| AGPAT5  | 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon                | Q99943    |
| AGPS    | Alkyldihydroxyacetonephosphate synthase, peroxisomal                  | O14672    |
| AHCY    | Adenosylhomocysteinase                                                | O43865    |
| AHCYL1  | Putative adenosylhomocysteinase 2                                     | Q15424    |
| AHSA1   | Activator of 90 kDa heat shock protein ATPase homolog 1               | Q53H12    |
| AIFM1   | Apoptosis-inducing factor 1, mitochondrial                            | O95433    |
| AIMP1   | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 | O95831    |
| AK2     | Adenylate kinase 2, mitochondrial                                     | Q01813    |

| 96 | Gene     | Protein name                                                                       | Accession |
|----|----------|------------------------------------------------------------------------------------|-----------|
|    | AK3      | GTP:AMP phosphotransferase AK3, mitochondrial                                      | P54819    |
|    | AKR7A2   | Aflatoxin B1 aldehyde reductase member 2                                           | Q9NX46    |
|    | ALAS1    | 5-aminolevulinate synthase, nonspecific, mitochondrial                             | Q9H583    |
|    | ALB      | Serum albumin                                                                      | P20292    |
|    | ALDH18A1 | Delta-1-pyrroline-5-carboxylate synthase                                           | Q96C36    |
|    | ALDH3A2  | Fatty aldehyde dehydrogenase                                                       | Q9NWT8    |
|    | ALDH4A1  | Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial                       | P51648    |
|    | ALDH5A1  | Succinate-semialdehyde dehydrogenase, mitochondrial                                | Q13242    |
|    | ALDH6A1  | Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial               | Q8N4V1    |
|    | ALDOA    | Fructose-bisphosphate aldolase A                                                   | P02768    |
|    | ALG1     | Chitobiosyldiphosphodolichol beta-mannosyltransferase                              | Q9NP73    |
|    | ALG13    | Putative bifunctional UDP-N-acetylglucosamine transferase and deubiquitinase ALG13 | P04075    |
|    | ALG5     | Dolichyl-phosphate beta-glucosyltransferase                                        | Q9BT22    |
|    | ALKBH7   | Alpha-ketoglutarate-dependent dioxygenase alkB homolog 7, mitochondrial            | Q9Y673    |
|    | ALOX5AP  | Arachidonate 5-lipoxygenase-activating protein                                     | P30038    |
|    | ALYREF   | THO complex subunit 4                                                              | Q8NI27    |
|    | ANKLE2   | Ankyrin repeat and LEM domain-containing protein 2                                 | Q9BTT0    |
|    | ANO6     | Anoctamin-6                                                                        | O14744    |
|    | ANP32E   | Acidic leucine-rich nuclear phosphoprotein 32 family member E                      | P30533    |
|    | ANXA11   | Annexin A11                                                                        | P01008    |
|    | ANXA2    | Annexin A2                                                                         | P50995    |
|    | ANXA6    | Annexin A6                                                                         | P07355    |
|    | AP1B1    | AP-1 complex subunit beta-1                                                        | P08133    |
|    | AP1G1    | AP-1 complex subunit gamma-1                                                       | Q10567    |
|    | AP1M1    | AP-1 complex subunit mu-1                                                          | O43747    |
|    | AP1S1    | AP-1 complex subunit sigma-1A                                                      | Q9BXS5    |
|    | AP2A1    | AP-2 complex subunit alpha-1                                                       | P61966    |
|    | AP2A2    | AP-2 complex subunit alpha-2                                                       | O95782    |
|    | AP2B1    | AP-2 complex subunit beta                                                          | O94973    |
|    | AP2M1    | AP-2 complex subunit mu                                                            | P63010    |
|    | AP2S1    | AP-2 complex subunit sigma                                                         | Q96CW1    |
|    | APMAP    | Adipocyte plasma membrane-associated protein                                       | P50583    |
|    | APOA1BP  | NAD(P)H-hydrate epimerase                                                          | P22307    |
|    | APOL2    | Apolipoprotein L2                                                                  | Q9HDC9    |
|    | APOO     | Apolipoprotein O                                                                   | Q6UXV4    |
|    | APOOL    | Apolipoprotein O-like                                                              | Q9BQE5    |
|    | APRT     | Adenine phosphoribosyltransferase                                                  | Q9BUR5    |
|    | ARCN1    | Coatomer subunit delta                                                             | P53618    |

| Gene     | Protein name                                         | Accession |
|----------|------------------------------------------------------|-----------|
| ARF1     | ADP-ribosylation factor 1                            | P07741    |
| ARF3     | ADP-ribosylation factor 3                            | P84077    |
| ARF4     | ADP-ribosylation factor 4                            | P61204    |
| ARF5     | ADP-ribosylation factor 5                            | P18085    |
| ARF6     | ADP-ribosylation factor 6                            | P84085    |
| ARG2     | Arginase-2, mitochondrial                            | P62330    |
| ARHGAP15 | Rho GTPase-activating protein 15                     | Q15382    |
| ARHGDIB  | Rho GDP-dissociation inhibitor 2                     | P50395    |
| ARHGEF2  | Rho guanine nucleotide exchange factor 2             | P78540    |
| ARL2     | ADP-ribosylation factor-like protein 2               | O43488    |
| ARL3     | ADP-ribosylation factor-like protein 3               | P36404    |
| ARL8B    | ADP-ribosylation factor-like protein 8B              | P36405    |
| ARMC1    | Armadillo repeat-containing protein 1                | Q8N2F6    |
| ARMC10   | Armadillo repeat-containing protein 10               | Q9NVJ2    |
| ARMCX3   | Armadillo repeat-containing X-linked protein 3       | Q9NVT9    |
| ARPC3    | Actin-related protein 2/3 complex subunit 3          | P61158    |
| ARPC4    | Actin-related protein 2/3 complex subunit 4          | O15145    |
| ASAH1    | Acid ceramidase                                      | P59998    |
| ASF1A    | Histone chaperone ASF1A                              | Q13510    |
| ASNA1    | ATPase ASNA1                                         | Q9Y294    |
| ASPH     | Aspartyl/asparaginyl beta-hydroxylase                | O43681    |
| ATAD1    | ATPase family AAA domain-containing protein 1        | P24539    |
| ATAD3A   | ATPase family AAA domain-containing protein 3A       | Q8NBU5    |
| ATAD3B   | ATPase family AAA domain-containing protein 3B       | Q9NVI7    |
| ATG3     | Ubiquitin-like-conjugating enzyme ATG3               | Q5T9A4    |
| ATIC     | Bifunctional purine biosynthesis protein PURH        | P22234    |
| ATL2     | Atlastin-2                                           | Q9NT62    |
| ATL3     | Atlastin-3                                           | Q8NHH9    |
| ATP13A1  | Probable cation-transporting ATPase 13A1             | Q12797    |
| ATP1A1   | Sodium/potassium-transporting ATPase subunit alpha-1 | Q9HD20    |
| ATP1A3   | Sodium/potassium-transporting ATPase subunit alpha-3 | P05023    |
| ATP1B3   | Sodium/potassium-transporting ATPase subunit beta-3  | P13637    |
| ATP2A2   | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2  | P54709    |
| ATP2A3   | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3  | P16615    |
| ATP2B4   | Plasma membrane calcium-transporting ATPase 4        | Q93084    |
| ATP5A1   | ATP synthase subunit alpha, mitochondrial            | O75964    |
| ATP5B    | ATP synthase subunit beta, mitochondrial             | P25705    |
| ATP5D    | ATP synthase subunit delta, mitochondrial            | P06576    |
| ATP5F1   | ATP synthase F(0) complex subunit B1, mitochondrial  | Q9NW81    |
| Gene     | Protein name                                                              | Accession |
|----------|---------------------------------------------------------------------------|-----------|
| ATP5H    | ATP synthase subunit d, mitochondrial                                     | Q6DD88    |
| ATP5L    | ATP synthase subunit g, mitochondrial                                     | Q99766    |
| ATP5O    | ATP synthase subunit O, mitochondrial                                     | Q8N5M1    |
| ATP5S    | ATP synthase subunit s, mitochondrial                                     | O75947    |
| ATP5SL   | ATP synthase subunit s-like protein                                       | P23634    |
| ATP6AP2  | Renin receptor                                                            | Q96HR9    |
| ATP6V0A2 | V-type proton ATPase 116 kDa subunit a isoform 2                          | Q9H9H4    |
| ATP6V0D1 | V-type proton ATPase subunit d 1                                          | Q9UBK9    |
| ATP6V1A  | V-type proton ATPase catalytic subunit A                                  | Q99536    |
| ATP6V1B2 | V-type proton ATPase subunit B, brain isoform                             | P38606    |
| ATP6V1C1 | V-type proton ATPase subunit C 1                                          | P21281    |
| ATP6V1D  | V-type proton ATPase subunit D                                            | P21283    |
| ATP6V1E1 | V-type proton ATPase subunit E 1                                          | Q9Y5K8    |
| ATP6V1F  | V-type proton ATPase subunit F                                            | P36543    |
| ATP6V1G1 | V-type proton ATPase subunit G 1                                          | Q16864    |
| ATP6V1H  | V-type proton ATPase subunit H                                            | O75348    |
| ATPAF1   | ATP synthase mitochondrial F1 complex assembly factor 1                   | P30049    |
| ATPAF2   | ATP synthase mitochondrial F1 complex assembly factor 2                   | Q5TC12    |
| ATXN10   | Ataxin-10                                                                 | P48047    |
| AUH      | Methylglutaconyl-CoA hydratase, mitochondrial                             | Q9UBB4    |
| AUP1     | Ancient ubiquitous protein 1                                              | Q13825    |
| AURKAIP1 | Aurora kinase A-interacting protein                                       | Q16352    |
| AZI1     | 5-azacytidine-induced protein 1                                           | Q9Y679    |
| B3GALTL  | Beta-1,3-glucosyltransferase                                              | O94766    |
| B3GAT3   | Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3       | Q9BXK5    |
| BAG2     | BAG family molecular chaperone regulator 2                                | O75531    |
| BAG5     | BAG family molecular chaperone regulator 5                                | O95816    |
| BAG6     | Large proline-rich protein BAG6                                           | Q9UL15    |
| BAK1     | Bcl-2 homologous antagonist/killer                                        | P46379    |
| BANF1    | Barrier-to-autointegration factor                                         | O00154    |
| BAZ1B    | Tyrosine-protein kinase BAZ1B                                             | P35613    |
| BCAP31   | B-cell receptor-associated protein 31                                     | Q16611    |
| BCAS2    | Pre-mRNA-splicing factor SPF27                                            | P61009    |
| BCAT2    | Branched-chain-amino-acid aminotransferase, mitochondrial                 | Q9UIG0    |
| BCCIP    | BRCA2 and CDKN1A-interacting protein                                      | O15382    |
| BCKDHA   | 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial               | P11182    |
| BCKDK    | [3-methyl-2-oxobutanoate dehydrogenase [lipoamide]] kinase, mitochondrial | Q9P287    |
| BCL2     | Apoptosis regulator Bcl-2                                                 | O14874    |
| BCL2L1   | Bcl-2-like protein 1                                                      | Q9UPN4    |

| Gene     | Protein name                                                         | Accession |
|----------|----------------------------------------------------------------------|-----------|
| BCL2L13  | Bcl-2-like protein 13                                                | Q07817    |
| BCS1L    | Mitochondrial chaperone BCS1                                         | P10415    |
| BDH1     | D-beta-hydroxybutyrate dehydrogenase, mitochondrial                  | Q9Y276    |
| BET1L    | BET1-like protein                                                    | Q02338    |
| BID      | BH3-interacting domain death agonist                                 | Q9NYM9    |
| BIRC5    | Baculoviral IAP repeat-containing protein 5                          | Q96LW7    |
| BLOC1S1  | Biogenesis of lysosome-related organelles complex 1 subunit 1        | O15392    |
| BLVRA    | Biliverdin reductase A                                               | P55957    |
| BMP2K    | BMP-2-inducible protein kinase                                       | P78537    |
| BMS1     | Ribosome biogenesis protein BMS1 homolog                             | Q9NSY1    |
| BNIP1    | Vesicle transport protein SEC20                                      | Q9UBV2    |
| BOLA1    | BolA-like protein 1                                                  | Q14692    |
| BPHL     | Valacyclovir hydrolase                                               | Q53HL2    |
| BPNT1    | 3'(2'),5'-bisphosphate nucleotidase 1                                | Q86WA6    |
| BRI3BP   | BRI3-binding protein                                                 | Q5VTR2    |
| BRIX1    | Ribosome biogenesis protein BRX1 homolog                             | Q8WY22    |
| BSG      | Basigin                                                              | P51572    |
| BST2     | Bone marrow stromal antigen 2                                        | Q8TDN6    |
| BTN2A1   | Butyrophilin subfamily 2 member A1                                   | Q10589    |
| BUD31    | Protein BUD31 homolog                                                | Q7KYR7    |
| BYSL     | Bystin                                                               | P41223    |
| BZW1     | Basic leucine zipper and W2 domain-containing protein 1              | Q13895    |
| BZW2     | Basic leucine zipper and W2 domain-containing protein 2              | Q7L1Q6    |
| C10orf35 | Uncharacterized protein C10orf35                                     | Q8N5K1    |
| C12orf10 | UPF0160 protein MYG1, mitochondrial                                  | Q99417    |
| C15orf40 | UPF0235 protein C15orf40                                             | Q7Z7A1    |
| C15orf61 | Uncharacterized protein C15orf61                                     | Q8WUR7    |
| C16orf58 | UPF0420 protein C16orf58                                             | P09669    |
| C16orf80 | UPF0468 protein C16orf80                                             | Q96GQ5    |
| C17orf62 | Uncharacterized protein C17orf62                                     | Q9H3G5    |
| C19orf10 | UPF0556 protein C19orf10                                             | Q5TZA2    |
| C19orf52 | Uncharacterized protein C19orf52                                     | Q969H8    |
| C1orf21  | Uncharacterized protein C1orf21                                      | Q6UB35    |
| C1QBP    | Complement component 1 Q subcomponent-binding protein, mitochondrial | Q9Y6E2    |
| C21orf33 | ES1 protein homolog, mitochondrial                                   | Q9BS26    |
| C2orf43  | UPF0554 protein C2orf43                                              | P52907    |
| C2orf47  | Uncharacterized protein C2orf47, mitochondrial                       | Q9H6V9    |
| C3       | Complement C3                                                        | A6NNL5    |
| C3orf33  | Protein C3orf33                                                      | P45973    |

| 80 | Gene     | Protein name                                                | Accession |
|----|----------|-------------------------------------------------------------|-----------|
|    | C3orf58  | Deleted in autism protein 1                                 | Q08211    |
|    | C4A      | Complement C4-A                                             | P01024    |
|    | C6orf120 | UPF0669 protein C6orf120                                    | O15182    |
|    | C6orf203 | Uncharacterized protein C6orf203                            | Q7Z4R8    |
|    | C7orf50  | Uncharacterized protein C7orf50                             | Q9P0P8    |
|    | C8orf82  | UPF0598 protein C8orf82                                     | Q9BRJ6    |
|    | С9       | Complement component C9                                     | P0C0L4    |
|    | C9orf114 | Uncharacterized protein C9orf114                            | Q9NPF2    |
|    | C9orf89  | Bcl10-interacting CARD protein                              | P53004    |
|    | CACYBP   | Calcyclin-binding protein                                   | P00167    |
|    | CAD      | CAD protein                                                 | P11498    |
|    | CALCOCO2 | Calcium-binding and coiled-coil domain-containing protein 2 | Q9BRK5    |
|    | CALM1    | Calmodulin                                                  | Q13112    |
|    | CALR     | Calreticulin                                                | P62158    |
|    | CAMLG    | Calcium signal-modulating cyclophilin ligand                | P27824    |
|    | CAND1    | Cullin-associated NEDD8-dissociated protein 1               | P07384    |
|    | CANX     | Calnexin                                                    | P27797    |
|    | CAP1     | Adenylyl cyclase-associated protein 1                       | Q86VP6    |
|    | CAPG     | Macrophage-capping protein                                  | Q01518    |
|    | CAPN1    | Calpain-1 catalytic subunit                                 | P49069    |
|    | CAPRIN1  | Caprin-1                                                    | P40121    |
|    | CAPZA1   | F-actin-capping protein subunit alpha-1                     | P08311    |
|    | CARHSP1  | Calcium-regulated heat stable protein 1                     | Q96BS2    |
|    | CARS2    | Probable cysteinetRNA ligase, mitochondrial                 | Q5JTZ9    |
|    | CAT      | Catalase                                                    | Q13948    |
|    | CBR4     | Carbonyl reductase family member 4                          | O75976    |
|    | CBX3     | Chromobox protein homolog 3                                 | Q8N4T8    |
|    | CBX5     | Chromobox protein homolog 5                                 | Q13185    |
|    | CCAR2    | Cell cycle and apoptosis regulator protein 2                | Q9GZT6    |
|    | CCBL2    | Kynurenineoxoglutarate transaminase 3                       | P22694    |
|    | CCDC115  | Coiled-coil domain-containing protein 115                   | Q6P1S2    |
|    | CCDC127  | Coiled-coil domain-containing protein 127                   | Q96NT0    |
|    | CCDC134  | Coiled-coil domain-containing protein 134                   | Q96BQ5    |
|    | CCDC167  | Coiled-coil domain-containing protein 167                   | Q9H6E4    |
|    | CCDC47   | Coiled-coil domain-containing protein 47                    | Q8N163    |
|    | CCDC51   | Coiled-coil domain-containing protein 51                    | Q96A33    |
|    | CCDC58   | Coiled-coil domain-containing protein 58                    | Q96ER9    |
|    | CCDC59   | Thyroid transcription factor 1-associated protein 26        | P37802    |
|    | CCDC90B  | Coiled-coil domain-containing protein 90B, mitochondrial    | Q9NV96    |

| Gene     | Protein name                                          | Accession |
|----------|-------------------------------------------------------|-----------|
| CCNK     | Cyclin-K                                              | P53701    |
| CCNY     | Cyclin-Y                                              | O75909    |
| CCSMST1  | Protein CCSMST1                                       | P41240    |
| CCT2     | T-complex protein 1 subunit beta                      | P17987    |
| CCT3     | T-complex protein 1 subunit gamma                     | P48643    |
| CCT4     | T-complex protein 1 subunit delta                     | P78371    |
| CCT5     | T-complex protein 1 subunit epsilon                   | P50991    |
| CCT6A    | T-complex protein 1 subunit zeta                      | P50990    |
| CCT7     | T-complex protein 1 subunit eta                       | P49368    |
| CCT8     | T-complex protein 1 subunit theta                     | Q99832    |
| CD1C     | T-cell surface glycoprotein CD1c                      | Q8ND76    |
| CD2      | T-cell surface antigen CD2                            | P29017    |
| CD247    | T-cell surface glycoprotein CD3 zeta chain            | P09693    |
| CD3D     | T-cell surface glycoprotein CD3 delta chain           | P06729    |
| CD3E     | T-cell surface glycoprotein CD3 epsilon chain         | P04234    |
| CD3G     | T-cell surface glycoprotein CD3 gamma chain           | P07766    |
| CD47     | Leukocyte surface antigen CD47                        | P20963    |
| CD48     | CD48 antigen                                          | Q08722    |
| CD5      | T-cell surface glycoprotein CD5                       | P09326    |
| CD82     | CD82 antigen                                          | P06127    |
| CD84     | SLAM family member 5                                  | P63208    |
| CD97     | CD97 antigen                                          | P27701    |
| CDC37    | Hsp90 co-chaperone Cdc37                              | P48960    |
| CDC42    | Cell division control protein 42 homolog              | Q16543    |
| CDC5L    | Cell division cycle 5-like protein                    | P60953    |
| CDCA8    | Borealin                                              | Q9Y3E2    |
| CDH2     | Cadherin-2                                            | P43155    |
| CDIPT    | CDP-diacylglycerolinositol 3-phosphatidyltransferase  | Q99459    |
| CDK1     | Cyclin-dependent kinase 1                             | O14735    |
| CDK2     | Cyclin-dependent kinase 2                             | P06493    |
| CDK5     | Cyclin-dependent kinase 5                             | P24941    |
| CDK5RAP2 | CDK5 regulatory subunit-associated protein 2          | Q96D05    |
| CDK5RAP3 | CDK5 regulatory subunit-associated protein 3          | Q96SN8    |
| CDK6     | Cyclin-dependent kinase 6                             | Q00535    |
| CDK9     | Cyclin-dependent kinase 9                             | Q00534    |
| CDKAL1   | Threonylcarbamoyladenosine tRNA methylthiotransferase | P50750    |
| CDKN2AIP | CDKN2A-interacting protein                            | Q14444    |
| CECR5    | Cat eye syndrome critical region protein 5            | O94986    |
| CENPM    | Centromere protein M                                  | Q9BXW7    |

| Gene   | Protein name                                                                   | Accession |
|--------|--------------------------------------------------------------------------------|-----------|
| CENPV  | Centromere protein V                                                           | Q9NSP4    |
| CEP135 | Centrosomal protein of 135 kDa                                                 | Q9Y6A4    |
| CEP152 | Centrosomal protein of 152 kDa                                                 | Q5VV42    |
| CEP250 | Centrosome-associated protein CEP250                                           | Q6UW02    |
| CEP41  | Centrosomal protein of 41 kDa                                                  | Q7Z7K6    |
| CEP57  | Centrosomal protein of 57 kDa                                                  | Q9BYV8    |
| CEP72  | Centrosomal protein of 72 kDa                                                  | Q86XR8    |
| CETN3  | Centrin-3                                                                      | Q9P209    |
| CFL1   | Cofilin-1                                                                      | Q96BR5    |
| CHAF1B | Chromatin assembly factor 1 subunit B                                          | Q5T440    |
| CHCHD1 | Coiled-coil-helix-coiled-coil-helix domain-containing protein 1                | P10809    |
| CHCHD2 | Coiled-coil-helix-coiled-coil-helix domain-containing protein 2, mitochondrial | Q96BP2    |
| CUCUDI | Putative coiled-coil-helix-coiled-coil-helix domain-containing protein         | OOPPOG    |
| СПСПD2 | CHCHD2P9, mitochondrial                                                        | Q9BRQ0    |
| CHCHD3 | Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial | Q9Y6H1    |
| CHCHD4 | Mitochondrial intermembrane space import and assembly protein 40               | Q5JRA6    |
| CHCHD6 | Coiled-coil-helix-coiled-coil-helix domain-containing protein 6, mitochondrial | Q9NX63    |
| CHD1   | Chromodomain-helicase-DNA-binding protein 1                                    | Q5T1J5    |
| CHI3L2 | Chitinase-3-like protein 2                                                     | P61604    |
| CHMP2A | Charged multivesicular body protein 2a                                         | O14646    |
| CHP1   | Calcineurin B homologous protein 1                                             | O43633    |
| CHST11 | Carbohydrate sulfotransferase 11                                               | Q9Y2V2    |
| CIB1   | Calcium and integrin-binding protein 1                                         | Q9Y375    |
| CISD1  | CDGSH iron-sulfur domain-containing protein 1                                  | Q99828    |
| CISD2  | CDGSH iron-sulfur domain-containing protein 2                                  | Q9NZ45    |
| CIT    | Citron Rho-interacting kinase                                                  | P35221    |
| CKAP4  | Cytoskeleton-associated protein 4                                              | Q96JB5    |
| CKAP5  | Cytoskeleton-associated protein 5                                              | Q07065    |
| CLIC1  | Chloride intracellular channel protein 1                                       | Q00610    |
| CLINT1 | Clathrin interactor 1                                                          | P29320    |
| CLPB   | Caseinolytic peptidase B protein homolog                                       | O00299    |
| CLPP   | ATP-dependent Clp protease proteolytic subunit, mitochondrial                  | Q9H078    |
| CLPX   | ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial        | Q16740    |
| CLTC   | Clathrin heavy chain 1                                                         | Q14008    |
| CLYBL  | Citrate lyase subunit beta-like protein, mitochondrial                         | O76031    |
| CMAS   | N-acylneuraminate cytidylyltransferase                                         | Q9UMX5    |
| CMPK1  | UMP-CMP kinase                                                                 | Q13303    |
| CMPK2  | UMP-CMP kinase 2, mitochondrial                                                | Q9UJS0    |
| CNNM3  | Metal transporter CNNM3                                                        | P09543    |
|        |                                                                                |           |

| Gene     | Protein name                                                       | Accession |
|----------|--------------------------------------------------------------------|-----------|
| CNOT1    | CCR4-NOT transcription complex subunit 1                           | Q9UKZ1    |
| CNOT11   | CCR4-NOT transcription complex subunit 11                          | Q8NE01    |
| CNOT7    | CCR4-NOT transcription complex subunit 7                           | A5YKK6    |
| CNP      | 2',3'-cyclic-nucleotide 3'-phosphodiesterase                       | Q5EBM0    |
| CNPY3    | Protein canopy homolog 3                                           | Q9UIV1    |
| CNTRL    | Centriolin                                                         | Q9BT09    |
| COA1     | Cytochrome c oxidase assembly factor 1 homolog                     | P02748    |
| COA3     | Cytochrome c oxidase assembly factor 3 homolog, mitochondrial      | Q9GZY4    |
| COA6     | Cytochrome c oxidase assembly factor 6 homolog                     | Q9Y2R0    |
| COA7     | Cytochrome c oxidase assembly factor 7                             | Q5JTJ3    |
| COLGALT1 | Procollagen galactosyltransferase 1                                | P09211    |
| COMMD2   | COMM domain-containing protein 2                                   | P23528    |
| COPA     | Coatomer subunit alpha                                             | Q86X83    |
| COPB1    | Coatomer subunit beta                                              | P35606    |
| COPB2    | Coatomer subunit beta'                                             | P53621    |
| COPG1    | Coatomer subunit gamma-1                                           | P48444    |
| COPS4    | COP9 signalosome complex subunit 4                                 | Q4G0I0    |
| COPS8    | COP9 signalosome complex subunit 8                                 | Q9BT78    |
| COPZ1    | Coatomer subunit zeta-1                                            | Q9Y678    |
| COQ3     | Hexaprenyldihydroxybenzoate methyltransferase, mitochondrial       | P61923    |
| COQ5     | 2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial    | Q9NZJ6    |
| COQ6     | Ubiquinone biosynthesis monooxygenase COQ6                         | Q5HYK3    |
| COQ7     | Ubiquinone biosynthesis protein COQ7 homolog                       | Q9Y2Z9    |
| COQ9     | Ubiquinone biosynthesis protein COQ9, mitochondrial                | Q99807    |
| CORO1A   | Coronin-1A                                                         | O75208    |
| COTL1    | Coactosin-like protein                                             | P31146    |
| COX11    | Cytochrome c oxidase assembly protein COX11, mitochondrial         | Q14019    |
| COX15    | Cytochrome c oxidase assembly protein COX15 homolog                | Q9Y6N1    |
| COX16    | Cytochrome c oxidase assembly protein COX16 homolog, mitochondrial | Q7KZN9    |
| COX18    | Mitochondrial inner membrane protein COX18                         | Q9P0S2    |
| COX4I1   | Cytochrome c oxidase subunit 4 isoform 1, mitochondrial            | Q8N8Q8    |
| COX5A    | Cytochrome c oxidase subunit 5A, mitochondrial                     | P13073    |
| COX5B    | Cytochrome c oxidase subunit 5B, mitochondrial                     | P20674    |
| COX6B1   | Cytochrome c oxidase subunit 6B1                                   | Q9HCG8    |
| COX6C    | Cytochrome c oxidase subunit 6C                                    | P10606    |
| COX7A2   | Cytochrome c oxidase subunit 7A2, mitochondrial                    | P14854    |
| CPD      | Carboxypeptidase D                                                 | Q8WWC4    |
| CPNE3    | Copine-3                                                           | Q9BV73    |
| CPOX     | Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial     | P13196    |

| 10 | Gene    | Protein name                                                              | Accession |
|----|---------|---------------------------------------------------------------------------|-----------|
| õ  | CPSF2   | Cleavage and polyadenylation specificity factor subunit 2                 | O75131    |
|    | CPT1A   | Carnitine O-palmitoyltransferase 1, liver isoform                         | O43809    |
|    | CPT2    | Carnitine O-palmitoyltransferase 2, mitochondrial                         | P50416    |
|    | CPVL    | Probable serine carboxypeptidase CPVL                                     | P23786    |
|    | CRAT    | Carnitine O-acetyltransferase                                             | Q13137    |
|    | CROCC   | Rootletin                                                                 | Q9BQA9    |
|    | CRYZ    | Quinone oxidoreductase                                                    | Q5XKP0    |
|    | CSDE1   | Cold shock domain-containing protein E1                                   | Q9BSF4    |
|    | CSE1L   | Exportin-2                                                                | O14980    |
|    | CSK     | Tyrosine-protein kinase CSK                                               | Q8NEV1    |
|    | CSNK1A1 | Casein kinase I isoform alpha                                             | O75600    |
|    | CSNK1G3 | Casein kinase I isoform gamma-3                                           | P48729    |
|    | CSNK2A1 | Casein kinase II subunit alpha                                            | O75534    |
|    | CSNK2A2 | Casein kinase II subunit alpha'                                           | P68400    |
|    | CSNK2A3 | Casein kinase II subunit alpha 3                                          | P19784    |
|    | CTAGE5  | cTAGE family member 5                                                     | Q99627    |
|    | CTNNA1  | Catenin alpha-1                                                           | O15320    |
|    | CTPS1   | CTP synthase 1                                                            | Q02127    |
|    | CTSA    | Lysosomal protective protein                                              | P24666    |
|    | CTSC    | Dipeptidyl peptidase 1                                                    | P04040    |
|    | CTSD    | Cathepsin D                                                               | P53634    |
|    | CTSG    | Cathepsin G                                                               | P07339    |
|    | CUL4A   | Cullin-4A                                                                 | O14578    |
|    | CUTA    | Protein CutA                                                              | Q13619    |
|    | CUX1    | Protein CASP                                                              | Q9NXV6    |
|    | CWC22   | Pre-mRNA-splicing factor CWC22 homolog                                    | O60888    |
|    | CYB5A   | Cytochrome b5                                                             | O43169    |
|    | CYB5B   | Cytochrome b5 type B                                                      | P08574    |
|    | CYB5R1  | NADH-cytochrome b5 reductase 1                                            | Q8WUY8    |
|    | CYB5R3  | NADH-cytochrome b5 reductase 3                                            | Q9UHQ9    |
|    | CYC1    | Cytochrome c1, heme protein, mitochondrial                                | P14406    |
|    | CYCS    | Cytochrome c                                                              | Q9HB71    |
|    | CYP20A1 | Cytochrome P450 20A1                                                      | Q66GS9    |
|    | D2HGDH  | D-2-hydroxyglutarate dehydrogenase, mitochondrial                         | P99999    |
|    | DAAM1   | Disheveled-associated activator of morphogenesis 1                        | Q9NRG7    |
|    | DAD1    | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit DAD1 | Q9Y4D1    |
|    | DAP3    | 28S ribosomal protein S29, mitochondrial                                  | Q9Y2Q9    |
|    | DARS    | AspartatetRNA ligase, cytoplasmic                                         | Q9HA77    |
|    | DARS2   | AspartatetRNA ligase, mitochondrial                                       | P14868    |

| Gene   | Protein name                                                                                                  | Accession |
|--------|---------------------------------------------------------------------------------------------------------------|-----------|
| DBN1   | Drebrin                                                                                                       | Q5T2R2    |
| DBT    | Lipoamide acyltransferase component of branched-chain alpha-keto acid<br>dehydrogenase complex, mitochondrial | Q56VL3    |
| DCAKD  | Dephospho-CoA kinase domain-containing protein                                                                | Q13409    |
| DCD    | Dermcidin                                                                                                     | Q8WVC6    |
| DCK    | Deoxycytidine kinase                                                                                          | P81605    |
| DCTN3  | Dynactin subunit 3                                                                                            | O95822    |
| DCXR   | L-xylulose reductase                                                                                          | O75935    |
| DDAH2  | N(G),N(G)-dimethylarginine dimethylaminohydrolase 2                                                           | Q7Z4W1    |
| DDRGK1 | DDRGK domain-containing protein 1                                                                             | O95865    |
| DDX10  | Probable ATP-dependent RNA helicase DDX10                                                                     | Q96HY6    |
| DDX18  | ATP-dependent RNA helicase DDX18                                                                              | Q13206    |
| DDX21  | Nucleolar RNA helicase 2                                                                                      | Q9NVP1    |
| DDX23  | Probable ATP-dependent RNA helicase DDX23                                                                     | Q9NUL7    |
| DDX24  | ATP-dependent RNA helicase DDX24                                                                              | Q9BUQ8    |
| DDX27  | Probable ATP-dependent RNA helicase DDX27                                                                     | Q9GZR7    |
| DDX28  | Probable ATP-dependent RNA helicase DDX28                                                                     | Q9NR30    |
| DDX39A | ATP-dependent RNA helicase DDX39A                                                                             | P33316    |
| DDX3X  | ATP-dependent RNA helicase DDX3X                                                                              | Q96GQ7    |
| DDX47  | Probable ATP-dependent RNA helicase DDX47                                                                     | O00571    |
| DDX5   | Probable ATP-dependent RNA helicase DDX5                                                                      | Q9NY93    |
| DDX50  | ATP-dependent RNA helicase DDX50                                                                              | Q9H0S4    |
| DDX51  | ATP-dependent RNA helicase DDX51                                                                              | Q9BQ39    |
| DDX54  | ATP-dependent RNA helicase DDX54                                                                              | Q8N8A6    |
| DDX56  | Probable ATP-dependent RNA helicase DDX56                                                                     | Q8TDD1    |
| DDX6   | Probable ATP-dependent RNA helicase DDX6                                                                      | P17844    |
| DECR1  | 2,4-dienoyl-CoA reductase, mitochondrial                                                                      | Q9NUI1    |
| DECR2  | Peroxisomal 2,4-dienoyl-CoA reductase                                                                         | P26196    |
| DEF6   | Differentially expressed in FDCP 6 homolog                                                                    | Q16698    |
| DEK    | Protein DEK                                                                                                   | Q9HBH1    |
| DESI2  | Desumoylating isopeptidase 2                                                                                  | P35659    |
| DHCR24 | Delta(24)-sterol reductase                                                                                    | Q92506    |
| DHCR7  | 7-dehydrocholesterol reductase                                                                                | Q15392    |
| DHFR   | Dihydrofolate reductase                                                                                       | P63172    |
| DHODH  | Dihydroorotate dehydrogenase                                                                                  | P27708    |
| DHRS4  | Dehydrogenase/reductase SDR family member 4                                                                   | P09417    |
| DHRS7  | Dehydrogenase/reductase SDR family member 7                                                                   | Q9BTZ2    |
| DHRS7B | Dehydrogenase/reductase SDR family member 7B                                                                  | P55039    |
| DHTKD1 | Probable 2-oxoglutarate dehydrogenase E1 component DHKTD1,                                                    | Q9Y394    |

| Gene    | Protein name                                                                                                        | Accession |
|---------|---------------------------------------------------------------------------------------------------------------------|-----------|
|         | mitochondrial                                                                                                       |           |
| DHX15   | Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15                                                  | Q96HY7    |
| DHX16   | Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16                                                  | O43143    |
| DHX30   | Putative ATP-dependent RNA helicase DHX30                                                                           | O60231    |
| DHX9    | ATP-dependent RNA helicase A                                                                                        | Q7L2E3    |
| DIAPH1  | Protein diaphanous homolog 1                                                                                        | Q8NDZ4    |
| DKC1    | H/ACA ribonucleoprotein complex subunit 4                                                                           | Q96LL9    |
| DLAT    | Dihydrolipoyllysine-residue acetyltransferase component of pyruvate<br>debydrogenase complex, mitochondrial         | P36957    |
| DLD     | Dihydrolipovl dehydrogenase, mitochondrial                                                                          | O60832    |
| DLG1    | Disks large homolog 1                                                                                               | P09622    |
| DLST    | Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate<br>dehydrogenase complex, mitochondrial | Q02218    |
| DMAP1   | DNA methyltransferase 1-associated protein 1                                                                        | Q86YH6    |
| DNAJA1  | DnaJ homolog subfamily A member 1                                                                                   | Q9NPF5    |
| DNAJA2  | DnaJ homolog subfamily A member 2                                                                                   | P31689    |
| DNAJA3  | DnaJ homolog subfamily A member 3, mitochondrial                                                                    | O60884    |
| DNAJB1  | DnaJ homolog subfamily B member 1                                                                                   | Q96EY1    |
| DNAJB11 | DnaJ homolog subfamily B member 11                                                                                  | O60610    |
| DNAJB12 | DnaJ homolog subfamily B member 12                                                                                  | Q9UBS4    |
| DNAJB6  | DnaJ homolog subfamily B member 6                                                                                   | P25685    |
| DNAJC10 | DnaJ homolog subfamily C member 10                                                                                  | Q9NXW2    |
| DNAJC11 | DnaJ homolog subfamily C member 11                                                                                  | Q8IXB1    |
| DNAJC13 | DnaJ homolog subfamily C member 13                                                                                  | Q9NVH1    |
| DNAJC15 | DnaJ homolog subfamily C member 15                                                                                  | O75165    |
| DNAJC16 | DnaJ homolog subfamily C member 16                                                                                  | Q9Y5T4    |
| DNAJC19 | Mitochondrial import inner membrane translocase subunit TIM14                                                       | Q9Y5L4    |
| DNAJC3  | DnaJ homolog subfamily C member 3                                                                                   | O75190    |
| DNAJC30 | DnaJ homolog subfamily C member 30                                                                                  | Q9Y2G8    |
| DNAJC5  | DnaJ homolog subfamily C member 5                                                                                   | Q13217    |
| DNAJC7  | DnaJ homolog subfamily C member 7                                                                                   | Q9H3Z4    |
| DNAJC9  | DnaJ homolog subfamily C member 9                                                                                   | Q99615    |
| DNLZ    | DNL-type zinc finger protein                                                                                        | Q8WXX5    |
| DNMT1   | DNA                                                                                                                 | Q5SXM8    |
| DNTTIP2 | Deoxynucleotidyltransferase terminal-interacting protein 2                                                          | P40227    |
| DOCK2   | Dedicator of cytokinesis protein 2                                                                                  | P26358    |
| DOLPP1  | Dolichyldiphosphatase 1                                                                                             | Q92608    |
| DPF2    | Zinc finger protein ubi-d4                                                                                          | Q96D71    |
| DPM1    | Dolichol-phosphate mannosyltransferase subunit 1                                                                    | Q86YN1    |
|         |                                                                                                                     |           |

| Gene     | Protein name                                                                   | Accession |
|----------|--------------------------------------------------------------------------------|-----------|
| DRG1     | Developmentally-regulated GTP-binding protein 1                                | Q16643    |
| DRG2     | Developmentally-regulated GTP-binding protein 2                                | Q9Y295    |
| DSG1     | Desmoglein-1                                                                   | Q6IAN0    |
| DSTN     | Destrin                                                                        | Q9BSY9    |
| DTYMK    | Thymidylate kinase                                                             | Q9NSB2    |
| DUT      | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial                | Q02413    |
| DYNC1H1  | Cytoplasmic dynein 1 heavy chain 1                                             | O00148    |
| DYNC1I2  | Cytoplasmic dynein 1 intermediate chain 2                                      | P61803    |
| DYNLT1   | Dynein light chain Tctex-type 1                                                | Q14204    |
| EARS2    | Probable glutamatetRNA ligase, mitochondrial                                   | Q6PI48    |
| EBAG9    | Receptor-binding cancer antigen expressed on SiSo cells                        | P49792    |
| EBNA1BP2 | Probable rRNA-processing protein EBP2                                          | Q9HAF1    |
| EBP      | 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase                              | Q99848    |
| ECH1     | Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial                     | Q15125    |
| ECHDC1   | Ethylmalonyl-CoA decarboxylase                                                 | P55084    |
| ECHS1    | Enoyl-CoA hydratase, mitochondrial                                             | Q9NTX5    |
| ECI2     | Enoyl-CoA delta isomerase 2, mitochondrial                                     | P30084    |
| ECSIT    | Evolutionarily conserved signaling intermediate in Toll pathway, mitochondrial | O75521    |
| EDC4     | Enhancer of mRNA-decapping protein 4                                           | Q9BQ95    |
| EDEM3    | ER degradation-enhancing alpha-mannosidase-like protein 3                      | Q6P2E9    |
| EEF1D    | Elongation factor 1-delta                                                      | Q7L9B9    |
| EEF1E1   | Eukaryotic translation elongation factor 1 epsilon-1                           | Q68D91    |
| EEF1G    | Elongation factor 1-gamma                                                      | P29692    |
| EEF2     | Elongation factor 2                                                            | P26641    |
| EEPD1    | Endonuclease/exonuclease/phosphatase family domain-containing protein 1        | Q9BZQ6    |
| EFR3A    | Protein EFR3 homolog A                                                         | P13639    |
| EFTUD2   | 116 kDa U5 small nuclear ribonucleoprotein component                           | O75643    |
| EHD1     | EH domain-containing protein 1                                                 | P49411    |
| EIF1AX   | Eukaryotic translation initiation factor 1A, X-chromosomal                     | Q13907    |
| EIF1AY   | Eukaryotic translation initiation factor 1A, Y-chromosomal                     | P47813    |
| EIF2S1   | Eukaryotic translation initiation factor 2 subunit 1                           | O14602    |
| EIF2S2   | Eukaryotic translation initiation factor 2 subunit 2                           | O00425    |
| EIF3A    | Eukaryotic translation initiation factor 3 subunit A                           | Q9H4M9    |
| EIF3G    | Eukaryotic translation initiation factor 3 subunit G                           | Q14152    |
| EIF3I    | Eukaryotic translation initiation factor 3 subunit I                           | O75821    |
| EIF3K    | Eukaryotic translation initiation factor 3 subunit K                           | Q13347    |
| EIF3L    | Eukaryotic translation initiation factor 3 subunit L                           | Q9UBQ5    |
| EIF3M    | Eukaryotic translation initiation factor 3 subunit M                           | Q9Y262    |
| EIF4A1   | Eukaryotic initiation factor 4A-I                                              | Q9H2K0    |

| Gene    | Protein name                                                   | Accession |
|---------|----------------------------------------------------------------|-----------|
| EIF4A2  | Eukaryotic initiation factor 4A-II                             | P60842    |
| EIF4A3  | Eukaryotic initiation factor 4A-III                            | Q14240    |
| EIF4G1  | Eukaryotic translation initiation factor 4 gamma 1             | P38919    |
| EIF5A   | Eukaryotic translation initiation factor 5A-1                  | Q04637    |
| EIF6    | Eukaryotic translation initiation factor 6                     | P63241    |
| ELAC2   | Zinc phosphodiesterase ELAC protein 2                          | Q63HN8    |
| ELAVL1  | ELAV-like protein 1                                            | Q7L2H7    |
| ELMO1   | Engulfment and cell motility protein 1                         | Q15717    |
| EMB     | Embigin                                                        | Q00013    |
| EMC1    | ER membrane protein complex subunit 1                          | Q6PCB8    |
| EMC2    | ER membrane protein complex subunit 2                          | Q8N766    |
| EMC3    | ER membrane protein complex subunit 3                          | Q15006    |
| EMC4    | ER membrane protein complex subunit 4                          | Q9P0I2    |
| EMC6    | ER membrane protein complex subunit 6                          | Q5J8M3    |
| EMC7    | ER membrane protein complex subunit 7                          | Q9BV81    |
| EMC8    | ER membrane protein complex subunit 8                          | Q9NPA0    |
| EMD     | Emerin                                                         | O43402    |
| ENDOD1  | Endonuclease domain-containing 1 protein                       | P50402    |
| ENO1    | Alpha-enolase                                                  | O94919    |
| ENPP4   | Bis(5'-adenosyl)-triphosphatase ENPP4                          | P14625    |
| EPB41L5 | Band 4.1-like protein 5                                        | P00374    |
| EPHA3   | Ephrin type-A receptor 3                                       | Q9UBC2    |
| EPHX1   | Epoxide hydrolase 1                                            | P19367    |
| EPRS    | Bifunctional glutamate/prolinetRNA ligase                      | Q5JPH6    |
| EPS15L1 | Epidermal growth factor receptor substrate 15-like 1           | Q9Y6X5    |
| ERAL1   | GTPase Era, mitochondrial                                      | Q14677    |
| ERAP1   | Endoplasmic reticulum aminopeptidase 1                         | O75616    |
| ERAP2   | Endoplasmic reticulum aminopeptidase 2                         | Q9NZ08    |
| ERBB2IP | Protein LAP2                                                   | P42166    |
| ERGIC1  | Endoplasmic reticulum-Golgi intermediate compartment protein 1 | Q14534    |
| ERGIC2  | Endoplasmic reticulum-Golgi intermediate compartment protein 2 | P48449    |
| ERGIC3  | Endoplasmic reticulum-Golgi intermediate compartment protein 3 | Q96RQ1    |
| ERH     | Enhancer of rudimentary homolog                                | Q9Y282    |
| ERLEC1  | Endoplasmic reticulum lectin 1                                 | P84090    |
| ERLIN2  | Erlin-2                                                        | Q96DZ1    |
| ERO1L   | ERO1-like protein alpha                                        | O94905    |
| ERP29   | Endoplasmic reticulum resident protein 29                      | Q96HE7    |
| ERP44   | Endoplasmic reticulum resident protein 44                      | P30040    |
| ESD     | S-formylglutathione hydrolase                                  | P30042    |

| Gene    | Protein name                                                            | Accession |
|---------|-------------------------------------------------------------------------|-----------|
| ESYT1   | Extended synaptotagmin-1                                                | P10768    |
| ETFA    | Electron transfer flavoprotein subunit alpha, mitochondrial             | Q9BSJ8    |
| ETFB    | Electron transfer flavoprotein subunit beta                             | P13804    |
| ETFDH   | Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial | P38117    |
| ETHE1   | Persulfide dioxygenase ETHE1, mitochondrial                             | Q16134    |
| EXD2    | Exonuclease 3'-5' domain-containing protein 2                           | O95571    |
| EXOC1   | Exocyst complex component 1                                             | Q9NVH0    |
| EXOC4   | Exocyst complex component 4                                             | Q9NV70    |
| EXOSC10 | Exosome component 10                                                    | Q9NPD3    |
| EXOSC2  | Exosome complex component RRP4                                          | Q96A65    |
| EXOSC4  | Exosome complex component RRP41                                         | Q13868    |
| EZR     | Ezrin                                                                   | Q01780    |
| F5      | Coagulation factor V                                                    | Q9NUQ9    |
| FABP5   | Fatty acid-binding protein, epidermal                                   | Q8IVS2    |
| FADS2   | Fatty acid desaturase 2                                                 | Q8NFF5    |
| FAF2    | FAS-associated factor 2                                                 | O95864    |
| FAHD1   | Acylpyruvase FAHD1, mitochondrial                                       | Q96GK7    |
| FAHD2A  | Fumarylacetoacetate hydrolase domain-containing protein 2A              | Q96CS3    |
| FAM120A | Constitutive coactivator of PPAR-gamma-like protein 1                   | P15311    |
| FAM134C | Protein FAM134C                                                         | Q9NZB2    |
| FAM136A | Protein FAM136A                                                         | Q86VR2    |
| FAM162A | Protein FAM162A                                                         | Q96C01    |
| FAM20B  | Glycosaminoglycan xylosylkinase                                         | O75695    |
| FAM213A | Redox-regulatory protein FAM213A                                        | Q96A26    |
| FAM3C   | Protein FAM3C                                                           | Q7L8L6    |
| FAM49B  | Protein FAM49B                                                          | Q9BRX8    |
| FAM96B  | Mitotic spindle-associated MMXD complex subunit MIP18                   | Q9UNW1    |
| FAM98B  | Protein FAM98B                                                          | P12259    |
| FAR1    | Fatty acyl-CoA reductase 1                                              | O75844    |
| FARS2   | PhenylalaninetRNA ligase, mitochondrial                                 | Q9NSD9    |
| FARSB   | PhenylalaninetRNA ligase beta subunit                                   | Q9HCS7    |
| FAS     | Tumor necrosis factor receptor superfamily member 6                     | Q92973    |
| FASN    | Fatty acid synthase                                                     | Q92520    |
| FASTKD1 | FAST kinase domain-containing protein 1                                 | Q6P587    |
| FASTKD2 | FAST kinase domain-containing protein 2                                 | Q53R41    |
| FASTKD5 | FAST kinase domain-containing protein 5                                 | Q9NYY8    |
| FBL     | rRNA 2'-O-methyltransferase fibrillarin                                 | P49327    |
| FDFT1   | Squalene synthase                                                       | P22087    |
| FDPS    | Farnesyl pyrophosphate synthase                                         | Q05932    |

| Gene       | Protein name                                                          | Accession |
|------------|-----------------------------------------------------------------------|-----------|
| FDX1       | Adrenodoxin, mitochondrial                                            | P12236    |
| FDXR       | NADPH:adrenodoxin oxidoreductase, mitochondrial                       | Q9NRN7    |
| FECH       | Ferrochelatase, mitochondrial                                         | P36551    |
| FEN1       | Flap endonuclease 1                                                   | P37268    |
| FERMT3     | Fermitin family homolog 3                                             | Q14146    |
| FGFR1OP2   | FGFR1 oncogene partner 2                                              | P39748    |
| FH         | Fumarate hydratase, mitochondrial                                     | Q92945    |
| FIS1       | Mitochondrial fission 1 protein                                       | P02751    |
| FKBP11     | Peptidyl-prolyl cis-trans isomerase FKBP11                            | Q9Y3D6    |
| FKBP2      | Peptidyl-prolyl cis-trans isomerase FKBP2                             | Q9NYL4    |
| FKBP4      | Peptidyl-prolyl cis-trans isomerase FKBP4                             | P26885    |
| FKBP8      | Peptidyl-prolyl cis-trans isomerase FKBP8                             | Q02790    |
| FLAD1      | FAD synthase                                                          | Q8WVX9    |
| FLG        | Filaggrin                                                             | Q5D862    |
| FLG2       | Filaggrin-2                                                           | Q9NVK5    |
| FLNB       | Filamin-B                                                             | Q15007    |
| FLOT1      | Flotillin-1                                                           | O75369    |
| FLOT2      | Flotillin-2                                                           | O75955    |
| FMNL1      | Formin-like protein 1                                                 | Q14254    |
| FN1        | Fibronectin                                                           | P20930    |
| FOXRED1    | FAD-dependent oxidoreductase domain-containing protein 1              | P51114    |
| FPGS       | Folylpolyglutamate synthase, mitochondrial                            | Q96DP5    |
| FRG1       | Protein FRG1                                                          | Q16595    |
| FTH1       | Ferritin heavy chain                                                  | Q14331    |
| FTL        | Ferritin light chain                                                  | P02794    |
| FTSJ2      | Putative ribosomal RNA methyltransferase 2                            | Q96E11    |
| FTSJ3      | pre-rRNA processing protein FTSJ3                                     | Q8NB90    |
| FUNDC1     | FUN14 domain-containing protein 1                                     | Q9BWH2    |
| FUNDC2     | FUN14 domain-containing protein 2                                     | P07954    |
| FXN        | Frataxin, mitochondrial                                               | P14324    |
| FXR1       | Fragile X mental retardation syndrome-related protein 1               | Q8IVP5    |
| G3BP1      | Ras GTPase-activating protein-binding protein 1                       | Q96CU9    |
| G3BP2      | Ras GTPase-activating protein-binding protein 2                       | Q13283    |
| GAA        | Lysosomal alpha-glucosidase                                           | Q9UHA4    |
| GABARAPL2  | Gamma-aminobutyric acid receptor-associated protein-like 2            | P63244    |
| GADD45GIP1 | Growth arrest and DNA damage-inducible proteins-interacting protein 1 | P04406    |
| GALK1      | Galactokinase                                                         | P80404    |
| GALNT1     | Polypeptide N-acetylgalactosaminyltransferase 1                       | P51570    |
| GALNT2     | Polypeptide N-acetylgalactosaminyltransferase 2                       | Q10472    |
|            |                                                                       |           |

| Gene    | Protein name                                                         | Accession |
|---------|----------------------------------------------------------------------|-----------|
| GALNT7  | N-acetylgalactosaminyltransferase 7                                  | Q10471    |
| GAPDH   | Glyceraldehyde-3-phosphate dehydrogenase                             | Q9UN86    |
| GAR1    | H/ACA ribonucleoprotein complex subunit 1                            | Q86SF2    |
| GARS    | GlycinetRNA ligase                                                   | O95363    |
| GATAD2A | Transcriptional repressor p66-alpha                                  | P54886    |
| GBAS    | Protein NipSnap homolog 2                                            | Q9BPW8    |
| GCAT    | 2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial              | Q6YP21    |
| GCDH    | Glutaryl-CoA dehydrogenase, mitochondrial                            | P60520    |
| GDAP1   | Ganglioside-induced differentiation-associated protein 1             | Q9H3P7    |
| GDE1    | Glycerophosphodiester phosphodiesterase 1                            | Q8TB36    |
| GDI2    | Rab GDP dissociation inhibitor beta                                  | Q9NZC3    |
| GFER    | FAD-linked sulfhydryl oxidase ALR                                    | Q9BT30    |
| GFM2    | Ribosome-releasing factor 2, mitochondrial                           | Q9P2E9    |
| GFPT1   | Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1       | P06396    |
| GGH     | Gamma-glutamyl hydrolase                                             | Q06210    |
| GIGYF2  | PERQ amino acid-rich with GYF domain-containing protein 2            | Q96RR1    |
| GIMAP1  | GTPase IMAP family member 1                                          | Q9H936    |
| GK      | Glycerol kinase                                                      | P04921    |
| GLA     | Alpha-galactosidase A                                                | Q8IUX7    |
| GLG1    | Golgi apparatus protein 1                                            | P00390    |
| GLRX3   | Glutaredoxin-3                                                       | P32189    |
| GLRX5   | Glutaredoxin-related protein 5, mitochondrial                        | O76003    |
| GLS     | Glutaminase kidney isoform, mitochondrial                            | Q86SX6    |
| GLUD1   | Glutamate dehydrogenase 1, mitochondrial                             | Q9UBM7    |
| GLYR1   | Putative oxidoreductase GLYR1                                        | O94925    |
| GMFB    | Glia maturation factor beta                                          | Q49A26    |
| GMFG    | Glia maturation factor gamma                                         | P60983    |
| GNA13   | Guanine nucleotide-binding protein subunit alpha-13                  | O60234    |
| GNA15   | Guanine nucleotide-binding protein subunit alpha-15                  | Q14344    |
| GNAI2   | Guanine nucleotide-binding protein G(i) subunit alpha-2              | P30679    |
| GNAI3   | Guanine nucleotide-binding protein G(k) subunit alpha                | P04899    |
| GNAQ    | Guanine nucleotide-binding protein G(q) subunit alpha                | P08754    |
| GNAS    | Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas  | P50148    |
| GNAS    | Guanine nucleotide-binding protein G(s) subunit alpha isoforms short | Q5JWF2    |
| GNB1    | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1     | O75879    |
| GNB2L1  | Guanine nucleotide-binding protein subunit beta-2-like 1             | P62873    |
| GNPAT   | Dihydroxyacetone phosphate acyltransferase                           | P63092    |
| GOLGA2  | Golgin subfamily A member 2                                          | O15228    |
| GOLGA3  | Golgin subfamily A member 3                                          | Q08379    |

| 10 | Gene    | Protein name                                                  | Accession |
|----|---------|---------------------------------------------------------------|-----------|
| 4  | GOLGA5  | Golgin subfamily A member 5                                   | Q08378    |
|    | GOLGA7  | Golgin subfamily A member 7                                   | Q8TBA6    |
|    | GOLGB1  | Golgin subfamily B member 1                                   | Q7Z5G4    |
|    | GOPC    | Golgi-associated PDZ and coiled-coil motif-containing protein | Q86XS8    |
|    | GPD1L   | Glycerol-3-phosphate dehydrogenase 1-like protein             | Q9HD26    |
|    | GPI     | Glucose-6-phosphate isomerase                                 | O95479    |
|    | GPSM3   | G-protein-signaling modulator 3                               | Q92643    |
|    | GPX1    | Glutathione peroxidase 1                                      | Q9Y4H4    |
|    | GRAMD1A | GRAM domain-containing protein 1A                             | P62993    |
|    | GRAMD4  | GRAM domain-containing protein 4                              | P07203    |
|    | GRB2    | Growth factor receptor-bound protein 2                        | Q6IC98    |
|    | GRPEL1  | GrpE protein homolog 1, mitochondrial                         | P11021    |
|    | GRPEL2  | GrpE protein homolog 2, mitochondrial                         | Q9HAV7    |
|    | GRSF1   | G-rich sequence factor 1                                      | Q8TAA5    |
|    | GSN     | Gelsolin                                                      | P52566    |
|    | GSR     | Glutathione reductase, mitochondrial                          | Q12849    |
|    | GSTK1   | Glutathione S-transferase kappa 1                             | Q92896    |
|    | GSTM1   | Glutathione S-transferase Mu 1                                | Q9Y2Q3    |
|    | GSTM3   | Glutathione S-transferase Mu 3                                | P09488    |
|    | GSTO1   | Glutathione S-transferase omega-1                             | P21266    |
|    | GSTP1   | Glutathione S-transferase P                                   | P78417    |
|    | GTF3C3  | General transcription factor 3C polypeptide 3                 | P55072    |
|    | GTPBP10 | GTP-binding protein 10                                        | Q969Y2    |
|    | GTPBP3  | tRNA modification GTPase GTPBP3, mitochondrial                | O43824    |
|    | GTPBP4  | Nucleolar GTP-binding protein 1                               | Q8WTT2    |
|    | GTPBP6  | Putative GTP-binding protein 6                                | Q8NBJ5    |
|    | GUF1    | Translation factor GUF1, mitochondrial                        | P11166    |
|    | GXYLT1  | Glucoside xylosyltransferase 1                                | Q8N442    |
|    | GYPC    | Glycophorin-C                                                 | Q8WWP7    |
|    | H1FX    | Histone H1x                                                   | P16401    |
|    | H2AFV   | Histone H2A.V                                                 | Q8IUE6    |
|    | H2AFX   | Histone H2AX                                                  | Q71UI9    |
|    | H2AFY   | Core histone macro-H2A.1                                      | P16104    |
|    | H6PD    | GDH/6PGL endoplasmic bifunctional protein                     | Q8TAE8    |
|    | HACL1   | 2-hydroxyacyl-CoA lyase 1                                     | Q9P035    |
|    | HADH    | Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial           | Q99714    |
|    | HADHA   | Trifunctional enzyme subunit alpha, mitochondrial             | Q13011    |
|    | HADHB   | Trifunctional enzyme subunit beta, mitochondrial              | P40939    |
|    | HARS2   | Probable histidinetRNA ligase, mitochondrial                  | P41250    |

| Gene      | Protein name                                                     | Accession |
|-----------|------------------------------------------------------------------|-----------|
| HAUS1     | HAUS augmin-like complex subunit 1                               | Q9UJ83    |
| HAUS3     | HAUS augmin-like complex subunit 3                               | Q9H6D7    |
| HAUS4     | HAUS augmin-like complex subunit 4                               | Q96CS2    |
| HAUS7     | HAUS augmin-like complex subunit 7                               | Q68CZ6    |
| HAX1      | HCLS1-associated protein X-1                                     | Q99871    |
| HBA1;     | Hemoglobin subunit alpha                                         | O00165    |
| HBB       | Hemoglobin subunit beta                                          | P69905    |
| HBD       | Hemoglobin subunit delta                                         | P68871    |
| HCCS      | Cytochrome c-type heme lyase                                     | Q4VC31    |
| HDDC2     | HD domain-containing protein 2                                   | Q16836    |
| HDHD3     | Haloacid dehalogenase-like hydrolase domain-containing protein 3 | Q7Z4H3    |
| HEATR1    | HEAT repeat-containing protein 1                                 | Q9BSH5    |
| HEXB      | Beta-hexosaminidase subunit beta                                 | P22830    |
| HIBADH    | 3-hydroxyisobutyrate dehydrogenase, mitochondrial                | P63151    |
| HIBCH     | 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial                 | P07686    |
| HIGD1A    | HIG1 domain family member 1A, mitochondrial                      | Q6NVY1    |
| HIGD2A    | HIG1 domain family member 2A, mitochondrial                      | Q9Y241    |
| HINT3     | Histidine triad nucleotide-binding protein 3                     | Q9BW72    |
| HIST1H1B  | Histone H1.5                                                     | P16402    |
| HIST1H1C  | Histone H1.2                                                     | Q4G148    |
| HIST1H1D  | Histone H1.3                                                     | P16403    |
| HIST1H2AC | Histone H2A type 1-C                                             | Q92522    |
| HIST1H2AG | Histone H2A type 1                                               | Q99878    |
| HIST1H2AH | Histone H2A type 1-H                                             | Q93077    |
| HIST1H2AJ | Histone H2A type 1-J                                             | Q96KK5    |
| HIST1H2BB | Histone H2B type 1-B                                             | O75367    |
| HIST1H2BC | Histone H2B type 1-C/E/F/G/I                                     | P33778    |
| HIST1H2BD | Histone H2B type 1-D                                             | P62807    |
| HIST1H2BH | Histone H2B type 1-H                                             | P58876    |
| HIST1H3A  | Histone H3.1                                                     | Q93079    |
| HIST1H4A  | Histone H4                                                       | P68431    |
| HIST2H2AB | Histone H2A type 2-B                                             | P0C0S8    |
| HK1       | Hexokinase-1                                                     | O43464    |
| HLA-A     | HLA class I histocompatibility antigen, A-3 alpha chain          | P63104    |
| HLA-A     | HLA class I histocompatibility antigen, A-25 alpha chain         | P04439    |
| HLA-A     | HLA class I histocompatibility antigen, A-26 alpha chain         | P04439    |
| HLA-B     | HLA class I histocompatibility antigen, B-8 alpha chain          | P04439    |
| HLA-E     | HLA class I histocompatibility antigen, alpha chain E            | Q9NQE9    |
| HMGA1     | High mobility group protein HMG-I/HMG-Y                          | P13747    |

| Gene      | Protein name                                                 | Accession |
|-----------|--------------------------------------------------------------|-----------|
| HNRNPA0   | Heterogeneous nuclear ribonucleoprotein A0                   | Q9BQ52    |
| HNRNPA1   | Heterogeneous nuclear ribonucleoprotein A1                   | Q13151    |
| HNRNPA2B1 | Heterogeneous nuclear ribonucleoproteins A2/B1               | P09651    |
| HNRNPA3   | Heterogeneous nuclear ribonucleoprotein A3                   | P22626    |
| HNRNPC    | Heterogeneous nuclear ribonucleoproteins C1/C2               | P31942    |
| HNRNPD    | Heterogeneous nuclear ribonucleoprotein D0                   | P07910    |
| HNRNPF    | Heterogeneous nuclear ribonucleoprotein F                    | Q14103    |
| HNRNPH1   | Heterogeneous nuclear ribonucleoprotein H                    | P17096    |
| HNRNPH3   | Heterogeneous nuclear ribonucleoprotein H3                   | Q9BUJ2    |
| HNRNPL    | Heterogeneous nuclear ribonucleoprotein L                    | P52597    |
| HNRNPM    | Heterogeneous nuclear ribonucleoprotein M                    | P14866    |
| HNRNPR    | Heterogeneous nuclear ribonucleoprotein R                    | P52272    |
| HNRNPUL1  | Heterogeneous nuclear ribonucleoprotein U-like protein 1     | P31943    |
| HP1BP3    | Heterochromatin protein 1-binding protein 3                  | Q86YZ3    |
| HPCAL1    | Hippocalcin-like protein 1                                   | Q9NZL4    |
| HRAS      | GTPase HRas                                                  | Q14644    |
| HRNR      | Hornerin                                                     | O43390    |
| HRSP12    | Ribonuclease UK114                                           | Q9NYU2    |
| HS2ST1    | Heparan sulfate 2-O-sulfotransferase 1                       | Q92598    |
| HSCB      | Iron-sulfur cluster co-chaperone protein HscB, mitochondrial | P08238    |
| HSD17B10  | 3-hydroxyacyl-CoA dehydrogenase type-2                       | P02042    |
| HSD17B11  | Estradiol 17-beta-dehydrogenase 11                           | P60981    |
| HSD17B12  | Estradiol 17-beta-dehydrogenase 12                           | Q8NBQ5    |
| HSD17B4   | Peroxisomal multifunctional enzyme type 2                    | Q53GQ0    |
| HSD17B7   | 3-keto-steroid reductase                                     | P51659    |
| HSD17B8   | Estradiol 17-beta-dehydrogenase 8                            | P56937    |
| HSDL2     | Hydroxysteroid dehydrogenase-like protein 2                  | Q8IWL3    |
| HSP90AA1  | Heat shock protein HSP 90-alpha                              | Q7LGA3    |
| HSP90AB1  | Heat shock protein HSP 90-beta                               | P07900    |
| HSP90B1   | Endoplasmin                                                  | P06733    |
| HSPA13    | Heat shock 70 kDa protein 13                                 | Q6YN16    |
| HSPA1A    | Heat shock 70 kDa protein 1A/1B                              | P48723    |
| HSPA4     | Heat shock 70 kDa protein 4                                  | P08107    |
| HSPA5     | 78 kDa glucose-regulated protein                             | Q96CP6    |
| HSPA8     | Heat shock cognate 71 kDa protein                            | P34932    |
| HSPBP1    | Hsp70-binding protein 1                                      | Q5SSJ5    |
| HSPD1     | 60 kDa heat shock protein, mitochondrial                     | Q15782    |
| HSPE1     | 10 kDa heat shock protein, mitochondrial                     | Q6P1X6    |
| HSPH1     | Heat shock protein 105 kDa                                   | P37235    |
|           |                                                              |           |

| Gene    | Protein name                                                   | Accession |
|---------|----------------------------------------------------------------|-----------|
| HTRA2   | Serine protease HTRA2, mitochondrial                           | P11142    |
| HYOU1   | Hypoxia up-regulated protein 1                                 | P07099    |
| IARS2   | IsoleucinetRNA ligase, mitochondrial                           | P49590    |
| IBA57   | Putative transferase CAF17, mitochondrial                      | P19022    |
| ICAM2   | Intercellular adhesion molecule 2                              | Q9H2X8    |
| ICT1    | Peptidyl-tRNA hydrolase ICT1, mitochondrial                    | P13598    |
| IDE     | Insulin-degrading enzyme                                       | Q14197    |
| IDH2    | Isocitrate dehydrogenase [NADP], mitochondrial                 | P51553    |
| IDH3A   | Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial    | P14735    |
| IDH3B   | Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial     | P50213    |
| IDH3G   | Isocitrate dehydrogenase [NAD] subunit gamma, mitochondrial    | O43837    |
| IDI1    | Isopentenyl-diphosphate Delta-isomerase 1                      | P48735    |
| IFI27L2 | Interferon alpha-inducible protein 27-like protein 2           | Q9Y4L1    |
| IGF2BP1 | Insulin-like growth factor 2 mRNA-binding protein 1            | P05198    |
| IGF2BP3 | Insulin-like growth factor 2 mRNA-binding protein 3            | Q9NZI8    |
| IGLL1   | Immunoglobulin lambda-like polypeptide 1                       | P56537    |
| IGSF8   | Immunoglobulin superfamily member 8                            | P15814    |
| IKBIP   | Inhibitor of nuclear factor kappa-B kinase-interacting protein | Q969P0    |
| IKZF1   | DNA-binding protein Ikaros                                     | Q70UQ0    |
| IKZF2   | Zinc finger protein Helios                                     | Q13422    |
| IL2RG   | Cytokine receptor common subunit gamma                         | Q9UKS7    |
| ILF2    | Interleukin enhancer-binding factor 2                          | P31785    |
| ILVBL   | Acetolactate synthase-like protein                             | Q12905    |
| IMMP1L  | Mitochondrial inner membrane protease subunit 1                | Q16891    |
| IMMP2L  | Mitochondrial inner membrane protease subunit 2                | Q96LU5    |
| IMMT    | Mitochondrial inner membrane protein                           | P12268    |
| IMP3    | U3 small nucleolar ribonucleoprotein protein IMP3              | Q96T52    |
| IMPAD1  | Inositol monophosphatase 3                                     | Q9NV31    |
| IMPDH2  | Inosine-5'-monophosphate dehydrogenase 2                       | Q14974    |
| INA     | Alpha-internexin                                               | Q12904    |
| INPP5K  | Inositol polyphosphate 5-phosphatase K                         | Q9NX62    |
| IPO5    | Importin-5                                                     | Q9BT40    |
| IQGAP1  | Ras GTPase-activating-like protein IQGAP1                      | Q15181    |
| ISCA1   | Iron-sulfur cluster assembly 1 homolog, mitochondrial          | P46940    |
| ISCA2   | Iron-sulfur cluster assembly 2 homolog, mitochondrial          | Q9BUE6    |
| ISCU    | Iron-sulfur cluster assembly enzyme ISCU, mitochondrial        | Q86U28    |
| ISG15   | Ubiquitin-like protein ISG15                                   | Q9H1K1    |
| ISOC1   | Isochorismatase domain-containing protein 1                    | P05161    |
| ISOC2   | Isochorismatase domain-containing protein 2, mitochondrial     | Q96CN7    |

| 10 | Gene      | Protein name                                            | Accession |
|----|-----------|---------------------------------------------------------|-----------|
| 9  | ISY1      | Pre-mRNA-splicing factor ISY1 homolog                   | Q96AB3    |
|    | ITFG3     | Protein ITFG3                                           | P05556    |
|    | ITGA4     | Integrin alpha-4                                        | Q9ULR0    |
|    | ITGA5     | Integrin alpha-5                                        | P13612    |
|    | ITGAL     | Integrin alpha-L                                        | P08648    |
|    | ITGB1     | Integrin beta-1                                         | P20701    |
|    | ITK       | Tyrosine-protein kinase ITK/TSK                         | Q9H0X4    |
|    | ITM2B     | Integral membrane protein 2B                            | Q08881    |
|    | ITM2C     | Integral membrane protein 2C                            | Q9Y287    |
|    | ITPA      | Inosine triphosphate pyrophosphatase                    | Q9NQX7    |
|    | ITPR2     | Inositol 1,4,5-trisphosphate receptor type 2            | Q9BY32    |
|    | ITPR3     | Inositol 1,4,5-trisphosphate receptor type 3            | Q14571    |
|    | JAGN1     | Protein jagunal homolog 1                               | Q14573    |
|    | JAM3      | Junctional adhesion molecule C                          | Q8N5M9    |
|    | KARS      | LysinetRNA ligase                                       | P57105    |
|    | KCNAB2    | Voltage-gated potassium channel subunit beta-2          | Q9Y6M4    |
|    | KDSR      | 3-ketodihydrosphingosine reductase                      | Q9ULH0    |
|    | KHSRP     | Far upstream element-binding protein 2                  | P02792    |
|    | KIAA0020  | Pumilio domain-containing protein KIAA0020              | Q9BX67    |
|    | KIAA0391  | Mitochondrial ribonuclease P protein 3                  | P49006    |
|    | KIDINS220 | Kinase D-interacting substrate of 220 kDa               | P30085    |
|    | KIF2A     | Kinesin-like protein KIF2A                              | P46013    |
|    | KIF2C     | Kinesin-like protein KIF2C                              | O00139    |
|    | KIF5B     | Kinesin-1 heavy chain                                   | Q99661    |
|    | KPNA3     | Importin subunit alpha-4                                | A1L0T0    |
|    | KPNB1     | Importin subunit beta-1                                 | O00505    |
|    | KRT1      | Keratin, type II cytoskeletal 1                         | P35908    |
|    | KRT10     | Keratin, type I cytoskeletal 10                         | Q15397    |
|    | KRT14     | Keratin, type I cytoskeletal 14                         | P13645    |
|    | KRT16     | Keratin, type I cytoskeletal 16                         | P02533    |
|    | KRT17     | Keratin, type I cytoskeletal 17                         | P08779    |
|    | KRT2      | Keratin, type II cytoskeletal 2 epidermal               | P35527    |
|    | KRT5      | Keratin, type II cytoskeletal 5                         | P04264    |
|    | KRT6C     | Keratin, type II cytoskeletal 6C                        | P13647    |
|    | KRT84     | Keratin, type II cuticular Hb4                          | P14618    |
|    | KRT9      | Keratin, type I cytoskeletal 9                          | Q04695    |
|    | KTN1      | Kinectin                                                | P23919    |
|    | L2HGDH    | L-2-hydroxyglutarate dehydrogenase, mitochondrial       | Q86UP2    |
|    | LACTB     | Serine beta-lactamase-like protein LACTB, mitochondrial | Q9H9P8    |

| Gene     | Protein name                                                 | Accession |
|----------|--------------------------------------------------------------|-----------|
| LAMP1    | Lysosome-associated membrane glycoprotein 1                  | P83111    |
| LAMP2    | Lysosome-associated membrane glycoprotein 2                  | P11279    |
| LAMTOR1  | Ragulator complex protein LAMTOR1                            | Q3MHD2    |
| LAMTOR2  | Ragulator complex protein LAMTOR2                            | Q6IAA8    |
| LAMTOR3  | Ragulator complex protein LAMTOR3                            | Q9Y2Q5    |
| LANCL2   | LanC-like protein 2                                          | P13473    |
| LAP3     | Cytosol aminopeptidase                                       | P55789    |
| LAPTM5   | Lysosomal-associated transmembrane protein 5                 | Q96RT1    |
| LARP4    | La-related protein 4                                         | Q13571    |
| LARS     | LeucinetRNA ligase, cytoplasmic                              | Q15046    |
| LARS2    | Probable leucinetRNA ligase, mitochondrial                   | Q9P2J5    |
| LAS1L    | Ribosomal biogenesis protein LAS1L                           | Q71RC2    |
| LAT      | Linker for activation of T-cells family member 1             | Q01650    |
| LBR      | Lamin-B receptor                                             | P05455    |
| LCK      | Tyrosine-protein kinase Lck                                  | Q9UIQ6    |
| LCP1     | Plastin-2                                                    | Q9HBL7    |
| LDHA     | L-lactate dehydrogenase A chain                              | P06239    |
| LDHB     | L-lactate dehydrogenase B chain                              | P00338    |
| LDLR     | Low-density lipoprotein receptor                             | P07195    |
| LEMD2    | LEM domain-containing protein 2                              | O00182    |
| LEPRE1   | Prolyl 3-hydroxylase 1                                       | O95747    |
| LETM1    | LETM1 and EF-hand domain-containing protein 1, mitochondrial | Q8NC56    |
| LGALS3BP | Galectin-3-binding protein                                   | P16150    |
| LGALS9   | Galectin-9                                                   | P01130    |
| LIN7C    | Protein lin-7 homolog C                                      | Q08380    |
| LMAN1    | Protein ERGIC-53                                             | P43034    |
| LMAN2    | Vesicular integral-membrane protein VIP36                    | P49257    |
| LMNB1    | Lamin-B1                                                     | Q12907    |
| LMNB2    | Lamin-B2                                                     | P20700    |
| LNPEP    | Leucyl-cystinyl aminopeptidase                               | Q9Y383    |
| LONP1    | Lon protease homolog, mitochondrial                          | Q03252    |
| LPCAT1   | Lysophosphatidylcholine acyltransferase 1                    | Q96AQ6    |
| LRPAP1   | Alpha-2-macroglobulin receptor-associated protein            | P28838    |
| LRPPRC   | Leucine-rich PPR motif-containing protein, mitochondrial     | P36776    |
| LRRC59   | Leucine-rich repeat-containing protein 59                    | P42704    |
| LRRC8A   | Leucine-rich repeat-containing protein 8A                    | Q96AG4    |
| LSM12    | Protein LSM12 homolog                                        | Q8IWT6    |
| LSS      | Lanosterol synthase                                          | Q969X5    |
| LUC7L2   | Putative RNA-binding protein Luc7-like 2                     | Q14739    |

| Gene     | Protein name                                                         | Accession |
|----------|----------------------------------------------------------------------|-----------|
| LYAR     | Cell growth-regulating nucleolar protein                             | P10253    |
| LYPLAL1  | Lysophospholipase-like protein 1                                     | Q9NX58    |
| LYRM4    | LYR motif-containing protein 4                                       | Q86UE4    |
| LYRM7    | Complex III assembly factor LYRM7                                    | Q9HD34    |
| LYZ      | Lysozyme C                                                           | Q5U5X0    |
| M6PR     | Cation-dependent mannose-6-phosphate receptor                        | Q10713    |
| MACROD1  | O-acetyl-ADP-ribose deacetylase MACROD1                              | O00754    |
| MAD2L1   | Mitotic spindle assembly checkpoint protein MAD2A                    | Q8NE86    |
| MAFK     | Transcription factor MafK                                            | Q9BQ69    |
| MAGOH    | Protein mago nashi homolog                                           | Q9BQP7    |
| MAK16    | Protein MAK16 homolog                                                | O60675    |
| MALSU1   | Mitochondrial assembly of ribosomal large subunit protein 1          | Q9NX47    |
| MAN1A2   | Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB                    | Q02978    |
| MAN1B1   | Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase | O60476    |
| MAN2B1   | Lysosomal alpha-mannosidase                                          | Q9UKM7    |
| MANF     | Mesencephalic astrocyte-derived neurotrophic factor                  | Q9BXY0    |
| MAP2K2   | Dual specificity mitogen-activated protein kinase kinase 2           | P53985    |
| MAPRE1   | Microtubule-associated protein RP/EB family member 1                 | P23368    |
| MARCH5   | E3 ubiquitin-protein ligase MARCH5                                   | Q15691    |
| MARCKSL1 | MARCKS-related protein                                               | P33527    |
| MARS     | MethioninetRNA ligase, cytoplasmic                                   | Q15031    |
| MARS2    | MethioninetRNA ligase, mitochondrial                                 | P56192    |
| MAT2A    | S-adenosylmethionine synthase isoform type-2                         | Q9H7H0    |
| MAT2B    | Methionine adenosyltransferase 2 subunit beta                        | Q96EH3    |
| MATR3    | Matrin-3                                                             | Q9NZL9    |
| MAVS     | Mitochondrial antiviral-signaling protein                            | P43243    |
| MBD3     | Methyl-CpG-binding domain protein 3                                  | Q9BQG0    |
| MBLAC2   | Metallo-beta-lactamase domain-containing protein 2                   | O95983    |
| MCAT     | Malonyl-CoA-acyl carrier protein transacylase, mitochondrial         | Q52LJ0    |
| MCCC1    | Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial         | O43772    |
| MCCC2    | Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial            | Q96RQ3    |
| MCEE     | Methylmalonyl-CoA epimerase, mitochondrial                           | Q9HCC0    |
| MCM2     | DNA replication licensing factor MCM2                                | Q96PE7    |
| MCM3     | DNA replication licensing factor MCM3                                | P49736    |
| MCM7     | DNA replication licensing factor MCM7                                | P25205    |
| MCU      | Calcium uniporter protein, mitochondrial                             | Q96AQ8    |
| MCUR1    | Mitochondrial calcium uniporter regulator 1                          | P33993    |
| MDH1     | Malate dehydrogenase, cytoplasmic                                    | Q13257    |
| MDH2     | Malate dehydrogenase, mitochondrial                                  | P40925    |
|          |                                                                      |           |

| Gene      | Protein name                                                           | Accession |
|-----------|------------------------------------------------------------------------|-----------|
| ME2       | NAD-dependent malic enzyme, mitochondrial                              | P55145    |
| MEAF6     | Chromatin modification-related protein MEAF6                           | Q9HCM4    |
| MECR      | Trans-2-enoyl-CoA reductase, mitochondrial                             | P40926    |
| MED21     | Mediator of RNA polymerase II transcription subunit 21                 | Q9BV79    |
| MED22     | Mediator of RNA polymerase II transcription subunit 22                 | Q13503    |
| MESDC2    | LDLR chaperone MESD                                                    | Q9BQA1    |
| METTL15   | Probable methyltransferase-like protein 15                             | Q14696    |
| METTL17   | Methyltransferase-like protein 17, mitochondrial                       | A6NJ78    |
| MFF       | Mitochondrial fission factor                                           | P31153    |
| MFGE8     | Lactadherin                                                            | Q9GZY8    |
| MFN1      | Mitofusin-1                                                            | Q08431    |
| MFN2      | Mitofusin-2                                                            | Q8IWA4    |
| MGAT1     | Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase | Q9H2D1    |
| MGAT2     | Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase | P26572    |
| MGME1     | Mitochondrial genome maintenance exonuclease 1                         | Q10469    |
| MGST3     | Microsomal glutathione S-transferase 3                                 | P61326    |
| MIA3      | Melanoma inhibitory activity protein 3                                 | O14880    |
| MICU1     | Calcium uptake protein 1, mitochondrial                                | Q8N4Q1    |
| MICU2     | Calcium uptake protein 2, mitochondrial                                | Q9BPX6    |
| MINPP1    | Multiple inositol polyphosphate phosphatase 1                          | Q8N183    |
| MIPEP     | Mitochondrial intermediate peptidase                                   | Q9Y3D0    |
| MKI67     | Antigen KI-67                                                          | Q06136    |
| MLEC      | Malectin                                                               | O14950    |
| MLYCD     | Malonyl-CoA decarboxylase, mitochondrial                               | P27707    |
| MMAA      | Methylmalonic aciduria type A protein, mitochondrial                   | Q14165    |
| MMGT1     | Membrane magnesium transporter 1                                       | Q8IVH4    |
| MOB1A     | MOB kinase activator 1A                                                | Q02252    |
| MOB1B     | MOB kinase activator 1B                                                | Q9H8S9    |
| MOCS1     | Molybdenum cofactor biosynthesis protein 1                             | Q7L9L4    |
| MOGS      | Mannosyl-oligosaccharide glucosidase                                   | P26038    |
| MPC2      | Mitochondrial pyruvate carrier 2                                       | P36507    |
| MPHOSPH10 | U3 small nucleolar ribonucleoprotein protein MPP10                     | Q00325    |
| MPP1      | 55 kDa erythrocyte membrane protein                                    | Q15370    |
| MPP6      | MAGUK p55 subfamily member 6                                           | O00566    |
| MPST      | 3-mercaptopyruvate sulfurtransferase                                   | Q86W42    |
| MPV17     | Protein Mpv17                                                          | P20645    |
| MRM1      | rRNA methyltransferase 1, mitochondrial                                | P39210    |
| MRPL1     | 39S ribosomal protein L1, mitochondrial                                | P05387    |
| MRPL11    | 39S ribosomal protein L11, mitochondrial                               | Q9BYD2    |

| 10 | Gene   | Protein name                             | Accession |
|----|--------|------------------------------------------|-----------|
| 8  | MRPL13 | 39S ribosomal protein L13, mitochondrial | Q9Y3B7    |
|    | MRPL14 | 39S ribosomal protein L14, mitochondrial | Q9BYD1    |
|    | MRPL15 | 39S ribosomal protein L15, mitochondrial | Q6P1L8    |
|    | MRPL16 | 39S ribosomal protein L16, mitochondrial | Q9P015    |
|    | MRPL17 | 39S ribosomal protein L17, mitochondrial | Q9NX20    |
|    | MRPL18 | 39S ribosomal protein L18, mitochondrial | Q9NRX2    |
|    | MRPL19 | 39S ribosomal protein L19, mitochondrial | Q9H0U6    |
|    | MRPL2  | 39S ribosomal protein L2, mitochondrial  | Q9BYD6    |
|    | MRPL20 | 39S ribosomal protein L20, mitochondrial | Q9NWU5    |
|    | MRPL21 | 39S ribosomal protein L21, mitochondrial | P49406    |
|    | MRPL22 | 39S ribosomal protein L22, mitochondrial | Q7Z2W9    |
|    | MRPL23 | 39S ribosomal protein L23, mitochondrial | Q9P0M9    |
|    | MRPL27 | 39S ribosomal protein L27, mitochondrial | Q9BYC9    |
|    | MRPL28 | 39S ribosomal protein L28, mitochondrial | Q16540    |
|    | MRPL3  | 39S ribosomal protein L3, mitochondrial  | Q5T653    |
|    | MRPL30 | 39S ribosomal protein L30, mitochondrial | Q9BYC8    |
|    | MRPL32 | 39S ribosomal protein L32, mitochondrial | Q13084    |
|    | MRPL35 | 39S ribosomal protein L35, mitochondrial | Q8TCC3    |
|    | MRPL37 | 39S ribosomal protein L37, mitochondrial | Q9NZE8    |
|    | MRPL38 | 39S ribosomal protein L38, mitochondrial | Q9NYK5    |
|    | MRPL39 | 39S ribosomal protein L39, mitochondrial | Q9BZE1    |
|    | MRPL4  | 39S ribosomal protein L4, mitochondrial  | P09001    |
|    | MRPL40 | 39S ribosomal protein L40, mitochondrial | Q96DV4    |
|    | MRPL41 | 39S ribosomal protein L41, mitochondrial | Q9NQ50    |
|    | MRPL42 | 39S ribosomal protein L42, mitochondrial | Q8N983    |
|    | MRPL43 | 39S ribosomal protein L43, mitochondrial | Q8IXM3    |
|    | MRPL44 | 39S ribosomal protein L44, mitochondrial | Q9Y6G3    |
|    | MRPL46 | 39S ribosomal protein L46, mitochondrial | Q9H9J2    |
|    | MRPL47 | 39S ribosomal protein L47, mitochondrial | Q9H2W6    |
|    | MRPL48 | 39S ribosomal protein L48, mitochondrial | Q9HD33    |
|    | MRPL49 | 39S ribosomal protein L49, mitochondrial | Q8N5N7    |
|    | MRPL50 | 39S ribosomal protein L50, mitochondrial | Q96GC5    |
|    | MRPL53 | 39S ribosomal protein L53, mitochondrial | Q13405    |
|    | MRPL54 | 39S ribosomal protein L54, mitochondrial | Q96EL3    |
|    | MRPL55 | 39S ribosomal protein L55, mitochondrial | Q6P161    |
|    | MRPL57 | Ribosomal protein 63, mitochondrial      | Q8WWV3    |
|    | MRPL9  | 39S ribosomal protein L9, mitochondrial  | Q9BYD3    |
|    | MRPS10 | 28S ribosomal protein S10, mitochondrial | P82933    |
|    | MRPS11 | 28S ribosomal protein S11, mitochondrial | P82664    |

| Gene    | Protein name                                       | Accession |
|---------|----------------------------------------------------|-----------|
| MRPS12  | 28S ribosomal protein S12, mitochondrial           | P82912    |
| MRPS14  | 28S ribosomal protein S14, mitochondrial           | O15235    |
| MRPS15  | 28S ribosomal protein S15, mitochondrial           | O60783    |
| MRPS16  | 28S ribosomal protein S16, mitochondrial           | P82914    |
| MRPS17  | 28S ribosomal protein S17, mitochondrial           | Q9Y3D3    |
| MRPS18A | 28S ribosomal protein S18a, mitochondrial          | Q9Y2R5    |
| MRPS18B | 28S ribosomal protein S18b, mitochondrial          | Q9NVS2    |
| MRPS2   | 28S ribosomal protein S2, mitochondrial            | P08865    |
| MRPS21  | 28S ribosomal protein S21, mitochondrial           | Q9Y676    |
| MRPS22  | 28S ribosomal protein S22, mitochondrial           | P82921    |
| MRPS23  | 28S ribosomal protein S23, mitochondrial           | P82650    |
| MRPS24  | 28S ribosomal protein S24, mitochondrial           | Q9Y3D9    |
| MRPS25  | 28S ribosomal protein S25, mitochondrial           | Q96EL2    |
| MRPS26  | 28S ribosomal protein S26, mitochondrial           | P82663    |
| MRPS27  | 28S ribosomal protein S27, mitochondrial           | Q9BYN8    |
| MRPS28  | 28S ribosomal protein S28, mitochondrial           | Q92552    |
| MRPS30  | 28S ribosomal protein S30, mitochondrial           | P51398    |
| MRPS31  | 28S ribosomal protein S31, mitochondrial           | Q9NP92    |
| MRPS33  | 28S ribosomal protein S33, mitochondrial           | Q92665    |
| MRPS34  | 28S ribosomal protein S34, mitochondrial           | Q9Y291    |
| MRPS35  | 28S ribosomal protein S35, mitochondrial           | P82930    |
| MRPS36  | 28S ribosomal protein S36, mitochondrial           | P82673    |
| MRPS5   | 28S ribosomal protein S5, mitochondrial            | Q9Y399    |
| MRPS6   | 28S ribosomal protein S6, mitochondrial            | P82675    |
| MRPS7   | 28S ribosomal protein S7, mitochondrial            | P82932    |
| MRPS9   | 28S ribosomal protein S9, mitochondrial            | Q9Y2R9    |
| MRRF    | Ribosome-recycling factor, mitochondrial           | Q969S9    |
| MRS2    | Magnesium transporter MRS2 homolog, mitochondrial  | Q7L0Y3    |
| MSN     | Moesin                                             | Q9NZB8    |
| MSRB2   | Methionine-R-sulfoxide reductase B2, mitochondrial | Q9HD23    |
| MTA1    | Metastasis-associated protein MTA1                 | Q9Y3D2    |
| MTA2    | Metastasis-associated protein MTA2                 | Q13330    |
| MTCH2   | Mitochondrial carrier homolog 2                    | O94776    |
| MTDH    | Protein LYRIC                                      | Q5VWZ2    |
| MTERF   | Transcription termination factor, mitochondrial    | Q96E29    |
| MTERFD1 | mTERF domain-containing protein 1, mitochondrial   | Q7Z6M4    |
| MTERFD2 | mTERF domain-containing protein 2                  | P13995    |
| MTFMT   | Methionyl-tRNA formyltransferase, mitochondrial    | O95466    |
| MTFP1   | Mitochondrial fission process protein 1            | Q99551    |

| Gene    | Protein name                                                                          | Accession |
|---------|---------------------------------------------------------------------------------------|-----------|
| MTFR1   | Mitochondrial fission regulator 1                                                     | Q9UDX5    |
| MTFR2   | Mitochondrial fission regulator 2                                                     | Q15390    |
| MTHFD1  | C-1-tetrahydrofolate synthase, cytoplasmic                                            | Q07021    |
| MTHFD1L | Monofunctional C1-tetrahydrofolate synthase, mitochondrial                            | P11586    |
| MTHFD2  | Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrial | Q9Y6C9    |
| MTIF2   | Translation initiation factor IF-2, mitochondrial                                     | P20042    |
| MTIF3   | Translation initiation factor IF-3, mitochondrial                                     | P46199    |
| MTO1    | Protein MTO1 homolog, mitochondrial                                                   | Q6P444    |
| MTPAP   | Poly(A) RNA polymerase, mitochondrial                                                 | Q13310    |
| MTPN    | Myotrophin                                                                            | Q9Y2Z2    |
| MTRF1   | Peptide chain release factor 1, mitochondrial                                         | Q92785    |
| MTX1    | Metaxin-1                                                                             | O75648    |
| MTX2    | Metaxin-2                                                                             | Q13505    |
| MUL1    | Mitochondrial ubiquitin ligase activator of NFKB 1                                    | O75431    |
| MUT     | Methylmalonyl-CoA mutase, mitochondrial                                               | Q969V5    |
| MYBBP1A | Myb-binding protein 1A                                                                | Q7Z434    |
| MYCBP   | C-Myc-binding protein                                                                 | Q92614    |
| MYH9    | Myosin-9                                                                              | Q9HB07    |
| MYL12A  | Myosin regulatory light chain 12A                                                     | Q9BYG3    |
| MYL12B  | Myosin regulatory light chain 12B                                                     | P19105    |
| MYO18A  | Unconventional myosin-XVIIIa                                                          | P22033    |
| MYO1B   | Unconventional myosin-Ib                                                              | P35579    |
| MYO1G   | Unconventional myosin-Ig                                                              | O43795    |
| MYO7B   | Unconventional myosin-VIIb                                                            | B0I1T2    |
| MZB1    | Marginal zone B- and B1-cell-specific protein                                         | Q6PIF6    |
| MZT2B   | Mitotic-spindle organizing protein 2B                                                 | Q8WU39    |
| NAA50   | N-alpha-acetyltransferase 50                                                          | Q6NZ67    |
| NADK2   | NAD kinase 2, mitochondrial                                                           | Q9UJ70    |
| NAGK    | N-acetyl-D-glucosamine kinase                                                         | Q9GZZ1    |
| NAP1L1  | Nucleosome assembly protein 1-like 1                                                  | O60287    |
| NAPA    | Alpha-soluble NSF attachment protein                                                  | Q2TAY7    |
| NAPG    | Gamma-soluble NSF attachment protein                                                  | P54920    |
| NARS    | AsparaginetRNA ligase, cytoplasmic                                                    | Q92797    |
| NARS2   | Probable asparaginetRNA ligase, mitochondrial                                         | O43776    |
| NAT10   | N-acetyltransferase 10                                                                | Q4G0N4    |
| NAT14   | N-acetyltransferase 14                                                                | Q9H0A0    |
| NBAS    | Neuroblastoma-amplified sequence                                                      | P00387    |
| NCBP2   | Nuclear cap-binding protein subunit 2                                                 | A2RRP1    |

| Gene    | Protein name                                                                    | Accession |
|---------|---------------------------------------------------------------------------------|-----------|
| NCEH1   | Neutral cholesterol ester hydrolase 1                                           | P52298    |
| NCL     | Nucleolin                                                                       | P80303    |
| NCLN    | Nicalin                                                                         | Q6PIU2    |
| NDUFA10 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10,<br>mitochondrial | Q86Y39    |
| NDUFA11 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11                   | Q9UI09    |
| NDUFA12 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12                   | P51970    |
| NDUFA13 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13                   | O95299    |
| NDUFA2  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2                    | O00746    |
| NDUFA4  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4                    | O43678    |
| NDUFA5  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5                    | O00483    |
| NDUFA6  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6                    | Q16718    |
| NDUFA7  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7                    | P56556    |
| NDUFA8  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8                    | O95182    |
| NDUFAB1 | Acyl carrier protein, mitochondrial                                             | Q15067    |
| NDUFAF1 | Complex I intermediate-associated protein 30, mitochondrial                     | Q5T280    |
| NDUFAF2 | Mimitin, mitochondrial                                                          | Q8IYU8    |
| NDUFAF3 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3            | O95298    |
| NDUFAF4 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4            | Q9BU61    |
| NDUFAF5 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 5            | Q9P032    |
| NDUFAF6 | NADH dehydrogenase                                                              | Q5TEU4    |
| NDUFAF7 | NADH dehydrogenase [ubiquinone] complex I, assembly factor 7                    | Q330K2    |
| NDUFB10 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10                    | Q9Y6M9    |
| NDUFB11 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11,<br>mitochondrial  | O96000    |
| NDUFB3  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3                     | Q9P0J0    |
| NDUFB4  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4                     | O43676    |
| NDUFB5  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5,<br>mitochondrial   | O95168    |
| NDUFB6  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6                     | O43674    |
| NDUFB7  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7                     | O95139    |
| NDUFB8  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial      | P17568    |
| NDUFB9  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9                     | O95169    |
| NDUFC2  | NADH dehydrogenase [ubiquinone] 1 subunit C2                                    | Q9NX14    |
| NDUFS1  | NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial                    | Q7L592    |
| NDUFS2  | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial            | P28331    |
| NDUFS3  | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial            | O75306    |
| NDUFS4  | NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial            | O75489    |

|   | Gene      | Protein name                                                         | Accession |
|---|-----------|----------------------------------------------------------------------|-----------|
| 0 | NDUFS6    | NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial | O43181    |
|   | NDUFS7    | NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial | O75380    |
|   | NDUFV1    | NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial        | O75251    |
|   | NDUFV2    | NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial        | P49821    |
|   | NEDD1     | Protein NEDD1                                                        | P19404    |
|   | NEK2      | Serine/threonine-protein kinase Nek2                                 | Q8NHV4    |
|   | NELFB     | Negative elongation factor B                                         | P51955    |
|   | NENF      | Neudesin                                                             | Q8WX92    |
|   | NFU1      | NFU1 iron-sulfur cluster scaffold homolog, mitochondrial             | Q9BYT8    |
|   | NFXL1     | NF-X1-type zinc finger protein NFXL1                                 | Q9UMS0    |
|   | NHP2      | H/ACA ribonucleoprotein complex subunit 2                            | P55769    |
|   | NHP2L1    | NHP2-like protein 1                                                  | Q6ZNB6    |
|   | NIFK      | MKI67 FHA domain-interacting nucleolar phosphoprotein                | Q8IXI1    |
|   | NIP7      | 60S ribosome subunit biogenesis protein NIP7 homolog                 | O14745    |
|   | NIPSNAP1  | Protein NipSnap homolog 1                                            | Q9Y221    |
|   | NIPSNAP3A | Protein NipSnap homolog 3A                                           | P06748    |
|   | NIT2      | Omega-amidase NIT2                                                   | O75323    |
|   | NLN       | Neurolysin, mitochondrial                                            | Q8NFW8    |
|   | NLRX1     | NLR family member X1                                                 | Q9NQR4    |
|   | NME4      | Nucleoside diphosphate kinase, mitochondrial                         | O75414    |
|   | NME6      | Nucleoside diphosphate kinase 6                                      | Q969V3    |
|   | NNT       | NAD(P) transhydrogenase, mitochondrial                               | Q8NCW5    |
|   | NOA1      | Nitric oxide-associated protein 1                                    | Q13423    |
|   | NOC3L     | Nucleolar complex protein 3 homolog                                  | Q9BVI4    |
|   | NOC4L     | Nucleolar complex protein 4 homolog                                  | Q8NC60    |
|   | NOL11     | Nucleolar protein 11                                                 | Q9BZE4    |
|   | NOL6      | Nucleolar protein 6                                                  | Q9H8H0    |
|   | NOLC1     | Nucleolar and coiled-body phosphoprotein 1                           | Q9H6R4    |
|   | NOMO2     | Nodal modulator 2                                                    | Q14978    |
|   | NONO      | Non-POU domain-containing octamer-binding protein                    | Q5JPE7    |
|   | NOP16     | Nucleolar protein 16                                                 | Q15233    |
|   | NOP2      | Putative ribosomal RNA methyltransferase NOP2                        | Q9Y3C1    |
|   | NOP56     | Nucleolar protein 56                                                 | P46087    |
|   | NOP58     | Nucleolar protein 58                                                 | O00567    |
|   | NPM1      | Nucleophosmin                                                        | P55209    |
|   | NPTN      | Neuroplastin                                                         | Q9UFN0    |
|   | NR2C2AP   | Nuclear receptor 2C2-associated protein                              | Q9Y639    |
|   | NRAS      | GTPase NRas                                                          | Q86YV0    |
|   | NRM       | Nurim                                                                | Q86WQ0    |

| Gene    | Protein name                                                  | Accession |
|---------|---------------------------------------------------------------|-----------|
| NSDHL   | Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating   | Q8IXM6    |
| NSF     | Vesicle-fusing ATPase                                         | Q9NXX6    |
| NSMCE4A | Non-structural maintenance of chromosomes element 4 homolog A | Q15738    |
| NSUN2   | tRNA                                                          | Q9NXE4    |
| NSUN4   | 5-methylcytosine rRNA methyltransferase NSUN4                 | Q08J23    |
| NT5C3A  | Cytosolic 5'-nucleotidase 3A                                  | P08195    |
| NT5DC2  | 5'-nucleotidase domain-containing protein 2                   | Q86UY8    |
| NT5DC3  | 5'-nucleotidase domain-containing protein 3                   | Q96CB9    |
| NTPCR   | Cancer-related nucleoside-triphosphatase                      | Q9H857    |
| NUBPL   | Iron-sulfur protein NUBPL                                     | P35658    |
| NUCB2   | Nucleobindin-2                                                | Q8TB37    |
| NUDC    | Nuclear migration protein nudC                                | Q8WVJ2    |
| NUDCD2  | NudC domain-containing protein 2                              | P19338    |
| NUDT1   | 7,8-dihydro-8-oxoguanine triphosphatase                       | Q9H0P0    |
| NUDT2   | Bis(5'-nucleosyl)-tetraphosphatase [asymmetrical]             | P53680    |
| NUDT21  | Cleavage and polyadenylation specificity factor subunit 5     | Q9P2I0    |
| NUDT8   | Nucleoside diphosphate-linked moiety X motif 8, mitochondrial | Q9Y266    |
| NUFIP2  | Nuclear fragile X mental retardation-interacting protein 2    | Q8WV74    |
| NUMA1   | Nuclear mitotic apparatus protein 1                           | Q7Z417    |
| NUP107  | Nuclear pore complex protein Nup107                           | Q9BSD7    |
| NUP133  | Nuclear pore complex protein Nup133                           | P57740    |
| NUP153  | Nuclear pore complex protein Nup153                           | Q8WUM0    |
| NUP155  | Nuclear pore complex protein Nup155                           | P49790    |
| NUP160  | Nuclear pore complex protein Nup160                           | O75694    |
| NUP188  | Nucleoporin NUP188 homolog                                    | Q12769    |
| NUP205  | Nuclear pore complex protein Nup205                           | Q5SRE5    |
| NUP210  | Nuclear pore membrane glycoprotein 210                        | Q8TCS8    |
| NUP214  | Nuclear pore complex protein Nup214                           | Q92621    |
| NUP35   | Nucleoporin NUP53                                             | Q9UKX7    |
| NUP43   | Nucleoporin Nup43                                             | Q14980    |
| NUP50   | Nuclear pore complex protein Nup50                            | Q8NFH3    |
| NUP54   | Nucleoporin p54                                               | Q8NFH5    |
| NUP62   | Nuclear pore glycoprotein p62                                 | Q7Z3B4    |
| NUP85   | Nuclear pore complex protein Nup85                            | P37198    |
| NUP88   | Nuclear pore complex protein Nup88                            | Q8N1F7    |
| NUP93   | Nuclear pore complex protein Nup93                            | Q9BW27    |
| NUP98   | Nuclear pore complex protein Nup98-Nup96                      | Q99567    |
| NUPL1   | Nucleoporin p58/p45                                           | P52948    |
| NXF1    | Nuclear RNA export factor 1                                   | Q9BVL2    |

| Gene     | Protein name                                                           | Accession |
|----------|------------------------------------------------------------------------|-----------|
| OARD1    | O-acetyl-ADP-ribose deacetylase 1                                      | Q9UBU9    |
| OAT      | Ornithine aminotransferase, mitochondrial                              | Q9Y530    |
| OCIAD1   | OCIA domain-containing protein 1                                       | P04181    |
| OCIAD2   | OCIA domain-containing protein 2                                       | Q9NX40    |
| ODF2     | Outer dense fiber protein 2                                            | P12694    |
| OGDH     | 2-oxoglutarate dehydrogenase, mitochondrial                            | Q5BJF6    |
| OLA1     | Obg-like ATPase 1                                                      | Q9H488    |
| ORC4     | Origin recognition complex subunit 4                                   | Q9NTK5    |
| ORMDL1   | ORM1-like protein 1                                                    | O43929    |
| OS9      | Protein OS-9                                                           | Q9Y3B8    |
| OSBP     | Oxysterol-binding protein 1                                            | Q96SU4    |
| OSBPL11  | Oxysterol-binding protein-related protein 11                           | Q13438    |
| OSBPL8   | Oxysterol-binding protein-related protein 8                            | Q9BXB4    |
| OSBPL9   | Oxysterol-binding protein-related protein 9                            | Q9BZF1    |
| OSGEPL1  | Probable tRNA N6-adenosine threonylcarbamoyltransferase, mitochondrial | P22059    |
| OXA1L    | Mitochondrial inner membrane protein OXA1L                             | Q9H4B0    |
| OXCT1    | Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial        | O43819    |
| OXLD1    | Oxidoreductase-like domain-containing protein 1                        | Q15070    |
| OXNAD1   | Oxidoreductase NAD-binding domain-containing protein 1                 | Q5BKU9    |
| OXSM     | 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial               | Q96HP4    |
| OXSR1    | Serine/threonine-protein kinase OSR1                                   | Q9NWU     |
| P4HA1    | Prolyl 4-hydroxylase subunit alpha-1                                   | Q32P28    |
| P4HB     | Protein disulfide-isomerase                                            | Q6L8Q7    |
| PABPC1   | Polyadenylate-binding protein 1                                        | P68402    |
| PABPC4   | Polyadenylate-binding protein 4                                        | P11940    |
| PAFAH1B1 | Platelet-activating factor acetylhydrolase IB subunit alpha            | Q9NUP9    |
| PAFAH1B2 | Platelet-activating factor acetylhydrolase IB subunit beta             | Q86YP4    |
| PAICS    | Multifunctional protein ADE2                                           | Q9UHX     |
| PAM16    | Mitochondrial import inner membrane translocase subunit TIM16          | Q96DA6    |
| PARK7    | Protein DJ-1                                                           | Q9NVV4    |
| PARP1    | Poly [ADP-ribose] polymerase 1                                         | Q99497    |
| PARP9    | Poly [ADP-ribose] polymerase 9                                         | P09874    |
| PARS2    | Probable prolinetRNA ligase, mitochondrial                             | Q16563    |
| PBRM1    | Protein polybromo-1                                                    | Q8IXQ6    |
| PBXIP1   | Pre-B-cell leukemia transcription factor-interacting protein 1         | Q86U86    |
| PC       | Pyruvate carboxylase, mitochondrial                                    | Q9NR77    |
| PCBP2    | Poly(rC)-binding protein 2                                             | Q8NF37    |
| PCCA     | Propionyl-CoA carboxylase alpha chain, mitochondrial                   | Q15366    |
| РССВ     | Propionyl-CoA carboxylase beta chain, mitochondrial                    | P05165    |

| Gene    | Protein name                                                                      | Accession |
|---------|-----------------------------------------------------------------------------------|-----------|
| PCK2    | Phosphoenolpyruvate carboxykinase [GTP], mitochondrial                            | Q15645    |
| PCM1    | Pericentriolar material 1 protein                                                 | Q16822    |
| PCMT1   | Protein-L-isoaspartate(D-aspartate) O-methyltransferase                           | Q96S52    |
| PCNA    | Proliferating cell nuclear antigen                                                | Q15154    |
| PCNT    | Pericentrin                                                                       | P12004    |
| PCYOX1  | Prenylcysteine oxidase 1                                                          | P42785    |
| PCYOX1L | Prenylcysteine oxidase-like                                                       | Q9UHG3    |
| PDCD11  | Protein RRP5 homolog                                                              | P56182    |
| PDCD6   | Programmed cell death protein 6                                                   | Q8NBM8    |
| PDE12   | 2',5'-phosphodiesterase 12                                                        | O75340    |
| PDF     | Peptide deformylase, mitochondrial                                                | Q9H4E7    |
| PDHA1   | Pyruvate dehydrogenase E1 component subunit alpha, somatic form,<br>mitochondrial | P10515    |
| PDHB    | Pyruvate dehydrogenase E1 component subunit beta, mitochondrial                   | P08559    |
| PDHX    | Pyruvate dehydrogenase protein X component, mitochondrial                         | P11177    |
| PDIA3   | Protein disulfide-isomerase A3                                                    | P07237    |
| PDIA4   | Protein disulfide-isomerase A4                                                    | P30101    |
| PDIA5   | Protein disulfide-isomerase A5                                                    | P13667    |
| PDIA6   | Protein disulfide-isomerase A6                                                    | Q14554    |
| PDK1    | [Pyruvate dehydrogenase                                                           | Q15120    |
| PDK3    | [Pyruvate dehydrogenase                                                           | Q9BY77    |
| PDP2    | [Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 2, mitochondrial       | Q15118    |
| PDPR    | Pyruvate dehydrogenase phosphatase regulatory subunit, mitochondrial              | Q9P2J9    |
| PDS5A   | Sister chromatid cohesion protein PDS5 homolog A                                  | Q8NCN5    |
| PDS5B   | Sister chromatid cohesion protein PDS5 homolog B                                  | Q29RF7    |
| PDSS1   | Decaprenyl-diphosphate synthase subunit 1                                         | Q9UHN1    |
| PDSS2   | Decaprenyl-diphosphate synthase subunit 2                                         | Q12959    |
| PDZD11  | PDZ domain-containing protein 11                                                  | Q9NTI5    |
| PEBP1   | Phosphatidylethanolamine-binding protein 1                                        | Q5EBL8    |
| PECAM1  | Platelet endothelial cell adhesion molecule                                       | P30086    |
| PEO1    | Twinkle protein, mitochondrial                                                    | P16284    |
| PES1    | Pescadillo homolog                                                                | Q6Y7W6    |
| PET112  | Glutamyl-tRNA(Gln) amidotransferase subunit B, mitochondrial                      | Q9H0R6    |
| PEX11B  | Peroxisomal membrane protein 11B                                                  | Q15269    |
| PEX13   | Peroxisomal membrane protein PEX13                                                | O00541    |
| PEX14   | Peroxisomal membrane protein PEX14                                                | Q92968    |
| PEX16   | Peroxisomal membrane protein PEX16                                                | O75381    |
| PEX3    | Peroxisomal biogenesis factor 3                                                   | Q9Y5Y5    |
| PFDN2   | Prefoldin subunit 2                                                               | P56589    |

| Gene    | Protein name                                                                       | Accession |
|---------|------------------------------------------------------------------------------------|-----------|
| PFDN4   | Prefoldin subunit 4                                                                | Q9UHV9    |
| PFDN5   | Prefoldin subunit 5                                                                | Q9NQP4    |
| PFKP    | 6-phosphofructokinase type C                                                       | P48668    |
| PFN1    | Profilin-1                                                                         | P78527    |
| PGAM5   | Serine/threonine-protein phosphatase PGAM5, mitochondrial                          | Q99471    |
| PGK1    | Phosphoglycerate kinase 1                                                          | Q9H7Z7    |
| PGRMC1  | Membrane-associated progesterone receptor component 1                              | Q32NB8    |
| PGRMC2  | Membrane-associated progesterone receptor component 2                              | O00264    |
| PGS1    | CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase,<br>mitochondrial | Q8NBL1    |
| PHB     | Prohibitin                                                                         | Q99623    |
| PHB2    | Prohibitin-2                                                                       | O15173    |
| PHGDH   | D-3-phosphoglycerate dehydrogenase                                                 | Q9UHD8    |
| PHPT1   | 14 kDa phosphohistidine phosphatase                                                | P35232    |
| PI4K2A  | Phosphatidylinositol 4-kinase type 2-alpha                                         | P13674    |
| PIGK    | GPI-anchor transamidase                                                            | Q8N335    |
| PIGS    | GPI transamidase component PIG-S                                                   | Q99755    |
| PIN1    | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1                             | P22061    |
| PIP     | Prolactin-inducible protein                                                        | P48739    |
| PIP4K2A | Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha                             | Q9NRX4    |
| PIP5K1A | Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha                             | P48426    |
| PISD    | Phosphatidylserine decarboxylase proenzyme                                         | P12273    |
| PITPNB  | Phosphatidylinositol transfer protein beta isoform                                 | Q9H307    |
| PITRM1  | Presequence protease, mitochondrial                                                | Q9HCU5    |
| РКМ     | Pyruvate kinase PKM                                                                | O60256    |
| PLEC    | Plectin                                                                            | Q9NUQ2    |
| PLGRKT  | Plasminogen receptor                                                               | Q8IY17    |
| PLK1    | Serine/threonine-protein kinase PLK1                                               | Q15149    |
| PLXNA1  | Plexin-A1                                                                          | P13796    |
| PML     | Protein PML                                                                        | Q9UIW2    |
| PMPCA   | Mitochondrial-processing peptidase subunit alpha                                   | Q9NZW5    |
| PMVK    | Phosphomevalonate kinase                                                           | P29590    |
| PNKD    | Probable hydrolase PNKD                                                            | Q15126    |
| PNN     | Pinin                                                                              | Q13526    |
| PNPLA6  | Neuropathy target esterase                                                         | P53350    |
| PNPT1   | Polyribonucleotide nucleotidyltransferase 1, mitochondrial                         | Q8N490    |
| POC1A   | POC1 centriolar protein homolog A                                                  | Q8TEM1    |
| POFUT1  | GDP-fucose protein O-fucosyltransferase 1                                          | O00330    |
| POGLUT1 | Protein O-glucosyltransferase 1                                                    | P00558    |

| Gene    | Protein name                                                              | Accession |  |
|---------|---------------------------------------------------------------------------|-----------|--|
| POLDIP2 | Polymerase delta-interacting protein 2                                    | Q15084    |  |
| POLDIP3 | Polymerase delta-interacting protein 3                                    | Q9Y2S7    |  |
| POLG2   | DNA polymerase subunit gamma-2, mitochondrial                             | O60762    |  |
| POLR1C  | DNA-directed RNA polymerases I and III subunit RPAC1                      | P52434    |  |
| POLR2A  | DNA-directed RNA polymerase II subunit RPB1                               | P52435    |  |
| POLR2B  | DNA-directed RNA polymerase II subunit RPB2                               | P24928    |  |
| POLR2C  | DNA-directed RNA polymerase II subunit RPB3                               | P30876    |  |
| POLR2H  | DNA-directed RNA polymerases I, II, and III subunit RPABC3                | P51991    |  |
| POLR2J  | DNA-directed RNA polymerase II subunit RPB11-a                            | O15160    |  |
| POLRMT  | DNA-directed RNA polymerase, mitochondrial                                | P04844    |  |
| PPA1    | Inorganic pyrophosphatase                                                 | Q9H2U2    |  |
| PPA2    | Inorganic pyrophosphatase 2, mitochondrial                                | O00410    |  |
| PPAN    | Suppressor of SWI4 1 homolog                                              | P51649    |  |
| PPIA    | Peptidyl-prolyl cis-trans isomerase A                                     | P10619    |  |
| PPIB    | Peptidyl-prolyl cis-trans isomerase B                                     | P62937    |  |
| PPIF    | Peptidyl-prolyl cis-trans isomerase F, mitochondrial                      | P23284    |  |
| PPIH    | Peptidyl-prolyl cis-trans isomerase H                                     | Q9Y3C6    |  |
| PPIL1   | Peptidyl-prolyl cis-trans isomerase-like 1                                | P30405    |  |
| PPIL3   | Peptidyl-prolyl cis-trans isomerase-like 3                                | O43447    |  |
| PPIL4   | Peptidyl-prolyl cis-trans isomerase-like 4                                | Q9H2H8    |  |
| PPP1CA  | Serine/threonine-protein phosphatase PP1-alpha catalytic subunit          | Q8NBT0    |  |
|         | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha | D20460    |  |
| PPP2RIA | isoform                                                                   | P 30460   |  |
| DDDDD1B | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta  | D20152    |  |
| FFF2KID | isoform                                                                   | F 30133   |  |
| PPP2R2A | Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha | P30154    |  |
| 1112020 | isoform                                                                   | 1 30134   |  |
| PRAF2   | PRA1 family protein 2                                                     | Q9UI14    |  |
| PRC1    | Protein regulator of cytokinesis 1                                        | O60831    |  |
| PRCP    | Lysosomal Pro-X carboxypeptidase                                          | O95613    |  |
| PRDX1   | Peroxiredoxin-1                                                           | O43663    |  |
| PRDX2   | Peroxiredoxin-2                                                           | Q06830    |  |
| PRDX3   | Thioredoxin-dependent peroxide reductase, mitochondrial                   | P32119    |  |
| PRDX4   | Peroxiredoxin-4                                                           | P30048    |  |
| PRDX5   | Peroxiredoxin-5, mitochondrial                                            | Q13162    |  |
| PRDX6   | Peroxiredoxin-6                                                           | P30044    |  |
| PREB    | Prolactin regulatory element-binding protein                              | P30041    |  |
| PRKACA  | cAMP-dependent protein kinase catalytic subunit alpha                     | P13861    |  |
| PRKACB  | cAMP-dependent protein kinase catalytic subunit beta                      | P17612    |  |

| Gene    | Protein name                                                   | Accession |
|---------|----------------------------------------------------------------|-----------|
| PRKAG1  | 5'-AMP-activated protein kinase subunit gamma-1                | Q15758    |
| PRKAR2A | cAMP-dependent protein kinase type II-alpha regulatory subunit | Q9UIJ7    |
| PRKCA   | Protein kinase C alpha type                                    | P33176    |
| PRKCB   | Protein kinase C beta type                                     | P17252    |
| PRKCH   | Protein kinase C eta type                                      | P41743    |
| PRKCI   | Protein kinase C iota type                                     | P05771    |
| PRKCQ   | Protein kinase C theta type                                    | P24723    |
| PRKDC   | DNA-dependent protein kinase catalytic subunit                 | Q5JRX3    |
| PRMT1   | Protein arginine N-methyltransferase 1                         | Q86XL3    |
| PRMT5   | Protein arginine N-methyltransferase 5                         | Q99873    |
| PROSC   | Proline synthase co-transcribed bacterial homolog protein      | P07737    |
| PRPF19  | Pre-mRNA-processing factor 19                                  | O94903    |
| PRPF31  | U4/U6 small nuclear ribonucleoprotein Prp31                    | Q9UMS4    |
| PRPF4   | U4/U6 small nuclear ribonucleoprotein Prp4                     | Q8WWY3    |
| PRPF6   | Pre-mRNA-processing factor 6                                   | O43172    |
| PRPF8   | Pre-mRNA-processing-splicing factor 8                          | O94906    |
| PRPSAP2 | Phosphoribosyl pyrophosphate synthase-associated protein 2     | Q04759    |
| PSAP    | Prosaposin                                                     | O00422    |
| PSEN1   | Presenilin-1                                                   | P61289    |
| PSIP1   | PC4 and SFRS1-interacting protein                              | O00232    |
| PSMA1   | Proteasome subunit alpha type-1                                | P62195    |
| PSMA2   | Proteasome subunit alpha type-2                                | P25786    |
| PSMA4   | Proteasome subunit alpha type-4                                | P25787    |
| PSMA6   | Proteasome subunit alpha type-6                                | P25789    |
| PSMA7   | Proteasome subunit alpha type-7                                | P60900    |
| PSMB1   | Proteasome subunit beta type-1                                 | O14818    |
| PSMB3   | Proteasome subunit beta type-3                                 | P20618    |
| PSMB5   | Proteasome subunit beta type-5                                 | P49720    |
| PSMB6   | Proteasome subunit beta type-6                                 | P28074    |
| PSMC1   | 26S protease regulatory subunit 4                              | P62333    |
| PSMC2   | 26S protease regulatory subunit 7                              | P43686    |
| PSMC4   | 26S protease regulatory subunit 6B                             | P62191    |
| PSMC5   | 26S protease regulatory subunit 8                              | P35998    |
| PSMC6   | 26S protease regulatory subunit 10B                            | Q6P2Q9    |
| PSMD1   | 26S proteasome non-ATPase regulatory subunit 1                 | O75475    |
| PSMD11  | 26S proteasome non-ATPase regulatory subunit 11                | P28072    |
| PSMD12  | 26S proteasome non-ATPase regulatory subunit 12                | O00231    |
| PSMD2   | 26S proteasome non-ATPase regulatory subunit 2                 | Q99460    |
| PSMD5   | 26S proteasome non-ATPase regulatory subunit 5                 | Q13200    |

| Gene      | Protein name                                                        | Accession |
|-----------|---------------------------------------------------------------------|-----------|
| PSMD6     | 26S proteasome non-ATPase regulatory subunit 6                      | Q06323    |
| PSMD7     | 26S proteasome non-ATPase regulatory subunit 7                      | Q16401    |
| PSMD8     | 26S proteasome non-ATPase regulatory subunit 8                      | P51665    |
| PSME1     | Proteasome activator complex subunit 1                              | P48556    |
| PSME3     | Proteasome activator complex subunit 3                              | Q15008    |
| PTBP1     | Polypyrimidine tract-binding protein 1                              | P49768    |
| PTCD3     | Pentatricopeptide repeat domain-containing protein 3, mitochondrial | Q14761    |
| PTDSS1    | Phosphatidylserine synthase 1                                       | Q6GMV3    |
| PTGES2    | Prostaglandin E synthase 2                                          | Q96HS1    |
| PTGES3    | Prostaglandin E synthase 3                                          | Q9Y2W6    |
| PTK7      | Inactive tyrosine-protein kinase 7                                  | Q86Y79    |
| PTPLAD1   | Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3                | Q9P035    |
| PTPMT1    | Phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1   | P29350    |
| PTPN1     | Tyrosine-protein phosphatase non-receptor type 1                    | Q06124    |
| PTPN11    | Tyrosine-protein phosphatase non-receptor type 11                   | Q13308    |
| PTPN6     | Tyrosine-protein phosphatase non-receptor type 6                    | P18031    |
| PTPRC     | Receptor-type tyrosine-protein phosphatase C                        | Q8WUK0    |
| PTPRCAP   | Protein tyrosine phosphatase receptor type C-associated protein     | P26599    |
| PTRH1     | Probable peptidyl-tRNA hydrolase                                    | Q96EY7    |
| PTRHD1    | Putative peptidyl-tRNA hydrolase PTRHD1                             | P08575    |
| PUF60     | Poly(U)-binding-splicing factor PUF60                               | P48651    |
| PUS1      | tRNA pseudouridine synthase A, mitochondrial                        | Q96Q11    |
| PWP2      | Periodic tryptophan protein 2 homolog                               | P31939    |
| PXMP2     | Peroxisomal membrane protein 2                                      | O96011    |
| PYCR1     | Pyrroline-5-carboxylate reductase 1, mitochondrial                  | Q9BTU6    |
| PYCR2     | Pyrroline-5-carboxylate reductase 2                                 | P32322    |
| QARS      | GlutaminetRNA ligase                                                | Q7L3T8    |
| QDPR      | Dihydropteridine reductase                                          | P00367    |
| QIL1      | Protein QIL1                                                        | O14949    |
| QPCTL     | Glutaminyl-peptide cyclotransferase-like protein                    | Q08257    |
| QRSL1     | Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial        | Q9NY12    |
| QSOX2     | Sulfhydryl oxidase 2                                                | Q9NXS2    |
| QTRT1     | Queuine tRNA-ribosyltransferase                                     | O43493    |
| QTRTD1    | Queuine tRNA-ribosyltransferase subunit QTRTD1                      | Q6ZRP7    |
| RAB10     | Ras-related protein Rab-10                                          | Q9H974    |
| RAB11B    | Ras-related protein Rab-11B                                         | P01111    |
| RAB11FIP1 | Rab11 family-interacting protein 1                                  | P35249    |
| RAB14     | Ras-related protein Rab-14                                          | P61026    |
| RAB15     | Ras-related protein Rab-15                                          | P61106    |

| $\square$ | Gene    | Protein name                                 | Accession |
|-----------|---------|----------------------------------------------|-----------|
| 4         | RAB18   | Ras-related protein Rab-18                   | P59190    |
|           | RAB1A   | Ras-related protein Rab-1A                   | Q9NP72    |
|           | RAB1B   | Ras-related protein Rab-1B                   | P62820    |
|           | RAB21   | Ras-related protein Rab-21                   | Q9H0U4    |
|           | RAB22A  | Ras-related protein Rab-22A                  | Q15907    |
|           | RAB24   | Ras-related protein Rab-24                   | Q9UL25    |
|           | RAB27A  | Ras-related protein Rab-27A                  | Q9UL26    |
|           | RAB2A   | Ras-related protein Rab-2A                   | Q969Q5    |
|           | RAB2B   | Ras-related protein Rab-2B                   | P61019    |
|           | RAB33B  | Ras-related protein Rab-33B                  | P51159    |
|           | RAB33B  | Putative Rab-43-like protein ENSP00000330714 | Q9H082    |
|           | RAB35   | Ras-related protein Rab-35                   | Q8WUD1    |
|           | RAB43   | Ras-related protein Rab-43                   | Q15286    |
|           | RAB4B   | Ras-related protein Rab-4B                   | Q86YS6    |
|           | RAB5A   | Ras-related protein Rab-5A                   | P61018    |
|           | RAB5B   | Ras-related protein Rab-5B                   | P20339    |
|           | RAB5C   | Ras-related protein Rab-5C                   | P61020    |
|           | RAB6A   | Ras-related protein Rab-6A                   | P51148    |
|           | RAB7A   | Ras-related protein Rab-7a                   | P20340    |
|           | RAB7L1  | Ras-related protein Rab-7L1                  | P51149    |
|           | RAB8A   | Ras-related protein Rab-8A                   | O14966    |
|           | RAB8B   | Ras-related protein Rab-8B                   | P61006    |
|           | RABAC1  | Prenylated Rab acceptor protein 1            | Q8WUA2    |
|           | RABL3   | Rab-like protein 3                           | Q92930    |
|           | RAC1    | Ras-related C3 botulinum toxin substrate 1   | Q5HYI8    |
|           | RAC2    | Ras-related C3 botulinum toxin substrate 2   | P63000    |
|           | RACGAP1 | Rac GTPase-activating protein 1              | Q14699    |
|           | RAE1    | mRNA export factor                           | P15153    |
|           | RALA    | Ras-related protein Ral-A                    | P46060    |
|           | RALY    | RNA-binding protein Raly                     | P11233    |
|           | RAN     | GTP-binding nuclear protein Ran              | P43487    |
|           | RANBP1  | Ran-specific GTPase-activating protein       | Q9UKM9    |
|           | RANBP2  | E3 SUMO-protein ligase RanBP2                | P38159    |
|           | RANGAP1 | Ran GTPase-activating protein 1              | P78406    |
| -         | RAP1B   | Ras-related protein Rap-1b                   | P62826    |
|           | RAP2B   | Ras-related protein Rap-2b                   | P61224    |
|           | RARS    | ArgininetRNA ligase, cytoplasmic             | P47897    |
|           | RARS2   | Probable argininetRNA ligase, mitochondrial  | P54136    |
|           | RASA3   | Ras GTPase-activating protein 3              | P61225    |

| Gene   | Protein name                                            | Accession |
|--------|---------------------------------------------------------|-----------|
| RASAL3 | RAS protein activator like-3                            | P01112    |
| RBBP4  | Histone-binding protein RBBP4                           | Q09028    |
| RBM14  | RNA-binding protein 14                                  | Q09028    |
| RBM15  | Putative RNA-binding protein 15                         | Q96PK6    |
| RBM25  | RNA-binding protein 25                                  | Q96T37    |
| RBM28  | RNA-binding protein 28                                  | P49756    |
| RBM34  | RNA-binding protein 34                                  | Q9NW13    |
| RBM4   | RNA-binding protein 4                                   | P42696    |
| RBM8A  | RNA-binding protein 8A                                  | Q9BWF3    |
| RBMX   | RNA-binding motif protein, X chromosome                 | Q9Y5S9    |
| RCC1   | Regulator of chromosome condensation                    | O00559    |
| RCC2   | Protein RCC2                                            | P18754    |
| RCL1   | RNA 3'-terminal phosphate cyclase-like protein          | Q92600    |
| RCN1   | Reticulocalbin-1                                        | Q9Y2P8    |
| RCN2   | Reticulocalbin-2                                        | Q15293    |
| RDH11  | Retinol dehydrogenase 11                                | Q14257    |
| RDH13  | Retinol dehydrogenase 13                                | Q9HBH5    |
| RDH14  | Retinol dehydrogenase 14                                | Q8TC12    |
| REEP5  | Receptor expression-enhancing protein 5                 | Q8NBN7    |
| REEP6  | Receptor expression-enhancing protein 6                 | Q00765    |
| REPS1  | RalBP1-associated Eps domain-containing protein 1       | Q92900    |
| REXO2  | Oligoribonuclease, mitochondrial                        | Q9P0S3    |
| RFC1   | Replication factor C subunit 1                          | P35244    |
| RFC2   | Replication factor C subunit 2                          | P35251    |
| RFC3   | Replication factor C subunit 3                          | P35250    |
| RFC4   | Replication factor C subunit 4                          | P40938    |
| RFK    | Riboflavin kinase                                       | P84095    |
| RFTN1  | Raftlin                                                 | Q6WKZ4    |
| RHEB   | GTP-binding protein Rheb                                | Q9H0H5    |
| RHOA   | Transforming protein RhoA                               | Q53QZ3    |
| RHOF   | Rho-related GTP-binding protein RhoF                    | P61586    |
| RHOG   | Rho-related GTP-binding protein RhoG                    | Q9HBH0    |
| RHOT1  | Mitochondrial Rho GTPase 1                              | Q99797    |
| RHOT2  | Mitochondrial Rho GTPase 2                              | Q8IXI2    |
| RINT1  | RAD50-interacting protein 1                             | Q99496    |
| RMDN1  | Regulator of microtubule dynamics protein 1             | Q7Z7F7    |
| RMDN3  | Regulator of microtubule dynamics protein 3             | Q96DB5    |
| RMND1  | Required for meiotic nuclear division protein 1 homolog | Q96TC7    |
| RNF130 | E3 ubiquitin-protein ligase RNF130                      | Q14789    |

| Gene    | Protein name                                     | Accession |
|---------|--------------------------------------------------|-----------|
| RNF2    | E3 ubiquitin-protein ligase RING2                | Q969G6    |
| RNF20   | E3 ubiquitin-protein ligase BRE1A                | O95861    |
| RNF213  | E3 ubiquitin-protein ligase RNF213               | Q9HC36    |
| RNMTL1  | RNA methyltransferase-like protein 1             | Q9NWS8    |
| RP2     | Protein XRP2                                     | P12956    |
| RPA1    | Replication protein A 70 kDa DNA-binding subunit | O75570    |
| RPA3    | Replication protein A 14 kDa subunit             | P27694    |
| RPF2    | Ribosome production factor 2 homolog             | P19387    |
| RPL10   | 60S ribosomal protein L10                        | P62906    |
| RPL10A  | 60S ribosomal protein L10a                       | Q6NUQ1    |
| RPL11   | 60S ribosomal protein L11                        | P27635    |
| RPL12   | 60S ribosomal protein L12                        | P62913    |
| RPL13   | 60S ribosomal protein L13                        | P40429    |
| RPL13A  | 60S ribosomal protein L13a                       | P30050    |
| RPL14   | 60S ribosomal protein L14                        | P26373    |
| RPL15   | 60S ribosomal protein L15                        | P50914    |
| RPL17   | 60S ribosomal protein L17                        | P61313    |
| RPL18   | 60S ribosomal protein L18                        | Q02543    |
| RPL18A  | 60S ribosomal protein L18a                       | P18621    |
| RPL19   | 60S ribosomal protein L19                        | Q07020    |
| RPL21   | 60S ribosomal protein L21                        | O76021    |
| RPL23   | 60S ribosomal protein L23                        | P62750    |
| RPL23A  | 60S ribosomal protein L23a                       | P46778    |
| RPL24   | 60S ribosomal protein L24                        | P62829    |
| RPL26   | 60S ribosomal protein L26                        | P83731    |
| RPL27   | 60S ribosomal protein L27                        | P46776    |
| RPL27A  | 60S ribosomal protein L27a                       | P61254    |
| RPL28   | 60S ribosomal protein L28                        | P61353    |
| RPL29   | 60S ribosomal protein L29                        | P46779    |
| RPL3    | 60S ribosomal protein L3                         | P63173    |
| RPL30   | 60S ribosomal protein L30                        | P47914    |
| RPL31   | 60S ribosomal protein L31                        | P62888    |
| RPL32   | 60S ribosomal protein L32                        | P62899    |
| RPL34   | 60S ribosomal protein L34                        | P62910    |
| RPL35   | 60S ribosomal protein L35                        | P18077    |
| RPL35A  | 60S ribosomal protein L35a                       | P49207    |
| RPL36   | 60S ribosomal protein L36                        | Q969Q0    |
| RPL36A  | 60S ribosomal protein L36a                       | P42766    |
| RPL36AL | 60S ribosomal protein L36a-like                  | P83881    |
|         |                                                  |           |

| Gene     | Protein name                                                           | Accession |
|----------|------------------------------------------------------------------------|-----------|
| RPL37A   | 60S ribosomal protein L37a                                             | Q9Y3U8    |
| RPL38    | 60S ribosomal protein L38                                              | P61513    |
| RPL4     | 60S ribosomal protein L4                                               | P39023    |
| RPL5     | 60S ribosomal protein L5                                               | P36578    |
| RPL6     | 60S ribosomal protein L6                                               | P46777    |
| RPL7     | 60S ribosomal protein L7                                               | P62424    |
| RPL7A    | 60S ribosomal protein L7a                                              | Q02878    |
| RPL8     | 60S ribosomal protein L8                                               | P18124    |
| RPL9     | 60S ribosomal protein L9                                               | P62917    |
| RPLP0    | 60S acidic ribosomal protein P0                                        | P32969    |
| RPLP2    | 60S acidic ribosomal protein P2                                        | P05388    |
| RPN1     | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 | Q9H7B2    |
| RPN2     | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 | P04843    |
| RPRD1B   | Regulation of nuclear pre-mRNA domain-containing protein 1B            | O00411    |
| RPS10    | 40S ribosomal protein S10                                              | Q15050    |
| RPS11    | 40S ribosomal protein S11                                              | P46783    |
| RPS12    | 40S ribosomal protein S12                                              | P62280    |
| RPS13    | 40S ribosomal protein S13                                              | P25398    |
| RPS14    | 40S ribosomal protein S14                                              | P62277    |
| RPS15A   | 40S ribosomal protein S15a                                             | P62263    |
| RPS16    | 40S ribosomal protein S16                                              | P62244    |
| RPS17    | 40S ribosomal protein S17                                              | P0CW22    |
| RPS17L   | 40S ribosomal protein S17-like                                         | P62249    |
| RPS18    | 40S ribosomal protein S18                                              | P08708    |
| RPS19    | 40S ribosomal protein S19                                              | P62269    |
| RPS19BP1 | Active regulator of SIRT1                                              | Q9UH62    |
| RPS2     | 40S ribosomal protein S2                                               | P42677    |
| RPS20    | 40S ribosomal protein S20                                              | P39019    |
| RPS23    | 40S ribosomal protein S23                                              | P60866    |
| RPS24    | 40S ribosomal protein S24                                              | P62266    |
| RPS25    | 40S ribosomal protein S25                                              | P62847    |
| RPS26    | 40S ribosomal protein S26                                              | P62851    |
| RPS27    | 40S ribosomal protein S27                                              | P62979    |
| RPS27A   | Ubiquitin-40S ribosomal protein S27a                                   | P62854    |
| RPS3     | 40S ribosomal protein S3                                               | P61247    |
| RPS3A    | 40S ribosomal protein S3a                                              | P15880    |
| RPS4X    | 40S ribosomal protein S4, X isoform                                    | P23396    |
| RPS5     | 40S ribosomal protein S5                                               | P62701    |
| RPS6     | 40S ribosomal protein S6                                               | P46782    |

|   | Gene    | Protein name                                                             | Accession |
|---|---------|--------------------------------------------------------------------------|-----------|
| ע | RPS7    | 40S ribosomal protein S7                                                 | P62753    |
|   | RPS8    | 40S ribosomal protein S8                                                 | P62081    |
|   | RPS9    | 40S ribosomal protein S9                                                 | P62241    |
|   | RPSA    | 40S ribosomal protein SA                                                 | P63162    |
|   | RPUSD3  | RNA pseudouridylate synthase domain-containing protein 3                 | Q96T51    |
|   | RQCD1   | Cell differentiation protein RCD1 homolog                                | Q9P258    |
|   | RRAS2   | Ras-related protein R-Ras2                                               | Q9NQG5    |
|   | RRBP1   | Ribosome-binding protein 1                                               | P62070    |
|   | RRP1    | Ribosomal RNA processing protein 1 homolog A                             | Q14684    |
|   | RRP12   | RRP12-like protein                                                       | Q9UI43    |
|   | RRP1B   | Ribosomal RNA processing protein 1 homolog B                             | Q5JTH9    |
|   | RRP9    | U3 small nucleolar RNA-interacting protein 2                             | P26368    |
|   | RRS1    | Ribosome biogenesis regulatory protein homolog                           | Q14690    |
|   | RSAD1   | Radical S-adenosyl methionine domain-containing protein 1, mitochondrial | P46781    |
|   | RSL1D1  | Ribosomal L1 domain-containing protein 1                                 | P84098    |
|   | RTCB    | tRNA-splicing ligase RtcB homolog                                        | Q9BQC6    |
|   | RTN3    | Reticulon-3                                                              | Q9Y3I0    |
|   | RTN4    | Reticulon-4                                                              | O95197    |
|   | RTN4IP1 | Reticulon-4-interacting protein 1, mitochondrial                         | P82909    |
|   | RUFY1   | RUN and FYVE domain-containing protein 1                                 | P08579    |
|   | RUVBL1  | RuvB-like 1                                                              | Q6P087    |
|   | RUVBL2  | RuvB-like 2                                                              | Q9Y265    |
|   | S100A9  | Protein S100-A9                                                          | Q9Y230    |
|   | SACM1L  | Phosphatidylinositide phosphatase SAC1                                   | Q96QD8    |
|   | SAFB    | Scaffold attachment factor B1                                            | Q9NTJ5    |
|   | SAP18   | Histone deacetylase complex subunit SAP18                                | P23526    |
|   | SAR1A   | GTP-binding protein SAR1a                                                | P07602    |
|   | SARS2   | SerinetRNA ligase, mitochondrial                                         | Q5T160    |
|   | SART1   | U4/U6.U5 tri-snRNP-associated protein 1                                  | Q13425    |
|   | SATB1   | DNA-binding protein SATB1                                                | Q9NQZ2    |
|   | SCAMP1  | Secretory carrier-associated membrane protein 1                          | P60468    |
|   | SCAMP2  | Secretory carrier-associated membrane protein 2                          | O15126    |
|   | SCAMP3  | Secretory carrier-associated membrane protein 3                          | O15127    |
|   | SCCPDH  | Saccharopine dehydrogenase-like oxidoreductase                           | P55809    |
|   | SCD     | Acyl-CoA desaturase                                                      | Q9NPJ3    |
|   | SCD5    | Stearoyl-CoA desaturase 5                                                | O14828    |
|   | SCFD1   | Sec1 family domain-containing protein 1                                  | Q86SK9    |
|   | SCFD2   | Sec1 family domain-containing protein 2                                  | Q8WVM8    |
|   | SCML2   | Sex comb on midleg-like protein 2                                        | Q6KCM7    |

| Gene     | Protein name                                                             | Accession |
|----------|--------------------------------------------------------------------------|-----------|
| SCO1     | Protein SCO1 homolog, mitochondrial                                      | Q9UQR0    |
| SCO2     | Protein SCO2 homolog, mitochondrial                                      | O75880    |
| SCP2     | Non-specific lipid-transfer protein                                      | Q86UT6    |
| SCRIB    | Protein scribble homolog                                                 | Q8NBX0    |
| SDCBP    | Syntenin-1                                                               | Q14160    |
| SDF4     | 45 kDa calcium-binding protein                                           | Q9H246    |
| SDHA     | Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial | O00560    |
| SDHAF2   | Succinate dehydrogenase assembly factor 2, mitochondrial                 | P31040    |
| SDR39U1  | Epimerase family protein SDR39U1                                         | Q8N465    |
| SEC11A   | Signal peptidase complex catalytic subunit SEC11A                        | P43007    |
| SEC11C   | Signal peptidase complex catalytic subunit SEC11C                        | P67812    |
| SEC22B   | Vesicle-trafficking protein SEC22b                                       | Q9BY50    |
| SEC23A   | Protein transport protein Sec23A                                         | O75396    |
| SEC24C   | Protein transport protein Sec24C                                         | Q15436    |
| SEC61B   | Protein transport protein Sec61 subunit beta                             | P53992    |
| SEC62    | Translocation protein SEC62                                              | Q12981    |
| SEC63    | Translocation protein SEC63 homolog                                      | Q99442    |
| SEH1L    | Nucleoporin SEH1                                                         | Q9UGP8    |
| SEL1L    | Protein sel-1 homolog 1                                                  | Q9NX18    |
| SEPT1    | Septin-1                                                                 | O60613    |
| SEPT6    | Septin-6                                                                 | Q8WYJ6    |
| SEPT7    | Septin-7                                                                 | Q14141    |
| SEPT9    | Septin-9                                                                 | Q16181    |
| SERPINC1 | Antithrombin-III                                                         | Q4KMQ2    |
| SERPINH1 | Serpin H1                                                                | O43175    |
| SF3A2    | Splicing factor 3A subunit 2                                             | P50454    |
| SF3A3    | Splicing factor 3A subunit 3                                             | Q15428    |
| SF3B1    | Splicing factor 3B subunit 1                                             | Q12874    |
| SF3B6    | Splicing factor 3B subunit 6                                             | O75533    |
| SFPQ     | Splicing factor, proline- and glutamine-rich                             | Q9Y3B4    |
| SFT2D2   | Vesicle transport protein SFT2B                                          | P23246    |
| SFT2D3   | Vesicle transport protein SFT2C                                          | O95562    |
| SFXN1    | Sideroflexin-1                                                           | Q587I9    |
| SFXN2    | Sideroflexin-2                                                           | Q9H9B4    |
| SFXN3    | Sideroflexin-3                                                           | Q96NB2    |
| SFXN4    | Sideroflexin-4                                                           | Q9BWM7    |
| SGPL1    | Sphingosine-1-phosphate lyase 1                                          | Q99720    |
| SH2D1A   | SH2 domain-containing protein 1A                                         | O95470    |
| SH3BGRL  | SH3 domain-binding glutamic acid-rich-like protein                       | O60880    |

| Gene     | Protein name                                                      | Accession |
|----------|-------------------------------------------------------------------|-----------|
| SIGMAR1  | Sigma non-opioid intracellular receptor 1                         | Q6P4A7    |
| SIKE1    | Suppressor of IKBKE 1                                             | O75368    |
| SIRT3    | NAD-dependent protein deacetylase sirtuin-3, mitochondrial        | Q9BRV8    |
| SIRT5    | NAD-dependent protein deacylase sirtuin-5, mitochondrial          | Q9NTG7    |
| SIT1     | Signaling threshold-regulating transmembrane adapter 1            | Q9NXA8    |
| SKP1     | S-phase kinase-associated protein 1                               | Q9Y3P8    |
| SLC12A2  | Solute carrier family 12 member 2                                 | P06702    |
| SLC16A1  | Monocarboxylate transporter 1                                     | Q13724    |
| SLC1A4   | Neutral amino acid transporter A                                  | Q01826    |
| SLC1A5   | Neutral amino acid transporter B(0)                               | Q9NRG9    |
| SLC25A1  | Tricarboxylate transport protein, mitochondrial                   | Q8NBS9    |
| SLC25A11 | Mitochondrial 2-oxoglutarate/malate carrier protein               | P61626    |
| SLC25A12 | Calcium-binding mitochondrial carrier protein Aralar1             | Q8N0X4    |
| SLC25A13 | Calcium-binding mitochondrial carrier protein Aralar2             | O75746    |
| SLC25A19 | Mitochondrial thiamine pyrophosphate carrier                      | O14657    |
| SLC25A20 | Mitochondrial carnitine/acylcarnitine carrier protein             | Q8N8R3    |
| SLC25A22 | Mitochondrial glutamate carrier 1                                 | Q92820    |
| SLC25A24 | Calcium-binding mitochondrial carrier protein SCaMC-1             | Q8WU76    |
| SLC25A25 | Calcium-binding mitochondrial carrier protein SCaMC-2             | Q6NUK1    |
| SLC25A29 | Mitochondrial carnitine/acylcarnitine carrier protein CACL        | O43324    |
| SLC25A3  | Phosphate carrier protein, mitochondrial                          | O95563    |
| SLC25A32 | Mitochondrial folate transporter/carrier                          | O95140    |
| SLC25A33 | Solute carrier family 25 member 33                                | P55011    |
| SLC25A38 | Solute carrier family 25 member 38                                | Q9BSK2    |
| SLC25A4  | ADP/ATP translocase 1                                             | P22570    |
| SLC25A40 | Solute carrier family 25 member 40                                | Q96DW6    |
| SLC25A46 | Solute carrier family 25 member 46                                | Q8TBP6    |
| SLC25A5  | ADP/ATP translocase 2                                             | P12235    |
| SLC25A6  | ADP/ATP translocase 3                                             | P05141    |
| SLC29A1  | Equilibrative nucleoside transporter 1                            | Q96AG3    |
| SLC2A1   | Solute carrier family 2, facilitated glucose transporter member 1 | A4D1E9    |
| SLC38A2  | Sodium-coupled neutral amino acid transporter 2                   | Q99808    |
| SLC3A2   | 4F2 cell-surface antigen heavy chain                              | P31937    |
| SLC7A5   | Large neutral amino acids transporter small subunit 1             | Q9Y4W2    |
| SLC9A3R1 | Na(+)/H(+) exchange regulatory cofactor NHE-RF1                   | Q9NX24    |
| SLIRP    | SRA stem-loop-interacting RNA-binding protein, mitochondrial      | Q9UIB8    |
| SLMAP    | Sarcolemmal membrane-associated protein                           | Q9GZT3    |
| SLTM     | SAFB-like transcription modulator                                 | Q14BN4    |
| SMARCA4  | Transcription activator BRG1                                      | O969G3    |

| Gene     | Protein name                                                             | Accession |  |
|----------|--------------------------------------------------------------------------|-----------|--|
| SMADCAE  | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin | D51522    |  |
| SMARCA5  | subfamily A member 5                                                     | P51532    |  |
| CMADCD1  | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin | OTVTEA    |  |
| SMARCEI  | subfamily B member 1                                                     | Q/KZF4    |  |
| SMARCD1  | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin | 006E16    |  |
| SWARCDI  | subfamily D member 1                                                     | Q90E10    |  |
| SMADCE1  | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin | OOKSBO    |  |
| SWARCET  | subfamily E member 1                                                     | Q903D8    |  |
| SMC1A    | Structural maintenance of chromosomes protein 1A                         | Q9NWH9    |  |
| SMC2     | Structural maintenance of chromosomes protein 2                          | Q14683    |  |
| SMC3     | Structural maintenance of chromosomes protein 3                          | O95347    |  |
| SMC4     | Structural maintenance of chromosomes protein 4                          | Q9UQE7    |  |
| SMC6     | Structural maintenance of chromosomes protein 6                          | Q9NTJ3    |  |
| SMIM19   | Small integral membrane protein 19                                       | P62316    |  |
| SMPD4    | Sphingomyelin phosphodiesterase 4                                        | P46459    |  |
| SMU1     | WD40 repeat-containing protein SMU1                                      | Q96GM5    |  |
| SNAP23   | Synaptosomal-associated protein 23                                       | O43760    |  |
| SNAP29   | Synaptosomal-associated protein 29                                       | O00161    |  |
| SND1     | Staphylococcal nuclease domain-containing protein 1                      | Q99747    |  |
| SNRNP200 | U5 small nuclear ribonucleoprotein 200 kDa helicase                      | O43818    |  |
| SNRNP40  | U5 small nuclear ribonucleoprotein 40 kDa protein                        | O95721    |  |
| SNRPA1   | U2 small nuclear ribonucleoprotein A'                                    | Q9NQC3    |  |
| SNRPB    | Small nuclear ribonucleoprotein-associated proteins B and B'             | Q9HA92    |  |
| SNRPB2   | U2 small nuclear ribonucleoprotein B"                                    | P09661    |  |
| SNRPD1   | Small nuclear ribonucleoprotein Sm D1                                    | O60264    |  |
| SNRPD2   | Small nuclear ribonucleoprotein Sm D2                                    | P62314    |  |
| SNRPN    | Small nuclear ribonucleoprotein-associated protein N                     | P14678    |  |
| SNTB2    | Beta-2-syntrophin                                                        | Q96DI7    |  |
| SNW1     | SNW domain-containing protein 1                                          | O43290    |  |
| SNX3     | Sorting nexin-3                                                          | Q13573    |  |
| SOD1     | Superoxide dismutase [Cu-Zn]                                             | O60493    |  |
| SOD2     | Superoxide dismutase [Mn], mitochondrial                                 | P00441    |  |
| SORT1    | Sortilin                                                                 | P04179    |  |
| SPATA5   | Spermatogenesis-associated protein 5                                     | Q9Y5B9    |  |
| SPC25    | Kinetochore protein Spc25                                                | Q8IY81    |  |
| SPCS2    | Signal peptidase complex subunit 2                                       | Q9HBM1    |  |
| SPCS3    | Signal peptidase complex subunit 3                                       | Q15005    |  |
| SPG7     | Paraplegin                                                               | O75934    |  |
| SPN      | Leukosialin                                                              | O95202    |  |

|          | Gene   | Protein name                                          | Accession |
|----------|--------|-------------------------------------------------------|-----------|
| $\infty$ | SPR    | Sepiapterin reductase                                 | Q9UQ90    |
|          | SPRYD4 | SPRY domain-containing protein 4                      | Q5W111    |
|          | SPRYD7 | SPRY domain-containing protein 7                      | P35270    |
|          | SPTAN1 | Spectrin alpha chain, non-erythrocytic 1              | O15269    |
|          | SPTBN1 | Spectrin beta chain, non-erythrocytic 1               | Q8WW59    |
|          | SPTBN2 | Spectrin beta chain, non-erythrocytic 2               | Q13813    |
|          | SPTLC1 | Serine palmitoyltransferase 1                         | O15270    |
|          | SPTLC2 | Serine palmitoyltransferase 2                         | Q01082    |
|          | SQLE   | Squalene monooxygenase                                | Q6P179    |
| •        | SQRDL  | Sulfide:quinone oxidoreductase, mitochondrial         | O15020    |
|          | SRP14  | Signal recognition particle 14 kDa protein            | Q9Y6N5    |
| •        | SRP19  | Signal recognition particle 19 kDa protein            | P37108    |
|          | SRP54  | Signal recognition particle 54 kDa protein            | P09132    |
|          | SRP68  | Signal recognition particle subunit SRP68             | O76094    |
| •        | SRP72  | Signal recognition particle subunit SRP72             | P61011    |
|          | SRPK1  | SRSF protein kinase 1                                 | Q9UHB9    |
|          | SRPR   | Signal recognition particle receptor subunit alpha    | Q9Y5M8    |
|          | SRPRB  | Signal recognition particle receptor subunit beta     | Q96SB4    |
|          | SRRT   | Serrate RNA effector molecule homolog                 | P08240    |
|          | SRSF1  | Serine/arginine-rich splicing factor 1                | Q9BXP5    |
|          | SRSF3  | Serine/arginine-rich splicing factor 3                | Q07955    |
|          | SRSF6  | Serine/arginine-rich splicing factor 6                | P84103    |
|          | SRSF7  | Serine/arginine-rich splicing factor 7                | Q13247    |
|          | SRSF9  | Serine/arginine-rich splicing factor 9                | Q16629    |
|          | SSB    | Lupus La protein                                      | O43561    |
|          | SSR1   | Translocon-associated protein subunit alpha           | Q9NQ55    |
|          | SSR3   | Translocon-associated protein subunit gamma           | P43307    |
|          | SSR4   | Translocon-associated protein subunit delta           | Q9UNL2    |
|          | SSRP1  | FACT complex subunit SSRP1                            | P51571    |
|          | ST13P4 | Putative protein FAM10A4                              | Q08945    |
|          | STAT3  | Signal transducer and activator of transcription 3    | Q8IZP2    |
|          | STAU1  | Double-stranded RNA-binding protein Staufen homolog 1 | P40763    |
| -        | STAU2  | Double-stranded RNA-binding protein Staufen homolog 2 | O95793    |
|          | STIM1  | Stromal interaction molecule 1                        | Q9NUL3    |
|          | STIP1  | Stress-induced-phosphoprotein 1                       | Q86WV6    |
|          | STMN1  | Stathmin                                              | P31948    |
|          | STOML2 | Stomatin-like protein 2, mitochondrial                | P16949    |
|          | STRAP  | Serine-threonine kinase receptor-associated protein   | Q9UJZ1    |
|          | STRN   | Striatin                                              | Q9Y3F4    |

| Gene    | Protein name                                                               | Accession |
|---------|----------------------------------------------------------------------------|-----------|
| ርሞተን ለ  | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit       | 042915    |
| 3113A   | STT3A                                                                      | 045815    |
| STT3B   | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B | P46977    |
| STX10   | Syntaxin-10                                                                | Q8TCJ2    |
| STX12   | Syntaxin-12                                                                | O60499    |
| STX16   | Syntaxin-16                                                                | Q86Y82    |
| STX17   | Syntaxin-17                                                                | O14662    |
| STX18   | Syntaxin-18                                                                | P56962    |
| STX2    | Syntaxin-2                                                                 | Q9P2W9    |
| STX4    | Syntaxin-4                                                                 | P32856    |
| STX5    | Syntaxin-5                                                                 | Q12846    |
| STX7    | Syntaxin-7                                                                 | Q13190    |
| STX8    | Syntaxin-8                                                                 | O15400    |
| STXBP1  | Syntaxin-binding protein 1                                                 | Q9UNK0    |
| STXBP2  | Syntaxin-binding protein 2                                                 | P61764    |
| STXBP3  | Syntaxin-binding protein 3                                                 | Q15833    |
| SUB1    | Activated RNA polymerase II transcriptional coactivator p15                | Q13428    |
| SUCLA2  | Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial              | P53597    |
| SUCLG1  | Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial         | O00186    |
| SUCLG2  | Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial              | Q9P2R7    |
| SUMF2   | Sulfatase-modifying factor 2                                               | Q96I99    |
| SUMO2   | Small ubiquitin-related modifier 2                                         | Q8NBJ7    |
| SUPT16H | FACT complex subunit SPT16                                                 | Q99523    |
| SUPV3L1 | ATP-dependent RNA helicase SUPV3L1, mitochondrial                          | Q15526    |
| SURF1   | Surfeit locus protein 1                                                    | P61956    |
| SVIP    | Small VCP/p97-interacting protein                                          | Q8IYB8    |
| SYMPK   | Symplekin                                                                  | Q96GW9    |
| SYNGR1  | Synaptogyrin-1                                                             | Q12824    |
| SYNGR2  | Synaptogyrin-2                                                             | O43759    |
| SYNJ2BP | Synaptojanin-2-binding protein                                             | Q9NSE4    |
| SYPL1   | Synaptophysin-like protein 1                                               | Q96I59    |
| TACC1   | Transforming acidic coiled-coil-containing protein 1                       | Q8IUX1    |
| TACO1   | Translational activator of cytochrome c oxidase 1                          | O75410    |
| TAGLN2  | Transgelin-2                                                               | Q13148    |
| TARDBP  | TAR DNA-binding protein 43                                                 | Q9BSH4    |
| TARS    | ThreoninetRNA ligase, cytoplasmic                                          | Q9NP81    |
| TARS2   | ThreoninetRNA ligase, mitochondrial                                        | P26639    |
| TBCA    | Tubulin-specific chaperone A                                               | P07437    |
| TBCB    | Tubulin-folding cofactor B                                                 | O75347    |

| Gene    | Protein name                                                    | Accession |
|---------|-----------------------------------------------------------------|-----------|
| TBL2    | Transducin beta-like protein 2                                  | P23258    |
| TBL3    | Transducin beta-like protein 3                                  | Q9Y4P3    |
| TBRG4   | Protein TBRG4                                                   | Q12788    |
| TCEA1   | Transcription elongation factor A protein 1                     | Q969Z0    |
| TCEB2   | Transcription elongation factor B polypeptide 2                 | Q92556    |
| TCOF1   | Treacle protein                                                 | P23193    |
| TCP1    | T-complex protein 1 subunit alpha                               | P53999    |
| TDRKH   | Tudor and KH domain-containing protein                          | Q5QJE6    |
| TECR    | Very-long-chain enoyl-CoA reductase                             | Q15185    |
| TEFM    | Transcription elongation factor, mitochondrial                  | Q9NZ01    |
| TESC    | Calcineurin B homologous protein 3                              | Q99653    |
| TEX264  | Testis-expressed sequence 264 protein                           | Q6IBS0    |
| TFAM    | Transcription factor A, mitochondrial                           | Q9Y5Q9    |
| TFB1M   | Dimethyladenosine transferase 1, mitochondrial                  | Q00059    |
| TFB2M   | Dimethyladenosine transferase 2, mitochondrial                  | Q8WVM0    |
| TGFB1   | Transforming growth factor beta-1                               | Q9H5Q4    |
| TGOLN2  | Trans-Golgi network integral membrane protein 2                 | P01137    |
| THEM6   | Protein THEM6                                                   | Q9BXR0    |
| THNSL1  | Threonine synthase-like 1                                       | P10599    |
| THOC1   | THO complex subunit 1                                           | Q8IYQ7    |
| THOC2   | THO complex subunit 2                                           | Q96FV9    |
| THOC6   | THO complex subunit 6 homolog                                   | Q86V81    |
| THRAP3  | Thyroid hormone receptor-associated protein 3                   | Q9UI30    |
| TIMM10B | Mitochondrial import inner membrane translocase subunit Tim10 B | Q9Y2Z4    |
| TIMM13  | Mitochondrial import inner membrane translocase subunit Tim13   | Q13263    |
| TIMM17A | Mitochondrial import inner membrane translocase subunit Tim17-A | Q16762    |
| TIMM17B | Mitochondrial import inner membrane translocase subunit Tim17-B | Q99595    |
| TIMM21  | Mitochondrial import inner membrane translocase subunit Tim21   | Q9Y3D7    |
| TIMM23  | Mitochondrial import inner membrane translocase subunit Tim23   | Q9BVV7    |
| TIMM44  | Mitochondrial import inner membrane translocase subunit TIM44   | O14925    |
| TIMM50  | Mitochondrial import inner membrane translocase subunit TIM50   | O43615    |
| TIMM8A  | Mitochondrial import inner membrane translocase subunit Tim8 A  | Q3ZCQ8    |
| TIMM9   | Mitochondrial import inner membrane translocase subunit Tim9    | O60220    |
| TIMMDC1 | Complex I assembly factor TIMMDC1, mitochondrial                | O60830    |
| TLN1    | Talin-1                                                         | Q9Y5J7    |
| TM9SF2  | Transmembrane 9 superfamily member 2                            | Q96HV5    |
| TM9SF3  | Transmembrane 9 superfamily member 3                            | Q99805    |
| TMCO1   | Transmembrane and coiled-coil domain-containing protein 1       | Q9HD45    |
| TMED10  | Transmembrane emp24 domain-containing protein 10                | Q9BVK6    |
|         |                                                                 |           |

| Gene     | Protein name                                                 | Accession |
|----------|--------------------------------------------------------------|-----------|
| TMED2    | Transmembrane emp24 domain-containing protein 2              | Q9UM00    |
| TMED3    | Transmembrane emp24 domain-containing protein 3              | Q15363    |
| TMED4    | Transmembrane emp24 domain-containing protein 4              | Q9Y3Q3    |
| TMED5    | Transmembrane emp24 domain-containing protein 5              | Q7Z7H5    |
| TMED7    | Transmembrane emp24 domain-containing protein 7              | Q9Y3A6    |
| TMED9    | Transmembrane emp24 domain-containing protein 9              | Q9Y3B3    |
| TMEM109  | Transmembrane protein 109                                    | Q9Y490    |
| TMEM11   | Transmembrane protein 11, mitochondrial                      | Q9NVH6    |
| TMEM126A | Transmembrane protein 126A                                   | Q9Y5J6    |
| TMEM126B | Complex I assembly factor TMEM126B, mitochondrial            | Q9H061    |
| TMEM173  | Stimulator of interferon genes protein                       | Q13586    |
| TMEM199  | Transmembrane protein 199                                    | Q9BVC6    |
| TMEM206  | Transmembrane protein 206                                    | Q8N511    |
| TMEM209  | Transmembrane protein 209                                    | Q9H813    |
| TMEM214  | Transmembrane protein 214                                    | Q96SK2    |
| TMEM230  | Transmembrane protein 230                                    | Q6NUQ4    |
| TMEM261  | Transmembrane protein 261                                    | Q96A57    |
| TMEM30A  | Cell cycle control protein 50A                               | Q9P0B6    |
| TMEM33   | Transmembrane protein 33                                     | P17152    |
| TMEM41A  | Transmembrane protein 41A                                    | Q969M1    |
| TMEM43   | Transmembrane protein 43                                     | P57088    |
| TMEM59   | Transmembrane protein 59                                     | Q9BTV4    |
| TMEM65   | Transmembrane protein 65                                     | Q9BXS4    |
| TMEM70   | Transmembrane protein 70, mitochondrial                      | Q6PI78    |
| TMEM97   | Transmembrane protein 97                                     | Q9BUB7    |
| TMF1     | TATA element modulatory factor                               | P49755    |
| TMLHE    | Trimethyllysine dioxygenase, mitochondrial                   | P82094    |
| TMOD3    | Tropomodulin-3                                               | Q5BJF2    |
| ТМРО     | Lamina-associated polypeptide 2, isoform alpha               | Q9NS86    |
| ТМРО     | Lamina-associated polypeptide 2, isoforms beta/gamma         | P42166    |
| TMUB1    | Transmembrane and ubiquitin-like domain-containing protein 1 | Q9NYL9    |
| TMUB2    | Transmembrane and ubiquitin-like domain-containing protein 2 | Q9BVT8    |
| TMX1     | Thioredoxin-related transmembrane protein 1                  | Q71RG4    |
| TMX2     | Thioredoxin-related transmembrane protein 2                  | Q9H3N1    |
| TMX3     | Protein disulfide-isomerase TMX3                             | Q9Y320    |
| TMX4     | Thioredoxin-related transmembrane protein 4                  | Q96JJ7    |
| TNPO1    | Transportin-1                                                | Q9H1E5    |
| TOMM20   | Mitochondrial import receptor subunit TOM20 homolog          | Q8NFQ8    |
| TOMM22   | Mitochondrial import receptor subunit TOM22 homolog          | Q15388    |

| 12 | Gene     | Protein name                                        | Accession |
|----|----------|-----------------------------------------------------|-----------|
| ö  | TOMM40   | Mitochondrial import receptor subunit TOM40 homolog | Q9NS69    |
|    | TOMM40L  | Mitochondrial import receptor subunit TOM40B        | Q96GE9    |
|    | TOMM70A  | Mitochondrial import receptor subunit TOM70         | O96008    |
|    | TOP1     | DNA topoisomerase 1                                 | O94826    |
|    | TOP2A    | DNA topoisomerase 2-alpha                           | P11387    |
|    | ТОРЗА    | DNA topoisomerase 3-alpha                           | P11388    |
|    | TOR1A    | Torsin-1A                                           | Q13472    |
|    | TOR1AIP2 | Torsin-1A-interacting protein 2                     | P25445    |
|    | TOR1B    | Torsin-1B                                           | O14656    |
|    | TPI1     | Triosephosphate isomerase                           | Q9HC21    |
|    | TPM3     | Tropomyosin alpha-3 chain                           | P60174    |
|    | TPM4     | Tropomyosin alpha-4 chain                           | P06753    |
|    | TPR      | Nucleoprotein TPR                                   | Q8IUR0    |
|    | TRA2A    | Transformer-2 protein homolog alpha                 | Q9BVS5    |
|    | TRA2B    | Transformer-2 protein homolog beta                  | Q13595    |
|    | TRAP1    | Heat shock protein 75 kDa, mitochondrial            | P62995    |
|    | TRAPPC3  | Trafficking protein particle complex subunit 3      | P67936    |
|    | TRAPPC5  | Trafficking protein particle complex subunit 5      | O43617    |
|    | TRBC1    | T-cell receptor beta-1 chain C region               | A0A5B9    |
|    | TRBC2    | T-cell receptor beta-2 chain C region               | Q12931    |
|    | TRIM27   | Zinc finger protein RFP                             | P01850    |
|    | TRIM28   | Transcription intermediary factor 1-beta            | Q9NPL8    |
|    | TRIM4    | Tripartite motif-containing protein 4               | P14373    |
|    | TRIP13   | Pachytene checkpoint protein 2 homolog              | P05166    |
|    | TRMT10C  | Mitochondrial ribonuclease P protein 1              | O15091    |
|    | TRMT112  | tRNA methyltransferase 112 homolog                  | P12270    |
|    | TRMT5    | tRNA                                                | Q9C037    |
|    | TRMT61B  | tRNA                                                | Q9Y2W1    |
|    | TRMU     | Mitochondrial tRNA-specific 2-thiouridylase 1       | P58546    |
|    | TRNT1    | CCA tRNA nucleotidyltransferase 1, mitochondrial    | Q32P41    |
|    | TRUB1    | Probable tRNA pseudouridine synthase 1              | Q9Y606    |
|    | TSG101   | Tumor susceptibility gene 101 protein               | Q8WWH5    |
|    | TSN      | Translin                                            | Q99816    |
|    | TST      | Thiosulfate sulfurtransferase                       | P25325    |
|    | TTC13    | Tetratricopeptide repeat protein 13                 | Q15631    |
|    | TTC19    | Tetratricopeptide repeat protein 19, mitochondrial  | Q8NBP0    |
|    | TTLL12   | Tubulintyrosine ligase-like protein 12              | Q6DKK2    |
|    | TUBA1B   | Tubulin alpha-1B chain                              | Q9P031    |
|    | TUBB     | Tubulin beta chain                                  | P68371    |

| Gene    | Protein name                                               | Accession |
|---------|------------------------------------------------------------|-----------|
| TUBB4B  | Tubulin beta-4B chain                                      | P68363    |
| TUBG1   | Tubulin gamma-1 chain                                      | Q99426    |
| TUBGCP2 | Gamma-tubulin complex component 2                          | Q92947    |
| TUBGCP3 | Gamma-tubulin complex component 3                          | Q9BSJ2    |
| TUFM    | Elongation factor Tu, mitochondrial                        | Q14156    |
| TUSC3   | Tumor suppressor candidate 3                               | Q14166    |
| TWF2    | Twinfilin-2                                                | Q13454    |
| TXN     | Thioredoxin                                                | Q99757    |
| TXN2    | Thioredoxin, mitochondrial                                 | P42765    |
| TXNDC12 | Thioredoxin domain-containing protein 12                   | Q9Y6I9    |
| TXNDC15 | Thioredoxin domain-containing protein 15                   | O95881    |
| TXNDC5  | Thioredoxin domain-containing protein 5                    | Q96J42    |
| TYMS    | Thymidylate synthase                                       | P53007    |
| U2AF1   | Splicing factor U2AF 35 kDa subunit                        | P04818    |
| U2AF2   | Splicing factor U2AF 65 kDa subunit                        | Q01081    |
| UBA1    | Ubiquitin-like modifier-activating enzyme 1                | P68036    |
| UBE2G2  | Ubiquitin-conjugating enzyme E2 G2                         | Q15029    |
| UBE2I   | SUMO-conjugating enzyme UBC9                               | P22314    |
| UBE2L3  | Ubiquitin-conjugating enzyme E2 L3                         | P60604    |
| UBE2N   | Ubiquitin-conjugating enzyme E2 N                          | P63279    |
| UBE4A   | Ubiquitin conjugation factor E4 A                          | P61088    |
| UBL4A   | Ubiquitin-like protein 4A                                  | P17480    |
| UBQLN1  | Ubiquilin-1                                                | P45974    |
| UBTF    | Nucleolar transcription factor 1                           | Q14139    |
| UBXN4   | UBX domain-containing protein 4                            | Q9UMX0    |
| UCHL3   | Ubiquitin carboxyl-terminal hydrolase isozyme L3           | Q92575    |
| UCHL5   | Ubiquitin carboxyl-terminal hydrolase isozyme L5           | P15374    |
| UFD1L   | Ubiquitin fusion degradation protein 1 homolog             | P47985    |
| UFL1    | E3 UFM1-protein ligase 1                                   | Q92890    |
| UFSP2   | Ufm1-specific protease 2                                   | O94874    |
| UGGT1   | UDP-glucose:glycoprotein glucosyltransferase 1             | Q9NUQ7    |
| UMPS    | Uridine 5'-monophosphate synthase                          | P52758    |
| UPF1    | Regulator of nonsense transcripts 1                        | O75787    |
| UQCC1   | Ubiquinol-cytochrome-c reductase complex assembly factor 1 | P11172    |
| UQCRB   | Cytochrome b-c1 complex subunit 7                          | P22695    |
| UQCRC1  | Cytochrome b-c1 complex subunit 1, mitochondrial           | P17812    |
| UQCRC2  | Cytochrome b-c1 complex subunit 2, mitochondrial           | P31930    |
| UQCRFS1 | Cytochrome b-c1 complex subunit Rieske, mitochondrial      | Q9Y5K5    |
| UQCRQ   | Cytochrome b-c1 complex subunit 8                          | P14927    |

| Gene   | Protein name                                               | Accession |
|--------|------------------------------------------------------------|-----------|
| URB1   | Nucleolar pre-ribosomal-associated protein 1               | Q9Y2X3    |
| URB2   | Unhealthy ribosome biogenesis protein 2 homolog            | Q9NVA1    |
| USE1   | Vesicle transport protein USE1                             | Q86UX7    |
| USO1   | General vesicular transport factor p115                    | Q9NZ43    |
| USP10  | Ubiquitin carboxyl-terminal hydrolase 10                   | P11441    |
| USP14  | Ubiquitin carboxyl-terminal hydrolase 14                   | Q14694    |
| USP30  | Ubiquitin carboxyl-terminal hydrolase 30                   | P54578    |
| USP5   | Ubiquitin carboxyl-terminal hydrolase 5                    | Q70CQ3    |
| USP9X  | Probable ubiquitin carboxyl-terminal hydrolase FAF-X       | O60763    |
| UTP11L | Probable U3 small nucleolar RNA-associated protein 11      | Q9BVJ6    |
| UTP14A | U3 small nucleolar RNA-associated protein 14 homolog A     | Q93008    |
| UTP15  | U3 small nucleolar RNA-associated protein 15 homolog       | Q9Y3A2    |
| UTP18  | U3 small nucleolar RNA-associated protein 18 homolog       | Q8TED0    |
| UTP3   | Something about silencing protein 10                       | Q9NR31    |
| UTP6   | U3 small nucleolar RNA-associated protein 6 homolog        | Q9Y5J1    |
| UTRN   | Utrophin                                                   | Q9NYH9    |
| UXT    | Protein UXT                                                | P46939    |
| VAMP2  | Vesicle-associated membrane protein 2                      | P61421    |
| VAMP3  | Vesicle-associated membrane protein 3                      | P63027    |
| VAMP4  | Vesicle-associated membrane protein 4                      | Q15836    |
| VAMP5  | Vesicle-associated membrane protein 5                      | O75379    |
| VAMP7  | Vesicle-associated membrane protein 7                      | O95183    |
| VANGL1 | Vang-like protein 1                                        | P51809    |
| VAPA   | Vesicle-associated membrane protein-associated protein A   | Q8TAA9    |
| VAPB   | Vesicle-associated membrane protein-associated protein B/C | Q9P0L0    |
| VARS   | ValinetRNA ligase                                          | Q9BW92    |
| VARS2  | ValinetRNA ligase, mitochondrial                           | P26640    |
| VAT1   | Synaptic vesicle membrane protein VAT-1 homolog            | O95292    |
| VAV1   | Proto-oncogene vav                                         | Q9UI12    |
| VCP    | Transitional endoplasmic reticulum ATPase                  | Q96QE5    |
| VDAC1  | Voltage-dependent anion-selective channel protein 1        | P15498    |
| VDAC2  | Voltage-dependent anion-selective channel protein 2        | P21796    |
| VDAC3  | Voltage-dependent anion-selective channel protein 3        | P45880    |
| VIM    | Vimentin                                                   | Q9Y277    |
| VIMP   | 15 kDa selenoprotein                                       | Q9BQE4    |
| VIMP   | Selenoprotein S                                            | Q96EE3    |
| VMA21  | Vacuolar ATPase assembly integral membrane protein VMA21   | P08670    |
| VMP1   | Vacuole membrane protein 1                                 | Q3ZAQ7    |
| VPS25  | Vacuolar protein-sorting-associated protein 25             | Q9Y487    |

| Gene    | Protein name                                                   | Accession |
|---------|----------------------------------------------------------------|-----------|
| VPS29   | Vacuolar protein sorting-associated protein 29                 | Q9BRG1    |
| VPS35   | Vacuolar protein sorting-associated protein 35                 | Q9UBQ0    |
| VPS37B  | Vacuolar protein sorting-associated protein 37B                | Q96GC9    |
| VPS39   | Vam6/Vps39-like protein                                        | Q96QK1    |
| VPS45   | Vacuolar protein sorting-associated protein 45                 | Q96JC1    |
| VRK1    | Serine/threonine-protein kinase VRK1                           | Q9NRW7    |
| VRK3    | Inactive serine/threonine-protein kinase VRK3                  | Q99986    |
| VTI1A   | Vesicle transport through interaction with t-SNAREs homolog 1A | Q8IV63    |
| VTI1B   | Vesicle transport through interaction with t-SNAREs homolog 1B | Q96AJ9    |
| VWA8    | von Willebrand factor A domain-containing protein 8            | Q9UEU0    |
| WARS2   | TryptophantRNA ligase, mitochondrial                           | Q5ST30    |
| WDR12   | Ribosome biogenesis protein WDR12                              | A3KMH1    |
| WDR18   | WD repeat-containing protein 18                                | Q9GZL7    |
| WDR36   | WD repeat-containing protein 36                                | Q9BV38    |
| WDR43   | WD repeat-containing protein 43                                | Q8NI36    |
| WDR61   | WD repeat-containing protein 61                                | Q15061    |
| WDR74   | WD repeat-containing protein 74                                | Q9GZS3    |
| WDR77   | Methylosome protein 50                                         | Q15528    |
| WTAP    | Pre-mRNA-splicing regulator WTAP                               | Q14318    |
| XAB2    | Pre-mRNA-splicing factor SYF1                                  | P07814    |
| XPNPEP3 | Probable Xaa-Pro aminopeptidase 3                              | Q9HAV4    |
| XPO1    | Exportin-1                                                     | Q6RFH5    |
| XPO5    | Exportin-5                                                     | P55060    |
| XRCC1   | DNA repair protein XRCC1                                       | Q9NQH7    |
| XRCC5   | X-ray repair cross-complementing protein 5                     | P18887    |
| XRCC6   | X-ray repair cross-complementing protein 6                     | P13010    |
| YARS    | TyrosinetRNA ligase, cytoplasmic                               | Q9UGM6    |
| YARS2   | TyrosinetRNA ligase, mitochondrial                             | P54577    |
| YBEY    | Putative ribonuclease                                          | O75063    |
| YBX1    | Nuclease-sensitive element-binding protein 1                   | P58557    |
| YBX1    | Uncharacterized protein DKFZp762I1415                          | P67809    |
| YKT6    | Synaptobrevin homolog YKT6                                     | O15498    |
| YLPM1   | YLP motif-containing protein 1                                 | O15498    |
| YME1L1  | ATP-dependent zinc metalloprotease YME1L1                      | P49750    |
| YRDC    | YrdC domain-containing protein, mitochondrial                  | Q96TA2    |
| YWHAB   | 14-3-3 protein beta/alpha                                      | P31946    |
| YWHAE   | 14-3-3 protein epsilon                                         | P31946    |
| YWHAG   | 14-3-3 protein gamma                                           | Q04917    |
| YWHAH   | 14-3-3 protein eta                                             | P62258    |

| 12 | Gene     | Protein name                                                   | Accession |
|----|----------|----------------------------------------------------------------|-----------|
| 2  | YWHAQ    | 14-3-3 protein theta                                           | P61981    |
|    | YWHAZ    | 14-3-3 protein zeta/delta                                      | P27348    |
|    | ZADH2    | Zinc-binding alcohol dehydrogenase domain-containing protein 2 | Q86U90    |
|    | ZAP70    | Tyrosine-protein kinase ZAP-70                                 | Q8N4Q0    |
|    | ZC3H11A  | Zinc finger CCCH domain-containing protein 11A                 | P43403    |
|    | ZDHHC18  | Palmitoyltransferase ZDHHC18                                   | O75152    |
|    | ZMPSTE24 | CAAX prenyl protease 1 homolog                                 | Q01469    |
|    | ZW10     | Centromere/kinetochore protein zw10 homolog                    | Q9NUE0    |

## 6.3 Wild-type sample 2 (WT2) proteins

Table 4: Proteins contained in the wild-type 2 VCV preparation (WT2) measured by mass spectrometry (see 3.5). Listed are gene names, protein names, and UniProt accession numbers.

| Gene    | Protein name                                                        | Accession |
|---------|---------------------------------------------------------------------|-----------|
| A2M     | Alpha-2-macroglobulin                                               | P01023    |
| AARS    | AlaninetRNA ligase, cytoplasmic                                     | P49588    |
| AARS2   | AlaninetRNA ligase, mitochondrial                                   | Q5JTZ9    |
| AASS    | Alpha-aminoadipic semialdehyde synthase, mitochondrial              | Q9UDR5    |
| ABCB10  | ATP-binding cassette sub-family B member 10, mitochondrial          | Q9NRK6    |
| ABCB6   | ATP-binding cassette sub-family B member 6, mitochondrial           | Q9NP58    |
| ABCB7   | ATP-binding cassette sub-family B member 7, mitochondrial           | O75027    |
| ABCB8   | ATP-binding cassette sub-family B member 8, mitochondrial           | Q9NUT2    |
| ABCC1   | Multidrug resistance-associated protein 1                           | P33527    |
| ABCC4   | Multidrug resistance-associated protein 4                           | O15439    |
| ABCF1   | ATP-binding cassette sub-family F member 1                          | Q8NE71    |
| ABHD10  | Mycophenolic acid acyl-glucuronide esterase, mitochondrial          | Q9NUJ1    |
| ABHD11  | Alpha/beta hydrolase domain-containing protein 11                   | Q8NFV4    |
| ABHD17B | Alpha/beta hydrolase domain-containing protein 17B                  | Q5VST6    |
| ACAA1   | 3-ketoacyl-CoA thiolase, peroxisomal                                | P09110    |
| ACAA2   | 3-ketoacyl-CoA thiolase, mitochondrial                              | P42765    |
| ACACA   | Acetyl-CoA carboxylase 1                                            | Q13085    |
| ACAD8   | Isobutyryl-CoA dehydrogenase, mitochondrial                         | Q9UKU7    |
| ACAD9   | Acyl-CoA dehydrogenase family member 9, mitochondrial               | Q9H845    |
| ACADS   | Short-chain specific acyl-CoA dehydrogenase, mitochondrial          | P16219    |
| ACADSB  | Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial | P45954    |
| ACADVL  | Very long-chain specific acyl-CoA dehydrogenase, mitochondrial      | P49748    |
| ACAT1   | Acetyl-CoA acetyltransferase, mitochondrial                         | P24752    |
| ACBD3   | Golgi resident protein GCP60                                        | Q9H3P7    |

| Gene     | Protein name                                                         | Accession |
|----------|----------------------------------------------------------------------|-----------|
| ACIN1    | Apoptotic chromatin condensation inducer in the nucleus              | Q9UKV3    |
| ACLY     | ATP-citrate synthase                                                 | P53396    |
| ACO2     | Aconitate hydratase, mitochondrial                                   | Q99798    |
| ACOT13   | Acyl-coenzyme A thioesterase 13                                      | Q9NPJ3    |
| ACOX1    | Peroxisomal acyl-coenzyme A oxidase 1                                | Q15067    |
| ACSF3    | Acyl-CoA synthetase family member 3, mitochondrial                   | Q4G176    |
| ACSL3    | Long-chain-fatty-acidCoA ligase 3                                    | O95573    |
| ACSS1    | Acetyl-coenzyme A synthetase 2-like, mitochondrial                   | Q9NUB1    |
| ACTB     | Actin, cytoplasmic 1                                                 | P60709    |
| ACTG1    | Actin, cytoplasmic 2                                                 | P63261    |
| ACTN1    | Alpha-actinin-1                                                      | P12814    |
| ACTN4    | Alpha-actinin-4                                                      | O43707    |
| ACTR1A   | Alpha-centractin                                                     | P61163    |
| ACTR3    | Actin-related protein 3                                              | P61158    |
| ADAM10   | Disintegrin and metalloproteinase domain-containing protein 10       | O14672    |
| ADCK3    | Chaperone activity of bc1 complex-like, mitochondrial                | Q8NI60    |
| ADCK4    | AarF domain-containing protein kinase 4                              | Q96D53    |
| ADD1     | Alpha-adducin                                                        | P35611    |
| ADD3     | Gamma-adducin                                                        | Q9UEY8    |
| ADPRHL2  | Poly(ADP-ribose) glycohydrolase ARH3                                 | Q9NX46    |
| AEBP1    | Adipocyte enhancer-binding protein 1                                 | Q8IUX7    |
| AFG3L2   | AFG3-like protein 2                                                  | Q9Y4W6    |
| AGPAT5   | 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon               | Q9NUQ2    |
| AGPS     | Alkyldihydroxyacetonephosphate synthase, peroxisomal                 | O00116    |
| AHCY     | Adenosylhomocysteinase                                               | P23526    |
| AIFM1    | Apoptosis-inducing factor 1, mitochondrial                           | O95831    |
| AK3      | GTP:AMP phosphotransferase AK3, mitochondrial                        | Q9UIJ7    |
| AKAP1    | A-kinase anchor protein 1, mitochondrial                             | Q92667    |
| AKAP9    | A-kinase anchor protein 9                                            | Q99996    |
| AKNA     | AT-hook-containing transcription factor                              | Q7Z591    |
| ALB      | Serum albumin                                                        | P02768    |
| ALDH18A1 | Delta-1-pyrroline-5-carboxylate synthase                             | P54886    |
| ALDH3A2  | Fatty aldehyde dehydrogenase                                         | P51648    |
| ALDH4A1  | Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial         | P30038    |
| ALDH5A1  | Succinate-semialdehyde dehydrogenase, mitochondrial                  | P51649    |
| ALDH6A1  | Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial | Q02252    |
| ALDOA    | Fructose-bisphosphate aldolase A                                     | P04075    |
| ALG3     | Dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase       | Q92685    |
| ALG9     | Alpha-1,2-mannosyltransferase ALG9                                   | Q9H6U8    |

| Gene    | Protein name                                                  | Accession |
|---------|---------------------------------------------------------------|-----------|
| ALOX5AP | Arachidonate 5-lipoxygenase-activating protein                | P20292    |
| AMFR    | E3 ubiquitin-protein ligase AMFR                              | Q9UKV5    |
| ANKHD1  | Ankyrin repeat and KH domain-containing protein 1             | Q8IWZ3    |
| ANO6    | Anoctamin-6                                                   | Q4KMQ2    |
| ANP32E  | Acidic leucine-rich nuclear phosphoprotein 32 family member E | Q9BTT0    |
| ANXA1   | Annexin A1                                                    | P04083    |
| ANXA11  | Annexin A11                                                   | P50995    |
| ANXA2   | Annexin A2                                                    | P07355    |
| ANXA6   | Annexin A6                                                    | P08133    |
| ANXA7   | Annexin A7                                                    | P20073    |
| AP1S2   | AP-1 complex subunit sigma-2                                  | P56377    |
| AP2A1   | AP-2 complex subunit alpha-1                                  | O95782    |
| AP2A2   | AP-2 complex subunit alpha-2                                  | O94973    |
| AP2B1   | AP-2 complex subunit beta                                     | P63010    |
| APEX1   | DNA-(apurinic or apyrimidinic site) lyase                     | P27695    |
| APMAP   | Adipocyte plasma membrane-associated protein                  | Q9HDC9    |
| APOA1BP | NAD(P)H-hydrate epimerase                                     | Q8NCW5    |
| APOB    | Apolipoprotein B-100                                          | P04114    |
| APOL2   | Apolipoprotein L2                                             | Q9BQE5    |
| APOO    | Apolipoprotein O                                              | Q9BUR5    |
| APOOL   | Apolipoprotein O-like                                         | Q6UXV4    |
| APRT    | Adenine phosphoribosyltransferase                             | P07741    |
| ARF4    | ADP-ribosylation factor 4                                     | P18085    |
| ARFGAP1 | ADP-ribosylation factor GTPase-activating protein 1           | Q8N6T3    |
| ARFGEF1 | Brefeldin A-inhibited guanine nucleotide-exchange protein 1   | Q9Y6D6    |
| ARG1    | Arginase-1                                                    | P05089    |
| ARG2    | Arginase-2, mitochondrial                                     | P78540    |
| ARHGDIB | Rho GDP-dissociation inhibitor 2                              | P52566    |
| ARL15   | ADP-ribosylation factor-like protein 15                       | Q9NXU5    |
| ARL2    | ADP-ribosylation factor-like protein 2                        | P36404    |
| ARL6IP5 | PRA1 family protein 3                                         | O75915    |
| ARMC1   | Armadillo repeat-containing protein 1                         | Q9NVT9    |
| ARMC10  | Armadillo repeat-containing protein 10                        | Q8N2F6    |
| ARMCX3  | Armadillo repeat-containing X-linked protein 3                | Q9UH62    |
| ARPC1B  | Actin-related protein 2/3 complex subunit 1B                  | O15143    |
| ARPC2   | Actin-related protein 2/3 complex subunit 2                   | O15144    |
| ATAD1   | ATPase family AAA domain-containing protein 1                 | Q8NBU5    |
| ATAD3A  | ATPase family AAA domain-containing protein 3A                | Q9NVI7    |
| ATF6    | Cyclic AMP-dependent transcription factor ATF-6 alpha         | P18850    |

| Gene     | Protein name                                            | Accession |
|----------|---------------------------------------------------------|-----------|
| ATG9A    | Autophagy-related protein 9A                            | Q7Z3C6    |
| ATL3     | Atlastin-3                                              | Q6DD88    |
| ATP11B   | Probable phospholipid-transporting ATPase IF            | Q9Y2G3    |
| ATP11C   | Probable phospholipid-transporting ATPase IG            | Q8NB49    |
| ATP13A1  | Probable cation-transporting ATPase 13A1                | Q9HD20    |
| ATP13A3  | Probable cation-transporting ATPase 13A3                | Q9H7F0    |
| ATP1A1   | Sodium/potassium-transporting ATPase subunit alpha-1    | P05023    |
| ATP1A3   | Sodium/potassium-transporting ATPase subunit alpha-3    | P13637    |
| ATP1B3   | Sodium/potassium-transporting ATPase subunit beta-3     | P54709    |
| ATP2A2   | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2     | P16615    |
| ATP2A3   | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3     | Q93084    |
| ATP2B1   | Plasma membrane calcium-transporting ATPase 1           | P20020    |
| ATP2B4   | Plasma membrane calcium-transporting ATPase 4           | P23634    |
| ATP5A1   | ATP synthase subunit alpha, mitochondrial               | P25705    |
| ATP5B    | ATP synthase subunit beta, mitochondrial                | P06576    |
| ATP5D    | ATP synthase subunit delta, mitochondrial               | P30049    |
| ATP5F1   | ATP synthase F(0) complex subunit B1, mitochondrial     | P24539    |
| ATP5H    | ATP synthase subunit d, mitochondrial                   | O75947    |
| ATP5J    | ATP synthase-coupling factor 6, mitochondrial           | P18859    |
| ATP5O    | ATP synthase subunit O, mitochondrial                   | P48047    |
| ATP6AP1  | V-type proton ATPase subunit S1                         | Q15904    |
| ATP6AP2  | Renin receptor                                          | O75787    |
| ATP6V0A2 | V-type proton ATPase 116 kDa subunit a isoform 2        | Q9Y487    |
| ATP6V0D1 | V-type proton ATPase subunit d 1                        | P61421    |
| ATP6V1A  | V-type proton ATPase catalytic subunit A                | P38606    |
| ATP6V1B2 | V-type proton ATPase subunit B, brain isoform           | P21281    |
| ATP6V1C1 | V-type proton ATPase subunit C 1                        | P21283    |
| ATP6V1D  | V-type proton ATPase subunit D                          | Q9Y5K8    |
| ATP6V1E1 | V-type proton ATPase subunit E 1                        | P36543    |
| ATP6V1F  | V-type proton ATPase subunit F                          | Q16864    |
| ATP6V1G1 | V-type proton ATPase subunit G 1                        | O75348    |
| ATP6V1H  | V-type proton ATPase subunit H                          | Q9UI12    |
| ATP7A    | Copper-transporting ATPase 1                            | Q04656    |
| ATP9B    | Probable phospholipid-transporting ATPase IIB           | O43861    |
| ATPAF1   | ATP synthase mitochondrial F1 complex assembly factor 1 | Q5TC12    |
| ATPAF2   | ATP synthase mitochondrial F1 complex assembly factor 2 | Q8N5M1    |
| ATPIF1   | ATPase inhibitor, mitochondrial                         | Q9UII2    |
| ATXN10   | Ataxin-10                                               | Q9UBB4    |
| ATXN2L   | Ataxin-2-like protein                                   | Q8WWM7    |

| Gene      | Protein name                                                         | Accession |
|-----------|----------------------------------------------------------------------|-----------|
| AUH       | Methylglutaconyl-CoA hydratase, mitochondrial                        | Q13825    |
| AZI1      | 5-azacytidine-induced protein 1                                      | Q9UPN4    |
| B3GALT6   | Beta-1,3-galactosyltransferase 6                                     | Q96L58    |
| B3GAT3    | Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3  | O94766    |
| BAG2      | BAG family molecular chaperone regulator 2                           | O95816    |
| BAG6      | Large proline-rich protein BAG6                                      | P46379    |
| BAK1      | Bcl-2 homologous antagonist/killer                                   | Q16611    |
| BAZ1A     | Bromodomain adjacent to zinc finger domain protein 1A                | Q9NRL2    |
| BAZ1B     | Tyrosine-protein kinase BAZ1B                                        | Q9UIG0    |
| BCAP31    | B-cell receptor-associated protein 31                                | P51572    |
| BCAT2     | Branched-chain-amino-acid aminotransferase, mitochondrial            | O15382    |
| BCKDHA    | 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial          | P12694    |
| BCL2L1    | Bcl-2-like protein 1                                                 | Q07817    |
| BCL2L12   | Bcl-2-like protein 12                                                | Q9HB09    |
| BCL2L13   | Bcl-2-like protein 13                                                | Q9BXK5    |
| BCS1L     | Mitochondrial chaperone BCS1                                         | Q9Y276    |
| BDH1      | D-beta-hydroxybutyrate dehydrogenase, mitochondrial                  | Q02338    |
| BET1L     | BET1-like protein                                                    | Q9NYM9    |
| BICD2     | Protein bicaudal D homolog 2                                         | Q8TD16    |
| BID       | BH3-interacting domain death agonist                                 | P55957    |
| BLVRA     | Biliverdin reductase A                                               | P53004    |
| BNIP1     | Vesicle transport protein SEC20                                      | Q12981    |
| BNIP3L    | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like        | O60238    |
| BPHL      | Valacyclovir hydrolase                                               | Q86WA6    |
| BRI3BP    | BRI3-binding protein                                                 | Q8WY22    |
| BSG       | Basigin                                                              | P35613    |
| BUB3      | Mitotic checkpoint protein BUB3                                      | O43684    |
| C10orf35  | Uncharacterized protein C10orf35                                     | Q96D05    |
| C14orf166 | UPF0568 protein C14orf166                                            | Q9Y224    |
| C16orf54  | Transmembrane protein C16orf54                                       | Q6UWD8    |
| C17orf59  | Uncharacterized protein C17orf59                                     | Q96GS4    |
| C17orf62  | Uncharacterized protein C17orf62                                     | Q9BQA9    |
| C18orf32  | UPF0729 protein C18orf32                                             | Q8TCD1    |
| C19orf10  | UPF0556 protein C19orf10                                             | Q969H8    |
| C19orf52  | Uncharacterized protein C19orf52                                     | Q9BSF4    |
| C1QBP     | Complement component 1 Q subcomponent-binding protein, mitochondrial | Q07021    |
| C21orf2   | Protein C21orf2                                                      | O43822    |
| C21orf33  | ES1 protein homolog, mitochondrial                                   | P30042    |
| C2CD2L    | C2 domain-containing protein 2-like                                  | O14523    |
|           |                                                                      |           |

| Gene     | Protein name                                                | Accession |
|----------|-------------------------------------------------------------|-----------|
| C2CD3    | C2 domain-containing protein 3                              | Q4AC94    |
| C2orf43  | UPF0554 protein C2orf43                                     | Q9H6V9    |
| C2orf47  | Uncharacterized protein C2orf47, mitochondrial              | Q8WWC4    |
| C4A      | Complement C4-A                                             | P0C0L4    |
| C7orf55  | UPF0562 protein C7orf55                                     | Q96HJ9    |
| C8orf82  | UPF0598 protein C8orf82                                     | Q6P1X6    |
| C9orf89  | Bcl10-interacting CARD protein                              | Q96LW7    |
| CAD      | CAD protein                                                 | P27708    |
| CALCOCO2 | Calcium-binding and coiled-coil domain-containing protein 2 | Q13137    |
| CALML3   | Calmodulin-like protein 3                                   | P27482    |
| CALML5   | Calmodulin-like protein 5                                   | Q9NZT1    |
| CALR     | Calreticulin                                                | P27797    |
| CAMLG    | Calcium signal-modulating cyclophilin ligand                | P49069    |
| CAND1    | Cullin-associated NEDD8-dissociated protein 1               | Q86VP6    |
| CANX     | Calnexin                                                    | P27824    |
| CAPRIN1  | Caprin-1                                                    | Q14444    |
| CAPZA1   | F-actin-capping protein subunit alpha-1                     | P52907    |
| CAPZA2   | F-actin-capping protein subunit alpha-2                     | P47755    |
| CARS2    | Probable cysteinetRNA ligase, mitochondrial                 | Q9HA77    |
| CAT      | Catalase                                                    | P04040    |
| CBFB     | Core-binding factor subunit beta                            | Q13951    |
| CBL      | E3 ubiquitin-protein ligase CBL                             | P22681    |
| CBR4     | Carbonyl reductase family member 4                          | Q8N4T8    |
| CBX3     | Chromobox protein homolog 3                                 | Q13185    |
| CBX5     | Chromobox protein homolog 5                                 | P45973    |
| CCAR2    | Cell cycle and apoptosis regulator protein 2                | Q8N163    |
| CCBL2    | Kynurenineoxoglutarate transaminase 3                       | Q6YP21    |
| CCDC109B | Mitochondrial calcium uniporter regulatory subunit MCUb     | Q9NWR8    |
| CCDC115  | Coiled-coil domain-containing protein 115                   | Q96NT0    |
| CCDC134  | Coiled-coil domain-containing protein 134                   | Q9H6E4    |
| CCDC167  | Coiled-coil domain-containing protein 167                   | Q9P0B6    |
| CCDC47   | Coiled-coil domain-containing protein 47                    | Q96A33    |
| CCDC51   | Coiled-coil domain-containing protein 51                    | Q96ER9    |
| CCDC88A  | Girdin                                                      | Q3V6T2    |
| CCDC90B  | Coiled-coil domain-containing protein 90B, mitochondrial    | Q9GZT6    |
| CCHCR1   | Coiled-coil alpha-helical rod protein 1                     | Q8TD31    |
| CCP110   | Centriolar coiled-coil protein of 110 kDa                   | O43303    |
| CCSMST1  | Protein CCSMST1                                             | Q4G0I0    |
| CCT2     | T-complex protein 1 subunit beta                            | P78371    |

| Gene     | Protein name                                                                   | Accession |
|----------|--------------------------------------------------------------------------------|-----------|
| CCT3     | T-complex protein 1 subunit gamma                                              | P49368    |
| CCT4     | T-complex protein 1 subunit delta                                              | P50991    |
| CCT5     | T-complex protein 1 subunit epsilon                                            | P48643    |
| CCT6A    | T-complex protein 1 subunit zeta                                               | P40227    |
| CCT7     | T-complex protein 1 subunit eta                                                | Q99832    |
| CCT8     | T-complex protein 1 subunit theta                                              | P50990    |
| CD1C     | T-cell surface glycoprotein CD1c                                               | P29017    |
| CD2      | T-cell surface antigen CD2                                                     | P06729    |
| CD247    | T-cell surface glycoprotein CD3 zeta chain                                     | P20963    |
| CD3D     | T-cell surface glycoprotein CD3 delta chain                                    | P04234    |
| CD3E     | T-cell surface glycoprotein CD3 epsilon chain                                  | P07766    |
| CD3G     | T-cell surface glycoprotein CD3 gamma chain                                    | P09693    |
| CD47     | Leukocyte surface antigen CD47                                                 | Q08722    |
| CD82     | CD82 antigen                                                                   | P27701    |
| CDC42    | Cell division control protein 42 homolog                                       | P60953    |
| CDK1     | Cyclin-dependent kinase 1                                                      | P06493    |
| CDK2     | Cyclin-dependent kinase 2                                                      | P24941    |
| CDK5     | Cyclin-dependent kinase 5                                                      | Q00535    |
| CDK5RAP2 | CDK5 regulatory subunit-associated protein 2                                   | Q96SN8    |
| CDK6     | Cyclin-dependent kinase 6                                                      | Q00534    |
| CDK9     | Cyclin-dependent kinase 9                                                      | P50750    |
| CDKAL1   | Threonylcarbamoyladenosine tRNA methylthiotransferase                          | Q5VV42    |
| CDS2     | Phosphatidate cytidylyltransferase 2                                           | O95674    |
| CECR5    | Cat eye syndrome critical region protein 5                                     | Q9BXW7    |
| CENPF    | Centromere protein F                                                           | P49454    |
| CENPJ    | Centromere protein J                                                           | Q9HC77    |
| CEP120   | Centrosomal protein of 120 kDa                                                 | Q8N960    |
| CEP135   | Centrosomal protein of 135 kDa                                                 | Q66GS9    |
| CEP152   | Centrosomal protein of 152 kDa                                                 | O94986    |
| CEP250   | Centrosome-associated protein CEP250                                           | Q9BV73    |
| CEP290   | Centrosomal protein of 290 kDa                                                 | O15078    |
| CEP350   | Centrosome-associated protein 350                                              | Q5VT06    |
| CEP72    | Centrosomal protein of 72 kDa                                                  | Q9P209    |
| CEP85L   | Centrosomal protein of 85 kDa-like                                             | Q5SZL2    |
| CEP97    | Centrosomal protein of 97 kDa                                                  | Q8IW35    |
| CFL1     | Cofilin-1                                                                      | P23528    |
| CHCHD1   | Coiled-coil-helix-coiled-coil-helix domain-containing protein 1                | Q96BP2    |
| CHCHD2   | Coiled-coil-helix-coiled-coil-helix domain-containing protein 2, mitochondrial | Q9Y6H1    |
| CHCHD2P9 | Putative coiled-coil-helix-coiled-coil-helix domain-containing protein         | Q5T1J5    |

| Gene     | Protein name                                                                   | Accession |
|----------|--------------------------------------------------------------------------------|-----------|
|          | CHCHD2P9, mitochondrial                                                        |           |
| CHCHD3   | Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial | Q9NX63    |
| CHCHD6   | Coiled-coil-helix-coiled-coil-helix domain-containing protein 6, mitochondrial | Q9BRQ6    |
| CHD4     | Chromodomain-helicase-DNA-binding protein 4                                    | Q14839    |
| CHID1    | Chitinase domain-containing protein 1                                          | Q9BWS9    |
| CHP1     | Calcineurin B homologous protein 1                                             | Q99653    |
| CHSY1    | Chondroitin sulfate synthase 1                                                 | Q86X52    |
| CISD1    | CDGSH iron-sulfur domain-containing protein 1                                  | Q9NZ45    |
| CISD2    | CDGSH iron-sulfur domain-containing protein 2                                  | Q8N5K1    |
| CIT      | Citron Rho-interacting kinase                                                  | O14578    |
| CKAP4    | Cytoskeleton-associated protein 4                                              | Q07065    |
| CKAP5    | Cytoskeleton-associated protein 5                                              | Q14008    |
| CLASP1   | CLIP-associating protein 1                                                     | Q7Z460    |
| CLASP2   | CLIP-associating protein 2                                                     | O75122    |
| CLCN3    | H(+)/Cl(-) exchange transporter 3                                              | P51790    |
| CLCN6    | Chloride transport protein 6                                                   | P51797    |
| CLCN7    | H(+)/Cl(-) exchange transporter 7                                              | P51798    |
| CLEC11A  | C-type lectin domain family 11 member A                                        | Q9Y240    |
| CLIC1    | Chloride intracellular channel protein 1                                       | O00299    |
| CLPP     | ATP-dependent Clp protease proteolytic subunit, mitochondrial                  | Q16740    |
| CLPTM1   | Cleft lip and palate transmembrane protein 1                                   | O96005    |
| CLPX     | ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial        | O76031    |
| CLTC     | Clathrin heavy chain 1                                                         | Q00610    |
| CLYBL    | Citrate lyase subunit beta-like protein, mitochondrial                         | Q8N0X4    |
| CMPK1    | UMP-CMP kinase                                                                 | P30085    |
| CNNM3    | Metal transporter CNNM3                                                        | Q8NE01    |
| CNNM4    | Metal transporter CNNM4                                                        | Q6P4Q7    |
| CNOT1    | CCR4-NOT transcription complex subunit 1                                       | A5YKK6    |
| CNOT10   | CCR4-NOT transcription complex subunit 10                                      | Q9H9A5    |
| CNOT3    | CCR4-NOT transcription complex subunit 3                                       | O75175    |
| CNP      | 2',3'-cyclic-nucleotide 3'-phosphodiesterase                                   | P09543    |
| CNPY3    | Protein canopy homolog 3                                                       | Q9BT09    |
| COA1     | Cytochrome c oxidase assembly factor 1 homolog                                 | Q9GZY4    |
| COA3     | Cytochrome c oxidase assembly factor 3 homolog, mitochondrial                  | Q9Y2R0    |
| COG3     | Conserved oligomeric Golgi complex subunit 3                                   | Q96JB2    |
| COLGALT1 | Procollagen galactosyltransferase 1                                            | Q8NBJ5    |
| COMT     | Catechol O-methyltransferase                                                   | P21964    |
| COPA     | Coatomer subunit alpha                                                         | P53621    |
| COPB1    | Coatomer subunit beta                                                          | P53618    |

| Gene    | Protein name                                                    | Accession |
|---------|-----------------------------------------------------------------|-----------|
| COPB2   | Coatomer subunit beta'                                          | P35606    |
| COPE    | Coatomer subunit epsilon                                        | O14579    |
| COPG1   | Coatomer subunit gamma-1                                        | Q9Y678    |
| COPZ1   | Coatomer subunit zeta-1                                         | P61923    |
| COQ3    | Hexaprenyldihydroxybenzoate methyltransferase, mitochondrial    | Q9NZJ6    |
| COQ5    | 2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial | Q5HYK3    |
| COQ6    | Ubiquinone biosynthesis monooxygenase COQ6                      | Q9Y2Z9    |
| CORO1A  | Coronin-1A                                                      | P31146    |
| COX15   | Cytochrome c oxidase assembly protein COX15 homolog             | Q7KZN9    |
| COX18   | Mitochondrial inner membrane protein COX18                      | Q8N8Q8    |
| COX4I1  | Cytochrome c oxidase subunit 4 isoform 1, mitochondrial         | P13073    |
| COX5A   | Cytochrome c oxidase subunit 5A, mitochondrial                  | P20674    |
| COX5B   | Cytochrome c oxidase subunit 5B, mitochondrial                  | P10606    |
| CPD     | Carboxypeptidase D                                              | O75976    |
| CPOX    | Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial  | P36551    |
| CPT1A   | Carnitine O-palmitoyltransferase 1, liver isoform               | P50416    |
| CPT2    | Carnitine O-palmitoyltransferase 2, mitochondrial               | P23786    |
| CPVL    | Probable serine carboxypeptidase CPVL                           | Q9H3G5    |
| CROCC   | Rootletin                                                       | Q5TZA2    |
| CRYZ    | Quinone oxidoreductase                                          | Q08257    |
| CS      | Citrate synthase, mitochondrial                                 | O75390    |
| CSDE1   | Cold shock domain-containing protein E1                         | O75534    |
| CSE1L   | Exportin-2                                                      | P55060    |
| CSPP1   | Centrosome and spindle pole-associated protein 1                | Q1MSJ5    |
| CTBP1   | C-terminal-binding protein 1                                    | Q13363    |
| CTDNEP1 | CTD nuclear envelope phosphatase 1                              | O95476    |
| CTNNA1  | Catenin alpha-1                                                 | P35221    |
| CTNNB1  | Catenin beta-1                                                  | P35222    |
| CTPS1   | CTP synthase 1                                                  | P17812    |
| CTSD    | Cathepsin D                                                     | P07339    |
| CTSG    | Cathepsin G                                                     | P08311    |
| CUX1    | Protein CASP                                                    | Q13948    |
| CXCR4   | C-X-C chemokine receptor type 4                                 | P61073    |
| CYB5A   | Cytochrome b5                                                   | P00167    |
| CYB5B   | Cytochrome b5 type B                                            | O43169    |
| CYB5R1  | NADH-cytochrome b5 reductase 1                                  | Q9UHQ9    |
| CYB5R3  | NADH-cytochrome b5 reductase 3                                  | P00387    |
| CYC1    | Cytochrome c1, heme protein, mitochondrial                      | P08574    |
| CYCS    | Cytochrome c                                                    | P99999    |
|         |                                                                 |           |

| Gene    | Protein name                                                                                                  | Accession |
|---------|---------------------------------------------------------------------------------------------------------------|-----------|
| CYP20A1 | Cytochrome P450 20A1                                                                                          | Q6UW02    |
| DAAM1   | Disheveled-associated activator of morphogenesis 1                                                            | Q9Y4D1    |
| DAD1    | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit DAD1                                     | P61803    |
| DAP3    | 28S ribosomal protein S29, mitochondrial                                                                      | P51398    |
| DARS    | AspartatetRNA ligase, cytoplasmic                                                                             | P14868    |
| DARS2   | AspartatetRNA ligase, mitochondrial                                                                           | Q6PI48    |
| DBT     | Lipoamide acyltransferase component of branched-chain alpha-keto acid<br>dehydrogenase complex, mitochondrial | P11182    |
| DCD     | Dermcidin                                                                                                     | P81605    |
| DCXR    | L-xylulose reductase                                                                                          | Q7Z4W1    |
| DDAH2   | N(G),N(G)-dimethylarginine dimethylaminohydrolase 2                                                           | O95865    |
| DDOST   | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subunit                                   | P39656    |
| DDRGK1  | DDRGK domain-containing protein 1                                                                             | Q96HY6    |
| DDX21   | Nucleolar RNA helicase 2                                                                                      | Q9NR30    |
| DDX24   | ATP-dependent RNA helicase DDX24                                                                              | Q9GZR7    |
| DDX28   | Probable ATP-dependent RNA helicase DDX28                                                                     | Q9NUL7    |
| DDX39A  | ATP-dependent RNA helicase DDX39A                                                                             | O00148    |
| DDX47   | Probable ATP-dependent RNA helicase DDX47                                                                     | Q9H0S4    |
| DDX5    | Probable ATP-dependent RNA helicase DDX5                                                                      | P17844    |
| DECR1   | 2,4-dienoyl-CoA reductase, mitochondrial                                                                      | Q16698    |
| DERL1   | Derlin-1                                                                                                      | Q9BUN8    |
| DERL2   | Derlin-2                                                                                                      | Q9GZP9    |
| DGUOK   | Deoxyguanosine kinase, mitochondrial                                                                          | Q16854    |
| DHCR24  | Delta(24)-sterol reductase                                                                                    | Q15392    |
| DHCR7   | 7-dehydrocholesterol reductase                                                                                | Q9UBM7    |
| DHODH   | Dihydroorotate dehydrogenase                                                                                  | Q02127    |
| DHRS4   | Dehydrogenase/reductase SDR family member 4                                                                   | Q9BTZ2    |
| DHRS7   | Dehydrogenase/reductase SDR family member 7                                                                   | Q9Y394    |
| DHTKD1  | Probable 2-oxoglutarate dehydrogenase E1 component DHKTD1,<br>mitochondrial                                   | Q96HY7    |
| DHX15   | Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15                                            | O43143    |
| DHX30   | Putative ATP-dependent RNA helicase DHX30                                                                     | Q7L2E3    |
| DHX9    | ATP-dependent RNA helicase A                                                                                  | Q08211    |
| DIABLO  | Diablo homolog, mitochondrial                                                                                 | Q9NR28    |
| DIAPH1  | Protein diaphanous homolog 1                                                                                  | O60610    |
| DIP2B   | Disco-interacting protein 2 homolog B                                                                         | Q9P265    |
| DIS3    | Exosome complex exonuclease RRP44                                                                             | Q9Y2L1    |
| DLAT    | Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial      | P10515    |

| Gene    | Protein name                                                                   | Accession |
|---------|--------------------------------------------------------------------------------|-----------|
| DLG1    | Disks large homolog 1                                                          | Q12959    |
| DICT    | Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate    | D2(057    |
| DLSI    | dehydrogenase complex, mitochondrial                                           | P30957    |
| DNAJA1  | DnaJ homolog subfamily A member 1                                              | P31689    |
| DNAJA2  | DnaJ homolog subfamily A member 2                                              | O60884    |
| DNAJA3  | DnaJ homolog subfamily A member 3, mitochondrial                               | Q96EY1    |
| DNAJB11 | DnaJ homolog subfamily B member 11                                             | Q9UBS4    |
| DNAJB12 | DnaJ homolog subfamily B member 12                                             | Q9NXW2    |
| DNAJB2  | DnaJ homolog subfamily B member 2                                              | P25686    |
| DNAJB6  | DnaJ homolog subfamily B member 6                                              | O75190    |
| DNAJC10 | DnaJ homolog subfamily C member 10                                             | Q8IXB1    |
| DNAJC13 | DnaJ homolog subfamily C member 13                                             | O75165    |
| DNAJC15 | DnaJ homolog subfamily C member 15                                             | Q9Y5T4    |
| DNAJC19 | Mitochondrial import inner membrane translocase subunit TIM14                  | Q96DA6    |
| DNAJC3  | DnaJ homolog subfamily C member 3                                              | Q13217    |
| DNAJC30 | DnaJ homolog subfamily C member 30                                             | Q96LL9    |
| DNAJC5  | DnaJ homolog subfamily C member 5                                              | Q9H3Z4    |
| DNLZ    | DNL-type zinc finger protein                                                   | Q5SXM8    |
| DNTTIP2 | Deoxynucleotidyltransferase terminal-interacting protein 2                     | Q5QJE6    |
| DOCK2   | Dedicator of cytokinesis protein 2                                             | Q92608    |
| DOCK7   | Dedicator of cytokinesis protein 7                                             | Q96N67    |
| DPM1    | Dolichol-phosphate mannosyltransferase subunit 1                               | O60762    |
| DRG1    | Developmentally-regulated GTP-binding protein 1                                | Q9Y295    |
| DSG1    | Desmoglein-1                                                                   | Q02413    |
| DSG2    | Desmoglein-2                                                                   | Q14126    |
| DSP     | Desmoplakin                                                                    | P15924    |
| DTYMK   | Thymidylate kinase                                                             | P23919    |
| DUT     | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial                | P33316    |
| DYNC1H1 | Cytoplasmic dynein 1 heavy chain 1                                             | Q14204    |
| EARS2   | Probable glutamatetRNA ligase, mitochondrial                                   | Q5JPH6    |
| EBAG9   | Receptor-binding cancer antigen expressed on SiSo cells                        | O00559    |
| ECH1    | Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial                     | Q13011    |
| ECHDC1  | Ethylmalonyl-CoA decarboxylase                                                 | Q9NTX5    |
| ECHS1   | Enoyl-CoA hydratase, mitochondrial                                             | P30084    |
| ECI2    | Enoyl-CoA delta isomerase 2, mitochondrial                                     | O75521    |
| ECSIT   | Evolutionarily conserved signaling intermediate in Toll pathway, mitochondrial | Q9BQ95    |
| EDC4    | Enhancer of mRNA-decapping protein 4                                           | Q6P2E9    |
| EDEM3   | ER degradation-enhancing alpha-mannosidase-like protein 3                      | Q9BZQ6    |
| EEA1    | Early endosome antigen 1                                                       | Q15075    |

| Gene     | Protein name                                                      | Accession |
|----------|-------------------------------------------------------------------|-----------|
| EEF1A1   | Elongation factor 1-alpha 1                                       | P68104    |
| EEF1A1P5 | Putative elongation factor 1-alpha-like 3                         | Q5VTE0    |
| EEF1D    | Elongation factor 1-delta                                         | P29692    |
| EEF1E1   | Eukaryotic translation elongation factor 1 epsilon-1              | O43324    |
| EEF1G    | Elongation factor 1-gamma                                         | P26641    |
| EEF2     | Elongation factor 2                                               | P13639    |
| EFCAB4B  | EF-hand calcium-binding domain-containing protein 4B              | Q9BSW2    |
| EFHD2    | EF-hand domain-containing protein D2                              | Q96C19    |
| EFTUD2   | 116 kDa U5 small nuclear ribonucleoprotein component              | Q15029    |
| EIF3C    | Eukaryotic translation initiation factor 3 subunit C              | Q99613    |
| EIF3CL   | Eukaryotic translation initiation factor 3 subunit C-like protein | B5ME19    |
| EIF3E    | Eukaryotic translation initiation factor 3 subunit E              | P60228    |
| EIF3H    | Eukaryotic translation initiation factor 3 subunit H              | O15372    |
| EIF3I    | Eukaryotic translation initiation factor 3 subunit I              | Q13347    |
| EIF4A1   | Eukaryotic initiation factor 4A-I                                 | P60842    |
| EIF4A3   | Eukaryotic initiation factor 4A-III                               | P38919    |
| EIF4E2   | Eukaryotic translation initiation factor 4E type 2                | O60573    |
| EIF4G1   | Eukaryotic translation initiation factor 4 gamma 1                | Q04637    |
| EIF5A    | Eukaryotic translation initiation factor 5A-1                     | P63241    |
| EIF5AL1  | Eukaryotic translation initiation factor 5A-1-like                | Q6IS14    |
| EIF6     | Eukaryotic translation initiation factor 6                        | P56537    |
| ELAC2    | Zinc phosphodiesterase ELAC protein 2                             | Q9BQ52    |
| ELAVL1   | ELAV-like protein 1                                               | Q15717    |
| ELMO1    | Engulfment and cell motility protein 1                            | Q92556    |
| ELMOD2   | ELMO domain-containing protein 2                                  | Q8IZ81    |
| EMC1     | ER membrane protein complex subunit 1                             | Q8N766    |
| EMC3     | ER membrane protein complex subunit 3                             | Q9P0I2    |
| EMC4     | ER membrane protein complex subunit 4                             | Q5J8M3    |
| EMC6     | ER membrane protein complex subunit 6                             | Q9BV81    |
| EMC7     | ER membrane protein complex subunit 7                             | Q9NPA0    |
| EMC8     | ER membrane protein complex subunit 8                             | O43402    |
| EMD      | Emerin                                                            | P50402    |
| ENDOD1   | Endonuclease domain-containing 1 protein                          | O94919    |
| ENO1     | Alpha-enolase                                                     | P06733    |
| ENPP4    | Bis(5'-adenosyl)-triphosphatase ENPP4                             | Q9Y6X5    |
| EPB41    | Protein 4.1                                                       | P11171    |
| EPDR1    | Mammalian ependymin-related protein 1                             | Q9UM22    |
| EPHX1    | Epoxide hydrolase 1                                               | P07099    |
| EPPK1    | Epiplakin                                                         | P58107    |

| Gene     | Protein name                                                   | Accession |
|----------|----------------------------------------------------------------|-----------|
| EPRS     | Bifunctional glutamate/prolinetRNA ligase                      | P07814    |
| EPS15L1  | Epidermal growth factor receptor substrate 15-like 1           | Q9UBC2    |
| ERAL1    | GTPase Era, mitochondrial                                      | O75616    |
| ERAP1    | Endoplasmic reticulum aminopeptidase 1                         | Q9NZ08    |
| ERAP2    | Endoplasmic reticulum aminopeptidase 2                         | Q6P179    |
| ERBB2IP  | Protein LAP2                                                   | Q96RT1    |
| ERGIC1   | Endoplasmic reticulum-Golgi intermediate compartment protein 1 | Q969X5    |
| ERGIC3   | Endoplasmic reticulum-Golgi intermediate compartment protein 3 | Q9Y282    |
| ERLEC1   | Endoplasmic reticulum lectin 1                                 | Q96DZ1    |
| ERLIN2   | Erlin-2                                                        | O94905    |
| ERO1L    | ERO1-like protein alpha                                        | Q96HE7    |
| ERP29    | Endoplasmic reticulum resident protein 29                      | P30040    |
| ERP44    | Endoplasmic reticulum resident protein 44                      | Q9BS26    |
| ESYT1    | Extended synaptotagmin-1                                       | Q9BSJ8    |
| ETFA     | Electron transfer flavoprotein subunit alpha, mitochondrial    | P13804    |
| ETFB     | Electron transfer flavoprotein subunit beta                    | P38117    |
| ETHE1    | Persulfide dioxygenase ETHE1, mitochondrial                    | O95571    |
| EXOC1    | Exocyst complex component 1                                    | Q9NV70    |
| EXOG     | Nuclease EXOG, mitochondrial                                   | Q9Y2C4    |
| F5       | Coagulation factor V                                           | P12259    |
| FABP5    | Fatty acid-binding protein, epidermal                          | Q01469    |
| FADS2    | Fatty acid desaturase 2                                        | O95864    |
| FAF2     | FAS-associated factor 2                                        | Q96CS3    |
| FAHD1    | Acylpyruvase FAHD1, mitochondrial                              | Q6P587    |
| FAHD2A   | Fumarylacetoacetate hydrolase domain-containing protein 2A     | Q96GK7    |
| FAM120A  | Constitutive coactivator of PPAR-gamma-like protein 1          | Q9NZB2    |
| FAM134C  | Protein FAM134C                                                | Q86VR2    |
| FAM160B1 | Protein FAM160B1                                               | Q5W0V3    |
| FAM162A  | Protein FAM162A                                                | Q96A26    |
| FAM20B   | Glycosaminoglycan xylosylkinase                                | O75063    |
| FAM210A  | Protein FAM210A                                                | Q96ND0    |
| FAM213A  | Redox-regulatory protein FAM213A                               | Q9BRX8    |
| FAM3C    | Protein FAM3C                                                  | Q92520    |
| FAM49B   | Protein FAM49B                                                 | Q9NUQ9    |
| FAM96B   | Mitotic spindle-associated MMXD complex subunit MIP18          | Q9Y3D0    |
| FANCD2   | Fanconi anemia group D2 protein                                | Q9BXW9    |
| FANCI    | Fanconi anemia group I protein                                 | Q9NVI1    |
| FAR1     | Fatty acyl-CoA reductase 1                                     | Q8WVX9    |
| FARS2    | PhenylalaninetRNA ligase, mitochondrial                        | O95363    |
|          |                                                                |           |

| Gene    | Protein name                                                | Accession |
|---------|-------------------------------------------------------------|-----------|
| FAS     | Tumor necrosis factor receptor superfamily member 6         | P25445    |
| FASN    | Fatty acid synthase                                         | P49327    |
| FASTKD1 | FAST kinase domain-containing protein 1                     | Q53R41    |
| FASTKD2 | FAST kinase domain-containing protein 2                     | Q9NYY8    |
| FAT1    | Protocadherin Fat 1                                         | Q14517    |
| FDFT1   | Squalene synthase                                           | P37268    |
| FDPS    | Farnesyl pyrophosphate synthase                             | P14324    |
| FDX1    | Adrenodoxin, mitochondrial                                  | P10109    |
| FDXR    | NADPH:adrenodoxin oxidoreductase, mitochondrial             | P22570    |
| FECH    | Ferrochelatase, mitochondrial                               | P22830    |
| FEN1    | Flap endonuclease 1                                         | P39748    |
| FERMT3  | Fermitin family homolog 3                                   | Q86UX7    |
| FGA     | Fibrinogen alpha chain                                      | P02671    |
| FGFR1OP | FGFR1 oncogene partner                                      | O95684    |
| FH      | Fumarate hydratase, mitochondrial                           | P07954    |
| FIS1    | Mitochondrial fission 1 protein                             | Q9Y3D6    |
| FKBP11  | Peptidyl-prolyl cis-trans isomerase FKBP11                  | Q9NYL4    |
| FKBP15  | FK506-binding protein 15                                    | Q5T1M5    |
| FKBP2   | Peptidyl-prolyl cis-trans isomerase FKBP2                   | P26885    |
| FLG2    | Filaggrin-2                                                 | Q5D862    |
| FLII    | Protein flightless-1 homolog                                | Q13045    |
| FLNA    | Filamin-A                                                   | P21333    |
| FLNB    | Filamin-B                                                   | O75369    |
| FLOT1   | Flotillin-1                                                 | O75955    |
| FLOT2   | Flotillin-2                                                 | Q14254    |
| FLVCR1  | Feline leukemia virus subgroup C receptor-related protein 1 | Q9Y5Y0    |
| FMNL1   | Formin-like protein 1                                       | O95466    |
| FN1     | Fibronectin                                                 | P02751    |
| FNDC3A  | Fibronectin type-III domain-containing protein 3A           | Q9Y2H6    |
| FOXRED1 | FAD-dependent oxidoreductase domain-containing protein 1    | Q96CU9    |
| FRG1    | Protein FRG1                                                | Q14331    |
| FTH1    | Ferritin heavy chain                                        | P02794    |
| FTSJ3   | pre-rRNA processing protein FTSJ3                           | Q8IY81    |
| FUNDC2  | FUN14 domain-containing protein 2                           | Q9BWH2    |
| FUT8    | Alpha-(1,6)-fucosyltransferase                              | Q9BYC5    |
| FXN     | Frataxin, mitochondrial                                     | Q16595    |
| FYCO1   | FYVE and coiled-coil domain-containing protein 1            | Q9BQS8    |
| G6PD    | Glucose-6-phosphate 1-dehydrogenase                         | P11413    |
| GAA     | Lysosomal alpha-glucosidase                                 | P10253    |

| <u>د</u> | Gene       | Protein name                                                               | Accession |
|----------|------------|----------------------------------------------------------------------------|-----------|
| ő        | GABARAPL2  | Gamma-aminobutyric acid receptor-associated protein-like 2                 | P60520    |
|          | GADD45GIP1 | Growth arrest and DNA damage-inducible proteins-interacting protein 1      | Q8TAE8    |
|          | GALNT2     | Polypeptide N-acetylgalactosaminyltransferase 2                            | Q10471    |
|          | GALNT7     | N-acetylgalactosaminyltransferase 7                                        | Q86SF2    |
|          | GAPDH      | Glyceraldehyde-3-phosphate dehydrogenase                                   | P04406    |
|          | GARS       | GlycinetRNA ligase                                                         | P41250    |
|          | GART       | Trifunctional purine biosynthetic protein adenosine-3                      | P22102    |
|          | GATC       | Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial               | O43716    |
|          | GBAS       | Protein NipSnap homolog 2                                                  | O75323    |
|          | GBF1       | Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 | Q92538    |
|          | GCC2       | GRIP and coiled-coil domain-containing protein 2                           | Q8IWJ2    |
|          | GCSH       | Glycine cleavage system H protein, mitochondrial                           | P23434    |
|          | GDAP1      | Ganglioside-induced differentiation-associated protein 1                   | Q8TB36    |
|          | GDPD1      | Glycerophosphodiester phosphodiesterase domain-containing protein 1        | Q8N9F7    |
|          | GFM2       | Ribosome-releasing factor 2, mitochondrial                                 | Q969S9    |
|          | GGH        | Gamma-glutamyl hydrolase                                                   | Q92820    |
|          | GHITM      | Growth hormone-inducible transmembrane protein                             | Q9H3K2    |
|          | GIGYF2     | PERQ amino acid-rich with GYF domain-containing protein 2                  | Q6Y7W6    |
|          | GIMAP1     | GTPase IMAP family member 1                                                | Q8WWP7    |
|          | GIMAP6     | GTPase IMAP family member 6                                                | Q6P9H5    |
|          | GLG1       | Golgi apparatus protein 1                                                  | Q92896    |
|          | GLIPR2     | Golgi-associated plant pathogenesis-related protein 1                      | Q9H4G4    |
|          | GLRX3      | Glutaredoxin-3                                                             | O76003    |
|          | GLRX5      | Glutaredoxin-related protein 5, mitochondrial                              | Q86SX6    |
|          | GLS        | Glutaminase kidney isoform, mitochondrial                                  | O94925    |
|          | GLUD1      | Glutamate dehydrogenase 1, mitochondrial                                   | P00367    |
|          | GNA13      | Guanine nucleotide-binding protein subunit alpha-13                        | Q14344    |
|          | GNAI2      | Guanine nucleotide-binding protein G(i) subunit alpha-2                    | P04899    |
|          | GNAI3      | Guanine nucleotide-binding protein G(k) subunit alpha                      | P08754    |
|          | GNAQ       | Guanine nucleotide-binding protein G(q) subunit alpha                      | P50148    |
|          | GNAS       | Guanine nucleotide-binding protein G(s) subunit alpha isoforms short       | P63092    |
|          | GNB2       | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2           | P62879    |
|          | GNB2L1     | Guanine nucleotide-binding protein subunit beta-2-like 1                   | P63244    |
|          | GNPTAB     | N-acetylglucosamine-1-phosphotransferase subunits alpha/beta               | Q3T906    |
|          | GNS        | N-acetylglucosamine-6-sulfatase                                            | P15586    |
|          | GOLGA2     | Golgin subfamily A member 2                                                | Q08379    |
|          | GOLGA3     | Golgin subfamily A member 3                                                | Q08378    |
|          | GOLGA5     | Golgin subfamily A member 5                                                | Q8TBA6    |
|          | GOLGA7     | Golgin subfamily A member 7                                                | Q7Z5G4    |
|          |            |                                                                            |           |

| Gene    | Protein name                                                  | Accession |
|---------|---------------------------------------------------------------|-----------|
| GOLGB1  | Golgin subfamily B member 1                                   | Q14789    |
| GOLPH3  | Golgi phosphoprotein 3                                        | Q9H4A6    |
| GOPC    | Golgi-associated PDZ and coiled-coil motif-containing protein | Q9HD26    |
| GORASP2 | Golgi reassembly-stacking protein 2                           | Q9H8Y8    |
| GOSR1   | Golgi SNAP receptor complex member 1                          | O95249    |
| GOSR2   | Golgi SNAP receptor complex member 2                          | O35165    |
| GOT2    | Aspartate aminotransferase, mitochondrial                     | P00505    |
| GPR107  | Protein GPR107                                                | Q5VW38    |
| GRAP2   | GRB2-related adapter protein 2                                | O75791    |
| GRB2    | Growth factor receptor-bound protein 2                        | P62993    |
| GRHPR   | Glyoxylate reductase/hydroxypyruvate reductase                | Q9UBQ7    |
| GRPEL1  | GrpE protein homolog 1, mitochondrial                         | Q9HAV7    |
| GRPEL2  | GrpE protein homolog 2, mitochondrial                         | Q8TAA5    |
| GRSF1   | G-rich sequence factor 1                                      | Q12849    |
| GSN     | Gelsolin                                                      | P06396    |
| GSR     | Glutathione reductase, mitochondrial                          | P00390    |
| GSTK1   | Glutathione S-transferase kappa 1                             | Q9Y2Q3    |
| GSTP1   | Glutathione S-transferase P                                   | P09211    |
| GTPBP10 | GTP-binding protein 10                                        | A4D1E9    |
| GTPBP3  | tRNA modification GTPase GTPBP3, mitochondrial                | Q969Y2    |
| GTPBP6  | Putative GTP-binding protein 6                                | O43824    |
| GTPBP8  | GTP-binding protein 8                                         | Q8N3Z3    |
| GUK1    | Guanylate kinase                                              | Q64520    |
| H2AFV   | Histone H2A.V                                                 | Q71UI9    |
| H2AFX   | Histone H2AX                                                  | P16104    |
| H2AFY   | Core histone macro-H2A.1                                      | O75367    |
| H2AFZ   | Histone H2A.Z                                                 | P0C0S5    |
| H3F3A   | Histone H3.3                                                  | P84243    |
| H6PD    | GDH/6PGL endoplasmic bifunctional protein                     | O95479    |
| HADH    | Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial           | Q16836    |
| HADHA   | Trifunctional enzyme subunit alpha, mitochondrial             | P40939    |
| HADHB   | Trifunctional enzyme subunit beta, mitochondrial              | P55084    |
| HAGH    | Hydroxyacylglutathione hydrolase, mitochondrial               | Q16775    |
| HAL     | Histidine ammonia-lyase                                       | P42357    |
| HARS2   | Probable histidinetRNA ligase, mitochondrial                  | P49590    |
| HAUS1   | HAUS augmin-like complex subunit 1                            | Q96CS2    |
| HAUS2   | HAUS augmin-like complex subunit 2                            | Q9NVX0    |
| HAUS4   | HAUS augmin-like complex subunit 4                            | Q9H6D7    |
| HAUS6   | HAUS augmin-like complex subunit 6                            | Q7Z4H7    |
|         |                                                               |           |

| Gene      | Protein name                                                     | Accession |
|-----------|------------------------------------------------------------------|-----------|
| HAUS7     | HAUS augmin-like complex subunit 7                               | Q99871    |
| HAUS8     | HAUS augmin-like complex subunit 8                               | Q9BT25    |
| HAX1      | HCLS1-associated protein X-1                                     | O00165    |
| HBA1;     | Hemoglobin subunit alpha                                         | P69905    |
| HBB       | Hemoglobin subunit beta                                          | P68871    |
| HCCS      | Cytochrome c-type heme lyase                                     | P53701    |
| HCFC1     | Host cell factor 1                                               | P51610    |
| HDHD3     | Haloacid dehalogenase-like hydrolase domain-containing protein 3 | Q9BSH5    |
| HDLBP     | Vigilin                                                          | Q00341    |
| HEATR1    | HEAT repeat-containing protein 1                                 | Q9H583    |
| HEXB      | Beta-hexosaminidase subunit beta                                 | P07686    |
| HIBADH    | 3-hydroxyisobutyrate dehydrogenase, mitochondrial                | P31937    |
| HIBCH     | 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial                 | Q6NVY1    |
| HINT1     | Histidine triad nucleotide-binding protein 1                     | P49773    |
| HIST1H1B  | Histone H1.5                                                     | P16401    |
| HIST1H1C  | Histone H1.2                                                     | P16403    |
| HIST1H1D  | Histone H1.3                                                     | P16402    |
| HIST1H2AC | Histone H2A type 1-C                                             | Q93077    |
| HIST1H2BB | Histone H2B type 1-B                                             | P33778    |
| HIST1H2BC | Histone H2B type 1-C/E/F/G/I                                     | P62807    |
| HIST1H2BD | Histone H2B type 1-D                                             | P58876    |
| HIST1H2BH | Histone H2B type 1-H                                             | Q93079    |
| HIST1H2BJ | Histone H2B type 1-J                                             | P06899    |
| HIST1H4A  | Histone H4                                                       | P62805    |
| HK1       | Hexokinase-1                                                     | P19367    |
| HK2       | Hexokinase-2                                                     | P52789    |
| HLA-A     | HLA class I histocompatibility antigen, A-3 alpha chain          | P04439    |
| HLA-B     | HLA class I histocompatibility antigen, B-8 alpha chain          | P30460    |
| HLA-E     | HLA class I histocompatibility antigen, alpha chain E            | P13747    |
| HM13      | Minor histocompatibility antigen H13                             | Q8TCT9    |
| HMGB1     | High mobility group protein B1                                   | P09429    |
| HMGB1P1   | Putative high mobility group protein B1-like 1                   | B2RPK0    |
| HMGB2     | High mobility group protein B2                                   | P26583    |
| HMGCL     | Hydroxymethylglutaryl-CoA lyase, mitochondrial                   | P35914    |
| HMGCR     | 3-hydroxy-3-methylglutaryl-coenzyme A reductase                  | P04035    |
| HNRNPA0   | Heterogeneous nuclear ribonucleoprotein A0                       | Q13151    |
| HNRNPA1   | Heterogeneous nuclear ribonucleoprotein A1                       | P09651    |
| HNRNPA2B1 | Heterogeneous nuclear ribonucleoproteins A2/B1                   | P22626    |
| HNRNPA3   | Heterogeneous nuclear ribonucleoprotein A3                       | P51991    |

| Gene     | Protein name                                         | Accession |
|----------|------------------------------------------------------|-----------|
| HNRNPC   | Heterogeneous nuclear ribonucleoproteins C1/C2       | P07910    |
| HNRNPD   | Heterogeneous nuclear ribonucleoprotein D0           | Q14103    |
| HNRNPF   | Heterogeneous nuclear ribonucleoprotein F            | P52597    |
| HNRNPH1  | Heterogeneous nuclear ribonucleoprotein H            | P31943    |
| HNRNPH3  | Heterogeneous nuclear ribonucleoprotein H3           | P31942    |
| HNRNPM   | Heterogeneous nuclear ribonucleoprotein M            | P52272    |
| HPCAL1   | Hippocalcin-like protein 1                           | P37235    |
| HPRT1    | Hypoxanthine-guanine phosphoribosyltransferase       | P00492    |
| HRNR     | Hornerin                                             | Q86YZ3    |
| HRSP12   | Ribonuclease UK114                                   | P52758    |
| HS2ST1   | Heparan sulfate 2-O-sulfotransferase 1               | Q7LGA3    |
| HSD17B10 | 3-hydroxyacyl-CoA dehydrogenase type-2               | Q99714    |
| HSD17B11 | Estradiol 17-beta-dehydrogenase 11                   | Q8NBQ5    |
| HSD17B12 | Estradiol 17-beta-dehydrogenase 12                   | Q53GQ0    |
| HSD17B4  | Peroxisomal multifunctional enzyme type 2            | P51659    |
| HSD17B7  | 3-keto-steroid reductase                             | P56937    |
| HSD17B8  | Estradiol 17-beta-dehydrogenase 8                    | Q92506    |
| HSDL1    | Inactive hydroxysteroid dehydrogenase-like protein 1 | Q3SXM5    |
| HSDL2    | Hydroxysteroid dehydrogenase-like protein 2          | Q6YN16    |
| HSP90AA1 | Heat shock protein HSP 90-alpha                      | P07900    |
| HSP90AB1 | Heat shock protein HSP 90-beta                       | P08238    |
| HSP90B1  | Endoplasmin                                          | P14625    |
| HSPA1A   | Heat shock 70 kDa protein 1A/1B                      | P08107    |
| HSPA5    | 78 kDa glucose-regulated protein                     | P11021    |
| HSPA8    | Heat shock cognate 71 kDa protein                    | P11142    |
| HSPA9    | Stress-70 protein, mitochondrial                     | P38646    |
| HSPB1    | Heat shock protein beta-1                            | P04792    |
| HSPD1    | 60 kDa heat shock protein, mitochondrial             | P10809    |
| HSPE1    | 10 kDa heat shock protein, mitochondrial             | P61604    |
| HSPH1    | Heat shock protein 105 kDa                           | Q92598    |
| HTRA2    | Serine protease HTRA2, mitochondrial                 | O43464    |
| HVCN1    | Voltage-gated hydrogen channel 1                     | Q96D96    |
| HYOU1    | Hypoxia up-regulated protein 1                       | Q9Y4L1    |
| IARS     | IsoleucinetRNA ligase, cytoplasmic                   | P41252    |
| IBA57    | Putative transferase CAF17, mitochondrial            | Q5T440    |
| ICAM2    | Intercellular adhesion molecule 2                    | P13598    |
| ICT1     | Peptidyl-tRNA hydrolase ICT1, mitochondrial          | Q14197    |
| IDE      | Insulin-degrading enzyme                             | P14735    |
| IDH2     | Isocitrate dehydrogenase [NADP], mitochondrial       | P48735    |

| Gene   | Protein name                                                | Accession |
|--------|-------------------------------------------------------------|-----------|
| IDH3A  | Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial | P50213    |
| IDH3B  | Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial  | O43837    |
| IDI1   | Isopentenyl-diphosphate Delta-isomerase 1                   | Q13907    |
| IFI35  | Interferon-induced 35 kDa protein                           | P80217    |
| IGF2R  | Cation-independent mannose-6-phosphate receptor             | P11717    |
| IGKC   | Ig kappa chain C region                                     | P01834    |
| IGSF8  | Immunoglobulin superfamily member 8                         | Q969P0    |
| IKBKAP | Elongator complex protein 1                                 | O95163    |
| ILF2   | Interleukin enhancer-binding factor 2                       | Q12905    |
| IMMT   | Mitochondrial inner membrane protein                        | Q16891    |
| IMPAD1 | Inositol monophosphatase 3                                  | Q9NX62    |
| IMPDH2 | Inosine-5'-monophosphate dehydrogenase 2                    | P12268    |
| INF2   | Inverted formin-2                                           | Q27J81    |
| IPO4   | Importin-4                                                  | Q8TEX9    |
| IPO5   | Importin-5                                                  | O00410    |
| IPO7   | Importin-7                                                  | O95373    |
| IPO8   | Importin-8                                                  | O15397    |
| IQGAP1 | Ras GTPase-activating-like protein IQGAP1                   | P46940    |
| IQGAP2 | Ras GTPase-activating-like protein IQGAP2                   | Q13576    |
| ISCA1  | Iron-sulfur cluster assembly 1 homolog, mitochondrial       | Q9BUE6    |
| ISCA2  | Iron-sulfur cluster assembly 2 homolog, mitochondrial       | Q86U28    |
| ISOC1  | Isochorismatase domain-containing protein 1                 | Q96CN7    |
| ISOC2  | Isochorismatase domain-containing protein 2, mitochondrial  | Q96AB3    |
| ITGA4  | Integrin alpha-4                                            | P13612    |
| ITGA5  | Integrin alpha-5                                            | P08648    |
| ITGAL  | Integrin alpha-L                                            | P20701    |
| ITGB1  | Integrin beta-1                                             | P05556    |
| ITM2A  | Integral membrane protein 2A                                | O43736    |
| ITM2B  | Integral membrane protein 2B                                | Q9Y287    |
| ITM2C  | Integral membrane protein 2C                                | Q9NQX7    |
| ITPR1  | Inositol 1,4,5-trisphosphate receptor type 1                | Q14643    |
| ITPR2  | Inositol 1,4,5-trisphosphate receptor type 2                | Q14571    |
| ITPR3  | Inositol 1,4,5-trisphosphate receptor type 3                | Q14573    |
| IVD    | Isovaleryl-CoA dehydrogenase, mitochondrial                 | P26440    |
| JAGN1  | Protein jagunal homolog 1                                   | Q8N5M9    |
| JAK1   | Tyrosine-protein kinase JAK1                                | P23458    |
| JAM3   | Junctional adhesion molecule C                              | Q9BX67    |
| JUP    | Junction plakoglobin                                        | P14923    |
| KARS   | LysinetRNA ligase                                           | Q15046    |

| Gene      | Protein name                                            | Accession |
|-----------|---------------------------------------------------------|-----------|
| KDELR1    | ER lumen protein retaining receptor 1                   | P24390    |
| KHSRP     | Far upstream element-binding protein 2                  | Q92945    |
| KIAA0922  | Transmembrane protein 131-like                          | A2VDJ0    |
| KIAA1731  | Centrosomal protein KIAA1731                            | Q9C0D2    |
| KIDINS220 | Kinase D-interacting substrate of 220 kDa               | Q9ULH0    |
| KIF11     | Kinesin-like protein KIF11                              | P52732    |
| KIF14     | Kinesin-like protein KIF14                              | Q15058    |
| KIF15     | Kinesin-like protein KIF15                              | Q9NS87    |
| KIF2C     | Kinesin-like protein KIF2C                              | Q99661    |
| KIF4A     | Chromosome-associated kinesin KIF4A                     | O95239    |
| KIF5B     | Kinesin-1 heavy chain                                   | P33176    |
| KIFC1     | Kinesin-like protein KIFC1                              | Q9BW19    |
| KPNA2     | Importin subunit alpha-1                                | P52292    |
| KPNB1     | Importin subunit beta-1                                 | Q14974    |
| KRT1      | Keratin, type II cytoskeletal 1                         | P04264    |
| KRT10     | Keratin, type I cytoskeletal 10                         | P13645    |
| KRT14     | Keratin, type I cytoskeletal 14                         | P02533    |
| KRT15     | Keratin, type I cytoskeletal 15                         | P19012    |
| KRT16     | Keratin, type I cytoskeletal 16                         | P08779    |
| KRT17     | Keratin, type I cytoskeletal 17                         | Q04695    |
| KRT2      | Keratin, type II cytoskeletal 2 epidermal               | P35908    |
| KRT5      | Keratin, type II cytoskeletal 5                         | P13647    |
| KRT6A     | Keratin, type II cytoskeletal 6A                        | P02538    |
| KRT6C     | Keratin, type II cytoskeletal 6C                        | P48668    |
| KRT78     | Keratin, type II cytoskeletal 78                        | Q8N1N4    |
| KRT80     | Keratin, type II cytoskeletal 80                        | Q6KB66    |
| KRT9      | Keratin, type I cytoskeletal 9                          | P35527    |
| KTN1      | Kinectin                                                | Q86UP2    |
| L2HGDH    | L-2-hydroxyglutarate dehydrogenase, mitochondrial       | Q9H9P8    |
| LACTB     | Serine beta-lactamase-like protein LACTB, mitochondrial | P83111    |
| LAMP1     | Lysosome-associated membrane glycoprotein 1             | P11279    |
| LAMP2     | Lysosome-associated membrane glycoprotein 2             | P13473    |
| LAMTOR1   | Ragulator complex protein LAMTOR1                       | Q6IAA8    |
| LAMTOR2   | Ragulator complex protein LAMTOR2                       | Q9Y2Q5    |
| LAMTOR3   | Ragulator complex protein LAMTOR3                       | Q9UHA4    |
| LAP3      | Cytosol aminopeptidase                                  | P28838    |
| LAPTM5    | Lysosomal-associated transmembrane protein 5            | Q13571    |
| LARS      | LeucinetRNA ligase, cytoplasmic                         | Q9P2J5    |
| LARS2     | Probable leucinetRNA ligase, mitochondrial              | Q15031    |
| Gene     | Protein name                                                 | Accession |
|----------|--------------------------------------------------------------|-----------|
| LBR      | Lamin-B receptor                                             | Q14739    |
| LCLAT1   | Lysocardiolipin acyltransferase 1                            | Q6UWP7    |
| LCP1     | Plastin-2                                                    | P13796    |
| LDHA     | L-lactate dehydrogenase A chain                              | P00338    |
| LDHB     | L-lactate dehydrogenase B chain                              | P07195    |
| LDLR     | Low-density lipoprotein receptor                             | P01130    |
| LEMD2    | LEM domain-containing protein 2                              | Q8NC56    |
| LEPRE1   | Prolyl 3-hydroxylase 1                                       | Q32P28    |
| LETM1    | LETM1 and EF-hand domain-containing protein 1, mitochondrial | O95202    |
| LETMD1   | LETM1 domain-containing protein 1                            | Q6P1Q0    |
| LGALS3BP | Galectin-3-binding protein                                   | Q08380    |
| LGALS7   | Galectin-7                                                   | P47929    |
| LIG3     | DNA ligase 3                                                 | P49916    |
| LIME1    | Lck-interacting transmembrane adapter 1                      | Q9H400    |
| LMAN1    | Protein ERGIC-53                                             | P49257    |
| LMAN2    | Vesicular integral-membrane protein VIP36                    | Q12907    |
| LMAN2L   | VIP36-like protein                                           | Q9H0V9    |
| LMNB1    | Lamin-B1                                                     | P20700    |
| LMNB2    | Lamin-B2                                                     | Q03252    |
| LMO7     | LIM domain only protein 7                                    | Q8WWI1    |
| LNP      | Protein lunapark                                             | Q9C0E8    |
| LNPEP    | Leucyl-cystinyl aminopeptidase                               | Q9UIQ6    |
| LONP1    | Lon protease homolog, mitochondrial                          | P36776    |
| LONP2    | Lon protease homolog 2, peroxisomal                          | Q86WA8    |
| LPCAT1   | Lysophosphatidylcholine acyltransferase 1                    | Q8NF37    |
| LPCAT3   | Lysophospholipid acyltransferase 5                           | Q6P1A2    |
| LRPAP1   | Alpha-2-macroglobulin receptor-associated protein            | P30533    |
| LRRC59   | Leucine-rich repeat-containing protein 59                    | Q96AG4    |
| LRRC8A   | Leucine-rich repeat-containing protein 8A                    | Q8IWT6    |
| LRRC8C   | Leucine-rich repeat-containing protein 8C                    | Q8TDW0    |
| LRRFIP1  | Leucine-rich repeat flightless-interacting protein 1         | Q32MZ4    |
| LSM12    | Protein LSM12 homolog                                        | Q3MHD2    |
| LSS      | Lanosterol synthase                                          | P48449    |
| LYPLAL1  | Lysophospholipase-like protein 1                             | Q5VWZ2    |
| LYRM4    | LYR motif-containing protein 4                               | Q9HD34    |
| LYRM7    | Complex III assembly factor LYRM7                            | Q5U5X0    |
| LYZ      | Lysozyme C                                                   | P61626    |
| MACROD1  | O-acetyl-ADP-ribose deacetylase MACROD1                      | Q9BQ69    |
| MAGED1   | Melanoma-associated antigen D1                               | Q9Y5V3    |
|          |                                                              |           |

| Gene     | Protein name                                                         | Accession |
|----------|----------------------------------------------------------------------|-----------|
| MAGOH    | Protein mago nashi homolog                                           | P61326    |
| MAGOHB   | Protein mago nashi homolog 2                                         | Q96A72    |
| MAGT1    | Magnesium transporter protein 1                                      | Q9H0U3    |
| MAN1B1   | Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase | Q9UKM7    |
| MAN2A1   | Alpha-mannosidase 2                                                  | Q16706    |
| MAN2A2   | Alpha-mannosidase 2x                                                 | P49641    |
| MAN2B1   | Lysosomal alpha-mannosidase                                          | O00754    |
| MANF     | Mesencephalic astrocyte-derived neurotrophic factor                  | P55145    |
| MAP2K2   | Dual specificity mitogen-activated protein kinase kinase 2           | P36507    |
| MARCH5   | E3 ubiquitin-protein ligase MARCH5                                   | Q9NX47    |
| MARCH6   | E3 ubiquitin-protein ligase MARCH6                                   | O60337    |
| MARCKSL1 | MARCKS-related protein                                               | P49006    |
| MARS     | MethioninetRNA ligase, cytoplasmic                                   | P56192    |
| MARS2    | MethioninetRNA ligase, mitochondrial                                 | Q96GW9    |
| MAVS     | Mitochondrial antiviral-signaling protein                            | Q7Z434    |
| MBLAC2   | Metallo-beta-lactamase domain-containing protein 2                   | Q68D91    |
| MCAT     | Malonyl-CoA-acyl carrier protein transacylase, mitochondrial         | Q8IVS2    |
| MCCC1    | Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial         | Q96RQ3    |
| MCEE     | Methylmalonyl-CoA epimerase, mitochondrial                           | Q96PE7    |
| MCM2     | DNA replication licensing factor MCM2                                | P49736    |
| MCM3     | DNA replication licensing factor MCM3                                | P25205    |
| MCM4     | DNA replication licensing factor MCM4                                | P33991    |
| MCM5     | DNA replication licensing factor MCM5                                | P33992    |
| MCM6     | DNA replication licensing factor MCM6                                | Q14566    |
| MCM7     | DNA replication licensing factor MCM7                                | P33993    |
| MCU      | Calcium uniporter protein, mitochondrial                             | Q8NE86    |
| MCUR1    | Mitochondrial calcium uniporter regulator 1                          | Q96AQ8    |
| MDC1     | Mediator of DNA damage checkpoint protein 1                          | Q14676    |
| MDH1     | Malate dehydrogenase, cytoplasmic                                    | P40925    |
| MDH2     | Malate dehydrogenase, mitochondrial                                  | P40926    |
| MDM1     | Nuclear protein MDM1                                                 | Q8TC05    |
| ME2      | NAD-dependent malic enzyme, mitochondrial                            | P23368    |
| MECR     | Trans-2-enoyl-CoA reductase, mitochondrial                           | Q9BV79    |
| MESDC2   | LDLR chaperone MESD                                                  | Q14696    |
| METTL15  | Probable methyltransferase-like protein 15                           | A6NJ78    |
| METTL17  | Methyltransferase-like protein 17, mitochondrial                     | Q9H7H0    |
| MFF      | Mitochondrial fission factor                                         | Q9GZY8    |
| MFGE8    | Lactadherin                                                          | Q08431    |
| MFN1     | Mitofusin-1                                                          | Q8IWA4    |

| 13 | Gene   | Protein name                                                           | Accession |
|----|--------|------------------------------------------------------------------------|-----------|
| 4  | MFN2   | Mitofusin-2                                                            | O95140    |
|    | MFSD6  | Major facilitator superfamily domain-containing protein 6              | Q6ZSS7    |
|    | MGAT2  | Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase | Q10469    |
|    | MGME1  | Mitochondrial genome maintenance exonuclease 1                         | Q9BQP7    |
|    | MGMT   | Methylated-DNAprotein-cysteine methyltransferase                       | P16455    |
|    | MGST3  | Microsomal glutathione S-transferase 3                                 | O14880    |
|    | MIA3   | Melanoma inhibitory activity protein 3                                 | Q5JRA6    |
|    | MIB1   | E3 ubiquitin-protein ligase MIB1                                       | Q86YT6    |
|    | MICU2  | Calcium uptake protein 2, mitochondrial                                | Q8IYU8    |
|    | MKI67  | Antigen KI-67                                                          | P46013    |
|    | MLEC   | Malectin                                                               | Q14165    |
|    | MLYCD  | Malonyl-CoA decarboxylase, mitochondrial                               | O95822    |
|    | MMAA   | Methylmalonic aciduria type A protein, mitochondrial                   | Q8IVH4    |
|    | MMGT1  | Membrane magnesium transporter 1                                       | Q8N4V1    |
|    | MOB1A  | MOB kinase activator 1A                                                | Q9H8S9    |
|    | MOB1B  | MOB kinase activator 1B                                                | Q7L9L4    |
|    | MOCS1  | Molybdenum cofactor biosynthesis protein 1                             | Q9NZB8    |
|    | MOGS   | Mannosyl-oligosaccharide glucosidase                                   | Q13724    |
|    | MPST   | 3-mercaptopyruvate sulfurtransferase                                   | P25325    |
|    | MRM1   | rRNA methyltransferase 1, mitochondrial                                | Q6IN84    |
|    | MRPL1  | 39S ribosomal protein L1, mitochondrial                                | Q9BYD6    |
|    | MRPL10 | 39S ribosomal protein L10, mitochondrial                               | Q7Z7H8    |
|    | MRPL11 | 39S ribosomal protein L11, mitochondrial                               | Q9Y3B7    |
|    | MRPL13 | 39S ribosomal protein L13, mitochondrial                               | Q9BYD1    |
|    | MRPL14 | 39S ribosomal protein L14, mitochondrial                               | Q6P1L8    |
|    | MRPL15 | 39S ribosomal protein L15, mitochondrial                               | Q9P015    |
|    | MRPL16 | 39S ribosomal protein L16, mitochondrial                               | Q9NX20    |
|    | MRPL17 | 39S ribosomal protein L17, mitochondrial                               | Q9NRX2    |
|    | MRPL19 | 39S ribosomal protein L19, mitochondrial                               | P49406    |
|    | MRPL2  | 39S ribosomal protein L2, mitochondrial                                | Q5T653    |
|    | MRPL20 | 39S ribosomal protein L20, mitochondrial                               | Q9BYC9    |
|    | MRPL21 | 39S ribosomal protein L21, mitochondrial                               | Q7Z2W9    |
|    | MRPL22 | 39S ribosomal protein L22, mitochondrial                               | Q9NWU5    |
|    | MRPL24 | 39S ribosomal protein L24, mitochondrial                               | Q96A35    |
|    | MRPL28 | 39S ribosomal protein L28, mitochondrial                               | Q13084    |
|    | MRPL30 | 39S ribosomal protein L30, mitochondrial                               | Q8TCC3    |
|    | MRPL32 | 39S ribosomal protein L32, mitochondrial                               | Q9BYC8    |
|    | MRPL38 | 39S ribosomal protein L38, mitochondrial                               | Q96DV4    |
|    | MRPL39 | 39S ribosomal protein L39, mitochondrial                               | Q9NYK5    |

| Gene    | Protein name                                      | Accession |
|---------|---------------------------------------------------|-----------|
| MRPL4   | 39S ribosomal protein L4, mitochondrial           | Q9BYD3    |
| MRPL41  | 39S ribosomal protein L41, mitochondrial          | Q8IXM3    |
| MRPL43  | 39S ribosomal protein L43, mitochondrial          | Q8N983    |
| MRPL44  | 39S ribosomal protein L44, mitochondrial          | Q9H9J2    |
| MRPL45  | 39S ribosomal protein L45, mitochondrial          | Q9BRJ2    |
| MRPL46  | 39S ribosomal protein L46, mitochondrial          | Q9H2W6    |
| MRPL47  | 39S ribosomal protein L47, mitochondrial          | Q9HD33    |
| MRPL48  | 39S ribosomal protein L48, mitochondrial          | Q96GC5    |
| MRPL49  | 39S ribosomal protein L49, mitochondrial          | Q13405    |
| MRPL50  | 39S ribosomal protein L50, mitochondrial          | Q8N5N7    |
| MRPL53  | 39S ribosomal protein L53, mitochondrial          | Q96EL3    |
| MRPL9   | 39S ribosomal protein L9, mitochondrial           | Q9BYD2    |
| MRPS11  | 28S ribosomal protein S11, mitochondrial          | P82912    |
| MRPS12  | 28S ribosomal protein S12, mitochondrial          | O15235    |
| MRPS14  | 28S ribosomal protein S14, mitochondrial          | O60783    |
| MRPS15  | 28S ribosomal protein S15, mitochondrial          | P82914    |
| MRPS16  | 28S ribosomal protein S16, mitochondrial          | Q9Y3D3    |
| MRPS17  | 28S ribosomal protein S17, mitochondrial          | Q9Y2R5    |
| MRPS18B | 28S ribosomal protein S18b, mitochondrial         | Q9Y676    |
| MRPS2   | 28S ribosomal protein S2, mitochondrial           | Q9Y399    |
| MRPS22  | 28S ribosomal protein S22, mitochondrial          | P82650    |
| MRPS23  | 28S ribosomal protein S23, mitochondrial          | Q9Y3D9    |
| MRPS24  | 28S ribosomal protein S24, mitochondrial          | Q96EL2    |
| MRPS26  | 28S ribosomal protein S26, mitochondrial          | Q9BYN8    |
| MRPS27  | 28S ribosomal protein S27, mitochondrial          | Q92552    |
| MRPS28  | 28S ribosomal protein S28, mitochondrial          | Q9Y2Q9    |
| MRPS30  | 28S ribosomal protein S30, mitochondrial          | Q9NP92    |
| MRPS31  | 28S ribosomal protein S31, mitochondrial          | Q92665    |
| MRPS33  | 28S ribosomal protein S33, mitochondrial          | Q9Y291    |
| MRPS34  | 28S ribosomal protein S34, mitochondrial          | P82930    |
| MRPS35  | 28S ribosomal protein S35, mitochondrial          | P82673    |
| MRPS5   | 28S ribosomal protein S5, mitochondrial           | P82675    |
| MRPS6   | 28S ribosomal protein S6, mitochondrial           | P82932    |
| MRPS7   | 28S ribosomal protein S7, mitochondrial           | Q9Y2R9    |
| MRPS9   | 28S ribosomal protein S9, mitochondrial           | P82933    |
| MRRF    | Ribosome-recycling factor, mitochondrial          | Q96E11    |
| MRS2    | Magnesium transporter MRS2 homolog, mitochondrial | Q9HD23    |
| MSMO1   | Methylsterol monooxygenase 1                      | Q15800    |
| MSN     | Moesin                                            | P26038    |

| MTA2Metastasis-associated protein MTA2094776MTC42Mitochondrial carrier homolog 2Q976C9MT-C02Cytochrome c oxidase subuni 2P00403MT-CYBCytochrome bP00156MTDHProtein LYRICQ86UE4MTERFD1mTERF domain-containing protein 1, mitochondrialQ96E29MTFP1Mitochondrial fission process protein 1Q9UDX5MTFP1Mitochondrial fission regulator 1Q9UDX5MTFR1Mitochondrial fission regulator 1Q15390MTFP2Mitochondrial fission regulator 2Q6P444MTHFD1C-1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional c1-tetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrialQ912X60MTHFD2Translation initiation factor IF-3, mitochondrialQ912X60MTMR3Myotubularin-related protein 3Q13615MT-ND5NADH-ubiquinone oxidoreductase chain 4P03905MTXAPPoly(A) RNA polymerase, mitochondrialQ94750MTX2Metaxin-1Q15305MTX2Metaxin-1Q1305MTX4Mybusinal protein 1AQ96095MTNAMybusinal protein 1AQ96095MTNAMybusinal protein 1AQ96095MTMA3Mybusinal protein 1AQ96095MTAAPPoly(A) RNA polymerase, mitochondrialQ2303MTYA2Metaxin-1Q1305MTX4Metaxin-1Q1305MTX4Metaxin-                                                                                                                   | Gene    | Protein name                                                                          | Accession |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------|-----------|
| MTCH2 Mitochondrial carrier homolog 2 Q9Y6C9   MT-CQ2 Cytochrome c oxidase subunit 2 P00403   MT-CYB Cytochrome b P00156   MTDH Protein LVRIC Q8KUE4   MTERFD1 mTERF domain-containing protein 1, mitochondrial Q96E29   MTERFD2 mTERF domain-containing protein 2 Q7Z6M4   MTFMT Methionyl-tRNA formyltransferase, mitochondrial Q96DP5   MTFP1 Mitochondrial fission regulator 1 Q91DX5   MTFR1 Mitochondrial fission regulator 2 Q6P444   MTHFD1 C-1-tetrahydrofolate synthase, cytoplasmic P11586   MTHFD2 Bifunctional C1-tetrahydrofolate synthase, mitochondrial Q6UB35   MTHFD2 Bifunctional methylenetetrahydrofolate synthase, mitochondrial Q6H444   MTHFD2 Bifunctional methylenetetrahydrofolate synthase, mitochondrial Q6UB35   MTHFD1 C-1-tetrahydrofolate synthase, mitochondrial Q6UB35   MTHFD2 Bifunctional factor IF-2, mitochondrial Q9H2K0   MTFR3 Translation initiation factor IF-3, mitochondrial Q9H2K0   MTMR3 Myotubularin-related protein 3 Q13615   MT-ND4 NADH-ubiquinone oxidoreductase chain 4 P03905   MTX1 Metaxin-1 Q13505   MTX1 <                                                                                                                                                                        | MTA2    | Metastasis-associated protein MTA2                                                    | O94776    |
| MT-C02 Cytochrome c oxidase subunit 2 P00403   MT-CYB Cytochrome b P00156   MTDH Protein LYRIC Q86UE4   MTERFD1 mTERF domain-containing protein 1, mitochondrial Q96E29   MTERFD2 mTERF domain-containing protein 2 Q7Z6M4   MTFFM1 Methionyl-tRNA formyltransferase, mitochondrial Q96D25   MTFP1 Mitochondrial fission process protein 1 Q9UDX5   MTFR2 Mitochondrial fission regulator 2 Q6P444   MTHFD1 C-1-tetrahydrofolate synthase, cytoplasmic P11586   MTHFD2 Bifunctional C1-tetrahydrofolate synthase, mitochondrial Q6UB35   MTHFD2 Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial Q9H2X6   MTHFD3 Translation initiation factor IF-2, mitochondrial Q9H2X6   MTHN3 Myotubularin-related protein 3 Q13615   MT-ND4 NADH-ubiquinone oxidoreductase chain 4 P03905   MT-ND5 NADH-ubiquinone oxidoreductase chain 5 P03915   MTPA Poly(A) RNA polymerase, mitochondrial Q98Q50   MTX1 Metaxin-1 Q13505   MT24 Matochondrial ubiquitin ligase activator of NFKB 1 Q98Q505   MTX1 Metaxin-2 075431   MUL1 Mitochondrial u                                                                                                                                                                            | MTCH2   | Mitochondrial carrier homolog 2                                                       | Q9Y6C9    |
| MT-CYB Cytochrome b P00156   MTDH Protein LYRIC Q86UE4   MTERFD1 mTERF domain-containing protein 1, mitochondrial Q96E29   MTERFD2 mTERF domain-containing protein 2 Q726M4   MTFM1 Methionyl-tRNA formyltransferase, mitochondrial Q90DDX5   MTFP1 Mitochondrial fission process protein 1 Q9UDX5   MTFR1 Mitochondrial fission regulator 1 Q15390   MTFR2 Mitochondrial fission regulator 2 Q6P444   MTHFD1 C-1-tetrahydrofolate synthase, cytoplasmic P11586   MTHFD2 Bifunctional nethylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial Q6UB35   MTHFD2 Translation initiation factor IF-2, mitochondrial Q9H2K0   MTR3 Myotubularin-related protein 3 Q13615   MT-ND4 NADH-ubiquinone oxidoreductase chain 4 P03905   MTAP Poly(A) RNA polymerase, mitochondrial Q9NVV4   MTPN Myotrophin P58546   MTX1 Metaxin-1 Q1505   MTX2 Metaxin-2 Q75431   MUL1 Mitochondrial ubiquitin ligase activator of NFKB 1 Q98QG0   MY18 Myosin-9 P35579   MYL6 Myosin light polypeptide 6 P60660   MYO18 Un                                                                                                                                                                                                                                | MT-CO2  | Cytochrome c oxidase subunit 2                                                        | P00403    |
| MTDHProtein LYRICQ86UE4MTERFD1mTERF domain-containing protein 1, mitochondrialQ96E29MTERFD2mTERF domain-containing protein 2Q7Z6M4MTFMTMethionyl-tRNA fornyltransferase, mitochondrialQ9DDY5MTFR1Mitochondrial fission process protein 1Q9UDX5MTFR2Mitochondrial fission regulator 1Q15390MTFR2Mitochondrial fission regulator 2Q6P444MTHFD1C-1-tetrahydrofolate synthase, cytoplasmicP11586MTHFD2Bifunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTHF2Translation initiation factor IF-2, mitochondrialQ412K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MTAR3Myotubularin-related protein 3Q13615MTAPAPoly(A) RNA polymerase, mitochondrialQ9NVV4MTNMyotophinP58446MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q96Q960MY16BUnconventional myosin-XVIIIaQ92614MY018Unconventional myosin-XVIIIaQ92614MY018Unconventional myosin-XVIIIaQ460N4NAA50N-alpha-actyltransferase 50Q9727NAA50N-alpha-actyltransferase 50Q9727NAA50N-alpha-actyltransferase 50Q9727 <td< td=""><td>MT-CYB</td><td>Cytochrome b</td><td>P00156</td></td<> | MT-CYB  | Cytochrome b                                                                          | P00156    |
| MTERFD1mTERF domain-containing protein 1, mitochondrialQ96E29MTERFD2mTTRF domain-containing protein 2Q7Z6M4MTFNTMethionyl-tRNA formyltransferase, mitochondrialQ96DP5MTFP1Mitochondrial fission regulator 1Q15390MTFR2Mitochondrial fission regulator 1Q15390MTFR2Mitochondrial fission regulator 2Q6P444MTHPD1C-1-tetrahydrofolate synthase, cytoplasmicP11586MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrialQ6U335MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTIF2Translation initiation factor IF-2, mitochondrialQ41619MTIR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MTN3Myotubularin-related protein 3Q13615MTAN3MyotrophinP58546MTX1Metaxin-2Q75431MTX1Metaxin-2Q75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q96Q00MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18Unconventional myosin-IbQ43795MZL1Matginal zone B- and B1-cell-specific proteinQ40014NAA50N-alpha-activator of NFKB 1Q96201MYA6Anasent polypeptide 6-sosciated complex subunit alphaQ13615MYL6Myosin-1BQ42614MYO1BMAA50N-alpha-acetyltransferase 50Q9727 </td <td>MTDH</td> <td>Protein LYRIC</td> <td>Q86UE4</td>      | MTDH    | Protein LYRIC                                                                         | Q86UE4    |
| MTERFD2mTERF domain-containing protein 2Q7Z6M4MTFMTMethionyl-tRNA formyltransferase, mitochondrialQ96DP5MTFP1Mitochondrial fission process protein 1Q9UDX5MTFR1Mitochondrial fission regulator 1Q15390MTFR2Mitochondrial fission regulator 2Q6P444MTHFD1C-1-tetrahydrofolate synthase, cytoplasmicP11586MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTIF2Translation initiation factor IF-2, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MTNA3MyotupolpinP58546MTX1Metaxin-1Q13505MTX2Metaxin-1Q13505MTX1Metaxin-1Q13505MTX2Metaxin-1Q98QG0MYH9Myosin-9P35579MYL6Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18Unconventional myosin-XVIIIaQ926214MYO18Marginal zone B- and B1-cell-specific proteinQ98WU39MZB1Marginal zone B- and B1-cell-specific proteinQ98WU39MZB1Marginal zone B- and B1-cell-specific proteinQ98WU39MYL6Naosin light polypeptide associated complex subunit alphaQ13765NAAS0N-alpha-acetyltransferase 50Q96G2Z1NAAS0N-alpha-acetyl                                                                                | MTERFD1 | mTERF domain-containing protein 1, mitochondrial                                      | Q96E29    |
| MTFMTMethionyl-tRNA formyltransferase, mitochondrialQ96DP5MTFP1Mitochondrial fission process protein 1Q15390MTFR1Mitochondrial fission regulator 1Q15390MTFR2Mitochondrial fission regulator 2Q6P444MTHFD1C-1-tetrahydrofolate synthase, cytoplasmicP11586MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTIF2Translation initiation factor IF-2, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MTNA3MyotrophinP58546MTX1Metaxin-1Q13055MTX2Metaxin-2Q75431MTX2Metaxin-2Q75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q98QG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ43795NAA50N-alpha-acetyltransferase 50Q96Z21NAA50N-alpha-acetyltransferase 50Q96Z21NAACANascent polypeptide-associated complex subunit alphaQ13765NAAFAAlpha-soluble NSF attachment proteinQ46059NAFAAlpha-soluble NSF attachment proteinQ9675NAFANabi-acetyltransferase 50Q96759NAFANabi-acetyltransferase 50Q96751NAFANAA                                                                                         | MTERFD2 | mTERF domain-containing protein 2                                                     | Q7Z6M4    |
| MTFP1Mitochondrial fission process protein 1Q9UDX5MTFR1Mitochondrial fission regulator 1Q15390MTFR2Mitochondrial fission regulator 2Q6P444MTHFD1C-1-tetrahydrofolate synthase, cytoplasmicP11586MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional methylenettrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTHF2Translation initiation factor IF-2, mitochondrialQ41280MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MTX1Metaxin-1Q13505MTX1Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MVT8Myosin-9P35579MYL6Myosin-9P35579MYL6Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ42614MYO18Unconventional myosin-XVIIIaQ43795NAA50N-alpha-acetyltransferase 50Q96Z2INAACANascent polypeptide-associated complex subunit alphaQ13765NAACANABcelle-associated complex subunit alphaQ13765NAACANacett polypeptide-associated complex subunit alphaQ13765NAAS2N-Alpha-soluble NSF attachment proteinQ40604NAAS2Probable asparaginetRNA ligase, nitochondrialQ40605                                                                                                      | MTFMT   | Methionyl-tRNA formyltransferase, mitochondrial                                       | Q96DP5    |
| MTFR1Mitochondrial fission regulator 1Q15390MTFR2Mitochondrial fission regulator 2Q6P444MTHFD1C-1-tetrahydrofolate synthase, cytoplasmicP11586MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTIF2Translation initiation factor IF-2, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyosin-9P35579MYL6Myosin light polypeptide 6O43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ460N4NAPAAlpha-soluble NSF attachment proteinQ99747NAPAAlpha-soluble NSF attachment proteinQ99747NAFAAlpha-soluble NSF attachment proteinQ96159NATIN-acetyltransferase 10Q910A0                                                                                                        | MTFP1   | Mitochondrial fission process protein 1                                               | Q9UDX5    |
| MTFR2Mitochondrial fission regulator 2Q6P444MTHFD1C-1-tetrahydrofolate synthase, cytoplasmicP11586MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTIF2Translation initiation factor IF-2, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MT-ND5NADH-ubiquinone oxidoreductase chain 5P03915MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q98QG0MY19Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18Unconventional myosin-XVIIIaQ43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ400N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159                                                                                                                                                                                  | MTFR1   | Mitochondrial fission regulator 1                                                     | Q15390    |
| MTHFD1C-1-tetrahydrofolate synthase, cytoplasmicP11586MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTIF2Translation initiation factor IF-2, mitochondrialP46199MTIF3Translation initiation factor IF-3, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18Unconventional myosin-IbQ43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ40747NAPGGamma-soluble NSF attachment proteinQ98Q20NAPAAlpha-soluble NSF attachment proteinQ98V39NAA50N-alpha-acetyltransferase 50Q9G7Z71NARS2Probable asparaginetRNA ligase, mitochondrialQ40747NAPGGamma-soluble NSF attachment proteinQ99747NAPGGamma-soluble NSF attachment prote                                              | MTFR2   | Mitochondrial fission regulator 2                                                     | Q6P444    |
| MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrialQ6UB35MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTIF2Translation initiation factor IF-2, mitochondrialP46199MTIF3Translation initiation factor IF-3, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2075431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP20333MYBBP1AMyb-binding protein 1AQ98QG0MY16Myosin-9P35579MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q967Z21NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD Kinase 2, mitochondrialQ460N4NAPAAlpha-soluble NSF attachment proteinQ9977NARS2Probable asparaginetRNA ligase, mitochondrialQ9677NARS2Probable asparaginetRNA ligase, mitochondrialQ9677                                                                                                                                                                                                            | MTHFD1  | C-1-tetrahydrofolate synthase, cytoplasmic                                            | P11586    |
| MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrialP13995MTIF2Translation initiation factor IF-2, mitochondrialP46199MTIF3Translation initiation factor IF-3, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MT-ND5NADH-ubiquinone oxidoreductase chain 5P03915MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2Q75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18Unconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbQ43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ460N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159                                                                                                                                                                         | MTHFD1L | Monofunctional C1-tetrahydrofolate synthase, mitochondrial                            | Q6UB35    |
| MTIF2Translation initiation factor IF-2, mitochondrialP46199MTIF3Translation initiation factor IF-3, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MT-ND5NADH-ubiquinone oxidoreductase chain 5P03915MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2Q75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q980V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MY16Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18Unconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-Stopperitic proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                               | MTHFD2  | Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,<br>mitochondrial | P13995    |
| MTIF3Translation initiation factor IF-3, mitochondrialQ9H2K0MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MT-ND5NADH-ubiquinone oxidoreductase chain 5P03915MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MY16Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ91400OXAT10N-acetyltransferase 10Q91400                                                                                                                                                                                                                                                                                                   | MTIF2   | Translation initiation factor IF-2, mitochondrial                                     | P46199    |
| MTMR3Myotubularin-related protein 3Q13615MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MT-ND5NADH-ubiquinone oxidoreductase chain 5P03915MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ91400NAT10N-acetyltransferase 10Q91400                                                                                                                                                                                                                                                                                                                                                                | MTIF3   | Translation initiation factor IF-3, mitochondrial                                     | Q9H2K0    |
| MT-ND4NADH-ubiquinone oxidoreductase chain 4P03905MT-ND5NADH-ubiquinone oxidoreductase chain 5P03915MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MY19Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                         | MTMR3   | Myotubularin-related protein 3                                                        | Q13615    |
| MT-ND5NADH-ubiquinone oxidoreductase chain 5P03915MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ910A0Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MT-ND4  | NADH-ubiquinone oxidoreductase chain 4                                                | P03905    |
| MTPAPPoly(A) RNA polymerase, mitochondrialQ9NVV4MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MT-ND5  | NADH-ubiquinone oxidoreductase chain 5                                                | P03915    |
| MTPNMyotrophinP58546MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ910A0NAT10N-acetyltransferase 10Q910A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MTPAP   | Poly(A) RNA polymerase, mitochondrial                                                 | Q9NVV4    |
| MTX1Metaxin-1Q13505MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ910A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTPN    | Myotrophin                                                                            | P58546    |
| MTX2Metaxin-2O75431MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTX1    | Metaxin-1                                                                             | Q13505    |
| MUL1Mitochondrial ubiquitin ligase activator of NFKB 1Q969V5MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTX2    | Metaxin-2                                                                             | O75431    |
| MUTMethylmalonyl-CoA mutase, mitochondrialP22033MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ910A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MUL1    | Mitochondrial ubiquitin ligase activator of NFKB 1                                    | Q969V5    |
| MYBBP1AMyb-binding protein 1AQ9BQG0MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MUT     | Methylmalonyl-CoA mutase, mitochondrial                                               | P22033    |
| MYH9Myosin-9P35579MYL6Myosin light polypeptide 6P60660MY018AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MYBBP1A | Myb-binding protein 1A                                                                | Q9BQG0    |
| MYL6Myosin light polypeptide 6P60660MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MYH9    | Myosin-9                                                                              | P35579    |
| MYO18AUnconventional myosin-XVIIIaQ92614MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MYL6    | Myosin light polypeptide 6                                                            | P60660    |
| MYO1BUnconventional myosin-IbO43795MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96I59NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MYO18A  | Unconventional myosin-XVIIIa                                                          | Q92614    |
| MZB1Marginal zone B- and B1-cell-specific proteinQ8WU39NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MYO1B   | Unconventional myosin-Ib                                                              | O43795    |
| NAA50N-alpha-acetyltransferase 50Q9GZZ1NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MZB1    | Marginal zone B- and B1-cell-specific protein                                         | Q8WU39    |
| NACANascent polypeptide-associated complex subunit alphaQ13765NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NAA50   | N-alpha-acetyltransferase 50                                                          | Q9GZZ1    |
| NADK2NAD kinase 2, mitochondrialQ4G0N4NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NACA    | Nascent polypeptide-associated complex subunit alpha                                  | Q13765    |
| NAPAAlpha-soluble NSF attachment proteinP54920NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NADK2   | NAD kinase 2, mitochondrial                                                           | Q4G0N4    |
| NAPGGamma-soluble NSF attachment proteinQ99747NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NAPA    | Alpha-soluble NSF attachment protein                                                  | P54920    |
| NARS2Probable asparaginetRNA ligase, mitochondrialQ96159NAT10N-acetyltransferase 10Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NAPG    | Gamma-soluble NSF attachment protein                                                  | Q99747    |
| NAT10 N-acetyltransferase 10 Q9H0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NARS2   | Probable asparaginetRNA ligase, mitochondrial                                         | Q96I59    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NAT10   | N-acetyltransferase 10                                                                | Q9H0A0    |

| Gene      | Protein name                                                         | Accession |
|-----------|----------------------------------------------------------------------|-----------|
| NBAS      | Neuroblastoma-amplified sequence                                     | A2RRP1    |
| NCAPG     | Condensin complex subunit 3                                          | Q9BPX3    |
| NCKAP1L   | Nck-associated protein 1-like                                        | P55160    |
| NCL       | Nucleolin                                                            | P19338    |
| NCLN      | Nicalin                                                              | Q969V3    |
| NCSTN     | Nicastrin                                                            | Q92542    |
| NDFIP1    | NEDD4 family-interacting protein 1                                   | Q9BT67    |
| NDUFA11   | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11        | Q86Y39    |
| NDUFA12   | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12        | Q9UI09    |
| NDUFA13   | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13        | Q9P0J0    |
| NDUFA6    | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6         | P56556    |
| NDUFA7    | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7         | O95182    |
| NDUFAF1   | Complex I intermediate-associated protein 30, mitochondrial          | Q9Y375    |
| NDUFAF2   | Mimitin, mitochondrial                                               | Q8N183    |
| NDUFAF3   | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3 | Q9BU61    |
| NDUFAF4   | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4 | Q9P032    |
| NDUFAF5   | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 5 | Q5TEU4    |
| NDUFAF6   | NADH dehydrogenase                                                   | Q330K2    |
| NDUFB10   | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10         | O96000    |
| NDUFB3    | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3          | O43676    |
| NDUFB4    | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4          | O95168    |
| NDUFB9    | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9          | Q9Y6M9    |
| NDUFS1    | NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial         | P28331    |
| NDUFS2    | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial | O75306    |
| NDUFS3    | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial | O75489    |
| NDUFS6    | NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial | O75380    |
| NDUFS8    | NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial | O00217    |
| NDUFV1    | NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial        | P49821    |
| NEDD1     | Protein NEDD1                                                        | Q8NHV4    |
| NENF      | Neudesin                                                             | Q9UMX5    |
| NFS1      | Cysteine desulfurase, mitochondrial                                  | Q9Y697    |
| NFU1      | NFU1 iron-sulfur cluster scaffold homolog, mitochondrial             | Q9UMS0    |
| NFXL1     | NF-X1-type zinc finger protein NFXL1                                 | Q6ZNB6    |
| NIN       | Ninein                                                               | Q8N4C6    |
| NIPSNAP1  | Protein NipSnap homolog 1                                            | Q9BPW8    |
| NIPSNAP3A | Protein NipSnap homolog 3A                                           | Q9UFN0    |
| NISCH     | Nischarin                                                            | Q9Y2I1    |
| NIT1      | Nitrilase homolog 1                                                  | Q86X76    |
| NLN       | Neurolysin, mitochondrial                                            | Q9BYT8    |

| Gene در | Protein name                                                    | Accession |
|---------|-----------------------------------------------------------------|-----------|
| NLRX    | NLR family member X1                                            | Q86UT6    |
| NNT     | NAD(P) transhydrogenase, mitochondrial                          | Q13423    |
| NOA1    | Nitric oxide-associated protein 1                               | Q8NC60    |
| NOC2    | L Nucleolar complex protein 2 homolog                           | Q9Y3T9    |
| NOL6    | Nucleolar protein 6                                             | Q9H6R4    |
| NOMO    | 02 Nodal modulator 2                                            | Q5JPE7    |
| NONC    | Non-POU domain-containing octamer-binding protein               | Q15233    |
| NOP2    | Putative ribosomal RNA methyltransferase NOP2                   | P46087    |
| NOP5    | 5 Nucleolar protein 56                                          | O00567    |
| NOP58   | 3 Nucleolar protein 58                                          | Q9Y2X3    |
| NPC1    | Niemann-Pick C1 protein                                         | O15118    |
| NPEPI   | S Puromycin-sensitive aminopeptidase                            | P55786    |
| NPM1    | Nucleophosmin                                                   | P06748    |
| NPTN    | Neuroplastin                                                    | Q9Y639    |
| NRAS    | GTPase NRas                                                     | P01111    |
| NSDH    | L Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating   | Q15738    |
| NSUN    | 2 tRNA                                                          | Q08J23    |
| NSUN    | 4 5-methylcytosine rRNA methyltransferase NSUN4                 | Q96CB9    |
| NT5D    | C2 5'-nucleotidase domain-containing protein 2                  | Q9H857    |
| NUBP    | L Iron-sulfur protein NUBPL                                     | Q8TB37    |
| NUCB    | 2 Nucleobindin-2                                                | P80303    |
| NUDC    | Nuclear migration protein nudC                                  | Q9Y266    |
| NUDT    | 1 7,8-dihydro-8-oxoguanine triphosphatase                       | P36639    |
| NUDT    | 21 Cleavage and polyadenylation specificity factor subunit 5    | O43809    |
| NUDT    | 5 ADP-sugar pyrophosphatase                                     | Q9UKK9    |
| NUDT    | 8 Nucleoside diphosphate-linked moiety X motif 8, mitochondrial | Q8WV74    |
| NUMA    | 1 Nuclear mitotic apparatus protein 1                           | Q14980    |
| NUP10   | V7 Nuclear pore complex protein Nup107                          | P57740    |
| NUP13   | 3 Nuclear pore complex protein Nup133                           | Q8WUM0    |
| NUP15   | 55 Nuclear pore complex protein Nup155                          | O75694    |
| NUP10   | 50 Nuclear pore complex protein Nup160                          | Q12769    |
| NUP18   | 38 Nucleoporin NUP188 homolog                                   | Q5SRE5    |
| NUP20   | 15 Nuclear pore complex protein Nup205                          | Q92621    |
| NUP2    | 0 Nuclear pore membrane glycoprotein 210                        | Q8TEM1    |
| NUP2    | 4 Nuclear pore complex protein Nup214                           | P35658    |
| NUP35   | 5 Nucleoporin NUP53                                             | Q8NFH5    |
| NUP43   | Nucleoporin Nup43                                               | Q8NFH3    |
| NUP62   | Nuclear pore glycoprotein p62                                   | P37198    |
| NUP88   | 3 Nuclear pore complex protein Nup88                            | Q99567    |

| Gene     | Protein name                                                           | Accession |
|----------|------------------------------------------------------------------------|-----------|
| NUP93    | Nuclear pore complex protein Nup93                                     | Q8N1F7    |
| NUP98    | Nuclear pore complex protein Nup98-Nup96                               | P52948    |
| OAT      | Ornithine aminotransferase, mitochondrial                              | P04181    |
| OCIAD1   | OCIA domain-containing protein 1                                       | Q9NX40    |
| OCIAD2   | OCIA domain-containing protein 2                                       | Q56VL3    |
| ODF2     | Outer dense fiber protein 2                                            | Q5BJF6    |
| OGDH     | 2-oxoglutarate dehydrogenase, mitochondrial                            | Q02218    |
| OMA1     | Metalloendopeptidase OMA1, mitochondrial                               | Q96E52    |
| ORMDL1   | ORM1-like protein 1                                                    | Q9P0S3    |
| ORMDL3   | ORM1-like protein 3                                                    | Q8N138    |
| OSBP     | Oxysterol-binding protein 1                                            | P22059    |
| OSBPL11  | Oxysterol-binding protein-related protein 11                           | Q9BXB4    |
| OSBPL8   | Oxysterol-binding protein-related protein 8                            | Q9BZF1    |
| OSBPL9   | Oxysterol-binding protein-related protein 9                            | Q96SU4    |
| OSGEPL1  | Probable tRNA N6-adenosine threonylcarbamoyltransferase, mitochondrial | Q9H4B0    |
| OXCT1    | Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial        | P55809    |
| OXNAD1   | Oxidoreductase NAD-binding domain-containing protein 1                 | Q96HP4    |
| OXSM     | 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial               | Q9NWU1    |
| OXSR1    | Serine/threonine-protein kinase OSR1                                   | O95747    |
| P4HB     | Protein disulfide-isomerase                                            | P07237    |
| PABPC1   | Polyadenylate-binding protein 1                                        | P11940    |
| PAFAH1B1 | Platelet-activating factor acetylhydrolase IB subunit alpha            | P43034    |
| PAFAH1B3 | Platelet-activating factor acetylhydrolase IB subunit gamma            | Q15102    |
| PAICS    | Multifunctional protein ADE2                                           | P22234    |
| PAM16    | Mitochondrial import inner membrane translocase subunit TIM16          | Q9Y3D7    |
| PARK7    | Protein DJ-1                                                           | Q99497    |
| PARL     | Presenilins-associated rhomboid-like protein, mitochondrial            | Q9H300    |
| PARP1    | Poly [ADP-ribose] polymerase 1                                         | P09874    |
| PBXIP1   | Pre-B-cell leukemia transcription factor-interacting protein 1         | Q96AQ6    |
| PC       | Pyruvate carboxylase, mitochondrial                                    | P11498    |
| PCBP2    | Poly(rC)-binding protein 2                                             | Q15366    |
| PCCA     | Propionyl-CoA carboxylase alpha chain, mitochondrial                   | P05165    |
| PCCB     | Propionyl-CoA carboxylase beta chain, mitochondrial                    | P05166    |
| PCM1     | Pericentriolar material 1 protein                                      | Q15154    |
| PCNT     | Pericentrin                                                            | O95613    |
| PDCD10   | Programmed cell death protein 10                                       | Q9BUL8    |
| PDCD11   | Protein RRP5 homolog                                                   | Q14690    |
| PDCD6IP  | Programmed cell death 6-interacting protein                            | Q8WUM4    |
| PDE12    | 2',5'-phosphodiesterase 12                                             | Q6L8Q7    |

| Gene    | Protein name                                                                | Accession |
|---------|-----------------------------------------------------------------------------|-----------|
|         | Pyruvate dehydrogenase E1 component subunit alpha, somatic form,            | DOREED    |
| PDHAI   | mitochondrial                                                               | P08559    |
| PDHB    | Pyruvate dehydrogenase E1 component subunit beta, mitochondrial             | P11177    |
| PDHX    | Pyruvate dehydrogenase protein X component, mitochondrial                   | O00330    |
| PDIA3   | Protein disulfide-isomerase A3                                              | P30101    |
| PDIA4   | Protein disulfide-isomerase A4                                              | P13667    |
| PDIA6   | Protein disulfide-isomerase A6                                              | Q15084    |
| PDK1    | [Pyruvate dehydrogenase                                                     | Q15118    |
| PDK3    | [Pyruvate dehydrogenase                                                     | Q15120    |
| PDP1    | [Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 1, mitochondrial | Q9P0J1    |
| PDPR    | Pyruvate dehydrogenase phosphatase regulatory subunit, mitochondrial        | Q8NCN5    |
| PDS5A   | Sister chromatid cohesion protein PDS5 homolog A                            | Q29RF7    |
| PDS5B   | Sister chromatid cohesion protein PDS5 homolog B                            | Q9NTI5    |
| PDSS1   | Decaprenyl-diphosphate synthase subunit 1                                   | Q5T2R2    |
| PECAM1  | Platelet endothelial cell adhesion molecule                                 | P16284    |
| PECR    | Peroxisomal trans-2-enoyl-CoA reductase                                     | Q9BY49    |
| PEX11B  | Peroxisomal membrane protein 11B                                            | O96011    |
| PEX14   | Peroxisomal membrane protein PEX14                                          | O75381    |
| PEX16   | Peroxisomal membrane protein PEX16                                          | Q9Y5Y5    |
| PFN1    | Profilin-1                                                                  | P07737    |
| PGAM1   | Phosphoglycerate mutase 1                                                   | P18669    |
| PGAM5   | Serine/threonine-protein phosphatase PGAM5, mitochondrial                   | Q96HS1    |
| PGK1    | Phosphoglycerate kinase 1                                                   | P00558    |
| PGRMC1  | Membrane-associated progesterone receptor component 1                       | O00264    |
| PGRMC2  | Membrane-associated progesterone receptor component 2                       | O15173    |
| PHB     | Prohibitin                                                                  | P35232    |
| PHB2    | Prohibitin-2                                                                | Q99623    |
| PHGDH   | D-3-phosphoglycerate dehydrogenase                                          | O43175    |
| PHIP    | PH-interacting protein                                                      | Q8WWQ0    |
| PI4K2A  | Phosphatidylinositol 4-kinase type 2-alpha                                  | Q9BTU6    |
| PIEZO1  | Piezo-type mechanosensitive ion channel component 1                         | Q92508    |
| PIGO    | GPI ethanolamine phosphate transferase 3                                    | Q8TEQ8    |
| PIGR    | Polymeric immunoglobulin receptor                                           | P01833    |
| PIGU    | Phosphatidylinositol glycan anchor biosynthesis class U protein             | Q9H490    |
| PIK3R4  | Phosphoinositide 3-kinase regulatory subunit 4                              | Q99570    |
| PIP4K2A | Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha                      | P48426    |
| PITRM1  | Presequence protease, mitochondrial                                         | Q5JRX3    |
| PKM     | Pyruvate kinase PKM                                                         | P14618    |
| PKN1    | Serine/threonine-protein kinase N1                                          | Q16512    |
|         | -                                                                           |           |

| Gene    | Protein name                                                              | Accession |
|---------|---------------------------------------------------------------------------|-----------|
| PKP1    | Plakophilin-1                                                             | Q13835    |
| PLAA    | Phospholipase A-2-activating protein                                      | Q9Y263    |
| PLD6    | Mitochondrial cardiolipin hydrolase                                       | Q8N2A8    |
| PLEC    | Plectin                                                                   | Q15149    |
| PLGRKT  | Plasminogen receptor                                                      | Q9HBL7    |
| PLOD1   | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1                         | Q02809    |
| PML     | Protein PML                                                               | P29590    |
| PMPCA   | Mitochondrial-processing peptidase subunit alpha                          | Q10713    |
| РМРСВ   | Mitochondrial-processing peptidase subunit beta                           | O75439    |
| PMVK    | Phosphomevalonate kinase                                                  | Q15126    |
| PNO1    | RNA-binding protein PNO1                                                  | Q9NRX1    |
| PNPLA6  | Neuropathy target esterase                                                | Q8IY17    |
| PNPO    | Pyridoxine-5'-phosphate oxidase                                           | Q9NVS9    |
| PNPT1   | Polyribonucleotide nucleotidyltransferase 1, mitochondrial                | Q8TCS8    |
| POC5    | Centrosomal protein POC5                                                  | Q8NA72    |
| POF1B   | Protein POF1B                                                             | Q8WVV4    |
| POGLUT1 | Protein O-glucosyltransferase 1                                           | Q8NBL1    |
| POLDIP2 | Polymerase delta-interacting protein 2                                    | Q9Y2S7    |
| POLDIP3 | Polymerase delta-interacting protein 3                                    | Q9BY77    |
| POLG2   | DNA polymerase subunit gamma-2, mitochondrial                             | Q9UHN1    |
| POLR2A  | DNA-directed RNA polymerase II subunit RPB1                               | P24928    |
| POLR2B  | DNA-directed RNA polymerase II subunit RPB2                               | P30876    |
| POLRMT  | DNA-directed RNA polymerase, mitochondrial                                | O00411    |
| POM121  | Nuclear envelope pore membrane protein POM 121                            | Q96HA1    |
| POM121C | Nuclear envelope pore membrane protein POM 121C                           | A8CG34    |
| POR     | NADPHcytochrome P450 reductase                                            | P16435    |
| PPA2    | Inorganic pyrophosphatase 2, mitochondrial                                | Q9H2U2    |
| PPFIA1  | Liprin-alpha-1                                                            | Q13136    |
| PPIA    | Peptidyl-prolyl cis-trans isomerase A                                     | P62937    |
| PPIB    | Peptidyl-prolyl cis-trans isomerase B                                     | P23284    |
| PPIF    | Peptidyl-prolyl cis-trans isomerase F, mitochondrial                      | P30405    |
| PPIH    | Peptidyl-prolyl cis-trans isomerase H                                     | O43447    |
| PPOX    | Protoporphyrinogen oxidase                                                | P50336    |
| PPP1CA  | Serine/threonine-protein phosphatase PP1-alpha catalytic subunit          | P62136    |
| DDDDDD  | Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha | D(2151    |
| PPP2K2A | isoform                                                                   | P03131    |
| PRAF2   | PRA1 family protein 2                                                     | O60831    |
| PRDX1   | Peroxiredoxin-1                                                           | Q06830    |
| PRDX2   | Peroxiredoxin-2                                                           | P32119    |

| Gene    | Protein name                                                        | Accession |
|---------|---------------------------------------------------------------------|-----------|
| PRDX3   | Thioredoxin-dependent peroxide reductase, mitochondrial             | P30048    |
| PRDX4   | Peroxiredoxin-4                                                     | Q13162    |
| PRDX6   | Peroxiredoxin-6                                                     | P30041    |
| PREB    | Prolactin regulatory element-binding protein                        | Q9HCU5    |
| PRKAG1  | 5'-AMP-activated protein kinase subunit gamma-1                     | P54619    |
| PRKAR1A | cAMP-dependent protein kinase type I-alpha regulatory subunit       | P10644    |
| PRKCH   | Protein kinase C eta type                                           | P24723    |
| PRKCQ   | Protein kinase C theta type                                         | Q04759    |
| PRKCSH  | Glucosidase 2 subunit beta                                          | P14314    |
| PRKDC   | DNA-dependent protein kinase catalytic subunit                      | P78527    |
| PROSC   | Proline synthase co-transcribed bacterial homolog protein           | O94903    |
| PRPF6   | Pre-mRNA-processing factor 6                                        | O94906    |
| PRPF8   | Pre-mRNA-processing-splicing factor 8                               | Q6P2Q9    |
| PSAP    | Prosaposin                                                          | P07602    |
| PSEN1   | Presenilin-1                                                        | P49768    |
| PSIP1   | PC4 and SFRS1-interacting protein                                   | O75475    |
| PSMA1   | Proteasome subunit alpha type-1                                     | P25786    |
| PSMA3   | Proteasome subunit alpha type-3                                     | P25788    |
| PSMA5   | Proteasome subunit alpha type-5                                     | P28066    |
| PSMA6   | Proteasome subunit alpha type-6                                     | P60900    |
| PSMB1   | Proteasome subunit beta type-1                                      | P20618    |
| PSMB4   | Proteasome subunit beta type-4                                      | P28070    |
| PSMC2   | 26S protease regulatory subunit 7                                   | P35998    |
| PSMC4   | 26S protease regulatory subunit 6B                                  | P43686    |
| PSMC5   | 26S protease regulatory subunit 8                                   | P62195    |
| PSMD11  | 26S proteasome non-ATPase regulatory subunit 11                     | O00231    |
| PSMD3   | 26S proteasome non-ATPase regulatory subunit 3                      | O43242    |
| PSMD7   | 26S proteasome non-ATPase regulatory subunit 7                      | P51665    |
| PSME1   | Proteasome activator complex subunit 1                              | Q06323    |
| PSME2   | Proteasome activator complex subunit 2                              | Q9UL46    |
| PTBP1   | Polypyrimidine tract-binding protein 1                              | P26599    |
| PTCD3   | Pentatricopeptide repeat domain-containing protein 3, mitochondrial | Q96EY7    |
| PTDSS1  | Phosphatidylserine synthase 1                                       | P48651    |
| PTGES2  | Prostaglandin E synthase 2                                          | Q9H7Z7    |
| PTK7    | Inactive tyrosine-protein kinase 7                                  | Q13308    |
| PTPLAD1 | Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3                | Q9P035    |
| PTPLB   | Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2                | Q6Y1H2    |
| PTPMT1  | Phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1   | Q8WUK0    |
| PTPN1   | Tyrosine-protein phosphatase non-receptor type 1                    | P18031    |

| Gene    | Protein name                                                    | Accession |
|---------|-----------------------------------------------------------------|-----------|
| PTPN11  | Tyrosine-protein phosphatase non-receptor type 11               | Q06124    |
| PTPRC   | Receptor-type tyrosine-protein phosphatase C                    | P08575    |
| PTPRCAP | Protein tyrosine phosphatase receptor type C-associated protein | Q14761    |
| PTPRK   | Receptor-type tyrosine-protein phosphatase kappa                | Q15262    |
| PTPRS   | Receptor-type tyrosine-protein phosphatase S                    | Q13332    |
| PTRH1   | Probable peptidyl-tRNA hydrolase                                | Q86Y79    |
| PTRH2   | Peptidyl-tRNA hydrolase 2, mitochondrial                        | Q9Y3E5    |
| PTRHD1  | Putative peptidyl-tRNA hydrolase PTRHD1                         | Q6GMV3    |
| PUS1    | tRNA pseudouridine synthase A, mitochondrial                    | Q9Y606    |
| PUSL1   | tRNA pseudouridine synthase-like 1                              | Q8N0Z8    |
| PWP2    | Periodic tryptophan protein 2 homolog                           | Q15269    |
| PXMP2   | Peroxisomal membrane protein 2                                  | Q9NR77    |
| PYCR1   | Pyrroline-5-carboxylate reductase 1, mitochondrial              | P32322    |
| PYCR2   | Pyrroline-5-carboxylate reductase 2                             | Q96C36    |
| QARS    | GlutaminetRNA ligase                                            | P47897    |
| QPCTL   | Glutaminyl-peptide cyclotransferase-like protein                | Q9NXS2    |
| QSOX2   | Sulfhydryl oxidase 2                                            | Q6ZRP7    |
| QTRTD1  | Queuine tRNA-ribosyltransferase subunit QTRTD1                  | Q9H974    |
| RAB10   | Ras-related protein Rab-10                                      | P61026    |
| RAB11B  | Ras-related protein Rab-11B                                     | Q15907    |
| RAB14   | Ras-related protein Rab-14                                      | P61106    |
| RAB18   | Ras-related protein Rab-18                                      | Q9NP72    |
| RAB1A   | Ras-related protein Rab-1A                                      | P62820    |
| RAB1B   | Ras-related protein Rab-1B                                      | Q9H0U4    |
| RAB21   | Ras-related protein Rab-21                                      | Q9UL25    |
| RAB22A  | Ras-related protein Rab-22A                                     | Q9UL26    |
| RAB24   | Ras-related protein Rab-24                                      | Q969Q5    |
| RAB27A  | Ras-related protein Rab-27A                                     | P51159    |
| RAB2A   | Ras-related protein Rab-2A                                      | P61019    |
| RAB2B   | Ras-related protein Rab-2B                                      | Q8WUD1    |
| RAB33B  | Ras-related protein Rab-33B                                     | Q9H082    |
| RAB35   | Ras-related protein Rab-35                                      | Q15286    |
| RAB37   | Ras-related protein Rab-37                                      | Q96AX2    |
| RAB39B  | Ras-related protein Rab-39B                                     | Q96DA2    |
| RAB3D   | Ras-related protein Rab-3D                                      | O95716    |
| RAB43   | Ras-related protein Rab-43                                      | Q86YS6    |
| RAB44   | Ras-related protein Rab-44                                      | Q7Z6P3    |
| RAB4B   | Ras-related protein Rab-4B                                      | P61018    |
| RAB5A   | Ras-related protein Rab-5A                                      | P20339    |

| Gene    | Protein name                                      | Accession |
|---------|---------------------------------------------------|-----------|
| RAB5B   | Ras-related protein Rab-5B                        | P61020    |
| RAB5C   | Ras-related protein Rab-5C                        | P51148    |
| RAB6A   | Ras-related protein Rab-6A                        | P20340    |
| RAB7A   | Ras-related protein Rab-7a                        | P51149    |
| RAB7L1  | Ras-related protein Rab-7L1                       | O14966    |
| RAB8A   | Ras-related protein Rab-8A                        | P61006    |
| RAB8B   | Ras-related protein Rab-8B                        | Q92930    |
| RAB9A   | Ras-related protein Rab-9A                        | P51151    |
| RABAC1  | Prenylated Rab acceptor protein 1                 | Q9UI14    |
| RAC2    | Ras-related C3 botulinum toxin substrate 2        | P15153    |
| RACGAP1 | Rac GTPase-activating protein 1                   | Q9H0H5    |
| RALA    | Ras-related protein Ral-A                         | P11233    |
| RALY    | RNA-binding protein Raly                          | Q9UKM9    |
| RAN     | GTP-binding nuclear protein Ran                   | P62826    |
| RANBP1  | Ran-specific GTPase-activating protein            | P43487    |
| RANBP2  | E3 SUMO-protein ligase RanBP2                     | P49792    |
| RANGAP1 | Ran GTPase-activating protein 1                   | P46060    |
| RAP1B   | Ras-related protein Rap-1b                        | P61224    |
| RAP2A   | Ras-related protein Rap-2a                        | P10114    |
| RAP2B   | Ras-related protein Rap-2b                        | P61225    |
| RARS    | ArgininetRNA ligase, cytoplasmic                  | P54136    |
| RARS2   | Probable argininetRNA ligase, mitochondrial       | Q5T160    |
| RASA3   | Ras GTPase-activating protein 3                   | Q14644    |
| RASAL3  | RAS protein activator like-3                      | Q86YV0    |
| RB1     | Retinoblastoma-associated protein                 | P06400    |
| RBBP4   | Histone-binding protein RBBP4                     | Q09028    |
| RBM25   | RNA-binding protein 25                            | P49756    |
| RBM34   | RNA-binding protein 34                            | P42696    |
| RBMX    | RNA-binding motif protein, X chromosome           | P38159    |
| RCL1    | RNA 3'-terminal phosphate cyclase-like protein    | Q9Y2P8    |
| RCN1    | Reticulocalbin-1                                  | Q15293    |
| RCN2    | Reticulocalbin-2                                  | Q14257    |
| RDH11   | Retinol dehydrogenase 11                          | Q8TC12    |
| RDH13   | Retinol dehydrogenase 13                          | Q8NBN7    |
| RDH14   | Retinol dehydrogenase 14                          | Q9HBH5    |
| REEP5   | Receptor expression-enhancing protein 5           | Q00765    |
| REEP6   | Receptor expression-enhancing protein 6           | Q96HR9    |
| REPS1   | RalBP1-associated Eps domain-containing protein 1 | Q96D71    |
| RER1    | Protein RER1                                      | O15258    |

| Gene    | Protein name                                            | Accession |
|---------|---------------------------------------------------------|-----------|
| REXO2   | Oligoribonuclease, mitochondrial                        | Q9Y3B8    |
| RFC2    | Replication factor C subunit 2                          | P35250    |
| RFC3    | Replication factor C subunit 3                          | P40938    |
| RFC4    | Replication factor C subunit 4                          | P35249    |
| RFK     | Riboflavin kinase                                       | Q969G6    |
| RFT1    | Protein RFT1 homolog                                    | Q96AA3    |
| RHBDD2  | Rhomboid domain-containing protein 2                    | Q6NTF9    |
| RHOA    | Transforming protein RhoA                               | P61586    |
| RHOG    | Rho-related GTP-binding protein RhoG                    | P84095    |
| RHOT2   | Mitochondrial Rho GTPase 2                              | Q8IXI1    |
| RMDN1   | Regulator of microtubule dynamics protein 1             | Q96DB5    |
| RMND1   | Required for meiotic nuclear division protein 1 homolog | Q9NWS8    |
| RNF130  | E3 ubiquitin-protein ligase RNF130                      | Q86XS8    |
| RNF213  | E3 ubiquitin-protein ligase RNF213                      | Q63HN8    |
| RNH1    | Ribonuclease inhibitor                                  | P13489    |
| RNMTL1  | RNA methyltransferase-like protein 1                    | Q9HC36    |
| RP2     | Protein XRP2                                            | O75695    |
| RPA2    | Replication protein A 32 kDa subunit                    | P15927    |
| RPF2    | Ribosome production factor 2 homolog                    | Q9H7B2    |
| RPIA    | Ribose-5-phosphate isomerase                            | P49247    |
| RPL10   | 60S ribosomal protein L10                               | P27635    |
| RPL10A  | 60S ribosomal protein L10a                              | P62906    |
| RPL11   | 60S ribosomal protein L11                               | P62913    |
| RPL12   | 60S ribosomal protein L12                               | P30050    |
| RPL13   | 60S ribosomal protein L13                               | P26373    |
| RPL13A  | 60S ribosomal protein L13a                              | P40429    |
| RPL14   | 60S ribosomal protein L14                               | P50914    |
| RPL15   | 60S ribosomal protein L15                               | P61313    |
| RPL17   | 60S ribosomal protein L17                               | P18621    |
| RPL18   | 60S ribosomal protein L18                               | Q07020    |
| RPL19   | 60S ribosomal protein L19                               | P84098    |
| RPL23   | 60S ribosomal protein L23                               | P62829    |
| RPL23A  | 60S ribosomal protein L23a                              | P62750    |
| RPL26   | 60S ribosomal protein L26                               | P61254    |
| RPL26L1 | 60S ribosomal protein L26-like 1                        | Q9UNX3    |
| RPL28   | 60S ribosomal protein L28                               | P46779    |
| RPL31   | 60S ribosomal protein L31                               | P62899    |
| RPL34   | 60S ribosomal protein L34                               | P49207    |
| RPL35A  | 60S ribosomal protein L35a                              | P18077    |

| 14 | Gene     | Protein name                                                           | Accession |
|----|----------|------------------------------------------------------------------------|-----------|
| Ö  | RPL4     | 60S ribosomal protein L4                                               | P36578    |
|    | RPL6     | 60S ribosomal protein L6                                               | Q02878    |
|    | RPL7     | 60S ribosomal protein L7                                               | P18124    |
|    | RPL7A    | 60S ribosomal protein L7a                                              | P62424    |
|    | RPL8     | 60S ribosomal protein L8                                               | P62917    |
|    | RPL9     | 60S ribosomal protein L9                                               | P32969    |
|    | RPLP0    | 60S acidic ribosomal protein P0                                        | P05388    |
|    | RPLP2    | 60S acidic ribosomal protein P2                                        | P05387    |
|    | RPN1     | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 | P04843    |
|    | RPN2     | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 | P04844    |
|    | RPRD1B   | Regulation of nuclear pre-mRNA domain-containing protein 1B            | Q9NQG5    |
|    | RPS11    | 40S ribosomal protein S11                                              | P62280    |
|    | RPS13    | 40S ribosomal protein S13                                              | P62277    |
|    | RPS14    | 40S ribosomal protein S14                                              | P62263    |
|    | RPS15A   | 40S ribosomal protein S15a                                             | P62244    |
|    | RPS16    | 40S ribosomal protein S16                                              | P62249    |
|    | RPS17    | 40S ribosomal protein S17                                              | P08708    |
|    | RPS17L   | 40S ribosomal protein S17-like                                         | P0CW22    |
|    | RPS18    | 40S ribosomal protein S18                                              | P62269    |
|    | RPS19    | 40S ribosomal protein S19                                              | P39019    |
|    | RPS19BP1 | Active regulator of SIRT1                                              | Q86WX3    |
|    | RPS2     | 40S ribosomal protein S2                                               | P15880    |
|    | RPS20    | 40S ribosomal protein S20                                              | P60866    |
|    | RPS23    | 40S ribosomal protein S23                                              | P62266    |
|    | RPS25    | 40S ribosomal protein S25                                              | P62851    |
|    | RPS27A   | Ubiquitin-40S ribosomal protein S27a                                   | P62979    |
|    | RPS3     | 40S ribosomal protein S3                                               | P23396    |
|    | RPS3A    | 40S ribosomal protein S3a                                              | P61247    |
|    | RPS4X    | 40S ribosomal protein S4, X isoform                                    | P62701    |
|    | RPS5     | 40S ribosomal protein S5                                               | P46782    |
|    | RPS7     | 40S ribosomal protein S7                                               | P62081    |
|    | RPS8     | 40S ribosomal protein S8                                               | P62241    |
|    | RPS9     | 40S ribosomal protein S9                                               | P46781    |
|    | RPSA     | 40S ribosomal protein SA                                               | P08865    |
|    | RPUSD3   | RNA pseudouridylate synthase domain-containing protein 3               | Q6P087    |
|    | RQCD1    | Cell differentiation protein RCD1 homolog                              | Q92600    |
|    | RRAS2    | Ras-related protein R-Ras2                                             | P62070    |
|    | RRP1     | Ribosomal RNA processing protein 1 homolog A                           | P56182    |
|    | RRP1B    | Ribosomal RNA processing protein 1 homolog B                           | Q14684    |

| Gene    | Protein name                                                             | Accession |
|---------|--------------------------------------------------------------------------|-----------|
| RSAD1   | Radical S-adenosyl methionine domain-containing protein 1, mitochondrial | Q9HA92    |
| RTCB    | tRNA-splicing ligase RtcB homolog                                        | Q9Y3I0    |
| RTN3    | Reticulon-3                                                              | O95197    |
| RTN4    | Reticulon-4                                                              | Q9NQC3    |
| RTN4IP1 | Reticulon-4-interacting protein 1, mitochondrial                         | Q8WWV3    |
| RUFY1   | RUN and FYVE domain-containing protein 1                                 | Q96T51    |
| RUVBL1  | RuvB-like 1                                                              | Q9Y265    |
| RUVBL2  | RuvB-like 2                                                              | Q9Y230    |
| S100A11 | Protein S100-A11                                                         | P31949    |
| SACM1L  | Phosphatidylinositide phosphatase SAC1                                   | Q9NTJ5    |
| SAFB    | Scaffold attachment factor B1                                            | Q15424    |
| SAR1A   | GTP-binding protein SAR1a                                                | Q9NR31    |
| SARS2   | SerinetRNA ligase, mitochondrial                                         | Q9NP81    |
| SART1   | U4/U6.U5 tri-snRNP-associated protein 1                                  | O43290    |
| SBF1    | Myotubularin-related protein 5                                           | O95248    |
| SCAMP1  | Secretory carrier-associated membrane protein 1                          | O15126    |
| SCAMP2  | Secretory carrier-associated membrane protein 2                          | O15127    |
| SCAMP3  | Secretory carrier-associated membrane protein 3                          | O14828    |
| SCAMP4  | Secretory carrier-associated membrane protein 4                          | Q969E2    |
| SCCPDH  | Saccharopine dehydrogenase-like oxidoreductase                           | Q8NBX0    |
| SCD     | Acyl-CoA desaturase                                                      | O00767    |
| SCD5    | Stearoyl-CoA desaturase 5                                                | Q86SK9    |
| SCO1    | Protein SCO1 homolog, mitochondrial                                      | O75880    |
| SCO2    | Protein SCO2 homolog, mitochondrial                                      | O43819    |
| SCP2    | Non-specific lipid-transfer protein                                      | P22307    |
| SCRIB   | Protein scribble homolog                                                 | Q14160    |
| SDF4    | 45 kDa calcium-binding protein                                           | Q9BRK5    |
| SDHA    | Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial | P31040    |
| SDHB    | Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial  | P21912    |
| SDR39U1 | Epimerase family protein SDR39U1                                         | Q9NRG7    |
| SEC11A  | Signal peptidase complex catalytic subunit SEC11A                        | P67812    |
| SEC11C  | Signal peptidase complex catalytic subunit SEC11C                        | Q9BY50    |
| SEC22B  | Vesicle-trafficking protein SEC22b                                       | O75396    |
| SEC24B  | Protein transport protein Sec24B                                         | O95487    |
| SEC24C  | Protein transport protein Sec24C                                         | P53992    |
| SEC61A1 | Protein transport protein Sec61 subunit alpha isoform 1                  | P61619    |
| SEC63   | Translocation protein SEC63 homolog                                      | Q9UGP8    |
| SEL1L   | Protein sel-1 homolog 1                                                  | Q9UBV2    |
| SEP15   | 15 kDa selenoprotein                                                     | O60613    |

| Gene     | Protein name                                               | Accession |
|----------|------------------------------------------------------------|-----------|
| SERBP1   | Plasminogen activator inhibitor 1 RNA-binding protein      | Q8NC51    |
| SERINC1  | Serine incorporator 1                                      | Q9NRX5    |
| SERINC5  | Serine incorporator 5                                      | Q86VE9    |
| SERPINB3 | Serpin B3                                                  | P29508    |
| SERPINB5 | Serpin B5                                                  | P36952    |
| SF3A2    | Splicing factor 3A subunit 2                               | Q15428    |
| SF3B1    | Splicing factor 3B subunit 1                               | O75533    |
| SF3B3    | Splicing factor 3B subunit 3                               | Q15393    |
| SF3B6    | Splicing factor 3B subunit 6                               | Q9Y3B4    |
| SFN      | 14-3-3 protein sigma                                       | P31947    |
| SFPQ     | Splicing factor, proline- and glutamine-rich               | P23246    |
| SFXN1    | Sideroflexin-1                                             | Q9H9B4    |
| SFXN3    | Sideroflexin-3                                             | Q9BWM7    |
| SFXN4    | Sideroflexin-4                                             | Q6P4A7    |
| SGPP1    | Sphingosine-1-phosphate phosphatase 1                      | Q9BX95    |
| SH3KBP1  | SH3 domain-containing kinase-binding protein 1             | Q96B97    |
| SIGMAR1  | Sigma non-opioid intracellular receptor 1                  | Q99720    |
| SIN3A    | Paired amphipathic helix protein Sin3a                     | Q96ST3    |
| SIPA1L1  | Signal-induced proliferation-associated 1-like protein 1   | O43166    |
| SIRT3    | NAD-dependent protein deacetylase sirtuin-3, mitochondrial | Q9NTG7    |
| SIRT5    | NAD-dependent protein deacylase sirtuin-5, mitochondrial   | Q9NXA8    |
| SIT1     | Signaling threshold-regulating transmembrane adapter 1     | Q9Y3P8    |
| SIX6     | Homeobox protein SIX6                                      | O95475    |
| SKIV2L2  | Superkiller viralicidic activity 2-like 2                  | P42285    |
| SLAIN2   | SLAIN motif-containing protein 2                           | Q9P270    |
| SLC12A2  | Solute carrier family 12 member 2                          | P55011    |
| SLC12A7  | Solute carrier family 12 member 7                          | Q9Y666    |
| SLC16A1  | Monocarboxylate transporter 1                              | P53985    |
| SLC16A3  | Monocarboxylate transporter 4                              | O15427    |
| SLC16A7  | Monocarboxylate transporter 2                              | O60669    |
| SLC19A1  | Folate transporter 1                                       | P41440    |
| SLC1A4   | Neutral amino acid transporter A                           | P43007    |
| SLC25A1  | Tricarboxylate transport protein, mitochondrial            | P53007    |
| SLC25A11 | Mitochondrial 2-oxoglutarate/malate carrier protein        | Q02978    |
| SLC25A12 | Calcium-binding mitochondrial carrier protein Aralar1      | O75746    |
| SLC25A15 | Mitochondrial ornithine transporter 1                      | Q9Y619    |
| SLC25A19 | Mitochondrial thiamine pyrophosphate carrier               | Q9HC21    |
| SLC25A20 | Mitochondrial carnitine/acylcarnitine carrier protein      | O43772    |
| SLC25A22 | Mitochondrial glutamate carrier 1                          | Q9H936    |

| Gene     | Protein name                                                             | Accession |
|----------|--------------------------------------------------------------------------|-----------|
| SLC25A24 | Calcium-binding mitochondrial carrier protein SCaMC-1                    | Q6NUK1    |
| SLC25A29 | Mitochondrial carnitine/acylcarnitine carrier protein CACL               | Q8N8R3    |
| SLC25A3  | Phosphate carrier protein, mitochondrial                                 | Q00325    |
| SLC25A30 | Kidney mitochondrial carrier protein 1                                   | Q5SVS4    |
| SLC25A33 | Solute carrier family 25 member 33                                       | Q9BSK2    |
| SLC25A4  | ADP/ATP translocase 1                                                    | P12235    |
| SLC25A40 | Solute carrier family 25 member 40                                       | Q8TBP6    |
| SLC25A5  | ADP/ATP translocase 2                                                    | P05141    |
| SLC25A51 | Solute carrier family 25 member 51                                       | Q9H1U9    |
| SLC25A6  | ADP/ATP translocase 3                                                    | P12236    |
| SLC29A1  | Equilibrative nucleoside transporter 1                                   | Q99808    |
| SLC2A1   | Solute carrier family 2, facilitated glucose transporter member 1        | P11166    |
| SLC30A5  | Zinc transporter 5                                                       | Q8TAD4    |
| SLC30A6  | Zinc transporter 6                                                       | Q6NXT4    |
| SLC35B1  | Solute carrier family 35 member B1                                       | P78383    |
| SLC35B2  | Adenosine 3'-phospho 5'-phosphosulfate transporter 1                     | Q8TB61    |
| SLC35E1  | Solute carrier family 35 member E1                                       | Q96K37    |
| SLC35E2B | Solute carrier family 35 member E2B                                      | P0CK96    |
| SLC35F2  | Solute carrier family 35 member F2                                       | Q8IXU6    |
| SLC38A10 | Putative sodium-coupled neutral amino acid transporter 10                | Q9HBR0    |
| SLC38A2  | Sodium-coupled neutral amino acid transporter 2                          | Q96QD8    |
| SLC39A14 | Zinc transporter ZIP14                                                   | Q15043    |
| SLC3A2   | 4F2 cell-surface antigen heavy chain                                     | P08195    |
| SLC7A1   | High affinity cationic amino acid transporter 1                          | P30825    |
| SLC7A5   | Large neutral amino acids transporter small subunit 1                    | Q01650    |
| SLC9A3R1 | Na(+)/H(+) exchange regulatory cofactor NHE-RF1                          | O14745    |
| SLIRP    | SRA stem-loop-interacting RNA-binding protein, mitochondrial             | Q9GZT3    |
| SLIT1    | Slit homolog 1 protein                                                   | O75093    |
| SLMAP    | Sarcolemmal membrane-associated protein                                  | Q14BN4    |
| SLTM     | SAFB-like transcription modulator                                        | Q9NWH9    |
| SMARCA4  | Transcription activator BRG1                                             | P51532    |
| SMARCAS  | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin | 060264    |
| SMARCAS  | subfamily A member 5                                                     | 000204    |
| SMARCC1  | SWI/SNF complex subunit SMARCC1                                          | Q92922    |
| SMC1A    | Structural maintenance of chromosomes protein 1A                         | Q14683    |
| SMC3     | Structural maintenance of chromosomes protein 3                          | Q9UQE7    |
| SMC4     | Structural maintenance of chromosomes protein 4                          | Q9NTJ3    |
| SNAP23   | Synaptosomal-associated protein 23                                       | O00161    |
| SNAP29   | Synaptosomal-associated protein 29                                       | O95721    |

| Gene     | Protein name                                         | Accession |
|----------|------------------------------------------------------|-----------|
| SND1     | Staphylococcal nuclease domain-containing protein 1  | Q7KZF4    |
| SNRNP200 | U5 small nuclear ribonucleoprotein 200 kDa helicase  | O75643    |
| SNRPA1   | U2 small nuclear ribonucleoprotein A'                | P09661    |
| SNRPD1   | Small nuclear ribonucleoprotein Sm D1                | P62314    |
| SNRPD2   | Small nuclear ribonucleoprotein Sm D2                | P62316    |
| SNRPN    | Small nuclear ribonucleoprotein-associated protein N | P63162    |
| SOAT1    | Sterol O-acyltransferase 1                           | P35610    |
| SOD1     | Superoxide dismutase [Cu-Zn]                         | P00441    |
| SOD2     | Superoxide dismutase [Mn], mitochondrial             | P04179    |
| SON      | Protein SON                                          | P18583    |
| SORL1    | Sortilin-related receptor                            | Q92673    |
| SPCS2    | Signal peptidase complex subunit 2                   | Q15005    |
| SPICE1   | Spindle and centriole-associated protein 1           | Q8N0Z3    |
| SPINT2   | Kunitz-type protease inhibitor 2                     | O43291    |
| SPN      | Leukosialin                                          | P16150    |
| SPNS1    | Protein spinster homolog 1                           | Q9H2V7    |
| SPPL2B   | Signal peptide peptidase-like 2B                     | Q8TCT7    |
| SPR      | Sepiapterin reductase                                | P35270    |
| SPRYD4   | SPRY domain-containing protein 4                     | Q8WW59    |
| SPTAN1   | Spectrin alpha chain, non-erythrocytic 1             | Q13813    |
| SPTBN1   | Spectrin beta chain, non-erythrocytic 1              | Q01082    |
| SPTBN2   | Spectrin beta chain, non-erythrocytic 2              | O15020    |
| SPTLC1   | Serine palmitoyltransferase 1                        | O15269    |
| SQLE     | Squalene monooxygenase                               | Q14534    |
| SQRDL    | Sulfide:quinone oxidoreductase, mitochondrial        | Q9Y6N5    |
| SRM      | Spermidine synthase                                  | P19623    |
| SRP14    | Signal recognition particle 14 kDa protein           | P37108    |
| SRP19    | Signal recognition particle 19 kDa protein           | P09132    |
| SRP68    | Signal recognition particle subunit SRP68            | Q9UHB9    |
| SRP72    | Signal recognition particle subunit SRP72            | O76094    |
| SRPK1    | SRSF protein kinase 1                                | Q96SB4    |
| SRPR     | Signal recognition particle receptor subunit alpha   | P08240    |
| SRPRB    | Signal recognition particle receptor subunit beta    | Q9Y5M8    |
| SRSF1    | Serine/arginine-rich splicing factor 1               | Q07955    |
| SRSF3    | Serine/arginine-rich splicing factor 3               | P84103    |
| SRSF6    | Serine/arginine-rich splicing factor 6               | Q13247    |
| SSBP1    | Single-stranded DNA-binding protein, mitochondrial   | Q04837    |
| SSR1     | Translocon-associated protein subunit alpha          | P43307    |
| SSR4     | Translocon-associated protein subunit delta          | P51571    |

| Gene     | Protein name                                                               | Accession |
|----------|----------------------------------------------------------------------------|-----------|
| ST13P4   | Putative protein FAM10A4                                                   | Q8IZP2    |
| STARD3NL | MLN64 N-terminal domain homolog                                            | O95772    |
| STAT3    | Signal transducer and activator of transcription 3                         | P40763    |
| STIM1    | Stromal interaction molecule 1                                             | Q13586    |
| STMN1    | Stathmin                                                                   | P16949    |
| STOM     | Erythrocyte band 7 integral membrane protein                               | P27105    |
| STOML2   | Stomatin-like protein 2, mitochondrial                                     | Q9UJZ1    |
| STRAP    | Serine-threonine kinase receptor-associated protein                        | Q9Y3F4    |
| STRN     | Striatin                                                                   | O43815    |
| STRN3    | Striatin-3                                                                 | Q13033    |
| STT3A    | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3A | P46977    |
| STT3B    | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B | Q8TCJ2    |
| STX10    | Syntaxin-10                                                                | O60499    |
| STX12    | Syntaxin-12                                                                | Q86Y82    |
| STX16    | Syntaxin-16                                                                | O14662    |
| STX17    | Syntaxin-17                                                                | P56962    |
| STX18    | Syntaxin-18                                                                | Q9P2W9    |
| STX2     | Syntaxin-2                                                                 | P32856    |
| STX3     | Syntaxin-3                                                                 | Q13277    |
| STX4     | Syntaxin-4                                                                 | Q12846    |
| STX5     | Syntaxin-5                                                                 | Q13190    |
| STX6     | Syntaxin-6                                                                 | O43752    |
| STX7     | Syntaxin-7                                                                 | O15400    |
| STX8     | Syntaxin-8                                                                 | Q9UNK0    |
| SUCLG1   | Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial         | P53597    |
| SUCLG2   | Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial              | Q96I99    |
| SUGT1    | Suppressor of G2 allele of SKP1 homolog                                    | Q9Y2Z0    |
| SUMO2    | Small ubiquitin-related modifier 2                                         | P61956    |
| SUPT16H  | FACT complex subunit SPT16                                                 | Q9Y5B9    |
| SUPV3L1  | ATP-dependent RNA helicase SUPV3L1, mitochondrial                          | Q8IYB8    |
| SURF4    | Surfeit locus protein 4                                                    | O15260    |
| SV2A     | Synaptic vesicle glycoprotein 2A                                           | Q7L0J3    |
| SVIP     | Small VCP/p97-interacting protein                                          | Q8NHG7    |
| SYNE2    | Nesprin-2                                                                  | Q8WXH0    |
| SYNGR2   | Synaptogyrin-2                                                             | O43760    |
| SYNJ2BP  | Synaptojanin-2-binding protein                                             | P57105    |
| SYPL1    | Synaptophysin-like protein 1                                               | Q16563    |
| TACC1    | Transforming acidic coiled-coil-containing protein 1                       | O75410    |
| TACO1    | Translational activator of cytochrome c oxidase 1                          | Q9BSH4    |

| Gene    | Protein name                                                      | Accession |
|---------|-------------------------------------------------------------------|-----------|
| TALDO1  | Transaldolase                                                     | P37837    |
| TAP1    | Antigen peptide transporter 1                                     | Q03518    |
| TAPT1   | Transmembrane anterior posterior transformation protein 1 homolog | Q6NXT6    |
| TARS    | ThreoninetRNA ligase, cytoplasmic                                 | P26639    |
| TARS2   | ThreoninetRNA ligase, mitochondrial                               | Q9BW92    |
| TAX1BP1 | Tax1-binding protein 1                                            | Q86VP1    |
| TBC1D15 | TBC1 domain family member 15                                      | Q8TC07    |
| TBC1D20 | TBC1 domain family member 20                                      | Q96BZ9    |
| TBC1D31 | TBC1 domain family member 31                                      | Q96DN5    |
| TBCB    | Tubulin-folding cofactor B                                        | Q99426    |
| TBL2    | Transducin beta-like protein 2                                    | Q9Y4P3    |
| TBL3    | Transducin beta-like protein 3                                    | Q12788    |
| TBRG4   | Protein TBRG4                                                     | Q969Z0    |
| TCOF1   | Treacle protein                                                   | Q13428    |
| TCP1    | T-complex protein 1 subunit alpha                                 | P17987    |
| TDRKH   | Tudor and KH domain-containing protein                            | Q9Y2W6    |
| TECR    | Very-long-chain enoyl-CoA reductase                               | Q9NZ01    |
| TEFM    | Transcription elongation factor, mitochondrial                    | Q96QE5    |
| TFAM    | Transcription factor A, mitochondrial                             | Q00059    |
| TFB1M   | Dimethyladenosine transferase 1, mitochondrial                    | Q8WVM0    |
| TFB2M   | Dimethyladenosine transferase 2, mitochondrial                    | Q9H5Q4    |
| TFRC    | Transferrin receptor protein 1                                    | P02786    |
| TGOLN2  | Trans-Golgi network integral membrane protein 2                   | O43493    |
| THNSL1  | Threonine synthase-like 1                                         | Q8IYQ7    |
| THOC1   | THO complex subunit 1                                             | Q96FV9    |
| THYN1   | Thymocyte nuclear protein 1                                       | Q9P016    |
| TIMM10B | Mitochondrial import inner membrane translocase subunit Tim10 B   | Q9Y5J6    |
| TIMM17B | Mitochondrial import inner membrane translocase subunit Tim17-B   | O60830    |
| TIMM21  | Mitochondrial import inner membrane translocase subunit Tim21     | Q9BVV7    |
| TIMM23  | Mitochondrial import inner membrane translocase subunit Tim23     | O14925    |
| TIMM44  | Mitochondrial import inner membrane translocase subunit TIM44     | O43615    |
| TIMM50  | Mitochondrial import inner membrane translocase subunit TIM50     | Q3ZCQ8    |
| TIMMDC1 | Complex I assembly factor TIMMDC1, mitochondrial                  | Q9NPL8    |
| TLN1    | Talin-1                                                           | Q9Y490    |
| TM7SF3  | Transmembrane 7 superfamily member 3                              | Q9NS93    |
| TM9SF2  | Transmembrane 9 superfamily member 2                              | Q99805    |
| TM9SF3  | Transmembrane 9 superfamily member 3                              | Q9HD45    |
| TM9SF4  | Transmembrane 9 superfamily member 4                              | Q92544    |
| TMCO1   | Transmembrane and coiled-coil domain-containing protein 1         | Q9UM00    |
|         |                                                                   |           |

| Gene     | Protein name                                                 | Accession |
|----------|--------------------------------------------------------------|-----------|
| TMED10   | Transmembrane emp24 domain-containing protein 10             | P49755    |
| TMED2    | Transmembrane emp24 domain-containing protein 2              | Q15363    |
| TMED4    | Transmembrane emp24 domain-containing protein 4              | Q7Z7H5    |
| TMED7    | Transmembrane emp24 domain-containing protein 7              | Q9Y3B3    |
| TMED9    | Transmembrane emp24 domain-containing protein 9              | Q9BVK6    |
| TMEM109  | Transmembrane protein 109                                    | Q9BVC6    |
| TMEM115  | Transmembrane protein 115                                    | Q12893    |
| TMEM126A | Transmembrane protein 126A                                   | Q9H061    |
| TMEM126B | Complex I assembly factor TMEM126B, mitochondrial            | Q8IUX1    |
| TMEM160  | Transmembrane protein 160                                    | Q9NX00    |
| TMEM165  | Transmembrane protein 165                                    | Q9HC07    |
| TMEM173  | Stimulator of interferon genes protein                       | Q86WV6    |
| TMEM199  | Transmembrane protein 199                                    | Q8N511    |
| TMEM205  | Transmembrane protein 205                                    | Q6UW68    |
| TMEM206  | Transmembrane protein 206                                    | Q9H813    |
| TMEM230  | Transmembrane protein 230                                    | Q96A57    |
| TMEM245  | Transmembrane protein 245                                    | Q9H330    |
| TMEM261  | Transmembrane protein 261                                    | Q96GE9    |
| TMEM30A  | Cell cycle control protein 50A                               | Q9NV96    |
| TMEM33   | Transmembrane protein 33                                     | P57088    |
| TMEM43   | Transmembrane protein 43                                     | Q9BTV4    |
| TMEM59   | Transmembrane protein 59                                     | Q9BXS4    |
| TMEM65   | Transmembrane protein 65                                     | Q6PI78    |
| TMEM70   | Transmembrane protein 70, mitochondrial                      | Q9BUB7    |
| TMF1     | TATA element modulatory factor                               | P82094    |
| TMLHE    | Trimethyllysine dioxygenase, mitochondrial                   | Q9NVH6    |
| ТМРО     | Lamina-associated polypeptide 2, isoforms beta/gamma         | P42166    |
| TMUB1    | Transmembrane and ubiquitin-like domain-containing protein 1 | Q9BVT8    |
| TMUB2    | Transmembrane and ubiquitin-like domain-containing protein 2 | Q71RG4    |
| TMX1     | Thioredoxin-related transmembrane protein 1                  | Q9H3N1    |
| TMX2     | Thioredoxin-related transmembrane protein 2                  | Q9Y320    |
| TMX3     | Protein disulfide-isomerase TMX3                             | Q96JJ7    |
| TMX4     | Thioredoxin-related transmembrane protein 4                  | Q9H1E5    |
| TNPO1    | Transportin-1                                                | Q92973    |
| TOMM20   | Mitochondrial import receptor subunit TOM20 homolog          | Q15388    |
| TOMM22   | Mitochondrial import receptor subunit TOM22 homolog          | Q9NS69    |
| TOMM40   | Mitochondrial import receptor subunit TOM40 homolog          | O96008    |
| TOMM40L  | Mitochondrial import receptor subunit TOM40B                 | Q969M1    |
| TOMM70A  | Mitochondrial import receptor subunit TOM70                  | O94826    |

| 14 | Gene     | Protein name                                                     | Accession |
|----|----------|------------------------------------------------------------------|-----------|
| 4  | TOP2A    | DNA topoisomerase 2-alpha                                        | P11388    |
|    | TOP2B    | DNA topoisomerase 2-beta                                         | Q02880    |
|    | TOR1A    | Torsin-1A                                                        | O14656    |
|    | TOR1B    | Torsin-1B                                                        | O14657    |
|    | TPD52    | Tumor protein D52                                                | P55327    |
|    | TPGS1    | Tubulin polyglutamylase complex subunit 1                        | Q6ZTW0    |
|    | TPI1     | Triosephosphate isomerase                                        | P60174    |
|    | TPM3     | Tropomyosin alpha-3 chain                                        | P06753    |
|    | TPM4     | Tropomyosin alpha-4 chain                                        | P67936    |
|    | TPR      | Nucleoprotein TPR                                                | P12270    |
|    | TRAF3IP3 | TRAF3-interacting JNK-activating modulator                       | Q9Y228    |
|    | TRAPPC1  | Trafficking protein particle complex subunit 1                   | Q9Y5R8    |
|    | TRAPPC3  | Trafficking protein particle complex subunit 3                   | O43617    |
|    | TRAPPC5  | Trafficking protein particle complex subunit 5                   | Q8IUR0    |
|    | TREX2    | Three prime repair exonuclease 2                                 | Q9BQ50    |
|    | TRIM23   | E3 ubiquitin-protein ligase TRIM23                               | P36406    |
|    | TRIM28   | Transcription intermediary factor 1-beta                         | Q13263    |
|    | TRIP11   | Thyroid receptor-interacting protein 11                          | Q15643    |
|    | TRIP13   | Pachytene checkpoint protein 2 homolog                           | Q15645    |
|    | TRMT10C  | Mitochondrial ribonuclease P protein 1                           | Q7L0Y3    |
|    | TRMT5    | tRNA                                                             | Q32P41    |
|    | TRMT61B  | tRNA                                                             | Q9BVS5    |
|    | TRMU     | Mitochondrial tRNA-specific 2-thiouridylase 1                    | O75648    |
|    | TRNT1    | CCA tRNA nucleotidyltransferase 1, mitochondrial                 | Q96Q11    |
|    | TRPV2    | Transient receptor potential cation channel subfamily V member 2 | Q9Y5S1    |
|    | TRUB1    | Probable tRNA pseudouridine synthase 1                           | Q8WWH5    |
|    | TRUB2    | Probable tRNA pseudouridine synthase 2                           | O95900    |
|    | TSFM     | Elongation factor Ts, mitochondrial                              | P43897    |
|    | TSG101   | Tumor susceptibility gene 101 protein                            | Q99816    |
|    | TSN      | Translin                                                         | Q15631    |
|    | TST      | Thiosulfate sulfurtransferase                                    | Q16762    |
|    | TUBA1A   | Tubulin alpha-1A chain                                           | Q71U36    |
|    | TUBA1B   | Tubulin alpha-1B chain                                           | P68363    |
|    | TUBA1C   | Tubulin alpha-1C chain                                           | Q9BQE3    |
|    | TUBB     | Tubulin beta chain                                               | P07437    |
|    | TUBG1    | Tubulin gamma-1 chain                                            | P23258    |
|    | TUBGCP2  | Gamma-tubulin complex component 2                                | Q9BSJ2    |
|    | TUBGCP3  | Gamma-tubulin complex component 3                                | Q96CW5    |
|    | TUBGCP6  | Gamma-tubulin complex component 6                                | Q96RT7    |

| Gene    | Protein name                                               | Accession |
|---------|------------------------------------------------------------|-----------|
| TUFM    | Elongation factor Tu, mitochondrial                        | P49411    |
| TUSC3   | Tumor suppressor candidate 3                               | Q13454    |
| TXN     | Thioredoxin                                                | P10599    |
| TXN2    | Thioredoxin, mitochondrial                                 | Q99757    |
| TXNDC5  | Thioredoxin domain-containing protein 5                    | Q8NBS9    |
| TYMP    | Thymidine phosphorylase                                    | P19971    |
| TYMS    | Thymidylate synthase                                       | P04818    |
| UBA1    | Ubiquitin-like modifier-activating enzyme 1                | P22314    |
| UBA6    | Ubiquitin-like modifier-activating enzyme 6                | A0AVT1    |
| UBAC2   | Ubiquitin-associated domain-containing protein 2           | Q8NBM4    |
| UBAP2L  | Ubiquitin-associated protein 2-like                        | Q14157    |
| UBB     | Polyubiquitin-B                                            | P0CG47    |
| UBC     | Polyubiquitin-C                                            | P0CG48    |
| UBE2J1  | Ubiquitin-conjugating enzyme E2 J1                         | Q9Y385    |
| UBE2J2  | Ubiquitin-conjugating enzyme E2 J2                         | Q8N2K1    |
| UBE2K   | Ubiquitin-conjugating enzyme E2 K                          | P61086    |
| UBE2M   | NEDD8-conjugating enzyme Ubc12                             | P61081    |
| UBE2N   | Ubiquitin-conjugating enzyme E2 N                          | P61088    |
| UBE4A   | Ubiquitin conjugation factor E4 A                          | Q14139    |
| UBR4    | E3 ubiquitin-protein ligase UBR4                           | Q5T4S7    |
| UBTF    | Nucleolar transcription factor 1                           | P17480    |
| UBXN4   | UBX domain-containing protein 4                            | Q92575    |
| UCHL5   | Ubiquitin carboxyl-terminal hydrolase isozyme L5           | Q9Y5K5    |
| UCK2    | Uridine-cytidine kinase 2                                  | Q9BZX2    |
| UFL1    | E3 UFM1-protein ligase 1                                   | O94874    |
| UFSP2   | Ufm1-specific protease 2                                   | Q9NUQ7    |
| UGGT1   | UDP-glucose:glycoprotein glucosyltransferase 1             | Q9NYU2    |
| UMPS    | Uridine 5'-monophosphate synthase                          | P11172    |
| UNG     | Uracil-DNA glycosylase                                     | P13051    |
| UPF1    | Regulator of nonsense transcripts 1                        | Q92900    |
| UQCC1   | Ubiquinol-cytochrome-c reductase complex assembly factor 1 | Q9NVA1    |
| UQCC2   | Ubiquinol-cytochrome-c reductase complex assembly factor 2 | Q9BRT2    |
| UQCRB   | Cytochrome b-c1 complex subunit 7                          | P14927    |
| UQCRC1  | Cytochrome b-c1 complex subunit 1, mitochondrial           | P31930    |
| UQCRC2  | Cytochrome b-c1 complex subunit 2, mitochondrial           | P22695    |
| UQCRFS1 | Cytochrome b-c1 complex subunit Rieske, mitochondrial      | P47985    |
| UQCRQ   | Cytochrome b-c1 complex subunit 8                          | O14949    |
| URB1    | Nucleolar pre-ribosomal-associated protein 1               | O60287    |
| USE1    | Vesicle transport protein USE1                             | Q9NZ43    |

| Gene   | Protein name                                                   | Accession |
|--------|----------------------------------------------------------------|-----------|
| USO1   | General vesicular transport factor p115                        | O60763    |
| USP10  | Ubiquitin carboxyl-terminal hydrolase 10                       | Q14694    |
| USP11  | Ubiquitin carboxyl-terminal hydrolase 11                       | P51784    |
| USP9X  | Probable ubiquitin carboxyl-terminal hydrolase FAF-X           | Q93008    |
| UTP14A | U3 small nucleolar RNA-associated protein 14 homolog A         | Q9BVJ6    |
| UTP20  | Small subunit processome component 20 homolog                  | O75691    |
| UTRN   | Utrophin                                                       | P46939    |
| VAMP3  | Vesicle-associated membrane protein 3                          | Q15836    |
| VAMP4  | Vesicle-associated membrane protein 4                          | O75379    |
| VAMP5  | Vesicle-associated membrane protein 5                          | O95183    |
| VAMP7  | Vesicle-associated membrane protein 7                          | P51809    |
| VAPB   | Vesicle-associated membrane protein-associated protein B/C     | O95292    |
| VARS   | ValinetRNA ligase                                              | P26640    |
| VARS2  | ValinetRNA ligase, mitochondrial                               | Q5ST30    |
| VAT1   | Synaptic vesicle membrane protein VAT-1 homolog                | Q99536    |
| VAV1   | Proto-oncogene vav                                             | P15498    |
| VAV3   | Guanine nucleotide exchange factor VAV3                        | Q9UKW4    |
| VCP    | Transitional endoplasmic reticulum ATPase                      | P55072    |
| VDAC1  | Voltage-dependent anion-selective channel protein 1            | P21796    |
| VDAC2  | Voltage-dependent anion-selective channel protein 2            | P45880    |
| VDAC3  | Voltage-dependent anion-selective channel protein 3            | Q9Y277    |
| VIM    | Vimentin                                                       | P08670    |
| VMA21  | Vacuolar ATPase assembly integral membrane protein VMA21       | Q3ZAQ7    |
| VPS11  | Vacuolar protein sorting-associated protein 11 homolog         | Q9H270    |
| VPS13A | Vacuolar protein sorting-associated protein 13A                | Q96RL7    |
| VPS13B | Vacuolar protein sorting-associated protein 13B                | Q7Z7G8    |
| VPS13C | Vacuolar protein sorting-associated protein 13C                | Q709C8    |
| VPS18  | Vacuolar protein sorting-associated protein 18 homolog         | Q9P253    |
| VPS29  | Vacuolar protein sorting-associated protein 29                 | Q9UBQ0    |
| VPS35  | Vacuolar protein sorting-associated protein 35                 | Q96QK1    |
| VPS39  | Vam6/Vps39-like protein                                        | Q96JC1    |
| VTI1A  | Vesicle transport through interaction with t-SNAREs homolog 1A | Q96AJ9    |
| VTI1B  | Vesicle transport through interaction with t-SNAREs homolog 1B | Q9UEU0    |
| VWA8   | von Willebrand factor A domain-containing protein 8            | A3KMH1    |
| WARS2  | TryptophantRNA ligase, mitochondrial                           | Q9UGM6    |
| WDR3   | WD repeat-containing protein 3                                 | Q9UNX4    |
| WDR36  | WD repeat-containing protein 36                                | Q8NI36    |
| XPO1   | Exportin-1                                                     | O14980    |
| XRCC5  | X-ray repair cross-complementing protein 5                     | P13010    |

| Gene     | Protein name                                                   | Accession |
|----------|----------------------------------------------------------------|-----------|
| XRCC6    | X-ray repair cross-complementing protein 6                     | P12956    |
| XYLT2    | Xylosyltransferase 2                                           | Q9H1B5    |
| YARS2    | TyrosinetRNA ligase, mitochondrial                             | Q9Y2Z4    |
| YBEY     | Putative ribonuclease                                          | P58557    |
| YBX1     | Nuclease-sensitive element-binding protein 1                   | P67809    |
| YIPF3    | Protein YIPF3                                                  | Q9GZM5    |
| YIPF5    | Protein YIPF5                                                  | Q969M3    |
| YKT6     | Synaptobrevin homolog YKT6                                     | O15498    |
| YME1L1   | ATP-dependent zinc metalloprotease YME1L1                      | Q96TA2    |
| YRDC     | YrdC domain-containing protein, mitochondrial                  | Q86U90    |
| YWHAB    | 14-3-3 protein beta/alpha                                      | P31946    |
| YWHAE    | 14-3-3 protein epsilon                                         | P62258    |
| YWHAG    | 14-3-3 protein gamma                                           | P61981    |
| YWHAH    | 14-3-3 protein eta                                             | Q04917    |
| YWHAQ    | 14-3-3 protein theta                                           | P27348    |
| YWHAZ    | 14-3-3 protein zeta/delta                                      | P63104    |
| ZADH2    | Zinc-binding alcohol dehydrogenase domain-containing protein 2 | Q8N4Q0    |
| ZAP70    | Tyrosine-protein kinase ZAP-70                                 | P43403    |
| ZC3H11A  | Zinc finger CCCH domain-containing protein 11A                 | O75152    |
| ZC3HAV1  | Zinc finger CCCH-type antiviral protein 1                      | Q7Z2W4    |
| ZDHHC13  | Palmitoyltransferase ZDHHC13                                   | Q8IUH4    |
| ZMPSTE24 | CAAX prenyl protease 1 homolog                                 | O75844    |
| ZW10     |                                                                |           |

## 6.4 Background proteins

Table 5: Proteins contained in the background sample (BG) measured by mass spectrometry (see 3.5). Listed are gene names, protein names, and UniProt accession numbers.

| Gene    | Protein name                                                            | Accession |
|---------|-------------------------------------------------------------------------|-----------|
| AARS2   | AlaninetRNA ligase, mitochondrial                                       | Q5JTZ9    |
| AASS    | Alpha-aminoadipic semialdehyde synthase, mitochondrial                  | Q9UDR5    |
| ABAT    | 4-aminobutyrate aminotransferase, mitochondrial                         | P80404    |
| ABCB10  | ATP-binding cassette sub-family B member 10, mitochondrial              | Q9NRK6    |
| ABCB7   | ATP-binding cassette sub-family B member 7, mitochondrial               | O75027    |
| ABCB8   | ATP-binding cassette sub-family B member 8, mitochondrial               | Q9NUT2    |
| ABCC1   | Multidrug resistance-associated protein 1                               | P33527    |
| ABCC4   | Multidrug resistance-associated protein 4                               | O15439    |
| ABCF1   | ATP-binding cassette sub-family F member 1                              | Q8NE71    |
| ABHD10  | Mycophenolic acid acyl-glucuronide esterase, mitochondrial              | Q9NUJ1    |
| ABHD11  | Alpha/beta hydrolase domain-containing protein 11                       | Q8NFV4    |
| ABHD17B | Alpha/beta hydrolase domain-containing protein 17B                      | Q5VST6    |
| ACAA1   | 3-ketoacyl-CoA thiolase, peroxisomal                                    | P09110    |
| ACAA2   | 3-ketoacyl-CoA thiolase, mitochondrial                                  | P42765    |
| ACAD8   | Isobutyryl-CoA dehydrogenase, mitochondrial                             | Q9UKU7    |
| ACAD9   | Acyl-CoA dehydrogenase family member 9, mitochondrial                   | Q9H845    |
| ACADM   | Medium-chain specific acyl-CoA dehydrogenase, mitochondrial             | P11310    |
| ACADS   | Short-chain specific acyl-CoA dehydrogenase, mitochondrial              | P16219    |
| ACADVL  | Very long-chain specific acyl-CoA dehydrogenase, mitochondrial          | P49748    |
| ACAP1   | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 1 | Q15027    |
| ACAT1   | Acetyl-CoA acetyltransferase, mitochondrial                             | P24752    |
| ACBD3   | Golgi resident protein GCP60                                            | Q9H3P7    |
| ACIN1   | Apoptotic chromatin condensation inducer in the nucleus                 | Q9UKV3    |
| ACLY    | ATP-citrate synthase                                                    | P53396    |

| Gene     | Protein name                                                            | Accession |
|----------|-------------------------------------------------------------------------|-----------|
| ACOT13   | Acyl-coenzyme A thioesterase 13                                         | Q9NPJ3    |
| ACOT8    | Acyl-coenzyme A thioesterase 8                                          | O14734    |
| ACOX1    | Peroxisomal acyl-coenzyme A oxidase 1                                   | Q15067    |
| ACP1     | Low molecular weight phosphotyrosine protein phosphatase                | P24666    |
| ACSF3    | Acyl-CoA synthetase family member 3, mitochondrial                      | Q4G176    |
| ACSS1    | Acetyl-coenzyme A synthetase 2-like, mitochondrial                      | Q9NUB1    |
| ACTG1    | Actin, cytoplasmic 2                                                    | P63261    |
| ACTL6A   | Actin-like protein 6A                                                   | O96019    |
| ACTN4    | Alpha-actinin-4                                                         | O43707    |
| ACTR1A   | Alpha-centractin                                                        | P61163    |
| ACTR3    | Actin-related protein 3                                                 | P61158    |
| ADAM10   | Disintegrin and metalloproteinase domain-containing protein 10          | O14672    |
| ADCK4    | AarF domain-containing protein kinase 4                                 | Q96D53    |
| ADD1     | Alpha-adducin                                                           | P35611    |
| ADD3     | Gamma-adducin                                                           | Q9UEY8    |
| ADPRHL2  | Poly(ADP-ribose) glycohydrolase ARH3                                    | Q9NX46    |
| AEBP1    | Adipocyte enhancer-binding protein 1                                    | Q8IUX7    |
| AFG3L2   | AFG3-like protein 2                                                     | Q9Y4W6    |
| AGK      | Acylglycerol kinase, mitochondrial                                      | Q53H12    |
| AGPS     | Alkyldihydroxyacetonephosphate synthase, peroxisomal                    | O00116    |
| AIFM1    | Apoptosis-inducing factor 1, mitochondrial                              | O95831    |
| AIMP1    | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1   | Q12904    |
| AK3      | GTP:AMP phosphotransferase AK3, mitochondrial                           | Q9UIJ7    |
| AKAP1    | A-kinase anchor protein 1, mitochondrial                                | Q92667    |
| AKAP2    | A-kinase anchor protein 2                                               | Q9Y2D5    |
| AKAP9    | A-kinase anchor protein 9                                               | Q99996    |
| AKNA     | AT-hook-containing transcription factor                                 | Q7Z591    |
| ALB      | Serum albumin                                                           | P02768    |
| ALDH18A1 | Delta-1-pyrroline-5-carboxylate synthase                                | P54886    |
| ALDH3A2  | Fatty aldehyde dehydrogenase                                            | P51648    |
| ALDH4A1  | Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial            | P30038    |
| ALG5     | Dolichyl-phosphate beta-glucosyltransferase                             | Q9Y673    |
| ALKBH1   | Alkylated DNA repair protein alkB homolog 1                             | Q13686    |
| ALKBH7   | Alpha-ketoglutarate-dependent dioxygenase alkB homolog 7, mitochondrial | Q9BT30    |
| ALMS1    | Alstrom syndrome protein 1                                              | Q8TCU4    |
| AMFR     | E3 ubiquitin-protein ligase AMFR                                        | Q9UKV5    |
| ANO6     | Anoctamin-6                                                             | Q4KMQ2    |
| ANXA1    | Annexin A1                                                              | P04083    |
| ANXA11   | Annexin A11                                                             | P50995    |

| Gene     | Protein name                                          | Accession |
|----------|-------------------------------------------------------|-----------|
| ANXA2    | Annexin A2                                            | P07355    |
| ANXA6    | Annexin A6                                            | P08133    |
| AP1M1    | AP-1 complex subunit mu-1                             | Q9BXS5    |
| AP1S2    | AP-1 complex subunit sigma-2                          | P56377    |
| AP2A1    | AP-2 complex subunit alpha-1                          | O95782    |
| AP2A2    | AP-2 complex subunit alpha-2                          | O94973    |
| AP2B1    | AP-2 complex subunit beta                             | P63010    |
| AP2M1    | AP-2 complex subunit mu                               | Q96CW1    |
| APEX1    | DNA-(apurinic or apyrimidinic site) lyase             | P27695    |
| APMAP    | Adipocyte plasma membrane-associated protein          | Q9HDC9    |
| APOA1BP  | NAD(P)H-hydrate epimerase                             | Q8NCW5    |
| APOB     | Apolipoprotein B-100                                  | P04114    |
| APOL2    | Apolipoprotein L2                                     | Q9BQE5    |
| APOO     | Apolipoprotein O                                      | Q9BUR5    |
| APOOL    | Apolipoprotein O-like                                 | Q6UXV4    |
| APRT     | Adenine phosphoribosyltransferase                     | P07741    |
| ARF1     | ADP-ribosylation factor 1                             | P84077    |
| ARF3     | ADP-ribosylation factor 3                             | P61204    |
| ARF4     | ADP-ribosylation factor 4                             | P18085    |
| ARF5     | ADP-ribosylation factor 5                             | P84085    |
| ARF6     | ADP-ribosylation factor 6                             | P62330    |
| ARFGAP1  | ADP-ribosylation factor GTPase-activating protein 1   | Q8N6T3    |
| ARG2     | Arginase-2, mitochondrial                             | P78540    |
| ARHGAP30 | Rho GTPase-activating protein 30                      | Q7Z6I6    |
| ARHGEF2  | Rho guanine nucleotide exchange factor 2              | Q92974    |
| ARL1     | ADP-ribosylation factor-like protein 1                | P40616    |
| ARL15    | ADP-ribosylation factor-like protein 15               | Q9NXU5    |
| ARL2     | ADP-ribosylation factor-like protein 2                | P36404    |
| ARL6IP5  | PRA1 family protein 3                                 | O75915    |
| ARL8B    | ADP-ribosylation factor-like protein 8B               | Q9NVJ2    |
| ARMC1    | Armadillo repeat-containing protein 1                 | Q9NVT9    |
| ARMC10   | Armadillo repeat-containing protein 10                | Q8N2F6    |
| ARMCX3   | Armadillo repeat-containing X-linked protein 3        | Q9UH62    |
| ARPC1B   | Actin-related protein 2/3 complex subunit 1B          | O15143    |
| ARPC2    | Actin-related protein 2/3 complex subunit 2           | O15144    |
| ATAD1    | ATPase family AAA domain-containing protein 1         | Q8NBU5    |
| ATAD3A   | ATPase family AAA domain-containing protein 3A        | Q9NVI7    |
| ATF6     | Cyclic AMP-dependent transcription factor ATF-6 alpha | P18850    |
| ATL3     | Atlastin-3                                            | Q6DD88    |
|          |                                                       |           |

| Gene     | Protein name                                            | Accession |
|----------|---------------------------------------------------------|-----------|
| ATP11B   | Probable phospholipid-transporting ATPase IF            | Q9Y2G3    |
| ATP11C   | Phospholipid-transporting ATPase IG                     | Q8NB49    |
| ATP13A1  | Manganese-transporting ATPase 13A1                      | Q9HD20    |
| ATP13A3  | Probable cation-transporting ATPase 13A3                | Q9H7F0    |
| ATP1A1   | Sodium/potassium-transporting ATPase subunit alpha-1    | P05023    |
| ATP1A3   | Sodium/potassium-transporting ATPase subunit alpha-3    | P13637    |
| ATP2A2   | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2     | P16615    |
| ATP2A3   | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3     | Q93084    |
| ATP2B1   | Plasma membrane calcium-transporting ATPase 1           | P20020    |
| ATP2B4   | Plasma membrane calcium-transporting ATPase 4           | P23634    |
| ATP5A1   | ATP synthase subunit alpha, mitochondrial               | P25705    |
| ATP5B    | ATP synthase subunit beta, mitochondrial                | P06576    |
| ATP5D    | ATP synthase subunit delta, mitochondrial               | P30049    |
| ATP5F1   | ATP synthase F(0) complex subunit B1, mitochondrial     | P24539    |
| ATP5H    | ATP synthase subunit d, mitochondrial                   | O75947    |
| ATP5L    | ATP synthase subunit g, mitochondrial                   | O75964    |
| ATP5O    | ATP synthase subunit O, mitochondrial                   | P48047    |
| ATP5S    | ATP synthase subunit s, mitochondrial                   | Q99766    |
| ATP5SL   | ATP synthase subunit s-like protein                     | Q9NW81    |
| ATP6AP1  | V-type proton ATPase subunit S1                         | Q15904    |
| ATP6AP2  | Renin receptor                                          | O75787    |
| ATP6V0A1 | V-type proton ATPase 116 kDa subunit a isoform 1        | Q93050    |
| ATP6V0A2 | V-type proton ATPase 116 kDa subunit a isoform 2        | Q9Y487    |
| ATP6V0D1 | V-type proton ATPase subunit d 1                        | P61421    |
| ATP6V1A  | V-type proton ATPase catalytic subunit A                | P38606    |
| ATP6V1B2 | V-type proton ATPase subunit B, brain isoform           | P21281    |
| ATP6V1D  | V-type proton ATPase subunit D                          | Q9Y5K8    |
| ATP6V1E1 | V-type proton ATPase subunit E 1                        | P36543    |
| ATP6V1F  | V-type proton ATPase subunit F                          | Q16864    |
| ATP6V1G1 | V-type proton ATPase subunit G 1                        | O75348    |
| ATP6V1H  | V-type proton ATPase subunit H                          | Q9UI12    |
| ATP7A    | Copper-transporting ATPase 1                            | Q04656    |
| ATPAF1   | ATP synthase mitochondrial F1 complex assembly factor 1 | Q5TC12    |
| ATPAF2   | ATP synthase mitochondrial F1 complex assembly factor 2 | Q8N5M1    |
| ATRX     | Transcriptional regulator ATRX                          | P46100    |
| ATXN10   | Ataxin-10                                               | Q9UBB4    |
| AUH      | Methylglutaconyl-CoA hydratase, mitochondrial           | Q13825    |
| AUP1     | Ancient ubiquitous protein 1                            | Q9Y679    |
| AURKA    | Aurora kinase A                                         | O14965    |

| Gene      | Protein name                                                         | Accession |
|-----------|----------------------------------------------------------------------|-----------|
| AURKB     | Aurora kinase B                                                      | Q96GD4    |
| B3GALT6   | Beta-1,3-galactosyltransferase 6                                     | Q96L58    |
| BAG2      | BAG family molecular chaperone regulator 2                           | O95816    |
| BAZ1B     | Tyrosine-protein kinase BAZ1B                                        | Q9UIG0    |
| BCAT2     | Branched-chain-amino-acid aminotransferase, mitochondrial            | O15382    |
| BCKDHA    | 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial          | P12694    |
| BCL2L1    | Bcl-2-like protein 1                                                 | Q07817    |
| BCL2L12   | Bcl-2-like protein 12                                                | Q9HB09    |
| BCL2L13   | Bcl-2-like protein 13                                                | Q9BXK5    |
| BCS1L     | Mitochondrial chaperone BCS1                                         | Q9Y276    |
| BET1L     | BET1-like protein                                                    | Q9NYM9    |
| BICD1     | Protein bicaudal D homolog 1                                         | Q96G01    |
| BICD2     | Protein bicaudal D homolog 2                                         | Q8TD16    |
| BNIP1     | Vesicle transport protein SEC20                                      | Q12981    |
| BNIP3L    | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like        | O60238    |
| BRI3BP    | BRI3-binding protein                                                 | Q8WY22    |
| BSG       | Basigin                                                              | P35613    |
| BUB3      | Mitotic checkpoint protein BUB3                                      | O43684    |
| C10orf35  | Uncharacterized protein C10orf35                                     | Q96D05    |
| C14orf159 | UPF0317 protein C14orf159, mitochondrial                             | Q7Z3D6    |
| C14orf166 | UPF0568 protein C14orf166                                            | Q9Y224    |
| C16orf54  | Transmembrane protein C16orf54                                       | Q6UWD8    |
| C17orf59  | Uncharacterized protein C17orf59                                     | Q96GS4    |
| C18orf32  | UPF0729 protein C18orf32                                             | Q8TCD1    |
| C19orf10  | UPF0556 protein C19orf10                                             | Q969H8    |
| C19orf52  | Uncharacterized protein C19orf52                                     | Q9BSF4    |
| C1QBP     | Complement component 1 Q subcomponent-binding protein, mitochondrial | Q07021    |
| C21orf33  | ES1 protein homolog, mitochondrial                                   | P30042    |
| C2CD2L    | C2 domain-containing protein 2-like                                  | O14523    |
| C2CD3     | C2 domain-containing protein 3                                       | Q4AC94    |
| C2orf43   | UPF0554 protein C2orf43                                              | Q9H6V9    |
| C2orf47   | Uncharacterized protein C2orf47, mitochondrial                       | Q8WWC4    |
| C3orf33   | Protein C3orf33                                                      | Q6P1S2    |
| C7orf50   | Uncharacterized protein C7orf50                                      | Q9BRJ6    |
| C7orf55   | UPF0562 protein C7orf55                                              | Q96HJ9    |
| C8orf82   | UPF0598 protein C8orf82                                              | Q6P1X6    |
| C9orf89   | Bcl10-interacting CARD protein                                       | Q96LW7    |
| CAD       | CAD protein                                                          | P27708    |
| CALM1     | Calmodulin                                                           | P62158    |

| Gene     | Protein name                                             | Accession |
|----------|----------------------------------------------------------|-----------|
| CALR     | Calreticulin                                             | P27797    |
| CAMLG    | Calcium signal-modulating cyclophilin ligand             | P49069    |
| CAND1    | Cullin-associated NEDD8-dissociated protein 1            | Q86VP6    |
| CANX     | Calnexin                                                 | P27824    |
| CAPZA1   | F-actin-capping protein subunit alpha-1                  | P52907    |
| CARS2    | Probable cysteinetRNA ligase, mitochondrial              | Q9HA77    |
| CAT      | Catalase                                                 | P04040    |
| CBFB     | Core-binding factor subunit beta                         | Q13951    |
| CBR4     | Carbonyl reductase family member 4                       | Q8N4T8    |
| CBX3     | Chromobox protein homolog 3                              | Q13185    |
| CCAR2    | Cell cycle and apoptosis regulator protein 2             | Q8N163    |
| CCBL2    | Kynurenineoxoglutarate transaminase 3                    | Q6YP21    |
| CCDC109B | Mitochondrial calcium uniporter regulatory subunit MCUb  | Q9NWR8    |
| CCDC115  | Coiled-coil domain-containing protein 115                | Q96NT0    |
| CCDC127  | Coiled-coil domain-containing protein 127                | Q96BQ5    |
| CCDC134  | Coiled-coil domain-containing protein 134                | Q9H6E4    |
| CCDC167  | Coiled-coil domain-containing protein 167                | Q9P0B6    |
| CCDC47   | Coiled-coil domain-containing protein 47                 | Q96A33    |
| CCDC51   | Coiled-coil domain-containing protein 51                 | Q96ER9    |
| CCDC90B  | Coiled-coil domain-containing protein 90B, mitochondrial | Q9GZT6    |
| CCP110   | Centriolar coiled-coil protein of 110 kDa                | O43303    |
| CCSMST1  | Protein CCSMST1                                          | Q4G0I0    |
| CCT2     | T-complex protein 1 subunit beta                         | P78371    |
| CCT3     | T-complex protein 1 subunit gamma                        | P49368    |
| CCT4     | T-complex protein 1 subunit delta                        | P50991    |
| CCT6A    | T-complex protein 1 subunit zeta                         | P40227    |
| CCT7     | T-complex protein 1 subunit eta                          | Q99832    |
| CCT8     | T-complex protein 1 subunit theta                        | P50990    |
| CD1C     | T-cell surface glycoprotein CD1c                         | P29017    |
| CD2      | T-cell surface antigen CD2                               | P06729    |
| CD247    | T-cell surface glycoprotein CD3 zeta chain               | P20963    |
| CD3D     | T-cell surface glycoprotein CD3 delta chain              | P04234    |
| CD47     | Leukocyte surface antigen CD47                           | Q08722    |
| CD48     | CD48 antigen                                             | P09326    |
| CD81     | CD81 antigen                                             | P60033    |
| CD82     | CD82 antigen                                             | P27701    |
| CDH2     | Cadherin-2                                               | P19022    |
| CDK1     | Cyclin-dependent kinase 1                                | P06493    |
| CDK2     | Cyclin-dependent kinase 2                                | P24941    |

| Gene     | Protein name                                                                   | Accession     |
|----------|--------------------------------------------------------------------------------|---------------|
| CDK5RAP2 | CDK5 regulatory subunit-associated protein 2                                   | Q96SN8        |
| CDK5RAP3 | CDK5 regulatory subunit-associated protein 3                                   | Q96JB5        |
| CDK6     | Cyclin-dependent kinase 6                                                      | Q00534        |
| CDK9     | Cyclin-dependent kinase 9                                                      | P50750        |
| CECR5    | Cat eye syndrome critical region protein 5                                     | Q9BXW7        |
| CENPF    | Centromere protein F                                                           | P49454        |
| CENPJ    | Centromere protein J                                                           | Q9HC77        |
| CENPM    | Centromere protein M                                                           | Q9NSP4        |
| CEP120   | Centrosomal protein of 120 kDa                                                 | Q8N960        |
| CEP131   | Centrosomal protein of 131 kDa                                                 | Q9UPN4        |
| CEP135   | Centrosomal protein of 135 kDa                                                 | Q66GS9        |
| CEP152   | Centrosomal protein of 152 kDa                                                 | O94986        |
| CEP162   | Centrosomal protein of 162 kDa                                                 | Q5TB80        |
| CEP250   | Centrosome-associated protein CEP250                                           | Q9BV73        |
| CEP350   | Centrosome-associated protein 350                                              | Q5VT06        |
| CEP41    | Centrosomal protein of 41 kDa                                                  | Q9BYV8        |
| CEP72    | Centrosomal protein of 72 kDa                                                  | Q9P209        |
| CEP85L   | Centrosomal protein of 85 kDa-like                                             | Q5SZL2        |
| CEP95    | Centrosomal protein of 95 kDa                                                  | Q96GE4        |
| CEP97    | Centrosomal protein of 97 kDa                                                  | Q8IW35        |
| CETN3    | Centrin-3                                                                      | O15182        |
| CFL1     | Cofilin-1                                                                      | P23528        |
| CGREF1   | Cell growth regulator with EF hand domain protein 1                            | Q99674        |
| CHCHD1   | Coiled-coil-helix-coiled-coil-helix domain-containing protein 1                | Q96BP2        |
| CHCHD2P9 | Putative coiled-coil-helix-coiled-coil-helix domain-containing protein         | Q5T1J5        |
|          | CHCHD2P9, mitochondrial                                                        | <b>(</b> , ,, |
| CHCHD3   | Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial | Q9NX63        |
| CHCHD4   | Mitochondrial intermembrane space import and assembly protein 40               | Q8N4Q1        |
| CHCHD6   | Coiled-coil-helix-coiled-coil-helix domain-containing protein 6, mitochondrial | Q9BRQ6        |
| CHD4     | Chromodomain-helicase-DNA-binding protein 4                                    | Q14839        |
| CHI3L2   | Chitinase-3-like protein 2                                                     | Q15782        |
| CHID1    | Chitinase domain-containing protein 1                                          | Q9BWS9        |
| CHP1     | Calcineurin B homologous protein 1                                             | Q99653        |
| CHST11   | Carbohydrate sulfotransferase 11                                               | Q9NPF2        |
| CHST14   | Carbohydrate sulfotransferase 14                                               | Q8NCH0        |
| CHSY1    | Chondroitin sulfate synthase 1                                                 | Q86X52        |
| CISD1    | CDGSH iron-sulfur domain-containing protein 1                                  | Q9NZ45        |
| CISD2    | CDGSH iron-sulfur domain-containing protein 2                                  | Q8N5K1        |
| CIT      | Citron Rho-interacting kinase                                                  | O14578        |

| Gene     | Protein name                                                            | Accession |
|----------|-------------------------------------------------------------------------|-----------|
| CKAP2    | Cytoskeleton-associated protein 2                                       | Q8WWK9    |
| CKAP4    | Cytoskeleton-associated protein 4                                       | Q07065    |
| CKAP5    | Cytoskeleton-associated protein 5                                       | Q14008    |
| CKM      | Creatine kinase M-type                                                  | P06732    |
| CLASP2   | CLIP-associating protein 2                                              | O75122    |
| CLEC11A  | C-type lectin domain family 11 member A                                 | Q9Y240    |
| CLIC1    | Chloride intracellular channel protein 1                                | O00299    |
| CLN5     | Ceroid-lipofuscinosis neuronal protein 5                                | O75503    |
| CLPB     | Caseinolytic peptidase B protein homolog                                | Q9H078    |
| CLPP     | ATP-dependent Clp protease proteolytic subunit, mitochondrial           | Q16740    |
| CLPTM1   | Cleft lip and palate transmembrane protein 1                            | O96005    |
| CLPTM1L  | Cleft lip and palate transmembrane protein 1-like protein               | Q96KA5    |
| CLPX     | ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial | O76031    |
| CLTC     | Clathrin heavy chain 1                                                  | Q00610    |
| CLYBL    | Citrate lyase subunit beta-like protein, mitochondrial                  | Q8N0X4    |
| CMPK2    | UMP-CMP kinase 2, mitochondrial                                         | Q5EBM0    |
| CNNM3    | Metal transporter CNNM3                                                 | Q8NE01    |
| CNOT1    | CCR4-NOT transcription complex subunit 1                                | A5YKK6    |
| CNP      | 2',3'-cyclic-nucleotide 3'-phosphodiesterase                            | P09543    |
| CNPY3    | Protein canopy homolog 3                                                | Q9BT09    |
| CNTRL    | Centriolin                                                              | Q7Z7A1    |
| CNTROB   | Centrobin                                                               | Q8N137    |
| COA1     | Cytochrome c oxidase assembly factor 1 homolog                          | Q9GZY4    |
| COA3     | Cytochrome c oxidase assembly factor 3 homolog, mitochondrial           | Q9Y2R0    |
| COLGALT1 | Procollagen galactosyltransferase 1                                     | Q8NBJ5    |
| COMT     | Catechol O-methyltransferase                                            | P21964    |
| COPA     | Coatomer subunit alpha                                                  | P53621    |
| COPB1    | Coatomer subunit beta                                                   | P53618    |
| COPB2    | Coatomer subunit beta'                                                  | P35606    |
| COPE     | Coatomer subunit epsilon                                                | O14579    |
| COPG1    | Coatomer subunit gamma-1                                                | Q9Y678    |
| COPZ1    | Coatomer subunit zeta-1                                                 | P61923    |
| COQ10B   | Coenzyme Q-binding protein COQ10 homolog B, mitochondrial               | Q9H8M1    |
| COQ3     | Hexaprenyldihydroxybenzoate methyltransferase, mitochondrial            | Q9NZJ6    |
| COQ5     | 2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial         | Q5HYK3    |
| COQ6     | Ubiquinone biosynthesis monooxygenase COQ6                              | Q9Y2Z9    |
| CORO1A   | Coronin-1A                                                              | P31146    |
| COTL1    | Coactosin-like protein                                                  | Q14019    |
| COX15    | Cytochrome c oxidase assembly protein COX15 homolog                     | Q7KZN9    |

| Gene    | Protein name                                                              | Accession |
|---------|---------------------------------------------------------------------------|-----------|
| COX18   | Mitochondrial inner membrane protein COX18                                | Q8N8Q8    |
| COX20   | Cytochrome c oxidase protein 20 homolog                                   | Q5RI15    |
| COX4I1  | Cytochrome c oxidase subunit 4 isoform 1, mitochondrial                   | P13073    |
| COX5A   | Cytochrome c oxidase subunit 5A, mitochondrial                            | P20674    |
| COX6B1  | Cytochrome c oxidase subunit 6B1                                          | P14854    |
| CPD     | Carboxypeptidase D                                                        | O75976    |
| CPOX    | Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial            | P36551    |
| CPT1A   | Carnitine O-palmitoyltransferase 1, liver isoform                         | P50416    |
| CPT2    | Carnitine O-palmitoyltransferase 2, mitochondrial                         | P23786    |
| CPVL    | Probable serine carboxypeptidase CPVL                                     | Q9H3G5    |
| CROCC   | Rootletin                                                                 | Q5TZA2    |
| CRYZ    | Quinone oxidoreductase                                                    | Q08257    |
| CS      | Citrate synthase, mitochondrial                                           | O75390    |
| CSE1L   | Exportin-2                                                                | P55060    |
| CSPP1   | Centrosome and spindle pole-associated protein 1                          | Q1MSJ5    |
| CTPS1   | CTP synthase 1                                                            | P17812    |
| CTSA    | Lysosomal protective protein                                              | P10619    |
| CTSD    | Cathepsin D                                                               | P07339    |
| CTSG    | Cathepsin G                                                               | P08311    |
| CUX1    | Protein CASP                                                              | Q13948    |
| CXCR4   | C-X-C chemokine receptor type 4                                           | P61073    |
| CYB5A   | Cytochrome b5                                                             | P00167    |
| CYB5B   | Cytochrome b5 type B                                                      | O43169    |
| CYB5R1  | NADH-cytochrome b5 reductase 1                                            | Q9UHQ9    |
| CYB5R3  | NADH-cytochrome b5 reductase 3                                            | P00387    |
| CYC1    | Cytochrome c1, heme protein, mitochondrial                                | P08574    |
| CYCS    | Cytochrome c                                                              | P99999    |
| CYP20A1 | Cytochrome P450 20A1                                                      | Q6UW02    |
| DAAM1   | Disheveled-associated activator of morphogenesis 1                        | Q9Y4D1    |
| DAD1    | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit DAD1 | P61803    |
| DAP3    | 28S ribosomal protein S29, mitochondrial                                  | P51398    |
| DARS    | AspartatetRNA ligase, cytoplasmic                                         | P14868    |
| DARS2   | AspartatetRNA ligase, mitochondrial                                       | Q6PI48    |
| DBN1    | Drebrin                                                                   | Q16643    |
| DDT     | Lipoamide acyltransferase component of branched-chain alpha-keto acid     | P11182    |
| DBI     | dehydrogenase complex, mitochondrial                                      |           |
| DCAKD   | Dephospho-CoA kinase domain-containing protein                            | Q8WVC6    |
| DCD     | Dermcidin                                                                 | P81605    |
| DCP1A   | mRNA-decapping enzyme 1A                                                  | Q9NPI6    |

| Gene    | Protein name                                                                | Accession |
|---------|-----------------------------------------------------------------------------|-----------|
| DCTN2   | Dynactin subunit 2                                                          | Q13561    |
| DCTN3   | Dynactin subunit 3                                                          | O75935    |
| DCXR    | L-xylulose reductase                                                        | Q7Z4W1    |
| DDOST   | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subunit | P39656    |
| DDRGK1  | DDRGK domain-containing protein 1                                           | Q96HY6    |
| DDX1    | ATP-dependent RNA helicase DDX1                                             | Q92499    |
| DDX21   | Nucleolar RNA helicase 2                                                    | Q9NR30    |
| DDX24   | ATP-dependent RNA helicase DDX24                                            | Q9GZR7    |
| DDX28   | Probable ATP-dependent RNA helicase DDX28                                   | Q9NUL7    |
| DDX39B  | Spliceosome RNA helicase DDX39B                                             | Q13838    |
| DDX47   | Probable ATP-dependent RNA helicase DDX47                                   | Q9H0S4    |
| DDX51   | ATP-dependent RNA helicase DDX51                                            | Q8N8A6    |
| DDX6    | Probable ATP-dependent RNA helicase DDX6                                    | P26196    |
| DECR1   | 2,4-dienoyl-CoA reductase, mitochondrial                                    | Q16698    |
| DECR2   | Peroxisomal 2,4-dienoyl-CoA reductase                                       | Q9NUI1    |
| DHCR7   | 7-dehydrocholesterol reductase                                              | Q9UBM7    |
| DHODH   | Dihydroorotate dehydrogenase                                                | Q02127    |
| DHRS4   | Dehydrogenase/reductase SDR family member 4                                 | Q9BTZ2    |
| DHRS7   | Dehydrogenase/reductase SDR family member 7                                 | Q9Y394    |
| DHRS7B  | Dehydrogenase/reductase SDR family member 7B                                | Q6IAN0    |
| DHX15   | Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15          | O43143    |
| DHX30   | Putative ATP-dependent RNA helicase DHX30                                   | Q7L2E3    |
| DHX9    | ATP-dependent RNA helicase A                                                | Q08211    |
| DIAPH1  | Protein diaphanous homolog 1                                                | O60610    |
| DIP2B   | Disco-interacting protein 2 homolog B                                       | Q9P265    |
| DLG1    | Disks large homolog 1                                                       | Q12959    |
| DIST    | Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate | D36057    |
| DEST    | dehydrogenase complex, mitochondrial                                        | 1 30737   |
| DNAJA1  | DnaJ homolog subfamily A member 1                                           | P31689    |
| DNAJA3  | DnaJ homolog subfamily A member 3, mitochondrial                            | Q96EY1    |
| DNAJB11 | DnaJ homolog subfamily B member 11                                          | Q9UBS4    |
| DNAJB12 | DnaJ homolog subfamily B member 12                                          | Q9NXW2    |
| DNAJB2  | DnaJ homolog subfamily B member 2                                           | P25686    |
| DNAJC10 | DnaJ homolog subfamily C member 10                                          | Q8IXB1    |
| DNAJC11 | DnaJ homolog subfamily C member 11                                          | Q9NVH1    |
| DNAJC13 | DnaJ homolog subfamily C member 13                                          | O75165    |
| DNAJC15 | DnaJ homolog subfamily C member 15                                          | Q9Y5T4    |
| DNAJC19 | Mitochondrial import inner membrane translocase subunit TIM14               | Q96DA6    |
| DNAJC30 | DnaJ homolog subfamily C member 30                                          | Q96LL9    |

| Gene     | Protein name                                                                   | Accession |
|----------|--------------------------------------------------------------------------------|-----------|
| DNAJC5   | DnaJ homolog subfamily C member 5                                              | Q9H3Z4    |
| DNAJC9   | DnaJ homolog subfamily C member 9                                              | Q8WXX5    |
| DNLZ     | DNL-type zinc finger protein                                                   | Q5SXM8    |
| DOCK10   | Dedicator of cytokinesis protein 10                                            | Q96BY6    |
| DOCK2    | Dedicator of cytokinesis protein 2                                             | Q92608    |
| DPM1     | Dolichol-phosphate mannosyltransferase subunit 1                               | O60762    |
| DRG1     | Developmentally-regulated GTP-binding protein 1                                | Q9Y295    |
| DSG1     | Desmoglein-1                                                                   | Q02413    |
| DSP      | Desmoplakin                                                                    | P15924    |
| DTYMK    | Thymidylate kinase                                                             | P23919    |
| DUT      | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial                | P33316    |
| DYNC1H1  | Cytoplasmic dynein 1 heavy chain 1                                             | Q14204    |
| EBP      | 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase                              | Q15125    |
| ECE1     | Endothelin-converting enzyme 1                                                 | P42892    |
| ECH1     | Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial                     | Q13011    |
| ECHDC1   | Ethylmalonyl-CoA decarboxylase                                                 | Q9NTX5    |
| ECHS1    | Enoyl-CoA hydratase, mitochondrial                                             | P30084    |
| ECSIT    | Evolutionarily conserved signaling intermediate in Toll pathway, mitochondrial | Q9BQ95    |
| EDC4     | Enhancer of mRNA-decapping protein 4                                           | Q6P2E9    |
| EEF1A1   | Elongation factor 1-alpha 1                                                    | P68104    |
| EEF1A1P5 | Putative elongation factor 1-alpha-like 3                                      | Q5VTE0    |
| EEF1E1   | Eukaryotic translation elongation factor 1 epsilon-1                           | O43324    |
| EEF2     | Elongation factor 2                                                            | P13639    |
| EFCAB4B  | EF-hand calcium-binding domain-containing protein 4B                           | Q9BSW2    |
| EFNB1    | Ephrin-B1                                                                      | P98172    |
| EFTUD2   | 116 kDa U5 small nuclear ribonucleoprotein component                           | Q15029    |
| EIF1AY   | Eukaryotic translation initiation factor 1A, Y-chromosomal                     | O14602    |
| EIF2S1   | Eukaryotic translation initiation factor 2 subunit 1                           | P05198    |
| EIF3C    | Eukaryotic translation initiation factor 3 subunit C                           | Q99613    |
| EIF3CL   | Eukaryotic translation initiation factor 3 subunit C-like protein              | B5ME19    |
| EIF3E    | Eukaryotic translation initiation factor 3 subunit E                           | P60228    |
| EIF3I    | Eukaryotic translation initiation factor 3 subunit I                           | Q13347    |
| EIF4A1   | Eukaryotic initiation factor 4A-I                                              | P60842    |
| EIF4A3   | Eukaryotic initiation factor 4A-III                                            | P38919    |
| EIF4G1   | Eukaryotic translation initiation factor 4 gamma 1                             | Q04637    |
| EIF5A    | Eukaryotic translation initiation factor 5A-1                                  | P63241    |
| EIF5B    | Eukaryotic translation initiation factor 5B                                    | O60841    |
| ELAC2    | Zinc phosphodiesterase ELAC protein 2                                          | Q9BQ52    |
| ELAVL1   | ELAV-like protein 1                                                            | Q15717    |

| Gene    | Protein name                                                            | Accession |
|---------|-------------------------------------------------------------------------|-----------|
| ELMOD2  | ELMO domain-containing protein 2                                        | Q8IZ81    |
| EMC1    | ER membrane protein complex subunit 1                                   | Q8N766    |
| EMC3    | ER membrane protein complex subunit 3                                   | Q9P0I2    |
| EMC6    | ER membrane protein complex subunit 6                                   | Q9BV81    |
| EMD     | Emerin                                                                  | P50402    |
| ENDOD1  | Endonuclease domain-containing 1 protein                                | O94919    |
| ENO1    | Alpha-enolase                                                           | P06733    |
| ENPP4   | Bis(5'-adenosyl)-triphosphatase ENPP4                                   | Q9Y6X5    |
| EPRS    | Bifunctional glutamate/prolinetRNA ligase                               | P07814    |
| ERAL1   | GTPase Era, mitochondrial                                               | O75616    |
| ERAP1   | Endoplasmic reticulum aminopeptidase 1                                  | Q9NZ08    |
| ERAP2   | Endoplasmic reticulum aminopeptidase 2                                  | Q6P179    |
| ERBB2IP | Protein LAP2                                                            | Q96RT1    |
| ERGIC1  | Endoplasmic reticulum-Golgi intermediate compartment protein 1          | Q969X5    |
| ERGIC2  | Endoplasmic reticulum-Golgi intermediate compartment protein 2          | Q96RQ1    |
| ERGIC3  | Endoplasmic reticulum-Golgi intermediate compartment protein 3          | Q9Y282    |
| ERH     | Enhancer of rudimentary homolog                                         | P84090    |
| ERLIN2  | Erlin-2                                                                 | O94905    |
| ERO1L   | ERO1-like protein alpha                                                 | Q96HE7    |
| ERP29   | Endoplasmic reticulum resident protein 29                               | P30040    |
| ERP44   | Endoplasmic reticulum resident protein 44                               | Q9BS26    |
| ESYT1   | Extended synaptotagmin-1                                                | Q9BSJ8    |
| ETFA    | Electron transfer flavoprotein subunit alpha, mitochondrial             | P13804    |
| ETFB    | Electron transfer flavoprotein subunit beta                             | P38117    |
| ETFDH   | Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial | Q16134    |
| ETHE1   | Persulfide dioxygenase ETHE1, mitochondrial                             | O95571    |
| EXD2    | Exonuclease 3'-5' domain-containing protein 2                           | Q9NVH0    |
| EXOC1   | Exocyst complex component 1                                             | Q9NV70    |
| EXOC4   | Exocyst complex component 4                                             | Q96A65    |
| EXOG    | Nuclease EXOG, mitochondrial                                            | Q9Y2C4    |
| EZR     | Ezrin                                                                   | P15311    |
| F5      | Coagulation factor V                                                    | P12259    |
| FADS2   | Fatty acid desaturase 2                                                 | O95864    |
| FAF2    | FAS-associated factor 2                                                 | Q96CS3    |
| FAHD1   | Acylpyruvase FAHD1, mitochondrial                                       | Q6P587    |
| FAHD2A  | Fumarylacetoacetate hydrolase domain-containing protein 2A              | Q96GK7    |
| FAM120A | Constitutive coactivator of PPAR-gamma-like protein 1                   | Q9NZB2    |
| FAM134B | Protein FAM134B                                                         | Q9H6L5    |
| FAM134C | Protein FAM134C                                                         | Q86VR2    |

| 5 | Gene    | Protein name                                             | Accession |
|---|---------|----------------------------------------------------------|-----------|
| Ň | FAM162A | Protein FAM162A                                          | Q96A26    |
| - | FAM20B  | Glycosaminoglycan xylosylkinase                          | O75063    |
|   | FAM213A | Redox-regulatory protein FAM213A                         | Q9BRX8    |
|   | FAM3C   | Protein FAM3C                                            | Q92520    |
|   | FAM49B  | Protein FAM49B                                           | Q9NUQ9    |
|   | FAM96B  | Mitotic spindle-associated MMXD complex subunit MIP18    | Q9Y3D0    |
|   | FAR1    | Fatty acyl-CoA reductase 1                               | Q8WVX9    |
|   | FARS2   | PhenylalaninetRNA ligase, mitochondrial                  | O95363    |
|   | FAS     | Tumor necrosis factor receptor superfamily member 6      | P25445    |
|   | FASN    | Fatty acid synthase                                      | P49327    |
|   | FASTKD1 | FAST kinase domain-containing protein 1                  | Q53R41    |
|   | FASTKD2 | FAST kinase domain-containing protein 2                  | Q9NYY8    |
|   | FASTKD5 | FAST kinase domain-containing protein 5                  | Q7L8L6    |
|   | FDFT1   | Squalene synthase                                        | P37268    |
|   | FDPS    | Farnesyl pyrophosphate synthase                          | P14324    |
|   | FDX1    | Adrenodoxin, mitochondrial                               | P10109    |
|   | FDXR    | NADPH:adrenodoxin oxidoreductase, mitochondrial          | P22570    |
|   | FECH    | Ferrochelatase, mitochondrial                            | P22830    |
|   | FEN1    | Flap endonuclease 1                                      | P39748    |
|   | FERMT3  | Fermitin family homolog 3                                | Q86UX7    |
|   | FGFR1OP | FGFR1 oncogene partner                                   | O95684    |
|   | FH      | Fumarate hydratase, mitochondrial                        | P07954    |
|   | FIS1    | Mitochondrial fission 1 protein                          | Q9Y3D6    |
|   | FKBP11  | Peptidyl-prolyl cis-trans isomerase FKBP11               | Q9NYL4    |
|   | FKBP2   | Peptidyl-prolyl cis-trans isomerase FKBP2                | P26885    |
|   | FLNA    | Filamin-A                                                | P21333    |
|   | FLNB    | Filamin-B                                                | O75369    |
|   | FLOT1   | Flotillin-1                                              | O75955    |
|   | FLOT2   | Flotillin-2                                              | Q14254    |
|   | FMNL1   | Formin-like protein 1                                    | O95466    |
|   | FN1     | Fibronectin                                              | P02751    |
|   | FOXRED1 | FAD-dependent oxidoreductase domain-containing protein 1 | Q96CU9    |
|   | FRG1    | Protein FRG1                                             | Q14331    |
|   | FRYL    | Protein furry homolog-like                               | O94915    |
|   | FTL     | Ferritin light chain                                     | P02792    |
|   | FTSJ2   | Putative ribosomal RNA methyltransferase 2               | Q9UI43    |
|   | FUNDC2  | FUN14 domain-containing protein 2                        | Q9BWH2    |
|   | FXN     | Frataxin, mitochondrial                                  | Q16595    |
|   | FYN     | Tyrosine-protein kinase Fyn                              | P06241    |

| Gene   | Protein name                                                         | Accession |
|--------|----------------------------------------------------------------------|-----------|
| G6PD   | Glucose-6-phosphate 1-dehydrogenase                                  | P11413    |
| GALNT2 | Polypeptide N-acetylgalactosaminyltransferase 2                      | Q10471    |
| GALNT7 | N-acetylgalactosaminyltransferase 7                                  | Q86SF2    |
| GAPDH  | Glyceraldehyde-3-phosphate dehydrogenase                             | P04406    |
| GARS   | GlycinetRNA ligase                                                   | P41250    |
| GATC   | Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial         | O43716    |
| GCAT   | 2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial              | O75600    |
| GCDH   | Glutaryl-CoA dehydrogenase, mitochondrial                            | Q92947    |
| GDAP1  | Ganglioside-induced differentiation-associated protein 1             | Q8TB36    |
| GDI2   | Rab GDP dissociation inhibitor beta                                  | P50395    |
| GFM2   | Ribosome-releasing factor 2, mitochondrial                           | Q969S9    |
| GGH    | Gamma-glutamyl hydrolase                                             | Q92820    |
| GIGYF2 | PERQ amino acid-rich with GYF domain-containing protein 2            | Q6Y7W6    |
| GIMAP1 | GTPase IMAP family member 1                                          | Q8WWP7    |
| GIMAP5 | GTPase IMAP family member 5                                          | Q96F15    |
| GK     | Glycerol kinase                                                      | P32189    |
| GLA    | Alpha-galactosidase A                                                | P06280    |
| GLG1   | Golgi apparatus protein 1                                            | Q92896    |
| GLRX3  | Glutaredoxin-3                                                       | O76003    |
| GLRX5  | Glutaredoxin-related protein 5, mitochondrial                        | Q86SX6    |
| GLS    | Glutaminase kidney isoform, mitochondrial                            | O94925    |
| GLT8D1 | Glycosyltransferase 8 domain-containing protein 1                    | Q68CQ7    |
| GLUD1  | Glutamate dehydrogenase 1, mitochondrial                             | P00367    |
| GMFG   | Glia maturation factor gamma                                         | O60234    |
| GNA13  | Guanine nucleotide-binding protein subunit alpha-13                  | Q14344    |
| GNAI2  | Guanine nucleotide-binding protein G(i) subunit alpha-2              | P04899    |
| GNAI3  | Guanine nucleotide-binding protein G(k) subunit alpha                | P08754    |
| GNAQ   | Guanine nucleotide-binding protein G(q) subunit alpha                | P50148    |
| GNAS   | Guanine nucleotide-binding protein G(s) subunit alpha isoforms short | P63092    |
| GNB1   | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1     | P62873    |
| GNB2L1 | Guanine nucleotide-binding protein subunit beta-2-like 1             | P63244    |
| GNPAT  | Dihydroxyacetone phosphate acyltransferase                           | O15228    |
| GNS    | N-acetylglucosamine-6-sulfatase                                      | P15586    |
| GOLGA2 | Golgin subfamily A member 2                                          | Q08379    |
| GOLGA3 | Golgin subfamily A member 3                                          | Q08378    |
| GOLGA5 | Golgin subfamily A member 5                                          | Q8TBA6    |
| GOLGA7 | Golgin subfamily A member 7                                          | Q7Z5G4    |
| GOLGB1 | Golgin subfamily B member 1                                          | Q14789    |
| GOLM1  | Golgi membrane protein 1                                             | Q8NBJ4    |

| Gene    | Protein name                                                     | Accession |
|---------|------------------------------------------------------------------|-----------|
| GOPC    | Golgi-associated PDZ and coiled-coil motif-containing protein    | Q9HD26    |
| GORASP2 | Golgi reassembly-stacking protein 2                              | Q9H8Y8    |
| GOT2    | Aspartate aminotransferase, mitochondrial                        | P00505    |
| GPR89A  | Golgi pH regulator A                                             | B7ZAQ6    |
| GPR89C  | Putative Golgi pH regulator C                                    | A6NKF9    |
| GRHPR   | Glyoxylate reductase/hydroxypyruvate reductase                   | Q9UBQ7    |
| GRPEL1  | GrpE protein homolog 1, mitochondrial                            | Q9HAV7    |
| GRPEL2  | GrpE protein homolog 2, mitochondrial                            | Q8TAA5    |
| GRSF1   | G-rich sequence factor 1                                         | Q12849    |
| GSN     | Gelsolin                                                         | P06396    |
| GSR     | Glutathione reductase, mitochondrial                             | P00390    |
| GSTK1   | Glutathione S-transferase kappa 1                                | Q9Y2Q3    |
| GSTO1   | Glutathione S-transferase omega-1                                | P78417    |
| GSTP1   | Glutathione S-transferase P                                      | P09211    |
| GTPBP10 | GTP-binding protein 10                                           | A4D1E9    |
| GTPBP3  | tRNA modification GTPase GTPBP3, mitochondrial                   | Q969Y2    |
| GTPBP8  | GTP-binding protein 8                                            | Q8N3Z3    |
| GUK1    | Guanylate kinase                                                 | Q16774    |
| GYPC    | Glycophorin-C                                                    | P04921    |
| H2AFV   | Histone H2A.V                                                    | Q71UI9    |
| H2AFX   | Histone H2AX                                                     | P16104    |
| H2AFY   | Core histone macro-H2A.1                                         | O75367    |
| H2AFZ   | Histone H2A.Z                                                    | P0C0S5    |
| HADH    | Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial              | Q16836    |
| HADHA   | Trifunctional enzyme subunit alpha, mitochondrial                | P40939    |
| HADHB   | Trifunctional enzyme subunit beta, mitochondrial                 | P55084    |
| HAGH    | Hydroxyacylglutathione hydrolase, mitochondrial                  | Q16775    |
| HARS2   | Probable histidinetRNA ligase, mitochondrial                     | P49590    |
| HAUS1   | HAUS augmin-like complex subunit 1                               | Q96CS2    |
| HAUS4   | HAUS augmin-like complex subunit 4                               | Q9H6D7    |
| HAUS6   | HAUS augmin-like complex subunit 6                               | Q7Z4H7    |
| HAUS8   | HAUS augmin-like complex subunit 8                               | Q9BT25    |
| HAX1    | HCLS1-associated protein X-1                                     | O00165    |
| HBA1;   | Hemoglobin subunit alpha                                         | P69905    |
| HBB     | Hemoglobin subunit beta                                          | P68871    |
| HCCS    | Cytochrome c-type heme lyase                                     | P53701    |
| HDHD3   | Haloacid dehalogenase-like hydrolase domain-containing protein 3 | Q9BSH5    |
| HEATR1  | HEAT repeat-containing protein 1                                 | Q9H583    |
| HIBADH  | 3-hydroxyisobutyrate dehydrogenase, mitochondrial                | P31937    |
|         |                                                                  |           |

| Gene      | Protein name                                                | Accession |
|-----------|-------------------------------------------------------------|-----------|
| HIBCH     | 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial            | Q6NVY1    |
| HINT2     | Histidine triad nucleotide-binding protein 2, mitochondrial | Q9BX68    |
| HIST1H1B  | Histone H1.5                                                | P16401    |
| HIST1H1C  | Histone H1.2                                                | P16403    |
| HIST1H2AG | Histone H2A type 1                                          | P0C0S8    |
| HIST1H2AH | Histone H2A type 1-H                                        | Q96KK5    |
| HIST1H2AJ | Histone H2A type 1-J                                        | Q99878    |
| HIST1H2BB | Histone H2B type 1-B                                        | P33778    |
| HIST1H2BC | Histone H2B type 1-C/E/F/G/I                                | P62807    |
| HIST1H2BD | Histone H2B type 1-D                                        | P58876    |
| HIST1H2BH | Histone H2B type 1-H                                        | Q93079    |
| HIST1H2BJ | Histone H2B type 1-J                                        | P06899    |
| HIST1H4A  | Histone H4                                                  | P62805    |
| HK2       | Hexokinase-2                                                | P52789    |
| HLA-A     | HLA class I histocompatibility antigen, A-3 alpha chain     | P04439    |
| HLA-A     | HLA class I histocompatibility antigen, A-25 alpha chain    | P18462    |
| HLA-A     | HLA class I histocompatibility antigen, A-26 alpha chain    | P30450    |
| HLA-B     | HLA class I histocompatibility antigen, B-8 alpha chain     | P30460    |
| HM13      | Minor histocompatibility antigen H13                        | Q8TCT9    |
| HNRNPA0   | Heterogeneous nuclear ribonucleoprotein A0                  | Q13151    |
| HNRNPA1   | Heterogeneous nuclear ribonucleoprotein A1                  | P09651    |
| HNRNPA2B1 | Heterogeneous nuclear ribonucleoproteins A2/B1              | P22626    |
| HNRNPC    | Heterogeneous nuclear ribonucleoproteins C1/C2              | P07910    |
| HNRNPD    | Heterogeneous nuclear ribonucleoprotein D0                  | Q14103    |
| HNRNPF    | Heterogeneous nuclear ribonucleoprotein F                   | P52597    |
| HNRNPH1   | Heterogeneous nuclear ribonucleoprotein H                   | P31943    |
| HNRNPH2   | Heterogeneous nuclear ribonucleoprotein H2                  | P55795    |
| HNRNPM    | Heterogeneous nuclear ribonucleoprotein M                   | P52272    |
| HPCAL1    | Hippocalcin-like protein 1                                  | P37235    |
| HRSP12    | Ribonuclease UK114                                          | P52758    |
| HS2ST1    | Heparan sulfate 2-O-sulfotransferase 1                      | Q7LGA3    |
| HSD17B10  | 3-hydroxyacyl-CoA dehydrogenase type-2                      | Q99714    |
| HSD17B11  | Estradiol 17-beta-dehydrogenase 11                          | Q8NBQ5    |
| HSD17B12  | Estradiol 17-beta-dehydrogenase 12                          | Q53GQ0    |
| HSD17B4   | Peroxisomal multifunctional enzyme type 2                   | P51659    |
| HSD17B7   | 3-keto-steroid reductase                                    | P56937    |
| HSD17B8   | Estradiol 17-beta-dehydrogenase 8                           | Q92506    |
| HSDL1     | Inactive hydroxysteroid dehydrogenase-like protein 1        | Q3SXM5    |
| HSDL2     | Hydroxysteroid dehydrogenase-like protein 2                 | Q6YN16    |

| Gene     | Protein name                                                   | Accession |
|----------|----------------------------------------------------------------|-----------|
| HSP90AA1 | Heat shock protein HSP 90-alpha                                | P07900    |
| HSP90AB1 | Heat shock protein HSP 90-beta                                 | P08238    |
| HSP90B1  | Endoplasmin                                                    | P14625    |
| HSPA5    | 78 kDa glucose-regulated protein                               | P11021    |
| HSPA8    | Heat shock cognate 71 kDa protein                              | P11142    |
| HSPD1    | 60 kDa heat shock protein, mitochondrial                       | P10809    |
| HSPE1    | 10 kDa heat shock protein, mitochondrial                       | P61604    |
| HSPH1    | Heat shock protein 105 kDa                                     | Q92598    |
| HTRA2    | Serine protease HTRA2, mitochondrial                           | O43464    |
| HYOU1    | Hypoxia up-regulated protein 1                                 | Q9Y4L1    |
| IARS2    | IsoleucinetRNA ligase, mitochondrial                           | Q9NSE4    |
| IBA57    | Putative transferase CAF17, mitochondrial                      | Q5T440    |
| ICAM2    | Intercellular adhesion molecule 2                              | P13598    |
| ICT1     | Peptidyl-tRNA hydrolase ICT1, mitochondrial                    | Q14197    |
| IDH2     | Isocitrate dehydrogenase [NADP], mitochondrial                 | P48735    |
| IDH3A    | Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial    | P50213    |
| IDH3B    | Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial     | O43837    |
| IDI1     | Isopentenyl-diphosphate Delta-isomerase 1                      | Q13907    |
| IGLL1    | Immunoglobulin lambda-like polypeptide 1                       | P15814    |
| IGSF8    | Immunoglobulin superfamily member 8                            | Q969P0    |
| IKBIP    | Inhibitor of nuclear factor kappa-B kinase-interacting protein | Q70UQ0    |
| IMMP2L   | Mitochondrial inner membrane protease subunit 2                | Q96T52    |
| IMMT     | Mitochondrial inner membrane protein                           | Q16891    |
| IMPAD1   | Inositol monophosphatase 3                                     | Q9NX62    |
| IMPDH2   | Inosine-5'-monophosphate dehydrogenase 2                       | P12268    |
| INA      | Alpha-internexin                                               | Q16352    |
| INF2     | Inverted formin-2                                              | Q27J81    |
| IPO5     | Importin-5                                                     | O00410    |
| IQGAP1   | Ras GTPase-activating-like protein IQGAP1                      | P46940    |
| IQGAP2   | Ras GTPase-activating-like protein IQGAP2                      | Q13576    |
| ISCA1    | Iron-sulfur cluster assembly 1 homolog, mitochondrial          | Q9BUE6    |
| ISCA2    | Iron-sulfur cluster assembly 2 homolog, mitochondrial          | Q86U28    |
| ISOC2    | Isochorismatase domain-containing protein 2, mitochondrial     | Q96AB3    |
| ITGAL    | Integrin alpha-L                                               | P20701    |
| ITGB1    | Integrin beta-1                                                | P05556    |
| ITGB2    | Integrin beta-2                                                | P05107    |
| ITM2A    | Integral membrane protein 2A                                   | O43736    |
| ITM2B    | Integral membrane protein 2B                                   | Q9Y287    |
| ITPR2    | Inositol 1,4,5-trisphosphate receptor type 2                   | Q14571    |

| Gene      | Protein name                                            | Accession |
|-----------|---------------------------------------------------------|-----------|
| IVD       | Isovaleryl-CoA dehydrogenase, mitochondrial             | P26440    |
| JAGN1     | Protein jagunal homolog 1                               | Q8N5M9    |
| JAM3      | Junctional adhesion molecule C                          | Q9BX67    |
| JUP       | Junction plakoglobin                                    | P14923    |
| KARS      | LysinetRNA ligase                                       | Q15046    |
| KDELR1    | ER lumen protein-retaining receptor 1                   | P24390    |
| KIAA0391  | Mitochondrial ribonuclease P protein 3                  | O15091    |
| KIAA1467  | Uncharacterized protein KIAA1467                        | A2RU67    |
| KIDINS220 | Kinase D-interacting substrate of 220 kDa               | Q9ULH0    |
| KIF2A     | Kinesin-like protein KIF2A                              | O00139    |
| KIF2C     | Kinesin-like protein KIF2C                              | Q99661    |
| KIF4A     | Chromosome-associated kinesin KIF4A                     | O95239    |
| KIRREL    | Kin of IRRE-like protein 1                              | Q96J84    |
| KPNA2     | Importin subunit alpha-1                                | P52292    |
| KPNB1     | Importin subunit beta-1                                 | Q14974    |
| KRT1      | Keratin, type II cytoskeletal 1                         | P04264    |
| KRT10     | Keratin, type I cytoskeletal 10                         | P13645    |
| KRT14     | Keratin, type I cytoskeletal 14                         | P02533    |
| KRT16     | Keratin, type I cytoskeletal 16                         | P08779    |
| KRT17     | Keratin, type I cytoskeletal 17                         | Q04695    |
| KRT2      | Keratin, type II cytoskeletal 2 epidermal               | P35908    |
| KRT5      | Keratin, type II cytoskeletal 5                         | P13647    |
| KRT6A     | Keratin, type II cytoskeletal 6A                        | P02538    |
| KRT9      | Keratin, type I cytoskeletal 9                          | P35527    |
| KTN1      | Kinectin                                                | Q86UP2    |
| LACTB     | Serine beta-lactamase-like protein LACTB, mitochondrial | P83111    |
| LAMP1     | Lysosome-associated membrane glycoprotein 1             | P11279    |
| LAMP2     | Lysosome-associated membrane glycoprotein 2             | P13473    |
| LAMTOR1   | Ragulator complex protein LAMTOR1                       | Q6IAA8    |
| LAMTOR2   | Ragulator complex protein LAMTOR2                       | Q9Y2Q5    |
| LAMTOR3   | Ragulator complex protein LAMTOR3                       | Q9UHA4    |
| LAP3      | Cytosol aminopeptidase                                  | P28838    |
| LARP4     | La-related protein 4                                    | Q71RC2    |
| LARS      | LeucinetRNA ligase, cytoplasmic                         | Q9P2J5    |
| LARS2     | Probable leucinetRNA ligase, mitochondrial              | Q15031    |
| LAT       | Linker for activation of T-cells family member 1        | O43561    |
| LBR       | Lamin-B receptor                                        | Q14739    |
| LCK       | Tyrosine-protein kinase Lck                             | P06239    |
| LCP1      | Plastin-2                                               | P13796    |

| Gene     | Protein name                                                         | Accession |
|----------|----------------------------------------------------------------------|-----------|
| LDHA     | L-lactate dehydrogenase A chain                                      | P00338    |
| LDHB     | L-lactate dehydrogenase B chain                                      | P07195    |
| LEMD2    | LEM domain-containing protein 2                                      | Q8NC56    |
| LEPRE1   | Prolyl 3-hydroxylase 1                                               | Q32P28    |
| LETM1    | LETM1 and EF-hand domain-containing protein 1, mitochondrial         | O95202    |
| LETMD1   | LETM1 domain-containing protein 1                                    | Q6P1Q0    |
| LGALS3BP | Galectin-3-binding protein                                           | Q08380    |
| LGALS8   | Galectin-8                                                           | O00214    |
| LGALS9   | Galectin-9                                                           | O00182    |
| LIAS     | Lipoyl synthase, mitochondrial                                       | O43766    |
| LIMD1    | LIM domain-containing protein 1                                      | Q9UGP4    |
| LMAN1    | Protein ERGIC-53                                                     | P49257    |
| LMAN2    | Vesicular integral-membrane protein VIP36                            | Q12907    |
| LMAN2L   | VIP36-like protein                                                   | Q9H0V9    |
| LMNB1    | Lamin-B1                                                             | P20700    |
| LMNB2    | Lamin-B2                                                             | Q03252    |
| LMO7     | LIM domain only protein 7                                            | Q8WWI1    |
| LNP      | Protein lunapark                                                     | Q9C0E8    |
| LNPEP    | Leucyl-cystinyl aminopeptidase                                       | Q9UIQ6    |
| LOH12CR1 | Loss of heterozygosity 12 chromosomal region 1 protein               | Q969J3    |
| LONP1    | Lon protease homolog, mitochondrial                                  | P36776    |
| LONP2    | Lon protease homolog 2, peroxisomal                                  | Q86WA8    |
| LPCAT1   | Lysophosphatidylcholine acyltransferase 1                            | Q8NF37    |
| LPCAT2   | Lysophosphatidylcholine acyltransferase 2                            | Q7L5N7    |
| LRPPRC   | Leucine-rich PPR motif-containing protein, mitochondrial             | P42704    |
| LRRC59   | Leucine-rich repeat-containing protein 59                            | Q96AG4    |
| LRRC8D   | Volume-regulated anion channel subunit LRRC8D                        | Q7L1W4    |
| LRRFIP1  | Leucine-rich repeat flightless-interacting protein 1                 | Q32MZ4    |
| LSS      | Lanosterol synthase                                                  | P48449    |
| LYAR     | Cell growth-regulating nucleolar protein                             | Q9NX58    |
| LYRM4    | LYR motif-containing protein 4                                       | Q9HD34    |
| MAGOH    | Protein mago nashi homolog                                           | P61326    |
| MAGOHB   | Protein mago nashi homolog 2                                         | Q96A72    |
| MAGT1    | Magnesium transporter protein 1                                      | Q9H0U3    |
| MALSU1   | Mitochondrial assembly of ribosomal large subunit protein 1          | Q96EH3    |
| MAN1A2   | Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB                    | O60476    |
| MAN1B1   | Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase | Q9UKM7    |
| MAN2A1   | Alpha-mannosidase 2                                                  | Q16706    |
| MANF     | Mesencephalic astrocyte-derived neurotrophic factor                  | P55145    |
|          |                                                                      |           |

| Gene     | Protein name                                                                      | Accession |
|----------|-----------------------------------------------------------------------------------|-----------|
| MAPRE1   | Microtubule-associated protein RP/EB family member 1                              | Q15691    |
| MARCH5   | E3 ubiquitin-protein ligase MARCH5                                                | Q9NX47    |
| MARCKSL1 | MARCKS-related protein                                                            | P49006    |
| MARS     | MethioninetRNA ligase, cytoplasmic                                                | P56192    |
| MARS2    | MethioninetRNA ligase, mitochondrial                                              | Q96GW9    |
| MAVS     | Mitochondrial antiviral-signaling protein                                         | Q7Z434    |
| MBLAC2   | Metallo-beta-lactamase domain-containing protein 2                                | Q68D91    |
| MBOAT7   | Lysophospholipid acyltransferase 7                                                | Q96N66    |
| MCAT     | Malonyl-CoA-acyl carrier protein transacylase, mitochondrial                      | Q8IVS2    |
| MCCC1    | Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial                      | Q96RQ3    |
| MCCC2    | Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial                         | Q9HCC0    |
| MCM2     | DNA replication licensing factor MCM2                                             | P49736    |
| MCM4     | DNA replication licensing factor MCM4                                             | P33991    |
| MCM5     | DNA replication licensing factor MCM5                                             | P33992    |
| MCM6     | DNA replication licensing factor MCM6                                             | Q14566    |
| MCM7     | DNA replication licensing factor MCM7                                             | P33993    |
| MCU      | Calcium uniporter protein, mitochondrial                                          | Q8NE86    |
| MCUR1    | Mitochondrial calcium uniporter regulator 1                                       | Q96AQ8    |
| MDC1     | Mediator of DNA damage checkpoint protein 1                                       | Q14676    |
| MDH1     | Malate dehydrogenase, cytoplasmic                                                 | P40925    |
| MDH2     | Malate dehydrogenase, mitochondrial                                               | P40926    |
| ME2      | NAD-dependent malic enzyme, mitochondrial                                         | P23368    |
| MECR     | Trans-2-enoyl-CoA reductase, mitochondrial                                        | Q9BV79    |
| METTL15  | Probable methyltransferase-like protein 15                                        | A6NJ78    |
| METTL17  | Methyltransferase-like protein 17, mitochondrial                                  | Q9H7H0    |
| MFF      | Mitochondrial fission factor                                                      | Q9GZY8    |
| MFGE8    | Lactadherin                                                                       | Q08431    |
| MFN1     | Mitofusin-1                                                                       | Q8IWA4    |
| MFN2     | Mitofusin-2                                                                       | O95140    |
| MGAT1    | $Alpha-1, 3-mannosyl-gly coprote in \ 2-beta-N-acetyl glucos a minyl transferase$ | P26572    |
| MGAT2    | Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase            | Q10469    |
| MGAT4A   | Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase A          | Q9UM21    |
| MGME1    | Mitochondrial genome maintenance exonuclease 1                                    | Q9BQP7    |
| MGST3    | Microsomal glutathione S-transferase 3                                            | O14880    |
| MIA3     | Melanoma inhibitory activity protein 3                                            | Q5JRA6    |
| MIB1     | E3 ubiquitin-protein ligase MIB1                                                  | Q86YT6    |
| MICU1    | Calcium uptake protein 1, mitochondrial                                           | Q9BPX6    |
| MICU2    | Calcium uptake protein 2, mitochondrial                                           | Q8IYU8    |
| MIPEP    | Mitochondrial intermediate peptidase                                              | Q99797    |

| л Gene | Protein name                                         | Accession |
|--------|------------------------------------------------------|-----------|
| MKI67  | Antigen KI-67                                        | P46013    |
| MLEC   | Malectin                                             | Q14165    |
| MLYCD  | Malonyl-CoA decarboxylase, mitochondrial             | O95822    |
| MMAA   | Methylmalonic aciduria type A protein, mitochondrial | Q8IVH4    |
| MMGT1  | Membrane magnesium transporter 1                     | Q8N4V1    |
| MOCS1  | Molybdenum cofactor biosynthesis protein 1           | Q9NZB8    |
| MOGS   | Mannosyl-oligosaccharide glucosidase                 | Q13724    |
| MOV10  | Putative helicase MOV-10                             | Q9HCE1    |
| MPC2   | Mitochondrial pyruvate carrier 2                     | O95563    |
| MPP6   | MAGUK p55 subfamily member 6                         | Q9NZW5    |
| MPST   | 3-mercaptopyruvate sulfurtransferase                 | P25325    |
| MRM1   | rRNA methyltransferase 1, mitochondrial              | Q6IN84    |
| MRPL1  | 39S ribosomal protein L1, mitochondrial              | Q9BYD6    |
| MRPL11 | 39S ribosomal protein L11, mitochondrial             | Q9Y3B7    |
| MRPL13 | 39S ribosomal protein L13, mitochondrial             | Q9BYD1    |
| MRPL14 | 39S ribosomal protein L14, mitochondrial             | Q6P1L8    |
| MRPL15 | 39S ribosomal protein L15, mitochondrial             | Q9P015    |
| MRPL16 | 39S ribosomal protein L16, mitochondrial             | Q9NX20    |
| MRPL17 | 39S ribosomal protein L17, mitochondrial             | Q9NRX2    |
| MRPL18 | 39S ribosomal protein L18, mitochondrial             | Q9H0U6    |
| MRPL19 | 39S ribosomal protein L19, mitochondrial             | P49406    |
| MRPL2  | 39S ribosomal protein L2, mitochondrial              | Q5T653    |
| MRPL20 | 39S ribosomal protein L20, mitochondrial             | Q9BYC9    |
| MRPL21 | 39S ribosomal protein L21, mitochondrial             | Q7Z2W9    |
| MRPL22 | 39S ribosomal protein L22, mitochondrial             | Q9NWU5    |
| MRPL23 | 39S ribosomal protein L23, mitochondrial             | Q16540    |
| MRPL28 | 39S ribosomal protein L28, mitochondrial             | Q13084    |
| MRPL3  | 39S ribosomal protein L3, mitochondrial              | P09001    |
| MRPL30 | 39S ribosomal protein L30, mitochondrial             | Q8TCC3    |
| MRPL32 | 39S ribosomal protein L32, mitochondrial             | Q9BYC8    |
| MRPL37 | 39S ribosomal protein L37, mitochondrial             | Q9BZE1    |
| MRPL38 | 39S ribosomal protein L38, mitochondrial             | Q96DV4    |
| MRPL39 | 39S ribosomal protein L39, mitochondrial             | Q9NYK5    |
| MRPL4  | 39S ribosomal protein L4, mitochondrial              | Q9BYD3    |
| MRPL40 | 39S ribosomal protein L40, mitochondrial             | Q9NQ50    |
| MRPL41 | 39S ribosomal protein L41, mitochondrial             | Q8IXM3    |
| MRPL43 | 39S ribosomal protein L43, mitochondrial             | Q8N983    |
| MRPL44 | 39S ribosomal protein L44, mitochondrial             | Q9H9J2    |
| MRPL45 | 39S ribosomal protein L45, mitochondrial             | Q9BRJ2    |

| Gene    | Protein name                                       | Accession |
|---------|----------------------------------------------------|-----------|
| MRPL46  | 39S ribosomal protein L46, mitochondrial           | Q9H2W6    |
| MRPL47  | 39S ribosomal protein L47, mitochondrial           | Q9HD33    |
| MRPL48  | 39S ribosomal protein L48, mitochondrial           | Q96GC5    |
| MRPL49  | 39S ribosomal protein L49, mitochondrial           | Q13405    |
| MRPL50  | 39S ribosomal protein L50, mitochondrial           | Q8N5N7    |
| MRPL55  | 39S ribosomal protein L55, mitochondrial           | Q7Z7F7    |
| MRPL9   | 39S ribosomal protein L9, mitochondrial            | Q9BYD2    |
| MRPS10  | 28S ribosomal protein S10, mitochondrial           | P82664    |
| MRPS11  | 28S ribosomal protein S11, mitochondrial           | P82912    |
| MRPS12  | 28S ribosomal protein S12, mitochondrial           | O15235    |
| MRPS14  | 28S ribosomal protein S14, mitochondrial           | O60783    |
| MRPS15  | 28S ribosomal protein S15, mitochondrial           | P82914    |
| MRPS16  | 28S ribosomal protein S16, mitochondrial           | Q9Y3D3    |
| MRPS17  | 28S ribosomal protein S17, mitochondrial           | Q9Y2R5    |
| MRPS18A | 28S ribosomal protein S18a, mitochondrial          | Q9NVS2    |
| MRPS18B | 28S ribosomal protein S18b, mitochondrial          | Q9Y676    |
| MRPS2   | 28S ribosomal protein S2, mitochondrial            | Q9Y399    |
| MRPS22  | 28S ribosomal protein S22, mitochondrial           | P82650    |
| MRPS23  | 28S ribosomal protein S23, mitochondrial           | Q9Y3D9    |
| MRPS24  | 28S ribosomal protein S24, mitochondrial           | Q96EL2    |
| MRPS25  | 28S ribosomal protein S25, mitochondrial           | P82663    |
| MRPS26  | 28S ribosomal protein S26, mitochondrial           | Q9BYN8    |
| MRPS27  | 28S ribosomal protein S27, mitochondrial           | Q92552    |
| MRPS28  | 28S ribosomal protein S28, mitochondrial           | Q9Y2Q9    |
| MRPS31  | 28S ribosomal protein S31, mitochondrial           | Q92665    |
| MRPS34  | 28S ribosomal protein S34, mitochondrial           | P82930    |
| MRPS35  | 28S ribosomal protein S35, mitochondrial           | P82673    |
| MRPS5   | 28S ribosomal protein S5, mitochondrial            | P82675    |
| MRPS6   | 28S ribosomal protein S6, mitochondrial            | P82932    |
| MRPS7   | 28S ribosomal protein S7, mitochondrial            | Q9Y2R9    |
| MRPS9   | 28S ribosomal protein S9, mitochondrial            | P82933    |
| MRRF    | Ribosome-recycling factor, mitochondrial           | Q96E11    |
| MRS2    | Magnesium transporter MRS2 homolog, mitochondrial  | Q9HD23    |
| MRTO4   | mRNA turnover protein 4 homolog                    | Q9UKD2    |
| MSN     | Moesin                                             | P26038    |
| MSRB2   | Methionine-R-sulfoxide reductase B2, mitochondrial | Q9Y3D2    |
| MTA2    | Metastasis-associated protein MTA2                 | O94776    |
| MTCH2   | Mitochondrial carrier homolog 2                    | Q9Y6C9    |
| MT-CO2  | Cytochrome c oxidase subunit 2                     | P00403    |

| Gene    | Protein name                                                                 | Accession |
|---------|------------------------------------------------------------------------------|-----------|
| MTDH    | Protein LYRIC                                                                | Q86UE4    |
| MTERF   | Transcription termination factor, mitochondrial                              | Q99551    |
| MTERFD1 | mTERF domain-containing protein 1, mitochondrial                             | Q96E29    |
| MTERFD2 | mTERF domain-containing protein 2                                            | Q7Z6M4    |
| MTFMT   | Methionyl-tRNA formyltransferase, mitochondrial                              | Q96DP5    |
| MTFP1   | Mitochondrial fission process protein 1                                      | Q9UDX5    |
| MTFR1   | Mitochondrial fission regulator 1                                            | Q15390    |
| MTFR2   | Mitochondrial fission regulator 2                                            | Q6P444    |
| MTHFD1  | C-1-tetrahydrofolate synthase, cytoplasmic                                   | P11586    |
| MTHFD1L | Monofunctional C1-tetrahydrofolate synthase, mitochondrial                   | Q6UB35    |
| MTHEDO  | Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase,         | B12005    |
| MIHFD2  | mitochondrial                                                                | P13995    |
| MTIF2   | Translation initiation factor IF-2, mitochondrial                            | P46199    |
| MTIF3   | Translation initiation factor IF-3, mitochondrial                            | Q9H2K0    |
| MTPAP   | Poly(A) RNA polymerase, mitochondrial                                        | Q9NVV4    |
| MTRF1   | Peptide chain release factor 1, mitochondrial                                | O75570    |
| MTX1    | Metaxin-1                                                                    | Q13505    |
| MTX2    | Metaxin-2                                                                    | O75431    |
| MUL1    | Mitochondrial ubiquitin ligase activator of NFKB 1                           | Q969V5    |
| MUT     | Methylmalonyl-CoA mutase, mitochondrial                                      | P22033    |
| MYH9    | Myosin-9                                                                     | P35579    |
| MYL12A  | Myosin regulatory light chain 12A                                            | P19105    |
| MYL12B  | Myosin regulatory light chain 12B                                            | O14950    |
| MYL6    | Myosin light polypeptide 6                                                   | P60660    |
| MYO18A  | Unconventional myosin-XVIIIa                                                 | Q92614    |
| MYO1B   | Unconventional myosin-Ib                                                     | O43795    |
| MZB1    | Marginal zone B- and B1-cell-specific protein                                | Q8WU39    |
| NADK2   | NAD kinase 2, mitochondrial                                                  | Q4G0N4    |
| NAPA    | Alpha-soluble NSF attachment protein                                         | P54920    |
| NAPG    | Gamma-soluble NSF attachment protein                                         | Q99747    |
| NBAS    | Neuroblastoma-amplified sequence                                             | A2RRP1    |
| NCLN    | Nicalin                                                                      | Q969V3    |
| NCSTN   | Nicastrin                                                                    | Q92542    |
| NDUFA10 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial | O95299    |
| NDUFA11 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11                | Q86Y39    |
| NDUFA12 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12                | Q9UI09    |
| NDUFA13 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13                | Q9P0J0    |
| NDUFA2  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2                 | O43678    |

| Gene    | Protein name                                                                   | Accession |
|---------|--------------------------------------------------------------------------------|-----------|
| NDUFA5  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5                   | Q16718    |
| NDUFA6  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6                   | P56556    |
| NDUFA7  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7                   | O95182    |
| NDUFA8  | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8                   | P51970    |
| NDUFAF1 | Complex I intermediate-associated protein 30, mitochondrial                    | Q9Y375    |
| NDUFAF2 | Mimitin, mitochondrial                                                         | Q8N183    |
| NDUFAF3 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3           | Q9BU61    |
| NDUFAF4 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4           | Q9P032    |
| NDUFAF5 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 5           | Q5TEU4    |
| NDUFB10 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10                   | O96000    |
| NDUFB11 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11,<br>mitochondrial | Q9NX14    |
| NDUFB3  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3                    | O43676    |
| NDUFB4  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4                    | O95168    |
| NDUFB5  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5,<br>mitochondrial  | O43674    |
| NDUFB6  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6                    | O95139    |
| NDUFB7  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7                    | P17568    |
| NDUFB8  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial     | O95169    |
| NDUFB9  | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9                    | Q9Y6M9    |
| NDUFC2  | NADH dehydrogenase [ubiquinone] 1 subunit C2                                   | O95298    |
| NDUFS1  | NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial                   | P28331    |
| NDUFS2  | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial           | O75306    |
| NDUFS3  | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial           | O75489    |
| NDUFS4  | NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial           | O43181    |
| NDUFS6  | NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial           | O75380    |
| NDUFS7  | NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial           | O75251    |
| NDUFV1  | NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial                  | P49821    |
| NDUFV2  | NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial                  | P19404    |
| NEDD1   | Protein NEDD1                                                                  | Q8NHV4    |
| NEK2    | Serine/threonine-protein kinase Nek2                                           | P51955    |
| NENF    | Neudesin                                                                       | Q9UMX5    |
| NFS1    | Cysteine desulfurase, mitochondrial                                            | Q9Y697    |
| NFU1    | NFU1 iron-sulfur cluster scaffold homolog, mitochondrial                       | Q9UMS0    |
| NFXL1   | NF-X1-type zinc finger protein NFXL1                                           | Q6ZNB6    |
| NGRN    | Neugrin                                                                        | Q9NPE2    |
| NHP2    | H/ACA ribonucleoprotein complex subunit 2                                      | Q9NX24    |
| NHP2L1  | NHP2-like protein 1                                                            | P55769    |

| Gene     | Protein name                                                | Accession |
|----------|-------------------------------------------------------------|-----------|
| • NIN    | Ninein                                                      | Q8N4C6    |
| NIPSNAP1 | Protein NipSnap homolog 1                                   | Q9BPW8    |
| NISCH    | Nischarin                                                   | Q9Y2I1    |
| NIT1     | Nitrilase homolog 1                                         | Q86X76    |
| NLN      | Neurolysin, mitochondrial                                   | Q9BYT8    |
| NME4     | Nucleoside diphosphate kinase, mitochondrial                | O00746    |
| NOA1     | Nitric oxide-associated protein 1                           | Q8NC60    |
| NOC2L    | Nucleolar complex protein 2 homolog                         | Q9Y3T9    |
| NOLC1    | Nucleolar and coiled-body phosphoprotein 1                  | Q14978    |
| NOMO2    | Nodal modulator 2                                           | Q5JPE7    |
| NONO     | Non-POU domain-containing octamer-binding protein           | Q15233    |
| NOP2     | Putative ribosomal RNA methyltransferase NOP2               | P46087    |
| NOP58    | Nucleolar protein 58                                        | Q9Y2X3    |
| NPC1     | Niemann-Pick C1 protein                                     | O15118    |
| NPEPPS   | Puromycin-sensitive aminopeptidase                          | P55786    |
| NPM1     | Nucleophosmin                                               | P06748    |
| NSDHL    | Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating | Q15738    |
| NSF      | Vesicle-fusing ATPase                                       | P46459    |
| NSUN2    | tRNA                                                        | Q08J23    |
| NT5C3A   | Cytosolic 5'-nucleotidase 3A                                | Q9H0P0    |
| NT5DC2   | 5'-nucleotidase domain-containing protein 2                 | Q9H857    |
| NTPCR    | Cancer-related nucleoside-triphosphatase                    | Q9BSD7    |
| NUBPL    | Iron-sulfur protein NUBPL                                   | Q8TB37    |
| NUCB2    | Nucleobindin-2                                              | P80303    |
| NUDC     | Nuclear migration protein nudC                              | Q9Y266    |
| NUDT1    | 7,8-dihydro-8-oxoguanine triphosphatase                     | P36639    |
| NUDT6    | Nucleoside diphosphate-linked moiety X motif 6              | P53370    |
| NUFIP2   | Nuclear fragile X mental retardation-interacting protein 2  | Q7Z417    |
| NUMA1    | Nuclear mitotic apparatus protein 1                         | Q14980    |
| NUP107   | Nuclear pore complex protein Nup107                         | P57740    |
| NUP153   | Nuclear pore complex protein Nup153                         | P49790    |
| NUP155   | Nuclear pore complex protein Nup155                         | O75694    |
| NUP205   | Nuclear pore complex protein Nup205                         | Q92621    |
| NUP210   | Nuclear pore membrane glycoprotein 210                      | Q8TEM1    |
| NUP214   | Nuclear pore complex protein Nup214                         | P35658    |
| NUP35    | Nucleoporin NUP53                                           | Q8NFH5    |
| NUP54    | Nucleoporin p54                                             | Q7Z3B4    |
| NUP93    | Nuclear pore complex protein Nup93                          | Q8N1F7    |
| NUP98    | Nuclear pore complex protein Nup98-Nup96                    | P52948    |

| Gene    | Protein name                                                             | Accession |
|---------|--------------------------------------------------------------------------|-----------|
| OAT     | Ornithine aminotransferase, mitochondrial                                | P04181    |
| OCIAD1  | OCIA domain-containing protein 1                                         | Q9NX40    |
| OCIAD2  | OCIA domain-containing protein 2                                         | Q56VL3    |
| ODF2    | Outer dense fiber protein 2                                              | Q5BJF6    |
| OGDH    | 2-oxoglutarate dehydrogenase, mitochondrial                              | Q02218    |
| OMA1    | Metalloendopeptidase OMA1, mitochondrial                                 | Q96E52    |
| OPA1    | Dynamin-like 120 kDa protein, mitochondrial                              | O60313    |
| OPA3    | Optic atrophy 3 protein                                                  | Q9H6K4    |
| OSBP    | Oxysterol-binding protein 1                                              | P22059    |
| OSBPL8  | Oxysterol-binding protein-related protein 8                              | Q9BZF1    |
| OSBPL9  | Oxysterol-binding protein-related protein 9                              | Q96SU4    |
| OSTC    | Oligosaccharyltransferase complex subunit OSTC                           | Q9NRP0    |
| OXA1L   | Mitochondrial inner membrane protein OXA1L                               | Q15070    |
| OXCT1   | Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial          | P55809    |
| OXSM    | 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial                 | Q9NWU1    |
| OXSR1   | Serine/threonine-protein kinase OSR1                                     | O95747    |
| P4HB    | Protein disulfide-isomerase                                              | P07237    |
| PABPC1  | Polyadenylate-binding protein 1                                          | P11940    |
| PAG1    | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 | Q9NWQ8    |
| PAICS   | Multifunctional protein ADE2                                             | P22234    |
| PAM16   | Mitochondrial import inner membrane translocase subunit TIM16            | Q9Y3D7    |
| PARP1   | Poly [ADP-ribose] polymerase 1                                           | P09874    |
| PARS2   | Probable prolinetRNA ligase, mitochondrial                               | Q7L3T8    |
| PC      | Pyruvate carboxylase, mitochondrial                                      | P11498    |
| PCBP1   | Poly(rC)-binding protein 1                                               | Q15365    |
| PCBP2   | Poly(rC)-binding protein 2                                               | Q15366    |
| PCCA    | Propionyl-CoA carboxylase alpha chain, mitochondrial                     | P05165    |
| PCCB    | Propionyl-CoA carboxylase beta chain, mitochondrial                      | P05166    |
| PCM1    | Pericentriolar material 1 protein                                        | Q15154    |
| PCNA    | Proliferating cell nuclear antigen                                       | P12004    |
| PCNT    | Pericentrin                                                              | O95613    |
| PDCD6IP | Programmed cell death 6-interacting protein                              | Q8WUM4    |
| PDE12   | 2',5'-phosphodiesterase 12                                               | Q6L8Q7    |
| PDHA1   | Pyruvate dehydrogenase E1 component subunit alpha, somatic form,         | D08550    |
| TDHAI   | mitochondrial                                                            | 100337    |
| PDHB    | Pyruvate dehydrogenase E1 component subunit beta, mitochondrial          | P11177    |
| PDHX    | Pyruvate dehydrogenase protein X component, mitochondrial                | O00330    |
| PDIA3   | Protein disulfide-isomerase A3                                           | P30101    |
| PDIA4   | Protein disulfide-isomerase A4                                           | P13667    |

| Gene    | Protein name                                                                       | Accession |
|---------|------------------------------------------------------------------------------------|-----------|
| PDIA6   | Protein disulfide-isomerase A6                                                     | Q15084    |
| PDK2    | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 2,<br>mitochondrial  | Q15119    |
| PDK3    | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3,<br>mitochondrial  | Q15120    |
| PDP2    | [Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 2, mitochondrial        | Q9P2J9    |
| PDPR    | Pyruvate dehydrogenase phosphatase regulatory subunit, mitochondrial               | Q8NCN5    |
| PDS5A   | Sister chromatid cohesion protein PDS5 homolog A                                   | Q29RF7    |
| PDS5B   | Sister chromatid cohesion protein PDS5 homolog B                                   | Q9NTI5    |
| PDSS1   | Decaprenyl-diphosphate synthase subunit 1                                          | Q5T2R2    |
| PDZD11  | PDZ domain-containing protein 11                                                   | Q5EBL8    |
| PECAM1  | Platelet endothelial cell adhesion molecule                                        | P16284    |
| PECR    | Peroxisomal trans-2-enoyl-CoA reductase                                            | Q9BY49    |
| PELO    | Protein pelota homolog                                                             | Q9BRX2    |
| PEX11B  | Peroxisomal membrane protein 11B                                                   | O96011    |
| PEX13   | Peroxisomal membrane protein PEX13                                                 | Q92968    |
| PEX14   | Peroxisomal membrane protein PEX14                                                 | O75381    |
| PEX16   | Peroxisomal membrane protein PEX16                                                 | Q9Y5Y5    |
| PEX2    | Peroxisome biogenesis factor 2                                                     | P28328    |
| PEX3    | Peroxisomal biogenesis factor 3                                                    | P56589    |
| PFDN2   | Prefoldin subunit 2                                                                | Q9UHV9    |
| PFKP    | ATP-dependent 6-phosphofructokinase, platelet type                                 | Q01813    |
| PFN1    | Profilin-1                                                                         | P07737    |
| PGAM5   | Serine/threonine-protein phosphatase PGAM5, mitochondrial                          | Q96HS1    |
| PGK1    | Phosphoglycerate kinase 1                                                          | P00558    |
| PGRMC1  | Membrane-associated progesterone receptor component 1                              | O00264    |
| PGRMC2  | Membrane-associated progesterone receptor component 2                              | O15173    |
| PGS1    | CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase,<br>mitochondrial | Q32NB8    |
| РНВ     | Prohibitin                                                                         | P35232    |
| PHB2    | Prohibitin-2                                                                       | Q99623    |
| PHGDH   | D-3-phosphoglycerate dehydrogenase                                                 | O43175    |
| PI4K2A  | Phosphatidylinositol 4-kinase type 2-alpha                                         | Q9BTU6    |
| PIEZO1  | Piezo-type mechanosensitive ion channel component 1                                | Q92508    |
| PIGG    | GPI ethanolamine phosphate transferase 2                                           | Q5H8A4    |
| PIGU    | Phosphatidylinositol glycan anchor biosynthesis class U protein                    | Q9H490    |
| PIP4K2A | Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha                             | P48426    |
| PIP4K2B | Phosphatidylinositol 5-phosphate 4-kinase type-2 beta                              | P78356    |
| PIP5K1A | Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha                             | Q99755    |

| Gene    | Protein name                                                             | Accession |
|---------|--------------------------------------------------------------------------|-----------|
| PITPNB  | Phosphatidylinositol transfer protein beta isoform                       | P48739    |
| PITRM1  | Presequence protease, mitochondrial                                      | Q5JRX3    |
| РКМ     | Pyruvate kinase PKM                                                      | P14618    |
| PKP4    | Plakophilin-4                                                            | Q99569    |
| PLD3    | Phospholipase D3                                                         | Q8IV08    |
| PLEC    | Plectin                                                                  | Q15149    |
| PLGRKT  | Plasminogen receptor                                                     | Q9HBL7    |
| PLK1    | Serine/threonine-protein kinase PLK1                                     | P53350    |
| PMPCA   | Mitochondrial-processing peptidase subunit alpha                         | Q10713    |
| PMPCB   | Mitochondrial-processing peptidase subunit beta                          | O75439    |
| PMVK    | Phosphomevalonate kinase                                                 | Q15126    |
| PNO1    | RNA-binding protein PNO1                                                 | Q9NRX1    |
| PNPLA6  | Neuropathy target esterase                                               | Q8IY17    |
| PNPO    | Pyridoxine-5'-phosphate oxidase                                          | Q9NVS9    |
| PNPT1   | Polyribonucleotide nucleotidyltransferase 1, mitochondrial               | Q8TCS8    |
| POC5    | Centrosomal protein POC5                                                 | Q8NA72    |
| POGLUT1 | Protein O-glucosyltransferase 1                                          | Q8NBL1    |
| POLDIP2 | Polymerase delta-interacting protein 2                                   | Q9Y2S7    |
| POLDIP3 | Polymerase delta-interacting protein 3                                   | Q9BY77    |
| POLG2   | DNA polymerase subunit gamma-2, mitochondrial                            | Q9UHN1    |
| POLR2H  | DNA-directed RNA polymerases I, II, and III subunit RPABC3               | P52434    |
| POLRMT  | DNA-directed RNA polymerase, mitochondrial                               | O00411    |
| POR     | NADPHcytochrome P450 reductase                                           | P16435    |
| PPA2    | Inorganic pyrophosphatase 2, mitochondrial                               | Q9H2U2    |
| PPIA    | Peptidyl-prolyl cis-trans isomerase A                                    | P62937    |
| PPIB    | Peptidyl-prolyl cis-trans isomerase B                                    | P23284    |
| PPIF    | Peptidyl-prolyl cis-trans isomerase F, mitochondrial                     | P30405    |
| PPOX    | Protoporphyrinogen oxidase                                               | P50336    |
| PPP1CA  | Serine/threonine-protein phosphatase PP1-alpha catalytic subunit         | P62136    |
| DDD2D1B | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta | D20154    |
| FFF2KID | isoform                                                                  | F30134    |
| PPT1    | Palmitoyl-protein thioesterase 1                                         | P50897    |
| PPTC7   | Protein phosphatase PTC7 homolog                                         | Q8NI37    |
| PRAF2   | PRA1 family protein 2                                                    | O60831    |
| PRCP    | Lysosomal Pro-X carboxypeptidase                                         | P42785    |
| PRDX1   | Peroxiredoxin-1                                                          | Q06830    |
| PRDX2   | Peroxiredoxin-2                                                          | P32119    |
| PRDX3   | Thioredoxin-dependent peroxide reductase, mitochondrial                  | P30048    |
| PRDX4   | Peroxiredoxin-4                                                          | Q13162    |

| 16 | Gene    | Protein name                                                        | Accession |
|----|---------|---------------------------------------------------------------------|-----------|
| õ  | PRDX5   | Peroxiredoxin-5, mitochondrial                                      | P30044    |
|    | PREB    | Prolactin regulatory element-binding protein                        | Q9HCU5    |
|    | PRKAG1  | 5'-AMP-activated protein kinase subunit gamma-1                     | P54619    |
|    | PRKAR1A | cAMP-dependent protein kinase type I-alpha regulatory subunit       | P10644    |
|    | PRKCA   | Protein kinase C alpha type                                         | P17252    |
|    | PRKCSH  | Glucosidase 2 subunit beta                                          | P14314    |
|    | PRKDC   | DNA-dependent protein kinase catalytic subunit                      | P78527    |
|    | PRMT1   | Protein arginine N-methyltransferase 1                              | Q99873    |
|    | PROSC   | Proline synthase co-transcribed bacterial homolog protein           | O94903    |
|    | PRPF6   | Pre-mRNA-processing factor 6                                        | O94906    |
|    | PRPF8   | Pre-mRNA-processing-splicing factor 8                               | Q6P2Q9    |
|    | PSAP    | Prosaposin                                                          | P07602    |
|    | PSEN1   | Presenilin-1                                                        | P49768    |
|    | PSIP1   | PC4 and SFRS1-interacting protein                                   | O75475    |
|    | PSMA6   | Proteasome subunit alpha type-6                                     | P60900    |
|    | PSMC2   | 26S protease regulatory subunit 7                                   | P35998    |
|    | PSMC4   | 26S protease regulatory subunit 6B                                  | P43686    |
|    | PSMC5   | 26S protease regulatory subunit 8                                   | P62195    |
|    | PSMD11  | 26S proteasome non-ATPase regulatory subunit 11                     | O00231    |
|    | PSMD13  | 26S proteasome non-ATPase regulatory subunit 13                     | Q9UNM6    |
|    | PSME1   | Proteasome activator complex subunit 1                              | Q06323    |
|    | PSME2   | Proteasome activator complex subunit 2                              | Q9UL46    |
|    | PTBP1   | Polypyrimidine tract-binding protein 1                              | P26599    |
|    | PTCD2   | Pentatricopeptide repeat-containing protein 2, mitochondrial        | Q8WV60    |
|    | PTCD3   | Pentatricopeptide repeat domain-containing protein 3, mitochondrial | Q96EY7    |
|    | PTGES2  | Prostaglandin E synthase 2                                          | Q9H7Z7    |
|    | PTK7    | Inactive tyrosine-protein kinase 7                                  | Q13308    |
|    | PTPMT1  | Phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1   | Q8WUK0    |
|    | PTPN1   | Tyrosine-protein phosphatase non-receptor type 1                    | P18031    |
|    | PTPRC   | Receptor-type tyrosine-protein phosphatase C                        | P08575    |
|    | PTPRCAP | Protein tyrosine phosphatase receptor type C-associated protein     | Q14761    |
|    | PTRH1   | Probable peptidyl-tRNA hydrolase                                    | Q86Y79    |
|    | PTRH2   | Peptidyl-tRNA hydrolase 2, mitochondrial                            | Q9Y3E5    |
|    | PTRHD1  | Putative peptidyl-tRNA hydrolase PTRHD1                             | Q6GMV3    |
|    | PUS1    | tRNA pseudouridine synthase A, mitochondrial                        | Q9Y606    |
|    | PUSL1   | tRNA pseudouridine synthase-like 1                                  | Q8N0Z8    |
|    | PYCR1   | Pyrroline-5-carboxylate reductase 1, mitochondrial                  | P32322    |
|    | PYCR2   | Pyrroline-5-carboxylate reductase 2                                 | Q96C36    |
|    | QARS    | GlutaminetRNA ligase                                                | P47897    |

| Gene      | Protein name                                                 | Accession |
|-----------|--------------------------------------------------------------|-----------|
| QPCTL     | Glutaminyl-peptide cyclotransferase-like protein             | Q9NXS2    |
| QRSL1     | Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial | Q9H0R6    |
| QSOX2     | Sulfhydryl oxidase 2                                         | Q6ZRP7    |
| QTRTD1    | Queuine tRNA-ribosyltransferase subunit QTRTD1               | Q9H974    |
| RAB10     | Ras-related protein Rab-10                                   | P61026    |
| RAB11B    | Ras-related protein Rab-11B                                  | Q15907    |
| RAB11FIP1 | Rab11 family-interacting protein 1                           | Q6WKZ4    |
| RAB14     | Ras-related protein Rab-14                                   | P61106    |
| RAB18     | Ras-related protein Rab-18                                   | Q9NP72    |
| RAB1A     | Ras-related protein Rab-1A                                   | P62820    |
| RAB1B     | Ras-related protein Rab-1B                                   | Q9H0U4    |
| RAB21     | Ras-related protein Rab-21                                   | Q9UL25    |
| RAB24     | Ras-related protein Rab-24                                   | Q969Q5    |
| RAB27A    | Ras-related protein Rab-27A                                  | P51159    |
| RAB2A     | Ras-related protein Rab-2A                                   | P61019    |
| RAB2B     | Ras-related protein Rab-2B                                   | Q8WUD1    |
| RAB35     | Ras-related protein Rab-35                                   | Q15286    |
| RAB37     | Ras-related protein Rab-37                                   | Q96AX2    |
| RAB43     | Ras-related protein Rab-43                                   | Q86YS6    |
| RAB4A     | Ras-related protein Rab-4A                                   | P20338    |
| RAB5A     | Ras-related protein Rab-5A                                   | P20339    |
| RAB5B     | Ras-related protein Rab-5B                                   | P61020    |
| RAB5C     | Ras-related protein Rab-5C                                   | P51148    |
| RAB6A     | Ras-related protein Rab-6A                                   | P20340    |
| RAB7A     | Ras-related protein Rab-7a                                   | P51149    |
| RAB8A     | Ras-related protein Rab-8A                                   | P61006    |
| RAB8B     | Ras-related protein Rab-8B                                   | Q92930    |
| RAB9A     | Ras-related protein Rab-9A                                   | P51151    |
| RABAC1    | Prenylated Rab acceptor protein 1                            | Q9UI14    |
| RAC1      | Ras-related C3 botulinum toxin substrate 1                   | P63000    |
| RACGAP1   | Rac GTPase-activating protein 1                              | Q9H0H5    |
| RALA      | Ras-related protein Ral-A                                    | P11233    |
| RALY      | RNA-binding protein Raly                                     | Q9UKM9    |
| RANBP2    | E3 SUMO-protein ligase RanBP2                                | P49792    |
| RANGAP1   | Ran GTPase-activating protein 1                              | P46060    |
| RAP1B     | Ras-related protein Rap-1b                                   | P61224    |
| RAP2A     | Ras-related protein Rap-2a                                   | P10114    |
| RAP2B     | Ras-related protein Rap-2b                                   | P61225    |
| RARS2     | Probable argininetRNA ligase, mitochondrial                  | Q5T160    |

| Gene     | Protein name                                            | Accession |
|----------|---------------------------------------------------------|-----------|
| RASA3    | Ras GTPase-activating protein 3                         | Q14644    |
| RASAL3   | RAS protein activator like-3                            | Q86YV0    |
| RBFA     | Putative ribosome-binding factor A, mitochondrial       | Q8N0V3    |
| RBM14    | RNA-binding protein 14                                  | Q96PK6    |
| RBM28    | RNA-binding protein 28                                  | Q9NW13    |
| RBM39    | RNA-binding protein 39                                  | Q14498    |
| RBM4     | RNA-binding protein 4                                   | Q9BWF3    |
| RBMX     | RNA-binding motif protein, X chromosome                 | P38159    |
| RCL1     | RNA 3'-terminal phosphate cyclase-like protein          | Q9Y2P8    |
| RCN1     | Reticulocalbin-1                                        | Q15293    |
| RCN2     | Reticulocalbin-2                                        | Q14257    |
| RDH11    | Retinol dehydrogenase 11                                | Q8TC12    |
| RDH13    | Retinol dehydrogenase 13                                | Q8NBN7    |
| RDH14    | Retinol dehydrogenase 14                                | Q9HBH5    |
| REEP4    | Receptor expression-enhancing protein 4                 | Q9H6H4    |
| REEP5    | Receptor expression-enhancing protein 5                 | Q00765    |
| REEP6    | Receptor expression-enhancing protein 6                 | Q96HR9    |
| REXO2    | Oligoribonuclease, mitochondrial                        | Q9Y3B8    |
| RFC2     | Replication factor C subunit 2                          | P35250    |
| RFC3     | Replication factor C subunit 3                          | P40938    |
| RFC4     | Replication factor C subunit 4                          | P35249    |
| RFC5     | Replication factor C subunit 5                          | P40937    |
| RFTN1    | Raftlin                                                 | Q14699    |
| RHOA     | Transforming protein RhoA                               | P61586    |
| RHOG     | Rho-related GTP-binding protein RhoG                    | P84095    |
| RHOT1    | Mitochondrial Rho GTPase 1                              | Q8IXI2    |
| RHOT2    | Mitochondrial Rho GTPase 2                              | Q8IXI1    |
| RLTPR    | Leucine-rich repeat-containing protein 16C              | Q6F5E8    |
| RMDN3    | Regulator of microtubule dynamics protein 3             | Q96TC7    |
| RMND1    | Required for meiotic nuclear division protein 1 homolog | Q9NWS8    |
| RNASEH2A | Ribonuclease H2 subunit A                               | O75792    |
| RNF130   | E3 ubiquitin-protein ligase RNF130                      | Q86XS8    |
| RNF213   | E3 ubiquitin-protein ligase RNF213                      | Q63HN8    |
| RNMTL1   | RNA methyltransferase-like protein 1                    | Q9HC36    |
| RP2      | Protein XRP2                                            | O75695    |
| RPA3     | Replication protein A 14 kDa subunit                    | P35244    |
| RPF2     | Ribosome production factor 2 homolog                    | Q9H7B2    |
| RPIA     | Ribose-5-phosphate isomerase                            | P49247    |
| RPL10A   | 60S ribosomal protein L10a                              | P62906    |

| Gene   | Protein name                                                           | Accession |
|--------|------------------------------------------------------------------------|-----------|
| RPL11  | 60S ribosomal protein L11                                              | P62913    |
| RPL12  | 60S ribosomal protein L12                                              | P30050    |
| RPL13  | 60S ribosomal protein L13                                              | P26373    |
| RPL15  | 60S ribosomal protein L15                                              | P61313    |
| RPL17  | 60S ribosomal protein L17                                              | P18621    |
| RPL18  | 60S ribosomal protein L18                                              | Q07020    |
| RPL22  | 60S ribosomal protein L22                                              | P35268    |
| RPL23A | 60S ribosomal protein L23a                                             | P62750    |
| RPL24  | 60S ribosomal protein L24                                              | P83731    |
| RPL26  | 60S ribosomal protein L26                                              | P61254    |
| RPL27  | 60S ribosomal protein L27                                              | P61353    |
| RPL27A | 60S ribosomal protein L27a                                             | P46776    |
| RPL28  | 60S ribosomal protein L28                                              | P46779    |
| RPL3   | 60S ribosomal protein L3                                               | P39023    |
| RPL31  | 60S ribosomal protein L31                                              | P62899    |
| RPL34  | 60S ribosomal protein L34                                              | P49207    |
| RPL35  | 60S ribosomal protein L35                                              | P42766    |
| RPL35A | 60S ribosomal protein L35a                                             | P18077    |
| RPL38  | 60S ribosomal protein L38                                              | P63173    |
| RPL4   | 60S ribosomal protein L4                                               | P36578    |
| RPL6   | 60S ribosomal protein L6                                               | Q02878    |
| RPL7   | 60S ribosomal protein L7                                               | P18124    |
| RPL7A  | 60S ribosomal protein L7a                                              | P62424    |
| RPL8   | 60S ribosomal protein L8                                               | P62917    |
| RPL9   | 60S ribosomal protein L9                                               | P32969    |
| RPLP0  | 60S acidic ribosomal protein P0                                        | P05388    |
| RPLP2  | 60S acidic ribosomal protein P2                                        | P05387    |
| RPN1   | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 | P04843    |
| RPN2   | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 | P04844    |
| RPRD1B | Regulation of nuclear pre-mRNA domain-containing protein 1B            | Q9NQG5    |
| RPS10  | 40S ribosomal protein S10                                              | P46783    |
| RPS11  | 40S ribosomal protein S11                                              | P62280    |
| RPS13  | 40S ribosomal protein S13                                              | P62277    |
| RPS14  | 40S ribosomal protein S14                                              | P62263    |
| RPS15A | 40S ribosomal protein S15a                                             | P62244    |
| RPS16  | 40S ribosomal protein S16                                              | P62249    |
| RPS17  | 40S ribosomal protein S17                                              | P08708    |
| RPS17L | 40S ribosomal protein S17-like                                         | P0CW22    |
| RPS18  | 40S ribosomal protein S18                                              | P62269    |

| 16 | Gene    | Protein name                                                             | Accession |
|----|---------|--------------------------------------------------------------------------|-----------|
| Ň  | RPS19   | 40S ribosomal protein S19                                                | P39019    |
|    | RPS2    | 40S ribosomal protein S2                                                 | P15880    |
|    | RPS20   | 40S ribosomal protein S20                                                | P60866    |
|    | RPS23   | 40S ribosomal protein S23                                                | P62266    |
|    | RPS24   | 40S ribosomal protein S24                                                | P62847    |
|    | RPS25   | 40S ribosomal protein S25                                                | P62851    |
|    | RPS26   | 40S ribosomal protein S26                                                | P62854    |
|    | RPS27   | 40S ribosomal protein S27                                                | P42677    |
|    | RPS27A  | Ubiquitin-40S ribosomal protein S27a                                     | P62979    |
|    | RPS3    | 40S ribosomal protein S3                                                 | P23396    |
|    | RPS3A   | 40S ribosomal protein S3a                                                | P61247    |
|    | RPS4X   | 40S ribosomal protein S4, X isoform                                      | P62701    |
|    | RPS6    | 40S ribosomal protein S6                                                 | P62753    |
|    | RPS7    | 40S ribosomal protein S7                                                 | P62081    |
|    | RPS8    | 40S ribosomal protein S8                                                 | P62241    |
|    | RPS9    | 40S ribosomal protein S9                                                 | P46781    |
|    | RPSA    | 40S ribosomal protein SA                                                 | P08865    |
|    | RPUSD3  | RNA pseudouridylate synthase domain-containing protein 3                 | Q6P087    |
|    | RRAGA   | Ras-related GTP-binding protein A                                        | Q7L523    |
|    | RRP1    | Ribosomal RNA processing protein 1 homolog A                             | P56182    |
|    | RRP1B   | Ribosomal RNA processing protein 1 homolog B                             | Q14684    |
|    | RSAD1   | Radical S-adenosyl methionine domain-containing protein 1, mitochondrial | Q9HA92    |
|    | RTN3    | Reticulon-3                                                              | O95197    |
|    | RTN4    | Reticulon-4                                                              | Q9NQC3    |
|    | RTN4IP1 | Reticulon-4-interacting protein 1, mitochondrial                         | Q8WWV3    |
|    | RUFY1   | RUN and FYVE domain-containing protein 1                                 | Q96T51    |
|    | RUVBL1  | RuvB-like 1                                                              | Q9Y265    |
|    | RUVBL2  | RuvB-like 2                                                              | Q9Y230    |
|    | SACM1L  | Phosphatidylinositide phosphatase SAC1                                   | Q9NTJ5    |
|    | SAFB    | Scaffold attachment factor B1                                            | Q15424    |
|    | SAP18   | Histone deacetylase complex subunit SAP18                                | O00422    |
|    | SARS2   | SerinetRNA ligase, mitochondrial                                         | Q9NP81    |
|    | SART1   | U4/U6.U5 tri-snRNP-associated protein 1                                  | O43290    |
|    | SBF1    | Myotubularin-related protein 5                                           | O95248    |
|    | SCAMP1  | Secretory carrier-associated membrane protein 1                          | O15126    |
|    | SCAMP2  | Secretory carrier-associated membrane protein 2                          | O15127    |
|    | SCAMP3  | Secretory carrier-associated membrane protein 3                          | O14828    |
|    | SCCPDH  | Saccharopine dehydrogenase-like oxidoreductase                           | Q8NBX0    |
|    | SCD5    | Stearoyl-CoA desaturase 5                                                | Q86SK9    |

| Gene     | Protein name                                                             | Accession |
|----------|--------------------------------------------------------------------------|-----------|
| SCO1     | Protein SCO1 homolog, mitochondrial                                      | O75880    |
| SCO2     | Protein SCO2 homolog, mitochondrial                                      | O43819    |
| SCP2     | Non-specific lipid-transfer protein                                      | P22307    |
| SCPEP1   | Retinoid-inducible serine carboxypeptidase                               | Q9HB40    |
| SCRIB    | Protein scribble homolog                                                 | Q14160    |
| SDCBP    | Syntenin-1                                                               | O00560    |
| SDF4     | 45 kDa calcium-binding protein                                           | Q9BRK5    |
| SDHA     | Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial | P31040    |
| SDHAF2   | Succinate dehydrogenase assembly factor 2, mitochondrial                 | Q9NX18    |
| SDHB     | Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial  | P21912    |
| SDR39U1  | Epimerase family protein SDR39U1                                         | Q9NRG7    |
| SEC11A   | Signal peptidase complex catalytic subunit SEC11A                        | P67812    |
| SEC11C   | Signal peptidase complex catalytic subunit SEC11C                        | Q9BY50    |
| SEC22B   | Vesicle-trafficking protein SEC22b                                       | O75396    |
| SEC23B   | Protein transport protein Sec23B                                         | Q15437    |
| SEC24B   | Protein transport protein Sec24B                                         | O95487    |
| SEC61A1  | Protein transport protein Sec61 subunit alpha isoform 1                  | P61619    |
| SEC62    | Translocation protein SEC62                                              | Q99442    |
| SEC63    | Translocation protein SEC63 homolog                                      | Q9UGP8    |
| SEL1L    | Protein sel-1 homolog 1                                                  | Q9UBV2    |
| SELPLG   | P-selectin glycoprotein ligand 1                                         | Q14242    |
| SEP15    | 15 kDa selenoprotein                                                     | O60613    |
| SERBP1   | Plasminogen activator inhibitor 1 RNA-binding protein                    | Q8NC51    |
| SERINC1  | Serine incorporator 1                                                    | Q9NRX5    |
| SERPINH1 | Serpin H1                                                                | P50454    |
| SF3B1    | Splicing factor 3B subunit 1                                             | O75533    |
| SF3B3    | Splicing factor 3B subunit 3                                             | Q15393    |
| SF3B6    | Splicing factor 3B subunit 6                                             | Q9Y3B4    |
| SFT2D2   | Vesicle transport protein SFT2B                                          | O95562    |
| SFT2D3   | Vesicle transport protein SFT2C                                          | Q587I9    |
| SFXN1    | Sideroflexin-1                                                           | Q9H9B4    |
| SFXN2    | Sideroflexin-2                                                           | Q96NB2    |
| SFXN3    | Sideroflexin-3                                                           | Q9BWM7    |
| SFXN4    | Sideroflexin-4                                                           | Q6P4A7    |
| SGPL1    | Sphingosine-1-phosphate lyase 1                                          | O95470    |
| SIGMAR1  | Sigma non-opioid intracellular receptor 1                                | Q99720    |
| SIRT5    | NAD-dependent protein deacylase sirtuin-5, mitochondrial                 | Q9NXA8    |
| SIT1     | Signaling threshold-regulating transmembrane adapter 1                   | Q9Y3P8    |
| SLAIN2   | SLAIN motif-containing protein 2                                         | Q9P270    |

| Gene     | Protein name                                                      | Accession |
|----------|-------------------------------------------------------------------|-----------|
| SLC12A2  | Solute carrier family 12 member 2                                 | P55011    |
| SLC12A7  | Solute carrier family 12 member 7                                 | Q9Y666    |
| SLC16A1  | Monocarboxylate transporter 1                                     | P53985    |
| SLC16A7  | Monocarboxylate transporter 2                                     | O60669    |
| SLC19A1  | Folate transporter 1                                              | P41440    |
| SLC1A4   | Neutral amino acid transporter A                                  | P43007    |
| SLC25A1  | Tricarboxylate transport protein, mitochondrial                   | P53007    |
| SLC25A11 | Mitochondrial 2-oxoglutarate/malate carrier protein               | Q02978    |
| SLC25A12 | Calcium-binding mitochondrial carrier protein Aralar1             | O75746    |
| SLC25A13 | Calcium-binding mitochondrial carrier protein Aralar2             | Q9UJS0    |
| SLC25A19 | Mitochondrial thiamine pyrophosphate carrier                      | Q9HC21    |
| SLC25A20 | Mitochondrial carnitine/acylcarnitine carrier protein             | O43772    |
| SLC25A22 | Mitochondrial glutamate carrier 1                                 | Q9H936    |
| SLC25A24 | Calcium-binding mitochondrial carrier protein SCaMC-1             | Q6NUK1    |
| SLC25A29 | Mitochondrial basic amino acids transporter                       | Q8N8R3    |
| SLC25A3  | Phosphate carrier protein, mitochondrial                          | Q00325    |
| SLC25A32 | Mitochondrial folate transporter/carrier                          | Q9H2D1    |
| SLC25A33 | Solute carrier family 25 member 33                                | Q9BSK2    |
| SLC25A4  | ADP/ATP translocase 1                                             | P12235    |
| SLC25A46 | Solute carrier family 25 member 46                                | Q96AG3    |
| SLC25A51 | Solute carrier family 25 member 51                                | Q9H1U9    |
| SLC25A52 | Solute carrier family 25 member 52                                | Q3SY17    |
| SLC25A6  | ADP/ATP translocase 3                                             | P12236    |
| SLC27A4  | Long-chain fatty acid transport protein 4                         | Q6P1M0    |
| SLC29A1  | Equilibrative nucleoside transporter 1                            | Q99808    |
| SLC2A1   | Solute carrier family 2, facilitated glucose transporter member 1 | P11166    |
| SLC2A3   | Solute carrier family 2, facilitated glucose transporter member 3 | P11169    |
| SLC35B2  | Adenosine 3'-phospho 5'-phosphosulfate transporter 1              | Q8TB61    |
| SLC35E2B | Solute carrier family 35 member E2B                               | P0CK96    |
| SLC35F2  | Solute carrier family 35 member F2                                | Q8IXU6    |
| SLC38A1  | Sodium-coupled neutral amino acid transporter 1                   | Q9H2H9    |
| SLC38A10 | Putative sodium-coupled neutral amino acid transporter 10         | Q9HBR0    |
| SLC38A2  | Sodium-coupled neutral amino acid transporter 2                   | Q96QD8    |
| SLC39A14 | Zinc transporter ZIP14                                            | Q15043    |
| SLC3A2   | 4F2 cell-surface antigen heavy chain                              | P08195    |
| SLC7A5   | Large neutral amino acids transporter small subunit 1             | Q01650    |
| SLC9A3R1 | Na(+)/H(+) exchange regulatory cofactor NHE-RF1                   | O14745    |
| SLIRP    | SRA stem-loop-interacting RNA-binding protein, mitochondrial      | Q9GZT3    |
| SLMAP    | Sarcolemmal membrane-associated protein                           | Q14BN4    |
|          |                                                                   |           |

| Gene     | Protein name                                                             | Accession |  |
|----------|--------------------------------------------------------------------------|-----------|--|
| SMADCAE  | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin | 060264    |  |
| SMARCA5  | subfamily A member 5                                                     | 000204    |  |
| SMC2     | Structural maintenance of chromosomes protein 2                          | O95347    |  |
| SMC4     | Structural maintenance of chromosomes protein 4                          | Q9NTJ3    |  |
| SMIM12   | Small integral membrane protein 12                                       | Q96EX1    |  |
| SMPD4    | Sphingomyelin phosphodiesterase 4                                        | Q9NXE4    |  |
| SNAP23   | Synaptosomal-associated protein 23                                       | O00161    |  |
| SNAP29   | Synaptosomal-associated protein 29                                       | O95721    |  |
| SNAPIN   | SNARE-associated protein Snapin                                          | O95295    |  |
| SND1     | Staphylococcal nuclease domain-containing protein 1                      | Q7KZF4    |  |
| SNRNP200 | U5 small nuclear ribonucleoprotein 200 kDa helicase                      | O75643    |  |
| SNRPD1   | Small nuclear ribonucleoprotein Sm D1                                    | P62314    |  |
| SNRPD2   | Small nuclear ribonucleoprotein Sm D2                                    | P62316    |  |
| SNX3     | Sorting nexin-3                                                          | O60493    |  |
| SOAT1    | Sterol O-acyltransferase 1                                               | P35610    |  |
| SPAG5    | Sperm-associated antigen 5                                               | Q96R06    |  |
| SPCS2    | Signal peptidase complex subunit 2                                       | Q15005    |  |
| SPCS3    | Signal peptidase complex subunit 3                                       | P61009    |  |
| SPICE1   | Spindle and centriole-associated protein 1                               | Q8N0Z3    |  |
| SPN      | Leukosialin                                                              | P16150    |  |
| SPR      | Sepiapterin reductase                                                    | P35270    |  |
| SPRYD4   | SPRY domain-containing protein 4                                         | Q8WW59    |  |
| SPRYD7   | SPRY domain-containing protein 7                                         | Q5W111    |  |
| SPTAN1   | Spectrin alpha chain, non-erythrocytic 1                                 | Q13813    |  |
| SPTBN1   | Spectrin beta chain, non-erythrocytic 1                                  | Q01082    |  |
| SPTBN2   | Spectrin beta chain, non-erythrocytic 2                                  | O15020    |  |
| SPTLC1   | Serine palmitoyltransferase 1                                            | O15269    |  |
| SPTLC2   | Serine palmitoyltransferase 2                                            | O15270    |  |
| SQRDL    | Sulfide:quinone oxidoreductase, mitochondrial                            | Q9Y6N5    |  |
| SREBF2   | Sterol regulatory element-binding protein 2                              | Q12772    |  |
| SRP14    | Signal recognition particle 14 kDa protein                               | P37108    |  |
| SRP19    | Signal recognition particle 19 kDa protein                               | P09132    |  |
| SRP54    | Signal recognition particle 54 kDa protein                               | P61011    |  |
| SRP68    | Signal recognition particle subunit SRP68                                | Q9UHB9    |  |
| SRP72    | Signal recognition particle subunit SRP72                                | O76094    |  |
| SRPRB    | Signal recognition particle receptor subunit beta                        | Q9Y5M8    |  |
| SRSF3    | Serine/arginine-rich splicing factor 3                                   | P84103    |  |
| SSBP1    | Single-stranded DNA-binding protein, mitochondrial                       | Q04837    |  |
| SSR1     | Translocon-associated protein subunit alpha                              | P43307    |  |

| 16 | Gene     | Protein name                                                               | Accession |
|----|----------|----------------------------------------------------------------------------|-----------|
| 4  | SSR3     | Translocon-associated protein subunit gamma                                | Q9UNL2    |
|    | SSR4     | Translocon-associated protein subunit delta                                | P51571    |
|    | SSRP1    | FACT complex subunit SSRP1                                                 | Q08945    |
|    | STARD3NL | MLN64 N-terminal domain homolog                                            | O95772    |
|    | STIM1    | Stromal interaction molecule 1                                             | Q13586    |
|    | STMN1    | Stathmin                                                                   | P16949    |
|    | STOM     | Erythrocyte band 7 integral membrane protein                               | P27105    |
|    | STOML2   | Stomatin-like protein 2, mitochondrial                                     | Q9UJZ1    |
|    | STRN     | Striatin                                                                   | O43815    |
|    | STT3A    | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3A | P46977    |
|    | STT3B    | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B | Q8TCJ2    |
|    | STUB1    | E3 ubiquitin-protein ligase CHIP                                           | Q9UNE7    |
|    | STX10    | Syntaxin-10                                                                | O60499    |
|    | STX12    | Syntaxin-12                                                                | Q86Y82    |
|    | STX16    | Syntaxin-16                                                                | O14662    |
|    | STX18    | Syntaxin-18                                                                | Q9P2W9    |
|    | STX2     | Syntaxin-2                                                                 | P32856    |
|    | STX3     | Syntaxin-3                                                                 | Q13277    |
|    | STX4     | Syntaxin-4                                                                 | Q12846    |
|    | STX5     | Syntaxin-5                                                                 | Q13190    |
|    | STX6     | Syntaxin-6                                                                 | O43752    |
|    | STX7     | Syntaxin-7                                                                 | O15400    |
|    | STX8     | Syntaxin-8                                                                 | Q9UNK0    |
|    | SUCLG1   | Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial         | P53597    |
|    | SUCLG2   | Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial              | Q96I99    |
|    | SUGT1    | Suppressor of G2 allele of SKP1 homolog                                    | Q9Y2Z0    |
|    | SUMF2    | Sulfatase-modifying factor 2                                               | Q8NBJ7    |
|    | SUPT16H  | FACT complex subunit SPT16                                                 | Q9Y5B9    |
|    | SUPV3L1  | ATP-dependent RNA helicase SUPV3L1, mitochondrial                          | Q8IYB8    |
|    | SURF1    | Surfeit locus protein 1                                                    | Q15526    |
|    | SVIP     | Small VCP/p97-interacting protein                                          | Q8NHG7    |
|    | SYNGR2   | Synaptogyrin-2                                                             | O43760    |
|    | SYNJ2BP  | Synaptojanin-2-binding protein                                             | P57105    |
|    | SYPL1    | Synaptophysin-like protein 1                                               | Q16563    |
| •  | TACC1    | Transforming acidic coiled-coil-containing protein 1                       | O75410    |
|    | TACO1    | Translational activator of cytochrome c oxidase 1                          | Q9BSH4    |
|    | TAP1     | Antigen peptide transporter 1                                              | Q03518    |
|    | TARDBP   | TAR DNA-binding protein 43                                                 | Q13148    |
|    | TARS2    | ThreoninetRNA ligase, mitochondrial                                        | Q9BW92    |

| Gene    | Protein name                                                    | Accession |
|---------|-----------------------------------------------------------------|-----------|
| TAX1BP1 | Tax1-binding protein 1                                          | Q86VP1    |
| TBC1D15 | TBC1 domain family member 15                                    | Q8TC07    |
| TBC1D31 | TBC1 domain family member 31                                    | Q96DN5    |
| TBCB    | Tubulin-folding cofactor B                                      | Q99426    |
| TBL2    | Transducin beta-like protein 2                                  | Q9Y4P3    |
| TBL3    | Transducin beta-like protein 3                                  | Q12788    |
| TBRG4   | Protein TBRG4                                                   | Q969Z0    |
| TCEB1   | Transcription elongation factor B polypeptide 1                 | Q15369    |
| TCOF1   | Treacle protein                                                 | Q13428    |
| TCP1    | T-complex protein 1 subunit alpha                               | P17987    |
| TDRKH   | Tudor and KH domain-containing protein                          | Q9Y2W6    |
| TECR    | Very-long-chain enoyl-CoA reductase                             | Q9NZ01    |
| TEFM    | Transcription elongation factor, mitochondrial                  | Q96QE5    |
| TFAM    | Transcription factor A, mitochondrial                           | Q00059    |
| TFB1M   | Dimethyladenosine transferase 1, mitochondrial                  | Q8WVM0    |
| TFB2M   | Dimethyladenosine transferase 2, mitochondrial                  | Q9H5Q4    |
| TFRC    | Transferrin receptor protein 1                                  | P02786    |
| TGOLN2  | Trans-Golgi network integral membrane protein 2                 | O43493    |
| THNSL1  | Threonine synthase-like 1                                       | Q8IYQ7    |
| TIMM10B | Mitochondrial import inner membrane translocase subunit Tim10 B | Q9Y5J6    |
| TIMM13  | Mitochondrial import inner membrane translocase subunit Tim13   | Q9Y5L4    |
| TIMM17A | Mitochondrial import inner membrane translocase subunit Tim17-A | Q99595    |
| TIMM17B | Mitochondrial import inner membrane translocase subunit Tim17-B | O60830    |
| TIMM21  | Mitochondrial import inner membrane translocase subunit Tim21   | Q9BVV7    |
| TIMM23  | Mitochondrial import inner membrane translocase subunit Tim23   | O14925    |
| TIMM44  | Mitochondrial import inner membrane translocase subunit TIM44   | O43615    |
| TIMM50  | Mitochondrial import inner membrane translocase subunit TIM50   | Q3ZCQ8    |
| TIMMDC1 | Complex I assembly factor TIMMDC1, mitochondrial                | Q9NPL8    |
| TM9SF1  | Transmembrane 9 superfamily member 1                            | O15321    |
| TM9SF2  | Transmembrane 9 superfamily member 2                            | Q99805    |
| TM9SF3  | Transmembrane 9 superfamily member 3                            | Q9HD45    |
| TM9SF4  | Transmembrane 9 superfamily member 4                            | Q92544    |
| TMCO1   | Transmembrane and coiled-coil domain-containing protein 1       | Q9UM00    |
| TMED1   | Transmembrane emp24 domain-containing protein 1                 | Q13445    |
| TMED10  | Transmembrane emp24 domain-containing protein 10                | P49755    |
| TMED2   | Transmembrane emp24 domain-containing protein 2                 | Q15363    |
| TMED4   | Transmembrane emp24 domain-containing protein 4                 | Q7Z7H5    |
| TMED7   | Transmembrane emp24 domain-containing protein 7                 | Q9Y3B3    |
| TMED9   | Transmembrane emp24 domain-containing protein 9                 | Q9BVK6    |

| Gene     | Protein name                                                 | Accession |
|----------|--------------------------------------------------------------|-----------|
| TMEM109  | Transmembrane protein 109                                    | Q9BVC6    |
| TMEM11   | Transmembrane protein 11, mitochondrial                      | P17152    |
| TMEM126A | Transmembrane protein 126A                                   | Q9H061    |
| TMEM160  | Transmembrane protein 160                                    | Q9NX00    |
| TMEM165  | Transmembrane protein 165                                    | Q9HC07    |
| TMEM192  | Transmembrane protein 192                                    | Q8IY95    |
| TMEM199  | Transmembrane protein 199                                    | Q8N511    |
| TMEM206  | Transmembrane protein 206                                    | Q9H813    |
| TMEM245  | Transmembrane protein 245                                    | Q9H330    |
| TMEM261  | Transmembrane protein 261                                    | Q96GE9    |
| TMEM30A  | Cell cycle control protein 50A                               | Q9NV96    |
| TMEM33   | Transmembrane protein 33                                     | P57088    |
| TMEM43   | Transmembrane protein 43                                     | Q9BTV4    |
| TMEM65   | Transmembrane protein 65                                     | Q6PI78    |
| TMEM70   | Transmembrane protein 70, mitochondrial                      | Q9BUB7    |
| TMEM97   | Transmembrane protein 97                                     | Q5BJF2    |
| TMF1     | TATA element modulatory factor                               | P82094    |
| TMLHE    | Trimethyllysine dioxygenase, mitochondrial                   | Q9NVH6    |
| ТМРО     | Lamina-associated polypeptide 2, isoform alpha               | P42166    |
| ТМРО     | Lamina-associated polypeptide 2, isoforms beta/gamma         | P42167    |
| TMUB1    | Transmembrane and ubiquitin-like domain-containing protein 1 | Q9BVT8    |
| TMUB2    | Transmembrane and ubiquitin-like domain-containing protein 2 | Q71RG4    |
| TMX1     | Thioredoxin-related transmembrane protein 1                  | Q9H3N1    |
| TMX2     | Thioredoxin-related transmembrane protein 2                  | Q9Y320    |
| TMX4     | Thioredoxin-related transmembrane protein 4                  | Q9H1E5    |
| TNPO1    | Transportin-1                                                | Q92973    |
| TOMM20   | Mitochondrial import receptor subunit TOM20 homolog          | Q15388    |
| TOMM22   | Mitochondrial import receptor subunit TOM22 homolog          | Q9NS69    |
| TOMM40   | Mitochondrial import receptor subunit TOM40 homolog          | O96008    |
| TOMM40L  | Mitochondrial import receptor subunit TOM40B                 | Q969M1    |
| TOP2A    | DNA topoisomerase 2-alpha                                    | P11388    |
| TOP2B    | DNA topoisomerase 2-beta                                     | Q02880    |
| TOR1A    | Torsin-1A                                                    | O14656    |
| TOR1AIP2 | Torsin-1A-interacting protein 2                              | Q8NFQ8    |
| TOR1B    | Torsin-1B                                                    | O14657    |
| TP53I11  | Tumor protein p53-inducible protein 11                       | O14683    |
| TPGS1    | Tubulin polyglutamylase complex subunit 1                    | Q6ZTW0    |
| TPM3     | Tropomyosin alpha-3 chain                                    | P06753    |
| TPM4     | Tropomyosin alpha-4 chain                                    | P67936    |
|          |                                                              |           |

| Gene     | Protein name                                                     | Accession |
|----------|------------------------------------------------------------------|-----------|
| TPR      | Nucleoprotein TPR                                                | P12270    |
| TRABD    | TraB domain-containing protein                                   | Q9H4I3    |
| TRAF3IP3 | TRAF3-interacting JNK-activating modulator                       | Q9Y228    |
| TRAP1    | Heat shock protein 75 kDa, mitochondrial                         | Q12931    |
| TRAPPC3  | Trafficking protein particle complex subunit 3                   | O43617    |
| TRAPPC5  | Trafficking protein particle complex subunit 5                   | Q8IUR0    |
| TRIM28   | Transcription intermediary factor 1-beta                         | Q13263    |
| TRIP11   | Thyroid receptor-interacting protein 11                          | Q15643    |
| TRIP13   | Pachytene checkpoint protein 2 homolog                           | Q15645    |
| TRMT10C  | Mitochondrial ribonuclease P protein 1                           | Q7L0Y3    |
| TRMT5    | tRNA                                                             | Q32P41    |
| TRMT61B  | tRNA                                                             | Q9BVS5    |
| TRMU     | Mitochondrial tRNA-specific 2-thiouridylase 1                    | O75648    |
| TRNT1    | CCA tRNA nucleotidyltransferase 1, mitochondrial                 | Q96Q11    |
| TRPV2    | Transient receptor potential cation channel subfamily V member 2 | Q9Y5S1    |
| TRUB1    | Probable tRNA pseudouridine synthase 1                           | Q8WWH5    |
| TRUB2    | Probable tRNA pseudouridine synthase 2                           | O95900    |
| TSFM     | Elongation factor Ts, mitochondrial                              | P43897    |
| TSPAN14  | Tetraspanin-14                                                   | Q8NG11    |
| TSPAN7   | Tetraspanin-7                                                    | P41732    |
| TST      | Thiosulfate sulfurtransferase                                    | Q16762    |
| TUBA1A   | Tubulin alpha-1A chain                                           | Q71U36    |
| TUBA1B   | Tubulin alpha-1B chain                                           | P68363    |
| TUBA1C   | Tubulin alpha-1C chain                                           | Q9BQE3    |
| TUBB     | Tubulin beta chain                                               | P07437    |
| TUBG1    | Tubulin gamma-1 chain                                            | P23258    |
| TUBGCP2  | Gamma-tubulin complex component 2                                | Q9BSJ2    |
| TUBGCP3  | Gamma-tubulin complex component 3                                | Q96CW5    |
| TUBGCP6  | Gamma-tubulin complex component 6                                | Q96RT7    |
| TUFM     | Elongation factor Tu, mitochondrial                              | P49411    |
| TUSC3    | Tumor suppressor candidate 3                                     | Q13454    |
| TXN      | Thioredoxin                                                      | P10599    |
| TXN2     | Thioredoxin, mitochondrial                                       | Q99757    |
| TXNDC12  | Thioredoxin domain-containing protein 12                         | O95881    |
| TXNDC5   | Thioredoxin domain-containing protein 5                          | Q8NBS9    |
| TYMS     | Thymidylate synthase                                             | P04818    |
| UBA1     | Ubiquitin-like modifier-activating enzyme 1                      | P22314    |
| UBAC2    | Ubiquitin-associated domain-containing protein 2                 | Q8NBM4    |
| UBB      | Polyubiquitin-B [Cleaved into: Ubiquitin]                        | P0CG47    |

| Gene    | Protein name                                               | Accession |
|---------|------------------------------------------------------------|-----------|
| UBC     | Polyubiquitin-C                                            | P0CG48    |
| UBE2G2  | Ubiquitin-conjugating enzyme E2 G2                         | P60604    |
| UBE2J1  | Ubiquitin-conjugating enzyme E2 J1                         | Q9Y385    |
| UBE2N   | Ubiquitin-conjugating enzyme E2 N                          | P61088    |
| UBTF    | Nucleolar transcription factor 1                           | P17480    |
| UBXN4   | UBX domain-containing protein 4                            | Q92575    |
| UCK2    | Uridine-cytidine kinase 2                                  | Q9BZX2    |
| UFD1L   | Ubiquitin fusion degradation protein 1 homolog             | Q92890    |
| UFL1    | E3 UFM1-protein ligase 1                                   | O94874    |
| UGGT1   | UDP-glucose:glycoprotein glucosyltransferase 1             | Q9NYU2    |
| ULBP2   | NKG2D ligand 2                                             | Q9BZM5    |
| UMPS    | Uridine 5'-monophosphate synthase                          | P11172    |
| UNG     | Uracil-DNA glycosylase                                     | P13051    |
| UQCC1   | Ubiquinol-cytochrome-c reductase complex assembly factor 1 | Q9NVA1    |
| UQCC2   | Ubiquinol-cytochrome-c reductase complex assembly factor 2 | Q9BRT2    |
| UQCRB   | Cytochrome b-c1 complex subunit 7                          | P14927    |
| UQCRC1  | Cytochrome b-c1 complex subunit 1, mitochondrial           | P31930    |
| UQCRC2  | Cytochrome b-c1 complex subunit 2, mitochondrial           | P22695    |
| UQCRFS1 | Cytochrome b-c1 complex subunit Rieske, mitochondrial      | P47985    |
| UQCRQ   | Cytochrome b-c1 complex subunit 8                          | O14949    |
| URB1    | Nucleolar pre-ribosomal-associated protein 1               | O60287    |
| USO1    | General vesicular transport factor p115                    | O60763    |
| USP20   | Ubiquitin carboxyl-terminal hydrolase 20                   | Q9Y2K6    |
| USP30   | Ubiquitin carboxyl-terminal hydrolase 30                   | Q70CQ3    |
| UTP14A  | U3 small nucleolar RNA-associated protein 14 homolog A     | Q9BVJ6    |
| UTRN    | Utrophin                                                   | P46939    |
| UXS1    | UDP-glucuronic acid decarboxylase 1                        | Q8NBZ7    |
| VAMP3   | Vesicle-associated membrane protein 3                      | Q15836    |
| VAMP4   | Vesicle-associated membrane protein 4                      | O75379    |
| VAMP5   | Vesicle-associated membrane protein 5                      | O95183    |
| VAMP7   | Vesicle-associated membrane protein 7                      | P51809    |
| VAPA    | Vesicle-associated membrane protein-associated protein A   | Q9P0L0    |
| VAPB    | Vesicle-associated membrane protein-associated protein B/C | O95292    |
| VARS2   | ValinetRNA ligase, mitochondrial                           | Q5ST30    |
| VAT1    | Synaptic vesicle membrane protein VAT-1 homolog            | Q99536    |
| VAV1    | Proto-oncogene vav                                         | P15498    |
| VCP     | Transitional endoplasmic reticulum ATPase                  | P55072    |
| VDAC1   | Voltage-dependent anion-selective channel protein 1        | P21796    |
| VDAC2   | Voltage-dependent anion-selective channel protein 2        | P45880    |

| Gene     | Protein name                                                   | Accession |
|----------|----------------------------------------------------------------|-----------|
| VDAC3    | Voltage-dependent anion-selective channel protein 3            | Q9Y277    |
| VIM      | Vimentin                                                       | P08670    |
| VIMP     | Selenoprotein S                                                | Q9BQE4    |
| VMA21    | Vacuolar ATPase assembly integral membrane protein VMA21       | Q3ZAQ7    |
| VPS13C   | Vacuolar protein sorting-associated protein 13C                | Q709C8    |
| VPS29    | Vacuolar protein sorting-associated protein 29                 | Q9UBQ0    |
| VPS35    | Vacuolar protein sorting-associated protein 35                 | Q96QK1    |
| VPS45    | Vacuolar protein sorting-associated protein 45                 | Q9NRW7    |
| VRK1     | Serine/threonine-protein kinase VRK1                           | Q99986    |
| VTI1A    | Vesicle transport through interaction with t-SNAREs homolog 1A | Q96AJ9    |
| VTI1B    | Vesicle transport through interaction with t-SNAREs homolog 1B | Q9UEU0    |
| VWA8     | von Willebrand factor A domain-containing protein 8            | A3KMH1    |
| WARS2    | TryptophantRNA ligase, mitochondrial                           | Q9UGM6    |
| WDFY1    | WD repeat and FYVE domain-containing protein 1                 | Q8IWB7    |
| XPNPEP3  | Probable Xaa-Pro aminopeptidase 3                              | Q9NQH7    |
| XPO1     | Exportin-1                                                     | O14980    |
| XPR1     | Xenotropic and polytropic retrovirus receptor 1                | Q9UBH6    |
| XRCC1    | DNA repair protein XRCC1                                       | P18887    |
| XRCC5    | X-ray repair cross-complementing protein 5                     | P13010    |
| XRCC6    | X-ray repair cross-complementing protein 6                     | P12956    |
| YARS2    | TyrosinetRNA ligase, mitochondrial                             | Q9Y2Z4    |
| YBEY     | Putative ribonuclease                                          | P58557    |
| YME1L1   | ATP-dependent zinc metalloprotease YME1L1                      | Q96TA2    |
| YRDC     | YrdC domain-containing protein, mitochondrial                  | Q86U90    |
| YWHAB    | 14-3-3 protein beta/alpha                                      | P31946    |
| YWHAE    | 14-3-3 protein epsilon                                         | P62258    |
| YWHAH    | 14-3-3 protein eta                                             | Q04917    |
| YWHAQ    | 14-3-3 protein theta                                           | P27348    |
| YWHAZ    | 14-3-3 protein zeta/delta                                      | P63104    |
| ZADH2    | Zinc-binding alcohol dehydrogenase domain-containing protein 2 | Q8N4Q0    |
| ZAP70    | Tyrosine-protein kinase ZAP-70                                 | P43403    |
| ZC3H11A  | Zinc finger CCCH domain-containing protein 11A                 | O75152    |
| ZC3HAV1  | Zinc finger CCCH-type antiviral protein 1                      | Q7Z2W4    |
| ZDHHC18  | Palmitoyltransferase ZDHHC18                                   | Q9NUE0    |
| ZMPSTE24 | CAAX prenyl protease 1 homolog                                 | O75844    |
| ZW10     | Centromere/kinetochore protein zw10 homolog                    | O43264    |

Appendix
## 7 Literature

- [1] Atherton, J.C., Blaser, M.J., Coadaptation of *Helicobacter pylori* and humans: ancient history, modern implications. *J. Clin. Invest.* 2009, 119, 2475–2487.
- [2] Marshall, B.J., Warren, J.R., Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. *Lancet* 1984, 1, 1311–1315.
- [3] Kuipers, E.J., Thijs, J.C., Festen, H.P., The prevalence of *Helicobacter pylori* in peptic ulcer disease. *Aliment. Pharmacol. Ther.* 1995, 9 Suppl 2, 59–69.
- [4] Wroblewski, L.E., Peek, R.M., Wilson, K.T., *Helicobacter pylori* and gastric cancer: factors that modulate disease risk. *Clin. Microbiol. Rev.* 2010, 23, 713–739.
- [5] Wolle, K., Malfertheiner, P., Treatment of *Helicobacter pylori. Best Pract. Res. Clin. Gastroenterol.* 2007, 21, 315–324.
- [6] Prónai, L., Schandl, L., Orosz, Z., Magyar, P., Tulassay, Z., Lower prevalence of *Helicobacter pylori* infection in patients with inflammatory bowel disease but not with chronic obstructive pulmonary disease antibiotic use in the history does not play a significant role. *Helicobacter* 2004, 9, 278–283.
- [7] Arnold, I.C., Dehzad, N., Reuter, S., Martin, H., et al., *Helicobacter pylori* infection prevents allergic asthma in mouse models through the induction of regulatory T cells. *J. Clin. Invest.* 2011, 121, 3088–3093.
- [8] Oertli, M., Sundquist, M., Hitzler, I., Engler, D.B., et al., DC-derived IL-18 drives Treg differentiation, murine *Helicobacter pylori*-specific immune tolerance, and asthma protection. *J. Clin. Invest.* 2012, 122, 1082–1096.
- [9] Dunn, B.E., Cohen, H., Blaser, M.J., Helicobacter pylori. Clin. Microbiol. Rev. 1997, 10, 720–741.
- [10] Suerbaum, S., Michetti, P., *Helicobacter pylori* infection. N. Engl. J. Med. 2002, 347, 1175–1186.
- [11] Buck, G.E., Gourley, W.K., Lee, W.K., Subramanyam, K., et al., Relation of *Campylobacter pyloridis* to gastritis and peptic ulcer. *J. Infect. Dis.* 1986, 153, 664–669.
- [12] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Schistosomes, Liver Flukes and *Helicobacter pylori* 1994.
- [13] Marshall, B.J., Virulence and pathogenicity of *Helicobacter pylori*. J. Gastroenterol. *Hepatol*. 1991, 6, 121–124.
- [14] Blaser, M.J., Atherton, J.C., *Helicobacter pylori* persistence: biology and disease. J. Clin. Invest. 2004, 113, 321–333.
- [15] Schreiber, S., Bücker, R., Groll, C., Azevedo-Vethacke, M., et al., Rapid loss of motility of *Helicobacter pylori* in the gastric lumen in vivo. *Infect. Immun.* 2005, 73, 1584–1589.
- [16] Atuma, C., Strugala, V., Allen, A., Holm, L., The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. *Am. J. Physiol. Gastrointest. Liver Physiol.* 2001, 280, G922–929.
- [17] Sycuro, L.K., Pincus, Z., Gutierrez, K.D., Biboy, J., et al., Peptidoglycan crosslinking relaxation promotes *Helicobacter pylori*'s helical shape and stomach colonization. *Cell* 2010, 141, 822–833.
- [18] Montecucco, C., Rappuoli, R., Living dangerously: how *Helicobacter pylori* survives in the human stomach. *Nat. Rev. Mol. Cell Biol.* 2001, 2, 457–466.

- [19] Celli, J.P., Turner, B.S., Afdhal, N.H., Keates, S., et al., *Helicobacter pylori* moves through mucus by reducing mucin viscoelasticity. *Proc. Natl. Acad. Sci. U. S. A.* 2009, 106, 14321– 14326.
- [20] Petersen, A.M., Krogfelt, K.A., *Helicobacter pylori*: an invading microorganism? A review. *FEMS Immunol. Med. Microbiol.* 2003, 36, 117–126.
- [21] Ilver, D., Arnqvist, A., Ogren, J., Frick, I.M., et al., *Helicobacter pylori* adhesin binding fucosylated histo-blood group antigens revealed by retagging. *Science* 1998, 279, 373–377.
- [22] Mahdavi, J., Sondén, B., Hurtig, M., Olfat, F.O., et al., *Helicobacter pylori* SabA adhesin in persistent infection and chronic inflammation. *Science* 2002, 297, 573–578.
- [23] Covacci, A., Censini, S., Bugnoli, M., Petracca, R., et al., Molecular characterization of the 128-kDa immunodominant antigen of *Helicobacter pylori* associated with cytotoxicity and duodenal ulcer. *Proc. Natl. Acad. Sci. U. S. A.* 1993, 90, 5791–5795.
- [24] Odenbreit, S., Püls, J., Sedlmaier, B., Gerland, E., et al., Translocation of *Helicobacter pylori* CagA into gastric epithelial cells by type IV secretion. *Science* 2000, 287, 1497–1500.
- [25] Murata-Kamiya, N., Pathophysiological functions of the CagA oncoprotein during infection by *Helicobacter pylori*. *Microbes Infect*. *Inst. Pasteur* 2011, 13, 799–807.
- [26] Ohnishi, N., Yuasa, H., Tanaka, S., Sawa, H., et al., Transgenic expression of *Helicobacter pylori* CagA induces gastrointestinal and hematopoietic neoplasms in mouse. *Proc. Natl. Acad. Sci. U. S. A.* 2008, 105, 1003–1008.
- [27] Cover, T.L., Blanke, S.R., *Helicobacter pylori* VacA, a paradigm for toxin multifunctionality. *Nat. Rev. Microbiol.* 2005, 3, 320–332.
- [28] Gewirtz, A.T., Yu, Y., Krishna, U.S., Israel, D.A., et al., *Helicobacter pylori* Flagellin Evades Toll-Like Receptor 5-Mediated Innate Immunity. J. Infect. Dis. 2004, 189, 1914– 1920.
- [29] Cullen, T.W., Giles, D.K., Wolf, L.N., Ecobichon, C., et al., *Helicobacter pylori* versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. *PLoS Pathog.* 2011, 7, e1002454.
- [30] Rad, R., Ballhorn, W., Voland, P., Eisenächer, K., et al., Extracellular and intracellular pattern recognition receptors cooperate in the recognition of *Helicobacter pylori*. *Gastroenterology* 2009, 136, 2247–2257.
- [31] Salama, N.R., Hartung, M.L., Müller, A., Life in the human stomach: persistence strategies of the bacterial pathogen *Helicobacter pylori*. *Nat. Rev. Microbiol.* 2013, advance online publication.
- [32] Müller, A., Oertli, M., Arnold, I.C., *H. pylori* exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection. *Cell Commun. Signal.* 2011, 9, 25.
- [33] Gobert, A.P., Mersey, B.D., Cheng, Y., Blumberg, D.R., et al., Cutting edge: urease release by *Helicobacter pylori* stimulates macrophage inducible nitric oxide synthase. J. Immunol. Baltim. Md 1950 2002, 168, 6002–6006.
- [34] Gobert, A.P., Cheng, Y., Wang, J.-Y., Boucher, J.-L., et al., *Helicobacter pylori* induces macrophage apoptosis by activation of arginase II. *J. Immunol. Baltim. Md* 1950 2002, 168, 4692–4700.
- [35] Wang, G., Hong, Y., Olczak, A., Maier, S.E., Maier, R.J., Dual Roles of *Helicobacter pylori* NapA in inducing and combating oxidative stress. *Infect. Immun.* 2006, 74, 6839–6846.
- [36] Oertli, M., Noben, M., Engler, D.B., Semper, R.P., et al., *Helicobacter pylori*?-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. *Proc. Natl. Acad. Sci. U. S. A.* 2013, 110, 3047–3052.

- [37] Tan, S., Noto, J.M., Romero-Gallo, J., Peek, R.M., Amieva, M.R., *Helicobacter pylori* perturbs iron trafficking in the epithelium to grow on the cell surface. *PLoS Pathog.* 2011, 7, e1002050.
- [38] Leunk, R.D., Johnson, P.T., David, B.C., Kraft, W.G., Morgan, D.R., Cytotoxic activity in broth-culture filtrates of *Campylobacter pylori*. J. Med. Microbiol. 1988, 26, 93–99.
- [39] Cover, T.L., Tummuru, M.K., Cao, P., Thompson, S.A., Blaser, M.J., Divergence of genetic sequences for the vacuolating cytotoxin among *Helicobacter pylori* strains. *J. Biol. Chem.* 1994, 269, 10566–10573.
- [40] Pagliaccia, C., Bernard, M. de, Lupetti, P., Ji, X., et al., The m2 form of the *Helicobacter pylori* cytotoxin has cell type-specific vacuolating activity. *Proc. Natl. Acad. Sci.* 1998, 95, 10212–10217.
- [41] Smoot, D.T., Resau, J.H., Earlington, M.H., Simpson, M., Cover, T.L., Effects of *Helicobacter pylori* vacuolating cytotoxin on primary cultures of human gastric epithelial cells. *Gut* 1996, 39, 795–799.
- [42] Szabò, I., Brutsche, S., Tombola, F., Moschioni, M., et al., Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of *Helicobacter pylori* is required for its biological activity. *EMBO J.* 1999, 18, 5517–5527.
- [43] Papini, E., de Bernard, M., Milia, E., Bugnoli, M., et al., Cellular vacuoles induced by *Helicobacter pylori* originate from late endosomal compartments. *Proc. Natl. Acad. Sci. U.* S. A. 1994, 91, 9720–9724.
- [44] Li, Y., Wandinger-Ness, A., Goldenring, J.R., Cover, T.L., Clustering and Redistribution of Late Endocytic Compartments in Response to *Helicobacter pylori* Vacuolating Toxin. *Mol. Biol. Cell* 2004, 15, 1946–1959.
- [45] Molinari, M., Galli, C., Norais, N., Telford, J.L., et al., Vacuoles Induced by *Helicobacter pylori* Toxin Contain Both Late Endosomal and Lysosomal Markers. J. Biol. Chem. 1997, 272, 25339–25344.
- [46] Sommi, P., Ricci, V., Fiocca, R., Necchi, V., et al., Persistence of *Helicobacter pylori* VacA toxin and vacuolating potential in cultured gastric epithelial cells. *Am. J. Physiol. Gastrointest. Liver Physiol.* 1998, 275, G681–G688.
- [47] Hotchin, N.A., Cover, T.L., Akhtar, N., Cell vacuolation induced by the VacA cytotoxin of *Helicobacter pylori* is regulated by the Rac1 GTPase. *J. Biol. Chem.* 2000, 275, 14009– 14012.
- [48] Suzuki, J., Ohnishi, H., Wada, A., Hirayama, T., et al., Involvement of syntaxin 7 in human gastric epithelial cell vacuolation induced by the *Helicobacter pylori*-produced cytotoxin VacA. *J. Biol. Chem.* 2003, 278, 25585–25590.
- [49] Papini, E., Satin, B., Bucci, C., de Bernard, M., et al., The small GTP binding protein rab7 is essential for cellular vacuolation induced by *Helicobacter pylori* cytotoxin. *EMBO J.* 1997, 16, 15–24.
- [50] Papini, E., Bugnoli, M., De Bernard, M., Figura, N., et al., Bafilomycin A1 inhibits Helicobacter pylori-induced vacuolization of HeLa cells. Mol. Microbiol. 1993, 7, 323–327.
- [51] Cover, T.L., Reddy, L.Y., Blaser, M.J., Effects of ATPase inhibitors on the response of HeLa cells to *Helicobacter pylori* vacuolating toxin. *Infect. Immun.* 1993, 61, 1427–1431.
- [52] Papini, E., Gottardi, E., Satin, B., de Bernard, M., et al., The vacuolar ATPase proton pump is present on intracellular vacuoles induced by *Helicobacter pylori*. J. Med. Microbiol. 1996, 45, 84–89.

- [53] De Bernard, M., Moschioni, M., Habermann, A., Griffiths, G., Montecucco, C., Cell vacuolization induced by *Helicobacter pylori* VacA cytotoxin does not depend on late endosomal SNAREs. *Cell. Microbiol.* 2002, 4, 11–18.
- [54] Sewald, X., Fischer, W., Haas, R., Sticky socks: *Helicobacter pylori* VacA takes shape. *Trends Microbiol.* 2008, 16, 89–92.
- [55] Cover, T.L., Blaser, M.J., Purification and characterization of the vacuolating toxin from *Helicobacter pylori. J. Biol. Chem.* 1992, 267, 10570–10575.
- [56] Telford, J.L., Ghiara, P., Dell'Orco, M., Comanducci, M., et al., Gene structure of the *Helicobacter pylori* cytotoxin and evidence of its key role in gastric disease. J. Exp. Med. 1994, 179, 1653–1658.
- [57] Lupetti, P., Heuser, J.E., Manetti, R., Massari, P., et al., Oligomeric and subunit structure of the *Helicobacter pylori* vacuolating cytotoxin. *J. Cell Biol.* 1996, 133, 801–807.
- [58] El-Bez, C., Adrian, M., Dubochet, J., Cover, T.L., High resolution structural analysis of *Helicobacter pylori* VacA toxin oligomers by cryo-negative staining electron microscopy. *J. Struct. Biol.* 2005, 151, 215–228.
- [59] Iwamoto, H., Czajkowsky, D.M., Cover, T.L., Szabo, G., Shao, Z., VacA from *Helicobacter pylori*: a hexameric chloride channel. *FEBS Lett.* 1999, 450, 101–104.
- [60] Czajkowsky, D.M., Iwamoto, H., Cover, T.L., Shao, Z., The vacuolating toxin from *Helicobacter pylori* forms hexameric pores in lipid bilayers at low pH. *Proc. Natl. Acad. Sci. U. S. A.* 1999, 96, 2001–2006.
- [61] Cover, T.L., Hanson, P.I., Heuser, J.E., Acid-induced Dissociation of VacA, the *Helicobacter pylori* Vacuolating Cytotoxin, Reveals Its Pattern of Assembly. *J. Cell Biol.* 1997, 138, 759–769.
- [62] Yahiro, K., Niidome, T., Kimura, M., Hatakeyama, T., et al., Activation of *Helicobacter pylori* VacA Toxin by Alkaline or Acid Conditions Increases Its Binding to a 250-kDa Receptor Protein-tyrosine Phosphatase β. *J. Biol. Chem.* 1999, 274, 36693–36699.
- [63] Gangwer, K.A., Mushrush, D.J., Stauff, D.L., Spiller, B., et al., Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc. Natl. Acad. Sci. 2007, 104, 16293–16298.
- [64] Tombola, F., Carlesso, C., Szabò, I., de Bernard, M., et al., *Helicobacter pylori* vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation. *Biophys. J.* 1999, 76, 1401–1409.
- [65] Torres, V.J., Ivie, S.E., McClain, M.S., Cover, T.L., Functional Properties of the p33 and p55 Domains of the *Helicobacter pylori* Vacuolating Cytotoxin. *J. Biol. Chem.* 2005, 280, 21107–21114.
- [66] Reyrat, J.M., Lanzavecchia, S., Lupetti, P., de Bernard, M., et al., 3D imaging of the 58 kDa cell binding subunit of the *Helicobacter pylori* cytotoxin. *J. Mol. Biol.* 1999, 290, 459–470.
- [67] Ye, D., Willhite, D.C., Blanke, S.R., Identification of the Minimal Intracellular Vacuolating Domain of the *Helicobacter pylori* Vacuolating Toxin. J. Biol. Chem. 1999, 274, 9277–9282.
- [68] Torres, V.J., McClain, M.S., Cover, T.L., Interactions between p-33 and p-55 Domains of the *Helicobacter pylori* Vacuolating Cytotoxin (VacA). J. Biol. Chem. 2004, 279, 2324– 2331.
- [69] McClain, M.S., Cao, P., Cover, T.L., Amino-Terminal Hydrophobic Region of *Helicobacter pylori* Vacuolating Cytotoxin (VacA) Mediates Transmembrane Protein Dimerization. *Infect. Immun.* 2001, 69, 1181–1184.

- [70] Vinion-Dubiel, A.D., McClain, M.S., Czajkowsky, D.M., Iwamoto, H., et al., A Dominant Negative Mutant of *Helicobacter pylori*Vacuolating Toxin (VacA) Inhibits VacA-induced Cell Vacuolation. J. Biol. Chem. 1999, 274, 37736–37742.
- [71] Chambers, M.G., Pyburn, T.M., González-Rivera, C., Collier, S.E., et al., Structural Analysis of the Oligomeric States of *Helicobacter pylori* VacA Toxin. J. Mol. Biol. 2013, 425, 524–535.
- [72] McClain, M.S., Iwamoto, H., Cao, P., Vinion-Dubiel, A.D., et al., Essential Role of a GXXXG Motif for Membrane Channel Formation by *Helicobacter pylori* Vacuolating Toxin. J. Biol. Chem. 2003, 278, 12101–12108.
- [73] Atherton, J.C., Cao, P., Peek, R.M., Tummuru, M.K., et al., Mosaicism in vacuolating cytotoxin alleles of *Helicobacter pylori*. Association of specific *vacA* types with cytotoxin production and peptic ulceration. *J. Biol. Chem.* 1995, 270, 17771–17777.
- [74] Rhead, J.L., Letley, D.P., Mohammadi, M., Hussein, N., et al., A New Helicobacter pylori Vacuolating Cytotoxin Determinant, the Intermediate Region, Is Associated With Gastric Cancer. Gastroenterology 2007, 133, 926–936.
- [75] Chung, C., Olivares, A., Torres, E., Yilmaz, O., et al., Diversity of VacA Intermediate Region among *Helicobacter pylori* Strains from Several Regions of the World. J. Clin. Microbiol. 2010, 48, 690–696.
- [76] González-Rivera, C., Algood, H.M.S., Radin, J.N., McClain, M.S., Cover, T.L., The Intermediate Region of *Helicobacter pylori* VacA Is a Determinant of Toxin Potency in a Jurkat T Cell Assay. *Infect. Immun.* 2012, 80, 2578–2588.
- [77] Ji, X., Fernandez, T., Burroni, D., Pagliaccia, C., et al., Cell Specificity of *Helicobacter pylori*Cytotoxin Is Determined by a Short Region in the Polymorphic Midregion. *Infect. Immun.* 2000, 68, 3754–3757.
- [78] Letley, D.P., Atherton, J.C., Natural Diversity in the N Terminus of the Mature Vacuolating Cytotoxin of *Helicobacter pylori* Determines Cytotoxin Activity. *J. Bacteriol.* 2000, 182, 3278–3280.
- [79] McClain, M.S., Cao, P., Iwamoto, H., Vinion-Dubiel, A.D., et al., A 12-Amino-Acid Segment, Present in Type s2 but Not Type s1 *Helicobacter pylori* VacA Proteins, Abolishes Cytotoxin Activity and Alters Membrane Channel Formation. *J. Bacteriol.* 2001, 183, 6499–6508.
- [80] Moll, G., Papini, E., Colonna, R., Burroni, D., et al., Lipid interaction of the 37-kDa and 58-kDa fragments of the *Helicobacter pylori* cytotoxin. *Eur. J. Biochem. FEBS* 1995, 234, 947–952.
- [81] Molinari, M., Galli, C., de Bernard, M., Norais, N., et al., The Acid Activation of*Helicobacter pylori*Toxin VacA: Structural and Membrane Binding Studies. *Biochem. Biophys. Res. Commun.* 1998, 248, 334–340.
- [82] Roche, N., Ilver, D., Angström, J., Barone, S., et al., Human gastric glycosphingolipids recognized by *Helicobacter pylori* vacuolating cytotoxin VacA. *Microbes Infect. Inst. Pasteur* 2007, 9, 605–614.
- [83] Gupta, V.R., Wilson, B.A., Blanke, S.R., Sphingomyelin is important for the cellular entry and intracellular localization of *Helicobacter pylori* VacA. *Cell. Microbiol.* 2010, 12, 1517–1533.
- [84] Utt, M., Danielsson, B., Wadström, T., *Helicobacter pylori* vacuolating cytotoxin binding to a putative cell surface receptor, heparan sulfate, studied by surface plasmon resonance. *FEMS Immunol. Med. Microbiol.* 2001, 30, 109–113.

- [85] Seto, K., Hayashi-Kuwabara, Y., Yoneta, T., Suda, H., Tamaki, H., Vacuolation induced by cytotoxin from *Helicobacter pylori* is mediated by the EGF receptor in HeLa cells. *FEBS Lett.* 1998, 431, 347–350.
- [86] Yahiro, K., Wada, A., Nakayama, M., Kimura, T., et al., Protein-tyrosine Phosphatase α, RPTPα, Is a *Helicobacter pylori* VacA Receptor. *J. Biol. Chem.* 2003, 278, 19183–19189.
- [87] Barwig, I., Charakterisierung Der Bindungseigenschaften Des *Helicobacter pylori* Adhäsins BabA Und Des Vakuolisierenden Cytotoxins VacA. Ludwig-Maximilians-Universität München, 2009.
- [88] Sewald, X., Gebert-Vogl, B., Prassl, S., Barwig, I., et al., Integrin Subunit CD18 Is the T-Lymphocyte Receptor for the *Helicobacter pylori* Vacuolating Cytotoxin. *Cell Host Microbe* 2008, 3, 20–29.
- [89] Satoh, K., Hirayama, T., Takano, K., Suzuki-Inoue, K., et al., VacA, the vacuolating cytotoxin of *Helicobacter pylori*, binds to multimerin 1 on human platelets. *Thromb. J.* 2013, 11, 23.
- [90] Hennig, E.E., Godlewski, M.M., Butruk, E., Ostrowski, J., *Helicobacter pylori* VacA cytotoxin interacts with fibronectin and alters HeLa cell adhesion and cytoskeletal organization in vitro. *FEMS Immunol. Med. Microbiol.* 2005, 44, 143–150.
- [91] Schraw, W., Li, Y., McClain, M.S., Goot, F.G. van der, Cover, T.L., Association of *Helicobacter pylori* Vacuolating Toxin (VacA) with Lipid Rafts. J. Biol. Chem. 2002, 277, 34642–34650.
- [92] Boquet, P., Ricci, V., Intoxication strategy of *Helicobacter pylori* VacA toxin. *Trends Microbiol.* 2012, 20, 165–174.
- [93] Nakayama, M., Hisatsune, J., Yamasaki, E., Nishi, Y., et al., Clustering of *Helicobacter pylori* VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 Cells. *Infect. Immun.* 2006, 74, 6571–6580.
- [94] Ricci, V., Galmiche, A., Doye, A., Necchi, V., et al., High Cell Sensitivity to *Helicobacter pylori* VacA Toxin Depends on a GPI-anchored Protein and is not Blocked by Inhibition of the Clathrin-mediated Pathway of Endocytosis. *Mol. Biol. Cell* 2000, 11, 3897–3909.
- [95] Gauthier, N.C., Ricci, V., Gounon, P., Doye, A., et al., Glycosylphosphatidylinositolanchored Proteins and Actin Cytoskeleton Modulate Chloride Transport by Channels Formed by the *Helicobacter pylori* Vacuolating Cytotoxin VacA in HeLa Cells. J. Biol. Chem. 2004, 279, 9481–9489.
- [96] Gauthier, N.C., Monzo, P., Kaddai, V., Doye, A., et al., *Helicobacter pylori* VacA Cytotoxin: A Probe for a Clathrin-independent and Cdc42-dependent Pinocytic Pathway Routed to Late Endosomes. *Mol. Biol. Cell* 2005, 16, 4852–4866.
- [97] Sewald, X., Jiménez-Soto, L., Haas, R., PKC-dependent endocytosis of the *Helicobacter pylori* vacuolating cytotoxin in primary T lymphocytes. *Cell. Microbiol.* 2011, 13, 482–496.
- [98] Garner, J.A., Cover, T.L., Binding and internalization of the *Helicobacter pylori* vacuolating cytotoxin by epithelial cells. *Infect. Immun.* 1996, 64, 4197–4203.
- [99] McClain, M.S., Schraw, W., Ricci, V., Boquet, P., Cover, T.L., Acid activation of *Helicobacter pylori* vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. *Mol. Microbiol.* 2000, 37, 433–442.
- [100] Patel, H.K., Willhite, D.C., Patel, R.M., Ye, D., et al., Plasma Membrane Cholesterol Modulates Cellular Vacuolation Induced by the *Helicobacter pylori* Vacuolating Cytotoxin. *Infect. Immun.* 2002, 70, 4112–4123.

- [101] Sabharanjak, S., Sharma, P., Parton, R.G., Mayor, S., GPI-Anchored Proteins Are Delivered to Recycling Endosomes via a Distinct cdc42-Regulated, Clathrin-Independent Pinocytic Pathway. *Dev. Cell* 2002, 2, 411–423.
- [102] Gauthier, N.C., Monzo, P., Gonzalez, T., Doye, A., et al., Early endosomes associated with dynamic F-actin structures are required for late trafficking of *H. pylori* VacA toxin. *J. Cell Biol.* 2007, 177, 343–354.
- [103] Galmiche, A., Rassow, J., Doye, A., Cagnol, S., et al., The N-terminal 34 kDa fragment of *Helicobacter pylori* vacuolating cytotoxin targets mitochondria and induces cytochrome c release. *EMBO J.* 2000, 19, 6361–6370.
- [104] Willhite, D.C., Blanke, S.R., *Helicobacter pylori* vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. *Cell. Microbiol.* 2004, 6, 143–154.
- [105] Domańska, G., Motz, C., Meinecke, M., Harsman, A., et al., *Helicobacter pylori* VacA Toxin/Subunit p34: Targeting of an Anion Channel to the Inner Mitochondrial Membrane. *PLoS Pathog* 2010, 6, e1000878.
- [106] Calore, F., Genisset, C., Casellato, A., Rossato, M., et al., Endosome-mitochondria juxtaposition during apoptosis induced by *H. pylori* VacA. *Cell Death Differ*. 2010, 17, 1707–1716.
- [107] Kim, I.-J., Blanke, S.R., Remodeling the host environment: modulation of the gastric epithelium by the *Helicobacter pylori* vacuolating toxin (VacA). *Front. Cell. Infect. Microbiol.* 2012, 2.
- [108] Rassow, J., Meinecke, M., *Helicobacter pylori* VacA: a new perspective on an invasive chloride channel. *Microbes Infect.* 2012.
- [109] Kimura, M., Goto, S., Wada, A., Yahiro, K., et al., Vacuolating cytotoxin purified from*Helicobacter pylori*causes mitochondrial damage in human gastric cells. *Microb. Pathog.* 1999, 26, 45–52.
- [110] Jain, P., Luo, Z.-Q., Blanke, S.R., *Helicobacter pylori* vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death. *Proc. Natl. Acad. Sci.* 2011, 108, 16032–16037.
- [111] Willhite, D.C., Cover, T.L., Blanke, S.R., Cellular Vacuolation and Mitochondrial Cytochrome c Release Are Independent Outcomes of *Helicobacter pylori* Vacuolating Cytotoxin Activity That Are Each Dependent on Membrane Channel Formation. *J. Biol. Chem.* 2003, 278, 48204–48209.
- [112] Kuck, D., Kolmerer, B., Iking-Konert, C., Krammer, P.H., et al., Vacuolating Cytotoxin of *Helicobacter pylori* Induces Apoptosis in the Human Gastric Epithelial Cell Line AGS. *Infect. Immun.* 2001, 69, 5080–5087.
- [113] Palframan, S.L., Kwok, T., Gabriel, K., Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front. Cell. Infect. Microbiol. 2012, 2.
- [114] Singh, M., Prasad, K.N., Saxena, A., Yachha, S.K., *Helicobacter pylori* Induces Apoptosis of T- and B-Cell Lines and Translocates Mitochondrial Apoptosis-Inducing Factor to Nucleus. *Curr. Microbiol.* 2006, 52, 254–260.
- [115] Kim, J.M., Kim, J.S., Kim, N., Ko, S.H., et al., *Helicobacter pylori* vacuolating cytotoxin induces apoptosis via activation of endoplasmic reticulum stress in dendritic cells. *J. Gastroenterol. Hepatol.* 2014, n/a–n/a.
- [116] Rassow, J., *Helicobacter pylori* vacuolating toxin A and apoptosis. *Cell Commun. Signal. CCS* 2011, 9, 26.

- [117] Zheng, P.-Y., Jones, N.L., *Helicobacter pylori* strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. *Cell. Microbiol.* 2003, 5, 25–40.
- [118] Molinari, M., Salio, M., Galli, C., Norais, N., et al., Selective inhibition of Ii-dependent antigen presentation by *Helicobacter pylori* toxin VacA. *J. Exp. Med.* 1998, 187, 135–140.
- [119] Gebert, B., Fischer, W., Weiss, E., Hoffmann, R., Haas, R., *Helicobacter pylori* Vacuolating Cytotoxin Inhibits T Lymphocyte Activation. *Science* 2003, 301, 1099–1102.
- [120] Boncristiano, M., Paccani, S.R., Barone, S., Ulivieri, C., et al., The Helicobacter pylori Vacuolating Toxin Inhibits T Cell Activation by Two Independent Mechanisms. J. Exp. Med. 2003, 198, 1887–1897.
- [121] Sundrud, M.S., Torres, V.J., Unutmaz, D., Cover, T.L., Inhibition of primary human T cell proliferation by *Helicobacter pylori* vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. *Proc. Natl. Acad. Sci. U. S. A.* 2004, 101, 7727–7732.
- [122] Engler, D.B., Reuter, S., van Wijck, Y., Urban, S., et al., Effective treatment of allergic airway inflammation with *Helicobacter pylori* immunomodulators requires BATF3dependent dendritic cells and IL-10. *Proc. Natl. Acad. Sci. U. S. A.* 2014, 111, 11810– 11815.
- [123] Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., et al., cag, a pathogenicity island of *Helicobacter pylori*, encodes type I-specific and disease-associated virulence factors. *Proc. Natl. Acad. Sci.* 1996, 93, 14648–14653.
- [124] Kwok, T., Zabler, D., Urman, S., Rohde, M., et al., Helicobacter exploits integrin for type IV secretion and kinase activation. *Nature* 2007, 449, 862–866.
- [125] Jiménez-Soto, L.F., Kutter, S., Sewald, X., Ertl, C., et al., *Helicobacter pylori* Type IV Secretion Apparatus Exploits β1 Integrin in a Novel RGD-Independent Manner. *PLoS Pathog.* 2009, 5.
- [126] Selbach, M., Moese, S., Hauck, C.R., Meyer, T.F., Backert, S., Src is the kinase of the *Helicobacter pylori* CagA protein in vitro and in vivo. *J. Biol. Chem.* 2002, 277, 6775–6778.
- [127] Tammer, I., Brandt, S., Hartig, R., König, W., Backert, S., Activation of Abl by *Helicobacter pylori*: a novel kinase for CagA and crucial mediator of host cell scattering. *Gastroenterology* 2007, 132, 1309–1319.
- [128] Tegtmeyer, N., Wessler, S., Backert, S., Role of the cag-pathogenicity island encoded type IV secretion system in *Helicobacter pylori* pathogenesis. *FEBS J.* 2011, 278, 1190–1202.
- [129] Blaser, M.J., Perez-Perez, G.I., Kleanthous, H., Cover, T.L., et al., Infection with *Helicobacter pylori* strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. *Cancer Res.* 1995, 55, 2111–2115.
- [130] Xiang, Z., Censini, S., Bayeli, P.F., Telford, J.L., et al., Analysis of expression of CagA and VacA virulence factors in 43 strains of *Helicobacter pylori* reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. *Infect. Immun.* 1995, 63, 94–98.
- [131] Peek, R.M., Crabtree, J.E., Helicobacter infection and gastric neoplasia. *J. Pathol.* 2006, 208, 233–248.
- [132] Argent, R.H., Thomas, R.J., Letley, D.P., Rittig, M.G., et al., Functional association between the *Helicobacter pylori* virulence factors VacA and CagA. *J. Med. Microbiol.* 2008, 57, 145–150.
- [133] Yokoyama, K., Higashi, H., Ishikawa, S., Fujii, Y., et al., Functional antagonism between *Helicobacter pylori* CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. *Proc. Natl. Acad. Sci. U. S. A.* 2005, 102, 9661–9666.

- [134] Mimuro, H., Suzuki, T., Nagai, S., Rieder, G., et al., *Helicobacter pylori* dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. *Cell Host Microbe* 2007, 2, 250–263.
- [135] Oldani, A., Cormont, M., Hofman, V., Chiozzi, V., et al., *Helicobacter pylori* counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. *PLoS Pathog.* 2009, 5, e1000603.
- [136] Akada, J.K., Aoki, H., Torigoe, Y., Kitagawa, T., et al., *Helicobacter pylori* CagA inhibits endocytosis of cytotoxin VacA in host cells. *Dis. Model. Mech.* 2010, 3, 605–617.
- [137] Wroblewski, L.E., Peek, R.M., Targeted disruption of the epithelial-barrier by *Helicobacter pylori. Cell Commun. Signal.* 2011, 9, 29.
- [138] Papini, E., Satin, B., Norais, N., de Bernard, M., et al., Selective increase of the permeability of polarized epithelial cell monolayers by *Helicobacter pylori* vacuolating toxin. J. Clin. Invest. 1998, 102, 813–820.
- [139] Chan, E.-C., Chen, K.-T., Lin, Y.-L., Vacuolating toxin from *Helicobacter pylori* activates cellular signaling and pepsinogen secretion in human gastric adenocarcinoma cells. *FEBS Lett.* 1996, 399, 127–130.
- [140] De Bernard, M., Cappon, A., Pancotto, L., Ruggiero, P., et al., The *Helicobacter pylori* VacA cytotoxin activates RBL-2H3 cells by inducing cytosolic calcium oscillations. *Cell. Microbiol.* 2005, 7, 191–198.
- [141] Fracchia, K.M., Pai, C.Y., Walsh, C.M., Modulation of T Cell Metabolism and Function through Calcium Signaling. *Front. Immunol.* 2013, 4.
- [142] Satin, B., Norais, N., Telford, J., Rappuoli, R., et al., Effect of *Helicobacter pylori* vacuolating toxin on maturation and extracellular release of procathepsin D and on epidermal growth factor degradation. *J. Biol. Chem.* 1997, 272, 25022–25028.
- [143] Gould, G.W., Lippincott-Schwartz, J., New roles for endosomes: from vesicular carriers to multi-purpose platforms. *Nat. Rev. Mol. Cell Biol.* 2009, 10, 287–292.
- [144] Miaczynska, M., Pelkmans, L., Zerial, M., Not just a sink: endosomes in control of signal transduction. *Curr. Opin. Cell Biol.* 2004, 16, 400–406.
- [145] Sorkin, A., Von Zastrow, M., Signal transduction and endocytosis: close encounters of many kinds. *Nat. Rev. Mol. Cell Biol.* 2002, 3, 600–614.
- [146] Cabantous, S., Waldo, G.S., In vivo and in vitro protein solubility assays using split GFP. Nat. Methods 2006, 3, 845–854.
- [147] Schmitt, W., Haas, R., Genetic analysis of the *Helicobacter pylori* vacuoiating cytotoxin: structural similarities with the IgA protease type of exported protein. *Mol. Microbiol.* 1994, 12, 307–319.
- [148] Fischer, W., Haas, R., The RecA Protein of *Helicobacter pylori* Requires a Posttranslational Modification for Full Activity. J. Bacteriol. 2004, 186, 777–784.
- [149] Odenbreit, S., Kavermann, H., Püls, J., Haas, R., CagA tyrosine phosphorylation and interleukin-8 induction by *Helicobacter pylori* are independent from AlpAB, HopZ and Bab group outer membrane proteins. *Int. J. Med. Microbiol.* 2002, 292, 257–266.
- [150] Sambrook, J., Russell, D., Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 2001.
- [151] Urwyler, S., Finsel, I., Ragaz, C., Hilbi, H., Isolation of *Legionella*-containing vacuoles by immuno-magnetic separation. *Curr. Protoc. Cell Biol.* 2010, Chapter 3, Unit 3.34.
- [152] Hoffmann, C., Finsel, I., Otto, A., Pfaffinger, G., et al., Functional analysis of novel Rab GTPases identified in the proteome of purified *Legionella*-containing vacuoles from macrophages. *Cell. Microbiol.* 2014, 16, 1034–1052.

- [153] Mashima, H., Suzuki, J., Hirayama, T., Yoshikumi, Y., et al., Involvement of vesicleassociated membrane protein 7 in human gastric epithelial cell vacuolation induced by *Helicobacter pylori*-produced VacA. *Infect. Immun.* 2008, 76, 2296–2303.
- [154] Yamasaki, E., Wada, A., Kumatori, A., Nakagawa, I., et al., *Helicobacter pylori* Vacuolating Cytotoxin Induces Activation of the Proapoptotic Proteins Bax and Bak, Leading to Cytochrome c Release and Cell Death, Independent of Vacuolation. *J. Biol. Chem.* 2006, 281, 11250–11259.
- [155] Jain, U., Effects of *Helicobacter pylori* Vacuolating Cytotoxin A on Intracellular Calcium Signalling in T-Lymphocytes. Ludwig-Maximilians-Universität München, 2013.
- [156] Soboloff, J., Rothberg, B.S., Madesh, M., Gill, D.L., STIM proteins: dynamic calcium signal transducers. *Nat. Rev. Mol. Cell Biol.* 2012, 13, 549–565.
- [157] Park, C.Y., Hoover, P.J., Mullins, F.M., Bachhawat, P., et al., STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1. *Cell* 2009, 136, 876–890.
- [158] Yuan, J.P., Zeng, W., Dorwart, M.R., Choi, Y.-J., et al., SOAR and the polybasic STIM1 domains gate and regulate Orai channels. *Nat. Cell Biol.* 2009, 11, 337–343.
- [159] Morbiato, L., Tombola, F., Campello, S., Del Giudice, G., et al., Vacuolation induced by VacA toxin of *Helicobacter pylori* requires the intracellular accumulation of membrane permeant bases, Cl– and water. *FEBS Lett.* 2001, 508, 479–483.
- [160] Sewald, X., Identifizierung Des Rezeptors Und Charakterisierung Der Aufnahme Des Vakuolisierenden Cytotoxins VacA von *Helicobacter pylori* in T-Zellen. Ludwig-Maximilians-Universität München, 2008.
- [161] Progida, C., Cogli, L., Piro, F., Luca, A.D., et al., Rab7b controls trafficking from endosomes to the TGN. *J. Cell Sci.* 2010, 123, 1480–1491.
- [162] De Brito, O.M., Scorrano, L., An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. *EMBO J.* 2010, 29, 2715–2723.
- [163] Rogers, L.D., Foster, L.J., The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum. *Proc. Natl. Acad. Sci. U. S. A.* 2007, 104, 18520–18525.
- [164] Li, Q., Jagannath, C., Rao, P.K., Singh, C.R., Lostumbo, G., Analysis of phagosomal proteomes: From latex-bead to bacterial phagosomes. *PROTEOMICS* 2010, 10, 4098– 4116.
- [165] Wu, S.-M., Zhao, X., Zhang, Z.-L., Xie, H.-Y., et al., Quantum-Dot-Labeled DNA Probes for Fluorescence In Situ Hybridization (FISH) in the Microorganism Escherichia coli. *ChemPhysChem* 2006, 7, 1062–1067.
- [166] Urwyler, S., Nyfeler, Y., Ragaz, C., Lee, H., et al., Proteome Analysis of Legionella Vacuoles Purified by Magnetic Immunoseparation Reveals Secretory and Endosomal GTPases. Traffic 2009, 10, 76–87.
- [167] Otto, G.P., Nichols, B.J., The roles of flotillin microdomains endocytosis and beyond. *J. Cell Sci.* 2011, 124, 3933–3940.
- [168] Aït-Slimane, T., Galmes, R., Trugnan, G., Maurice, M., Basolateral Internalization of GPI-anchored Proteins Occurs via a Clathrin-independent Flotillin-dependent Pathway in Polarized Hepatic Cells. *Mol. Biol. Cell* 2009, 20, 3792–3800.
- [169] Saslowsky, D.E., Cho, J.A., Chinnapen, H., Massol, R.H., et al., Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not Derlin-1 or -2. *J. Clin. Invest.* 2010, 120, 4399–4409.
- [170] Leevers, S.J., Vanhaesebroeck, B., Waterfield, M.D., Signalling through phosphoinositide
  3-kinases: the lipids take centre stage. *Curr. Opin. Cell Biol.* 1999, 11, 219–225.

- [171] Prigent, M., Dubois, T., Raposo, G., Derrien, V., et al., ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 2003, 163, 1111– 1121.
- [172] Tonachini, L., Monticone, M., Puri, C., Tacchetti, C., et al., Chondrocyte protein with a poly-proline region (CHPPR) is a novel mitochondrial protein and promotes mitochondrial fission. *J. Cell. Physiol.* 2004, 201, 470–482.
- [173] Lombardi, D., Soldati, T., Riederer, M.A., Goda, Y., et al., Rab9 functions in transport between late endosomes and the trans Golgi network. *EMBO J.* 1993, 12, 677–682.
- [174] Hennig, E.E., Butruk, E., Ostrowski, J., RACK1 Protein Interacts with *Helicobacter pylori* VacA Cytotoxin: The Yeast Two-Hybrid Approach. *Biochem. Biophys. Res. Commun.* 2001, 289, 103–110.
- [175] De Bernard, M., Moschioni, M., Napolitani, G., Rappuoli, R., Montecucco, C., The VacA toxin of *Helicobacter pylori* identifies a new intermediate filament-interacting protein. *EMBO J.* 2000, 19, 48–56.
- [176] Price, A., Wickner, W., Ungermann, C., Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion. J. Cell Biol. 2000, 148, 1223–1229.
- [177] Elbaz-Alon, Y., Rosenfeld-Gur, E., Shinder, V., Futerman, A.H., et al., A dynamic interface between vacuoles and mitochondria in yeast. *Dev. Cell* 2014, 30, 95–102.
- [178] Hönscher, C., Mari, M., Auffarth, K., Bohnert, M., et al., Cellular metabolism regulates contact sites between vacuoles and mitochondria. *Dev. Cell* 2014, 30, 86–94.
- [179] Stroupe, C., Collins, K.M., Fratti, R.A., Wickner, W., Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. *EMBO J.* 2006, 25, 1579–1589.
- [180] MacDiarmid, C.W., Gardner, R.C., Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J. Biol. Chem. 1998, 273, 1727–1732.
- [181] Giots, F., Donaton, M.C.V., Thevelein, J.M., Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. *Mol. Microbiol.* 2003, 47, 1163–1181.
- [182] Ron, D., Chen, C.H., Caldwell, J., Jamieson, L., et al., Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. *Proc. Natl. Acad. Sci. U. S. A.* 1994, 91, 839–843.
- [183] Chang, B.Y., Conroy, K.B., Machleder, E.M., Cartwright, C.A., RACK1, a Receptor for Activated C Kinase and a Homolog of the ? Subunit of G Proteins, Inhibits Activity of Src Tyrosine Kinases and Growth of NIH 3T3 Cells. *Mol. Cell. Biol.* 1998, 18, 3245–3256.
- [184] Liliental, J., Chang, D.D., Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. *J. Biol. Chem.* 1998, 273, 2379–2383.
- [185] Liu, H., Semino-Mora, C., Dubois, A., Mechanism of *H. pylori* Intracellular Entry: An in vitro Study. *Front. Cell. Infect. Microbiol.* 2012, 2.
- [186] Winter, J., Letley, D., Rhead, J., Atherton, J., Robinson, K., Helicobacter pylori Membrane Vesicles Stimulate Innate Pro- and Anti-Inflammatory Responses and Induce Apoptosis in Jurkat T Cells. Infect. Immun. 2014, 82, 1372–1381.
- [187] Osman, C., Voelker, D.R., Langer, T., Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 2011, 192, 7–16.

- [188] Derré, I., Swiss, R., Agaisse, H., The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. *PLoS Pathog.* 2011, 7, e1002092.
- [189] Mehlitz, A., Karunakaran, K., Herweg, J.-A., Krohne, G., et al., The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress. Cell. Microbiol. 2014, n/a-n/a.
- [190] Robinson, C.G., Roy, C.R., Attachment and fusion of endoplasmic reticulum with vacuoles containing *Legionella pneumophila*. *Cell. Microbiol*. 2006, 8, 793–805.
- [191] Schwartz, S.L., Cao, C., Pylypenko, O., Rak, A., Wandinger-Ness, A., Rab GTPases at a glance. J. Cell Sci. 2007, 120, 3905–3910.
- [192] Lioudyno, M.I., Kozak, J.A., Penna, A., Safrina, O., et al., Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. *Proc. Natl. Acad. Sci. U. S. A.* 2008, 105, 2011–2016.
- [193] Duquette, M., Nadler, M., Okuhara, D., Thompson, J., et al., Members of the thrombospondin gene family bind stromal interaction molecule 1 and regulate calcium channel activity. *Matrix Biol.* 2014, 37, 15–24.
- [194] Petschnigg, J., Groisman, B., Kotlyar, M., Taipale, M., et al., The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. *Nat. Methods* 2014, 11, 585–592.
- [195] Saelinger, C.B., Trafficking of Bacterial Toxins, CRC Press, 1989.
- [196] Thieblemont, N., Wright, S.D., Transport of Bacterial Lipopolysaccharide to the Golgi Apparatus. J. Exp. Med. 1999, 190, 523–534.
- [197] Sandvig, K., van Deurs, B., Delivery into cells: lessons learned from plant and bacterial toxins. *Gene Ther.* 2005, 12, 865–872.
- [198] Sandvig, K., Olsnes, S., Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule. J. Biol. Chem. 1981, 256, 9068–9076.
- [199] Llorente, A., Lauvrak, S.U., van Deurs, B., Sandvig, K., Induction of direct endosome to endoplasmic reticulum transport in Chinese hamster ovary (CHO) cells (LdlF) with a temperature-sensitive defect in epsilon-coatomer protein (epsilon-COP). J. Biol. Chem. 2003, 278, 35850–35855.
- [200] Bastiaens, P.I., Majoul, I.V., Verveer, P.J., Soling, H.D., Jovin, T.M., Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. *EMBO J.* 1996, 15, 4246–4253.
- [201] Hansen, S.H., Sandvig, K., van Deurs, B., Molecules internalized by clathrinindependent endocytosis are delivered to endosomes containing transferrin receptors. J. Cell Biol. 1993, 123, 89–97.
- [202] Schmitz, A., Herrgen, H., Winkeler, A., Herzog, V., Cholera toxin is exported from microsomes by the Sec61p complex. *J. Cell Biol.* 2000, 148, 1203–1212.
- [203] Friedman, J.R., Lackner, L.L., West, M., DiBenedetto, J.R., et al., ER Tubules Mark Sites of Mitochondrial Division. *Science* 2011, 334, 358–362.
- [204] Finsel, I., Ragaz, C., Hoffmann, C., Harrison, C.F., et al., The Legionella Effector RidL Inhibits Retrograde Trafficking to Promote Intracellular Replication. Cell Host Microbe 2013, 14, 38–50.
- [205] Holmgren, J., Lönnroth, I., Svennerholm, L., Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. *Infect. Immun.* 1973, 8, 208–214.

- [206] Göttfert, F., Wurm, C.A., Mueller, V., Berning, S., et al., Coaligned Dual-Channel STED Nanoscopy and Molecular Diffusion Analysis at 20 nm Resolution. *Biophys. J.* 2013, 105, L01–L03.
- [207] Karniely, S., Pines, O., Single translation—dual destination: mechanisms of dual protein targeting in eukaryotes. *EMBO Rep.* 2005, 6, 420–425.

Literature

## 8 Danksagung

Danksagung

## 9 Lebenslauf