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Preface 

The results of the work I conducted during my PhD thesis in the laboratory of Prof. Dr. Peter 

B. Becker on the chromatin remodeling enzyme ISWI are published in three original research 

papers. A fourth manuscript reporting the establishment of a rapid histone purification 

method is currently under revision. The research papers and the manuscript constitute the 

main part of the results section of this cumulative thesis. Furthermore, the results section 

contains a published review article that I co-authored. It focuses on recent developments in 

the field of chromatin remodeling – contributed by us and others – that provided novel and 

exciting insights into the mechanism and regulation of nucleosome sliding. As they refer to 

each other, the articles are presented in a chronological order according to their publication 

dates to facilitate reading. My contributions to the individual manuscripts are listed at the 

beginning of each chapter of the results section and in a comprehensive form in the enclosed 

declaration of contributions (see page 154). Due to copyright issues the articles published in 

the journal Nature Structural and Molecular Biology are not included in the final, published 

version. Instead, the accepted manuscript after peer-review is enclosed in the format of this 

thesis. Each chapter of the results section contains the respective reference list. The 

references of the introduction and discussion are summarized and listed subsequent to the 

discussion section (see page 139). 
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  The ATPase domain of ISWI is an autonomous nucleosome remodeling machine.  
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  Nucleosome sliding mechanisms: new twists in a looped history.  
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  No need for a power stroke in ISWI‐mediated nucleosome sliding.  
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  ISWI Remodelling of Physiological Chromatin Fibres Acetylated at Lysine 16 of Histone H4.   
  PLoS ONE 9(2), e88411. 
 

Unpublished manuscript included in this thesis: 

Klinker H, Haas C, Becker PB, Mueller-Planitz F  
Rapid purification of recombinant histones
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Summary 

The organization of DNA into nucleosomes and higher order chromatin structures poses an 

obstacle to the nuclear machinery by restricting DNA access. To dynamically regulate DNA 

accessibility and the transition of chromatin functional states, a complex network comprising 

various factors and mechanisms evolved. Key players in this network are a class of 

conserved, ATP-dependent chromatin remodeling factors catalyzing nucleosome eviction, 

assembly, reconfiguration, and repositioning (“sliding”). Among the most intensively studied 

remodeling complexes are those containing the ISWI enzyme as catalytic core. These 

complexes possess nucleosome sliding activity and assist in chromatin assembly. Notably, in 

vitro the isolated ISWI enzyme displays remodeling activity, and the associated subunits 

have modulating functions. Besides the central ATPase domain that shares homology with 

helicases, ISWI harbors a DNA binding module, the HAND-SANT-SLIDE domain (HSS). For 

maximal activity, ISWI requires the histone H4 tail, and acetylation of the tail at lysine 16 

(H4K16ac), a mark mediating chromatin decompaction, was proposed to negatively affect 

ISWI activity, providing a means to regulate the enzyme in vivo. However, the molecular 

mechanisms of a remodeling reaction and of the H4 tail-dependency of ISWI remain elusive.  

In this study, we biochemically characterized the wild-type ISWI enzyme and various mutants 

to gain insights into the function of different protein domains during catalysis. Furthermore, 

we quantitatively analyzed the effect of H4K16ac on ISWI activity in the context of in vitro 

reconstituted, physiological chromatin fibers. Employing folded chromatin fibers instead of 

the commonly used isolated mononucleosomes allowed assessing potential effects of 

H4K16ac-induced chromatin decompaction on ISWI remodeling that would have escaped 

notice in previous studies. To facilitate in vitro studies of chromatin, we developed – based 

on established methods – a rapid purification protocol for bacterially expressed histones. 

Unexpectedly and contrary to prominent models, we found the HSS domain of ISWI to be 

dispensable for nucleosome sliding. Instead, the isolated ATPase domain acted as an 

autonomous nucleosome remodeling machine that was stimulated by DNA and 

nucleosomes, was sensitive to the H4 tail, and repositioned nucleosomes. While the HSS 

domain enhanced sliding activity and substrate specificity, our results did not support active 

co-operation with the ATPase domain. In conjunction with recent findings by other groups, in 

our model of nucleosome sliding by ISWI the helicase-like DNA translocation activity of the 

ATPase domain is the driving force, whereas the HSS domain assumes regulating and 

optimizing functions. Moreover, we could confirm a general regulatory potential of the H4 tail 

for ISWI activity. However, in conflict with previous reports we did not observe a reducing, 

but rather a stimulating effect of H4K16ac in the context of chromatin fibers. We conclude 

that ISWI regulation by H4K16ac is context-dependent and simple models on the interplay of 

these chromatin-organizing factors in vivo have to be reconsidered.  
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Zusammenfassung 

Die Organisation von DNA in Nukleosomen und höhere Chromatinstrukturen limitiert im 

Allgemeinen ihre Zugänglichkeit für DNA bindende Faktoren der nukleären Maschinerie. Um 

den Zugriff auf bestimmte DNA-Sequenzen und den Übergang zwischen 

Chromatinzuständen dynamisch zu regulieren, hat sich ein komplexes Netzwerk ausgebildet, 

das eine Vielzahl von Faktoren und Mechanismen umfasst. In diesem Netzwerk nehmen die 

evolutionär konservierten, ATP-abhängigen Chromatin-Remodulierungs-Faktoren 

(„Remodeling-Faktoren“) eine Schlüsselstellung ein. Sie katalysieren sowohl den Auf- als 

auch Ab- und Umbau von Nukleosomen und ihre Repositionierung. Dabei zählen zu den am 

besten charakterisierten Remodeling-Faktoren die Komplexe, die das Enzym ISWI als 

katalytischen Kern enthalten. Diese Komplexe besitzen Repositionierungsaktivität und 

assistieren zudem bei der Chromatin-Assemblierung. Auch außerhalb von Komplexen weist 

das ISWI-Enzym in vitro Remodeling-Aktivität auf, die durch die Assoziation von weiteren 

Untereinheiten moduliert und gesteuert wird. Neben einer zentralen ATPase-Domäne, die 

wie bei allen Remodeling-Enzymen Homologie zu Helikasen aufweist, umfasst ISWI eine 

DNA-Bindedomäne, die sogenannte HAND-SANT-SLIDE-Domäne (HSS-Domäne). Für 

maximale Remodeling-Aktivität benötigt ISWI den flexiblen N-Terminus von Histon H4. 

Dessen Acetylierung an Lysin 16 (H4K16ac) – eine Histonmodifikation, die Chromatin-

Dekondensation bewirkt – wurde wiederum eine inhibierende Wirkung auf ISWI zuge-

schrieben. Folglich stellt diese posttranslationale Modifikation ein potentielles Mittel zur 

Regulation der Aktivität von ISWI-Komplexen in vivo dar. Die molekularen Mechanismen, die 

einer Remodeling-Reaktion und der H4-Abhängigkeit von ISWI zugrunde liegen, sind jedoch 

noch unverstanden. 

In der vorliegenden Arbeit wurden das ISWI-Enzym in voller Länge sowie unterschiedliche 

Mutanten biochemisch charakterisiert, um die Funktion der verschiedenen Proteindomänen 

zu untersuchen. Außerdem wurde der Effekt von H4K16ac auf die ISWI-Aktivität im Kontext 

von in vitro rekonstituierten, physiologischen Chromatinfasern quantitativ analysiert. Dabei 

ermöglichte die Verwendung von gefalteten Chromatinfasern als Remodeling-Substrat 

anstelle der häufig eingesetzten isolierten Mononukleosomen, potentielle Effekte der 

H4K16ac-induzierten Chromatin-Dekondensation auf die Remodeling-Aktivität von ISWI zu 

detektieren. Solche Effekte wären in früheren Analysen unentdeckt geblieben. Um die 

Assemblierung von Chromatin in vitro zu beschleunigen und zu erleichtern, haben wir, 

basierend auf etablierten Methoden, ein Protokoll zur schnellen Aufreinigung von bakteriell 

exprimierten Histonen entwickelt. 

Im Gegensatz zu bisher vorherrschenden Modellen zeigten unsere Analysen, dass die HSS-

Domäne von ISWI nicht in essentieller Weise zur Repositionierung von Nukleosomen 

beiträgt. Stattdessen stellt die isolierte ATPase-Domäne eine autonome Remodeling-
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Maschine dar, die durch DNA und Nukleosomen stimuliert wird, auf den N-Terminus von H4 

reagiert und Nukleosomen repositioniert. Die HSS-Domäne hingegen steigert die 

Repositionierungsaktivität und Substratspezifität von ISWI. Eine aktive Koordination beider 

Domänen jedoch scheint aufgrund unserer Ergebnisse ausgeschlossen. In Verbindung mit 

neuesten Erkenntnissen anderer Labore schlagen wir ein Modell der Nukleosomen-

Repositionierung durch ISWI vor, in dem die den Helikasen verwandte DNA-

Translokationsaktivität der ATPase-Domäne als treibende Kraft fungiert. Die HSS-Domäne 

erfüllt dabei regulierende und optimierende Funktionen. Darüber hinaus konnten wir ein 

generelles regulatorisches Potential des N-Terminus von H4 im Zusammenhang mit ISWI 

bestätigen. Allerdings beobachteten wir im Kontrast zu früheren Studien keinen 

inhibierenden, sondern eher einen stimulierenden Effekt der Acetylierung auf die ISWI-

Aktivität. Daraus schließen wir, dass die Regulation von ISWI durch H4K16ac 

kontextabhängig ist und vereinfachte Modelle des Zusammenspiels dieser beiden Chromatin 

organisierenden Faktoren in vivo überdacht werden müssen. 
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1 Introduction 

1.1 Organization and structure of chromatin 

To accommodate eukaryotic genomes in the restricted volume of a cell nucleus, the DNA is 

organized into a nucleoprotein complex termed “chromatin“. The tight association with 

proteins not only serves to compact and protect DNA, but also to regulate all DNA-based 

processes by timely adjusting DNA accessibility. Different levels of DNA packaging and 

chromatin condensation can be distinguished and the underlying organizational principles will 

be discussed in the following. 

1.1.1 The nucleosome 

The “nucleosome” constitutes the first level of DNA compaction and the basic repeating unit 

of chromatin. A “nucleosome core particle” comprises ~147 base pairs (bp) of DNA tightly 

wrapped in about 1.65 left-handed superhelical turns around a histone octamer (Figure 1A) 

(Luger et al., 1997). This disc-shaped octamer consist of two copies each of the highly 

conserved histone proteins H2A, H2B, H3, and H4. Histones are small, basic proteins 

(~100--130 amino acids) and bipartite in their structure. On the one hand, they contain a 

structured core that includes the characteristic “histone fold” motif consisting of three 

 

Figure 1 The nucleosome core particle. The structure of the nucleosome core particle as 
derived from X-ray crystallography (2.8 Å) is depicted. (A) Two views of the complete particle varying 
by 90° are shown with the dyad axis aligned vertically. The sites where the DNA enters and exits the 
nucleosome core particle, respectively, are indicated. The unstructured histone tails crystallized only 
partially. (B) One half of the nucleosome core particle (four histones and 73 bp of DNA) is shown. 
Additionally, three helices of the second H3 histone are depicted. The numbers indicate the superhelix 
locations (SHLs). The SHLs of the two halves of a nucleosome are distinguished by positive and 
negative algebraic signs, respectively. DNA backbone: brown and turquoise; H3: blue; H4: green; 
H2A: yellow; H2B: red (Adapted and reprinted with permission from Macmillan Publishers Ltd: Nature 
(Luger et al., 1997)) 

 



6 |  I n t r o d u c t i o n  

 

α-helices connected by two loops. On the other hand, histones feature an unstructured 

N-terminal region comprising 20–35 amino acids termed “histone tail”. H2A additionally 

harbors a disordered domain at its C-terminus. While the structured domains form the vast 

majority of protein-protein and protein-DNA contacts within a nucleosome, the flexible and 

exposed tails constitute important interaction surfaces (see chapters 1.1.3 and 1.2.2) 

(Andrews and Luger, 2011; Luger et al., 1997).  

Stable wrapping of the nucleosomal DNA around the histone octamer is achieved by multiple 

direct interactions of the DNA and the histone proteins as well as numerous water-mediated 

bonds (Davey et al., 2002; Luger et al., 1997). The DNA contacts the octamer surface once 

per helical turn where the minor groove faces the octamer (superhelix locations (SHL) ± 0.5 

to ± 6.5; Figure 1B), yielding 14 distinct sites of interaction. These interaction sites vary in 

strength with the strongest region of interaction located at the nucleosome dyad (Hall et al., 

2009). Notably, none of the histone-DNA contacts is base-specific. Therefore, observed 

preferences for the assembly of certain DNA sequences into nucleosomes likely reflect 

sequence-dependent differences in DNA bendability (Davey et al., 2002). The nucleosomal 

organization of DNA generally limits its accessibility for sequence-specific binding factors due 

to occluded interaction epitopes. In addition, the unusual and bent DNA conformation 

imposed by the octamer may prevent sequence recognition (Richmond and Davey, 2003). 

Due to its tight wrapping around the octamer, nucleosomal DNA is largely protected from 

cleavage by nucleases like micrococcal nuclease or restriction enzymes (Noll and Kornberg, 

1977; van Holde, 1989). 

The primary structure of a chromatin fiber consists of an array of nucleosome core particles 

connected by stretches of free DNA called “linker DNA”. The entity of a nucleosome core 

particle and its flanking linker DNA is termed “nucleosome”. The mean length of the linker 

DNA varies not only in a species- and tissue-specific manner ranging from 7 bp in fission 

yeast (Lantermann et al., 2010) to ~90 bp in sea urchin sperm (Spadafora et al., 1976) but 

also locally within one nucleus (Valouev et al., 2011). This variability is of functional 

relevance for further levels of chromatin compaction as outlined in chapter 1.1.3.  

Despite their pronounced stability, nucleosomes are dynamic, variable particles that can 

adopt different structural states (Andrews and Luger, 2011). For example, transient 

unwrapping of nucleosomal DNA especially at the entry/exit sites was observed, opening a 

window of opportunity for the interaction of chromatin factors with the DNA as well as the 

histone moiety (Buning and van Noort, 2010; Li et al., 2005; Miyagi et al., 2011; Poirier et al., 

2008; Tims et al., 2011; Zlatanova et al., 2009). Furthermore, sequence-dependent structural 

plasticity of the nucleosomal DNA was reported. At SHL±2 or ±5, the nucleosome core 

particle can accommodate DNA stretching, allowing the organization of a variable number of 

base pairs (145–147 bp) on the octamer surface (Tan and Davey, 2011). Moreover, 

alternative nucleosome architectures deviating considerably from the canonical structure 
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were described, including split nucleosomes, an inverted direction of the DNA supercoil, and 

particles comprising less than a full complement of eight histones (Andrews and Luger, 2011; 

Zlatanova et al., 2009). The molecular composition, abundance, and functional relevance of 

such nucleosomal assemblies are currently under intense investigation. The dynamic and 

versatile nature of nucleosomes is further elevated by the incorporation of non-canonical 

histone isoforms and the post-translational covalent chemical modification of histone 

residues as discussed in chapter 1.2.1 and 1.2.2, respectively. 

1.1.2 The linker histone 

In most eukaryotic cells, the majority of nucleosomes is associated with an additional small 

and basic protein, the “linker histone”, often referred to as “histone H1” (Woodcock et al., 

2006). Linker histone-bound nucleosomes are generally termed “chromatosomes”. Contrary 

to the highly conserved core histones, linker histones of different species are more divergent 

in sequence. Typically, higher eukaryotes express different isoforms of linker histones in a 

tissue- and developmental stage-dependent manner (Izzo et al., 2008; Kowalski and Palyga, 

2012). These isoforms differ in their biochemical properties, for example their nucleosome 

binding affinities and chromatin compaction capabilities (Catez et al., 2006; Clausell et al., 

2009; Orrego et al., 2007; Sun et al., 1990; Talasz et al., 1998), and vary in their genomic 

distribution (e.g. (Izzo et al., 2013; Millan-Arino et al., 2014)). Until recently, Drosophila 

melanogaster was assumed to possess only one linker histone homolog called “H1”. 

However, Pérez-Montero et al. discovered a second isoform, “dBigH1”, that was abundant 

during early embryogenesis and was replaced by H1 in somatic cells upon cellularization 

(Perez-Montero et al., 2013). Therefore, in adult flies dBigH1 is only present in germline 

cells, whereas H1 is ubiquitously expressed in somatic cells.  

Metazoan linker histones comprise three distinct structural domains. A well conserved 

globular core domain comprising ~80 amino acids (aa) is flanked by an intrinsically 

disordered N- (13–40 aa) and C-terminal (~100 aa) region, respectively (Caterino and Hayes, 

2011; McBryant et al., 2010). The globular domain harbors two DNA-binding surfaces and is 

sufficient for nucleosome binding (Allan et al., 1980; Brown et al., 2006; Goytisolo et al., 

1996). Nevertheless, the lysine-rich C-terminus contributes to nucleosome binding affinity 

and is essential for H1-mediated chromatin condensation and linker DNA organization (see 

chapter 1.1.3 and below) (Allan et al., 1986; Caterino and Hayes, 2011; Hendzel et al., 2004; 

Lu and Hansen, 2004; Syed et al., 2010). Recently, also a role of the N-terminal domain in 

determining the binding affinity of linker histones was reported in vivo (Oberg and Belikov, 

2012; Vyas and Brown, 2012). It is well established that the linker histone associates with the 

nucleosome close to the DNA entry/exit site and induces a change in the trajectory of the 

linker DNA leading to the formation of a stem-like structure (Bednar et al., 1998; Hamiche et 

al., 1996). Still, despite several decades of research the precise location and orientation of 
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the linker histone on the nucleosome has not been resolved. However, mounting evidence 

supports simultaneous association of the globular domain of the linker histone with DNA at 

the nucleosomal dyad as well as extranucleosomal DNA at the entry/exit site (Brown et al., 

2006; Syed et al., 2010; Zhou et al., 2013; Zhou et al., 1998). Whether the interaction with 

the extranucleosomal DNA is symmetric involving both linker DNAs or asymmetric to only 

one linker remains controversial. In addition to the globular domain, parts of the C-terminus 

are engaged with the linker DNA and support formation of a stem-like structure (Caterino et 

al., 2011; Hamiche et al., 1996; Lu and Hansen, 2004; Syed et al., 2010). Notably, also 

protein-protein contacts between H1 and the histone octamer may contribute to linker histone 

association (Boulikas et al., 1980; Vogler et al., 2010).  

A number of early in vitro observations suggested linker histones to be general repressors of 

chromatin-based processes. Linker histone association did not only limit the mobility of 

nucleosomes (Pennings et al., 1994) but also protected about 20 additional base pairs at the 

entry/exit site from cleavage by micrococcal nuclease (Simpson, 1978). Moreover, H1 

presence promoted chromatin condensation (see chapter 1.1.3), and some studies reported 

impairment of transcription from chromatin templates (Laybourn and Kadonaga, 1991; O'Neill 

et al., 1995). However, others found transcription to be unaffected by the linker histone in in 

vitro systems (Sandaltzopoulos et al., 1994). Moreover, also in vivo studies challenged the 

concept of a universal repressive role of H1 as depletion of linker histones in unicellular 

organisms as well as knock-out of individual isoforms in higher eukaryotes yielded generally 

mild phenotypes and mostly specific, variable effects on transcription (Izzo et al., 2008; 

Woodcock et al., 2006). Although subsequent analyses revealed that the reported subtle 

effects in higher eukaryotes could be explained by isoform-specific compensatory up-

regulation of other linker histone variants and reduction of H1 levels beneath a certain 

threshold had more severe effects (see chapter 1.1.3), the expected global, repressive role 

of H1 could not be confirmed. Thus, the concept of a more specific linker histone function 

emerged (Izzo et al., 2008). On a related note, experiments employing fluorescence recovery 

after photobleaching (FRAP) demonstrated that H1 is highly mobile in vivo (Catez et al., 

2006), which is in line with earlier in vitro findings (Caron and Thomas, 1981) and draws into 

question the model of a static, permanently inaccessible and repressive chromatin structure 

in presence of H1.  

Despite availability of genome-wide mapping data in different cell systems (e.g. 

(Braunschweig et al., 2009; Izzo et al., 2013)), knowledge regarding the in vivo deposition 

and metabolism of H1 is scarce. Potential roles of chromatin remodeling factors in the 

deposition of linker histones will be discussed in chapter 1.3.4. Another aspect of linker 

histone biology currently gaining much attention is the emerging role of H1 as recruiting 

factor for effector proteins acting on nucleosomes (e.g. (Kalashnikova et al., 2013b; Lu et al., 
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2013; McBryant et al., 2010)). Taken together, linker histones seem to fulfill various functions 

in the nucleus, but the underlying mechanisms are just starting to be elucidated.  

1.1.3 Higher order chromatin structure 

The organization of DNA into nucleosomes and chromatosomes as a first level of 

compaction leads to the formation of nucleosome arrays that resemble a beads-on-the-string 

structure, commonly referred to as “10 nm fiber”. Further compaction is achieved by folding 

of individual arrays into coiled fibers as observed in vitro and in situ. As these fibers were 

reported to harbor a diameter of approximately 30 nm under various conditions, this level of 

chromatin compaction is commonly referred to as “30 nm fiber” (Grigoryev and Woodcock, 

2012; van Holde, 1989). Molecular determinants of 30 nm fiber formation, its topology, and 

recent advances in elucidating higher order chromatin organization in vivo are discussed in 

the following chapter.  

Chromatin condensation in vitro is mainly driven by electrostatic interactions and strongly 

depends on the presence of cations to partially neutralize the negative charge of the DNA 

(Clark and Kimura, 1990; Korolev et al., 2010; Sun et al., 2005; van Holde, 1989; Widom, 

1986). With increasing salt concentrations, chromatin arrays progressively compact due to 

intra-array interactions. At elevated ionic strength, inter-array contacts are formed, leading to 

reversible oligomerization (Hansen, 2002).  

Early on, a key role of the flexible, positively charged N-terminal tails of histones in facilitating 

chromatin compaction was recognized as tail-deleted nucleosome arrays failed to fully 

compact (Allan et al., 1982; Fletcher and Hansen, 1995; Garcia-Ramirez et al., 1992). While 

the tails of all four core histones contributed to chromatin folding and oligomerization 

(Carruthers and Hansen, 2000; Moore and Ausio, 1997; Pepenella et al., 2013; Schwarz et 

al., 1996; Tse and Hansen, 1997), the H4 tail was of particular importance (Dorigo et al., 

2003; Gordon et al., 2005; Robinson et al., 2008). Central to H4 tail-mediated compaction is 

the interaction of a basic patch of amino acids of the tail (aa 16–20) with an acidic patch 

formed by H2A/H2B dimers of adjacent nucleosomes (Dorigo et al., 2003; Dorigo et al., 

2004; Fan et al., 2004; Luger et al., 1997; Sinha and Shogren-Knaak, 2010; Zhou et al., 

2007). Thereby, the H4 tail is expected to bridge nucleosomes, promoting chromatin fiber 

condensation as well as inter-array association. In addition to its interaction with the acidic 

patch, the H4 tail was suggested to bind to linker DNA (Chodaparambil et al., 2007; Kan et 

al., 2009), a distinct H2B epitope (Allahverdi et al., 2011), and further low-affinity binding 

sites on the histones (Chodaparambil et al., 2007). Furthermore, association with the acidic 

patch of the same nucleosome in cis was described (Kan et al., 2009; Zhou et al., 2007). 

However, the individual significance of the different interactions for chromatin condensation 

remains unclear. Local chromatin context including post-translational modifications of 

histones (see chapter 1.2.3), H2A variants (see chapter 1.2.1), and association of non-
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histone proteins presumably determines which of the possible interactions is predominantly 

formed (Kalashnikova et al., 2013a).  

In addition to the histone tails, linker histones considerably contribute to the formation of 

higher order chromatin structures by facilitating condensation (Hansen, 2002; McBryant et 

al., 2010; van Holde, 1989). Accordingly, in vitro chromatosome arrays reach higher degrees 

of compaction at a given salt concentration than nucleosome arrays (Carruthers et al., 1998; 

Hizume et al., 2005; Robinson et al., 2008; Routh et al., 2008; Schalch et al., 2005; Thoma et 

al., 1979). The H1-dependent organization of the linker DNA flanking a nucleosome into a 

stem-like structure and the concomitant altered trajectory of the DNA are expected to be 

critical for the H1-effect on chromatin condensation (see chapter 1.1.2) (Bednar et al., 1998; 

Hamiche et al., 1996; Meyer et al., 2011; Wu et al., 2007). However, whether linker histones 

simply fulfill stabilizing functions or profoundly change chromatin fiber conformation and 

compaction capabilities is still under debate (Bednar et al., 1998; Carruthers et al., 1998; 

Dorigo et al., 2004; Kruithof et al., 2009; Maresca et al., 2005; McBryant et al., 2010; 

Robinson and Rhodes, 2006; Routh et al., 2008; Wu et al., 2007). Observed differences in 

the role of linker histones for chromatin compaction may be accounted for by variations in the 

applied analysis techniques, linker histone variants, H1 stoichiometry, and design of 

chromatosome arrays including their nucleosome repeat lengths (NRL), i.e. the average 

length of DNA associated with one nucleosome (Routh et al., 2008). Nevertheless, 

accumulating evidence supports an important role of linker histones in chromatin compaction 

in vivo. Although low levels of protein could be tolerated in mice (Fan et al., 2003), a change 

in chromatin compaction capability upon H1 depletion was evident in oligonucleosome arrays 

isolated from embryonic stem cells, which is in accordance with observations in Drosophila 

melanogaster where H1 loss resulted in global chromosome decondensation (Fan et al., 

2005; Lu et al., 2009; Siriaco et al., 2009). Strikingly, in both systems H1 depletion was 

accompanied by a decrease in NRL (Fan et al., 2003; Lu et al., 2009; Siriaco et al., 2009). 

This compensatory mechanism was also observed in vitro in chromatin reconstitution 

systems (Blank and Becker, 1995; Rodriguez-Campos et al., 1989; Stein and Bina, 1984; 

Tremethick and Frommer, 1992) and was speculated to help restore proper chromatin 

compaction as well as charge homeostasis in absence of the linker histone (Woodcock et al., 

2006). In line with this hypothesis, linker histone overexpression resulted in increased NRL 

(Gunjan et al., 1999), and a general correlation between linker histone abundance and NRL 

was reported in a number of cell types (Woodcock et al., 2006). 

The impact of the NRL on the formation of chromatin higher order structures is a field of 

current research (Grigoryev, 2012; Perisic et al., 2010; Szerlong and Hansen, 2011; Wong et 

al., 2007; Wu et al., 2007). Careful in vitro analyses by the Rhodes laboratory employing 

regularly spaced arrays harboring a variety of linker lengths differing in multiples of 10 bp 

(177–237 bp) showed that chromatin fiber dimensions depended on the NRL (Robinson et 
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al., 2006). Chromatosome arrays with a NRL of 217–237 bp displayed a higher fiber 

diameter and nucleosome density (number of nucleosomes per 11 nm) than arrays with 

shorter NRL. In the absence of linker histones, however, arrays with a very short NRL of 

167 bp formed more condensed and ordered structures than arrays with a NRL of 197 bp 

(Routh et al., 2008). This finding was further confirmed by Correll et al. reporting a negative 

correlation of NRL and fiber compaction for nucleosome arrays lacking linker histones 

(Correll et al., 2012). Moreover, this study demonstrated that slight deviation of linker DNA 

length from the 10n bp increments typically found in vivo (Widom, 1992) and widely applied 

in in vitro studies did not affect the compaction capabilities of chromatosome or nucleosome 

fibers harboring long linkers. Contrary, nucleosome arrays with short NRLs (165–177 bp) 

were sensitive to these variations. Therefore, nucleosome packaging and chromatin 

compaction in densely spaced fibers apparently depends – at least in the absence of linker 

histones – on the inter-nucleosomal rotational setting. Collectively, these results indicate a 

fundamental contribution of the NRL to chromatin condensation. However, in vivo a plethora 

of architectural proteins in addition to linker histones, for example HP1, PRC1, or Sir3, act in 

concert to shape the higher order structure of chromatin, potentially overriding some of the 

fiber`s intrinsic dynamics (Luger and Hansen, 2005; McBryant et al., 2006).  

Despite its recognition as fundamental building block of chromatin higher order structures, 

the topology of the 30 nm fiber remains controversial. Different structural models were 

proposed and the most prominent ones can be divided into two classes: the “two-start” and 

the “one-start” helical models (Figure 2) (Grigoryev and Woodcock, 2012; Wu et al., 2007). 

According to the two-start models, the nucleosomes of one array are arranged in two stacks 

forming a double-helical structure. Consecutive nucleosomes are connected in a zigzag 

manner by essentially straight running linker DNA (Figure 2A) (Dorigo et al., 2004; Schalch et 

al., 2005; Thoma et al., 1979; Woodcock et al., 1984; Worcel et al., 1981). Contrary, the one-

start models propose the formation of a solenoid structure with consecutive nucleosomes 

following a helical path. In contrast to the two-start model, the linker DNA is bent into the 

 

 

Figure 2: Models of the 30 nm fiber. 

Schematic depictions of the two-start (A) 
and the one-start (B) topological model of 
the 30 nm chromatin fiber are shown. 
Nucleosome core particles (N) are 
represented by spheres, the linker DNA by 
sticks. The first eight nucleosome core 
particles are numbered according to their 
position along the DNA. For reasons of 
clarity, consecutive pairs of neighboring 
nucleosomes in (A) and consecutive helical 
gyres in (B), respectively, are indicated in 
blue and orange. (Reprinted from 
(Maeshima et al., 2010) with permission 
from Elsevier) 
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inside of the fiber (Figure 2B) (Daban and Bermudez, 1998; Finch and Klug, 1976; Robinson 

et al., 2006). Notably, recent modeling and experimental data suggest that – at least in vitro – 

even chromatin fibers with unified NRL are not uniformly organized but indeed show 

conformational heterogeneity (Diesinger and Heermann, 2009; Grigoryev et al., 2009; 

Schlick et al., 2012; Schlick and Perisic, 2009).  Therefore, long-held concepts of a universal 

chromatin fiber conformation on the 30 nm fiber level have to be reconsidered. 

Until recently, the prevalent model of nuclear chromatin organization postulated a 

hierarchical, ordered folding of 30 nm fibers into higher order structures ultimately giving rise 

to the highly condensed mitotic chromosomes (Figure 3A). However, this view was lately 

called into question. While the debate over the topology of the 30 nm fiber in vitro continues, 

in vivo its mere existence was challenged. Attempts to visualize distinct 30 nm fibers in vivo 

using various EM techniques as well as a combination of electron spectroscopic imaging and 

tomography largely failed (Fussner et al., 2011; Fussner et al., 2012; Horowitz-Scherer and 

 

 

Figure 3: Models of chromatin higher order structure formation in vivo. (A) The different 
levels of DNA compaction according to the traditional text-book view are depicted schematically. 
(Adapted from (Maeshima et al., 2010) and reprinted with permission from Elsevier) (B) The emerging 
concept of a fractal nature of chromatin organization is illustrated. Interactions form between 
nucleosomes of different fibers and between distant nucleosomes of one fiber by folding back. No 
regular structures beyond 10 nm fibers can be observed, but structural features appearing similar to 
each other at many magnifications result. (Adapted from (Hansen, 2012) and reprinted with 
permission from John Wiley and Sons)  
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Woodcock, 2006; Maeshima et al., 2010). Only in specialized, transcriptionally mostly 

inactive cell types structures resembling the 30 nm fiber found in vitro were observed 

(Woodcock, 1994). Moreover, the Maeshima laboratory recently provided compelling 

evidence for a lack of regular chromatin structures beyond 10 nm fibers in human interphase 

and mitotic chromosomes applying small angle X-ray scattering (SAXS) (Joti et al., 2012; 

Nishino et al., 2012). These observations prompted the concept of a fractal nature of 

chromatin organization in vivo (Hansen, 2012). In this model, nucleosomes interact and 

interdigitate extensively with distant nucleosomes or nucleosomes of distinct fibers, forming 

irregular, highly dynamic structures that display similar features at different magnifications 

(Figure 3B) (Hansen, 2012; Maeshima et al., 2010). Array oligomerization at high chromatin 

concentrations and elevated salt conditions was suggested to be the in vitro correlate of 

these structures (Hansen, 2012). Although local, transient, and tissue-specific formation of 

30 nm fiber structures cannot be excluded in vivo, the majority of chromatin fibers seems to 

adopt alternative structures, dominated by contacts between non-neighboring nucleosomes. 

However, the molecular determinants driving nucleosome interactions and chromatin 

compaction in the proposed fractal structures in vivo are expected to be the same that were 

identified to be responsible for chromatin condensation in vitro (Fussner et al., 2011; Hansen, 

2012). Therefore, in vitro reconstitution and biochemical analysis of chromatin fibers remain 

important tools to elucidate basic mechanisms of chromatin organization as well as 

dynamics. 

 

1.2 Dynamics and regulation of chromatin 

The chromatin organization of DNA constitutes a considerable obstacle to the nuclear 

machineries involved in processes like transcription, replication, and DNA repair that need to 

gain access to DNA in a coordinated manner. DNA binding sites are largely occluded from 

their cognate interaction factors when packaged into nucleosomes, and compaction of 

nucleosomal arrays into higher order structures is expected to further impede DNA 

accessibility. However, to allow cells to adapt their transcriptional programs in response to 

outside stimuli, to ensure proper progression through the cell cycle, and to regulate DNA 

repair processes DNA accessibility and thus chromatin structure, nucleosome positioning 

and stability need to be highly dynamic and tightly regulated (Luger et al., 2012). Strategies 

evolved to allow and reinforce dynamic transitions between chromatin states will be outlined 

in the following with an emphasis on the role of the histones that are much more than mere 

scaffolds for DNA wrapping. It should be noted that besides the histone-based mechanisms 

described here also DNA methylation, association of non-coding RNAs, and the binding of 

architectural proteins are involved in regulating chromatin-related processes and delineating 

functional genomic domains (Bergmann and Spector, 2014; McBryant et al., 2006; Smith and 
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Meissner, 2013). Chromatin remodeling enzymes as key players in chromatin dynamics and 

nucleosome positioning will be discussed in chapter 1.3.  

1.2.1 Histone variants 

An important means to site-specifically modulate nucleosome stability, structure, and 

chromatin condensation is the deposition of non-allelic core histone variants. Numerous of 

these variants – especially of H3 and H2A – that differ in their primary sequence from the 

canonical histones and display distinct expression patterns have been and still continue to be 

discovered (Szenker et al., 2014). Many are evolutionarily conserved, underlining their non-

redundant functions (Talbert and Henikoff, 2010). In contrast to the canonical histones, 

variants are incorporated into nucleosomes in a DNA synthesis-independent manner at 

specific genomic sites through mechanisms that are still under investigation (Szenker et al., 

2014). Consequently, particular functional states of chromatin are commonly marked by 

enrichment of specific histone variants (Henikoff et al., 2004).  

Variant incorporation confers distinct biochemical properties to nucleosomes by creating 

unique interaction epitopes. These may affect intra-nucleosomal protein-protein or DNA-

protein contacts, thereby influencing nucleosome stability and structure (Kurumizaka et al., 

2013; Luger et al., 2012). On the other hand, variants provide specific interaction surfaces for 

the recruitment of effector proteins and factors of the nuclear signaling machinery as well as 

for inter-nucleosomal contacts (Bönisch and Hake, 2012; Szenker et al., 2014). Thereby, 

histone variants importantly contribute to chromatin higher order structure formation. Some 

H2A variants, for instance, harbor altered amino acid sequences that lead to changes in the 

composition of the acidic patch formed by H2A and H2B (see chapter 1.1.3) (Bönisch and 

Hake, 2012). These changes were found to correlate with altered chromatin condensation 

capabilities of nucleosome arrays in vitro, highlighting the relevance of the acidic patch in 

higher order structure formation. Taken together, histone variant incorporation – including 

linker histone isoforms (see chapter 1.1.2) – provides a major mechanism to locally fine-tune 

DNA accessibility through modulation of nucleosome and chromatin structure. 

1.2.2 Post-translational modifications of histones 

Post-translational modifications (PTMs) of histones – including the linker histones –, so-

called “histone marks”, add an additional level of complexity to nucleosome diversity and 

chromatin dynamics. Multiple different modifications on numerous histone residues were 

identified. These modifications include well known types like acetylation, methylation, or 

ubiquitylation of lysine and phosphorylation of serine or threonine as well as less 

characterized marks, for example crotonylation or succinylation of lysine and methylation of 

glutamate (Du et al., 2011; Kouzarides, 2007; Tan et al., 2011; Tessarz et al., 2014). Still, 

novel sites as well as types of modifications continue to be discovered at a rapid pace. 
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Initially, the lysine-rich and exposed histone tails were considered to be the major sites of 

post-translational modifications. However, recently also histone modifications located in the 

structured domains of the histones have come into focus (Tropberger and Schneider, 2013).  

The post-translational modification of histones is a dynamic, reversible process involving the 

interplay of dedicated enzymes that install or remove the marks, respectively (Bannister and 

Kouzarides, 2011; Kouzarides, 2007). These enzymes are frequently part of large complexes 

that may combine various catalytic activities acting together to achieve desired outcomes 

(Bannister and Kouzarides, 2011). For example, the NuRD chromatin remodeling complex 

(see chapter 1.3) contains histone deacetylases in addition to the remodeling enzyme Mi-2. 

Both enzymatic activities presumably act in concert to establish transcriptionally repressed 

chromatin states (Clapier and Cairns, 2009). Some modifying enzymes, like the 

methyltransferases Set1 and 2, were furthermore found to travel with RNA polymerase II, 

catalyzing histone modifications concomitant with transcription (Sims et al., 2004).  

In vivo, the enrichment of particular histone marks strongly correlates with chromatin 

functional states – like active transcription or silenced genes – and cis-regulatory elements 

including enhancers and promoters (Bannister and Kouzarides, 2011). While, for example, 

trimethylation of H3 at lysine 4 marks active promoters, trimethylation of the same histone at 

lysine 36 is enriched over gene bodies of actively transcribed genes (Hon et al., 2009). 

Despite the noted remarkable correlations, the significance and functional relevance of 

individual histone PTMs for the establishment and maintenance of chromatin states is still 

under debate. Nevertheless, numerous in vitro and in vivo studies addressed the impact of 

histone PTMs on nucleosome and chromatin dynamics. The derived mechanisms will be 

discussed in the following. 

Analogous to histone variants, PTMs can affect the stability and dynamics of nucleosomes 

by modifying intra-nucleosomal interactions. Acetylation of H3 at lysine 56 residing in the 

structured region of the histone, for example, destabilizes DNA wrapping close to the 

entry/exit site, facilitating transcription factor binding in vitro and presumably also in vivo 

(Tropberger and Schneider, 2013). Moreover, a key feature of histone marks is the formation 

or occlusion of specific binding epitopes for the interaction with chromatin factors. Multiple 

protein domains were identified that recognize histone PTMs and are shared by chromatin-

associated proteins of diverse function like modifying enzymes themselves, chromatin 

remodeling factors, or architectural proteins. Bromodomains, for example, preferentially bind 

to acetylated lysine residues within histones, whereas chromodomains typically interact with 

methylated histone tails, often in a site-specific manner (Patel and Wang, 2013; Yun et al., 

2011). Frequently, chromatin factors possess several different histone recognition domains, 

potentially allowing differential read-out of complex histone modification patterns occurring on 

the same or neighboring nucleosomes. How and to what extent combinatorial histone marks 

influence the binding of chromatin factors in vivo is currently under intense investigation 
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(Rando, 2012; Ruthenburg et al., 2007). Notably, accumulating evidence suggests that 

certain histone modifications primarily function as allosteric regulators of interacting effector 

proteins rather than targeting signals (Rando, 2012).  

A further important mechanism of histone modification-regulated chromatin dynamics is the 

direct impact of some marks on chromatin structure by modulating inter-nucleosomal 

interactions. However, only a limited number of modifications was shown to be capable of 

influencing chromatin compaction in vitro. Among them is the acetylation of histone H4 at 

lysine 16, as discussed in detail in the next section. 

1.2.3 Acetylation of histone H4 at lysine 16 

Histone acetylation marks in general are highly abundant (Jung et al., 2013; Phanstiel et al., 

2008; Smith et al., 2003) and typically display rapid turnover in comparison to other histone 

PTMs like methylation (Barth and Imhof, 2010; Evertts et al., 2013; Zheng et al., 2013). 

Histone acetylation is catalyzed by specific, conserved enzymes, the histone 

acetyltransferases (HATs), often possessing a rather broad substrate specificity including 

non-histone targets (Bannister and Kouzarides, 2011; Shahbazian and Grunstein, 2007; 

Yang and Seto, 2008). These enzymes transfer an acetyl group from acetyl coenzyme A to 

the ε-amino group of lysines (Figure 4). The reverse reaction, acetyl group removal, is 

catalyzed by histone deacetylases (HDACs).  

Several lines of evidence led to the widely accepted notion that histone acetylation provides 

a crucial mechanism for the regulation of gene expression (Eberharter and Becker, 2002). 

HATs were recognized as transcriptional activators or co-activators, whereas HDACs were 

found to be involved in gene repression (Roth et al., 2001; Struhl, 1998). Consistently, early 

on an association of histone acetylation with sites of active transcription and open, more 

permissive chromatin structures was observed (Hebbes et al., 1994; Mizzen and Allis, 1998; 

Turner, 1991). Moreover, transcription from chromatin templates in vitro was markedly 

enhanced in presence of hyperacetylated histones (Allfrey et al., 1964; Protacio et al., 2000; 

Wolffe and Hayes, 1999). Mechanistically, weakened electrostatic interactions between 

 

 

 

Figure 4: Lysine acetylation. Lysine 
acetylation in the context of histones is 
catalyzed by histone acetyltransferases 
(HAT) transferring an acetyl group from 
coenzyme A (CoA) to lysine. Histone 
deacetylases (HDACs) can reverse the 
acetylation.   
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acetylated histones and DNA resulting in increased DNA accessibility were proposed to be 

important, as acetylation neutralizes the positive charge of lysine (Figure 4) (Calestagne-

Morelli and Ausio, 2006). This assumption was fuelled by in vitro findings demonstrating 

markedly reduced chromatin compaction and oligomerization properties of hyperacetylated 

chromatin fibers (Garcia-Ramirez et al., 1995; Tse et al., 1998). However, the individual 

contributions of the tails and specific sites initially remained unclear. 

In a pioneering study, Peterson and co-workers could demonstrate a critical role of the 

acetylation of lysine 16 of H4 (H4K16ac) in chromatin condensation in vitro by incorporating 

engineered, site-specifically acetylated histone H4 (see chapter 1.4) into short nucleosome 

arrays (12 nucleosomes, NRL: 177 bp) (Shogren-Knaak et al., 2006). As lysine 16 is part of 

the basic patch that had previously been shown to be crucially involved in chromatin 

condensation (see chapter 1.1.3), modification of this residue seemed to be a likely 

mechanism for regulating inter-nucleosomal contacts. Indeed, the arrays carrying H4K16ac 

displayed reduced folding and oligomerization capabilities in comparison to unmodified 

controls (Shogren-Knaak et al., 2006). Consistently, the Rhodes laboratory reported 

comparable results employing long nucleosome as well as chromatosome arrays (61 

nucleosomes, NRL: 202 bp) (Robinson et al., 2008). Enzymatic acetylation of just about 30% 

of the H4 tails led to dramatically reduced fiber compaction, notably also in presence of the 

linker histone variant H5. Moreover, subsequent systematic analyses of the folding 

capabilities of the short nucleosome arrays already employed by Shogren-Knaak et al. (see 

above) by the Nordenskiöld laboratory demonstrated that triple-acetylation of the other three 

lysine residues within the H4 tail did not affect chromatin compaction to a comparable 

degree, underlining the unique role of H4K16ac (Allahverdi et al., 2011). Furthermore, 

whereas triple-mutation of lysines 5, 8, and 12 to glutamine, which mimicks acetylated lysine, 

affected chromatin compaction in a similar manner as triple-acetylation of these residues, 

lysine 16 mutation had a much weaker effect than H4K16ac, confirming earlier observations 

of the Rhodes` laboratory (Robinson et al., 2008). Therefore, the mechanism of H4K16ac-

driven chromatin decompaction cannot be solely explained by electrostatic effects. 

Conversely, specific inter-nucleosomal contacts seem to be altered by the acetylation 

(Allahverdi et al., 2011). It is conceivable that H4K16ac specifically interferes with the 

interaction between the basic patch of the H4 tail and the acidic patch of adjacent 

nucleosomes. However, also other mechanisms were proposed (Allahverdi et al., 2011) (see 

also chapter 1.1.3). Notably, in contrast to intra-fiber folding fiber oligomerization was found 

to be governed by electrostatic mechanisms. Lysine to glutamine mutations disrupted inter-

fiber contacts to the same extent as the respective acetylations (Allahverdi et al., 2011). In 

summary, in vitro analyses strongly suggest a unique regulatory potential of H4K16ac for 

fiber compaction through disrupting specific inter-nucleosomal interactions.  
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Consistent with the chromatin decompaction properties of H4K16ac evidenced in vitro, in 

Drosophila melanogaster the mark was found enriched in open, accessible regions of the 

genome including sites of active transcription and replication origins (Bell et al., 2010; 

Gelbart et al., 2009; Schwaiger et al., 2009). Remarkably, the mark is globally enriched on 

the X chromosome of male flies, where it covers gene bodies (Gelbart et al., 2009). This 

enrichment is accompanied by a chromosome-wide two-fold up-regulation of gene 

expression and a more permissive chromatin structure, as evidenced by enhanced nuclease 

accessibility and visible chromatin decondensation in the context of polytene chromosomes 

(Bell et al., 2010; Conrad and Akhtar, 2011; Offermann, 1936). Increased transcription from 

the single male X chromosome serves to compensate the lack of a second X chromosome 

as present in females and is mediated by the specific targeting of the dosage compensation 

complex (DCC) (Conrad and Akhtar, 2011). This complex contains the acetyltransferase 

MOF which is the major HAT for lysine 16 of H4 (H4K16) in flies. Notably, MOF activity is 

essential for proper dosage compensation and therefore viability of male flies (Akhtar and 

Becker, 2000; Hilfiker et al., 1997). Moreover, in cell-free Drosophila extracts H4K16 

acetylation by MOF is accompanied by elevated transcription from a reconstituted chromatin 

template, and targeting of MOF to a reporter construct in yeast cells results in strong 

acetylation activity-dependent reporter expression (Akhtar and Becker, 2000). Therefore, it is 

widely accepted that X chromosomal H4K16ac enrichment is a key principle in dosage 

compensation in Drosophila to induce a permissive chromatin structure and facilitate 

transcription, although details of the underlying mechanisms remain elusive (Conrad and 

Akhtar, 2011). However, genome-wide mapping studies of H4K16ac in cell systems of other 

organisms do not unequivocally support a universal, critical role of H4K16ac in facilitating 

gene activation. For example, in budding and fission yeast, human HEK293, or neural 

progenitor cells a clear correlation between enrichment of H4K16ac and gene activity is 

largely lacking (Horikoshi et al., 2013; Kurdistani et al., 2004; Liu et al., 2005; Taylor et al., 

2013; Wiren et al., 2005). Notably, in contrast to localization of H4K16ac over gene bodies as 

observed on the X chromosome of male flies, in other cell systems the mark was found 

enriched in promoter regions. Additionally, studies on the function of H4K16ac in 

transcription yielded conflicting results. Whereas some described a positive role of the 

modification by for instance promoting the release of paused RNA polymerase II (Pol II) 

(Kapoor-Vazirani et al., 2011; Zippo et al., 2009), others reported an inhibitory effect on Pol II 

passage and therefore gene expression (Heise et al., 2012). Besides transcription, 

acetylation of H4K16 was implicated to affect processes like DNA repair and gene silencing 

(Vaquero et al., 2007; Zhou and Grummt, 2005). Altered levels of the acetylation mark are 

frequently found in human cancers, but the significance of this event in cell transformation is 

currently unknown (Leroy et al., 2013; Vaquero et al., 2007). Taken together, the in vivo roles 

of H4K16ac are more complex, diverse, and context-dependent than might have been 
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expected from in vitro observations, and gaining a comprehensive understanding of 

H4K16ac function in various cellular environments remains an important goal.  

Notably, the mechanisms of H4K16ac-mediated regulation of chromatin processes are most 

likely not solely imparted by its chromatin decompaction capabilities. Also more indirect 

mechanisms including H4K16ac-specific recruitment of effector proteins may be involved 

(Shahbazian and Grunstein, 2007). A potential role for H4K16ac in factor targeting was, for 

example, indicated by the recent observation that at the level of nucleosomes the mark 

specifically enhances binding affinity of BPTF, the human homolog of Nurf301, a subunit of 

the NURF chromatin remodeling complex (see chapter 1.3.1), when it co-occurs with 

trimethylation of lysine 4 of histone H3 on the same nucleosome (Ruthenburg et al., 2011). 

BPTF engages the methylation via a so-called “PHD finger” domain, whereas the acetylation 

is recognized by the adjacent bromodomain. This bivalent interaction was suggested to be of 

relevance for targeting NURF in vertebrates. Moreover, H4K16ac can also block binding 

sites on the H4 tail. In budding yeast, the SIR complex mediates gene silencing, and its 

subunit Sir3 binds unmodified H4 tails with higher affinity than those acetylated at lysine 16, 

a mechanism involved in proper establishment of repressive chromatin structures (Oppikofer 

et al., 2013). It is furthermore conceivable that H4K16ac, by altering intra- or inter-

nucleosomal contacts, opens up otherwise occluded interaction surfaces. Finally, a role for 

H4K16ac in regulating the activity of the chromatin remodeling enzyme ISWI and its 

complexes was proposed. As discussed in detail in chapters 1.3.3 and 1.3.4, the acetylation 

was reported to inhibit the remodeling factors, a mechanism that bears important implications 

for the establishment of higher order chromatin structures.  

 

1.3 ATP-dependent chromatin remodeling  

Central players in the dynamic regulation of chromatin-based processes are the chromatin 

remodeling enzymes (also referred to as “nucleosome remodeling enzymes”). Coupled to 

ATP hydrolysis, these highly abundant and conserved enzymes are capable of altering the 

interactions between nucleosomal DNA and the histone octamer (Becker and Workman, 

2013; Clapier and Cairns, 2009). This activity translates into a variety of biological outcomes, 

including nucleosome repositioning (termed “sliding” hereafter), eviction as well as assembly, 

and exchange of histone variants (Figure 5). Thus, chromatin remodeling enzymes are 

fundamentally involved in determining local DNA access and nucleosome dynamics as well 

as in establishing and maintaining higher order chromatin structures. Virtually all chromatin-

based processes require chromatin remodeling activities for proper regulation and 

progression. Consistently, mutation and mis-regulation of chromatin remodeling enzymes is 

a common feature in cancer and other diseases (Berdasco and Esteller, 2013; Narlikar et al., 

2013). 
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As illustrated in the enclosed review article (see Figure 1 of chapter 2.2), all chromatin 

remodeling enzymes belong to the Snf2 family of proteins and share a homologous, DNA 

helicase-like ATPase domain (Flaus et al., 2006). According to the sequence similarities of 

their ATPase domains, the remodeling enzymes are further grouped into subfamilies. 

Notably, members of a subfamily typically display homology also outside the ATPase domain 

and are characterized by the presence of certain domain motifs, many of which are 

implicated in protein-protein or DNA-protein interactions. Among them are domains whose 

homologs were identified as histone PTM recognition motifs, like chromo- or bromodomains 

(see chapters 1.2.2 and 1.2.3). 

In vivo, the vast majority of chromatin remodeling enzymes resides in multimeric complexes 

(referred to as “remodeling factors” hereafter) (Clapier and Cairns, 2009; Gangaraju and 

Bartholomew, 2007b). The associated subunits are mostly non-catalytic but critically involved 

in targeting and regulating the enzymatic activity and determining the biological outcome of 

remodeling reactions. Frequently, the same enzyme is found as part of different complexes 

in a tissue- and developmental stage-dependent manner (Clapier and Cairns, 2009). The 

Figure 5: Activities of chromatin remodeling factors. Chromatin remodeling factors catalyze 
a range of different reactions. Histone octamers are depicted in blue, DNA in black. Red and yellow 
colored DNA patches illustrate how specific DNA sites get occluded by nucleosomes or are rendered 
accessible upon remodeling. Histone variants that get exchanged are marked in pink or violet, 
respectively. An H2A/H2B dimer evicted or incorporated with the assistance of chromatin remodeling 
factors is highlighted in green.  
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remodeling factors of the ISWI subfamily constitute an instructive example for these features 

as discussed in the next chapter. 

1.3.1 The ISWI-type chromatin remodeling factors 

Chromatin remodeling factors harboring enzymes belonging to the ISWI subfamily (termed 

“ISWI complexes” hereafter) were initially identified in Drosophila melanogaster and turned 

out to be conserved among eukaryotes. Whereas most eukaryotes, including budding yeast 

and humans, contain several different ISWI homologs, flies express only one ISWI enzyme 

that assembles into a number of different complexes (Figure 6A; see below) (Emelyanov et 

al., 2012; Yadon and Tsukiyama, 2011).  

All ISWI-type enzymes share a conserved domain structure (Figure 6B). The N-terminal 

region is poorly characterized and its properties are just starting to be elucidated (see 

 

 

 
Figure 6: The ISWI complexes of Drosophila melanogaster. (A) The subunit compositions of 
all ISWI-containing complexes identified in Drosophila to date are depicted. The names of the 
complexes are highlighted in bold. (B) Acf1 and ISWI contain several protein domains that are shown 
schematically. (Domain structure of Acf1 according to (Eberharter et al., 2004)) 
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chapters 2.1, 2.2, and 3.2). Notably, it contains conserved motifs of so far unknown function. 

The ATPase domain consists of two lobes comprising a succession of sequence motifs 

typically found in helicase-like enzymes (Dürr et al., 2006). C-terminal to the ATPase domain 

and connected by a presumably unstructured hinge, a structural module comprising three 

motifs, HAND, SANT, and SLIDE (HSS), was identified (Grüne et al., 2003). This module 

was described to be importantly involved in DNA and nucleosome recognition. The HAND 

domain was characterized by crystallization, consists of four helices, and does neither share 

sequence nor structural similarity to other protein domains. Contrary, the SANT domain of 

ISWI was assigned based on sequence similarity to canonical SANT domains that were 

implicated to mediate chromatin interactions (Aasland et al., 1996). The sequence of the 

SLIDE domain, short for “SANT-like ISWI domain”, is related to SANT domains, but harbors 

insertions. The crystal structure of the isolated HSS domain confirmed relatedness of the 

SANT and SLIDE domain with canonical SANT domains (Grüne et al., 2003). The SANT-

SLIDE modules of ISWI and the related chromatin remodeling enzyme Chd1 harbor a basic 

as well as an acidic surface (Grüne et al., 2003; Ryan et al., 2011; Sharma et al., 2011; 

Yamada et al., 2011). The basic surface mediates DNA interactions, whereas the acidic 

surface was suggested to be involved in contacting the histone octamer.  

The ATPase activity of enzymes of the ISWI subfamily is stimulated by DNA and even more 

so by nucleosomes (Corona et al., 1999; Grüne et al., 2003). How the specificity for the 

nucleosome is mediated is still unclear, and information on the interactions between the 

histone octamer and ISWI are scarce, although the orientation of productively bound ISWI on 

the nucleosome has been mapped. As detailed and illustrated in the enclosed publications 

(see chapters 2.1 and 2.2), ISWI engages the nucleosome with its ATPase domain located at 

SHL2, whereas the HSS domain interacts with extranucleosomal DNA at the entry/exit site. 

Notably, localization of the ATPase domain at SHL2 is a common feature of chromatin 

remodeling enzymes. The mechanistic implications of the reported enzyme orientation on the 

nucleosomal substrate are discussed in the next chapter (1.3.2). 

In Drosophila, ISWI was found to reside in at least six different remodeling complexes 

(Figure 6A) (Emelyanov et al., 2012; Yadon and Tsukiyama, 2011). To date, the most 

intensively studied and characterized ones are the ACF (ATP-utilizing chromatin assembly 

and remodeling factor), CHRAC (chromatin accessibility complex), and NURF (nucleosome 

remodeling factor) complexes. ACF and CHRAC share a common non-catalytic subunit, the 

Acf1 protein. Acf1 contains several conserved sequence motifs, including two PHD fingers 

and a bromodomain (Figure 6B). The PHD fingers were suggested to interact with the 

histone octamer, thereby enhancing nucleosome sliding efficiency, but molecular details of 

this mechanism remain unknown (Eberharter et al., 2004). In addition to Acf1, CHRAC 

harbors two small proteins, termed CHRAC 14 and 16 according to their molecular weights, 

that both comprise a histone fold motif and can bind to DNA (Corona et al., 2000; Poot et al., 
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2000). Association of CHRAC 14 and 16 with ISWI and Acf1 enhances nucleosome sliding 

(Hartlepp et al., 2005; Kukimoto et al., 2004). The underlying mechanism, however, is not 

fully understood. The NURF complex contains three subunits in addition to ISWI (Tsukiyama 

and Wu, 1995). Analogous to Acf1, Nurf301, the largest subunit of NURF, harbors PHD 

fingers and a bromodomain (Xiao et al., 2001). Notably, one of the PHD fingers of BPTF, the 

human homolog of Nurf301, was shown to specifically interact with histone H3 trimethylated 

at K4, thereby stabilizing NURF at its genomic target sites (Wysocka et al., 2006). As already 

mentioned in chapter 1.2.3, additional engagement of the bromodomain with an H4 tail 

acetylated at K16 further strengthened nucleosome binding of BPTF (Ruthenburg et al., 

2011). 

All ISWI complexes analyzed so far catalyze the repositioning of nucleosomes along DNA in 

cis without nucleosome disruption (Hamiche et al., 1999; Längst et al., 1999). This reaction is 

termed “nucleosome sliding”, and mechanistic details are discussed in the next chapter 

(1.3.2). The sliding activity is inherent to the ISWI enzyme, but the associated subunits are 

important modulators of the reaction (see chapter 2.2). They not only enhance the efficiency 

of nucleosome sliding but also determine the outcome of a remodeling reaction (Eberharter 

et al., 2001; Hamiche et al., 1999; Hartlepp et al., 2005; Ito et al., 1999). For instance, in in 

vitro studies the Acf1-containing complexes ACF and CHRAC introduced a regular spacing 

of characteristic NRL into nucleosome arrays, whereas NURF apparently randomly 

repositioned nucleosomes and did not confer regularity (Ito et al., 1997; Varga-Weisz et al., 

1997). The isolated ISWI enzyme was found to introduce regularity and a compact spacing of 

nucleosomes (Corona et al., 1999). Moreover, employing isolated, single nucleosomes 

positioned on a short linear DNA fragment (mononucleosomes) as substrates for sliding, 

ACF and CHRAC were shown to center the nucleosome. Contrary, the ISWI enzyme moved 

the nucleosomes to positions close to the DNA ends (Eberharter et al., 2001; Längst et al., 

1999). In summary, accessory subunits possess remarkable regulatory potential in the 

context of ISWI-catalyzed remodeling reactions. However, the underlying mechanisms are 

still under investigation. 

Besides nucleosome sliding, ISWI complexes, including Drosophila ISWI, ACF, CHRAC, and 

ToRC, facilitate chromatin assembly in vitro in conjunction with the histone chaperone NAP1 

(Corona et al., 1999; Emelyanov et al., 2012; Ito et al., 1997; Varga-Weisz et al., 1997). ACF 

and ISWI were shown to catalyze the conversion of a histone-DNA intermediate formed by 

histones deposited onto DNA by NAP1 into canonical nucleosomes (Torigoe et al., 2011). 

Notably, ISWI and ACF were reported to assemble not only nucleosomes but also 

chromatosomes (Lusser et al., 2005). This activity distinguished them from the related 

remodeling factor Chd1 that possessed nucleosome assembly activity but failed to 

incorporate linker histones. On a related note, ISWI and ACF were capable of catalyzing 

chromatosome repositioning in the context of chromatin fibers in vitro, whereas Chd1 sliding 
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activity was blocked by the linker histone (Maier et al., 2008). The molecular details of a 

chromatosome sliding reaction are, however, unknown. It is, for example, not clear whether 

H1 stays closely associated with the nucleosome throughout the sliding process or is 

temporarily displaced. In accordance with their ability to “handle” the linker histone in vitro, 

some ISWI complexes were implicated to be involved in H1 metabolism in vivo, as further 

detailed below (see chapter 1.3.4). 

The in vivo functions of ISWI complexes seem to be manifold, and they were found to play a 

role in various chromatin-based processes, including transcription repression as well as 

activation, chromatin assembly and higher order structure formation, DNA repair and 

replication (Bouazoune and Brehm, 2006; Clapier and Cairns, 2009). However, 

unambiguously assigning cellular functions to the individual complexes often remains difficult 

as in vivo approaches, for example knock-out or overexpression studies, suffer from 

difficulties in discriminating direct from secondary effects. Nevertheless, in Drosophila Acf1-

containing complexes are commonly associated with the establishment of repressive 

chromatin structures in embryos and undifferentiated cells (Chioda et al., 2010; Fyodorov et 

al., 2004). NURF, on the other hand, was found to regulate transcription by interacting with 

several transcription factors and to be involved in chromatin higher order structure formation 

(see chapter 1.3.4) (Badenhorst et al., 2002; Hochheimer et al., 2002; Kwon et al., 2008; 

Xiao et al., 2001). ToRC contains the transcriptional corepressor CtBP and functions in gene 

repression (Emelyanov et al., 2012). Finally, RSF was suggested to be involved in the 

formation of silent chromatin (Hanai et al., 2008). 

1.3.2 Mechanism of ISWI-mediated nucleosome sliding  

Elucidating the molecular details of a nucleosome sliding reaction catalyzed by chromatin 

remodeling factors has been a major goal ever since the discovery of this activity. As already 

mentioned, not only ISWI enzymes but also most other chromatin remodeling enzymes 

characterized so far are capable of repositioning nucleosomes along DNA without disrupting 

the histone octamer (Clapier and Cairns, 2009). Moreover, recent evidence suggests that 

chromatin remodeling enzymes indeed share a basic sliding mechanism that is tunable to 

achieve variable outputs (Narlikar et al., 2013). Thereby, the helicase-like DNA translocation 

activity of the ATPase domain engaging the nucleosome at SHL2 is expected to be of key 

importance. This notion is further explicated in the enclosed review article (chapter 2.2; see 

also chapter 3.1). 

At the outset of the studies compiled in this thesis, different models of the sliding reaction 

catalyzed by ISWI were controversially discussed (Bowman, 2010; Gangaraju and 

Bartholomew, 2007b). These models are shortly summarized in the introductory sections of 

the research articles presented in chapters 2.1 and 2.3 and outlined in more detail in the 

review article constituting chapter 2.2. Most importantly, the prevalent model predicted the 
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HSS domain of ISWI and its association with extranucleosomal DNA to be critical for 

nucleosome sliding. ATP hydrolysis-dependent conformational changes between the 

ATPase and HSS domain were suggested to result in a kind of “power stroke” that pushed 

extranucleosomal DNA into the nucleosome. However, results from studies on the related 

chromatin remodeling enzyme Chd1 indicated that the SANT-SLIDE domain was 

dispensable for catalysis of a basic sliding reaction (Hauk et al., 2010; McKnight et al., 2011). 

Therefore, deciphering the basal molecular mechanism of nucleosome sliding, determining 

the role of the HSS domain for ISWI activity, and clarifying the degree of conservation of the 

sliding mechanism remained major goals. 

1.3.3 Regulation of the ISWI enzyme 

Besides the molecular details of the sliding mechanism of ISWI, also strategies to target and 

regulate ISWI complexes are currently under investigation. Whereas in Drosophila targeting 

of NURF includes its association with transcription factors and ToRC is localized via its CtBP 

subunit, recruiting strategies for Acf1-containing complexes are poorly understood (Clapier 

and Cairns, 2009; Emelyanov et al., 2012). As already mentioned above, histone PTMs are 

implicated in recruiting ISWI complexes or fine-tuning their interaction with nucleosomes (see 

chapters 1.2.3 and 1.3.1). Potential roles of histone PTMs in regulating the catalytic activity 

of the complexes will be outlined below.  

In vitro studies offered some insights into possible mechanisms for the regulation of ISWI 

activity by features of the nucleosome that may impact substrate choice also in vivo. The 

ATPase and sliding activity of ISWI and its complexes in various species – as probed so far – 

are sensitive to the length of the linker DNA flanking a nucleosome, showing a positive 

correlation (Dang et al., 2006; Gangaraju and Bartholomew, 2007a; He et al., 2006; 

Kagalwala et al., 2004; Stockdale et al., 2006; Whitehouse et al., 2003; Yang et al., 2006; 

Zofall et al., 2004). Linker length discrimination was suggested to be fundamental for the 

nucleosome spacing ability reported for some ISWI complexes (see chapter 1.3.1). However, 

mechanistic details are still under debate. Based on experiments employing 

mononucleosomes of varying linker lengths as remodeling substrates for Snf2H, a human 

homolog of ISWI, and the human ACF complex, Narlikar and co-workers proposed a length 

discrimination at the kinetic level (Yang et al., 2006). Thereby, up to a certain threshold, 

linker length is sensed by the remodeling factor and regulates its sliding activity. Within a 

nucleosome array, this mechanism would eventually result in equalized linker lengths and 

therefore regular spacing. An alternative model put forward the idea of a “protein ruler” to 

explain the spacing activity of remodeling factors. According to this mechanism, the factors 

interact with two neighboring nucleosomes in an array and adjust their distance (Yamada et 

al., 2011). Thereby, the domains interacting with extranucleosomal DNA are expected to act 

as “rulers”, determining the distance between nucleosomes. In any case, the requirement for 
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a certain length of free linker DNA for proper nucleosome binding and sliding activity may 

critically contribute to regulating the activity of ISWI complexes in vivo (see chapter 2.2). 

Early on, a dependency of the activity of ISWI complexes on the histone H4 N-terminal tail 

was described. Sliding of nucleosomes depleted of the tail was dramatically reduced (Clapier 

et al., 2001; Dang et al., 2006; Eberharter et al., 2001; Hamiche et al., 2001). Intriguingly, the 

epitope of H4 mediating the stimulation was mapped to aa R17H18R19 within the basic patch 

of the tail (see chapter 1.1.3) (Clapier et al., 2002; Fazzio et al., 2005; Hamiche et al., 2001). 

As outlined in detail in the introduction of the research article presented in chapter 2.4, 

acetylation of lysine 16 of H4 was reported to inhibit ISWI as well as ACF activity in vitro at 

the level of mononucleosomes or tail peptides (Clapier et al., 2002; Corona et al., 2002; 

Ferreira et al., 2007; Shogren-Knaak et al., 2006). Therefore, the site-specific acetylation 

was proposed to be involved in regulating ISWI complexes in vivo by rendering nucleosomes 

refractory of sliding by ISWI. However, the observed effects of the acetylation on ISWI 

activity were mostly moderate, and it remained unclear which step of the sliding reaction was 

affected. Moreover, at the level of nucleosome arrays conflicting data were obtained 

(Nightingale et al., 2007). Given the outstanding role of the basic patch of the H4 tail and 

H4K16ac for chromatin fiber condensation (see chapters 1.1.3 and 1.2.3), investigating the 

impact of H4K16ac on ISWI activity in the context of folded chromatin arrays is expected to 

reflect the in vivo situation more accurately and to be more revealing than studying effects at 

the level of mononucleosomes.  

A further nucleosomal feature that may contribute to the regulation of ISWI activity is the 

association of linker histones. As outlined above (see chapter 1.3.1), H1 does not abolish but 

reduces the sliding activity of ACF and ISWI in vitro, although a quantitative measure of the 

effect is not yet available (Maier et al., 2008).  

The in vivo relevance of the reported regulatory potential of H4 tail modifications and linker 

histone incorporation on the nucleosome sliding activity of ISWI complexes remains to be 

determined. However, observations in flies indeed support an interplay of H4K16ac, the 

linker histone, and ISWI complexes in the establishment and maintenance of higher order 

chromatin structures. This notion is topic of the following chapter. Further regulatory 

mechanisms and molecular details of the principles described above that are just starting to 

be elucidated are discussed in the enclosed review article (chapter 2.2). 

1.3.4 Interplay of ISWI, H4K16ac, and the linker histone in vivo 

The main aspects of the interplay of ISWI complexes, H4K16ac, and the linker histone as 

suggested by in vivo observations in Drosophila melanogaster are summarized in the 

introduction of the research article presented in chapter 2.4. Here, the respective 

observations are briefly discussed, and some more background information is provided.  
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Depletion of ISWI in flies is accompanied by larval lethality and a striking decondensation of 

the dosage-compensated male X chromosome in polytene chromosome spreads (Deuring et 

al., 2000). Later analyses demonstrated that the DCC is necessary and sufficient to cause 

the decondensation phenotype in ISWI mutants (Corona et al., 2002). In conjunction with 

experiments revealing genetic interactions between ISWI and MOF, this notion prompted the 

hypothesis that the enrichment of H4K16ac on the male X chromosome (see chapter 1.2.3) 

is responsible for its sensitivity to reduced ISWI activity. Of note, depletion of Nurf301, the 

largest subunit of the NURF complex (see chapter 1.3.1), had the same phenotypic 

consequences on the male X chromosome (Badenhorst et al., 2002). Contrary, loss of Acf1 

did not lead to aberrant chromosome structures (Fyodorov et al., 2004). Therefore, NURF 

seems to be the ISWI complex mainly responsible for regulating the structure of the X 

chromosome. Mechanistically, ISWI activity was proposed to promote chromatin compaction, 

thereby counteracting the decompacting effect of H4K16ac (see chapter 1.2.3) in the wild-

type situation. Moreover, inherently reduced activity of ISWI on nucleosomes carrying 

H4K16ac as evidenced in vitro (see chapter 1.3.3) was hypothesized to further explain the 

sensitivity of the male X chromosome to ISWI loss. 

A limitation of the initial experiments employing ISWI null flies was the presence of residual, 

active ISWI due to maternal contribution. To further reduce ISWI activity, a dominant 

negative mutant of the enzyme was expressed, resulting in global decondensation of all 

chromosomes (Corona et al., 2007). This observation underlines a general role of ISWI 

complexes in the establishment and maintenance of higher order chromatin structures also 

beyond the male X chromosome. Notably, as H4K16ac is not restricted to the X chromosome 

(see chapter 1.2.3) the modification may play a role in mediating these global effects on 

chromatin condensation as well. Unexpectedly, the decondensation was accompanied by 

dramatic loss of H1 from the chromosomes, although the total protein level of the linker 

histone appeared unaffected. Independent knock-down studies demonstrated that loss of H1 

led to chromatin decompaction (see chapter 1.1.3) (Lu et al., 2009; Siriaco et al., 2009), 

suggesting that indeed altered linker histone incorporation was the main reason for the 

disrupted higher order chromatin structures observed in ISWI-depleted flies. As the average 

NRL was unaffected by ISWI loss (Corona et al., 2007), whereas it was shortened upon H1 

depletion (Lu et al., 2009; Siriaco et al., 2009), it was suggested that ISWI mediates H1 

retention in chromatin outside replication (see chapter 1.1.3). However, how ISWI complexes 

mechanistically contribute to H1 metabolism and homeostasis and how this activity is 

connected to H4K16ac remain open questions.  

Taken together, knock-down experiments indicated a role of ISWI complexes in the formation 

of higher order chromatin structures. Apparently, a complex interplay between the chromatin 

remodeling factors, H4K16ac, and the linker histone is responsible for proper chromatin 

condensation, but mechanistic details are poorly understood.  
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1.4 In vitro systems to study chromatin remodeling 

To investigate chromatin remodeling reactions in vitro in a quantitative manner, it is crucial to 

employ homogenous, well-defined chromatin substrates that for example allow monitoring 

changes in nucleosome position or DNA accessibility. In vitro reconstituted mono-, oligo-, or 

polynucleosomes (nucleosome arrays) are commonly used for these purposes. In principle, 

every DNA sequence can assemble into nucleosomes (see chapter 1.1.1). Nevertheless, an 

intrinsic preference of the histone octamer for certain DNA sequences was demonstrated 

originating in base composition-dependent differences in DNA bendability (Struhl and Segal, 

2013). DNA sequences that preferentially assemble into and reproducibly position 

nucleosomes in vitro are termed “nucleosome positioning sequences” (Lowary and Widom, 

1998). The currently most widely employed sequence, the so-called “Widom 601 

nucleosome positioning sequence”, was identified in an unbiased screen of synthetic 

sequences (Lowary and Widom, 1998). It is characterized by extraordinarily high affinity to 

the histone octamer and gives rise to homogenously positioned nucleosome in in vitro 

chromatin assembly reactions. In the context of short linear DNA fragments, the Widom 601 

nucleosome positioning sequence can be used to reconstitute mononucleosomes with 

homogenous positioning. Tandem arrays of the sequence are used to assemble regular, fully 

saturated nucleosome arrays of defined and variable NRL (see chapter 2.4) (Dorigo et al., 

2003; Lusser and Kadonaga, 2004).  

Histones for the reconstitution of nucleosome arrays can be obtained from either native 

sources or by recombinant protein expression and purification (Lusser and Kadonaga, 2004). 

Whereas purification of native histones yields a mix of various variants and post-

translationally modified histones, recombinant histones expressed in bacteria harbor a 

defined sequence and are unmodified. Canonical histones from different organisms, histone 

variants as well as mutants can be produced in bacteria. However, the current standard 

protocol for histone purification from bacteria is laborious and time-consuming (see chapter 

2.4) (Luger et al., 1999). Histone preparation may therefore become the limiting step in 

chromatin studies requiring large quantities of histone octamers, rendering simplification of 

current methods a desirable goal.  

Over the past decade, different methods were developed to site-specifically introduce histone 

PTMs or modified amino acids mimicking modified residues into recombinant histones to 

create so-called “designer histones” (Allahverdi et al., 2011; Chatterjee and Muir, 2010; Li et 

al., 2011; Robinson et al., 2008). Whereas enzymatic modification reactions suffer from 

insufficient efficiencies, specificities, and yields, chemical methods, including those based on 

peptide ligation (see chapter 2.4), and the generation of bacteria capable of incorporating 

engineered amino acids proved to be highly successful. Thus, it became possible to 

investigate the specific properties of individual histone PTMs or their combinations. In 

conjunction with the aforementioned DNA fragments carrying repeats of a nucleosome 
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positioning sequence, nucleosome arrays of defined NRL and modification status can be 

reconstituted in vitro. Moreover, also linker histones can be incorporated into these arrays to 

yield chromatosome arrays (Huynh et al., 2005). As these arrays were shown to compact in 

a salt-dependent manner very similar to chromatin fibers isolated from native sources (Huynh 

et al., 2005), they constitute a valuable tool for studying chromatin folding and stability. 

Furthermore, they serve as in vivo-like substrates for chromatin enzymes, including 

remodeling factors, in biochemical assays.  

Taken together, folded chromatin fibers assembled from recombinant, purified components 

allow to model different physiological chromatin states by incorporation of designer histones 

carrying certain histone PTMs, histone variants, or architectural proteins. Employing these 

fibers as substrates for chromatin remodeling enzymes, the influence of various chromatin 

features on the activity of the enzymes can be monitored.  

 

1.5 Aims of this study 

As outlined above, ISWI complexes are essential, conserved chromatin factors implicated in 

a plethora of nuclear processes. However, the mechanism of nucleosome sliding by ISWI, 

how the energy derived from ATP hydrolysis is translated into the repositioning of 

nucleosomes, and how this activity is targeted and regulated is still not fully understood. The 

major goal of this study was to gain insights into the molecular details of the catalytic activity 

of ISWI using quantitative biochemical methods. Notably, we aimed at analyzing ISWI activity 

in an in vivo-like context by employing synthetic, folded chromatin fibers instead of the 

commonly used mononucleosomes as remodeling substrates whenever applicable. 

To elucidate the specific roles of the HSS and the ATPase domain of ISWI during catalysis 

and their mechanism of co-operation – a long-standing question in the field –, we 

characterized mutants of the Drosophila ISWI enzyme in a range of in vitro assays. The 

results of these analyses are presented in the research articles contained in chapters 2.1 and 

2.3. The implications of our findings for the sliding mechanism are discussed therein and set 

into a broader context in the review article of chapter 2.2.  

Furthermore, we explored the regulatory potential of the H4 tail for ISWI remodeling in a 

quantitative manner employing nucleosome arrays (see chapter 2.1). H4K16ac was reported 

to inhibit ISWI activity at the level of mononucleosomes, but the effect of this mark in a more 

physiological chromatin context where the H4 tail is engaged in inter-nucleosomal 

interactions remained controversial. Therefore, we assessed the influence of H4K16ac on 

ISWI at the level of chromatin fibers in the absence and presence of linker histone H1. These 

analyses are detailed in chapter 2.4. 
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The synthetic chromatin substrates employed in the various remodeling assays were 

reconstituted in vitro from purified components. To facilitate our as well as future studies, we 

developed, based on established protocols, a simplified, rapid purification method for 

bacterially expressed histones that considerably shortens the required preparation times (see 

chapter 2.5). 
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Abstract 

ISWI slides nucleosomes along DNA, enabling the structural changes of chromatin that 

underlie a regulated use of eukaryotic genomes. Prominent mechanistic models imply 

cooperation of the ATPase domain of ISWI with a C-terminal DNA-binding function residing 

in the HAND-SANT-SLIDE (HSS) domain. Contrary to these models, we show by 

quantitative biochemical means that all fundamental aspects of nucleosome remodeling are 

contained within the compact ATPase module of Drosophila ISWI. This domain can 

independently associate with DNA and nucleosomes, which in turn activate ATP turnover by 

inducing a conformational change in the enzyme, and it can autonomously reposition 

nucleosomes. The role of the HSS domain is to increase the affinity and specificity for 

nucleosomes. Nucleosome remodeling enzymes may thus have evolved directly from 

ancestral helicase-type motors, and peripheral domains have furnished regulatory 

capabilities that bias the remodeling reaction towards different structural outcomes.  

Introduction 

The chromatin organization endows eukaryotic genomes with stability and regulates gene 

expression. DNA within chromatin is spooled around histone proteins forming nucleosomes. 

Arrays of nucleosomes are further folded to accommodate the genome in the nuclear 

volume. Tight packaging inevitably leads to occlusion of DNA sequences that can no longer 

be accessed by regulatory proteins. However, chromatin has to be dynamic in order to permit 

cells to respond to environmental or developmental challenges. Crucial to a dynamic and 

regulated use of the genome are the actions of ATP-consuming nucleosome remodeling 

enzymes1,2. 

Nucleosome remodeling enzymes use the energy from ATP hydrolysis to weaken or disrupt 

histone-DNA contacts in the otherwise extremely stable nucleosome particle. They thereby 

catalyze histone exchange, partial or complete nucleosome disassembly, formation of new, 

or repositioning of existing nucleosomes. The precise outcome of a remodeling reaction is 

frequently determined by regulatory subunits that associate with the ATPase2-5.  

The ATPase domains of all nucleosome remodeling complexes are conserved and distantly 

related to superfamily 2 (SF2) DNA helicases. Based on similarity of their ATPase domain 

sequences, all known or presumed nucleosome remodeling enzymes constitute 24 

subfamilies4,6. Despite this complexity, it is becoming clear that at least the remodeling 

enzymes studied to date are related in structure and mechanism. Deciphering the 

fundamental mechanism of a basic ‘remodeling’ reaction remains an important goal2-5. 

Most insight into the mechanism of nucleosome remodeling has been obtained studying 

representatives of three subfamilies of remodelers: ISWI, Snf2 and Chd1. They all slide 

nucleosomes along DNA, and although differences have been noted7,8, they share a 
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strategic interaction site on the nucleosome. Their ATPase ‘motor’ domain engages the 

nucleosomal DNA about two helical turns off the nucleosomal dyad at superhelix location 2 

(SHL2)9-11. This site is characterized by structural variability of the histone-DNA interactions. 

It can accommodate a gain or loss of one base pair (bp), a feature that could be exploited 

during the remodeling reaction12-14. Furthermore, the histone H4 N-terminus, which is 

mechanistically involved in remodeling reactions catalyzed by ISWI and Chd1, emanates 

from the nucleosome core around SHL215-19. At SHL2, the ATPase domain is thought to 

translocate on DNA in accord with its helicase ancestry9,20,21. The ATPase domain thereby 

may force additional DNA into the nucleosome, change the twist in the DNA, or otherwise 

perturb histone-DNA contacts2,4,22. 

In several cases it was observed that successful remodeling required accessory domains in 

addition to the ATPase. These domains are thought to be crucial for remodeling by providing 

the appropriate mechanical or topological context. For ISWI-type enzymes, such a domain 

resides in the C-terminus. It harbors a DNA-binding module in form of the HSS domain (Fig. 

1a, top). Deletion of the HSS domain markedly reduced the ability of Drosophila ISWI to 

associate with and remodel nucleosomes23. Subsequent crosslinking and cryo-EM studies 

with the ISWI orthologs in yeast revealed interactions of the HSS domain with DNA flanking 

the nucleosome, so called linker or extranucleosomal DNA24,25. Deletion of this DNA not only 

diminished the binding affinity but also ATP turnover and the remodeling capacity of 

ISWI26,27.  

These results collectively support models in which the nucleosomal contacts made by the 

ISWI ATPase and HSS modules delimit a topological domain of nucleosomal DNA. 

Conceivably, a conformational change between the ATPase and the HSS modules, mediated 

via a ‘hinge’ that connects the two, may destabilize the DNA-histone contacts in this domain 

and pull linker DNA into the nucleosome16,18. The excess DNA would initially bulge out from 

the histone surface. Eventually it may escape on the other side of the nucleosome, reforming 

the canonical nucleosome structure at a different position on DNA.  

This model predicts that the HSS domain plays an integral role during the remodeling 

reaction. Underscoring its importance, deletion of a related domain in Chd1 strongly reduced 

the overall remodeling efficiency28. Curiously, a different study concluded that deletion of the 

DNA binding module in the C-terminus of Chd1 does not completely abolish the nucleosome 

sliding activity. Rather, the C-terminus was suggested to affect the directionality of the 

process11. Thus, the DNA binding domain may not be essential for the remodeling process 

as such. It might rather determine the overall outcome of the remodeling reaction, either the 

direction of nucleosome sliding11 or the positioning of the substrate nucleosome in the 

context of nucleosome spacing28. This conclusion is not readily compatible with the ‘hinge’ 

model discussed above, which was mainly derived from studies on ISWI-type enzymes. Do 

these studies reveal a fundamental difference between ISWI- and Chd1-type remodelers with 
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respect to their utilization of binding domains for linker DNA? How can ATP hydrolysis-driven 

conformational changes be productive in the absence of the main linker DNA binding 

domain?  

We set out to address these issues in the context of Drosophila ISWI. Our quantitative 

analysis reveals two conformations of the ATPase domain, which drastically differ in their 

catalytic competency. Nucleic acids induce a change of the conformation, thereby activating 

the enzyme. Furthermore, we show that the ATPase domain has an innate ability to bind 

nucleosomes, to functionally interact with the H4 N-terminus, and to remodel nucleosomes. 

Accessory domains in chromatin remodelers may thus have evolved to regulate an 

autonomous basic remodeling module. Our data place firm limits on mechanistic models of 

nucleosome remodeling and favor models in which the ATPase domain performs the 

fundamental steps involved in remodeling, such as breaking histone-DNA contacts and 

moving nucleosomes, whereas the HSS domain fulfills auxiliary duties, such as increasing 

the affinity and specificity for nucleosomes. 

Results 

The ATPase domain of ISWI adopts two different conformations in solution 

The ATPase activity of ISWI is activated by free and nucleosomal DNA23,29. To dissect this 

effect in a quantitative manner, we obtained highly purified enzyme preparations using an 

optimized purification protocol that included affinity, ion exchange and size exclusion 

chromatography. Further purification did not affect the results. 

We first measured ATP turnover by unliganded ISWI and determined the reaction velocities 

for varying ATP concentrations. Whereas enzymes typically show a simple saturation 

behavior with increasing substrate concentrations, ISWI featured a more complex, biphasic 

response. After an initial rise of the reaction velocity with increasing ATP concentrations, the 

curve entered a second phase and continued to rise until at least 50 mM of ATP (Fig. 1a).  

The two phases of the curve indicated that different enzyme populations existed with strongly 

differing Michaelis (KM,obs) values. We hypothesized that these populations may correspond 

to ISWI molecules in different conformations. Kinetic and thermodynamic modeling confirmed 

that this scenario could indeed account for the data (Suppl. Fig. 1). 

However, the biphasic ATPase response could also be due to a number of trivial reasons. 

Most importantly, we ruled out that a contaminating ATPase was responsible for one of the 

two phases by analyzing a point mutant in the Walker B motif of the ISWI ATPase domain 

(E257Q), which prevents ATP hydrolysis. Although this mutant was expressed at similar 

levels and prepared in the same way as the wild-type, we could not detect any ATP 
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hydrolysis for this mutant (Fig. 1a). In the Supplementary Information, we discuss and rule 

out additional scenarios, such as enzyme dimerization and contamination with DNA, which 

could in principle explain the unusual shape of the curve (Suppl. Note; Suppl. Fig. 2a,b). 

According to prominent models of ISWI function, the HSS and ATPase domains intimately 

cooperate during nucleosome remodeling2-4,24,30. In this scenario one might expect that the 

 

Figure 1: Steady-state ATP hydrolysis. The ATP concentration dependence of ATP turnover by 
DNA-free ISWIFL (a) and ISWI26–648 (b; both 4 µM) was biphasic. The first phase was completed with 
sub-millimolar concentrations of ATP (a, inset). Steady-state ATPase parameters extracted from fits 
(lines) are listed in Table 1. Domain schematics for ISWIFL and ISWI26–648 are shown on top. In addition 
to wild-type (WT), an ATPase deficient mutant (E257Q) was used as a negative control in a. (c) 
Saturating concentrations of a 39-bp long DNA duplex strongly stimulated ATP hydrolysis of ISWIFL 

and ISWI26–648 (80 to 400 nM). The assays were performed with 100 mM Mg2+; similar results were 
obtained in a buffer containing lower Mg2+ concentrations or varying enzyme concentrations (Suppl. 
Table 1; Suppl. Fig. 2a,b and data not shown). 
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HSS domain directly influences ATP hydrolysis. We tested this hypothesis by truncating ISWI 

in a poorly conserved region that separates the ATPase domain from the HSS domain (Fig. 

1b, top). Our construct spanned a conserved N-terminal region (NTR; Suppl. Fig. 3), both 

ATPase lobes, and the ‘bridge’ at the C-terminal end, which is conserved between ISWI and 

Chd1 remodelers and docks against both ATPase lobes31,32. In most experiments, we used a 

construct that lacked non-conserved amino acids at the N-terminus, spanning amino acids 

26–648 (ISWI26–648). We repeated a number of experiments with ISWI1–697, which also 

included lesser-conserved regions on both termini. 

Similar to full-length ISWI (ISWIFL), the ATP concentration dependencies of unliganded 

ISWI26–648 and ISWI1–697 were biphasic, suggesting that the two conformations involve the 

ATPase domain (Fig. 1b and data not shown). Surprisingly, steady-state ATPase parameters 

(kcat/KM,obs, kcat,obs, and KM,obs) differed by less than three-fold between the three enzymes 

(Table 1 and data not shown). This similarity attested to the integrity of the two truncated 

proteins and showed that the C-terminus did not substantially influence ATP hydrolysis, at 

least when no DNA ligand was bound.  

DNA ligands strongly influence the ATP hydrolysis mechanism 

To test how DNA binding affected the catalytic parameters, we repeated the analyses in the 

presence of a 39-bp long DNA duplex. Varying the length of the DNA from 19 to ~3000 bp 

did not considerably affect the kcat,obs (see below and data not shown). In contrast to the 

ligand-free enzyme, DNA-bound ISWIFL exhibited standard Michaelis-Menten-type kinetics 

(data not shown). Furthermore, DNA strongly stimulated kcat/KM,obs (61-fold; Fig. 1c; Table 1).  

Like stimulation by DNA, stimulation by chromatin abolished the biphasic response to the 

ATP concentration (data not shown). Relative to DNA, chromatin binding increased the 

affinity for nucleotides six-fold (Suppl. Fig. 4). In addition, kcat,obs increased four- to 14-fold 

Table 1: Steady-state ATPase parametersa 

 

 
a: Values were measured in reaction buffer containing 100 mM Mg2+. Where indicated (asterisk), 
errors are min and max values of two independent measurements. Otherwise, errors are standard 
deviations of at least three independent measurements. DNA reactions contained saturating 
concentrations of a 39-bp DNA duplex. N.a.: Not applicable. 
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depending on the enzyme concentration (Suppl. Fig. 2c; Suppl. Table 1; note that we 

employed here lower Mg2+ concentrations to prevent aggregation of chromatin). This 

dependence of kcat,obs on the enzyme concentration is consistent with binding of two 

functionally interacting ISWI molecules per nucleosome as previously suggested (Suppl. Fig. 

2d,e)33.  

DNA binding to the ATPase domain activates ATP hydrolysis 

Nucleic acids typically directly bind to the ATPase domain of SF2 helicases 34,35. Using the 

ISWI26–648 construct, we confirmed in a double-filter binding assay that the ATPase domain of 

ISWI indeed harbors a DNA binding site (Suppl. Fig. 5). Consistent with its DNA binding 

function23-25,36, the HSS domain increased the DNA affinity 20-fold.  

DNA could, in principle, activate ATP hydrolysis by binding to either of the two binding sites 

or to both. Whereas nucleic acids often directly bind and stimulate the ATPase activity of SF2 

helicases34,35, we previously suggested that it was DNA binding to the HSS domain that 

conferred most DNA stimulation23. However, at that time we did not account for the reduced 

DNA affinity when the HSS domain is missing. To differentiate between the two sites and to 

probe their involvement in regulation of ATP turnover, we titrated DNA to the ISWI constructs 

that lacked the HSS domain and measured ATP turnover. DNA was a potent activator of 

ATP hydrolysis of ISWI26–648 and ISWI1–697
 (Fig. 1c and data not shown). Overall, their 

ATPase parameters were strikingly similar to those of ISWIFL, indicating that DNA binding at 

the ATPase domain, not the HSS domain, drives the stimulation (Table 1). 

DNA binding affects the conformation of the ATPase domain 

To test if DNA binding activated ATP turnover by triggering a conformational change in the 

ATPase domain as seen for evolutionary related proteins37, we turned to limited proteolysis 

experiments. Consistent with a structural change, limited digestion with trypsin led to a 

different cleavage pattern and a substantially faster cleavage of ISWI26–648 in the presence of 

DNA (Fig. 2a). A different protease (GluC) and partial trypsin digests of ISWIFL yielded 

analogous results (data not shown).  

Additional proteolysis experiments firmly ruled out that the different cleavage pattern was 

simply due to occlusion of the predominant cleavage sites by DNA. From a comparison of 

the electrophoretic mobility of proteolytic fragments obtained with trypsin, which cleaves at 

lysines and arginines, and LysC, which is specific for lysine, we concluded that the major 

tryptic digestion product of the DNA-free enzyme arose from a cut next to a lysine (Suppl. 

Fig. 6). Importantly, DNA binding did not affect the digestion kinetics of LysC, providing 

strong evidence against occlusion (Fig. 2b). If accessibility of the lysine remained the same, 

then arginine residues must become more exposed with DNA to explain the trypsin results. 
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We confirmed this prediction with the arginine-specific protease ArgC. ArgC produced a 

similar cleavage pattern as trypsin in presence of DNA and experienced a similar rate 

enhancement by DNA (Fig. 2a,c). In summary, the proteolysis experiments showed that the 

enzyme conformation changed upon DNA binding. We suggest that these conformations are 

related to the conformations detected independently by the ATP hydrolysis results above. 

We noted that a ~60 kDa fragment accumulated in trypsin and ArgC digests when DNA was 

present (Fig. 2a,c, arrows), suggesting that DNA binding led to a well-folded, protease-

resistant structure. N-terminal Edman sequencing and LC-MS-MS analysis of this fragment 

 

 

Figure 2: Limited proteolysis revealed a DNA-induced conformational change within 

the ATPase domain of ISWI. (a–c) DNA-free and DNA-bound ISWI26–648 was digested with the 
indicated proteases for 5, 15, 30, 60, 90 and 160 min. Left panels: SDS-PAGE gels. Undigested 
protein served as the zero time point (0). M: molecular weight marker. Right panels: Quantification of 
the gel bands. The data were fit by a single exponential function (lines). Addition of 39-bp long DNA 
duplexes (10 µM) led to a different banding pattern and 4.4-fold and 5.1-fold faster digestion rates by 
trypsin and ArgC, respectively, without affecting LysC digests. Arrows (a, c) indicate a protease-stable 
fragment only seen in the presence of DNA. 
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mapped the cleavage sites to accessory sequences outside of the ATPase core (Arg91 and 

Arg93 in the NTR, and Arg589 at the C-terminus; Suppl. Fig. 3). These accessory regions 

therefore took part in regulatory conformational changes induced by DNA binding (see 

Discussion). 

The ATPase and HSS domains contribute to nucleosome recognition 

Our data showed that the ISWI ATPase domain independently reacted to DNA association. 

We asked next if the ATPase domain alone could specifically recognize an entire 

nucleosome, if the HSS domain increased this specificity, and to what extent stimulation of 

ATP hydrolysis by nucleosomes required the HSS domain.  

We started by titrating nucleosomal arrays to ISWI26–648 and ISWIFL under subsaturating ATP 

conditions, measuring the kcat/KM,obs (Fig. 3a,b). Effects of nucleosomes on the affinity of ATP 

(discussed above) should be detectable under these conditions whereas they are masked 

with saturating ATP. Much to our surprise, saturating concentrations of nucleosomal arrays 

stimulated ISWI26–648 much more strongly than DNA (17-fold). The level of stimulation and 

even the absolute hydrolysis rates were comparable between ISWI26–648 and ISWIFL (Fig. 3b; 

Suppl. Table 1). These results indicated that ISWIFL and ISWI26–648 could form the same 

important contacts to the nucleosome that mediated the stimulation. 

We probed next if these contacts were to linker DNA by deleting the linker altogether, using 

nucleosome core particles (NCPs). NCPs stimulated hydrolysis of ISWI26–648 just as well as 

arrays. Also the apparent affinity of arrays and NCPs remained unaffected (Fig. 3a). 

Remarkably, even ISWIFL did not react to deletion of the linker (Fig. 3b). These results ruled 

out that the contact responsible for ATPase stimulation was between the HSS domain and 

linker DNA.  

When ATP and DNA ligand are subsaturating, the specificity with which ISWI discriminates 

between different DNA ligands can be determined (ref. 38 and mathematical derivation not 

shown). ISWI26–648 possessed a moderate ability to distinguish between naked and 

nucleosomal DNA (six-fold for both NCPs and arrays). In contrast, ISWIFL strongly 

discriminated between naked and nucleosomal DNA (>60-fold for both NCPs and arrays; Fig. 

3c). This result indicated that the HSS domain formed important contacts to the NCP, which 

increased the specificity for nucleosomes. Due to tight binding, we could only extract lower 

limits for the specificity of ISWIFL. For the same reason, we could not test if HSS-linker 

interactions provided additional specificity. In addition to specificity, the HSS domain 

markedly improved the apparent affinity for nucleosomes, as ISWIFL saturated with much 

lower concentrations of nucleosomes than ISWI26–648 (≤25 nM vs. >0.5 µM, respectively; Fig. 

3a and data not shown). 
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We confirmed that the HSS-linker DNA interaction is negligible for ATPase activation also 

under saturating ATP conditions (Fig. 3d). NCPs stimulated the kcat,obs 11-fold relative to 

naked DNA, whereas nucleosomal arrays stimulated kcat,obs at most ~two-fold better than 

NCPs. Interestingly, ISWI26–648 apparently lost its ability to discriminate free DNA from NCPs 

or arrays with saturating ATP as all these ligands gave indistinguishable stimulation at similar 

concentrations (data not shown). This result suggested that the relatively poor discriminatory 

power that ISWI26–648 possessed at subsaturating ATP concentrations was further reduced 

when the enzyme was saturated with nucleotides, resulting in enzyme that did not profit from 

the nucleosomal activation at SHL2 (see below) but that instead sampled DNA elsewhere on 

Figure 3: Interactions between domains of 

ISWI and the nucleosome and their 

importance for catalysis and substrate 

specificity. (a) NCPs and nucleosomal arrays 
markedly stimulated kcat/KM,obs for ATP hydrolysis 
of ISWI26–648 (80 nM). Data were fit to a simple 
binding isotherm (lines). Results of two or more 
independent experiments are superimposed. (b) 
Stimulation of kcat/KM,obs by NCPs and arrays 
relative to DNA. kcat/KM,obs values for saturating 
concentrations of NCPs and arrays were 
normalized by corresponding values for 147-bp 
long DNA (Suppl. Table 1). Where indicated 
(asterisk), errors are min and max values of two 
independent measurements. Otherwise, errors 
are standard deviations (n = 3). (c) Discrimination 
between nucleosomal and naked DNA. kcat/KM,obs 
values at subsaturating NCP and array 
concentrations were normalized by corresponding 
values for DNA-stimulated ISWI26–648. Errors as in 
b. (d) The kcat,obs of ISWIFL was strongly 
stimulated by saturating NCPs and arrays (200 
nM enzyme; 0.5 mM ATP). Errors represent 95% 
confidence intervals of fits to a binding isotherm. 
(e) Summary of functional interactions (dotted 
lines) between ISWI and the nucleosome.  
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the surface of the nucleosome (Suppl. Note). Figure 3e summarizes ISWI-nucleosome 

interactions and their functions uncovered in this section. 

The ATPase domain senses the histone H4 N-terminal tail  

Stimulation of ATP turnover by nucleosomes has been shown to require the histone H4 N-

terminal tail17,19. The location of the H4 tail near the interaction site of the ATPase domain at 

SHL2 would be consistent with a direct effect of the H4 tail on the ATPase domain. Structural 

similarity of the SANT domain with histone tail binding proteins on the other hand would 

rather point to the HSS domain as the sensor of the H4 tail23,39. Employing ISWI26–648, we 

directly tested whether the HSS domain is required to detect the H4 tail. 

In a previous publication, we showed that ATP turnover was faster when ISWIFL was 

presented with a synthetic H4 tail peptide in addition to DNA40. Surprisingly, ISWI26–648 was 

similarly sensitive to the presence of the peptide (Fig. 4). Based on these results, we suggest 

that the HSS domain is not necessary for the recognition of the H4 tail, a conclusion that is 

further corroborated below.  

The ATPase domain is sufficient to remodel nucleosomes 

Our results so far argued that many important functionalities of ISWI are built into its ATPase 

module. We were curious if these functionalities sufficed to also remodel nucleosomes, 

which would be consistent with recent evidence obtained for Chd111,31, or if additional 

conformational changes between the HSS and ATPase were required for remodeling as 

previously suggested2,3,24,30.  

 

 

Figure 4: An N‐ terminal peptide of histone H4 activated ATP turnover of ISWIFL (a) and ISWI26–648 
(b; both 0.5 µM) in the presence of DNA (1.2 mg/mL salmon sperm DNA) and saturating ATP 
concentrations (1 mM). Two peptides with a scrambled amino acid sequence served as specificity 
controls. Error bars display standard deviations (n=4). 



42 |  R e s u l t s  

 

 

We analyzed nucleosome remodeling in three different ways. First, we probed if ISWI26–648 

could reposition the histone octamer in mononucleosomes, an activity that is well 

documented for ISWIFL
41. Differently positioned nucleosomes can be visualized through their 

different mobility in native gels. Surprisingly, the reaction products generated by ISWI26–648 in 

this assay resembled very much those of ISWIFL (Fig. 5a).  

 

 

Figure 5: The HSS domain is not required for repositioning mononucleosomes or 

nucleosomes within arrays. (a) Mononucleosome sliding assay. Mononucleosomes, centrally 
positioned on a 197-bp Widom-601 DNA, were incubated for the indicated time with ATP and ISWI 
and analyzed by native PAGE. Quench DNA migrated more slowly and was cut off for clarity. Control 
reactions (–) were depleted of ATP with apyrase prior to addition of ISWI. (b) Schematic depiction of 
the 25-mer nucleosomal arrays used in c,d. Each nucleosome protected the indicated restriction 
enzyme sites, whereas the linker DNA contained an exposed AvaI site (magnification). Numbers 
specify base pairs relative to the pseudodyad axis (0). (c) Polynucleosome sliding assay. Top: 
schematic depiction of the assay. Bottom: nucleosomal arrays were incubated with ISWI and ATP as 
indicated. Control reactions were depleted of ATP as above (–). (d) Restriction enzyme accessibility 
assays. Nucleosomal arrays were incubated with ATP, the indicated restriction enzymes and wild-type 
(WT) or mutant ISWI26–648

 (E257Q). DNA was then deproteinized and resolved by gel electrophoresis. 
Samples incubated without enzyme (–) served as controls. 
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Second, we tested nucleosome repositioning in the context of 25-mer nucleosomal arrays, a 

more physiological substrate (Fig. 5b). Each linker DNA contained an exposed AvaI 

restriction site. As expected, AvaI fully digested unremodeled arrays to mononucleosomes. 

After remodeling by ISWI26–648, in contrast, AvaI could not fully digest the arrays, indicating 

occlusion of a fraction of AvaI sites by nucleosomes (Fig. 5c). Protection of these sites by 

binding of ISWI was ruled out by experiments that lacked ATP and by exhaustive AvaI 

digests. 

 

 

Figure 6: Remodeling by ISWI26–648 is only moderately slower than remodeling by 

ISWIFL, and it is sensitive to H4 tail deletion. (a) Schematic depiction of the remodeling assay. 
The central nucleosome in a 13-mer nucleosomal array occluded a unique KpnI site. (b) Exemplary 
time courses for remodeling by ISWIFL and ISWI26–648 (both 3 µM). In control reactions (–), the quench 
solution was added together with ATP. (c) Time courses were collected for varying ISWI26–648 
concentrations, and the data fit to a single exponential function to extract the rate constant kobs (line). 
(d) The maximal velocity with which ISWI26–648 remodeled nucleosomes (kobs,max) was obtained by 
extrapolating to saturating enzyme concentrations (lines). Data points were from several independent 
experiments. (e) Effects of HSS and H4-tail deletion on the maximal remodeling velocities kobs,max. 
Values for kobs,max for ISWIFL and ISWI26–648 were obtained as above at saturating ATP concentrations 
(Suppl. Fig. 7). Errors are standard errors of the fit. 
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The third assay probed accessibility of restriction sites that were protected by nucleosomes 

in the array before remodeling42. Accessibility of four restriction enzyme sites, distributed 

over an entire gyre of nucleosomal DNA, dramatically changed upon incubation with 

ISWI26-648 in an ATP hydrolysis-dependent manner (Fig. 5d). 

To quantify the effect of the deletion of the HSS domain on remodeling, we adapted an assay 

originally developed by the Peterson lab43. We generated nucleosomal arrays in which the 

central nucleosome protected a unique restriction site before remodeling (KpnI; Fig. 6a). By 

following the accessibility of the KpnI site, we collected time courses for increasing ISWI 

concentrations at saturating ATP and plotted the observed remodeling rate constants over 

the enzyme concentration to obtain the maximal reaction velocity (Fig. 6b–d, Suppl. Fig. 7). 

Comparison of the maximal velocities showed that ISWIFL remodeled arrays approximately 

an order of magnitude faster than ISWI26–648 (Fig. 6e). As shown above, ISWIFL also 

hydrolyzed ATP an order of magnitude faster than ISWI26–648 under similar conditions due to 

improved binding specificity. Thus, per ATP hydrolyzed, the efficiency of remodeling was 

similar for both enzymes. 

Deletion of the histone H4 tail was shown to impair remodeling by ISWIFL
15-19. Remodeling by 

ISWI26–648 should be similarly affected if, as we suggested above, the ATPase domain directly 

recognized the H4 tail. By monitoring remodeling of nucleosomal arrays that lacked the H4 

N-terminal tail (g-H4), we found that ISWI26–648 was at least as sensitive towards deletion of 

the H4 tail as ISWIFL, confirming our previous conclusion (16-fold; Fig. 6e). 

Discussion 

Our major conclusion is that – contrary to widespread belief – all fundamental aspects of 

nucleosome remodeling catalysis are contained within the compact ATPase domain of ISWI. 

The ATPase module alone was able to recognize the DNA and histone moiety of substrate 

nucleosomes. Substrate binding triggered a conformational change within the ATPase 

domain along with an increased affinity for ATP. The ATPase module alone was able to 

remodel nucleosomes. In conjunction with recent related observations for the Chd1 

remodeler11 these findings suggest that nucleosome remodeling could have evolved from 

helicase-type motors without further requirements for accessory domains44.  

Mechanistic implications for nucleosome remodeling 

Several current models ascribe critical functions to the HSS domain during remodeling. The 

HSS domain was suggested to bind and release DNA and drag it into the nucleosome upon 

cues from the ATPase domain, to form channels for nucleosomal DNA, or to stabilize high 

energy structures, such as DNA bulging off the histone surface2-4,16,24,30. Remarkably, we 

found that ISWI lacking its HSS domain still remodeled nucleosomes, albeit the reaction 



R e s u l t s  | 45 

 

 

proceeded an order of magnitude more slowly. This defect, however, was accounted for by a 

proportionally decreased ATP turnover. We therefore conclude that the HSS domain is not 

an integral component of the motor core of ISWI. 

Whereas passive, secondary roles of the HSS during remodeling are fully consistent with our 

results (see below), our ATPase data do not favor models that postulate active coordination, 

i.e. transduction of energy, between the ATPase and the HSS domains. Steady-state ATP 

hydrolysis parameters (kcat/KM,obs) of ligand-free, DNA- and nucleosome-bound ISWI 

remained largely unaffected when the HSS was deleted. Strikingly, also the characteristic 

biphasic ATP concentration dependence of hydrolysis was preserved when the HSS domain 

was missing. It remains possible, though, that energy is transduced only after the rate-

limiting step of ATP hydrolysis because steady-state measurements are blind to that regime.  

The autonomy of the ATPase domain does not appear to be a specialty of ISWI because 

Chd1 derivatives that lack their C-terminal DNA-binding domain can still slide 

nucleosomes11,31. This commonality adds to the growing list of shared functional properties of 

ISWI and Chd1 remodelers (ref. 28 and references therein). In fact, substantial parts of both 

enzymes are also structurally related. Chd1 harbors a SANT-SLIDE domain in place of the 

HSS domain of ISWI28, and both enzymes contain the ‘bridge’ motif adjacent to the 

conserved ATPase domain31,32. Although the N-terminal parts of both enzymes lack any 

apparent homology, they nevertheless may perform similar functions (see below).  

How does ISWI remodel nucleosomes without the involvement of the HSS domain? Previous 

studies placed the ATPase region of several remodelers close to SHL2 of the nucleosome, 

whereas the HSS domain of ISWI bound to the linker DNA9-11,18,24,25,45. As ISWI26–648 

discriminates between nucleosomes and DNA and is sensitive to the H4 tail, at least a 

fraction of ISWI26–648 can productively bind at SHL2 (Fig. 7a, step I).  

Strong histone-DNA contacts are present around SHL246,47. Weakening the strongest 

contacts is expected to be rate limiting for remodeling. This could occur by exploiting binding 

energy of the remodeler towards the nucleosome48 or when the ATPase domain tries to 

translocate on DNA while interacting with histones, e.g. at the H4 tail. The ensuing strain in 

form of excess DNA or change in the twist of the DNA could locally destabilize histone-DNA 

interactions (II)12,13,22. The ATPase domain may even be strong enough to pump more DNA 

towards the dyad than the nucleosomal surface can accommodate, causing it to detach and 

bulge out2,16,18,30,49. The latter model is difficult to envision for remodeling by the truncated 

ISWI enzyme due to lack of domains that help forming and stabilizing the bulge.  

Once key contacts between histones and DNA are weakened, alternative sets of histone-

DNA contacts might become energetically more preferable leading to a repositioning of the 

histones relative to DNA (III). DNA-histone contacts may adjust concertedly, or -perhaps 
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more likely- only locally such that the strain propagates in multiple steps around the 

nucleosome4,22. 

Accessory domains may have evolved to optimize catalysis and modulate the outcome of the 

reaction, explaining their diversity among remodeling machines (Fig. 7b)2,4. Consistent with 

previous findings23, we showed that the HSS domain increased the affinity towards DNA, a 

feature that is expected to enhance processivity16,50,51. In agreement with crosslinking 

results24, we obtained evidence for direct contacts between the HSS domain and the 

nucleosome core particle. This interaction was a major source for specificity towards the 

nucleosome. As such, the HSS domain improves productive association of the ATPase 

domain at SHL2, which in turn enhances remodeling. The HSS domain could also optimize 

catalysis by weakening the DNA-histone interactions at the edge of the nucleosome11,16. 

Through interactions with additional subunits and the linker DNA23-25,36,52, the HSS may assist 

sensing the length of the linker or a preferred DNA sequence, and therefore bias the 

remodeling reaction towards specific outcomes such as nucleosome spacing or 

positioning11,24,25,27,28. 

 

 

 

Figure 7: Model for the mechanism of nucleosome remodeling. (a) Suggested remodeling 
mechanism. The HSS domain was omitted from the model as it was evidently not required for the 
basic mechanism. Histones and DNA form multiple contacts with varying strengths (black clamps; 
shown only for the top gyre of DNA). The ATPase domain attaches to histones, for example the H4 N-
terminus (I). Upon ATP hydrolysis, the ATPase domain translocates DNA relative to the histones, 
thereby distorting the nucleosome structure and disrupting DNA-histone interactions in the vicinity of 
SHL2 (II). With the strongest histone-DNA contacts destabilized, the histones rearrange relative to 
DNA to optimize interactions, forming a novel set of contacts and thus a repositioned nucleosome (red 
clamps; III).  (b) Division of labor between the ATPase and HSS domains. Asterisks indicate prior 
work, a dagger anticipated function. 
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Conformational changes within the ATPase domain  

How do the conformational changes within the ATPase domain relate to previously reported 

structural changes in related enzymes? The catalytic domain of the distant relative 

Sulfolobus Sso1653 was crystallized with and without bound DNA35. The two structures only 

showed minor differences well inside the ATPase core, and therefore are unlikely to account 

for the increased exposure of peripheral arginines upon DNA binding. In conflict with the 

crystallographic data but in better agreement with our results, a FRET study using the same 

Sulfolobus protein concluded that DNA binding leads to a major structural rearrangement 

between the two ATPase lobes37.  

Additional crystallographic evidence supports a high degree of flexibility between the two 

ATPase lobes. The ATPase lobes of relatives of ISWI crystallized in a multitude of very 

different orientations31,35,53,54. Conformational changes between the two ATPase lobes may 

be functionally important for these enzymes, e.g. for translocation on DNA or regulation of 

enzyme activity5,44. Conceivably, multiple orientations of ISWI’s ATPase lobes coexist in 

solution, accounting for the different enzyme species detected by our ATPase experiments32. 

DNA may preferentially stabilize a subset of these states, thereby aligning the composite 

catalytic site formed at the cleft between both lobes5. As motifs of both ATPase lobes are 

thought to contact ATP35, a proper alignment of the lobes might increase the affinity for ATP, 

explaining our biochemical data.  

The increased exposure of peripheral arginines upon DNA binding also suggests that these 

regions undergo structural changes. Trypsin cleaved DNA-bound ISWI adjacent to a 

conserved acidic motif in the NTR (Suppl. Fig. 3). Despite lack of sequence similarity, the 

NTR of Chd1 also contains a highly acidic motif, which was suggested to act as a pseudo-

substrate and compete with DNA for binding to lobe 2. In excellent agreement with our 

proteolytic results, the authors proposed that DNA binding would force a structural 

rearrangement in Chd1 in which the NTR undocks from lobe 231. The NTRs of both enzymes 

may therefore fulfill similar roles and gate the entrance to the nucleic acid binding site. 

On the C-terminal side, trypsin cut the polypeptide chain within the ‘brace’ motif of lobe 24. 

The brace is in close contact with lobe 1 and is directly followed by a stretch of amino acids 

that folds back to form a ‘bridge’ between both ATPase lobes31,32. We suggest that the brace 

or bridge may hold the ATPase lobes in a configuration that is not fully competent for ATP 

hydrolysis and that binding of nucleic acids relieves this inhibition. These results reinforce the 

notion that the ATPase domain represents an autonomous remodeling engine, which is 

optimized and modulated by the evolution of accessory domains and subunits. 
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Materials and Methods 

Enzyme expression and purification 

pPROEX‐HTb‐based expression plasmids with genes encoding Drosophila ISWIFL, ISWIFL 

E257Q, ISWI26–648 and ISWI1–697 were kindly provided by C. Mueller (EMBL, Heidelberg, 

Germany). All genes were fused N‐terminally to a 6xHis‐TEV tag. The E257Q mutation was 

introduced into ISWI26–648 by QuickChange mutagenesis. Expression and purification was 

performed as described32. The 6xHis-TEV tag was cleaved off by TEV protease for ISWIFL 

and ISWI1–697. For ISWI26–648, experiments were carried out in the presence of the tag. 

ATPase parameters of ISWI26–648 with and without tag were quantitatively the same (data not 

shown).  

Enzyme assays and enzyme ligands 

Unless otherwise stated, reactions were performed at 28˚C in a buffer containing 25 mM 

Hepes-KOH pH 7.6, 100 mM potassium acetate, 1.5 mM magnesium acetate, 0.1 mM EDTA, 

10% glycerol, 10 mM β-mercaptoethanol. As indicated, some ATPase assays were 

performed in a buffer with an increased buffering capacity (250 mM Hepes-KOH pH 7.6) and 

excess Mg2+ ions (100 mM magnesium acetate) to prevent high concentrations of ATP from 

substantially altering the pH and the concentration of free, unchelated Mg2+ ions. Both buffers 

yielded comparable ATPase parameters (Table 1, Suppl. Table 1). Remodeling was followed 

in 25 mM Hepes-KOH pH 7.6, 50 mM NaCl, 1 mM MgCl, 0.1 mM EDTA, 10% glycerol and 

1 mM DTT at 26°C. All remodeling reactions contained an ATP regenerating system 

consisting of phosphoenolpyruvate (3–6 mM) and a pyruvate kinase-lactate dehydrogenase 

mixture (15.5 u/mL; Sigma). Nucleotides were always added as stoichiometric complexes 

with Mg2+. ADP and AMPPNP were purified before use55. ATP was purified if used at 

concentrations exceeding 3 mM or if no ATP regenerating system was used.  

Oligopeptides and DNA oligonucleotides were purchased HPLC purified (Peptide Specialty 

Laboratories and Biomers, respectively; Suppl. Table 2). Short DNA duplexes were created 

by annealing. The 147-bp DNA used for NCP reconstitution was purified from SmaI digests 

of a plasmid harboring derivatives of the Widom-601 sequence with terminal SmaI sites. 

197-bp DNA was generated by AvaI digests of a pUC derivative containing 25 repeats of the 

Widom-601 sequence (kindly provided by D. Rhodes, NTU, Singapore). During nucleosome 

assembly, it is expected that the 147-bp and 197-bp DNA form 0-N-2 and 29-N-23 

nucleosomes, respectively14,56. DNA used for 13-mer nucleosomal arrays was gene 

synthesized (Genscript). It contained 197-bp repeats of Widom- 601 derivatives with a KpnI 

site at bp –32 relative to the dyad axis of the central nucleosome. 
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Mono- and polynucleosomes were reconstituted with recombinant Drosophila histones by 

salt gradient dialysis as described57,58. g-H4 arrays lacked the 19 N-terminal amino acids of 

histone H4. Nucleosomal arrays were purified by Mg2+ precipitation (25-mer arrays, 3.5 mM; 

13-mer wt-H4 arrays, 5 mM; 13-mer g-H4 arrays, 8.5 mM)42,58. 13-mer arrays were 

subsequently dialyzed into 10 mM Tris pH 7.7, 0.1 mM EDTA pH 8, 1 mM DTT. 

Mononucleosomes used in the TLC ATPase assay were purified over a glycerol gradient 

(10% to 30%) and buffer exchanged into reaction buffer by ultrafiltration. The concentration 

of nucleosomal DNA was determined by measuring its DNA content by UV absorbance at 

260 nm. The indicated concentrations of nucleosomal arrays refer to the concentration of 

individual nucleosomes. Unless otherwise noted, nucleosomes with wt-H4 were used. 

Steady-state ATP hydrolysis assays  

Two different ATPase assays were employed. A thin layer chromatography (TLC) based 

assay was used to follow hydrolysis of γ-[32P]ATP in reactions that required the use of 

subsaturating ATP concentrations (Fig. 3a–c, Suppl. Fig. 4). All other ATPase data were 

collected by a coupled ATP hydrolysis assay in 384 well plates as described32. For the TLC 

assay, reactions were initiated by addition of trace amounts of γ-[32P]ATP supplemented with 

purified, non-radioactive ATP. Three time points (in addition to a “zero” time point from a 

reaction that lacked enzyme) were collected by stopping the reaction with three volumes of 

2 mM EDTA, 0.3 M NaH2PO4, 1 M LiCl. Control experiments showed that ISWI was fully 

quenched on time-scales that were much faster than the experiments required. Reactions 

were spotted on PEI cellulose F (Merck) and developed in 0.3 M NaH2PO4, 1 M LiCl. After 

autoradiography, signals were quantified, and a line was fit through the data points of each 

time course. kcat/KM,obs values were obtained from the slopes by normalizing for the enzyme 

concentration. When the enzyme and ATP concentrations were varied four- and five-fold, 

respectively, measured rates deviated less than two-fold.  

Partial proteolysis assays 

If not specified otherwise, ISWI26–648 (2.5 µM) was partially proteolyzed with trypsin (20 nM; 

Promega), LysC (38 nM; Roche) or ArgC (21 nM; Roche). The reaction was stopped by 

addition of two volumes of SDS sample buffer and immediate incubation at 95˚C for 10 min. 

Samples were separated by SDS-PAGE (12%) and stained by Coomassie Blue.  

Double-filter DNA binding assay 

39-bp DNA was 5’ labeled with γ-[32P]ATP by polynucleotide kinase. Trace amounts of 

labeled DNA were incubated for 10 minutes with varying ISWI concentrations. The mixture 

was then applied on a membrane sandwich composed of a protein binding (Protran-BA85, 

Whatman) and a DNA binding membrane (Hybond-N+, Amersham) as described59. 
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Nucleosome sliding assays 

Mononucleosome sliding: Centrally positioned mononucleosomes (197-bp DNA; 160 nM) 

were incubated with ATP (0.5 mM), ISWIFL (30 nM) or ISWI26–648 (300 nM). Time points were 

quenched by apyrase (2.5 u/µL) and excess linearized plasmid DNA (0.4 mg/mL). Native 

PAGE (4.5%) was performed with 0.2 µg mononucleosomal DNA. 

Polynucleosome sliding: 25-mer regular nucleosomal arrays (30 nM) were incubated with 

ATP (100 µM), and ISWIFL (10 nM) or ISWI26–648 (300 nM). Remodeling was quenched after 

6 h with apyrase (2.5 u/µL). The arrays were then digested with AvaI (1.2 u/µL) for 3 h at 

26°C. Samples were deproteinized and analyzed as described below. Exhaustive digests 

with high concentrations of AvaI overnight gave analogous results. 

Restriction enzyme accessibility assay 

25-mer nucleosomal arrays (100 nM) were incubated for 1 h with wild-type or E257Q mutant 

ISWI26–648 (both 5 µM), ATP (50 µM), and the indicated restriction enzymes (AluI, 0.5 u/µL; 

BsrBI, 0.5 u/µL; BsiWI, 1 u/µL; BanI, 2 u/µL). The reactions were stopped with EDTA (20–

40 mM) and SDS (0.4%). Samples were deproteinized, and DNA was ethanol precipitated, 

resolved by agarose gel-electrophoresis and visualized by ethidium bromide staining.  

To quantitate remodeling, 13-mer arrays (20 or 100 nM) were incubated with ISWIFL or 

ISWI26–648, respectively, ATP (1 mM), and KpnI (2 u/µL). Reactions were quenched and 

analyzed as above. Negligible accessibility (<5 %) was seen when the reaction was 

simultaneously initiated and quenched or when ISWI was omitted. Controls showed that the 

ATP regenerating system was not depleted throughout the assay. kobs for remodeling was 

obtained by fitting the time courses to a single exponential function (Eq. 1). The maximal 

remodeling velocities (kobs,max) were obtained by fitting the data to standard or inverse binding 

isotherms (Eq. 2). 

� = 100 ∗ (1 − 
��
��∗�)         (1) 

� = ����,��� − (��� ∗
���

 !
"# $���

)        (2) 

Observed remodeling rates were proportionally faster for ISWI26–648 (but not ISWIFL) when the 

KpnI concentration was raised from 2 to 5 u/µL. This rate enhancement was independent of 

the ISWI26–648 concentration between 0.3 and 30 µM. Reported rates, including the maximal 

remodeling rate constant kobs,max, are therefore lower estimates for ISWI26–648. The reported 

deleterious effect of the HSS deletion on remodeling is consequently an upper estimate. 
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Kinetic and thermodynamic modelling and data fitting 

Modelling was performed in Mathematica (Wolfram Research). Data were fit with Matlab 

(The Mathworks) or KaleidaGraph (Synergy Software). The biphasic ATPase data were fit to 

Equation 3 (Fig. 1a,b). As saturation with ATP was not achieved, the second phase was 

represented only by the linear term m*[ ATP]. m possesses a complex dependence on the 

rate and equilibrium constants in the reaction scheme (Suppl. Fig. 1a) and was not 

interpreted further. 

% = �&'�,()*
+,'*- / ∗ �ATP� 345,()*

+,'*- / + �ATP�7⁄ + � ∗ �ATP�                                                           (3) 
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Supplementary Note 

Additional scenarios explaining a biphasic ATP concentration dependence of ATP hydrolysis  

1) “ISWI  is mostly dimerized  in solution under assay conditions and each subunit has a different KM 

for ATP.” 

This possibility  is  ruled out by  the observation  that DNA‐free  ISWI  is  in  a monomeric  state  in 

solution as measured by multiple angle light scattering by us (data not shown) and by analytical 

ultracentrifugation by others2. 

2) “A small fraction of  ISWI  is dimerized  in solution under assay conditions, and the monomer and 

the dimer have different KM values for ATP.” 

One would expect  that more dimer  forms with  increasing enzyme concentrations and  that  the 

observed reaction velocity would consequently change as well. This expectation is not consistent 

with experimental results (Suppl. Fig. 2a,b). 

3) “ISWI  preparations  contain  contaminating  DNA.  DNA‐free  and  the  DNA‐bound  ISWI  have  a 

different KM for ATP.” 

Treatment  with  nucleases  and  extensive  purification  of  ISWIFL  using  five  consecutive 

chromatography steps (including size exclusion chromatography  in 2 M salt) did not abolish the 

biphasic behavior seen in Figure 1a. Moreover, we did not observe changes of the biphasic shape 

upon a  jump  in  the  ionic strength of  the buffer  (from 1.5 mM  to 100 mM Mg2+), which should 

drastically weaken protein‐DNA interactions (data not shown). Finally, ISWI1–697
 and ISWI26–648 also 

exhibited a biphasic  response  to  the ATP concentration  (Fig. 1b and data not shown) although 

they intrinsically bound DNA with much weaker affinity than ISWIFL (Suppl. Fig. 5). 

4) “Proteolysis fragments of ISWI are present, and they have a different KM for ATP.” 

The extensive purification discussed above argued against this possibility. Moreover, constructs 

lacking  the  entire  C‐terminus  (ISWI1–697
  and  ISWI26–648)  still  showed  the  biphasic  response  to 

variation of the ATP concentration, making it unlikely that the same contaminants were present 

in all enzyme preparations (Fig. 1b and data not shown).  

5) “ISWI possesses a second, allosteric binding site for ATP.” 

Neither  structural  nor  biochemical  evidence  exists  for  ISWI  or  related  enzymes  to  support  a 

second, allosteric binding site. 

6) “A fraction of ISWI is misfolded and therefore nearly inactive”. 

Active  site  titration  experiments with  39‐bp  long DNA  duplexes  refuted  the  possibility  that  a 

majority of  ISWI26–648 was misfolded  to  the extent  that DNA  could not bind and  stimulate ATP 

hydrolysis  (data not shown). Our active site  titration experiments were, however, not sensitive 

enough to detect a minor fraction of misfolded protein. If this minor fraction were responsible for 

one or the other catalytic phase of the biphasic ATPase curve,  its specific ATPase activity would 

however be considerable as the following consideration shows. In the biphasic ATPase curve, the 

Henrike
Rechteck



Mueller-Planitz et al., Supplementary Information  2

first phase contributed 0.014 s‐1 and the second phase >0.046 s‐1 to the amplitude (Table 1).  If, 

for example, 10% misfolded, nearly  inactive protein were present,  its specific activity would be 

0.14 s‐1 (= 10 × 0.014 s‐1) or >0.46 s‐1 (= 10 × 0.046 s‐1). These values approach the DNA‐stimulated 

kcat,obs of 0.51s 
‐1. The hypothetical misfolded  fraction  can  therefore not be  considered  “nearly 

inactive”. 

 

 

Why can ISWI26–648 not distinguish nucleosomes from free DNA in presence of saturating ATP? 

The kcat/KM,obs
 of ISWI26–648 was markedly (17‐ to 23‐fold) stimulated by NCPs and nucleosomal arrays 

relative to DNA (Fig. 3a,b) whereas the kcat,obs apparently was not (data not shown). Two scenarios 

could explain  these observations. The  first  scenario  is discussed  in  the main  text.  In  this  scenario, 

ISWI26–648 would recognize the DNA component of the nucleosome, leading to DNA‐like stimulation, 

but most enzyme molecules  ‐ at steady‐state  ‐ would not find the proper site at SHL2. Support for 

this scenario came from the observation that ISWI26–648 could only poorly discriminate between free 

DNA and nucleosomes even under subsaturating ATP concentrations. ISWIFL, on the other hand, was 

much less prone to unproductive binding because the HSS domain strongly increased the specificity 

for nucleosomes (Fig. 3c). 

The second scenario, in contrast, posits that all ISWI26–648 molecules bind productively at SHL2 of the 

nucleosome.  Lack of  stimulation of  kcat,obs  therefore  cannot be explained by unproductive binding 

elsewhere on nucleosomal DNA in this model. If true, KM,obs for ISWI26–648 would have to decrease by 

17‐  to 23‐fold,  such  that  kcat,obs devided by KM,obs would  yield a  value  that  is 17‐  to 23‐fold  larger 

relative to DNA. Evidence against this scenario came from steady‐state ATPase parameters of ISWIFL. 

The KM,obs of ISWIFL was only modestly decreased (two‐ to three‐fold; Suppl. Table 1). Given the high 

similarity of the ATPase parameters of ISWIFL and ISWI26–648, the second scenario seemed unlikely. 
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mg/mL, referring to the DNA content). Increasing ATPase rates between 0 and 0.2 μM ISWIFL were 

consistent with enzyme dimerization on nucleosomes and subsequent enzyme activation2. The 

decreasing activity observed for the lower chromatin concentration above 0.2 µM ISWIFL was well 

explained by out‐titration of available ISWI binding sites on chromatin. The data were collected with 

3 mM ATP and 1.5 mM free Mg2+. (d) Simple reaction scheme to explain the data shown in c. A single 

enzyme (E) bound to a nucleosome (N) hydrolyzes ATP with a different rate constant (kcat) than an 

enzyme dimer (k’cat). (e) In silico modeling of the reaction scheme in d recapitulated the features of 

the curves in c. Simulations were run for two nucleosome concentrations (0.2 µM, dashed line; 1 

µM, solid line) with KD1 = 10
‐1 µM, KD2 = 10 µM, KD3 = 10

‐2 µM, KD4 = 10
‐4 µM and k'cat = 4 kcat. 
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Abstract 

Nucleosomes, the basic organizational units of chromatin, package and regulate eukaryotic 

genomes. ATP-dependent nucleosome remodeling factors endow chromatin with structural 

flexibility by promoting assembly or disruption of nucleosomes and the exchange of histone 

variants. Furthermore most remodeling factors induce nucleosome movements, through 

sliding of histone octamers on DNA. We summarize recent progress towards unraveling the 

basic nucleosome sliding mechanism and the interplay of the remodelers’ DNA translocase 

with accessory domains. Such domains optimize and regulate the basic sliding reaction and 

exploit sliding to achieve diverse structural effects, such as positioning or eviction of 

nucleosomes, or their regular spacing in chromatin.  

Introduction 

The packaging of eukaryotic genomes as chromatin evolved by accommodating the 

conflicting demands of storing, organizing and protecting the genetic information and at the 

same time making sure that it could be accessed as needed. The organization of DNA in 

complex with histones in the form of nucleosomes provided a successful solution to the 

problem. Nucleosomes are found in all eukaryotes and histones are among the most highly 

conserved proteins. A nucleosome organizes about 146 bp of DNA, which winds in 

approximately 1.7 turns around a histone octamer consisting of two of each of the histones 

H2A, H2B, H3 and H4 (ref. 1). Although DNA is a relatively stiff molecule, it tightly bends 

around the octamer thanks to a multitude of interactions between DNA and histones2.  

Nucleosomes are remarkably stable at physiological temperatures and block access to the 

underlying DNA. Nature solved this conundrum by evolving nucleosome remodeling 

ATPases that can mobilize nucleosomes, such that previously nucleosomal DNA now 

becomes accessible.  

Comparison of the amino acid sequences of the ATPase domains of nucleosome remodeling 

enzymes reveals their evolutionary relationship to DNA/RNA helicases (Fig. 1). Within the 

SF2 superfamily of helicase-like enzymes, remodeling enzymes form the Snf2 family, which 

can be further subdivided into 24 subfamilies3. Typically, nucleosome remodeling ATPases 

form a variety of complexes (referred to as nucleosome remodeling factors) with several 

other proteins. The ubiquitous presence of nucleosome remodeling factors suggests that 

chromatin is a dynamic entity, characterized by constant changes in the position or 

composition of nucleosomes.   

Remodeling factors catalyze seemingly disparate reactions. Some partially or completely 

disassemble nucleosomes. Others assemble them de novo, or exchange histones for histone 

variants. Most remodeling factors can move nucleosomes along DNA in a process termed 

nucleosome sliding4.  
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Analysis of the sliding activity of remodelers in vitro revealed qualitative and quantitative 

differences. SWI/SNF and related remodelers, for instance, can push the histone octamer 

beyond one end of a short piece of DNA, transfer histone octamers or create unusual 

dinucleosomal species in vitro, properties that for example ISWI remodelers normally lack5-8. 

Although the outcome of remodeling by different factors can be diverse, the underlying 

mechanism often seems to be rooted in the sliding activity9,10. We will therefore focus on 

latest progress to unravel the mechanism and physiological outcomes of nucleosome sliding. 

Physiological outcomes of nucleosome sliding 

Mobilization of nucleosomes allows optimizing positions with respect to their neighbors (Fig. 

2a). Removal of some remodeling factors in yeast leads to suboptimal packaging of the 

chromatin fiber and the spurious transcription of non-coding, often antisense RNA11-15. 

Optimal nucleosome density and appropriate spacing of nucleosomes also assures the 

integrity of the newly synthesized chromatin fiber in the wake of replication.  

The chromatin fiber is occasionally punctuated by nucleosome-depleted regions (NDRs) due 

to the presence of stiff DNA sequences that resist the bending over the histone octamer 

surface, or due to bound proteins at regulatory elements, such as active promoters16. 

Nucleosome arrays are often positioned ‘in register’ with respect to the NDR (Fig. 2b). This 

kind of nucleosome phasing depends on the action of nucleosome remodeling factors and in 

all likelihood their capability to slide nucleosomes17-20. 

 

Figure 1: Schematic family tree illustrating the classification of nucleosome 

remodeling ATPases of the Snf2 family according to their relatedness at the sequence 

level. The hierarchical path from the superfamily of helicases to the subfamilies of remodelers 
discussed in this review is highlighted in bold. Adapted from reference 3. 
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Besides these global effects of nucleosome sliding, there are also examples where the 

targeted repositioning of individual nucleosomes by dedicated remodelers renders regulatory 

sequences accessible or, conversely, occludes them (Fig. 2c)21. For example, the yeast 

remodeling complex RSC is widely involved in keeping promoters nucleosome-free17,22. By 

contrast, the yeast Isw2 complex shifts nucleosomes on promoter sequences to hinder 

transcription initiation23-25. 

Mechanistic concepts in nucleosome sliding 

During nucleosome sliding, the histone octamer moves along DNA without dissociating from 

it. To achieve this, numerous contacts between DNA and histones must be broken and 

reformed in a highly coordinated manner making the catalytic process of sliding a formidable 

challenge. How can remodeling enzymes facilitate this process? Nucleosome remodeling 

enzymes are able to bind the DNA and histone moiety of a nucleosome. Once these contacts 

are established, a remodeling enzyme could conceivably cycle through a succession of 

conformational changes that are triggered by the binding of ATP, hydrolysis and dissociation 

of the hydrolysis products, thereby disrupting DNA-histone contacts. Some early models 

assumed that such action might detach DNA at the nucleosomal entry site from the histone 

surface and replace it by linker DNA, effectively ‘looping out’ a segment of DNA on the 

nucleosome (Fig. 3a). Such a DNA loop could be propagated around the histone octamer 

with little additional energy expenditure. Once it emerges on the other side, the nucleosome 

 

Figure 2: The different physiological outcomes of nucleosome sliding. (a) Nucleosome 
remodeling enzymes can introduce and maintain a regular spacing of nucleosomes. (b) The phasing 
of nucleosomal arrays with respect to a nucleosome-depleted region (NDR), a prominent feature of 
promoters, depends on nucleosome remodeling enzymes. (c) Nucleosome sliding activity regulates 
the accessibility of DNA sequences by positioning individual nucleosomes. 
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has moved. A number of early observations were used to support this model, though direct 

evidence for the presence of a loop and its functional relevance was lacking26-36. 

A critical step forward in our understanding of the sliding mechanism were observations 

made in several labs demonstrating that nucleosome remodeling ATPases are able to 

translocate on DNA like helicases. Indeed, they track along one strand of the DNA double 

helix in a 3’ to 5’ direction35,37,38. Unlike bona fide helicases, however, remodeling factors do 

not separate the DNA strands during translocation. Remarkably, remodeling ATPases do not 

start to translocate from the DNA that flanks the nucleosome, thereby peeling off 

nucleosomal DNA from the edge. Instead, their binding site appears to be well within the 

nucleosome, two helical turns off the dyad axis at superhelical position -2 (SHL-2)38-42.  

Rather than picturing an enzyme that moves on DNA like a train on railroad tracks, we 

imagine that the remodeler is anchored on the nucleosome and ratchets DNA over the 

histone surface. This will inevitably lead to local DNA distortions43 and thus disruption of 

important histone-DNA interactions (Fig. 3b). Structural studies suggest that nucleosomes 

 

Figure 3: Nucleosome sliding mechanisms. (a) In the loop propagation model the action of the 
remodeling enzyme leads to the local detachment of DNA from the octamer surface at the entry site. 
This allows the formation of contacts between the octamer and the flanking DNA leading to the 
formation of a DNA loop. The loop propagates around the octamer resulting in the repositioning of the 
nucleosome. (b) The translocation activity of the nucleosome remodeling enzyme at SHL-2 leads to 
local DNA distortions that can propagate around the nucleosome. (c) Perturbations of the DNA-histone 
contacts introduced by the action of the nucleosome remodeling enzyme cause structural changes 
within the octamer that may result in its reorientation. Dark grey: DNA flanking the entry site and 
nucleosomal DNA between entry site and SHL-2. Light grey: DNA between SHL-2 and the DNA exit 
site, including the flanking DNA. Red: Perturbation introduced by the nucleosome remodeling enzyme. 
The arrows indicate movement of DNA relative to the histone octamer.  
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may locally accommodate a variable number of base pairs44,45. Such a twist defect could be 

propagated from one DNA segment to the next until it escapes the nucleosome. 

In addition, structural changes of the histones may contribute to dissipating the strain that is 

imposed by the remodeler onto the nucleosome (Fig. 3c). For example, we expect that side 

chains that are directly involved in histone DNA interactions reorient, but detailed structural 

information is missing. Conceivably, the octamer could also undergo more substantial 

structural changes during remodeling. Indeed, the nucleosome has considerable structural 

plasticity at its disposal, which may play an important role during remodeling46. The general 

models for nucleosome sliding discussed above should not be considered mutually exclusive 

as DNA loop formation, twist changes and conformational rearrangements of the octamer 

may all accompany remodeling. 

Mechanistic studies of remodeling ATPases are complicated by the fact that these highly 

specialized enzymes integrate several functions. The basic sliding reaction is enhanced and 

tuned by accessory domains and subunits, which assure substrate specificity and affinity and 

optimize kinetic parameters. Other modules may serve to regulate the remodeling activity 

and to harness the sliding of target nucleosomes in the context of physiological tasks, such 

as restoring the integrity of the chromatin fiber by regular spacing of nucleosomes. Below we 

review recent progress in dissecting the remodeling reaction into basic mechanism, 

enhancement, regulation and physiological outcome. Most insight has been derived from 

studying just a handful of enzymes within the Snf2-like grouping of subfamilies, in particular 

ISWI- and CHD-type enzymes. Nevertheless, some general concepts have emerged.  

The Snf2 ATPase domain: an autonomous remodeling engine 

Given the structural complexity of remodeling ATPases, what are the minimal requirements 

to catalyze nucleosome sliding? We and others found by studying the ISWI remodeling 

enzyme from Drosophila melanogaster that all fundamental aspects of nucleosome 

remodeling are contained within the central, compact ATPase module47,48. This domain can 

independently hydrolyze ATP, and its ATPase activity can be stimulated by DNA- and 

nucleosomes to the same extent as the full-length enzyme. Furthermore, it can recognize the 

flexible N-terminal domain of histone H447, a well-documented feature of ISWI enzymes49. 

Notably, it can autonomously reposition nucleosomes. The conclusion that the ATPase 

domain alone can carry out the basic mechanism of nucleosome sliding is consistent with 

reports on CHD enzymes50-52 . The observation that an isolated ATPase module contained 

everything needed for nucleosome remodeling was surprising, as earlier studies had 

suggested that an accessory DNA binding domain was crucially required53-55. 

How does the basic remodeling mechanism work? The ATPase domains of all studied 

nucleosome remodelers interact with the nucleosome at SHL-2, although reportedly with 
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notable differences56. This strategic site is marked by the emergence of the H4 tail and is 

adjacent to the strongest histone-DNA interactions on the nucleosome at the dyad29,57. The 

structural changes imposed by an ATPase domain that attempts to translocate DNA relative 

to the octamer towards the dyad may have profound energetic consequences. If the 

strongest histone-DNA contacts were weakened, the nucleosome could be destabilized 

enough so that histones spontaneously rearrange (Fig. 4a)29,47. Consistent with the model, 

the crystallographic structures reveal that nucleosomes can accommodate structural 

variability at SHL-2 (ref. 45). Furthermore, the earliest structural changes detectable in the 

nucleosome during remodeling are located around the dyad, though the exact nature of the 

changes has yet to be resolved58.  

In conclusion, the nucleosome sliding activity of remodeling enzymes appears to have 

evolved directly from ancestral helicase-type motors. Targeting the nucleosome, helicase-like 

Figure 4: Recent insights into nucleosome sliding by remodeling factors of the ISWI 

subfamily. (a) Suggested mechanism of sliding by the ISWI ATPase module. An ISWI deletion 
mutant that comprises just the enzyme`s ATPase domain can productively engage the nucleosome at 
SHL-2 where it recognizes the H4 tail. Its translocase activity perturbs DNA-histone contacts in an 
ATP-hydrolysis dependent manner leading to nucleosome sliding. Weakening of key contacts in the 
proximity of SHL-2 may suffice to introduce profound structural changes in the nucleosome and allow 
a rearrangement of the octamer (adapted from ref. 47). SHL-2 is marked by an arrow. DNA-histone 
contacts and their varying strengths57 are indicated by clamps. (b) Model for nucleosome sliding by 
remodeling factors of the ISWI subfamily according to Deindl et al. (2013). The remodeler interacts 
with the nucleosome at SHL-2 and at the entry site reaching out onto flanking DNA as indicated in 
green (I.). The translocase activity at SHL-2 leads to the consecutive exit of seven base pairs, creating 
a strain in the nucleosomal DNA between the remodeler contact sites (indicated in red) (II.). The strain 
is partly released by three base pairs entering the nucleosome at the entry site (III.), but re-established 
by the subsequent exit of three base pairs at the exit site (IV.). 
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DNA translocation and the ensuing destabilization of the nucleosome may have been all that 

was required for a rudimentary remodeling reaction. 

Remodeling single base pairs at a time 

A recent study provided unprecedented detail and resolution of nucleosome sliding catalyzed 

by yeast ISWI complexes59. Single molecule FRET experiments allowed monitoring the 

shifting of DNA relative to the histone octamer and yielded two remarkable results. The 

authors found that base pairs (bp) exit the nucleosome one by one (Fig. 4b). This 

observation suggested that the translocation activity of the ATPase domain pumps single 

base pairs at a time over the surface of the nucleosome just as its helicase relatives do60, 

and that the ATPase pumps DNA not fast or vigorously enough to build up DNA loops 

downstream of the site of translocation. The propagation of DNA as single base pairs is in 

agreement with the ‘twist diffusion’ model (Fig. 3b). However, earlier studies showed that 

nicks or single stranded gaps in the DNA between the translocase and exit site do not 

abrogate remodeling28,34,35,38-40. Apparently, the strain has multiple ways to dissipate, e.g. via 

rearrangement of the histone core (Fig. 3c) or – at least for nicked substrates – possibly by 

bulging out DNA. Local changes in DNA twist may therefore be one consequence of 

remodeling rather than its driving force.  

The other remarkable result was that the emergence of DNA at the ‘exit’ site is uncoupled 

from the entry of DNA at the other end. Notably, the ISWI complexes extrude 7 bp from the 

nucleosome before one can observe 3 bp of DNA entering the realm of the nucleosome from 

the ‘entry’ site. After these initial DNA distortions, 3 bp exit before another three enter, 

leaving the nucleosome with a chronic lack of several base pairs at any given time.  

The initial seven base pairs must originate from the DNA in between the ‘entry’ site at 

superhelical location -7 (SHL-7) and the translocase site (SHL-2; Fig. 4b). Assuming that the 

histone octamer does not profoundly change its structure, the DNA in this region would have 

to drastically stretch and underwind. The nucleosome’s ability to accept twist defects in each 

DNA segment certainly assists this mechanism. Nevertheless, the sheer magnitude of the 

strain raises the question if other mechanisms participate. For example, the octamer 

structure itself could adapt or the DNA may take an altered path on the histone surface61-63. 

These structural perturbations could conceivably provide an explanation for changes 

detected by DNA footprinting assays in this region early during the reaction64. The sequential 

nature of remodeling58,59 argues against models that postulate a “concerted” histone 

reorientation29, and the chronically overstretched DNA provides strong evidence against DNA 

loops also upstream of the site of translocation, between SHL-7 and -2. 

These data suggest that the ATPase domain of ISWI, in particular its translocase activity, is 

the major driving force for remodeling. Given the strong conservation of the ATPase domain 
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(Fig. 1), this conclusion may apply also to other subfamilies. Nevertheless, remodeling 

factors contain prominent auxiliary domains, some of which clearly optimize catalysis and 

fulfill specialized functions. 

Room for improvement: tweaks to optimize catalysis 

Enzymes of the ISWI- and CHD1-type share C-terminal DNA binding modules (DBDs) 

comprising SANT and SLIDE domains53,65. The DBD is able to bind to DNA at the 

nucleosomal entry site and in the adjacent linker66,67. Without this module, ISWI has poor 

affinity for the nucleosome and can only poorly distinguish nucleosomes from naked DNA. 

The evolution of a DBD simultaneously solved these issues by increasing affinity and 

specificity47,53. Presumably as a direct consequence of the enhanced affinity, processivity of 

remodeling is also increased by the domain58. 

Anchoring the remodeler to the nucleosome with modules such as the SANT-SLIDE module 

also increases the likelihood that the translocase domain productively engages the 

nucleosome at SHL-2 (ref. 47). Anchoring modules can thereby help to couple ATP 

hydrolysis to sliding, increasing the energy efficiency of remodeling68,69. They do not have to 

fulfill highly specialized functions, though. The SANT-SLIDE domain of Chd1, for instance, 

can be substituted by generic DBDs that recognize special consensus sequences in the 

linker DNA52. Even streptavidin-biotin linkages that tether the ATPase domain to the 

nucleosome suffice10.  

To what extent the ATPase domain actively coordinates with auxiliary domains to improve 

catalysis is unclear. For example, it has been suggested that the ATPase cycle triggers a 

power stroke between the DBD and ATPase domain of ISWI to pull in 3 bp of flanking 

DNA58,59. Alternatively, the flanking DNA may simply passively ratchet into the nucleosome 

as soon as the tension created by the DNA translocase becomes too large and the DBD 

loses its grip on the DNA, a mechanism that does not require a precisely timed power stroke 

between the DBD and ATPase domain. The plethora of auxiliary domains and subunits 

present in remodeling factors suggests the existence of numerous other routes to optimize 

catalysis.  

Regulating the remodeling engine 

The succession of steps throughout the catalytic cycle is tightly regulated in molecular 

machines. Every step triggers the next. The regulatory framework that allows the enzyme to 

proceed through catalysis in such a controlled manner must be exposed to understand the 

overall mechanism. Binding of nucleic acid substrate, for example, elicits a conformational 

change within the ATPase domain, which in turn activates ATP hydrolysis47,70. ISWI and  
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CHD1 contain a number of regulatory structures at their N- and C-termini that mediate this 

and other structural transitions. 

Among these regulatory structures are two peptide motifs immediately C-terminal to the 

ATPase domain of ISWI and CHD1, the ‘brace’ and ‘bridge’ (a.k.a. ‘NegC’; Fig. 5a). By 

contacting the two ATPase lobes, they are thought to restrict the conformational flexibility of 

the two lobes against each other and hold them splayed apart in a catalytically inactive 

conformation in the absence of nucleic acids51,71. Conformational changes in the brace upon 

DNA binding correlate with strong activation of ATP hydrolysis47. Consistent with a negative 

regulatory role, it was found that the deletion of the bridge activated nucleosome sliding48. 

Together these studies suggest that nucleic acid binding counteracts the auto-inhibition 

provided by these motifs and allows the two ATPase lobes to contact each other to form a 

catalytically competent state (Fig. 5b).  

The N-termini (NTRs) of ISWI and CHD enzymes contain further regulatory structures (Fig. 

5). Although the NTRs of ISWI and CHD1 are not related at the sequence level, recent 

observations suggest that they carry out similar duties. Both may be part of a sensor for the 

histone H4 tail of the nucleosome. They also have been implicated in ‘gating’ the binding site 

 

Figure 5: Model for the regulation of the activity of ISWI-type remodeling enzymes. (a) 
Schematic depiction of the ISWI domain structure. (b) Scheme of unliganded (left) and nucleosome-
bound (right) ISWI according to current models. In the unliganded state, the NTR contacts the ATPase 
domain. This contact includes the AutoN motif, an H4-tail basic-patch mimic in the NTR, which 
interacts with a binding site in the ATPase domain. The brace-bridge region makes contacts with both 
ATPase lobes. These interactions stabilize the two lobes in a state incompatible with ATP hydrolysis. 
Binding of the ATPase domain to nucleosomal DNA and the H4 tail releases the NTR. The brace-
bridge is released when the DBD engages flanking DNA. This allows the ATPase lobes to adopt a 
more compact conformation that is competent for ATP hydrolysis and proper coupling of ATP 
hydrolysis to nucleosome sliding. 
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for DNA that resides in the ATPase domain. Just like the C-terminus, the N-terminus of ISWI 

and CHD1 therefore rearranges its conformation before the enzymes can properly dock onto 

the nucleosomes48,51. Intriguingly, Clapier and Cairns found that the N-terminus of ISWI 

contains a short peptide motif, ‘AutoN’, whose sequence resembles the ‘basic patch’ of 

histone H4, an important motif required by ISWI remodelers for optimal catalysis72,73. 

According to their recent model, the interaction of AutoN with the ATPase domain is 

inhibitory until the H4 epitope on the nucleosomal substrate successfully competes for 

ATPase interaction (Fig. 5b). Together, the N- and C-termini of ISWI and CHD1 remodelers 

provide specificity for the nucleosome and prevent ATP hydrolysis in the absence of a proper 

substrate. Their conformational changes are part of a regulatory network that ensures the 

timed and controlled succession of steps through the reaction cycle. It remains to be seen if 

similar networks are at work in other remodeling factors. 

Auxiliary domains direct the outcome of nucleosome sliding 

As discussed above, nucleosome sliding may have very different effects on chromatin. 

Although the ATPase domains of different remodelers differ from each other in fine detail and 

in ways that may affect catalytic parameters56,74, the presence of auxiliary domains with very 

different features – and associated subunits contributing such domains – can have major 

impact on the final outcome of sliding75-78. In addition, the prevalent presence of domains that 

recognize (‘read’) histone modifications suggests that the substrate recognition may be 

sensitive to modifications4,79. 

An instructive example how auxiliary domains directly influence the outcome of a basic 

remodeling reaction is the SANT-SLIDE DBD of ISWI- and CHD-type remodelers. 

Replacement of the DBD of Chd1 with domains that recognize specific DNA sequences led 

to sliding of nucleosomes towards and onto the binding site10,52, a feature that wild-type 

remodelers may indeed exploit to position nucleosomes. By the same logic, association of 

subunits that are able to recognize specific DNA elements will affect substrate selection and 

may contribute to positioning80-83. Interaction of the remodeler with a certain length of linker 

DNA may limit the extent and direction of nucleosome sliding and thus provide a way to 

adjust the length of the linker DNA between neighboring nucleosomes promoting their even 

spacing41,54,67,84-87.  

By binding to the DNA adjacent to the nucleosome, the SANT-SLIDE modules anchor the 

remodeler to the nucleosome66. The module however may not fit between two nucleosomes 

if the linker DNA is too short. Consequently, short spacing of nucleosomes could hinder 

interaction of CHD and ISWI remodelers with chromatin. This is apparently the case in the 

yeasts S. cerevisiae and S. pombe, which feature only 18 bp or 7 bp of average linker DNA 

length, respectively88. Only upon disruption of the nucleosome array through transcription, 

longer stretches of free DNA arise. The remodelers seize the opportunity to bind and then 
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help reinstall the integrity of the fiber by nucleosome spacing88. A global state of chromatin 

disruption can be experimentally induced by depletion of nucleosomes in vivo. Under those 

critical conditions, the yeast Isw2 complex was found to be particularly involved in moving 

nucleosomes in what appeared to be an effort to optimize the packaging of the DNA89. 

By developing domains that interact with DNA flanking the nucleosome, ISWI and CHD 

remodelers also may have evolved a way to guard against damaging nucleosome 

collisions10. SWI/SNF–type remodelers on the other hand do not tightly interact with linker 

DNA. These remodelers are able to move histone octamers into the territory of the adjacent 

nucleosome, effectively ‘peeling off’ DNA of the nucleosome neighbor and releasing an H2A-

H2B dimer90. The removal of H2A-H2B dimers in promoter nucleosomes may render 

transcription factor binding sites accessible and thus constitutes a step towards the activation 

of certain genes91. An extreme scenario poses that a remodeler may use a histone octamer 

as a wedge to unravel a neighboring nucleosome entirely9,90,92,93. Some cases of histone and 

nucleosome eviction can therefore be explained by extension of the nucleosome sliding 

mechanisms. The presence of accessory subunits or collaborating factors, like histone 

chaperones, will regulate the precise outcome of such reactions.  

The possibilities to implement additional regulatory levels that profoundly affect the final 

outcome of remodeling are manifold. For example, ISWI dimerizes when it binds to 

nucleosomes. Dimerization improves catalysis and allows the sliding reaction to change 

directions in the middle of a processive run94,95. CHD1 on the other hand appears to slide 

nucleosomes as a monomer96. Association with additional, non-catalytic subunits can confer 

or increase processivity59. Since remodeling occurs on nucleosomal arrays, it is possible that 

some remodeling complexes may recognize features of neighboring nucleosomes and that 

their physiological substrates are dinucleosomes67. 

Concluding remarks 

Nucleosome remodeling enzymes evolved from helicase-like ancestors by harnessing a 

basic DNA translocation reaction to disrupt histone-DNA interactions. This activity is inherent 

to the remodeler`s ATPase domains and is the basic mechanism underlying nucleosome 

remodeling. Accessory DNA and histone binding domains have been added to optimize 

nucleosome recognition and the processivity, directionality and efficiency of sliding. Some of 

these domains acquired regulatory roles as competitive or allosteric auto-inhibitors in the 

absence of the correct substrate. Sequence or length preferences for binding to linker DNA 

helped determine whether nucleosome sliding leads to positioning of individual nucleosomes, 

to regular spacing of nucleosome arrays or to eviction of histones or nucleosomes.  

The sliding mechanism is likely to take full advantage of the structural flexibility built into 

nucleosomes. Remodeling intermediates in which the DNA is detached from the surface of 
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the histones may accumulate under certain circumstances. Other intermediates may have 

altered DNA twist or octamer structure. We are looking forward to a comprehensive tracking 

of these nucleosome remodeling intermediates. Distinguishing structural intermediates that 

are indispensable for the remodeling process from those that arise purely as a consequence 

of remodeling remains a challenge and requires a combination of quantitative functional and 

structural assays. 

Detailed quantitative dissections of the remodeling mechanisms are so far only available for 

select remodelers. The future will tell to what extent the mechanisms are shared. High-

resolution single molecule measurements on a variety of remodeling complexes will be 

particularly revealing in this respect. 

 

Short summaries of key references 

(Patel et al., 2013): 

Chd1 acquired SWI/SNF-like properties when its DBD was substituted for streptavidin and 

the remodeler was targeted to nucleosomes via a biotin tag on histones. This result 

suggested that binding of the remodeler to linker DNA constrains nucleosome mobility and 

alters the specificity of the reaction. 

(Mueller-Planitz et al., 2013): 

This quantitative study showed that the ATPase domain of ISWI is an autonomous, 

rudimentary nucleosome remodeling machine. It can recognize and remodel nucleosomes 

und its ATPase is properly regulated by the nucleosomal substrate. 

(Hota et al., 2013): 

This paper showed that interactions of Isw2 with extranucleosomal DNA promote 

nucleosome mobilization. The authors resolved several unconcerted structural changes 

within the nucleosome well before the nucleosome was shifted to a new DNA location. 

(Deindl et al., 2013): 

Single molecule FRET experiments revealed the succession of events during nucleosome 

sliding by ISWI remodelers in unprecedented detail: the remodelers extruded several bp of 

DNA in single bp increments from the nucleosome before adjacent DNA entered from the 

opposite end.  

(Clapier and Cairns, 2012): 

This study identified two auto-inhibitory modules in the N- and C-terminus of ISWI that 

regulate the enzyme. These inhibitory structures are released when the remodeler interacts 

with the histone H4 tail and extranucleosomal DNA. 
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(Hauk et al., 2010): 

This work presented the crystal structure of Chd1 comprising its NTR and ATPase domain 

and provided evidence that the NTR regulates the enzyme`s ATPase activity by occluding its 

binding site for nucleic acids.  

(McKnight et al., 2011): 

Sequence-specific DBDs of unrelated proteins could substitute for the DBD of Chd1 

suggesting that the DBD and ATPase domains can function as independent modules. 

Notably, the chimeric remodeler now shifted nucleosomes towards and onto the 

corresponding DNA consensus site. 
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Nucleosome remodelling enzymes of the ISWI family reposition
nucleosomes in eukaryotes. ISWI contains an ATPase and a
HAND-SANT-SLIDE (HSS) domain. Conformational changes
between these domains have been proposed to be critical for
nucleosome repositioning by pulling flanking DNA into the
nucleosome. We inserted flexible linkers at strategic sites in
ISWI to disrupt this putative power stroke and assess its
functional importance by quantitative biochemical assays. No-
tably, the flexible linkers did not disrupt catalysis. Instead of
engaging in a power stroke, the HSS module might therefore
assist DNA to ratchet into the nucleosome. Our results clarify the
roles had by the domains and suggest that the HSS domain
evolved to optimize a rudimentary remodelling engine.
Keywords: ISWI; chromatin remodelling; nucleosome sliding
EMBO reports (2013) 14, 1092–1097. doi:10.1038/embor.2013.160

INTRODUCTION
Nucleosomes are the basic packaging units of chromatin in
eukaryotes. By binding tightly to B146 bp of DNA, they act as
physical barriers for the cellular machinery that needs to access
the underlying DNA, for example, during transcription, DNA
replication and DNA repair. The cell must precisely control the
genomic location of nucleosomes to allow for a regulated use of
the genetic material in response to different environmental and
developmental stimuli.

Mobilizing the nucleosomes is a challenge for the cell as they
are inherently stable particles. Dozens of DNA-histone contacts
must be broken to rearrange nucleosomes. The cell thus employs
dedicated enzymes, so called ATP-dependent nucleosome
remodelling factors, to shift the position of nucleosomes along
DNA [1]. Remodelling factors of the ISWI and several other
families can move nucleosomes along DNA in a process that
is termed nucleosome sliding. Elucidating the molecular
mechanisms of remodelling enzymes remains a pressing goal.

Early mechanistic clues came from the observation that all
remodelling factors contain ATPase engines that are evolutionary
related to DNA helicases [2]. Indeed, many remodellers can
translocate on DNA much like helicases do [3–5]. However,
unlike helicases, they do not separate the DNA strands.
Remarkably, the ATPase domains of several remodellers localize
to DNA well within the nucleosome, two helical turns away from
the nucleosomal dyad, suggesting that helicase-like translocation
of DNA takes place inside the nucleosome [5–9].

DNA translocation within the nucleosome begs the question
how DNA enters the nucleosome in the first place. For

remodelling by ISWI enzymes, it has been proposed that a

conformational change mechanically pulls flanking DNA into the

nucleosome [10–13]. The energy required for this conformational

change would come from hydrolysis of ATP. A step that uses

chemical energy to perform mechanical work is often called a

power stroke, a terminology that we adopt herein. The carboxy-

terminal DNA-binding domain (DBD) of ISWI, which comprises

the HAND, SANT and SLIDE (HSS) domains, would be intimately

involved in such a power stroke, as it binds to the DNA that flanks

the nucleosome [14]. Notably, recent models propose that the

power stroke takes place only after the first 7 bp of DNA have

been extruded already from the nucleosome’s exit site through

the translocase activity of the ATPase domain. The size of the

proposed power stroke has been measured to be r3 bp [11].
Other data appear to be in conflict but can be reconciled with

the power stroke model. We and others have shown that ISWI can
remodel nucleosomes even if the HSS module is missing [15,16].
Similarly, the C-terminal DBD of Chd1, composed of a
related SANT-SLIDE module [17], is also not required for
remodelling [18,19]. Nevertheless, the remodelling activity of
ISWI decreases an order of magnitude on deletion or mutation of
the HSS module [10,15]. This drop in activity could potentially be
attributed to a missing power stroke in the deletion mutants.

Other scenarios, however, can also explain the drop in activity
incurred by deletion of the HSS module without invoking a power
stroke. As the HSS domain is the nucleosome recognition
module [15,20], the ATPase domain lacks sufficient specificity
to dock productively to its binding site on the nucleosome. Lack
of specificity can result in lower observed ATPase and re-
modelling activity. This problem becomes especially apparent
with saturating concentrations of ATP [15]. In addition, the
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removal of the HSS module might allow a polypeptide motif at
the C-terminal end of the ATPase domain known as ‘bridge’ or
‘NegC’ to inhibit the enzyme by holding the ATPase domain in a
catalytically less active conformation [15,16].

Here we explore whether a power stroke operating between the
ATPase and HSS module constitutes an important part of the
catalytic strategy of Drosophila ISWI. As rigidity in the force-
transducing regions of the protein is necessary during a power
stroke, one can test the functional relevance of the putative
power stroke by artificially increasing the flexibility of these
enzyme regions [21,22]. To this end, we inserted glycine-serine
rich linkers at several strategic locations in the protein. These
linkers act like random coils with a high degree of flexibility
[23,24]. Surprisingly, ISWI enzymes with these artificial, flexible
hinges showed no defect in ATPase, restriction enzyme
accessibility-based remodelling and nucleosome sliding assays.
These results strongly argue against the power stroke model. We
instead conclude that the HSS module assumes a more passive
role during catalysis in that it mainly increases the time the ATPase
engine can productively engage with the proper binding site
on the nucleosome. With regards to how DNA enters the
nucleosome, we propose that DNA ratchets into the nucleosome
once the tension that builds up by extruding base pairs (bp) from
the exit site becomes too large.

RESULTS
To probe for the importance of the putative ATP-dependent power
stroke, we inserted glycine- and serine-rich flexible linkers [23,24]
into regions of ISWI that could conceivably transmit the force.
The ‘brace’ and ‘bridge’ at the C-terminal end of the ATPase
domain could be such elements, because they intimately
contact both ATPase lobes and thus could directly react to
the ATPase cycle [2,15,16,19,25]. The connection between the
ATPase and HSS modules is another prime candidate, as the force
generated by the ATPase domain must reach the HSS module.
Force transmitted from the HAND-SANT to the SLIDE domain
would have to go through the connecting spacer helix, as no
tertiary contacts between SANT and SLIDE exist [20]. We chose
altogether four insertion points (Fig 1A). Linker lengths varied
between 10 and 20 amino acids. When fully extended, these
linkers can reach B4–8 nm, a significant range considering
the size of the proposed power stroke (r3 bp, equivalent to
r1 nm; [11]). All ISWI preparations (Fig 1B) were monodisperse
as judged by size exclusion chromatography (supplementary
Fig S1 online). The monodispersity attests to the overall structural
integrity of the enzymes.

The HSS domain has been proposed to communicate to the
ATPase domain and modulate its ATP hydrolysis. Mutations in
the SLIDE domain, for instance, can allosterically affect ATP
hydrolysis [10]. Moreover, nucleosomes no longer stimulate
ATP hydrolysis better than naked DNA when the HSS domain is
removed with saturating, although not with sub-saturating,
concentrations of ATP [15]. We therefore tested if the ISWI
derivatives that have a more flexible link between the ATPase and
C-terminal domains could efficiently hydrolyse ATP. We used
saturating ATP concentrations to measure ATP turnover, and in
fact throughout this study, as defects in the function of the HSS
domain become maximally apparent under these conditions [15].

DNA-stimulated ATPase rates of all mutants were indistinguish-
able from wild-type ISWI (ISWIWt), deviating no more than 1.3-
fold (Fig 2). All mutants, just as the wild type, hydrolysed ATP an
order of magnitude faster when bound to nucleosomes than to
DNA. Importantly, absolute rates for the nucleosome stimulated
reaction varied by no more than 1.8-fold between ISWIWt and all
its derivatives. As ATPase rates were largely unaffected, we
conclude that the artificial flexible joints did not disrupt the
putative communication between the domains and suggest that
force transduction is not necessary for efficient ATP hydrolysis. In
addition, we conclude that all mutants were properly folded
and recognized DNA and nucleosomes like their wild-type
counterpart. Indeed, similar concentrations of DNA and nucleo-
somes saturated the wild type and insertion mutants. For
comparison, an order of magnitude higher concentrations
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had to be used to saturate ISWI that completely lacked the HSS
domain (ISWIDHSS; [15] and data not shown).

The ATPase results do not favour but also do not rule out the
power stroke hypothesis. For example, even though the insertion
mutants efficiently hydrolysed ATP, a power stroke might be
necessary to couple hydrolysis to remodelling. To test this
scenario, we performed remodelling assays.

Remodelling leads to exposure of nucleosomal DNA to solvent
and can be detected with restriction endonucleases that cut the
exposed DNA. We used a quantitative assay that monitors
exposure of a unique KpnI site that is occluded by the central
nucleosome in a 13-mer nucleosomal array [15]. Rate constants
for remodelling (kobs) were determined by measuring exposure of
the KpnI site over time and fitting the data to single exponential
functions (Fig 3A). Several remodeller concentrations were used to
control for possible differences in binding affinities between the
ISWI derivatives and the known property of full-length ISWI to
inhibit its own catalysis at higher concentrations (Fig 3B) [15].

Unexpectedly, none of the ISWI derivatives containing flexible
linkers showed remodelling defects. Used at the same concentra-
tion, they all exposed the KpnI site as efficiently as ISWIWt, with
kobs differing by no more than a factor of 1.3. For comparison,
ISWIDHSS exposed nucleosomal DNA an order of magnitude more
slowly (Fig 3C), confirming previous results [15].

As exposed nucleosomal DNA might be an early intermediate
during nucleosome sliding, it was important to test if formation of
these intermediates was successfully coupled to nucleosome
sliding. We monitored sliding in the context of nucleosomal
arrays. Each linker DNA contained an exposed AvaI restriction site
that became protected upon sliding (Fig 4A) [15].

Surprisingly, but in accordance with the results shown above,
all insertion mutants were able to slide nucleosomes over the AvaI
sites (Fig 4B). In fact, time courses showed that ISWIWt and all
insertion mutants moved nucleosomes with similar efficiency. As
shown before [15], also ISWIDHSS relocated nucleosomes,
although higher concentrations and longer incubation times
were necessary.

DISCUSSION AND CONCLUSIONS
According to recent mechanistic models, the ATPase engine of
ISWI is bound to DNA well within the nucleosome and starts the
remodelling process by translocating single bp of DNA in the
direction of the exit side of the nucleosome. ATP hydrolysis is
required for the transport of each bp. Only after the initial 7 bp of
DNA have exited the nucleosome will fresh DNA enter from
the opposite side of the nucleosome [10,11]. How DNA enters the
nucleosome is unclear.

Prominent models favor a power stroke as a mechanism for how
DNA enters the nucleosome [10–13]. At this stage of remodelling,
hydrolysis of ATP does not fuel transport of DNA according to
these models. Instead, ATP hydrolysis would be coupled to a
conformational change between the HSS and ATPase modules.
This conformational change exerts force onto the HSS domain and
the DNA at the entry site bound by it. Three bp thereby enter the
nucleosome (Fig 5A). Subsequently, the ATPase engine resumes
transporting single bp toward the exit site [10,11].

In striking opposition to predictions derived from the power
stroke model, none of the glycine-rich flexible insertions caused
any detectable catalytic defects. Apparently, ISWI can tolerate
considerable flexibility between individual domains. Notably,
the Bowman lab came to very similar conclusions in a recent
study that focused on the related remodelling enzyme Chd1 [26].
We note that inherent flexibility in the remodellers might allow
the DBD and ATPase domain of one enzyme molecule to
simultaneously contact two neighbouring nucleosomes, a
situation that has recently been suggested to be important for
remodelling by ISWI enzymes [27].

We were particularly surprised that the 10–20 amino acid
long insertions on either side of the brace–bridge polypeptide
did not hamper catalysis, as this polypeptide makes intimate
contacts with the ATPase domain and was proposed to regulate
the enzyme [15,16,19,25]. Depending on whether or not the
structure of the brace and bridge is disrupted by the insertions,
we can either conclude that this region might be of lesser
importance for remodelling than previously hypothesized [16] or
that build-up of force is not necessary for proper function of the
brace–bridge polypeptide.

If not by a power stroke, how else can flanking DNA enter the
nucleosome? We propose that the HSS and ATPase domains work
independently of each other with no need for direct coordination
during catalysis (Fig 5B). The HSS domain is an important
recognition module for the nucleosome [15,20] and is expected
to anchor the enzyme to the nucleosome. Anchoring increases
the chance for the ATPase engine to productively engage the
nucleosome and start with the translocation of DNA. After the first
seven translocation steps, the structure of the nucleosome
becomes highly strained, particularly around the DNA delimited
by the ATPase and HSS module, such that translocation stalls.
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Eventually, the HSS domain loses its grip on the DNA flanking the
nucleosome, allowing 3 bp to ratchet in.

Although not part of a power stroke, the HSS module clearly
evolved to carry out important functions that collectively optimize
remodelling by an order of magnitude [10,15]. Besides established
functions such as anchoring the remodeller to the nucleosome and
increasing the processivity [10,15], we hypothesize that the HSS
module improves catalysis by changing the structure of the
nucleosome around the DNA entry site, perhaps by locally
separating the DNA from the histone surface [13,28]. Other
remodelling subfamilies that do not interact with flanking DNA
and therefore cannot engage in a power stroke in the first place
might in fact use a similar mechanism [29], pointing to an unified
remodelling strategy shared between several remodeller subfamilies.

METHODS
Protein expression and purification. pPROEX-HTb-based expres-
sion plasmids with genes encoding Drosophila melanogaster
ISWIWt and ISWIDHSS were kindly provided by C. Müller (EMBL,
Heidelberg, Germany). All genes were fused amino-terminally to a
His6-TEV tag. Flexible linkers were introduced into ISWIWt by
polymerase incomplete primer extension at the appropriate
positions [30]. All ISWI derivatives were fully sequenced.
Expression and purification were performed as described [25].
The His6-TEV tag was cleaved off by TEV protease for all ISWI
constructs except for ISWIDHSS. Catalytic parameters of ISWIDHSS

are unaffected by the presence of the tag [15].
Enzyme assays and enzyme ligands. All assays were performed in
25 mM HEPES-KOH, pH 7.6, 50 mM NaCl, 1 mM MgCl2, 0.1 mM
EDTA, 10% glycerol, 0.2 g/l BSA and 1 mM DTT at 26 1C in the

presence of an ATP-regenerating system as described [15].
Nucleosomes were reconstituted with recombinant Drosophila
melanogaster histones by salt-gradient dialysis [31]. The
concentration of nucleosomal DNA was determined by measuring
its UV absorption at 260 nm. For nucleosomal arrays, concentrations
refer to the concentration of individual nucleosomes.
ATP hydrolysis assays. ATP hydrolysis was monitored using an
NADH-coupled assay as described [25]. Saturating concentrations
of ATP-Mg2þ (1 mM), linearized plasmid DNA (pT7blue derivative;
0.2 mg/ml) and nucleosomes reconstituted on the same plasmid
DNA (0.1 mg/ml) were used. Saturation was controlled in all cases
by titration of the ligand at least over a 16-fold range.
Nucleosome remodelling assay. Remodelling activity was probed
as previously described [15] by incubating 13-mer nucleosomal
arrays (100 nM) with ISWI derivatives at the indicated
concentrations, ATP-Mg2þ (1 mM) and KpnI (2 U/ml). Reactions
were quenched with SDS (0.4%) and EDTA (20 mM) before the
samples were deproteinized and analysed as described [15].
Nucleosome sliding assay. Nucleosome sliding was performed as
described [15] by incubation of 25-mer nucleosomal arrays
(30 nM) with ATP-Mg2þ (0.2 mM) and the respective ISWI
derivative (ISWIDHSS: 300 nM; all other enzymes: 5 nM). After
quenching the reaction with apyrase (2.5 U/ml), arrays were
digested with AvaI (1.1 U/ml) at 26 1C for 3–3.5 h. The AvaI digest
was terminated with EDTA (40 mM) and SDS (0.4%) before the
samples were deproteinized and analysed as described [15].

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Abstract

ISWI is the catalytic subunit of several ATP-dependent chromatin remodelling factors that catalyse the sliding of
nucleosomes along DNA and thereby endow chromatin with structural flexibility. Full activity of ISWI requires residues of a
basic patch of amino acids in the N-terminal ‘tail’ of histone H4. Previous studies employing oligopeptides and
mononucleosomes suggested that acetylation of the H4 tail at lysine 16 (H4K16) within the basic patch may inhibit the
activity of ISWI. On the other hand, the acetylation of H4K16 is known to decompact chromatin fibres. Conceivably,
decompaction may enhance the accessibility of nucleosomal DNA and the H4 tail for ISWI interactions. Such an effect can
only be evaluated at the level of nucleosome arrays. We probed the influence of H4K16 acetylation on the ATPase and
nucleosome sliding activity of Drosophila ISWI in the context of defined, in vitro reconstituted chromatin fibres with
physiological nucleosome spacing and linker histone content. Contrary to widespread expectations, the acetylation did not
inhibit ISWI activity, but rather stimulated ISWI remodelling under certain conditions. Therefore, the effect of H4K16
acetylation on ISWI remodelling depends on the precise nature of the substrate.
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Introduction

The nucleosomal organisation of genomic DNA constitutes a

barrier to DNA binding factors. Therefore, nucleosome positions

have to be tightly, yet dynamically controlled to enable the

interaction of regulators of replication and transcription pro-

grammes with their cognate DNA binding sites. Of key

importance in these processes are chromatin remodelling factors,

a conserved class of enzymes that utilize the energy from ATP

hydrolysis to reposition, evict, and assemble nucleosomes [1,2].

ISWI, a prominent member of this class of ‘remodelling’ ATPases,

is the catalytic subunit of several different chromatin remodelling

complexes [3,4]. All ISWI complexes investigated to date mobilize

nucleosomes by repositioning histone octamers along DNA in a

process termed ‘nucleosome sliding’ [5,6]. Furthermore, some of

them, such as the ACF-type complexes that consist minimally of

the non-catalytic subunit Acf1 in addition to ISWI, assist

nucleosome assembly and introduce a regular spacing into

nucleosome arrays in vitro [7–12]. In vivo, ISWI complexes are

involved in multiple essential nuclear processes, such as transcrip-

tion regulation, DNA repair, and the maintenance of chromatin

higher order structure [13,14]. Still, how ISWI complexes are

targeted and regulated and how their biochemical properties are

translated into various biological outcomes remains largely elusive.

Since the ATPase ISWI is able to slide nucleosomes in vitro in

absence of associated complex subunits, it serves as valuable model

for mechanistic analyses. ISWI engages the nucleosome via its

ATPase domain about two helical turns off the nucleosomal dyad

[15–18]. At this site, the N-terminal tail domain of histone H4

(referred to as ‘H4 tail’ hereafter) emanates [19]. Notably, full

activation of ISWI requires a basic patch of the H4 tail (amino

acids 16–20), more specifically the residues R17H18R19 [16,20–

24].

Besides regulating ISWI activity, the H4 tail is critically involved

in the folding of chromatin fibres. It strongly promotes fibre

condensation, mainly by interacting with an acidic patch formed

by histones H2A and H2B of nearby nucleosomes [25]. Notably,

deletion of the tail as well as its acetylation causes considerable

decompaction of chromatin at the level of intra- as well as inter-

fibre interactions in vitro [26–29]. Especially acetylation of lysine 16

(H4K16ac) dramatically reduces the compaction capability of

chromatin arrays even in presence of linker histones that have a

strong chromatin condensation effect [30–33]. This in vitro finding

is in accordance with in vivo data that found the H4K16ac mark to

be enriched in open and accessible chromatin regions [34–36].

Given the importance of the H4 tail for ISWI activity, it is

conceivable that posttranslational modifications, especially of

residues within the basic patch, may modulate ISWI catalysis.

Indeed, several observations suggest that H4 tail acetylation – in
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particular on lysine 16 – inhibits the activity of ISWI complexes.

For example, ISW2, an ACF-related complex in S. cerevisiae,

showed reduced activity if the H4 tail of substrate mononucleo-

somes was acetylated on all four lysines [37]. Although the

inhibitory effect of the tetra-acetylation on the ATPase activity of

ISW2 was minor (1.1-fold), acetylated mononucleosomes were

repositioned 1.4-fold more slowly than unmodified ones. In a

different study, site-specific acetylation of lysines 12 or 16 reduced

the ATPase activity of Drosophila ISWI to approximately 65%

when H4 tail peptides were used along with DNA to mimic

nucleosome stimulation [23]. Peptide competition assays further

confirmed inhibition of ISWI activity by these acetylation marks

[38]. Moreover, H4K16ac markedly reduced Drosophila ACF-

catalysed mononucleosome sliding by a factor of 2.7 [30]. Notably,

contrary to the inhibitory effect of H4 tail acetylation observed in

the context of mononucleosomes and tail peptides, hyperacetyla-

tion of chromatin fibres permitted faster remodelling by Drosophila

ACF-type complexes and ISWI [39]. This might reflect better

accessibility of the nucleosome and H4 tail in the acetylated,

unfolded fibres.

Also studies in physiological settings hint at a complex interplay

of H4K16ac and ISWI activity. Male Drosophila larvae lacking

ISWI expression show striking decondensation of the X chromo-

some in spreads of polytene chromosomes [38,40]. The male X

chromosome is characterized by H4K16ac enrichment due to the

activity of the dosage compensation machinery [36]. This activity

was found to be necessary and sufficient for the X chromosome

decompaction observed upon ISWI loss. Thus, it was proposed

that ISWI complexes are involved in chromatin compaction by

counteracting the decondensing effect of H4K16ac. In this model,

reduced activity of ISWI on H4K16ac-carrying nucleosomes, as

suggested by in vitro data, leads to an inherently more open

structure of the male X chromosome.

However, the situation is more complex. Complete ISWI

depletion is accompanied by striking loss of linker histone H1 from

chromatin along with global chromatin decondensation [41]. This

finding is in line with in vitro experiments showing that Drosophila

ISWI and ACF can assist H1 incorporation into chromatin arrays

[42] and slide H1-associated nucleosomes, although with reduced

efficiency [43]. An ISWI complex may therefore contribute to H1

homeostasis in chromosomes. Nevertheless, the mechanism –

direct or indirect – through which ISWI promotes chromatin

condensation in vivo and the contributions of H4K16ac as well as

H1 in this process remain unclear. Yet, investigating the interplay

of these factors in cells is complicated and hampered by indirect

effects. In vitro experiments on the other hand thus far mostly

involved non-physiological substrates, like mononucleosomes or

H4 tail peptides.

Here, in appreciation of the particular influence of H4K16ac on

chromatin fibre folding, we investigated the effect of the

modification on the remodelling activities of Drosophila ISWI and

ACF in the context of fully defined, in vitro reconstituted chromatin

arrays [44]. These arrays consisted of 25 nucleosomes that were

either bound or unbound by linker histone and reflected the

physiological chromatin substrate in several respects. They

featured a nucleosomal repeat length of 197 bp, which is typically

found in D. melanogaster [45]. H4K16ac was demonstrated earlier

to enhance linker DNA accessibility [46] and to decrease salt-

dependent compaction of similar arrays with different nucleosome

spacing [30–32], whereas the linker histone strongly promoted

condensation [31,47]. The abundance of H1 in the nuclei of

Drosophila cells suggests that the majority of nucleosomes is

associated with the linker histone, forming so-called chromato-

somes [48]. Therefore, chromatosome arrays are expected to

resemble the physiological chromatin fibre even more accurately

than nucleosome arrays. Employing the reconstituted nucleosome

and chromatosome arrays as remodelling substrates, we found that

in contrast to widespread expectations the homogenous acetylation

of H4 on lysine 16 does not negatively affect ISWI and ACF

activity.

Results

Reconstitution of nucleosome arrays carrying H4K16ac
To investigate the influence of H4K16ac on ISWI catalysis, we

reconstituted 25-mer nucleosome arrays carrying either unmod-

ified or site-specifically acetylated H4 from recombinant histones

in vitro. The acetylated H4 was generated using a semi-synthetic

approach employing native chemical ligation as illustrated in

Figure S1A [32]. This method introduces a lysine analogue (KS) at

position 20 of histone H4 (H4KS20). KS is identical to lysine

except for a thioether in its side chain (Figure S1A, B). Previous

studies found H4KS20-carrying nucleosome arrays to behave

similar to unmodified arrays in salt-dependent compaction [49].

Furthermore, remodelling by hACF was undisturbed in presence

of trimethylated H4KS20 [50]. Tandem mass spectrometry

confirmed quantitative acetylation of the semi-synthetic histone

on lysine 16 (Figure S1C, D).

We assembled the acetylated H4 into histone octamers and

reconstituted regularly spaced nucleosome arrays applying a

method first described by the Rhodes lab [44]. To yield a regular

spacing of nucleosomes, we assembled the arrays by salt gradient

dialysis on a linear DNA fragment comprising 25 repeats of a

197 bp derivative of the Widom-601 nucleosome positioning

sequence (Figure 1A) [51,52]. To prevent oversaturation of the

arrays with histones during assembly, short DNA fragments were

present during the reconstitution. These DNA fragments did not

Figure 1. Nucleosome array reconstitution. (A) Schematic
depiction of the nucleosome arrays (DNA: grey line; nucleosome
positions: ovals). The array DNA comprised 25 repeats of a 197 bp
fragment (magnification) harbouring the Widom-601 nucleosome
positioning sequence (dashed line). Numbers indicate positions of
restriction enzyme sites and nucleosome boundaries with respect to the
nucleosomal dyad axis (0). (B) AvaI digests of purified nucleosome
arrays reconstituted with increasing amounts of unmodified (H4) or
acetylated (H4K16ac) octamers. The reactions were loaded onto a native
agarose gel and DNA visualized by ethidium bromide stain. (bp: base
pairs).
doi:10.1371/journal.pone.0088411.g001
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harbour nucleosome positioning sequences and served as low

affinity competitors that bound excess histones.

Through titrations, we determined how much of the octamers

was needed to saturate the DNA template. After assembly, the

nucleosome arrays were purified by MgCl2 precipitation, which

removed histone-bearing and free competitor DNA fragments

[53]. Saturation was controlled on native agarose gels (Figure

S2B), and histone stoichiometry was assessed on Coomassie-

stained SDS gels (Figure S2A). We independently confirmed

saturation by digesting the arrays with the restriction enzyme AvaI

that cuts in the linker DNA between Widom-601 repeats (Figure 1).

On native gels, mononucleosomes migrated more slowly than the

corresponding free DNA, and disappearance of the 197 bp DNA

band with increasing histone octamer concentrations indicated full

occupancy of the Widom-601 sites with nucleosomes. In a

complementary approach, arrays were digested with AluI. In

contrast to AvaI, the AluI site is located within the Widom-601

sequence and was occluded upon nucleosome formation

(Figure 1A). None of the AluI sites were cleaved when the arrays

were saturated with octamers (Figure S2C). All quality controls

indicated that comparable amounts of acetylated and unmodified

histone octamers were required to reach saturation (Figures 1B;

S2B, C). We subjected each array preparation to the described

quality controls to assure full nucleosome occupancy.

H4K16ac does not influence ISWI ATPase activity
Previous studies suggested that acetylation of H4K16 on

mononucleosomes or H4 tail peptides in conjunction with DNA

reduces ISWI and ACF activity [23,30,37,38,54]. Our aim was to

test whether H4K16ac influences ISWI activity also in the context

of nucleosome arrays, a more physiological substrate. Therefore,

we saturated ISWI with unmodified or acetylated nucleosome

arrays and measured ATP turnover at steady-state (Figure 2A). We

controlled for saturation of ISWI with arrays by titrating the

nucleosomal substrate (Figure S3). Surprisingly, ATP turnover

increased by the same amount with both array types. Thus, at the

level of nucleosome arrays H4K16ac did not influence ISWI

ATPase activity.

On the basis of previous studies, we also tested the stimulation of

the ATPase activity of DNA-bound ISWI by H4 tail peptides

[23,52,54]. Notably, also in this assay H4K16ac did not affect

ATP turnover by ISWI (Figure 2B). Acetylated H4 peptides

stimulated only marginally (1.2-fold) worse than unmodified ones,

as can be estimated from the slopes of the curves. This 1.2-fold

effect is slightly smaller than the previously documented one of

,1.5-fold in similar experiments [23,54] and well within the error

of our assay. We conclude that, contrary to common interpreta-

tions of published data, the acetylation of H4K16 does not

significantly influence the ATPase activity of ISWI under our assay

conditions.

H4K16ac does not inhibit remodelling by ISWI and ACF
H4K16ac may influence ISWI remodelling activity even though

ATP hydrolysis remained unaffected. Using the 25-mer nucleo-

some arrays as substrates, we followed the remodelling activity of

ISWI by monitoring accessibility of the AluI restriction site

[43,52]. This site was protected from cleavage by a positioned

nucleosome at the outset of the reaction (Figure 1A), but was

rendered accessible upon remodelling. Therefore, the array DNA

got fragmented over time. To be able to directly compare

remodelling of unmodified and acetylated arrays in the same

reaction, we differentially labelled both array types with a unique

fluorescent tag at one DNA end. Figure 3A illustrates the set-up of

the remodelling assay.

To discriminate the influence of the acetylation on different

steps of ISWI catalysis, we performed the assay under two

conditions. First, we saturated the arrays with ISWI by adding an

excess of enzyme at high concentrations (Figure 3B). In this

experimental setting, remodelling velocity is expected to depend

only on catalytic steps after substrate binding, as all ISWI binding

sites on the arrays were occupied regardless of affinity (Figure 3B

top panel). Under these conditions, H4K16ac-carrying arrays

were remodelled with the same velocity as unmodified arrays

(Figure 3B middle and bottom panel). Thus, we conclude that the

acetylation did not affect catalytic steps subsequent to nucleosome

binding.

Yet, it remained possible that H4K16ac changed the affinity of

ISWI for the nucleosomes. To investigate this possibility, we added

ISWI in substoichiometric concentrations to the nucleosome

arrays. Under these conditions, ISWI distributed among the

Figure 2. ISWI ATPase activity is not influenced by H4K16ac. (A)
Steady-state ATPase assay. ATPase activity of ISWI (100 nM) was
stimulated with saturating concentrations of nucleosome arrays
(600 nM) carrying unmodified (H4) or acetylated H4 (H4K16ac). ATP
hydrolysis rates in presence of saturating concentrations of ATP (1 mM)
were determined. Control reactions did not contain nucleosome arrays.
Error bars represent standard deviations (No arrays: n = 4; H4 and
H4K16ac: n = 5). (B) ISWI (350 nM) was stimulated with DNA (1.2 mg/ml
salmon sperm DNA) and increasing concentrations of an unmodified or
H4K16ac-carrying histone H4 N-terminal peptide (H4 tail peptide). ATP
hydrolysis rates were determined as above at 1 mM ATP. A peptide with
scrambled amino acid sequence of the H4 tail harbouring an acetylated
lysine residue served as control. Data were fit to lines to extract slopes
(dashed lines; H4: 4.1*103 s21 M21; H4K16ac: 3.5*103 s21 M21). Error
bars display standard deviations (n = 3–4).
doi:10.1371/journal.pone.0088411.g002
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Figure 3. ISWI and ACF remodelling activity is not inhibited by H4K16ac. (A) Scheme of the remodelling assay. Acetylated (H4K16ac) and
unmodified (H4) arrays were labelled at one DNA end with the fluorescent dyes DY-682 and DY-776, respectively. Remodelling reactions contained
both array types along with ATP, AluI and the remodeller. Samples of the reaction were taken at different time points (t) and the DNA fragments were
analysed on an agarose gel. (B) Top: Schematic depiction of the reaction conditions of the remodelling assay. (Ac: acetylated arrays). Middle:
Exemplary result of a remodelling time course with ISWI (500 nM). Nucleosome concentration was 25 nM per array type and ATP concentration was
1 mM. All samples were run on the same agarose gel and the two fluorescent labels were visualized separately by scanning the gel at the respective
wave lengths. Lanes were rearranged for presentation purposes. Control reactions did not contain ISWI (–). Bottom: Quantification of remodelling
progress. Based on the fluorescent signal intensity the fraction of uncut array DNA was determined for each gel lane and plotted against the
remodelling time. (C) Remodelling assay as in B, but with ISWI and nucleosome concentrations of 5 nM and 100 nM, respectively. ATP concentration
was 200 mM. In the plot shown in the bottom panel, the remodelling times needed to reach 50% cut array DNA were interpolated by connecting the
data points by smooth lines (Excel; Microsoft). (D) Exemplary result of a remodelling time course with ACF. Reaction conditions were as in C. (kb:
kilobases).
doi:10.1371/journal.pone.0088411.g003
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unmodified and acetylated arrays according to its affinity

(Figure 3C top panel). In this setting, acetylated arrays were

remodelled modestly faster than unmodified ones (Figure 3C

middle and bottom panel). To quantify the difference, we

interpolated the time needed to cut 50% of the arrays (dashed

lines in Figure 3C bottom panel; H4: 15 min; H4K16ac: 11 min).

These values differed by a factor of 1.4. Several independent

repetitions of the experiment with varying enzyme and array

concentrations confirmed these results (data not shown). As long as

ISWI was substoichiometric to nucleosomes, unmodified arrays

were reproducibly remodelled 1.3–1.7-fold more slowly than

acetylated arrays (1.5-fold on average). Since we already showed

that ISWI remodelling subsequent to substrate binding was

unaffected by H4K16ac (Figure 3B), the difference in remodelling

velocity observed here hints at a preferred binding of ISWI to

acetylated arrays. Our results contrast previous studies reporting

reduced remodelling activity of ACF-type complexes in presence

of H4K16ac at the level of mononucleosomes [30,37], but

reiterate observations of enhanced remodelling activity on

hyperacetylated nucleosome arrays [39].

To test whether the discrepancy between our and published

data was due to working with the isolated ISWI enzyme as

opposed to the ACF complex, we repeated the remodelling assay

with ACF. To capture possible effects of the acetylation on binding

affinity as well as later catalytic steps, we employed substoichio-

metric concentrations of ACF. We found ACF to remodel

H4K16ac-carrying and unmodified arrays with comparable

velocities (Figure 3D). Thus, we reason that neither ACF binding

affinity nor further steps of the remodelling mechanism were

influenced by the acetylation.

In principle, the discrepancy between our and published

findings could be accounted for by differences in the design of

the employed remodelling assays. In the remodelling assay used

here, accessibility of AluI sites could be caused by different

remodelling events. The sites could, for example, be exposed by

sliding a nucleosome away from its original position, by

nucleosome eviction, or by transient changes in the canonical

nucleosome structure. Previous studies reporting reduced remod-

elling of ISWI and its complexes in presence of H4K16ac

exclusively looked at sliding events [30,37]. Therefore, we next

performed sliding assays.

To follow nucleosome sliding, remodelling-dependent changes

in the accessibility of the AvaI sites located in the linker DNA

between nucleosomes (Figure 1A) were monitored [52,55].

Protection of the initially exposed AvaI sites was indicative of

nucleosome sliding (Figure 4A). We found that ISWI repositioned

acetylated nucleosomes slightly faster than unmodified ones, as

evidenced by the accumulation of longer DNA fragments at earlier

time points (Figure 4B). At equilibrium, the DNA patterns were

comparable for both array types (Figure 4B, time points 27 and

82 min). Contrary to ISWI, ACF repositioned unmodified and

acetylated nucleosomes with equal velocity (Figure 4C). These

observations closely reiterate the results we obtained with the

remodelling assay under similar conditions (Figure 3C, D).

Taken together, the acetylation neither inhibited ISWI nor ACF

remodelling at the level of nucleosome arrays. Rather, ISWI

showed a modest preference for remodelling H4K16ac-carrying

arrays.

Reconstitution of chromatosome arrays carrying
H4K16ac

To investigate the effect of H4K16ac on the activity of ISWI on

a substrate that resembles the in vivo situation even better than

nucleosome arrays, we assembled arrays containing linker histone

H1, so-called chromatosome arrays [44]. H1 was titrated to

determine the ratio of H1 to nucleosomes needed in the

reconstitution reactions to saturate the arrays. Saturation with

H1 was tested by two complementary approaches. First, arrays

were digested with AvaI into monomers. On native gels,

monochromatosomes showed altered mobility in comparison to

mononucleosomes, and disappearance of the mononucleosome

band indicated quantitative formation of chromatosomes

(Figure 5A for H4K16ac-carrying chromatosome arrays; data for

unmodified arrays not shown).

Second, we controlled the relative stoichiometry of linker

histone incorporation on Coomassie-stained SDS gels (Figure 5B).

Increasing the H1 amounts up to a molar ratio of approximately

four H1 per nucleosome in the reconstitution reactions led to a

corresponding increase in H1 incorporation. At this point, a

plateau in linker histone incorporation was reached, indicating

saturation of primary binding sites in agreement with the results

obtained in the AvaI digests (Figure 5A). Despite the buffering

effect of competitor DNA, addition of H1 beyond the saturation

plateau led to aggregation and loss of material during assembly

(data not shown) [44].

Similar H1 amounts saturated unmodified and H4K16ac-

carrying arrays (Figure 5B). Yet, unmodified chromatosome arrays

tended to aggregate at lower H1 input amounts than acetylated

ones (data not shown). The described quality controls were

performed for every chromatosome array preparation to ensure

saturation.

H1 inhibits ISWI activity irrespective of H4K16ac
We first probed the effect of H1 on the steady-state ATP

hydrolysis of ISWI. Under saturating array concentrations, the

presence of H1 reduced ISWI ATP turnover by a factor of two

and acetylation did not cause additional effects (Figure 6A).

We next tested ISWI remodelling activity on chromatosome

arrays. In contrast to the remodelling assay described in Figure 3,

we performed the assay with unlabelled arrays and set up separate

reactions for each array type. H1 incorporation markedly reduced

remodelling velocity of ISWI, confirming published results

(Figure 6B, C) [43]. However, we hesitated to quantify the effect

of the linker histone on ISWI remodelling because the reduction in

AluI accessibility on chromatosomes might in part be caused by

remodelling-independent, inherent properties of the arrays. H1 is

expected to occlude about 20 bp of the 50 bp long linker DNA

[56]. This reduces the probability to expose an AluI site simply

due to restricted sliding possibilities.

Nevertheless, we could use the assay to quantitatively compare

the remodelling activity of ISWI on chromatosome arrays

harbouring unmodified and acetylated H4. H4K16ac seemed to

counteract the inhibitory effect of H1 as indicated by faster

remodelling of acetylated arrays (Figure 6B, C). This observation

was reproducible for different array preparations when comparing

ISWI activity on pairs of arrays reconstituted with the same ratio

of H1 to nucleosomes in the assembly reactions (data not shown).

However, control experiments showed that remodelling was

markedly dependent on the H1 to nucleosome ratio present in the

reconstitution reactions. Although all arrays were saturated with

H1 according to our quality controls, they were remodelled with

different velocity (Figure 6D). Increasing the amount of H1 in the

array assembly reactions by as little as 10% reduced the

remodelling velocity considerably. Accordingly, using slightly

more H1 in the reconstitution reactions of acetylated in

comparison to unmodified arrays resulted in equal ISWI

remodelling activity on both array types (Figure 6D). Therefore,

we cannot exclude that the observed faster remodelling of
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H4K16ac-carrying chromatosome arrays at equal H1 input

amounts simply reflected subtle differences in H1 incorporation.

The sensitivity of ISWI towards minor differences in H1 saturation

detected in the remodelling assay was not apparent in the ATPase

activity of the enzyme (data not shown).

In summary, linker histone H1 reduced the ATPase activity of

ISWI by two-fold irrespective of the acetylation status of H4K16.

However, the strong dependency of ISWI remodelling on slight

variation of linker histone input during reconstitution together

with the inherent difficulties of working with the sticky H1 protein

limited our ability to interpret the tendency of H4K16ac to

ameliorate the inhibition of remodelling of chromatosome arrays.

Discussion

ISWI regulation by H4K16ac
It is firmly established that the H4 tail plays a crucial role in the

nucleosome sliding mechanism of ISWI [5,6]. A recent study

provided mechanistic insights by identifying a peptide motif in the

N-terminus of ISWI (AutoN) that resembles the basic patch of

histone H4 [54]. This motif was suggested to interact with the

ATPase domain and autoinhibit ISWI in absence of a nucleosome

substrate. Yet, the study proposed also subsequent steps of ISWI

catalysis to be promoted by the H4 tail, and these might involve

other motifs than the basic patch.

To date, it is still unclear how modifications of the H4 tail affect

nucleosome remodelling. Most previous studies suggested that – at

the level of single nucleosomes – acetylation of H4K16 within the

basic patch inhibits ISWI activity, but the extent and nature of the

effect remained controversial [23,30,37–39,54,57]. We reassessed

the effect of H4K16ac on ISWI activity in the context of defined,

folded nucleosome and chromatosome arrays that resemble the

physiological remodelling substrate. In our quantitative biochem-

ical analyses, the acetylation neither inhibited ISWI nor ACF

activity.

In contrast to the prevalent interpretation of earlier reports

[23,37,54], we found the maximal ATP turnover by ISWI

undisturbed by H4K16ac in the context of chromatin arrays.

Small effects of the acetylation observed upon stimulation of DNA-

bound ISWI with H4 peptides were well within the experimental

variability of our carefully controlled assays and therefore should

not be interpreted any further.

Not only the ATPase, but also the remodelling activity of ISWI

on nucleosome arrays was not inhibited by H4K16ac. Differential

labelling of unmodified and acetylated arrays allowed us to analyse

remodelling of both substrates in the same reaction. Therefore, the

assay was very sensitive to H4K16ac-dependent variations in

remodelling progress, and ISWI activity was easily quantifiable.

Tuning the assay conditions by varying the enzyme or substrate

concentrations permitted to distinguish effects of the acetylation on

different steps of ISWI catalysis. Due to the competitive substrate

conditions, relative affinities of ISWI to the two array types could

be isolated. Whereas H4K16ac did not influence steps of ISWI

remodelling subsequent to nucleosome binding, our results

indicated preferred binding to the acetylated fibre. This preference

could simply reflect a higher affinity of ISWI for nucleosomes

carrying H4K16ac. Alternatively, H4 tail availability and access of

ISWI to the nucleosome substrate might be facilitated by

H4K16ac-promoted unfolding of the fibre [30–32,39,46]. Other

scenarios are also possible. For example, H4K16 acetylation may

facilitate dimerization of ISWI [18]. In any case, the observed

difference in remodelling velocity was modest (1.5-fold) and absent

when ISWI was part of the physiologically relevant ACF complex.

Regulation of ISWI by the linker histone H1
ISWI can remodel chromatosomes in the context of arrays,

although with reduced efficiency in comparison to nucleosomes

[43]. Here, we confirmed this finding and additionally report a

two-fold reduction in ISWI ATPase activity in presence of the

linker histone. This reduction was independent of H4K16

acetylation.

The nature of the inhibitory effect of H1 on ISWI activity

remains to be determined. It is conceivable that a combination of

mechanisms is in play. For example, H1 might directly hinder

nucleosome sliding by blocking the entry or exit of DNA [58–60].

Association of H1 with the nucleosome is furthermore expected to

interfere with productive ISWI interaction via the ISWI SANT-

SLIDE domain, which is required for efficient nucleosome sliding

Figure 4. Sliding activity of ISWI and ACF is not reduced by H4K16ac. (A) Schematic depiction of the sliding assay. Each reaction contained
either unmodified (H4) or acetylated (H4K16ac) arrays (30 nM) along with ATP (125 mM) and was started by addition of the remodeller (5 nM). At
different time points (x) samples were taken, remodelling was quenched by ATP depletion with apyrase, and AvaI was added. AvaI activity was
quenched with EDTA (40 mM) and SDS (0.4%) before purifying the DNA fragments and size-separating them on an agarose gel. (B) and (C) ISWI and
ACF sliding time courses, respectively. The asterisks mark the slowest migrating still well visible DNA band in the respective gel lanes. In control
reactions ATP was depleted before remodeller addition (– ATP). (kb: kilobases).
doi:10.1371/journal.pone.0088411.g004
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[5,6]. Moreover, H1 binding effectively reduces the accessible

length of linker DNA, which might lead to decreased ISWI

activity, as ISWI as well as ACF activity depends on the linker

length [16,61–65]. Finally, the high degree of array compaction

induced by H1 incorporation [31,47] might hinder ISWI access

and chromatosome repositioning. The latter effect may be

partially antagonized by the chromatin unfolding effect of

H4K16ac [31], resulting in enhanced remodelling of acetylated

chromatosome arrays. Although an effect of H4K16ac was not

apparent in the ATPase assay, it remains possible that H4K16ac

facilitates remodelling of chromatosome arrays.

We were surprised about the pronounced dependency of ISWI

remodelling velocity on small variations in the amount of linker

histone during array reconstitution and suspect that excess H1

readily occupies secondary binding sites in fibres [66–68], thereby

affecting ISWI remodelling. Unfortunately, we cannot exclude

subtle differences in H1 stoichiometry between acetylated and

unmodified chromatosome arrays, which hampered analysing the

effect of the H4K16 acetylation on ISWI remodelling.

Investigating remodelling on chromatin fibres with physiological

nucleosome spacing and linker histone content allowed us to shed

light on the effect of H4K16 acetylation on ISWI catalysis. Our

study highlights the usefulness of the in vitro system for the

dissection of the function of histone modifications. A technical

challenge that needs to be tackled is to generate histones with

combinatorial histone marks, as they are emerging to be of key

importance in regulating chromatin processes [69,70].

In vivo implications
ISWI activity in vivo has been suggested to promote chromatin

compaction [13,41,71], whereas H4K16ac seems to be involved in

the establishment and maintenance of decondensed regions of

chromatin [34–36]. Common models postulate that H4K16ac

contributes to chromatin decompaction, amongst others, by

inhibiting ISWI [1,38]. Notably, this mechanism was proposed

to play a role in dosage compensation in Drosophila. Our findings

do not support the simplest of such models, as we did not observe

reduced activity of ISWI in presence of the acetylation. However,

in vivo the local context of the chromatin fibre is expected to

influence ISWI activity at regions enriched in H4K16ac. This

includes associated factors, histone variants and modifications, as

well as the concentration of remodelling complexes, their subunit

stoichiometry and modification state.

Materials and Methods

Expression and purification of remodelling enzymes
ISWI. D. melanogaster ISWI harbouring an N-terminal His6-

TEV tag was bacterially expressed (BL21(DE3)) and purified as

described [72]. In brief, a nickel affinity purification was

performed by FPLC using a HisTrap column (GE healthcare) in

50 mM Tris-Cl pH 7.4, 300 mM NaCl and 20–400 mM imidaz-

ole. TEV-cleavage was followed by another nickel affinity

chromatography step to remove uncleaved protein and His-tagged

TEV protease. The flow-through was applied to a Mono S column

(GE Healthcare) in 15 mM Tris-Cl pH 8, 1 mM b-mercaptoeth-

anol and 100–2000 mM NaCl. For the final gel filtration, a

Superdex 200 column (GE healthcare) in 50 mM Hepes-KOH

pH 7.6, 0.2 mM EDTA, 200 mM KOAc, 10 mM b-mercapto-

ethanol was used. Enzyme concentration was determined by

absorption measurement at 280 nm (extinction coefficient:

119950 cm21 M21). The pPROEX-HTb-based expression plas-

mid was a kind gift from C. Mueller (EMBL, Heidelberg).

ACF. D. melanogaster ACF complex was purified from Sf21 cells

co-expressing flag-ISWI and Acf1-flag from baculovirus con-

structs. The baculovirus stocks were kind gifts from C. Wu [73]

and J. Kadonaga [74], respectively. Virus-infected Sf21 cells were

harvested, resuspended in 100 mM Tris-Cl pH 7.8, 500 mM

KOAc, 10% glycerol supplemented with protease inhibitors, and

lysed by ultrasonication (Branson). Flag affinity purification was

performed using M2 agarose beads (Sigma). Contaminations as

well as excess flag-ISWI were removed by Mono Q ion exchange

chromatography (12 mM Tris-Cl pH 8, 1 M urea, 1 mM DTT,

and 240–880 mM NaCl) followed by Superose 6 gel filtration

(100 mM Tris-Cl pH 7.8, 500 mM KOAc, 1.5 mM Mg(OAc)2,

1 M urea, 10% glycerol, 10 mM DTT, 0.2% CHAPSO) (both

columns GE Healthcare). Fractions containing monomeric ACF

Figure 5. Reconstitution of chromatosome arrays. (A) AvaI
digests of chromatosome arrays carrying H4K16ac. Chromatosome
arrays were reconstituted with increasing amounts of H1, purified by
MgCl2 precipitation and digested to monomers with AvaI. Mononucleo-
somes were separated from chromatosomes on native agarose gels and
visualized by ethidium bromide stain. Faint additional bands may
contain coprecipitating competitor DNA or multimers arising from
incomplete AvaI digest. (kb: kilobases). (B) Analysis of the relative ratio
of H1 to core histones in chromatosome arrays. Top: Chromatosome
arrays from the H1 titration shown in A were loaded onto SDS gels and
the protein content visualized by Coomassie stain. The gel of the
acetylated chromatosome arrays is depicted. Bottom: Quantification of
the relative ratio of H1 to core histones. The theoretically expected ratio
of 0.24 for a 1:1 stoichiometry of H1 to octamers was not reached,
presumably because the Coomassie staining did not linearly correlate
with the molecular weight of the proteins [79]. (kDa: kilodaltons; a.u.:
arbitrary units).
doi:10.1371/journal.pone.0088411.g005
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were pooled, concentrated (Microcon-30 kDa Centrifugal Filters;

Millipore) and flash frozen in liquid nitrogen. Concentration of the

complex was determined by measuring absorption at 280 nm

(extinction coefficient: 244220 cm21 M21).

Reconstitution of nucleosome and chromatosome arrays
DNA preparation. The array DNA, comprising 25 consec-

utive repeats of a 197 bp Widom-601 nucleosome positioning

sequence derivative, was excised with HincII and EcoRI from a

pUC18-based plasmid (a kind gift from D. Rhodes, NTU,

Singapore). The vector backbone was fragmented further to

pieces that served as competitor DNA in the reconstitution

reactions by either DraI or combinations of DraI with AseI and

DdeI (all from NEB). For the assembly of chromatosome arrays,

the vector backbone was cleaved with all three enzymes, yielding

fragments not exceeding 445 bp, because in presence of H1 longer

histone-bound competitor DNA fragments tended to co-precipi-

tate with the arrays in the MgCl2 precipitation step. After

restriction enzyme digest, the DNA was purified by phenol/

chloroform/isoamyl alcohol extraction. For the fluorescent label-

ling, array DNA was purified from the vector backbone fragments

(generated with DraI and DdeI) by PEG6000 (5.5–6%) precipi-

tation. The EcoRI end of the array DNA was labelled with either

dUTP-DY-682 or dUTP-DY-776 (Dyomics) using Klenow-exo2

polymerase (NEB). Unincorporated nucleotides as well as proteins

were removed by phenol/chloroform/isoamyl alcohol extraction

and purification over gel filtration-columns (Micro Bio-Spin P-30

Gel Column; Bio-Rad).

Generation of acetylated histone H4. X. laevis histone H4

quantitatively acetylated at lysine 16 (K16) was prepared as

described previously [32] (see also Figure S1). Quantitative

acetylation of K16 was controlled by tandem mass spectrometry

analysis of histone H4 incorporated into arrays. The proteins of

the arrays were loaded on an 18% SDS gel and stained with

Coomassie. The H4 band was excised, chemically acetylated with

deuterated acetic anhydride and digested into peptides using

trypsin as described previously [75]. Tryptic peptides were injected

in an Ultimate HPLC system (LC Packings Dionex). Samples were

desalted on-line in a C18 microcolumn (300 mm i.d. 65 mm,

packed with C18 PepMapTM, 5 mm, 100 Å; LC Packings) and

peptides were separated with a gradient from 5 to 60% acetonitrile

Figure 6. H1 inhibits ISWI activity. (A) Steady-state ATPase assay. Saturating concentrations (600 nM) of unmodified (– Ac) or acetylated (+ Ac)
chromatosome arrays (+ H1) were employed to stimulate ISWI (100 nM) in presence of saturating ATP (1 mM). ATP hydrolysis rates for nucleosome
arrays (– H1) were taken from Figure 2. Error bars represent standard deviations (– H1: n = 5; + H1 n = 6). (B) Exemplary remodelling assay using
nucleosome and chromatosome arrays (200 nM) as substrates for ISWI (50 nM) at 100 mM ATP. The chromatosome arrays had been reconstituted
with a 1:4.5 molar ratio of nucleosomes to H1. The assay was performed as in Figure 3 except that the arrays lacked a fluorescent label and all array
types were tested in separate reactions. The DNA was visualized by ethidium bromide stain. All samples of a reaction were loaded onto one gel and
empty lanes were spliced out. ATP was omitted from control reactions (–). The most prominent DNA bands comprise multiples of 197 bp reflecting
the distance between two AluI sites within the array (Figure 1A). Faint interspersed bands arose from a single AluI cut; they harbour one of the ends
of the array DNA and therefore deviate in length from the internal cleavage products. Asterisks mark DNA bands originating from contaminating
competitor DNA. (kb: kilobases). (C) Quantification of the experiment depicted in B. Analysis was done as in Figure 3C. (D) Summary of the
remodelling activity of ISWI on chromatosome arrays reconstituted with different input amounts of H1 (see B and Figure S4).
doi:10.1371/journal.pone.0088411.g006
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in 0.1% formic acid over 40 min at 300 nl/min on a C18

analytical column (75 mm i.d. 615 cm, packed in-house with

Reprosil Pur C18 AQ 2.4 mm; Doctor Maisch). The effluent from

the HPLC was directly electrosprayed into a linear trap

quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientif-

ic). The MS instrument was programmed to acquire survey full-

scan MS spectra (m/z 718–730) in the Orbitrap with resolution

R = 15,000 at m/z 400 (after accumulation to a ‘‘target value’’ of

500,000 in the linear ion trap) followed by the isolation to a target

value of 10,000 and fragmentation by collision-induced dissocia-

tion of the masses corresponding to the second isotope of the one,

two and three times acetylated H4 4–17 peptide (724.95, 723.44,

721.92 m/z). Typical MS conditions were spray voltage, 1.5 kV;

no sheath and auxiliary gas flow; heated capillary temperature,

200uC; normalized collision-induced dissociation energy 35%;

activation q = 0.25; and activation time = 30 ms.

Octamer assembly. Histone octamers were reconstituted

from bacterially expressed histones H2A, H2B, H3 and H4 that

was acetylated (see above) or unmodified. Reconstitution was done

as described [76] with the following modifications. Lyophilized

histones were resolved in 20 mM Tris-Cl pH 7.5, 7 M guanidi-

nium-HCl, 10 mM DTT. Dissolved histones were mixed and

extensively dialysed against 10 mM Tris-Cl pH 7.5, 2 M NaCl,

1 mM EDTA pH 8, 5 mM b-mercaptoethanol. Assembled

octamers were purified by gel filtration in the same buffer

(Superdex 200), and stoichiometric incorporation of the histones

was controlled by SDS-PAGE and Coomassie stain. The octamers

were concentrated (Amicon Ultra-4 Centrifugal Filter Units

30 kDa; Millipore), flash frozen in liquid nitrogen, and stored at

-80uC. Concentrations of the octamer preparations were deter-

mined by absorption measurement at 280 nm (extinction coeffi-

cient: 44700 cm21 M21). All histones comprised the D. melanogaster

amino acid sequence, except for histone H4 that harboured the X.

laevis sequence. X. laevis and D. melanogaster histone H4 vary in only

one amino acid at position 1. This amino acid was shown not to be

essential for ISWI activity in a previous study [23]. Furthermore,

both D. melanogaster and X. laevis nucleosomes stimulate ISWI ATP

hydrolysis [20,23].

Linker histone H1. Native linker histone was purified from

0–12 h after egg laying D. melanogaster embryos as previously

decribed [77] with the following modifications. The H1-containing

supernatant of the second ammonium sulphate precipitation was

subjected to phenyl sepharose chromatography (column volume:

20 ml; Phenyl Sepharose 6 Fast Flow; GE Healthcare). The

pooled H1-containing fractions were subjected to extensive dialysis

against 25 mM Hepes-KOH pH 7.6, 100 mM KCl, 0.1 mM

EDTA, 10% glycerol, 5 mM b-mercaptoethanol. For the final

cation exchange step, a Mono S column was used. H1-containing

fractions were pooled, concentrated (Amicon Ultra-4 Centrifugal

Filter Units 10 kDa; Millipore), and glycerol was added to 50% for

storage at 220uC. H1 concentration was determined by

Coomassie staining of SDS gels taking BSA as a reference. Band

intensities were quantified using the Odyssey Infrared Imaging

System (LI-COR). The yield from 60 g of embryos was ,1 mg of

H1.

Array reconstitution. Nucleosome as well as chromatosome

arrays were reconstituted by salt gradient dialysis over approxi-

mately 24 h at 4uC [44]. The final buffer contained 10 mM Tris-

Cl pH 7.6, 50 mM NaCl, 1 mM EDTA pH 8, 0.01% NP-40,

1 mM DTT. pUC18 vector backbone fragments served as low

affinity competitors for histones in the reconstitution reactions.

The mass ratio of array to competitor DNA was 2:1. To determine

the histone octamer concentrations needed to saturate the arrays,

titrations were performed. Since the mass of a histone octamer

(,108 kDa) is comparable to the mass of 197 bp of DNA

(,122 kDa), the indicated mass ratios of array DNA to histone

octamers are similar to the respective molar ratios of Widom-601

nucleosome positioning sequences to octamers. The assembled

arrays were purified by MgCl2 precipitation [53] with a final

magnesium concentration of 3.5 to 4.4 mM for the nucleosome

and 3.25 mM for the chromatosome arrays.

Quality control of the arrays. Saturation of the arrays with

histone octamers and linker histone was controlled essentially as

described previously [43]. Array preparations (amounts corre-

sponding to approximately 150–200 ng array DNA) were loaded

onto native 0.7% agarose gels in 0.2x TB buffer before and after

MgCl2 precipitation, and the DNA was visualised by staining with

ethidium bromide. Purified arrays (65 fmol according to

measurements of the DNA content at 260 nm) were digested into

monomers with AvaI (15 U; NEB) in 10 mM Hepes-NaOH

pH 7.6, 50 mM KCl, 1.5 mM MgCl2, 0.5 mM EGTA pH 8 for

75 min at 26uC (15 ml final volume). The reactions were analysed

on 1.1% native agarose gels as above. To probe for accessibility of

the AluI site, the arrays (82 fmol) were incubated for 1 h at 26uC
with AluI (10 U; NEB) in 25 mM Hepes-KOH pH 7.6, 50 mM

NaCl, 1 mM MgCl2, 0.1 mM EDTA, 10% glycerol, 1 mM DTT

(20 ml final volume). The digest was stopped by addition of EDTA

(20–40 mM) and SDS (0.3–1%), followed by Proteinase K

treatment (Genaxxon). The array DNA fragments were purified

by ethanol precipitation and resolved on ethidium bromide-

containing agarose gels. Stoichiometric incorporation of the

histone octamers and H1 were controlled by separating the

protein content of the purified arrays on SDS gels (15–18%) and

staining with Coomassie. The relative protein ratios were

determined by quantifying the intensities of the protein bands

using the Odyssey Infrared Imaging System (LI-COR). To achieve

saturating levels of H1 in the reconstitution reactions, an excess of

H1 relative to nucleosomes had to be added. This is presumably

due to several factors including presence of the competitor DNA,

loss of H1 on plastic surfaces and inaccuracies in protein

concentration determination [78].

Enzyme assays
Unless indicated otherwise, all assays were performed at 26uC in

a buffer containing 25 mM Hepes-KOH pH 7.6, 50 mM NaCl,

1 mM MgCl2, 0.1 mM EDTA, 0.2 g/l BSA, 10% glycerol and

1 mM DTT or 10 mM b-mercaptoethanol and in presence of an

ATP regenerating system consisting of phosphoenolpyruvate (2–

6 mM), a pyruvate kinase-lactate dehydrogenase mixture (15.5 U/

ml; Sigma) and NADH (0.5 mM). For remodelling and sliding

assays, NADH was omitted from the regenerating system. ATP

was always added in a stoichiometric complex with Mg2+.

Concentrations of nucleosome and chromatosome arrays were

determined by quantifying the DNA content via absorption

measurement at 260 nm. Indicated molar concentrations refer to

individual nucleosomes.

Steady-state ATPase assay. ATP hydrolysis was measured

by a coupled ATPase assay as described [72] with the indicated

concentrations and buffer conditions. In the array-stimulated

ATPase assay, a 4-fold lower ATP concentration yielded

comparable rates within 75% regardless of array type, indicating

saturation with ATP. Unmodified and acetylated D. melanogaster

H4 N-terminal peptides comprising amino acids 1–24 were

purchased from Peptide Specialty Laboratories (counter ion:

bicarbonate; H4 (and H4K16ac) peptide: TGRGKGGKGLGK-

GGAK(ac)RHRKVLRD, scrambled peptide: KLRRGGKacGD-

VKTGKLGGRKAGRGH (ac: acetylation)). The lyophilized

peptides were dissolved in 10 mM Hepes-KOH pH 7.6, and
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relative peptide concentration was controlled by absorption

measurement at 214 and 220 nm. Peptide-stimulated ISWI

ATPase activity was followed in 25 mM Hepes-KOH pH 7.6,

100 mM KOAc, 1.5 mM Mg(OAc)2, 0.1 mM EDTA, 0.2 g/l

BSA, 10% glycerol, 1 mM DTT.

Remodelling assay. To follow remodelling, arrays were

incubated with ATP and ISWI or ACF at the indicated

concentrations along with 0.5 U/ml AluI (NEB) [43,52]. After

terminating the reaction by addition of EDTA (20–40 mM) and

SDS (0.33–0.4%), the samples were deproteinized. The DNA was

purified by ethanol precipitation and resolved on a 0.9% agarose

gel. Fluorescently labelled DNA was visualized using the Odyssey

Infrared Imaging System (LI-COR), and band intensities were

quantified with the Odyssey software. Unlabelled DNA was

quantified after ethidium bromide staining by densitometry

(AIDA; raytest). To assure that AluI was not limiting, 4–5-fold

lower concentrations were tested, yielding results that deviated by

less than 2-fold regardless of the reaction conditions. Saturation

with ISWI was controlled by using a 3.3-fold lower enzyme

concentration. Under these conditions, remodelling was slightly

faster (1.6-fold), which is in full agreement with previous

observations of ISWI remodelling slowing down with increasing

enzyme concentrations [52] and confirmed saturation.

Sliding assay. The sliding assay was performed as described

[52,55] with the indicated concentrations. Longer AvaI digests

with higher enzyme concentrations yielded comparable results.

Supporting Information

Figure S1 Synthesis of histone H4 site-specifically acet-
ylated at lysine 16. (A) Scheme of the semi-synthetic method

applied for generation of the acetylated H4 [32]. A truncated H4

harbouring amino acids (aa) 20–102 with lysine 20 mutated to

cysteine (C20) was bacterially expressed and purified. Using native

chemical ligation, this H4 derivative was N-terminally fused to a

chemically synthesized peptide comprising aa 1–19 of H4 carrying

an acetylation (Ac) on lysine 16 (K16). Next, C20 was converted

into a lysine analogue (KS) by S-alkylation. (B) Structure of lysine

(K) and the lysine analogue (KS). Except for the thioether in the

side chain of the lysine analogue at position 20, the synthesized

acetylated H4 bore the canonical aa sequence. (C) Full survey

spectrum of the unmodified (top: H4) and the site-specifically

acetylated (bottom: H4K16ac) peptide 4–17 of histone H4. The

analysis was performed on histones that were incorporated into

nucleosome arrays. The protein content of the arrays was

separated on an SDS gel, stained with Coomassie, and the histone

H4 band was excised. Prior to trypsin digestion, the non-acetylated

lysines were chemically acetylated with deuterated acetic anhy-

dride (Ac3). Acetylation prevented trypsin from cutting after lysine,

and therefore longer peptides were generated. (M: molecule; m/z:

mass-to-charge ratio; m: monoisotopic mass value; Dm: difference

between the expected and the measured masses; R: resolution of

the mass spectrometry measurement). (D) Determination of the

acetylated lysine in the monoacetylated peptide H4K16ac. To

determine which of the four lysine residues (K5, K8, K12 or K16)

within the 4–17 peptide was acetylated, the b- and y-ions were

analysed. For the y5-ion comprising K16 a peak corresponding to

the naturally acetylated ion (+Ac) was detected, whereas no peak

corresponding to the chemically acetylated peptide (+Ac3) was

observed (inset I). Furthermore, for the b9-ion comprising the

other three lysine residues of the analysed peptide (K5, K8 and

K12) only a peak corresponding to the three-times chemically

acetylated ion (+3xAc3) was detected. No ions carrying one natural

acetylation along with two chemically introduced ones were

present (+1xAc +2xAc3). This result proves that the single natural

acetylation in the H4K16ac peptide observed in panel C was

indeed located on K16.

(TIF)

Figure S2 Quality controls of the histone octamers and
nucleosome arrays. (A) Example of a Coomassie-stained SDS

gel to control relative histone stoichiometry on purified saturated

nucleosome arrays. (B) Native agarose gels of the nucleosome

arrays from Figure 1B before and after MgCl2 precipitation.

Samples of the reconstitution reactions directly after assembly (i),

the pellet fraction after MgCl2 precipitation (p), and the

corresponding supernatant (SN) were loaded. The gels were

stained with ethidium bromide after the run. The nucleosome

arrays ran well above the 5 kb DNA marker band, where free

array DNA would be expected. A homogenous population of fully

saturated arrays was indicated by one sharp band. Excess histone

octamers present in the reconstitution reaction bound to the

competitor DNA resulting in a band shift. After MgCl2
precipitation only the nucleosome arrays were retained in the

pellet, no contaminating competitor DNA was present. Only fully

saturated arrays precipitated quantitatively with MgCl2. (C) AluI

digests of the purified nucleosome arrays from B. The purified

DNA was loaded onto agarose gels and stained with ethidium

bromide. In fully saturated arrays (histone octamer to DNA ratio

of 1.4:1) all AluI sites were protected by a nucleosome and the

array DNA was not cut by the enzyme. Contrary, unoccupied

Widom-601 sites in non-saturated arrays exposed an AluI site and

got cut, giving rise to a ladder of DNA fragments. (kb: kilobases).

(TIF)

Figure S3 ISWI ATPase activity in presence of nucleo-
some and chromatosome arrays. Result of an exemplary

steady-state ATPase assay. The assay was performed as in

Figure 2A and 6A employing different concentrations of

nucleosome and chromatosome arrays. Reactions were performed

in duplicates or triplicates. Data were fit to single exponential

functions (dashed lines; Kaleidagraph). Note that no affinities were

retrievable, as ISWI at 100 nM was not subsaturating. Neverthe-

less, nucleosome array concentrations needed for enzyme

saturation could be extracted.

(TIF)

Figure S4 Remodelling of chromatosome arrays recon-
stituted with different H1 input amounts. Remodelling of

unmodified and acetylated chromatosome arrays assembled with

different molar ratios of nucleosomes to H1 (indicated in brackets)

was performed and analysed as in Figure 6B, C. Control reactions

did not contain ATP.

(TIF)
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Figure S1: Synthesis of histone H4 site-specifically acetylated at lysine 16. (A) Scheme 

of the semi-synthetic method applied for generation of the acetylated H4 [32]. A truncated H4 

harbouring amino acids (aa) 20–102 with lysine 20 mutated to cysteine (C20) was bacterially 

expressed and purified. Using native chemical ligation, this H4 derivative was N-terminally fused to a 

chemically synthesized peptide comprising aa 1–19 of H4 carrying an acetylation (Ac) on lysine 16 

(K16). Next, C20 was converted into a lysine analogue (KS) by S-alkylation. (B) Structure of lysine (K) 

and the lysine analogue (KS). Except for the thioether in the side chain of the lysine analogue at 

position 20, the synthesized acetylated H4 bore the canonical aa sequence. (C) Full survey spectrum 

of the unmodified (top: H4) and the site-specifically acetylated (bottom: H4K16ac) peptide 4–17 of 

histone H4. The analysis was performed on histones that were incorporated into nucleosome arrays. 

The protein content of the arrays was separated on an SDS gel, stained with Coomassie, and the 

histone H4 band was excised. Prior to trypsin digestion, the non-acetylated lysines were chemically 

acetylated with deuterated acetic anhydride (Ac3). Acetylation prevented trypsin from cutting after 

lysine, and therefore longer peptides were generated. (M: molecule; m/z: mass-to-charge ratio; m: 

monoisotopic mass value; Δm: difference between the expected and the measured masses; R: 

resolution of the mass spectrometry measurement). (D) Determination of the acetylated lysine in the 

monoacetylated peptide H4K16ac. To determine which of the four lysine residues (K5, K8, K12 or 

K16) within the 4–17 peptide was acetylated, the b- and y-ions were analysed. For the y5-ion 

comprising K16 a peak corresponding to the naturally acetylated ion (+Ac) was detected, whereas no 

peak corresponding to the chemically acetylated peptide (+Ac3) was observed (inset I). Furthermore, 

for the b9-ion comprising the other three lysine residues of the analysed peptide (K5, K8 and K12) only 

a peak corresponding to the three-times chemically acetylated ion (+3xAc3) was detected. No ions 

carrying one natural acetylation along with two chemically introduced ones were present (+1xAc 

+2xAc3). This result proves that the single natural acetylation in the H4K16ac peptide observed in 

panel C was indeed located on K16. 

doi:10.1371/journal.pone.0088411.s001 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088411#pone.0088411-Allahverdi1


 

 

Figure S2: Quality controls of the histone octamers and nucleosome arrays. (A) 

Example of a Coomassie-stained SDS gel to control relative histone stoichiometry on purified 

saturated nucleosome arrays. (B) Native agarose gels of the nucleosome arrays from Figure 1B 

before and after MgCl2 precipitation. Samples of the reconstitution reactions directly after assembly (i), 

the pellet fraction after MgCl2 precipitation (p), and the corresponding supernatant (SN) were loaded. 

The gels were stained with ethidium bromide after the run. The nucleosome arrays ran well above the 

5 kb DNA marker band, where free array DNA would be expected. A homogenous population of fully 

saturated arrays was indicated by one sharp band. Excess histone octamers present in the 

reconstitution reaction bound to the competitor DNA resulting in a band shift. After MgCl2 precipitation 

only the nucleosome arrays were retained in the pellet, no contaminating competitor DNA was 

present. Only fully saturated arrays precipitated quantitatively with MgCl2. (C) AluI digests of the 

purified nucleosome arrays from B. The purified DNA was loaded onto agarose gels and stained with 

ethidium bromide. In fully saturated arrays (histone octamer to DNA ratio of 1.4:1) all AluI sites were 

protected by a nucleosome and the array DNA was not cut by the enzyme. Contrary, unoccupied 

Widom-601 sites in non-saturated arrays exposed an AluI site and got cut, giving rise to a ladder of 

DNA fragments. (kb: kilobases). 

doi:10.1371/journal.pone.0088411.s002 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088411#pone-0088411-g001


 

 

Figure S3: ISWI ATPase activity in presence of nucleosome and chromatosome 

arrays. Result of an exemplary steady-state ATPase assay. The assay was performed as in Figure 

2A and 6A employing different concentrations of nucleosome and chromatosome arrays. Reactions 

were performed in duplicates or triplicates. Data were fit to single exponential functions (dashed lines; 

Kaleidagraph). Note that no affinities were retrievable, as ISWI at 100 nM was not subsaturating. 

Nevertheless, nucleosome array concentrations needed for enzyme saturation could be extracted. 

doi:10.1371/journal.pone.0088411.s003

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088411#pone-0088411-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088411#pone-0088411-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088411#pone-0088411-g006


 
 

Figure S4: Remodelling of chromatosome arrays reconstituted with different H1 input 

amounts. Remodelling of unmodified and acetylated chromatosome arrays assembled with different 

molar ratios of nucleosomes to H1 (indicated in brackets) was performed and analysed as in Figure 

6B, C. Control reactions did not contain ATP. 

doi:10.1371/journal.pone.0088411.s004 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088411#pone-0088411-g006
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088411#pone-0088411-g006
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Abstract 

The development of methods to assemble nucleosomes from recombinant histones decades 

ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains 

time consuming to this day, not least because the four individual histones must be purified 

first. Here, we present a streamlined purification protocol of recombinant histones from 

bacteria. We termed this method “rapid histone purification” (RHP) as it circumvents isolation 

of inclusion bodies and thereby cuts out the most time-consuming step of traditional 

purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared 

under strongly denaturing conditions that directly solubilize inclusion bodies. By ion 

exchange chromatography, the histones are purified from the extracts. The protocol has 

been successfully applied to all four canonical Drosophila and human histones. The quality of 

histone octamers reconstituted from these histones and from histones that were purified from 

isolated inclusion bodies was indistinguishable. We expect that the RHP protocol can be 

readily applied to the purification of canonical histones from other species as well as the 

numerous histone variants. 

Introduction 

The development of a method to reconstitute nucleosomes from recombinant histone 

proteins and DNA constituted a milestone in chromatin research1-3. Current research still 

heavily depends on the availability of sufficient quantities of pure and homogenous 

nucleosomes that can, for example, be used as substrates for histone modifying enzymes, to 

characterize the interactions of nucleosome binding factors, to generate nucleosome arrays 

for physicochemical analysis, or to explore the function of the many naturally occurring 

histone variants.  

Recombinant histones are commonly expressed in bacteria where they typically partition into 

inclusion bodies4. Therefore, standard protocols begin with the preparation of inclusion 

bodies, which are isolated from the insoluble fraction of whole cell extracts in a series of 

washing steps1-3. During each washing step, the insoluble fraction is resuspended in buffer 

and then pelleted again by centrifugation. To stringently remove impurities, detergent is 

added to the buffer during the first washing steps. Subsequent washes serve to dilute the 

detergent. Next, the histones are solubilised and extracted from the inclusion bodies under 

denaturing conditions by addition of DMSO followed by incubation in a buffer containing 7 M 

guanidine hydrochloride. Further purification of the histones is achieved by gel filtration and 

cation exchange chromatography in a urea-based buffer. A final dialysis against water is 

required to remove salt and urea (Fig. 1A).  

The purification of recombinant histones, however, is time-consuming and often rate-limiting 

for many applications. Several short-cuts to the original purification method were suggested 



R e s u l t s  | 117 

 

 

to speed up the procedure. For example, the gel filtration and a lyophilisation step preceding 

the cation exchange chromatography have been successfully omitted5-9 (Fig. 1A). 

Nevertheless, the purification of the inclusion bodies through the series of long centrifugation 

and laborious resuspension procedures remained the bottle-neck of the purification 

procedure. Even worse, we observed that extensive washing of the inclusion bodies can lead 

to loss of material for some histones.  

 

Figure 1: Histone purification strategies. Schematic depiction of the workflow of (A) the 
conventional histone purification method according to Luger and coworkers2,3 and (B) our RHP 
protocol. For further details see the main text. Footnotes indicate variations and simplifications of the 
initial protocol.  

* The gel filtration step was successfully omitted in simplified purification schemes5,7-9. 

# These steps can be replaced by dilution into or dialysis against SAU 200 buffer5-9. 

‡ To remove possible DNA contaminations, it was suggested to filter the sample through an anion 
exchange resin prior to applying it to the cation exchange chromatography7-9.   
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Here, we introduce a simplified and robust protocol, termed RHP, for the purification of 

histones expressed in bacteria that circumvents the laborious isolation of the inclusion bodies 

(Fig. 1B). The method uses denaturing conditions already during cell lysis to extract the 

histones. Therefore, this strategy is also applicable to histone derivatives that do not fully 

partition into inclusion bodies. Similar to standard methods, the histones are purified by 

cation exchange chromatography. If DNA contaminations have to be avoided, we 

recommend filtering the solution through an anion exchange resin. The RHP method requires 

considerably less hands-on working time than previous methods. Histones purified according 

to the RHP method readily incorporated into histone octamers, and these octamers were 

indistinguishable in purity from octamers that were reconstituted from more traditional histone 

preparations5. 

Materials and Methods 

The protein content of samples taken throughout the purification procedure was analyzed on 

15 or 18% SDS gels by Coomassie staining. The gels were scanned with the Odyssey 

Infrared Imaging System (LI-COR). 

Histone expression 

Drosophila histones H3 and H4 were expressed from pET3c-based constructs10. Codon-

optimized genes for Drosophila H2A and H2B were synthesized and subcloned into pET15b 

(pFMP128 and pFMP129, respectively; Table S1; Eurofins MWG). BL21(DE3) cells were 

transformed with the expression plasmids and grown at 37°C to a density of OD600 0.6–0.8 in 

LB supplemented with Ampicillin (100 mg/l) in shaking cultures (2 l for H3 and 4 l for all other 

histones). Histone expression was induced by addition of 1 mM IPTG. After 2 h, the cells 

were harvested by centrifugation at 4°C and stored at -80°C.  

Histone expression was verified by removing 1 ml of the culture directly before induction and 

before harvesting. Cells in these samples were pelleted, resuspended in sample buffer 

(150 µl per OD600; 9 M urea, 1% SDS, 25 mM Tris-Cl pH 6.8, 1 mM EDTA, 

0.02% Bromophenol Blue, 100 mM DTT) and heated (15 min at 65°C). It is recommended to 

strongly vortex the whole cell extract to shear genomic DNA. The protein contents of 

equivalent amounts of the extracts were analyzed on SDS gels.  

Cell lysis and histone extraction 

The bacteria pellet was resuspended in SAU buffer (40 mM NaOAc pH 5.2, ≥6 M urea, 

1 mM EDTA pH 8, 5 mM β-Mercaptoethanol, 10 mM lysine) supplemented with 

200 mM NaCl (SAU 200) and protease inhibitors (1 mM PMSF, 1 mg/l Aprotinin, 

1 mg/l Leupeptin, 0.7 mg/l Pepstatin). We typically resuspend the cell pellet of up to 6 l 
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cultures in a final volume of 35 ml. Defined buffer conditions are most conveniently achieved 

by adding 10x SA buffer (400 mM NaOAc pH 5.2, 10 mM EDTA pH 8, 100 mM lysine, 50 mM 

β-Mercaptoethanol), NaCl to a final concentration of 200 mM and protease inhibitors directly 

to the cell pellet. Once the cells are properly resuspended, urea powder is added to a 

concentration of 6 M and the suspension is filled up to the final volume with water.  

All steps during lysis and purification were performed at 4°C. Cells were lyzed by three 

passes through a French Press (1,500 psi; Thermo Spectronic) and sonication on ice (at 

least 2 min effective sonication time with an amplitude of 30% with pulses of 15 sec followed 

by 30 sec pauses; Branson Ultrasonics). If urea is added as powder as described above, we 

recommend to perform sonication prior to the French Press and to use longer sonication 

times (up to  20 min with occasional mixing) to ensure that all urea is fully dissolved.   

The extract was cleared by centrifugation for 20–30 min at ~41,000 g (SS-34 rotor, Sorvall 

RC 6 Plus; Thermo Scientific) and filtration. For the histone preparations shown in this paper, 

conventional 0.45 µM syringe filters were used. These filters easily clogged, in contrast to 

syringe filters containing a glass-fiber prefilter (HPF Millex, Millipore) that were successfully 

employed in later preparations.  

Cation exchange and dialysis 

The pre-cleared cell extract was loaded onto a HiTrap SP HP column (5 ml; GE Healthcare) 

pre-equilibrated in SAU 200 buffer. The column was washed with 200 mM NaCl for several 

column volumes (CV). A gradient from 200 to 600 mM NaCl over 5–10 CV was applied to 

elute bound protein. Pooled histone-containing fractions were dialyzed against cold water 

over night (3 times ≥3 l) in dialysis tubing with a molecular weight cut-off of 6000-8000 Da 

(Spectra/Por).  

Anion exchange 

The dialysate was centrifuged to remove precipitates, supplemented with 15 mM Tris-Cl 

pH 8, and filtered using conventional syringe filters (0.45 µm). The sample was passed 

through a HiTrap Q HP column (1 ml; GE Healthcare) that was pre-equilibrated in 

15 mM Tris-Cl pH 8. The flow-through of the column was collected and the histone 

concentration was determined by absorption measurement at 280 nm (see Table 1 for the 

extinction coefficients). Yields typically ranged between 2 and 15 mg per liter expression 

culture. Aliquots of the purified histone were flash frozen in liquid nitrogen. The purity of the 

proteins was assessed by SDS-PAGE. To regenerate the resin and to control whether a 

fraction of the histones had bound to the resin, a gradient up to 2 M NaCl was applied. The 

elution fractions contained little or no protein.  
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Purification of histones from inclusion bodies 

Preparation of recombinant histones from purified inclusion bodies was done essentially as 

described5. In short, the histones were expressed in BL21(DE3) cells that were lysed in 

50 mM Tris-Cl pH 7.5, 100 mM NaCl, 1 mM EDTA pH 8, 5 mM β-Mercaptoethanol 

supplemented with protease inhibitors by sonication and French Press as described above. 

Inclusion bodies were purified by a succession of four washing steps using lysis buffer that 

was supplemented with Triton X-100 (1%) during the first two washes. Histones were 

extracted from inclusion bodies by homogenization in DMSO and unfolding buffer (7 M 

guanidine hydrochloride, 20 mM Tris-Cl pH 7.5, 10 mM DTT). After dialysis against SAU 200 

buffer, cation exchange chromatography and subsequent dialysis against water was 

performed as described above. 

Octamer assembly  

Histone octamers were assembled with ~1 mg of each Drosophila histone according to Luger 

and coworkers2,3. Histones were lyophilized (Alpha 1-2, Christ; RZ 2.5, vacuubrand) and 

solubilized in unfolding buffer as described in the Results and Discussion section (see step 

5.2). To analyze histone stoichiometry by SDS-PAGE, the samples were diluted in water 

(1:10) prior to loading to reduce the concentration of guanidine hydrochloride, which can 

negatively affect the gel run. Dialysis into refolding buffer (3 times 2 l; 10 mM Tris-Cl pH 7.5, 

2 M NaCl, 1 mM EDTA, 5 mM β-Mercaptoethanol) was performed in dialysis tubing with a 

molecular weight cut-off of 6000–8000 Da. Precipitates were removed by centrifugation and 

the sample was loaded onto a size exclusion chromatography column (Superdex 200 HiLoad 

16/60, 120 ml; GE Healthcare) pre-equilibrated in refolding buffer. Elution fractions were 

analyzed by SDS-PAGE. Octamer-containing fractions were pooled according to purity and 

histone stoichiometry. After concentration to 2–3 mg/ml in centrifugal filters (Amicon Ultra-4 

or Microcon, 30 kDa MWCO; Millipore), the octamers were stored as described in the 

Results and Discussion section. 

Results and discussion 

Here we present the RHP method for the purification of recombinant histones from bacteria.  

With this method, we purified the four core histones from Drosophila melanogaster. Human 

histones, the Drosophila histone variant H2Av as well as several histone H4 mutants 

including tail-deleted H4 can be purified using the same protocol (Jens Michaelis, personal 

communication, and data not shown). For clarity, the important steps of the RHP protocol are 

listed as bullet points. Further details are given in the Materials and Methods section.  
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1. Histone expression 

Some histones express poorly in bacteria. Species bias of codon usage of the recombinant 

gene or toxicity of the gene product are two potential causes of poor expression. Drosophila 

H2A and H2B, for example, showed low and variable expression levels, whereas H3 and H4 

always expressed robustly from the same vector (pET3c). To circumvent codon bias and 

toxicity, we codon-optimized the genes for H2A and H2B (Table S1) and cloned them into a 

vector that provides a more stringent control over the expression through co-expression of 

the lac repressor (pET15b). H2A and H2B were robustly expressed from these optimized 

expression plasmids in standard BL21(DE3) E. coli cells. Histone expression comprised the 

following steps: 

1.1 Transformation of BL21(DE3) E. coli with the respective expression plasmid. 

Depending on the expression plasmid and the source of the histones, bacterial 

strains expressing rare tRNAs or strains that restrict leaky expression may improve 

the yield.   

1.2 Growth of up to 6 l of culture to OD600 = 0.6–0.8. 

1.3 Induction of histone expression by addition of 1 mM IPTG for 2 h at 37°C.  

We recommend verifying the expression by SDS-PAGE before proceeding with the 

protocol (see Materials and Methods). Overexpression must be clearly visible in 

whole cell extracts.  

1.4 Harvesting of the cells by centrifugation.  

After centrifugation, it is recommended to resuspend the cells in small volumes of 

cold water, transfer the cells to a 50 ml conical tube and pellet the cells a second 

time. 

1.5 Storage of the bacteria pellets at -80°C until further use.  

2. Cell lysis and histone extraction 

Histones expressed in bacteria are typically insoluble and form inclusion bodies. To extract 

both the soluble and insoluble fraction, whole cell extracts were prepared under denaturing 

conditions in presence of ≥6 M urea. Addition of free lysine to the lysis buffer served to 

prevent carbamylation of the histone proteins that might occur upon reaction with natural 

degradation products of urea11. Nevertheless, exposure of the histone proteins to the urea-

containing buffer (SAU buffer) should be kept to a minimum. Also note that the urea solution 

should always be prepared freshly and never be warmed up. Cell lysis and histone extraction 

required the following steps: 

2.1 Resuspension of the bacteria pellet in sodium-acetate-urea (SAU) buffer containing 

200 mM NaCl (SAU 200).  
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Care should be taken that the final urea concentration during cell lysis and 

extraction is between 6–7.5 M to assure efficient protein denaturation and histone 

extraction without exceeding the solubility of urea. A defined final urea concentration 

is most conveniently achieved by resuspending the cell pellet in an appropriate 

volume of 10x SA buffer and adding urea powder directly to the suspension. Water 

is added and the suspension is mixed to dissolve the urea. 

2.2 Cell lysis by French Press and sonication. 

The order of the lysis steps is optional. However, we recommend to sonicate the 

sample before employing the French Press. This order of events has the advantage 

that urea has additional time to dissolve during sonication so that it does not clog the 

French Press. Note that the French Press step may be left out completely, as it only 

marginally enhanced extraction (data not shown). 

To check the efficiency of the cell lysis and histone extraction, equivalent amounts of 

the pellet and supernatant fractions obtained after centrifugation (see step 2.3) were 

removed and proteins resolved by SDS-PAGE. Figure 2 shows exemplary results 

for histone H2B; similar results were obtained for the other three core histones. The 

majority of H2B was detected in the soluble extract, suggesting that cell lysis and 

histone extraction were efficient under the chosen conditions. Nevertheless, should 

a major fraction of the histone be found in the pellet, the extraction procedure should 

be repeated. For efficient extraction, ensure that the urea concentration in the cell 

suspension exceeds 6 M.   

2.3 Removal of cell debris by centrifugation.  

It is critical to remove most insoluble particles from the cell extract as they easily 

clog filters and chromatography media in the following steps. We routinely perform 

two rounds of centrifugation to achieve acceptable results. A loose, viscous pellet 

may form. We therefore recommend recovering the soluble fraction by careful 

pipetting instead of decanting. 

 

 

Figure 2: Histone extraction. Whole cell extracts were 
prepared from bacteria expressing Drosophila H2B by French 
Press and sonication. Cell debris and residual insoluble material 
were pelleted by centrifugation. Efficiency of the histone 
extraction was analyzed on Coomassie-stained SDS gels by 
loading equivalent amounts of the supernatant containing the 
solubilized histones (SN) and the corresponding pellet fraction 
(P). Most H2B was present in the supernatant. 
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3. Cation exchange and dialysis 

The histones were purified from the cell extract by cation exchange chromatography under 

denaturing conditions. As the histones carry a net positive charge at the pH of the buffer 

(pH 5.2), they bound to the cation exchange resin at low salt concentrations, in contrast to 

the majority of bacterial proteins (Fig. 3A). The histones were then eluted by a salt gradient. 

3.1 Filtering of the sample. 

Filtering of the supernatant from step 2.3 prior to the cation exchange is necessary 

to remove residual particulate material that can block the chromatography column. 

As conventional syringe filters easily clogged, we strongly recommend using syringe 

filters that contain a glass-fiber prefilter instead (HPF Millex; Millipore).   

3.2 Loading of the filtered sample onto a HiTrap SP HP column (5 ml; GE Healthcare) 

pre-equilibrated in SAU 200 buffer.  

3.3 Washing of the column with a minimum of 5 column volumes of SAU 200 buffer. 

3.4 Elution of the histones by applying a gradient from 200 to 600 mM NaCl over 5 to 10 

column volumes.  

All histones eluted in a broad peak centered around  430 ± 50 mM NaCl.  

3.5 Analysis of the protein content of the elution fractions by SDS-PAGE (Fig. 3B). 

3.6 Pooling of the fractions according to histone abundance and purity. 

As yields typically are not limiting, we suggest to pool according to purity. 

 

Figure 3: Histone purification by cation exchange chromatography. The whole cell extract 
from Figure 2 containing solubilized Drosophila H2B (SN) was filtered and applied to cation exchange 
chromatography under denaturing conditions. (A) Equivalent amounts of the filtered whole cell extract 
(Input) and the flow-through fraction of the cation exchange column were analyzed by SDS-PAGE. 
Most H2B bound to the chromatography resin. (B) H2B was eluted by a NaCl gradient as indicated. 
Fractions 4–8 were pooled and processed further as described in the main text. 
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3.7 Dialysis of the pooled histone fractions against water. 

The pooled histone-containing fractions were extensively dialyzed against water to 

remove salts and urea.  

4. Anion exchange and storage of purified histones 

By virtue of their positive charge, histones strongly bind to nucleic acids. Therefore, E. coli-

derived nucleic acids may co-purify with histones. A contamination with nucleic acids can 

affect the concentration measurements of the purified histones (see below) or interfere with 

downstream applications. We therefore filtered the samples over an anion exchange column. 

The negatively charged nucleic acids are expected to bind to the positively charged resin 

along with some contaminating proteins, whereas histones pass through the resin 

unimpededly.  

4.1 Addition of Tris-Cl pH 8 to the dialysate to a final concentration of 15 mM.  

A buffered solution with a defined pH is necessary for robust binding of 

contaminations to the resin. 

4.2 Centrifugation and filtering of the sample to remove particles. 

Conventional syringe filters were used to filter the dialysate.  

4.3 Passing of the filtered sample over a HiTrap Q HP column and collection of the flow-

through. 

As expected, the histones were found in the flow-through of the anion exchange 

column (Fig. 4A).   

4.4 Determination of the concentration.  

The concentration is most conveniently measured by absorption of UV light. The 

extinction coefficients of Drosophila histones at 280 nm are listed in Table 1.  

Table 1: Extinction coefficients of Drosophila histones at 280 nm. 

 
Molecular 

weight (Da)* 
ε280 (cm

-1
 M

-1
)
#
 

H2A 13,232 4,470 

H2B 13,565 7,450 

H3 15,257 4,470 

H4 11,250 5,960 

Octamer 106,608 44,700 

   
* Molecular weights do not include the initial methionine. 
# The extinction coefficients were calculated using the ProtParam tool with water as solvent (Swiss 
Institute of Bioinformatics; http://web.expasy.org/protparam/)12. 
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4.5 Storage of the purified histones at –80°C until further use. 

Storage in aliquots that contain 0.5 to 2 mg is useful for most downstream 

applications. 

In a variation of the protocol, the anion exchange filtration step is performed prior to the 

cation exchange chromatography (step 3)7-9, further simplifying the protocol. To this end, a 

HiTrap Q HP column is attached on top of the HiTrap SP HP column. The cell extract from 

step 3.1 is then passed over the two columns. Before eluting the histones with the salt 

gradient, the Q HP column is detached from the FPLC system. Note that this version of the 

protocol, though simpler, filters out fewer impurities. 

5. Reconstitution of histone octamers 

All four canonical Drosophila core histones were purified according to the method outlined in 

steps 1–4 (Fig. 4A). Next, we assembled histone octamers with these histone preparations 

essentially as described2,3. Briefly, the four histones were lyophilized, dissolved in denaturing 

buffer and mixed. Dialysis was used to dilute the denaturant, allowing the histones to refold. 

Furthermore, the dialysis buffer contained 2 M NaCl, conditions that facilitate stable 

formation of histone octamers. Fully assembled histone octamers were separated from 

 

Figure 4: Histone octamer assembly. (A) The four canonical Drosophila histones were purified 
according to the RHP method and analyzed by SDS-PAGE. Arrowheads indicate the respective 
histones. (B) The histones from A were assembled into octamers. The elution profile of the size 
exclusion chromatography column is depicted (upper panel). The protein content of selected elution 
fractions was analysed by SDS-PAGE (lower panel and Figure S1). Octamers eluted with a tailing 
shoulder, which contained a contaminating protein (asterisk). 
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excess histones and contaminating bacterial proteins by size exclusion chromatography. 

5.1 Lyophilisation of each histone. 

5.2 Dissolving of the lyophilized histones in guanidine hydrochloride-containing 

unfolding buffer to a concentration of 2–4 mg/ml. 

The histone suspensions were gently mixed at room temperature for 30 min. Note 

that histones should not remain in the unfolding buffer for an extended period of time 

(>3 h)2,3. 

5.3 Determination of the concentration of the histones by UV absorption as described in 

step 4.4.  

5.4 Mixing of the histones. 

We recommend mixing the histones for the assembly with a 1.2-fold excess of H2A 

and H2B over H3 and H4. Adding H2A and H2B in excess prevents the formation of 

free H3-H4 tetramers or histone hexamers, which are difficult to separate from 

histone octamers in the subsequent size exclusion chromatography step. Contrary, 

H2A-H2B dimers can be separated easily from the octamers (see step 5.7 and 

Fig. 4B). 

In addition to determining the concentration by UV absorption, we suggest analyzing 

the individual histone samples and the histone mix by SDS-PAGE and Coomassie-

staining to judge the stoichiometry of the mix. If the ratios of the histones are found 

unbalanced, the mix can be adjusted accordingly by addition of the 

underrepresented proteins before dialysis (see step 5.5).  

5.5 Dialysis into refolding buffer. 

5.6 Removal of precipitates by centrifugation and filtration. 

5.7 Size exclusion chromatography (Superdex 200). 

Typically, four major peaks eluted from the column. SDS-PAGE analysis showed 

that the second and third peak contained the histone octamers and H2A–H2B 

dimers, respectively (Fig. 4B and S1). The other peaks consisted of aggregates and 

low molecular weight impurities. Fractions containing pure octamers with the proper 

stoichiometry were pooled and stored as described in step 5.8.  

We noticed that the octamers eluted in a peak with a shoulder tailing towards later 

elution volumes. SDS-PAGE analysis revealed a contaminating band in these side 

fractions of the octamer peak (Fig. 4B). This contamination presumably originated 

from a protein co-purifying with H4. We detected the contamination in H4 

preparations irrespective of the purification method (data not shown). Additionally, 

late-eluting octamers are known to be contaminated by H3-H4 tetramers and 

histone hexamers, especially if H2A and H2B are limiting. It is therefore advisable to 

narrowly pool the peak.  
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5.8 Storage of the octamers.  

The pooled fractions were concentrated, aliquots were shock-frozen in liquid N2 and 

stored at –80°C. Alternatively, the octamer sample can be stored at –20°C after 

addition of glycerol to a final concentration of 50% (v/v).  

Comparison of octamer quality and conclusions 

The RHP protocol above describes a straightforward way to purify histones, and histones 

purified by this method readily incorporated into octamers. Octamers assembled from 

histones purified by RHP or conventional inclusion body purification-based methods5 were 

indistinguishable in purity and stoichiometry as judged by SDS-PAGE and Coomassie 

staining (Fig. 5).  

In summary, the RHP method offers a rapid and robust procedure to purify recombinant 

histones expressed in bacteria. RHP does not require laborious preparation of inclusion 

bodies and thus substantially reduces the required handling time. So far, the protocol was 

successfully applied to prepare canonical Drosophila histones (this study), human histones 

(Jens Michaelis, personal communication), the Drosophila histone variant H2Av and various 

H4 mutants (data not shown). We expect that it will be useful also for the preparation of 

histones and histone variants from other organisms.  
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Figure 5: Quality control of the histone octamers. 

Stoichiometry and purity of the octamers assembled from the 
histones purified according to the RHP method outlined in the main 
text were analyzed by SDS-PAGE (lane 1). An octamer preparation 
assembled from histones purified by a method based on the 
standard purification protocol5 was loaded in parallel (lane 2). 

 



128 |  R e s u l t s  

 

 

References 

1. Luger, K., Rechsteiner, T.J., Flaus, A.J., Waye, M.M. & Richmond, T.J. 
Characterization of nucleosome core particles containing histone proteins made in 
bacteria. J Mol Biol 272, 301-11 (1997). 

2. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Expression and purification of 
recombinant histones and nucleosome reconstitution. Methods Mol Biol 119, 1-16 
(1999). 

3. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core 
particle from recombinant histones. Methods Enzymol 304, 3-19 (1999). 

4. Dyer, P.N. et al. Reconstitution of nucleosome core particles from recombinant 
histones and DNA. Methods Enzymol 375, 23-44 (2004). 

5. Clapier, C.R., Langst, G., Corona, D.F., Becker, P.B. & Nightingale, K.P. Critical role 
for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 21, 
875-83 (2001). 

6. Gordon, F., Luger, K. & Hansen, J.C. The core histone N-terminal tail domains 
function independently and additively during salt-dependent oligomerization of 
nucleosomal arrays. J Biol Chem 280, 33701-6 (2005). 

7. Vary, J.C., Jr., Fazzio, T.G. & Tsukiyama, T. Assembly of yeast chromatin using ISWI 
complexes. Methods Enzymol 375, 88-102 (2004). 

8. Wittmeyer, J., Saha, A. & Cairns, B. DNA translocation and nucleosome remodeling 
assays by the RSC chromatin remodeling complex. Methods Enzymol 377, 322-43 
(2004). 

9. Gelbart, M.E., Rechsteiner, T., Richmond, T.J. & Tsukiyama, T. Interactions of Isw2 
chromatin remodeling complex with nucleosomal arrays: analyses using recombinant 
yeast histones and immobilized templates. Mol Cell Biol 21, 2098-106 (2001). 

10. Morales, V. et al. Functional integration of the histone acetyltransferase MOF into the 
dosage compensation complex. EMBO J 23, 2258-68 (2004). 

11. Stark, G.R., Stein, W.H. & Moore, S. Reactions of the Cyanate Present in Aqueous 
Urea with Amino Acids and Proteins. The Journal of Biological Chemistry 235, 3177-
3182 (1960). 

12. Artimo, P. et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40, 
W597-603 (2012). 

 



R e s u l t s  | 129 

 

 

 

 

 

Supplementary material 

 

“Rapid purificarion of recombinant histones” 

Klinker et al. in revision 



130 |  R e s u l t s  

 

 

Supplementary Table 1: DNA sequences of codon-optimized Drosophila H2A and H2B 

genes.  

H2A 
ATGTCCGGCCGTGGGAAAGGCGGTAAAGTCAAGGGTAAGGCGAAGAGTCGCAGCAACCGCGCAGGTCTGCAATTTCCGGTGGGTCGC

ATTCATCGCCTGCTGCGTAAAGGTAACTACGCTGAACGCGTAGGCGCGGGCGCGCCTGTATATCTGGCTGCAGTCATGGAGTATCTG

GCAGCCGAGGTTTTAGAACTGGCGGGCAACGCGGCTCGTGATAACAAAAAAACTCGTATCATCCCACGCCACCTGCAGCTGGCGATT

CGCAATGACGAAGAATTAAATAAATTGCTGTCGGGCGTGACGATTGCCCAGGGCGGCGTTCTGCCGAATATCCAGGCCGTGTTGCTG

CCGAAAAAAACCGAAAAAAAAGCCTAA 

H2B 
ATGCCACCGAAAACCTCCGGTAAAGCGGCCAAAAAAGCCGGCAAAGCCCAAAAGAACATCACGAAAACCGATAAGAAGAAGAAACGC

AAACGCAAAGAGTCCTATGCGATTTACATCTATAAGGTGCTGAAACAGGTACATCCGGATACTGGcATTAGCAGTAAAGCCATGAGC

ATCATGAATAGCTTCGTGAATGACATCTTTGAACGCATTGCTGCAGAAGCGAGTCGTTTGGCTCACTACAACAAACGGTCGACCATT

ACCTCTCGTGAGATTCAGACTGCAGTTCGTCTGTTACTGCCTGGTGAACTCGCGAAACATGCGGTTTCAGAAGGCACAAAAGCAGTC

ACCAAATATACGTCGTCTAAATAA 

 

Supplementary Figure:  

 

Figure S1: Purification of histone octamers by size exclusion chromatography. Analysis 
of the gel filtration elution fractions from the octamer purification shown in Figure 4B. Selected elution 
fractions were analyzed by SDS-PAGE, the corresponding elution volumes are indicated. 
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3 Discussion 

3.1 The molecular mechanism of ISWI-mediated nucleosome sliding 

Recent findings by us and others considerably advanced our understanding of the 

nucleosome sliding mechanism of ISWI (see also chapter 2.2). Contrary to wide-spread 

expectations but in accordance with observations for the related chromatin remodeling factor 

Chd1 (Hauk et al., 2010), we could demonstrate that the HSS domain of ISWI is dispensable 

for a basic nucleosome sliding reaction (see chapter 2.1). The HSS domain facilitates but is 

not essential for nucleosome sliding. Therefore, prominent models of the ISWI nucleosome 

sliding mechanism postulating a pivotal role of the HSS domain have to be revisited. Instead, 

we propose that ATP-dependent translocation of the ATPase domain of ISWI at SHL2 is 

sufficient to catalyze nucleosome repositioning. How the translocation activity mechanistically 

translates into nucleosome sliding remains to be determined. Conceivably, ISWI binding or 

activity breaks key nucleosomal contacts creating a window of opportunity for the 

reorganization of the structure and possibly position of the nucleosome (see Figure 7 in 

chapter 2.1). Notably, recent results from single molecule experiments revealed nucleosome 

sliding to occur in single base pair steps (see below) (Deindl et al., 2013). This observation is 

consistent with a helicase-like translocation activity of the histone-tethered ISWI ATPase 

domain pumping DNA base pair-wise towards the nucleosome exit site. A concerted large-

scale rearrangement of the nucleosome, on the contrary, seems to be incompatible with the 

finding. In conclusion, the ISWI ATPase domain – most likely by its translocation activity – 

turns out to be the driving force of sliding, although the mechanism by which the individual 

base pairs are further propagated from the site of translocation to the nucleosome exit site is 

not yet clear. 

As the ATPase domains of all chromatin remodeling enzymes are homologous, it is 

conceivable that the basic nucleosome remodeling reaction described above is shared by all 

remodeling factors. To achieve the variety of different remodeling outcomes observed in vitro 

and in vivo, a plethora of accessory domains and subunits evolved to regulate, modulate, 

and optimize catalysis (see chapter 2.2). The HSS domain, for example, increases not only 

the affinity – and thereby likely the sliding processivity – but also the specificity of ISWI to the 

nucleosome and may help to properly position the ATPase domain at SHL2 (see chapter 

2.1). Furthermore, the domain might be fundamentally involved in the nucleosome spacing 

activity of ISWI, for instance by functioning as a protein ruler (see chapter 1.3.3). Additionally, 

the C-terminus of ISWI harboring the HSS domain serves as interaction surface for non-

catalytic complex subunits. In Drosophila ISWI, for example, a domain directly C-terminal to 

the HSS domain mediates the interaction with Acf1, whereas the SANT and/or SLIDE 

domains of the yeast ISWI homologs are required for association of their specific complex 

subunits (Eberharter et al., 2004; Hota et al., 2013; Pinskaya et al., 2009). Thus, the C-



132 |  D i s c u s s i o n  

 

terminus is expected to be essential for proper chromatin remodeling in vivo where ISWI 

does not act as a single entity but in the context of various remodeling complexes.  

Besides these “passive” functions of the HSS domain in nucleosome sliding by ISWI, the 

domain may also assume more “active” roles in catalysis. In our analysis, the ISWI mutant 

lacking the HSS domain remodeled nucleosomes about one order of magnitude more slowly 

than the wild-type enzyme under saturating conditions (see chapter 2.1). This defect may 

result from a missing “active” contribution of the HSS domain to the sliding reaction, for 

example the pushing of extranucleosomal DNA into the nucleosome, an activity that was 

even proposed to be the major driving force of sliding in prominent models (see chapters 

1.3.2 and 2.2). Thereby, an ATP hydrolysis-triggered conformational change between the 

ATPase and HSS domain was suggested to serve as a kind of “power stroke” creating a 

DNA loop on the surface of the nucleosome by mechanically pushing in extranucleosomal 

DNA (see Figure 5 of chapter 2.3). Although our work with the HSS-depleted mutant had 

demonstrated that the HSS domain was not essential for sliding, enhancement of the 

reaction by active co-operation of the domains resulting in a power stroke remained possible. 

However, our study employing ISWI mutants harboring flexible linkers between the ATPase 

and HSS domain to interrupt possible direct, force-transducing co-operation provided 

compelling evidence against the power stroke model, as the mutants behaved like the wild-

type enzyme in ATPase, remodeling, and sliding assays (see chapter 2.3). Notably, a study 

on Chd1 conducted in parallel in the Bowman laboratory using even longer flexible linker 

insertions came to the same conclusion, lending further credence to our findings (Nodelman 

and Bowman, 2013). As the presence of the flexibly connected HSS domain rescued full 

remodeling activity in comparison to the HSS-depleted ISWI mutant, we propose that the 

HSS domain serves as an anchor assisting in positioning the ATPase domain at SHL2, 

thereby promoting productive engagement of ISWI with the nucleosome. In addition, binding 

of the HSS domain may facilitate sliding in a more active manner by weakening nucleosomal 

contacts close to the DNA entry site. Nevertheless, direct communication between the 

ATPase and HSS domain of ISWI is not supported by our findings. 

Further exciting insight into how the HSS domain may contribute to nucleosome sliding was 

derived from recent findings of the Bartholomew, Zhuang, and Cairns laboratories (Clapier 

and Cairns, 2012; Deindl et al., 2013; Hota et al., 2013). Performing single molecule 

experiments, Deindl et al. carefully dissected a nucleosome sliding reaction by ISWI-type 

complexes and revealed remarkable details (see also chapter 2.2) (Deindl et al., 2013). In 

short, they demonstrated that during ISWI remodeling initially 7 bp of DNA exit the 

nucleosome in single base pair steps before 3 bp enter from the opposite side. In a 

subsequent step, 3 bp exit followed by the entry of 3 bp. Consequently, during sliding the 

nucleosomal DNA continuously lacks up to 7 bp in comparison to the canonical nucleosome 

structure, resulting in considerable distortion. Given that the ISWI ATPase domain 
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responsible for pumping the DNA towards the exit site by translocation is located at SHL2, 

the deficit in base pairs is presumably not evenly distributed over the nucleosome but 

restricted to the topological domain delimitated by the binding of the ISWI ATPase module at 

SHL2 and the HSS domain at the entry site (see Figure 4b in chapter 2.2). Therefore, the 

DNA in this region accumulates a strain in the cause of sliding when base pairs exit the 

nucleosome. Only when the strain is sufficiently strong, extranucleosomal DNA ratchets in at 

the entry site, partially relieving it and allowing the ATPase domain to continue translocating. 

The HSS domain seems to be importantly involved in regulating this succession of events as 

suggested by Hota et al. (Hota et al., 2013). In this study, mutation of the SLIDE domain that 

weakened its interaction with the extranucleosomal DNA impaired the entry of DNA more 

pronouncedly than its exit in the context of the CHRAC-like yeast ISW2 complex. Moreover, 

the SLIDE domain assisted in determining sliding directionality as its mutation caused an 

increase in back tracking of the DNA at early stages of sliding. Notably, positioning of the 

ATPase domain at SHL2 was not affected by the mutations introduced into the SLIDE 

domain. Therefore, the authors concluded that the HSS domain not only serves as an anchor 

to put into place the ATPase domain but also critically contributes to sliding in a more active 

manner. However, details of the mechanism remain to be determined. Presumably, the 

interaction of the HSS domain with the nucleosome at the entry site is important for the 

buildup of the strain that is generated by the translocation activity of the ATPase domain at 

SHL2. Accumulation of a certain amount of strain may trigger a temporal detaching of the 

HSS domain allowing DNA to ratchet in. Efficient, unidirectional sliding apparently depends 

on the proper generation and timely release of the strain and thus may rely on the HSS 

domain. Of note, studies on the chromatin remodeling enzyme Chd1 proposed that no 

specific contacts between the HSS domain and the extranucleosomal DNA are required for 

nucleosome sliding. Substitution of the HSS domain with sequence-specific DNA binding 

domains yielded fully functional enzymes with undisturbed sliding activity on substrate 

nucleosomes harboring the DNA consensus sequence within a certain distance from the 

entry site (McKnight et al., 2011). Taken together, besides stabilizing and positioning ISWI on 

the nucleosome the HSS domain probably assists nucleosome sliding by gripping on the 

extranucleosomal DNA and regulating its entry into the nucleosome. 

An additional role of the HSS domain in ISWI catalysis was indicated by Clapier and Cairns 

(Clapier and Cairns, 2012). They suggested the domain to be critically involved in regulating 

ISWI activity as its binding to extranucleosomal DNA induced a conformational change 

relieving an intrinsic autoinhibition mediated by the so-called NegC domain – also referred to 

as “bridge” by us and others –, located directly C-terminal to the ATPase module (see 

chapter 2.2). Release of the NegC-mediated inhibition was proposed to be essential for the 

efficient coupling of ATP hydrolysis to nucleosome sliding. Therefore, persistent 

autoinhibition by NegC in the absence of the HSS domain may contribute to the reduced 

nucleosome sliding activity we observed with the HSS-depleted ISWI mutant (see chapter 
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2.1). However, how the HSS and NegC region communicate is currently unclear. Notably, 

the insertion of flexible linkers between both regions did not affect ISWI activity and thus 

NegC release (see chapter 2.3). In summary, the HSS domain seems to regulate, facilitate, 

and optimize nucleosome sliding employing a variety of mechanisms, whereas the 

remodeling reaction as such is mainly driven by the activity of the ATPase domain at SHL2. 

 

3.2 Regulation of ISWI by the histone H4 tail 

The sensitivity of ISWI and its complexes to the histone H4 tail protruding from the 

nucleosome at SHL2 was established in a series of in vitro studies (see chapter 1.3.3). 

However, the underlying mechanism as well as the extent of the H4 tail-dependency of ISWI 

remained largely elusive and controversial (e.g. (Clapier and Cairns, 2012; Clapier et al., 

2001; Dang et al., 2006; Fazzio et al., 2005; Ferreira et al., 2007)). We quantified the 

remodeling activity of ISWI in the context of folded nucleosome arrays and compared wild-

type to H4 tail-deleted substrates (see chapter 2.1). Under saturating conditions, ISWI 

remodeling was reduced about six-fold in absence of the H4 tail. This finding indicated that 

also in the context of folded chromatin fibers where the H4 tail is expected to be engaged in 

inter-nucleosomal interactions (see chapter 1.1.3) epitopes of the H4 tail involved in 

enhancing ISWI remodeling were available for the enzyme. Notably, both full-length ISWI 

and the HSS-deficient mutant reacted to depletion of the H4 tail, demonstrating that the N-

terminus or the ATPase domain of ISWI comprised an H4-sensing epitope. Given the 

localization of the ATPase domain at SHL2, direct association of the tail with the ATPase 

domain seems likely. As we conducted the remodeling assay under saturating enzyme 

conditions, a step of ISWI catalysis subsequent to enzyme binding must be affected by the 

H4 tail. Consistently, footprinting studies showed that the H4 tail promoted productive 

engagement of ISWI with the nucleosome at SHL2 in the context of yeast ISW2, whereas the 

overall affinity to nucleosomes was independent from the H4 tail (Dang et al., 2006). 

However, whether the H4 tail mainly provides a grip for ISWI stabilizing the ATPase at SHL2 

during translocation and assuring processivity (Gangaraju et al., 2009) or fulfills more refined 

functions remains an open question. 

A recent publication by Clapier and Cairns (see above) provided some insight into the 

mechanism of the H4 tail-dependency of ISWI and postulated a critical role of the tail in 

regulating enzyme activity and substrate specificity (Clapier and Cairns, 2012). The Cairns 

laboratory discovered a region in the N-terminus of ISWI – “AutoN” – that contains a peptide 

motif resembling the basic patch of the H4 tail. As mutation of this motif rendered ISWI 

largely independent of the H4 tail in ATPase assays and a translocation assay and 

furthermore increased sliding of H4 tail-depleted or basic patch-mutated nucleosomes, the 

authors concluded that AutoN autoinhibited ISWI activity in the absence of a nucleosomal 
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substrate. Presumably, interaction of AutoN with the ATPase domain stabilized the enzyme 

in a conformation incompatible with ATP hydrolysis. Upon binding to the nucleosome, the 

basic patch of the H4 tail competed for binding with AutoN and released the autoinhibition 

(see also chapter 2.2). However, the H4 tail was apparently also critically involved in later 

steps of catalysis like efficient coupling of ATP hydrolysis to sliding as H4 tail-depleted 

nucleosomes were remodeled much less efficiently than wild-type nucleosomes even when 

AutoN was mutated. While lysine 12 of histone H4 was proposed to partially mediate this 

additional H4 tail-dependency of ISWI, the molecular details and whether further epitopes of 

the tail were involved remained unclear. Notably, also in the sliding mechanism employed by 

Chd1 the H4 tail apparently fulfills diverse functions (Hauk et al., 2010). Taken together, the 

H4 tail obviously governs several key steps of ISWI catalysis we are just starting to 

understand.  

3.2.1 The regulatory potential of H4K16ac 

H4 tail modifications are likely candidates for regulating and targeting ISWI activity in vivo, 

and especially H4K16ac was postulated to play a crucial role by negatively affecting ISWI 

remodeling (see chapter 1.3.3). Unexpectedly, in our analyses we did not observe inhibition 

of the remodeling activities of ISWI and ACF by H4K16ac (Clapier and Cairns, 2012; Clapier 

et al., 2002; Corona et al., 2002; Ferreira et al., 2007; Shogren-Knaak et al., 2006). Under 

saturating conditions, the ATPase as well as remodeling activity of ISWI was 

indistinguishable on acetylated and unmodified chromatin fibers. Even when stimulating 

DNA-bound ISWI with H4 tail peptides in an experimental setting closely resembling 

published results (Clapier and Cairns, 2012; Clapier et al., 2002) we did not detect a striking 

inhibitory effect of the acetylation. We observed, however, a moderate preference of ISWI – 

but not ACF – for the acetylated nucleosome fibers at the level of substrate choice. The 

underlying principle is unclear, and different scenarios are conceivable. For instance, the 

acetylation may increase the accessibility of H4 tail or further nucleosomal epitopes involved 

in binding ISWI and stabilizing it on the nucleosome. Tight inter-nucleosomal interactions 

may occlude these epitopes in the absence of acetylation (see chapter 1.1.3). Analogously, 

in chromatin fibers containing the linker histone H1 H4K16ac may have a decompacting 

effect resulting in better accessibility of the individual chromatosomes for ISWI. This 

increased accessibility may explain the faster remodeling of acetylated chromatin fibers we 

observed. Nevertheless, technical issues complicated the interpretation of our findings in 

case of the H1-containing fibers and need to be overcome before the results can be 

analyzed with confidence. Taken together, we could clearly demonstrate that H4K16ac does 

not inhibit ISWI or ACF activity in a pure in vitro system of chromatin fibers. Therefore, the 

previously observed negative regulatory effect of the modification is apparently less robust 

and universally relevant than widely assumed. Instead, it seems to be context-dependent 

and even cancelled and counteracted at the level of folded chromatin fibers, the currently 
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most accurate in vitro correlate of in vivo chromatin structures (see chapter 1.1.3). Although 

contrary to prominent models, these conclusions are in accordance with further studies 

reporting an only very subtle (Clapier and Cairns, 2012; Clapier et al., 2002; Corona et al., 

2002; Ferreira et al., 2007) or even no (Clapier and Cairns, 2012; Georgel et al., 1997; 

Nightingale et al., 2007) impact of H4K16 acetylation or mutation to glutamine or alanine on 

the activity of ISWI complexes in different experimental settings. Thus, long-held concepts of 

the role of H4K16ac for regulating ISWI have to be reconsidered and carefully reassessed 

taking the local chromatin context into account. Moreover, our study underlines the 

importance of employing folded chromatin fibers instead of mononucleosomes to investigate 

chromatin-based processes to assure capturing physiologically relevant effects. 

3.2.2 Implications for the in vivo role of ISWI in chromatin organization 

In the light of our finding of H4K16ac not reducing ISWI activity, prominent models of how 

ISWI complexes and the acetylation interplay in establishing higher order chromatin 

structures in vivo have to be reconsidered. According to a simple model, ISWI complexes 

globally establish and maintain chromatin compaction. H4K16ac, on the contrary, 

decondenses chromatin by a mechanism including inhibition of the nucleosome sliding 

activity of ISWI, rendering the male X chromosome of Drosophila especially sensitive to ISWI 

loss (see chapter 1.3.4). This scenario is not supported by our observation of H4K16ac 

rather enhancing than reducing ISWI activity. However, the chromatin compaction 

capabilities of ISWI complexes apparently do not solely depend on their nucleosome sliding 

and spacing activities, as nucleosome positions were largely retained upon ISWI depletion, 

whereas chromatin higher order structure was dramatically deranged (Sala et al., 2011). 

Likely, also a failure in properly incorporating the linker histone H1 into chromatin contributed 

to the chromatin decondensation observed in ISWI-depleted flies. Whether ISWI complexes 

are directly engaged in linker histone deposition as implied by in vitro studies, and whether 

H4K16ac interferes with this activity remain open questions. Recent evidence suggests that 

in case of the chromatin remodeling factor Chd1 nucleosome assembly and sliding are 

distinct activities (Torigoe et al., 2013). Thus, it is conceivable that also the different 

remodeling capabilities of ISWI – chromatosome assembly and sliding – vary mechanistically 

and are differentially regulated. Whereas H4K16ac did not negatively affect sliding in the 

context of chromatin fibers, assembly may be impaired. In summary, much remains to be 

learnt about the complex interplay of ISWI, H4K16ac, and the linker histone in the formation 

of higher order chromatin structures. While in vitro studies are well suited to test different, 

isolated aspects and components of this interplay, it has to be appreciated that the situation 

in vivo is probably much more sophisticated. Plenty of additional factors, modifications, and 

enzymatic activities are locally and globally contributing to fine-tuning chromatin organization 

in a context-dependent manner.  
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3.3 Future goals 

Although much progress has been made in biochemically characterizing the ISWI enzyme, 

its molecular mechanism and regulation, many open questions remain. A pressing goal on 

the way to understanding the mechanistic details of a nucleosome sliding reaction is to 

carefully characterize the interaction of ISWI and the nucleosome at different steps of the 

catalytic cycle. Thereby, how the HSS domain contributes to the sliding reaction and how it 

cooperates with the ATPase domain may finally be revealed. Also the role of the HSS 

domain in guiding sliding directionality and nucleosome spacing remains to be elucidated. 

Furthermore, determining ISWI conformational states in conjunction with nucleosomal 

substrates and ATP analogs will advance our knowledge on the regulation of the enzymatic 

activity by nucleosomal as well as intrinsic features including AutoN and NegC. Of special 

interest is the nature of the interaction of ISWI with the H4 tail and the role different tail 

epitopes play during catalysis. How and at which step H4K16ac may affect catalysis could be 

clarified that way. Besides characterizing details of the ISWI sliding reaction, also expanding 

the analysis to further chromatin remodeling factors will be of interest to uncover common 

principles and individual differences. Thereby, an in-depth understanding of the distinct 

properties and functions of the numerous accessory domains and subunits will be gained, a 

key step towards unraveling the complexity of chromatin remodeling complexes. 

Another exciting aspect of chromatin remodeling concerns the structural plasticity of the 

nucleosome during a sliding reaction. So far, it is unknown how the nucleosome 

accommodates the permanent deficit of DNA imposed by the activity of ISWI (see chapter 

3.1). Changes in the structure of not only the nucleosomal DNA but also the octamer are 

likely. Maybe also an altered path of the DNA on the octamer surface is adopted. 

Investigating these conformational states of the nucleosome will importantly contribute to the 

emerging view of the nucleosome as variable, flexible particle instead of a rigid entity. On a 

related note, characterizing the mechanism by which the base pairs mobilized by the 

translocation activity of ISWI at SHL2 are transported towards the exit site constitutes 

another major challenge.  

To further explore the regulatory potential of histone modifications for ISWI activity, the role 

of H4K16ac in the context of H1-containing chromatin fibers should be investigated in more 

detail. Moreover, also the capability of other histone modifications to modulate ISWI 

remodeling should be analysed. Acetylation of histone H4 at lysine 12, for example, was 

reported earlier to reduce ISWI activity (Clapier and Cairns, 2012; Clapier et al., 2002). 

Therefore, testing the influence of this modification in the context of chromatin fibers would 

certainly be interesting. Moreover, combinations of histone PTMs may synergistically affect 

ISWI function, and single, individual marks may be of minor relevance. As already mentioned 

in chapter 1.2.3, recently a positive allosteric effect of H4K16ac on the binding affinity of 

BPTF, the human homolog of Nurf301, to nucleosomes carrying a trimethylation on lysine 4 



138 |  D i s c u s s i o n  

 

of histone H3 was described. Similar synergistic effects at the level of factor binding or later 

catalytic steps may exist in the context of other ISWI complexes. Acf1, for instance, also 

harbors PHD fingers and a bromodomain that might recognize combinatorial histone marks. 

A special focus should furthermore be put on exploring the interplay of H4K16ac and highly 

abundant histone marks like methylation of histone H4 at lysine 20 (C. Feller and P.B. 

Becker, personal communication). In fact, given its frequency the methylated rather than the 

unmodified state may represent the default nucleosome configuration in vivo in flies. This 

observation should be taken into account also in in vitro studies. In conclusion, regulation of 

ISWI complexes by histone modifications remains an attractive concept that deserves further 

exploration. These studies will profit from the increasing availability of large quantities of 

post-translationally modified histones. The rapid histone purification method we developed 

(see chapter 2.4) will further stream-line histone production and promote in vitro studies. 

Performing restriction enzyme accessibility-based remodeling assays with ISWI and ACF, we 

noted remodeling factor-dependent differences in the distribution of DNA fragment sizes (see 

Figure 3 in chapter 2.4). We speculate that these differences may reflect distinct ways of how 

ISWI and ACF encounter the chromatin fibers, for example by initially remodeling central or 

outer nucleosomes of an array. To investigate this biologically potentially relevant aspect of 

chromatin remodeling further, we are currently collaborating with the Schiessel laboratory 

(Universiteit Leiden, Netherlands) to set up a mathematical model capturing the DNA 

digestion kinetics. Thereby, we hope to learn which mechanism is underlying the observed 

differences.   

As discussed in chapter 1.1.3, the compaction capabilities of chromatin fibers depend on the 

NRL. It is therefore conceivable that the extent of the chromatin decondensing effect of 

H4K16ac varies with NRL. Probing this hypothesis by analytical ultracentrifugation remains a 

future challenge. Should H4K16ac-driven decondensation indeed depend on the NRL, 

analyzing ISWI remodeling activity on acetylated and unmodified chromatin fibers with 

variable NRL and therefore compaction state would be an important next step. These studies 

would help us understand the role of nucleosome accessibility for ISWI activity. In general, 

further improvement and characterization of the chromatin in vitro systems is desirable to be 

able to represent the in vivo situation even more accurately than currently possible. These 

refinements should include stable incorporation of the linker histone. Furthermore, strategies 

and conditions allowing to closely mimic the fractal structures chromatin presumably adapts 

in vivo should be explored, such as employing high concentrations of chromatin and salts to 

promote inter-fiber interactions and fiber oligomerization (see chapter 1.1.3). 

 

 



R e f e r e n c e s  | 139 

 

References 

Aasland, R., Stewart, A.F., and Gibson, T. (1996). The SANT domain: a putative DNA-
binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR 
and TFIIIB. Trends in biochemical sciences 21, 87-88. 

Akhtar, A., and Becker, P.B. (2000). Activation of transcription through histone H4 acetylation 
by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Molecular 
cell 5, 367-375. 

Allahverdi, A., Yang, R., Korolev, N., Fan, Y., Davey, C.A., Liu, C.F., and Nordenskiöld, L. 
(2011). The effects of histone H4 tail acetylations on cation-induced chromatin folding and 
self-association. Nucleic acids research 39, 1680-1691. 

Allan, J., Harborne, N., Rau, D.C., and Gould, H. (1982). Participation of core histone "tails" 
in the stabilization of the chromatin solenoid. The Journal of cell biology 93, 285-297. 

Allan, J., Hartman, P.G., Crane-Robinson, C., and Aviles, F.X. (1980). The structure of 
histone H1 and its location in chromatin. Nature 288, 675-679. 

Allan, J., Mitchell, T., Harborne, N., Bohm, L., and Crane-Robinson, C. (1986). Roles of H1 
domains in determining higher order chromatin structure and H1 location. Journal of 
molecular biology 187, 591-601. 

Allfrey, V.G., Faulkner, R., and Mirsky, A.E. (1964). Acetylation and Methylation of Histones 
and Their Possible Role in the Regulation of Rna Synthesis. Proceedings of the National 
Academy of Sciences of the United States of America 51, 786-794. 

Andrews, A.J., and Luger, K. (2011). Nucleosome structure(s) and stability: variations on a 
theme. Annual review of biophysics 40, 99-117. 

Badenhorst, P., Voas, M., Rebay, I., and Wu, C. (2002). Biological functions of the ISWI 
chromatin remodeling complex NURF. Genes & development 16, 3186-3198. 

Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. 
Cell research 21, 381-395. 

Barth, T.K., and Imhof, A. (2010). Fast signals and slow marks: the dynamics of histone 
modifications. Trends in biochemical sciences 35, 618-626. 

Becker, P.B., and Workman, J.L. (2013). Nucleosome remodeling and epigenetics. Cold 
Spring Harbor perspectives in biology 5. 

Bednar, J., Horowitz, R.A., Grigoryev, S.A., Carruthers, L.M., Hansen, J.C., Koster, A.J., and 
Woodcock, C.L. (1998). Nucleosomes, linker DNA, and linker histone form a unique 
structural motif that directs the higher-order folding and compaction of chromatin. 
Proceedings of the National Academy of Sciences of the United States of America 95, 
14173-14178. 

Bell, O., Schwaiger, M., Oakeley, E.J., Lienert, F., Beisel, C., Stadler, M.B., and Schübeler, 
D. (2010). Accessibility of the Drosophila genome discriminates PcG repression, H4K16 
acetylation and replication timing. Nature structural & molecular biology 17, 894-900. 

Berdasco, M., and Esteller, M. (2013). Genetic syndromes caused by mutations in epigenetic 
genes. Human genetics 132, 359-383. 

Bergmann, J.H., and Spector, D.L. (2014). Long non-coding RNAs: modulators of nuclear 
structure and function. Current opinion in cell biology 26C, 10-18. 

Blank, T.A., and Becker, P.B. (1995). Electrostatic mechanism of nucleosome spacing. 
Journal of molecular biology 252, 305-313. 

Bönisch, C., and Hake, S.B. (2012). Histone H2A variants in nucleosomes and chromatin: 
more or less stable? Nucleic acids research 40, 10719-10741. 



140 |  R e f e r e n c e s  

 

Bouazoune, K., and Brehm, A. (2006). ATP-dependent chromatin remodeling complexes in 
Drosophila. Chromosome research : an international journal on the molecular, 
supramolecular and evolutionary aspects of chromosome biology 14, 433-449. 

Boulikas, T., Wiseman, J.M., and Garrard, W.T. (1980). Points of contact between histone 
H1 and the histone octamer. Proceedings of the National Academy of Sciences of the United 
States of America 77, 127-131. 

Bowman, G.D. (2010). Mechanisms of ATP-dependent nucleosome sliding. Current opinion 
in structural biology 20, 73-81. 

Braunschweig, U., Hogan, G.J., Pagie, L., and van Steensel, B. (2009). Histone H1 binding is 
inhibited by histone variant H3.3. The EMBO journal 28, 3635-3645. 

Brown, D.T., Izard, T., and Misteli, T. (2006). Mapping the interaction surface of linker 
histone H1(0) with the nucleosome of native chromatin in vivo. Nature structural & molecular 
biology 13, 250-255. 

Buning, R., and van Noort, J. (2010). Single-pair FRET experiments on nucleosome 
conformational dynamics. Biochimie 92, 1729-1740. 

Calestagne-Morelli, A., and Ausio, J. (2006). Long-range histone acetylation: biological 
significance, structural implications, and mechanisms. Biochemistry and cell biology = 
Biochimie et biologie cellulaire 84, 518-527. 

Caron, F., and Thomas, J.O. (1981). Exchange of histone H1 between segments of 
chromatin. Journal of molecular biology 146, 513-537. 

Carruthers, L.M., Bednar, J., Woodcock, C.L., and Hansen, J.C. (1998). Linker histones 
stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications 
for higher-order chromatin folding. Biochemistry 37, 14776-14787. 

Carruthers, L.M., and Hansen, J.C. (2000). The core histone N termini function 
independently of linker histones during chromatin condensation. The Journal of biological 
chemistry 275, 37285-37290. 

Caterino, T.L., Fang, H., and Hayes, J.J. (2011). Nucleosome linker DNA contacts and 
induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain. Molecular 
and cellular biology 31, 2341-2348. 

Caterino, T.L., and Hayes, J.J. (2011). Structure of the H1 C-terminal domain and function in 
chromatin condensation. Biochemistry and cell biology = Biochimie et biologie cellulaire 89, 
35-44. 

Catez, F., Ueda, T., and Bustin, M. (2006). Determinants of histone H1 mobility and 
chromatin binding in living cells. Nature structural & molecular biology 13, 305-310. 

Chatterjee, C., and Muir, T.W. (2010). Chemical approaches for studying histone 
modifications. The Journal of biological chemistry 285, 11045-11050. 

Chioda, M., Vengadasalam, S., Kremmer, E., Eberharter, A., and Becker, P.B. (2010). 
Developmental role for ACF1-containing nucleosome remodellers in chromatin organisation. 
Development 137, 3513-3522. 

Chodaparambil, J.V., Barbera, A.J., Lu, X., Kaye, K.M., Hansen, J.C., and Luger, K. (2007). 
A charged and contoured surface on the nucleosome regulates chromatin compaction. 
Nature structural & molecular biology 14, 1105-1107. 

Clapier, C.R., and Cairns, B.R. (2009). The biology of chromatin remodeling complexes. 
Annual review of biochemistry 78, 273-304. 

Clapier, C.R., and Cairns, B.R. (2012). Regulation of ISWI involves inhibitory modules 
antagonized by nucleosomal epitopes. Nature 492, 280-284. 

Clapier, C.R., Längst, G., Corona, D.F., Becker, P.B., and Nightingale, K.P. (2001). Critical 
role for the histone H4 N terminus in nucleosome remodeling by ISWI. Molecular and cellular 
biology 21, 875-883. 



R e f e r e n c e s  | 141 

 

Clapier, C.R., Nightingale, K.P., and Becker, P.B. (2002). A critical epitope for substrate 
recognition by the nucleosome remodeling ATPase ISWI. Nucleic acids research 30, 649-
655. 

Clark, D.J., and Kimura, T. (1990). Electrostatic mechanism of chromatin folding. Journal of 
molecular biology 211, 883-896. 

Clausell, J., Happel, N., Hale, T.K., Doenecke, D., and Beato, M. (2009). Histone H1 
subtypes differentially modulate chromatin condensation without preventing ATP-dependent 
remodeling by SWI/SNF or NURF. PloS one 4, e0007243. 

Conrad, T., and Akhtar, A. (2011). Dosage compensation in Drosophila melanogaster: 
epigenetic fine-tuning of chromosome-wide transcription. Nature reviews Genetics 13, 123-
134. 

Corona, D.F., Clapier, C.R., Becker, P.B., and Tamkun, J.W. (2002). Modulation of ISWI 
function by site-specific histone acetylation. EMBO reports 3, 242-247. 

Corona, D.F., Eberharter, A., Budde, A., Deuring, R., Ferrari, S., Varga-Weisz, P., Wilm, M., 
Tamkun, J., and Becker, P.B. (2000). Two histone fold proteins, CHRAC-14 and CHRAC-16, 
are developmentally regulated subunits of chromatin accessibility complex (CHRAC). The 
EMBO journal 19, 3049-3059. 

Corona, D.F., Längst, G., Clapier, C.R., Bonte, E.J., Ferrari, S., Tamkun, J.W., and Becker, 
P.B. (1999). ISWI is an ATP-dependent nucleosome remodeling factor. Molecular cell 3, 239-
245. 

Corona, D.F., Siriaco, G., Armstrong, J.A., Snarskaya, N., McClymont, S.A., Scott, M.P., and 
Tamkun, J.W. (2007). ISWI regulates higher-order chromatin structure and histone H1 
assembly in vivo. PLoS biology 5, e232. 

Correll, S.J., Schubert, M.H., and Grigoryev, S.A. (2012). Short nucleosome repeats impose 
rotational modulations on chromatin fibre folding. The EMBO journal 31, 2416-2426. 

Daban, J.R., and Bermudez, A. (1998). Interdigitated solenoid model for compact chromatin 
fibers. Biochemistry 37, 4299-4304. 

Dang, W., Kagalwala, M.N., and Bartholomew, B. (2006). Regulation of ISW2 by concerted 
action of histone H4 tail and extranucleosomal DNA. Molecular and cellular biology 26, 7388-
7396. 

Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W., and Richmond, T.J. (2002). Solvent 
mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. 
Journal of molecular biology 319, 1097-1113. 

Deindl, S., Hwang, W.L., Hota, S.K., Blosser, T.R., Prasad, P., Bartholomew, B., and 
Zhuang, X. (2013). ISWI remodelers slide nucleosomes with coordinated multi-base-pair 
entry steps and single-base-pair exit steps. Cell 152, 442-452. 

Deuring, R., Fanti, L., Armstrong, J.A., Sarte, M., Papoulas, O., Prestel, M., Daubresse, G., 
Verardo, M., Moseley, S.L., Berloco, M., et al. (2000). The ISWI chromatin-remodeling 
protein is required for gene expression and the maintenance of higher order chromatin 
structure in vivo. Molecular cell 5, 355-365. 

Diesinger, P.M., and Heermann, D.W. (2009). Depletion effects massively change chromatin 
properties and influence genome folding. Biophysical journal 97, 2146-2153. 

Dorigo, B., Schalch, T., Bystricky, K., and Richmond, T.J. (2003). Chromatin fiber folding: 
requirement for the histone H4 N-terminal tail. Journal of molecular biology 327, 85-96. 

Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R.R., and Richmond, T.J. 
(2004). Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 
306, 1571-1573. 



142 |  R e f e r e n c e s  

 

Du, J., Zhou, Y., Su, X., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H., Choi, B.H., 
et al. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. 
Science 334, 806-809. 

Dürr, H., Flaus, A., Owen-Hughes, T., and Hopfner, K.P. (2006). Snf2 family ATPases and 
DExx box helicases: differences and unifying concepts from high-resolution crystal 
structures. Nucleic acids research 34, 4160-4167. 

Eberharter, A., and Becker, P.B. (2002). Histone acetylation: a switch between repressive 
and permissive chromatin. Second in review series on chromatin dynamics. EMBO reports 3, 
224-229. 

Eberharter, A., Ferrari, S., Längst, G., Straub, T., Imhof, A., Varga-Weisz, P., Wilm, M., and 
Becker, P.B. (2001). Acf1, the largest subunit of CHRAC, regulates ISWI-induced 
nucleosome remodelling. The EMBO journal 20, 3781-3788. 

Eberharter, A., Vetter, I., Ferreira, R., and Becker, P.B. (2004). ACF1 improves the 
effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. The EMBO 
journal 23, 4029-4039. 

Emelyanov, A.V., Vershilova, E., Ignatyeva, M.A., Pokrovsky, D.K., Lu, X., Konev, A.Y., and 
Fyodorov, D.V. (2012). Identification and characterization of ToRC, a novel ISWI-containing 
ATP-dependent chromatin assembly complex. Genes & development 26, 603-614. 

Evertts, A.G., Zee, B.M., Dimaggio, P.A., Gonzales-Cope, M., Coller, H.A., and Garcia, B.A. 
(2013). Quantitative dynamics of the link between cellular metabolism and histone 
acetylation. The Journal of biological chemistry 288, 12142-12151. 

Fan, J.Y., Rangasamy, D., Luger, K., and Tremethick, D.J. (2004). H2A.Z alters the 
nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Molecular cell 
16, 655-661. 

Fan, Y., Nikitina, T., Morin-Kensicki, E.M., Zhao, J., Magnuson, T.R., Woodcock, C.L., and 
Skoultchi, A.I. (2003). H1 linker histones are essential for mouse development and affect 
nucleosome spacing in vivo. Molecular and cellular biology 23, 4559-4572. 

Fan, Y., Nikitina, T., Zhao, J., Fleury, T.J., Bhattacharyya, R., Bouhassira, E.E., Stein, A., 
Woodcock, C.L., and Skoultchi, A.I. (2005). Histone H1 depletion in mammals alters global 
chromatin structure but causes specific changes in gene regulation. Cell 123, 1199-1212. 

Fazzio, T.G., Gelbart, M.E., and Tsukiyama, T. (2005). Two distinct mechanisms of 
chromatin interaction by the Isw2 chromatin remodeling complex in vivo. Molecular and 
cellular biology 25, 9165-9174. 

Ferreira, H., Flaus, A., and Owen-Hughes, T. (2007). Histone modifications influence the 
action of Snf2 family remodelling enzymes by different mechanisms. Journal of molecular 
biology 374, 563-579. 

Finch, J.T., and Klug, A. (1976). Solenoidal model for superstructure in chromatin. 
Proceedings of the National Academy of Sciences of the United States of America 73, 1897-
1901. 

Flaus, A., Martin, D.M., Barton, G.J., and Owen-Hughes, T. (2006). Identification of multiple 
distinct Snf2 subfamilies with conserved structural motifs. Nucleic acids research 34, 2887-
2905. 

Fletcher, T.M., and Hansen, J.C. (1995). Core histone tail domains mediate oligonucleosome 
folding and nucleosomal DNA organization through distinct molecular mechanisms. The 
Journal of biological chemistry 270, 25359-25362. 

Fussner, E., Ching, R.W., and Bazett-Jones, D.P. (2011). Living without 30nm chromatin 
fibers. Trends in biochemical sciences 36, 1-6. 

Fussner, E., Strauss, M., Djuric, U., Li, R., Ahmed, K., Hart, M., Ellis, J., and Bazett-Jones, 
D.P. (2012). Open and closed domains in the mouse genome are configured as 10-nm 
chromatin fibres. EMBO reports 13, 992-996. 



R e f e r e n c e s  | 143 

 

Fyodorov, D.V., Blower, M.D., Karpen, G.H., and Kadonaga, J.T. (2004). Acf1 confers unique 
activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in 
vivo. Genes & development 18, 170-183. 

Gangaraju, V.K., and Bartholomew, B. (2007a). Dependency of ISW1a chromatin remodeling 
on extranucleosomal DNA. Molecular and cellular biology 27, 3217-3225. 

Gangaraju, V.K., and Bartholomew, B. (2007b). Mechanisms of ATP dependent chromatin 
remodeling. Mutation research 618, 3-17. 

Gangaraju, V.K., Prasad, P., Srour, A., Kagalwala, M.N., and Bartholomew, B. (2009). 
Conformational changes associated with template commitment in ATP-dependent chromatin 
remodeling by ISW2. Molecular cell 35, 58-69. 

Garcia-Ramirez, M., Dong, F., and Ausio, J. (1992). Role of the histone "tails" in the folding 
of oligonucleosomes depleted of histone H1. The Journal of biological chemistry 267, 19587-
19595. 

Garcia-Ramirez, M., Rocchini, C., and Ausio, J. (1995). Modulation of chromatin folding by 
histone acetylation. The Journal of biological chemistry 270, 17923-17928. 

Gelbart, M.E., Larschan, E., Peng, S., Park, P.J., and Kuroda, M.I. (2009). Drosophila MSL 
complex globally acetylates H4K16 on the male X chromosome for dosage compensation. 
Nature structural & molecular biology 16, 825-832. 

Georgel, P.T., Tsukiyama, T., and Wu, C. (1997). Role of histone tails in nucleosome 
remodeling by Drosophila NURF. The EMBO journal 16, 4717-4726. 

Gordon, F., Luger, K., and Hansen, J.C. (2005). The core histone N-terminal tail domains 
function independently and additively during salt-dependent oligomerization of nucleosomal 
arrays. The Journal of biological chemistry 280, 33701-33706. 

Goytisolo, F.A., Gerchman, S.E., Yu, X., Rees, C., Graziano, V., Ramakrishnan, V., and 
Thomas, J.O. (1996). Identification of two DNA-binding sites on the globular domain of 
histone H5. The EMBO journal 15, 3421-3429. 

Grigoryev, S.A. (2012). Nucleosome spacing and chromatin higher-order folding. Nucleus 3, 
493-499. 

Grigoryev, S.A., Arya, G., Correll, S., Woodcock, C.L., and Schlick, T. (2009). Evidence for 
heteromorphic chromatin fibers from analysis of nucleosome interactions. Proceedings of the 
National Academy of Sciences of the United States of America 106, 13317-13322. 

Grigoryev, S.A., and Woodcock, C.L. (2012). Chromatin organization - the 30 nm fiber. 
Experimental cell research 318, 1448-1455. 

Grüne, T., Brzeski, J., Eberharter, A., Clapier, C.R., Corona, D.F., Becker, P.B., and Müller, 
C.W. (2003). Crystal structure and functional analysis of a nucleosome recognition module of 
the remodeling factor ISWI. Molecular cell 12, 449-460. 

Gunjan, A., Alexander, B.T., Sittman, D.B., and Brown, D.T. (1999). Effects of H1 histone 
variant overexpression on chromatin structure. The Journal of biological chemistry 274, 
37950-37956. 

Hall, M.A., Shundrovsky, A., Bai, L., Fulbright, R.M., Lis, J.T., and Wang, M.D. (2009). High-
resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nature structural 
& molecular biology 16, 124-129. 

Hamiche, A., Kang, J.G., Dennis, C., Xiao, H., and Wu, C. (2001). Histone tails modulate 
nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. 
Proceedings of the National Academy of Sciences of the United States of America 98, 
14316-14321. 

Hamiche, A., Sandaltzopoulos, R., Gdula, D.A., and Wu, C. (1999). ATP-dependent histone 
octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833-842. 



144 |  R e f e r e n c e s  

 

Hamiche, A., Schultz, P., Ramakrishnan, V., Oudet, P., and Prunell, A. (1996). Linker 
histone-dependent DNA structure in linear mononucleosomes. Journal of molecular biology 
257, 30-42. 

Hanai, K., Furuhashi, H., Yamamoto, T., Akasaka, K., and Hirose, S. (2008). RSF governs 
silent chromatin formation via histone H2Av replacement. PLoS genetics 4, e1000011. 

Hansen, J.C. (2002). Conformational dynamics of the chromatin fiber in solution: 
determinants, mechanisms, and functions. Annual review of biophysics and biomolecular 
structure 31, 361-392. 

Hansen, J.C. (2012). Human mitotic chromosome structure: what happened to the 30-nm 
fibre? The EMBO journal 31, 1621-1623. 

Hartlepp, K.F., Fernandez-Tornero, C., Eberharter, A., Grüne, T., Müller, C.W., and Becker, 
P.B. (2005). The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding 
through dynamic DNA interactions. Molecular and cellular biology 25, 9886-9896. 

Hauk, G., McKnight, J.N., Nodelman, I.M., and Bowman, G.D. (2010). The chromodomains 
of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Molecular cell 
39, 711-723. 

He, X., Fan, H.Y., Narlikar, G.J., and Kingston, R.E. (2006). Human ACF1 alters the 
remodeling strategy of SNF2h. The Journal of biological chemistry 281, 28636-28647. 

Hebbes, T.R., Clayton, A.L., Thorne, A.W., and Crane-Robinson, C. (1994). Core histone 
hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin 
chromosomal domain. The EMBO journal 13, 1823-1830. 

Heise, F., Chung, H.R., Weber, J.M., Xu, Z., Klein-Hitpass, L., Steinmetz, L.M., Vingron, M., 
and Ehrenhofer-Murray, A.E. (2012). Genome-wide H4 K16 acetylation by SAS-I is 
deposited independently of transcription and histone exchange. Nucleic acids research 40, 
65-74. 

Hendzel, M.J., Lever, M.A., Crawford, E., and Th'ng, J.P. (2004). The C-terminal domain is 
the primary determinant of histone H1 binding to chromatin in vivo. The Journal of biological 
chemistry 279, 20028-20034. 

Henikoff, S., Furuyama, T., and Ahmad, K. (2004). Histone variants, nucleosome assembly 
and epigenetic inheritance. Trends in genetics : TIG 20, 320-326. 

Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A., and Lucchesi, J.C. (1997). mof, a putative acetyl 
transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of 
yeast, is required for dosage compensation in Drosophila. The EMBO journal 16, 2054-2060. 

Hizume, K., Yoshimura, S.H., and Takeyasu, K. (2005). Linker histone H1 per se can induce 
three-dimensional folding of chromatin fiber. Biochemistry 44, 12978-12989. 

Hochheimer, A., Zhou, S., Zheng, S., Holmes, M.C., and Tjian, R. (2002). TRF2 associates 
with DREF and directs promoter-selective gene expression in Drosophila. Nature 420, 439-
445. 

Hon, G.C., Hawkins, R.D., and Ren, B. (2009). Predictive chromatin signatures in the 
mammalian genome. Human molecular genetics 18, R195-201. 

Horikoshi, N., Kumar, P., Sharma, G.G., Chen, M., Hunt, C.R., Westover, K., Chowdhury, S., 
and Pandita, T.K. (2013). Genome-wide distribution of histone H4 Lysine 16 acetylation sites 
and their relationship to gene expression. Genome integrity 4, 3. 

Horowitz-Scherer, R.A., and Woodcock, C.L. (2006). Organization of interphase chromatin. 
Chromosoma 115, 1-14. 

Hota, S.K., Bhardwaj, S.K., Deindl, S., Lin, Y.C., Zhuang, X., and Bartholomew, B. (2013). 
Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE 
domains. Nature structural & molecular biology 20, 222-229. 



R e f e r e n c e s  | 145 

 

Huynh, V.A., Robinson, P.J., and Rhodes, D. (2005). A method for the in vitro reconstitution 
of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. 
Journal of molecular biology 345, 957-968. 

Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R., and Kadonaga, J.T. (1997). ACF, an ISWI-
containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145-155. 

Ito, T., Levenstein, M.E., Fyodorov, D.V., Kutach, A.K., Kobayashi, R., and Kadonaga, J.T. 
(1999). ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-
dependent catalysis of chromatin assembly. Genes & development 13, 1529-1539. 

Izzo, A., Kamieniarz-Gdula, K., Ramirez, F., Noureen, N., Kind, J., Manke, T., van Steensel, 
B., and Schneider, R. (2013). The genomic landscape of the somatic linker histone subtypes 
H1.1 to H1.5 in human cells. Cell reports 3, 2142-2154. 

Izzo, A., Kamieniarz, K., and Schneider, R. (2008). The histone H1 family: specific members, 
specific functions? Biological chemistry 389, 333-343. 

Joti, Y., Hikima, T., Nishino, Y., Kamada, F., Hihara, S., Takata, H., Ishikawa, T., and 
Maeshima, K. (2012). Chromosomes without a 30-nm chromatin fiber. Nucleus 3, 404-410. 

Jung, H.R., Sidoli, S., Haldbo, S., Sprenger, R.R., Schwammle, V., Pasini, D., Helin, K., and 
Jensen, O.N. (2013). Precision mapping of coexisting modifications in histone H3 tails from 
embryonic stem cells by ETD-MS/MS. Analytical chemistry 85, 8232-8239. 

Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M., and Bartholomew, B. (2004). Topography 
of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin 
remodeling. The EMBO journal 23, 2092-2104. 

Kalashnikova, A.A., Porter-Goff, M.E., Muthurajan, U.M., Luger, K., and Hansen, J.C. 
(2013a). The role of the nucleosome acidic patch in modulating higher order chromatin 
structure. Journal of the Royal Society, Interface / the Royal Society 10, 20121022. 

Kalashnikova, A.A., Winkler, D.D., McBryant, S.J., Henderson, R.K., Herman, J.A., DeLuca, 
J.G., Luger, K., Prenni, J.E., and Hansen, J.C. (2013b). Linker histone H1.0 interacts with an 
extensive network of proteins found in the nucleolus. Nucleic acids research 41, 4026-4035. 

Kan, P.Y., Caterino, T.L., and Hayes, J.J. (2009). The H4 tail domain participates in intra- 
and internucleosome interactions with protein and DNA during folding and oligomerization of 
nucleosome arrays. Molecular and cellular biology 29, 538-546. 

Kapoor-Vazirani, P., Kagey, J.D., and Vertino, P.M. (2011). SUV420H2-mediated H4K20 
trimethylation enforces RNA polymerase II promoter-proximal pausing by blocking hMOF-
dependent H4K16 acetylation. Molecular and cellular biology 31, 1594-1609. 

Korolev, N., Allahverdi, A., Yang, Y., Fan, Y., Lyubartsev, A.P., and Nordenskiöld, L. (2010). 
Electrostatic origin of salt-induced nucleosome array compaction. Biophysical journal 99, 
1896-1905. 

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705. 

Kowalski, A., and Palyga, J. (2012). Linker histone subtypes and their allelic variants. Cell 
biology international 36, 981-996. 

Kruithof, M., Chien, F.T., Routh, A., Logie, C., Rhodes, D., and van Noort, J. (2009). Single-
molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm 
chromatin fiber. Nature structural & molecular biology 16, 534-540. 

Kukimoto, I., Elderkin, S., Grimaldi, M., Oelgeschlager, T., and Varga-Weisz, P.D. (2004). 
The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly 
mediated by ACF. Molecular cell 13, 265-277. 

Kurdistani, S.K., Tavazoie, S., and Grunstein, M. (2004). Mapping global histone acetylation 
patterns to gene expression. Cell 117, 721-733. 



146 |  R e f e r e n c e s  

 

Kurumizaka, H., Horikoshi, N., Tachiwana, H., and Kagawa, W. (2013). Current progress on 
structural studies of nucleosomes containing histone H3 variants. Current opinion in 
structural biology 23, 109-115. 

Kwon, S.Y., Xiao, H., Glover, B.P., Tjian, R., Wu, C., and Badenhorst, P. (2008). The 
nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate 
immunity. Developmental biology 316, 538-547. 

Längst, G., Bonte, E.J., Corona, D.F., and Becker, P.B. (1999). Nucleosome movement by 
CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 
843-852. 

Lantermann, A.B., Straub, T., Stralfors, A., Yuan, G.C., Ekwall, K., and Korber, P. (2010). 
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning 
mechanisms distinct from those of Saccharomyces cerevisiae. Nature structural & molecular 
biology 17, 251-257. 

Laybourn, P.J., and Kadonaga, J.T. (1991). Role of nucleosomal cores and histone H1 in 
regulation of transcription by RNA polymerase II. Science 254, 238-245. 

Leroy, G., Dimaggio, P.A., Chan, E.Y., Zee, B.M., Blanco, M.A., Bryant, B., Flaniken, I.Z., 
Liu, S., Kang, Y., Trojer, P., et al. (2013). A quantitative atlas of histone modification 
signatures from human cancer cells. Epigenetics & chromatin 6, 20. 

Li, F., Allahverdi, A., Yang, R., Lua, G.B., Zhang, X., Cao, Y., Korolev, N., Nordenskiöld, L., 
and Liu, C.F. (2011). A direct method for site-specific protein acetylation. Angewandte 
Chemie 50, 9611-9614. 

Li, G., Levitus, M., Bustamante, C., and Widom, J. (2005). Rapid spontaneous accessibility 
of nucleosomal DNA. Nature structural & molecular biology 12, 46-53. 

Liu, C.L., Kaplan, T., Kim, M., Buratowski, S., Schreiber, S.L., Friedman, N., and Rando, O.J. 
(2005). Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS biology 
3, e328. 

Lowary, P.T., and Widom, J. (1998). New DNA sequence rules for high affinity binding to 
histone octamer and sequence-directed nucleosome positioning. Journal of molecular 
biology 276, 19-42. 

Lu, X., and Hansen, J.C. (2004). Identification of specific functional subdomains within the 
linker histone H10 C-terminal domain. The Journal of biological chemistry 279, 8701-8707. 

Lu, X., Wontakal, S.N., Emelyanov, A.V., Morcillo, P., Konev, A.Y., Fyodorov, D.V., and 
Skoultchi, A.I. (2009). Linker histone H1 is essential for Drosophila development, the 
establishment of pericentric heterochromatin, and a normal polytene chromosome structure. 
Genes & development 23, 452-465. 

Lu, X., Wontakal, S.N., Kavi, H., Kim, B.J., Guzzardo, P.M., Emelyanov, A.V., Xu, N., 
Hannon, G.J., Zavadil, J., Fyodorov, D.V., et al. (2013). Drosophila H1 regulates the genetic 
activity of heterochromatin by recruitment of Su(var)3-9. Science 340, 78-81. 

Luger, K., Dechassa, M.L., and Tremethick, D.J. (2012). New insights into nucleosome and 
chromatin structure: an ordered state or a disordered affair? Nature reviews Molecular cell 
biology 13, 436-447. 

Luger, K., and Hansen, J.C. (2005). Nucleosome and chromatin fiber dynamics. Current 
opinion in structural biology 15, 188-196. 

Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal 
structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260. 

Luger, K., Rechsteiner, T.J., and Richmond, T.J. (1999). Expression and purification of 
recombinant histones and nucleosome reconstitution. Methods in molecular biology 119, 1-
16. 



R e f e r e n c e s  | 147 

 

Lusser, A., and Kadonaga, J.T. (2004). Strategies for the reconstitution of chromatin. Nature 
methods 1, 19-26. 

Lusser, A., Urwin, D.L., and Kadonaga, J.T. (2005). Distinct activities of CHD1 and ACF in 
ATP-dependent chromatin assembly. Nature structural & molecular biology 12, 160-166. 

Maeshima, K., Hihara, S., and Eltsov, M. (2010). Chromatin structure: does the 30-nm fibre 
exist in vivo? Current opinion in cell biology 22, 291-297. 

Maier, V.K., Chioda, M., Rhodes, D., and Becker, P.B. (2008). ACF catalyses chromatosome 
movements in chromatin fibres. The EMBO journal 27, 817-826. 

Maresca, T.J., Freedman, B.S., and Heald, R. (2005). Histone H1 is essential for mitotic 
chromosome architecture and segregation in Xenopus laevis egg extracts. The Journal of 
cell biology 169, 859-869. 

McBryant, S.J., Adams, V.H., and Hansen, J.C. (2006). Chromatin architectural proteins. 
Chromosome research : an international journal on the molecular, supramolecular and 
evolutionary aspects of chromosome biology 14, 39-51. 

McBryant, S.J., Lu, X., and Hansen, J.C. (2010). Multifunctionality of the linker histones: an 
emerging role for protein-protein interactions. Cell research 20, 519-528. 

McKnight, J.N., Jenkins, K.R., Nodelman, I.M., Escobar, T., and Bowman, G.D. (2011). 
Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Molecular and cellular 
biology 31, 4746-4759. 

Meyer, S., Becker, N.B., Syed, S.H., Goutte-Gattat, D., Shukla, M.S., Hayes, J.J., Angelov, 
D., Bednar, J., Dimitrov, S., and Everaers, R. (2011). From crystal and NMR structures, 
footprints and cryo-electron-micrographs to large and soft structures: nanoscale modeling of 
the nucleosomal stem. Nucleic acids research 39, 9139-9154. 

Millan-Arino, L., Islam, A.B., Izquierdo-Bouldstridge, A., Mayor, R., Terme, J.M., Luque, N., 
Sancho, M., Lopez-Bigas, N., and Jordan, A. (2014). Mapping of six somatic linker histone 
H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic acids 
research. 

Miyagi, A., Ando, T., and Lyubchenko, Y.L. (2011). Dynamics of nucleosomes assessed with 
time-lapse high-speed atomic force microscopy. Biochemistry 50, 7901-7908. 

Mizzen, C.A., and Allis, C.D. (1998). Linking histone acetylation to transcriptional regulation. 
Cellular and molecular life sciences : CMLS 54, 6-20. 

Moore, S.C., and Ausio, J. (1997). Major role of the histones H3-H4 in the folding of the 
chromatin fiber. Biochemical and biophysical research communications 230, 136-139. 

Narlikar, G.J., Sundaramoorthy, R., and Owen-Hughes, T. (2013). Mechanisms and 
functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490-503. 

Nightingale, K.P., Baumann, M., Eberharter, A., Mamais, A., Becker, P.B., and Boyes, J. 
(2007). Acetylation increases access of remodelling complexes to their nucleosome targets 
to enhance initiation of V(D)J recombination. Nucleic acids research 35, 6311-6321. 

Nishino, Y., Eltsov, M., Joti, Y., Ito, K., Takata, H., Takahashi, Y., Hihara, S., Frangakis, A.S., 
Imamoto, N., Ishikawa, T., et al. (2012). Human mitotic chromosomes consist predominantly 
of irregularly folded nucleosome fibres without a 30-nm chromatin structure. The EMBO 
journal 31, 1644-1653. 

Nodelman, I.M., and Bowman, G.D. (2013). Nucleosome sliding by Chd1 does not require 
rigid coupling between DNA-binding and ATPase domains. EMBO reports 14, 1098-1103. 

Noll, M., and Kornberg, R.D. (1977). Action of micrococcal nuclease on chromatin and the 
location of histone H1. Journal of molecular biology 109, 393-404. 

O'Neill, T.E., Meersseman, G., Pennings, S., and Bradbury, E.M. (1995). Deposition of 
histone H1 onto reconstituted nucleosome arrays inhibits both initiation and elongation of 
transcripts by T7 RNA polymerase. Nucleic acids research 23, 1075-1082. 



148 |  R e f e r e n c e s  

 

Oberg, C., and Belikov, S. (2012). The N-terminal domain determines the affinity and 
specificity of H1 binding to chromatin. Biochemical and biophysical research communications 
420, 321-324. 

Offermann, C.A. (1936). Branched chromosomes as symmetrical duplications. Journal of 
Genetics 32, 103-116. 

Oppikofer, M., Kueng, S., and Gasser, S.M. (2013). SIR-nucleosome interactions: structure-
function relationships in yeast silent chromatin. Gene 527, 10-25. 

Orrego, M., Ponte, I., Roque, A., Buschati, N., Mora, X., and Suau, P. (2007). Differential 
affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC biology 5, 
22. 

Patel, D.J., and Wang, Z. (2013). Readout of epigenetic modifications. Annual review of 
biochemistry 82, 81-118. 

Pennings, S., Meersseman, G., and Bradbury, E.M. (1994). Linker histones H1 and H5 
prevent the mobility of positioned nucleosomes. Proceedings of the National Academy of 
Sciences of the United States of America 91, 10275-10279. 

Pepenella, S., Murphy, K.J., and Hayes, J.J. (2013). Intra- and inter-nucleosome interactions 
of the core histone tail domains in higher-order chromatin structure. Chromosoma. 

Perez-Montero, S., Carbonell, A., Moran, T., Vaquero, A., and Azorin, F. (2013). The 
embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome 
activation. Developmental cell 26, 578-590. 

Perisic, O., Collepardo-Guevara, R., and Schlick, T. (2010). Modeling studies of chromatin 
fiber structure as a function of DNA linker length. Journal of molecular biology 403, 777-802. 

Phanstiel, D., Brumbaugh, J., Berggren, W.T., Conard, K., Feng, X., Levenstein, M.E., 
McAlister, G.C., Thomson, J.A., and Coon, J.J. (2008). Mass spectrometry identifies and 
quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells. 
Proceedings of the National Academy of Sciences of the United States of America 105, 
4093-4098. 

Pinskaya, M., Nair, A., Clynes, D., Morillon, A., and Mellor, J. (2009). Nucleosome 
remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces 
cerevisiae. Molecular and cellular biology 29, 2419-2430. 

Poirier, M.G., Bussiek, M., Langowski, J., and Widom, J. (2008). Spontaneous access to 
DNA target sites in folded chromatin fibers. Journal of molecular biology 379, 772-786. 

Poot, R.A., Dellaire, G., Hulsmann, B.B., Grimaldi, M.A., Corona, D.F., Becker, P.B., 
Bickmore, W.A., and Varga-Weisz, P.D. (2000). HuCHRAC, a human ISWI chromatin 
remodelling complex contains hACF1 and two novel histone-fold proteins. The EMBO journal 
19, 3377-3387. 

Protacio, R.U., Li, G., Lowary, P.T., and Widom, J. (2000). Effects of histone tail domains on 
the rate of transcriptional elongation through a nucleosome. Molecular and cellular biology 
20, 8866-8878. 

Rando, O.J. (2012). Combinatorial complexity in chromatin structure and function: revisiting 
the histone code. Current opinion in genetics & development 22, 148-155. 

Richmond, T.J., and Davey, C.A. (2003). The structure of DNA in the nucleosome core. 
Nature 423, 145-150. 

Robinson, P.J., An, W., Routh, A., Martino, F., Chapman, L., Roeder, R.G., and Rhodes, D. 
(2008). 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker 
histone eviction. Journal of molecular biology 381, 816-825. 

Robinson, P.J., Fairall, L., Huynh, V.A., and Rhodes, D. (2006). EM measurements define 
the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated 



R e f e r e n c e s  | 149 

 

structure. Proceedings of the National Academy of Sciences of the United States of America 
103, 6506-6511. 

Robinson, P.J., and Rhodes, D. (2006). Structure of the '30 nm' chromatin fibre: a key role for 
the linker histone. Current opinion in structural biology 16, 336-343. 

Rodriguez-Campos, A., Shimamura, A., and Worcel, A. (1989). Assembly and properties of 
chromatin containing histone H1. Journal of molecular biology 209, 135-150. 

Roth, S.Y., Denu, J.M., and Allis, C.D. (2001). Histone acetyltransferases. Annual review of 
biochemistry 70, 81-120. 

Routh, A., Sandin, S., and Rhodes, D. (2008). Nucleosome repeat length and linker histone 
stoichiometry determine chromatin fiber structure. Proceedings of the National Academy of 
Sciences of the United States of America 105, 8872-8877. 

Ruthenburg, A.J., Li, H., Milne, T.A., Dewell, S., McGinty, R.K., Yuen, M., Ueberheide, B., 
Dou, Y., Muir, T.W., Patel, D.J., et al. (2011). Recognition of a mononucleosomal histone 
modification pattern by BPTF via multivalent interactions. Cell 145, 692-706. 

Ruthenburg, A.J., Li, H., Patel, D.J., and Allis, C.D. (2007). Multivalent engagement of 
chromatin modifications by linked binding modules. Nature reviews Molecular cell biology 8, 
983-994. 

Ryan, D.P., Sundaramoorthy, R., Martin, D., Singh, V., and Owen-Hughes, T. (2011). The 
DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE 
domains. The EMBO journal 30, 2596-2609. 

Sala, A., Toto, M., Pinello, L., Gabriele, A., Di Benedetto, V., Ingrassia, A.M., Lo Bosco, G., 
Di Gesu, V., Giancarlo, R., and Corona, D.F. (2011). Genome-wide characterization of 
chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase 
ISWI. The EMBO journal 30, 1766-1777. 

Sandaltzopoulos, R., Blank, T., and Becker, P.B. (1994). Transcriptional repression by 
nucleosomes but not H1 in reconstituted preblastoderm Drosophila chromatin. The EMBO 
journal 13, 373-379. 

Schalch, T., Duda, S., Sargent, D.F., and Richmond, T.J. (2005). X-ray structure of a 
tetranucleosome and its implications for the chromatin fibre. Nature 436, 138-141. 

Schlick, T., Hayes, J., and Grigoryev, S. (2012). Toward convergence of experimental 
studies and theoretical modeling of the chromatin fiber. The Journal of biological chemistry 
287, 5183-5191. 

Schlick, T., and Perisic, O. (2009). Mesoscale simulations of two nucleosome-repeat length 
oligonucleosomes. Physical chemistry chemical physics : PCCP 11, 10729-10737. 

Schwaiger, M., Stadler, M.B., Bell, O., Kohler, H., Oakeley, E.J., and Schübeler, D. (2009). 
Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. 
Genes & development 23, 589-601. 

Schwarz, P.M., Felthauser, A., Fletcher, T.M., and Hansen, J.C. (1996). Reversible 
oligonucleosome self-association: dependence on divalent cations and core histone tail 
domains. Biochemistry 35, 4009-4015. 

Shahbazian, M.D., and Grunstein, M. (2007). Functions of site-specific histone acetylation 
and deacetylation. Annual review of biochemistry 76, 75-100. 

Sharma, A., Jenkins, K.R., Heroux, A., and Bowman, G.D. (2011). Crystal structure of the 
chromodomain helicase DNA-binding protein 1 (Chd1) DNA-binding domain in complex with 
DNA. The Journal of biological chemistry 286, 42099-42104. 

Shogren-Knaak, M., Ishii, H., Sun, J.M., Pazin, M.J., Davie, J.R., and Peterson, C.L. (2006). 
Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 
311, 844-847. 



150 |  R e f e r e n c e s  

 

Simpson, R.T. (1978). Structure of the chromatosome, a chromatin particle containing 160 
base pairs of DNA and all the histones. Biochemistry 17, 5524-5531. 

Sims, R.J., 3rd, Mandal, S.S., and Reinberg, D. (2004). Recent highlights of RNA-
polymerase-II-mediated transcription. Current opinion in cell biology 16, 263-271. 

Sinha, D., and Shogren-Knaak, M.A. (2010). Role of direct interactions between the histone 
H4 Tail and the H2A core in long range nucleosome contacts. The Journal of biological 
chemistry 285, 16572-16581. 

Siriaco, G., Deuring, R., Chioda, M., Becker, P.B., and Tamkun, J.W. (2009). Drosophila 
ISWI regulates the association of histone H1 with interphase chromosomes in vivo. Genetics 
182, 661-669. 

Smith, C.M., Gafken, P.R., Zhang, Z., Gottschling, D.E., Smith, J.B., and Smith, D.L. (2003). 
Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal 
tail of histone H4. Analytical biochemistry 316, 23-33. 

Smith, Z.D., and Meissner, A. (2013). DNA methylation: roles in mammalian development. 
Nature reviews Genetics 14, 204-220. 

Spadafora, C., Bellard, M., Compton, J.L., and Chambon, P. (1976). The DNA repeat lengths 
in chromatins from sea urchin sperm and gastrule cells are markedly different. FEBS letters 
69, 281-285. 

Stein, A., and Bina, M. (1984). A model chromatin assembly system. Factors affecting 
nucleosome spacing. Journal of molecular biology 178, 341-363. 

Stockdale, C., Flaus, A., Ferreira, H., and Owen-Hughes, T. (2006). Analysis of nucleosome 
repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. The Journal of 
biological chemistry 281, 16279-16288. 

Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes & 
development 12, 599-606. 

Struhl, K., and Segal, E. (2013). Determinants of nucleosome positioning. Nature structural & 
molecular biology 20, 267-273. 

Sun, J., Zhang, Q., and Schlick, T. (2005). Electrostatic mechanism of nucleosomal array 
folding revealed by computer simulation. Proceedings of the National Academy of Sciences 
of the United States of America 102, 8180-8185. 

Sun, J.M., Ali, Z., Lurz, R., and Ruiz-Carrillo, A. (1990). Replacement of histone H1 by H5 in 
vivo does not change the nucleosome repeat length of chromatin but increases its stability. 
The EMBO journal 9, 1651-1658. 

Syed, S.H., Goutte-Gattat, D., Becker, N., Meyer, S., Shukla, M.S., Hayes, J.J., Everaers, R., 
Angelov, D., Bednar, J., and Dimitrov, S. (2010). Single-base resolution mapping of H1-
nucleosome interactions and 3D organization of the nucleosome. Proceedings of the 
National Academy of Sciences of the United States of America 107, 9620-9625. 

Szenker, E., Boyarchuk, E., and Almouzni, G. (2014). Properties and Functions of Histone 
Variants. In Fundamentals of Chromatin, J.L. Workman, and S.M. Abmayr, eds. (Springer). 

Szerlong, H.J., and Hansen, J.C. (2011). Nucleosome distribution and linker DNA: 
connecting nuclear function to dynamic chromatin structure. Biochemistry and cell biology = 
Biochimie et biologie cellulaire 89, 24-34. 

Talasz, H., Sapojnikova, N., Helliger, W., Lindner, H., and Puschendorf, B. (1998). In vitro 
binding of H1 histone subtypes to nucleosomal organized mouse mammary tumor virus long 
terminal repeat promotor. The Journal of biological chemistry 273, 32236-32243. 

Talbert, P.B., and Henikoff, S. (2010). Histone variants--ancient wrap artists of the 
epigenome. Nature reviews Molecular cell biology 11, 264-275. 



R e f e r e n c e s  | 151 

 

Tan, M., Luo, H., Lee, S., Jin, F., Yang, J.S., Montellier, E., Buchou, T., Cheng, Z., 
Rousseaux, S., Rajagopal, N., et al. (2011). Identification of 67 histone marks and histone 
lysine crotonylation as a new type of histone modification. Cell 146, 1016-1028. 

Tan, S., and Davey, C.A. (2011). Nucleosome structural studies. Current opinion in structural 
biology 21, 128-136. 

Taylor, G., Eskeland, R., Hekimoglu-Balkan, B., Pradeepa, M., and Bickmore, W.A. (2013). 
H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not 
alter chromatin compaction. Genome research. 

Tessarz, P., Santos-Rosa, H., Robson, S.C., Sylvestersen, K.B., Nelson, C.J., Nielsen, M.L., 
and Kouzarides, T. (2014). Glutamine methylation in histone H2A is an RNA-polymerase-I-
dedicated modification. Nature 505, 564-568. 

Thoma, F., Koller, T., and Klug, A. (1979). Involvement of histone H1 in the organization of 
the nucleosome and of the salt-dependent superstructures of chromatin. The Journal of cell 
biology 83, 403-427. 

Tims, H.S., Gurunathan, K., Levitus, M., and Widom, J. (2011). Dynamics of nucleosome 
invasion by DNA binding proteins. Journal of molecular biology 411, 430-448. 

Torigoe, S.E., Patel, A., Khuong, M.T., Bowman, G.D., and Kadonaga, J.T. (2013). ATP-
dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2, 
e00863. 

Torigoe, S.E., Urwin, D.L., Ishii, H., Smith, D.E., and Kadonaga, J.T. (2011). Identification of 
a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin 
by ACF. Molecular cell 43, 638-648. 

Tremethick, D.J., and Frommer, M. (1992). Partial purification, from Xenopus laevis oocytes, 
of an ATP-dependent activity required for nucleosome spacing in vitro. The Journal of 
biological chemistry 267, 15041-15048. 

Tropberger, P., and Schneider, R. (2013). Scratching the (lateral) surface of chromatin 
regulation by histone modifications. Nature structural & molecular biology 20, 657-661. 

Tse, C., and Hansen, J.C. (1997). Hybrid trypsinized nucleosomal arrays: identification of 
multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. 
Biochemistry 36, 11381-11388. 

Tse, C., Sera, T., Wolffe, A.P., and Hansen, J.C. (1998). Disruption of higher-order folding by 
core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA 
polymerase III. Molecular and cellular biology 18, 4629-4638. 

Tsukiyama, T., and Wu, C. (1995). Purification and properties of an ATP-dependent 
nucleosome remodeling factor. Cell 83, 1011-1020. 

Turner, B.M. (1991). Histone acetylation and control of gene expression. Journal of cell 
science 99 ( Pt 1), 13-20. 

Valouev, A., Johnson, S.M., Boyd, S.D., Smith, C.L., Fire, A.Z., and Sidow, A. (2011). 
Determinants of nucleosome organization in primary human cells. Nature 474, 516-520. 

van Holde, K.E. (1989). Chromatin (New York: Springer). 

Vaquero, A., Sternglanz, R., and Reinberg, D. (2007). NAD+-dependent deacetylation of H4 
lysine 16 by class III HDACs. Oncogene 26, 5505-5520. 

Varga-Weisz, P.D., Wilm, M., Bonte, E., Dumas, K., Mann, M., and Becker, P.B. (1997). 
Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. 
Nature 388, 598-602. 

Vogler, C., Huber, C., Waldmann, T., Ettig, R., Braun, L., Izzo, A., Daujat, S., Chassignet, I., 
Lopez-Contreras, A.J., Fernandez-Capetillo, O., et al. (2010). Histone H2A C-terminus 
regulates chromatin dynamics, remodeling, and histone H1 binding. PLoS genetics 6, 
e1001234. 



152 |  R e f e r e n c e s  

 

Vyas, P., and Brown, D.T. (2012). N- and C-terminal domains determine differential 
nucleosomal binding geometry and affinity of linker histone isotypes H1(0) and H1c. The 
Journal of biological chemistry 287, 11778-11787. 

Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M.D., and Owen-Hughes, T. (2003). 
Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Molecular and 
cellular biology 23, 1935-1945. 

Widom, J. (1986). Physicochemical studies of the folding of the 100 A nucleosome filament 
into the 300 A filament. Cation dependence. Journal of molecular biology 190, 411-424. 

Widom, J. (1992). A relationship between the helical twist of DNA and the ordered 
positioning of nucleosomes in all eukaryotic cells. Proceedings of the National Academy of 
Sciences of the United States of America 89, 1095-1099. 

Wiren, M., Silverstein, R.A., Sinha, I., Walfridsson, J., Lee, H.M., Laurenson, P., Pillus, L., 
Robyr, D., Grunstein, M., and Ekwall, K. (2005). Genomewide analysis of nucleosome 
density histone acetylation and HDAC function in fission yeast. The EMBO journal 24, 2906-
2918. 

Wolffe, A.P., and Hayes, J.J. (1999). Chromatin disruption and modification. Nucleic acids 
research 27, 711-720. 

Wong, H., Victor, J.M., and Mozziconacci, J. (2007). An all-atom model of the chromatin fiber 
containing linker histones reveals a versatile structure tuned by the nucleosomal repeat 
length. PloS one 2, e877. 

Woodcock, C.L. (1994). Chromatin fibers observed in situ in frozen hydrated sections. Native 
fiber diameter is not correlated with nucleosome repeat length. The Journal of cell biology 
125, 11-19. 

Woodcock, C.L., Frado, L.L., and Rattner, J.B. (1984). The higher-order structure of 
chromatin: evidence for a helical ribbon arrangement. The Journal of cell biology 99, 42-52. 

Woodcock, C.L., Skoultchi, A.I., and Fan, Y. (2006). Role of linker histone in chromatin 
structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome 
research : an international journal on the molecular, supramolecular and evolutionary 
aspects of chromosome biology 14, 17-25. 

Worcel, A., Strogatz, S., and Riley, D. (1981). Structure of chromatin and the linking number 
of DNA. Proceedings of the National Academy of Sciences of the United States of America 
78, 1461-1465. 

Wu, C., Bassett, A., and Travers, A. (2007). A variable topology for the 30-nm chromatin 
fibre. EMBO reports 8, 1129-1134. 

Wysocka, J., Swigut, T., Xiao, H., Milne, T.A., Kwon, S.Y., Landry, J., Kauer, M., Tackett, 
A.J., Chait, B.T., Badenhorst, P., et al. (2006). A PHD finger of NURF couples histone H3 
lysine 4 trimethylation with chromatin remodelling. Nature 442, 86-90. 

Xiao, H., Sandaltzopoulos, R., Wang, H.M., Hamiche, A., Ranallo, R., Lee, K.M., Fu, D., and 
Wu, C. (2001). Dual functions of largest NURF subunit NURF301 in nucleosome sliding and 
transcription factor interactions. Molecular cell 8, 531-543. 

Yadon, A.N., and Tsukiyama, T. (2011). SnapShot: Chromatin remodeling: ISWI. Cell 144, 
453-453 e451. 

Yamada, K., Frouws, T.D., Angst, B., Fitzgerald, D.J., DeLuca, C., Schimmele, K., Sargent, 
D.F., and Richmond, T.J. (2011). Structure and mechanism of the chromatin remodelling 
factor ISW1a. Nature 472, 448-453. 

Yang, J.G., Madrid, T.S., Sevastopoulos, E., and Narlikar, G.J. (2006). The chromatin-
remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates 
nucleosome spacing. Nature structural & molecular biology 13, 1078-1083. 



R e f e r e n c e s  | 153 

 

Yang, X.J., and Seto, E. (2008). Lysine acetylation: codified crosstalk with other 
posttranslational modifications. Molecular cell 31, 449-461. 

Yun, M., Wu, J., Workman, J.L., and Li, B. (2011). Readers of histone modifications. Cell 
research 21, 564-578. 

Zheng, Y., Thomas, P.M., and Kelleher, N.L. (2013). Measurement of acetylation turnover at 
distinct lysines in human histones identifies long-lived acetylation sites. Nature 
communications 4, 2203. 

Zhou, B.R., Feng, H., Kato, H., Dai, L., Yang, Y., Zhou, Y., and Bai, Y. (2013). Structural 
insights into the histone H1-nucleosome complex. Proceedings of the National Academy of 
Sciences of the United States of America 110, 19390-19395. 

Zhou, J., Fan, J.Y., Rangasamy, D., and Tremethick, D.J. (2007). The nucleosome surface 
regulates chromatin compaction and couples it with transcriptional repression. Nature 
structural & molecular biology 14, 1070-1076. 

Zhou, Y., and Grummt, I. (2005). The PHD finger/bromodomain of NoRC interacts with 
acetylated histone H4K16 and is sufficient for rDNA silencing. Current biology : CB 15, 1434-
1438. 

Zhou, Y.B., Gerchman, S.E., Ramakrishnan, V., Travers, A., and Muyldermans, S. (1998). 
Position and orientation of the globular domain of linker histone H5 on the nucleosome. 
Nature 395, 402-405. 

Zippo, A., Serafini, R., Rocchigiani, M., Pennacchini, S., Krepelova, A., and Oliviero, S. 
(2009). Histone crosstalk between H3S10ph and H4K16ac generates a histone code that 
mediates transcription elongation. Cell 138, 1122-1136. 

Zlatanova, J., Bishop, T.C., Victor, J.M., Jackson, V., and van Holde, K. (2009). The 
nucleosome family: dynamic and growing. Structure 17, 160-171. 

Zofall, M., Persinger, J., and Bartholomew, B. (2004). Functional role of extranucleosomal 
DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Molecular and 
cellular biology 24, 10047-10057. 

 



154 |  D e c l a r a t i o n  o f  c o n t r i b u t i o n s  

 

Declaration of contributions 

 

Declaration of contributions to “The ATPase domain of ISWI is an autonomous 

nucleosome remodeling machine”  

This study was conceived by F. Mueller-Planitz. I contributed the mono- and 

polynucleosome-sliding experiments (Figure 5a, c) and the restriction enzyme accessibility 

experiment shown in Figure 5d. Furthermore, I performed all the restriction enzyme 

accessibility experiments employing wt-H4 arrays and some of the experiments employing g-

H4 arrays that are summarized in Figure 6 and Figure S7. I prepared Figure 5 and the 

corresponding figure legend and materials and methods sections. Together with J. 

Ludwigsen, I prepared Figure 6 including figure legend and the respective materials and 

methods sections. I assisted in developing and revising the manuscript that was mostly 

written by F. Mueller-Planitz and P.B. Becker and edited it at all stages of the publication 

process. 

 

Declaration of contributions to “Nucleosome sliding mechanisms: new twists in a 

looped history”  

This review was conceived and developed by F. Mueller-Planitz, P.B. Becker and me. I 

designed and prepared Figures 1, 3, 4, and 5 and all figure legends. I assisted in finalizing 

the text, edited and helped revising the manuscript. In addition, I wrote drafts for the short 

summaries of the key references. 

 

Declaration of contributions to “No need for a power stroke in ISWI-mediated 

nucleosome sliding” 

This study was conceived by J. Ludwigsen and F. Mueller-Planitz. I performed the 

nucleosome sliding experiment shown in Figure 4, edited and helped revising the 

manuscript. 

 

Declaration of contributions to “ISWI Remodelling of Physiological Chromatin Fibres 

Acetylated at Lysine 16 of Histone H4” 

This study was conceived by P.B. Becker and me. I performed all experiments except for the 

mass spectrometry analysis that was done by I. Forné (Figure S1C, D). He also wrote the 

corresponding materials and methods section and revised the figure legend. The acetylated 

and unmodified histones H4 were provided by R. Yang, C.-F. Liu, and L. Nordenskiöld. I 



D e c l a r a t i o n  o f  c o n t r i b u t i o n s  | 155 

 

conceived and wrote the first draft of the manuscript and developed the final version together 

with P.B. Becker and F. Mueller-Planitz. I prepared all figures and figure legends. 

 

Declaration of contributions to “Rapid purification of recombinant histones” 

The method described in this manuscript was initially developed by F. Mueller-Planitz. 

C. Haas and I applied the protocol to purify the canonical Drosophila histones and advanced 

the method together with F. Mueller-Planitz and his co-workers. C. Haas and I performed all 

experiments contained in the manuscript in close collaboration. I prepared the figures and 

wrote the first draft of the manuscript including the figure legends. Together with F. Mueller-

Planitz, C. Haas, and P.B. Becker I developed the enclosed version of the manuscript. 

 

 

 

  

 

 

_____________________________________ 

                (Prof. Dr. Peter Becker) 

 

 

 

 

 

 

_____________________________________ 

                      (Henrike Klinker) 



156 |  A b b r e v i a t i o n s  

 

Abbreviations 

 

aa 

ACF 

ATP 

AutoN 

bp 

BPTF 

Chd1 

CHRAC 

Chromodomain 

CoA 

CtBP 

DCC                                                                           

Amino acids 

ATP-utilizing chromatin assembly and remodeling factor 

Adenosine triphosphate 

N-terminal autoinhibitory region 

Base pairs 

Bromodomain PHD finger transcription factor 

Chromodomain helicase DNA binding protein 1 

Chromatin accessibility complex 

Chromatin organization modifier domain 

Coenzyme A 

C-terminal binding domain 

Dosage compensation complex 

DNA 

EM 

FRAP 

g-H4 

H4K16 

H4K16ac 

HAT 

HDAC 

HEK293 

HP1 

ISW2 

ISWI 

MOF 

NAP1 

NoRC 

NRL 

NuRD 

NURF 

PHD finger 

PolII 

PRC1 

PTM 

Desoxyribonucleic acid 

Electron microscopy 

Fluorescence recovery after photobleaching 

Globular histone H4 (histone H4 lacking the N-terminal tail) 

Lysine 16 of histone H4 

Histone H4 acetylated at lysine 16 

Histone acetyltransferase 

Histone deacetylase 

Human embryonic kidney cells 293 

Heterochromatin protein 1 

Imitation switch (complex in Saccharomyces cerevisiae) 

Imitation switch (enzyme in Drosophila melanogaster) 

Males absent on the first 

Nucleosome assembly protein 1 

Nucleolar remodeling complex 

Nucleosomal repeat length 

Nucleosome remodeling and histone deacetylation 

Nucleosome remodeling factor 

Plant homeobox finger 

RNA polymerase II 

Polycomb repressive complex 1 

Post-translational modification 



A b b r e v i a t i o n s  | 157 

 

RNA 

RSF 

SANT 

SAXS 

Set 

SHL 

SIR/Sir 

SLIDE 

Snf2 

Snf2H 

ToRC 

wt-H4 

 

Ribonucleic acid 

Remodeling and spacing factor 

SWI3, ADA2, N-CoR, TFIIIB  

Small angle X-ray scattering 

Su(var)3-9, Enhancer of Zeste, Trithorax  

Superhelix location 

Silent information regulator 

SANT-like ISWI domain 

Sucrose non-fermenting 2 

Sucrose non-fermenting 2 homolog 

Toutatis-containing chromatin remodeling complex 

Wild-type H4 

 



158 |  C u r r i c u l u m  V i t a e  

 

Curriculum Vitae 

 

Personal information 

Name Henrike Klinker 

Date of birth 24. August 1983 

Place of birth Frankenberg (Eder) 

Nationality German 

 

Education 

Jan. 2009 – present PhD thesis in the laboratory of Prof. Dr. Peter B. Becker 

Adolf-Butenandt-Institute, Department of Molecular Biology, 

Ludwig-Maximilians-Universität München, Munich, Germany 

Project: ATP-dependent nucleosome sliding by ISWI –               

molecular mechanism and regulation  

 

Nov. 2010 – Oct. 2013 Member of the International Graduate Program Protein 

Dynamics in Health and Disease of the Elite Network of 
Bavaria 

 

Jan. 2008 – Nov. 2008 Diploma thesis in the laboratory of Prof. Dr. Alexander Brehm 

Institute of Molecular Biology and Tumor Research, 

Philipps-University, Marburg, Germany 

Project: Structural and Functional Analysis of the Drosophila 

Protein MEP-1 

 

Oct. 2005 – Dec. 2008 Diploma studies in Biomedical Science (Humanbiologie) 

Philipps-University, Marburg, Germany 
 

April 2004 – Sept. 2008 Scholarship of the German National Academic Foundation 
(Studienstiftung des deutschen Volkes) 
 

Oct. 2003 – Sept. 2005 Pre-Diploma studies in Biomedical Science (Humanbiologie) 

Philipps-University, Marburg, Germany 
 

June 2003 Final secondary school examinations (Abitur) 

  



C u r r i c u l u m  V i t a e  | 159 

 

Publications 

Klinker H, Mueller-Planitz F, Yang R, Forné I, Liu CF, Nordenskiöld L, Becker PB (2014) 
  ISWI Remodelling of Physiological Chromatin Fibres Acetylated at Lysine 16 of Histone H4.   
  PLoS ONE 9(2), e88411. 
 
Ludwigsen J, Klinker H, Mueller-Planitz F (2013) 
  No need for a power stroke in ISWI‐mediated nucleosome sliding.  

  EMBO reports 14, 1092-1097. 
 
Mueller-Planitz F, Klinker H, Becker PB (2013) 
  Nucleosome sliding mechanisms: new twists in a looped history.  

  Nature Structural & Molecular Biology 20, 1026-1032. 
 
Mueller-Planitz F, Klinker H, Ludwigsen J, Becker PB (2013) 
  The ATPase domain of ISWI is an autonomous nucleosome remodeling machine.  
  Nature Structural & Molecular Biology 20, 82-89. 
 
Kunert N, Wagner E, Murawska M, Klinker H, Kremmer E, Brehm A (2009)  
  dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression.  
  The EMBO Journal 28, 533–544.  



160 |  A c k n o w l e d g e m e n t s  

 

Acknowledgements 

Last but not least I would like to thank some people that supported, helped, and encouraged 

me during the past years and without whom this thesis would not have been possible. 

First of all, I want to thank Peter Becker for giving me the opportunity to join his lab as a PhD 

student. I am deeply grateful for his continuous support, his patience and valuable input, his 

confidence and a door that was always open. 

Special thanks go to Felix Mueller-Planitz for innumerable fruitful discussions, for introducing 

me to the world of enzyme kinetics, and for being a patient and supportive mentor, teacher, 

and collaborator throughout the time of my PhD. 

In addition, I want to acknowledge the further members of my thesis advisory committee 

Philipp Korber and Gernot Längst who took the time to discuss my project and gave precious 

advice. 

I want to express my gratitude to my collaboration partners Renliang Yang, Chuan-Fa Liu 

and Lars Nordenskiöld for providing acetylated and unmodified histone H4 and Helmut 

Schiessel and Raoul Schram for ongoing modeling efforts and stimulating discussions.   

I furthermore want to thank all former and present members of the Becker lab and the whole 

Molecular Biology Unit that at all times created an extraordinarily stimulating and pleasant 

working atmosphere, were always ready to help with advice, helping hands, or reagents, and 

turned retreats, happy hours, and after-work-events into unforgettable memories. I am 

especially grateful to all my “labroommates” making every day lab life so enjoyable. 

I want to thank… 

… Verena Maier for giving me a good start in the lab and sharing her expertise in chromatin 

assembly. 

… my longtime desk neighbor Raffaella Villa for being much more than a colleague. 

… Johanna Ludwigsen for being a fabulous collaboration partner in lab and cake projects. 

… Caroline Haas for a summer spent together in the cold room. 

… Nadine Harrer for persuing the establishment of the rapid histone purification method and 

invaluable advice in personal projects. 

… Natascha Steffen for always lending me an ear and being a tolerant and humorous bench 

neighbor. 

… the 7th floor crowd, especially Teresa Barth, Silvia Dambacher, Edith Mentele, Miriam 

Pusch, Dennis Sadic, Viola Sansoni, Irene Vetter, Simone Vollmer, and Gabriele Wagner, 



A c k n o w l e d g e m e n t s  | 161 

 

for always having an extra chair in the kitchen for me, for numerous fun lunch breaks and 

other events. 

… the Wednesday club for feeding me and all the great evenings we spent together. 

Moreover, I am grateful to the Elite Network of Bavaria for supporting me in the context of the 

International Graduate Program Protein Dynamics in Health and Disease. In this regard I 

also want to thank Kai Hell and all members of the program for all the great experiences we 

shared and for being a source of inspiration. 

Schließlich möchte ich mich noch bei meiner Familie, meinen Freunden und Rainer für die 

Unterstützung, das Verständnis und die Liebe bedanken, die sie mir nicht nur in den letzten 

Jahren und vor allem auch in schwierigen Zeiten entgegengebracht haben. Ohne euch... 



 

 


	titel v3 final
	erste seiten v2
	intro
	Results 2.1 v8
	2012 Müller-Planitz - Supplemental 10 - NSMB second submission bearbeitet
	Results 2.2 v2
	Results 2.3
	2.3 Ludwigsen
	title_link
	INTRODUCTION
	RESULTS
	Fig 1ISWI derivatives used in this study. (A) Schematic representation of ISWI derivatives. Glycine-rich inserts were introduced behind the indicated amino-acid positions. Numbers in subscript refer to the insertion position and the size of the insert. IS
	DISCUSSION AND CONCLUSIONS
	Fig 2Insertion of flexible polypeptide linkers does not disrupt DNA- and nucleosome-stimulated ATP hydrolysis. ATPase rates were measured in the presence of saturating concentrations of ATP, DNA or nucleosomes. Errors are s.d. for ISWIWt (n=3) and minimal
	Fig 4Insertion of flexible polypeptide linkers does not compromise nucleosome sliding. (A) Schematic depiction of the nucleosome sliding assay. 25-mer nucleosomal arrays containing exposed AvaI restriction sites in the linker DNA were used to follow nucle
	Fig 3Insertion of flexible polypeptide linkers does not disrupt nucleosome remodelling. (A) Remodelling activity was probed by following the accessibility of a unique, central KpnI restriction site in a 13-mer nucleosomal array (see schematic). Exemplary 
	METHODS
	Outline placeholder
	Protein expression and purification
	Enzyme assays and enzyme ligands
	ATP hydrolysis assays
	Nucleosome remodelling assay
	Nucleosome sliding assay


	ACKNOWLEDGEMENTS
	Fig 5Models for nucleosome remodelling by ISWI. (A) Power stroke model. First, the ATPase engine of ISWI translocates 7thinspbp of DNA. The ATPase and HSS domains then undergo a power stroke that exerts force on the HSS domains. The power stroke pulls 3th


	suppl.front Results 2.3
	suppl. 2.3 bearbeitet
	Results 2.4
	2.4 Klinker
	suppl.front Results 2.4
	suppl. 2.4
	Results 2.5 v2
	discussion



