
A Process Model for the Integrated
Reasoning about Quantitative IT

Infrastructure Attributes

Dissertation

an der

Fakultät für Mathematik, Informatik und Statistik
der

Ludwig-Maximilians-Universität München

vorgelegt von

Christian Straube

Tag der Einreichung: 06.11.2014

A Process Model for the Integrated
Reasoning about Quantitative IT

Infrastructure Attributes

Dissertation

an der

Fakultät für Mathematik, Informatik und Statistik
der

Ludwig-Maximilians-Universität München

vorgelegt von

Christian Straube

Tag der Einreichung: 06.11.2014
Tag der Disputation: 15.12.2014

1. Berichterstatter: Prof. Dr. Dieter Kranzlmüller
Ludwig-Maximilians-Universität München

2. Berichterstatter: Prof. Dr. Andrew Grimshaw
University of Virginia

iii

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eides statt, dass die Dissertation von
mir selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Name, Vorname

Ort, Datum Unterschrift Doktorand/in

Formular 3.2

v

Abstract

IT infrastructures can be quantitatively described by attributes, like per-
formance or energy efficiency. Ever-changing user demands and economic
attempts require varying short-term and long-term decisions regarding the
alignment of an IT infrastructure and particularly its attributes to this
dynamic surrounding. Potentially conflicting attribute goals and the central
role of IT infrastructures presuppose decision making based upon reasoning,
the process of forming inferences from facts or premises. The focus on specific
IT infrastructure parts or a fixed (small) attribute set disqualify existing
reasoning approaches for this intent, as they neither cover the (complex)
interplay of all IT infrastructure components simultaneously, nor do they
address inter- and intra-attribute correlations sufficiently.

This thesis presents a process model for the integrated reasoning about
quantitative IT infrastructure attributes. The process model’s main idea is to
formalize the compilation of an individual reasoning function, a mathematical
mapping of parametric influencing factors and modifications on an attribute
vector. Compilation bases upon model integration to benefit from the
multitude of existing specialized, elaborated, and well-established attribute
models. The achieved reasoning function consumes an individual tuple of
IT infrastructure components, attributes, and external influencing factors
to expose a broad applicability. The process model formalizes a reasoning
intent in three phases. First, reasoning goals and parameters are collected in
a reasoning suite, and formalized in a reasoning function skeleton. Second,
the skeleton is iteratively refined, guided by the reasoning suite. Third, the
achieved reasoning function is employed for What-if analyses, optimization,
or descriptive statistics to conduct the concrete reasoning. The process
model provides five template classes that collectively formalize all phases in
order to foster reproducibility and to reduce error-proneness.

Process model validation is threefold. A controlled experiment reasons
about a Raspberry Pi cluster’s performance and energy efficiency to illustrate
feasibility. Besides, a requirements analysis on a world-class supercomputer
and on the European-wide execution of hydro meteorology simulations as
well as a related work examination disclose the process model’s level of
innovation. Potential future work employs prepared automation capabilities,
integrates human factors, and uses reasoning results for the automatic
generation of modification recommendations.

vi

vii

Zusammenfassung

IT-Infrastrukturen können mit Attributen, wie Leistung und Energieeffi-
zienz, quantitativ beschrieben werden. Nutzungsbedarfsänderungen und
ökonomische Bestrebungen erfordern Kurz- und Langfristentscheidungen zur
Anpassung einer IT-Infrastruktur und insbesondere ihre Attribute an dieses
dynamische Umfeld. Potentielle Attribut-Zielkonflikte sowie die zentrale
Rolle von IT-Infrastrukturen erfordern eine Entscheidungsfindung mittels
Reasoning, einem Prozess, der Rückschlüsse (rein) aus Fakten und Prämissen
zieht. Die Fokussierung auf spezifische Teile einer IT-Infrastruktur sowie
die Beschränkung auf (sehr) wenige Attribute disqualifizieren bestehende
Reasoning-Ansätze für dieses Vorhaben, da sie weder das komplexe Zusam-
menspiel von IT-Infrastruktur-Komponenten, noch Abhängigkeiten zwischen
und innerhalb einzelner Attribute ausreichend berücksichtigen können.

Diese Arbeit präsentiert ein Prozessmodell für das integrierte Reasoning
über quantitative IT-Infrastruktur-Attribute. Die grundlegende Idee des Pro-
zessmodells ist die Herleitung einer individuellen Reasoning-Funktion, einer
mathematischen Abbildung von Einfluss- und Modifikationsparametern auf
einen Attributvektor. Die Herleitung basiert auf der Integration bestehender
(Attribut-)Modelle, um von deren Spezialisierung, Reife und Verbreitung
profitieren zu können. Die erzielte Reasoning-Funktion verarbeitet ein indivi-
duelles Tupel aus IT-Infrastruktur-Komponenten, Attributen und externen
Einflussfaktoren, um eine breite Anwendbarkeit zu gewährleisten. Das Pro-
zessmodell formalisiert ein Reasoning-Vorhaben in drei Phasen. Zunächst
werden die Reasoning-Ziele und -Parameter in einer Reasoning-Suite gesam-
melt und in einem Reasoning-Funktions-Gerüst formalisiert. Anschließend
wird das Gerüst entsprechend den Vorgaben der Reasoning-Suite iterativ
verfeinert. Abschließend wird die hergeleitete Reasoning-Funktion verwendet,
um mittels “What-if”–Analysen, Optimierungsverfahren oder deskriptiver
Statistik das Reasoning durchzuführen. Das Prozessmodell enthält fünf
Template-Klassen, die den Prozess formalisieren, um Reproduzierbarkeit zu
gewährleisten und Fehleranfälligkeit zu reduzieren.

Das Prozessmodell wird auf drei Arten validiert. Ein kontrolliertes Expe-
riment zeigt die Durchführbarkeit des Prozessmodells anhand des Reasonings
zur Leistung und Energieeffizienz eines Raspberry Pi Clusters. Eine Anforde-
rungsanalyse an einem Superrechner und an der europaweiten Ausführung
von Hydro-Meteorologie-Modellen erläutert gemeinsam mit der Betrachtung
verwandter Arbeiten den Innovationsgrad des Prozessmodells. Potentielle Er-
weiterungen nutzen die vorbereiteten Automatisierungsansätze, integrieren
menschliche Faktoren, und generieren Modifikationsempfehlungen basierend
auf Reasoning-Ergebnissen.

viii

Contents

Chapter 1 | Introduction 1
1.1 Motivation . 1
1.2 Research question and related fields 4
1.3 Research results and contribution 6

1.3.1 Process model . 6
1.3.2 Requirements specification 9
1.3.3 Publications . 10
1.3.4 Arrangement of research results 14

1.4 Research methodology and thesis structure 15

Chapter 2 | Environment –
Terminology and research scope 19

2.1 Discussion objectives and approach 19
2.1.1 Discussion of the research environment 20
2.1.2 Extraction of a morphological field 22

2.2 IT infrastructures from a provider perspective 23
2.2.1 Single system . 24
2.2.2 Cluster . 26
2.2.3 Grid . 30
2.2.4 Morphological field for the provider perspective 33

2.3 IT infrastructures from a consumer perspective 33
2.3.1 Application . 34
2.3.2 Benchmark . 37
2.3.3 Load . 41
2.3.4 Morphological field for the consumer perspective . . . 44

2.4 IT infrastructure attributes . 44

ix

x Contents

2.4.1 Energy efficiency . 46
2.4.2 Performance . 48
2.4.3 Reliability . 52
2.4.4 Morphological field for IT infrastructure attributes . . 55

2.5 Morphological field for the research environment 55

Chapter 3 | Relevance cycle –
Requirements specification 59

3.1 Requirements engineering methodology 59
3.2 Scenario descriptions . 63

3.2.1 World-class supercomputer 64
3.2.2 European-wide execution of hydro meteorology simu-

lations . 73
3.3 Functional requirements . 78

3.3.1 Actors . 78
3.3.2 Use Cases . 80

3.4 Non-functional requirements . 83
3.5 Evaluation tool . 84

Chapter 4 | Design cycle –
Process model fundamentals 87

4.1 Process model motivation and objectives 87
4.2 Design concepts . 90
4.3 Implementation approaches . 92
4.4 Overview of the process model 94

Chapter 5 | Design cycle –
Process model artifacts and procedures 97

5.1 Roles and actors . 98
5.2 Template meta model . 100

5.2.1 Objectives and intention 101
5.2.2 Template classes . 102

5.3 Provenance information model 108
5.3.1 Package structure . 109
5.3.2 Data type package . 111
5.3.3 Management package . 114
5.3.4 Reasoning project package 115

5.4 IT infrastructure notion . 116
5.4.1 Graph-based representation 117
5.4.2 Interfacing with third-party models 118
5.4.3 Black box approach . 119

Contents xi

5.4.4 Description terminology 121
5.4.5 Provenance . 121

5.5 Measuring . 124
5.5.1 Measuring activity . 126
5.5.2 Provenance . 134

5.6 IT infrastructure attribute notion 136
5.6.1 Decomposition in concept and instances 136
5.6.2 Attribute binding types 138

5.7 Application proxy workload selection 139
5.8 Summary . 140

Chapter 6 | Design cycle –
Process model reasoning methodology 143

6.1 Phase A – Reasoning suite definition 144
6.1.1 A1 – Prepare reasoning suite 146
6.1.2 A2 – Select reasoning interests 147
6.1.3 A3 – Define attribute concepts 151
6.1.4 A4 – Define reasoning parameters 158
6.1.5 A5 – Model IT infrastructure 161
6.1.6 A6 – Select workload . 164
6.1.7 A7 – Document assumptions 171
6.1.8 A8 – Document constraints 172
6.1.9 A9 – Create reasoning function skeleton 173

6.2 Phase B – Reasoning function compilation 174
6.2.1 A10 – Define iteration objectives 176
6.2.2 A11 – Operationalize single objective 178
6.2.3 A12 – Select existing model 179
6.2.4 A13 – Create model proxy 181
6.2.5 A14 - Examine model behavior 185
6.2.6 A15 – Incorporate iteration results 189
6.2.7 A16 – Evaluate reasoning function 189

6.3 Phase C – Reasoning execution 189
6.3.1 A17 – Select reasoning tool 190
6.3.2 A18 – Generate input values 194
6.3.3 A19 – Execute reasoning 196
6.3.4 A20 – Trigger activity 197

6.4 Summary . 198

Chapter 7 | Rigor cycle –
Validation of the process model 199

7.1 Validation objectives and methodology 199

xii Contents

7.2 Controlled experiment . 201
7.2.1 Phase A – Reasoning suite definition 202
7.2.2 Phase B – Reasoning function compilation 206
7.2.3 Phase C – Reasoning execution 210

7.3 Field study . 211
7.3.1 Validation against functional requirements 212
7.3.2 Validation against non-functional requirements 215

7.4 Related research analysis . 219
7.4.1 Structuring of related research 219
7.4.2 Layered abstraction . 222
7.4.3 Convolution . 227
7.4.4 Simulation . 229
7.4.5 Contribution candidates 232

Chapter 8 | Conclusion 239
8.1 Thesis summary . 239
8.2 Future Work . 242

8.2.1 Attribute quantification 242
8.2.2 Human factors . 243
8.2.3 Cloud computing . 245
8.2.4 IT infrastructure surrounding 246
8.2.5 Automation support . 247
8.2.6 Generation of modification recommendations 248

8.3 Closing remarks . 248

Appendices 251

A |Knowledge Base 253

B |Benchmark overview 277

C |Research contributions 283

List of Figures 315

List of Tables 319

List of Template elements 323

Bibliography 325

Abbreviations and index 369

Contents xiii

Conventions

The following overview describes symbols, abbreviations, and formatting
used in this thesis.

Abbreviation
Expansion (AE)

Indicates the introduction of an abbreviation or
acronym. The expansion is printed in italic letters,
followed by the abbreviation or acronym in brackets.
They are introduced in every chapter in case the the-
sis is not read in sequential order. An overview of
abbreviations is provided at the end of the thesis on
page 367.

↗KB p. 253 References the page of a Knowledge Base (KB) entry
in Appendix A that further details the used term,
diagram, or method.

→Section 1 References a section that builds on the discussed
information, fact, or situation. Is mainly used for
discussing the research environment and terminology
in Chapter 2.

1 Flags particular details in the scenario descrip-
tions in Chapter 3 to ease referencing those details
while extracting and abstracting functional and non-
functional requirements.

1 1 Supports referencing figure elements and details in
the text throughout the thesis.

NFR-1, T-A1:A6 Identifies research results, in particular (non) func-
tional requirements in Chapter 3, and process model
template elements in Chapter 5 and 6.

Shaded
box

Acts as container for a template element (cf. Sec-
tion 5.2), whose numbering and label is provided at
its bottom.

continued on next page

xiv Contents

continued from previous page

→ Fig. 2.6, p. 31

Arranges the section or paragraph in the referenced
overview figure, which most chapters and sections
provide at the beginning to structure their contents,
respectively. The arrangement icon is provided in the
left or right page margin, the reference is provided
below the icon.

An example for a generically described situation, fact, or information.
The example is referenced in the text by its label that is printed
at the side. The label consists of the containing chapter and an
ascending numbering. In case an example consists of several parts,
each is numbered in the example by italic numbers in brackets (1), and
referenced in the text by the example’s label succeeded by the number,
like EG-4.1:1.

EG-4.1

Chapter 1
Introduction

This thesis presents a process model for the integrated reasoning about
quantitative IT infrastructure attributes. The chapter at hand introduces the
underlying research in terms of objectives and methodology, and summarizes
key details. In particular, Section 1.1 motivates the research and provides
the research context, Section 1.2 derives the pursued research question and
related fields. Afterwards, Section 1.3 overviews the presented contribution,
and Section 1.4 details the applied methodical course of research.

1.1 Motivation
Information Technology (IT) infrastructures play a central role in science
and industry. In science, they facilitate simulation as the third pillar of
research [332] by providing exhaustive calculation and storage capabilities.
In industry, they act as foundation for IT services, IT-based business initia-
tives [423, 95, 410] and IT functionality, a complete company might depend
on [95, 257]. There are several ways to describe an IT infrastructure, like
hardware specifications of contained components, exposed capabilities, or
Total Cost of Ownership (TOC). A description’s suitability and applicability,
in turn, depends on the specific situation and the description objectives.

A form of description that is important to IT infrastructure providers
and users is the attribute, a quantitative IT infrastructure description that
considers the IT infrastructure and its components as black boxes during
workload execution (EG-1.1:1). IT infrastructure attributes are used in a
variety of ways and situations, e.g., for describing (legally binding) pro-
visioning specifications in Service Level Agreements (SLA), for measuring
a company department’s success, or for constituting procurement of High
Performance Computing (HPC) system components.

1

2 Introduction

Aligning the IT infrastructure and especially its attributes to (externally)
given target values, stated by “continuing changes in business operations and
operating environments” [76, p. 5], is and has been among the top concerns for
business executives and researchers [197, 263, 90, 348, 223]. This alignment,
also called IT governance [423], forces persons in charge to make a variety
of short- and long-term decisions regarding the IT infrastructure [95, 131,
335] (EG-1.1:2). All decisions share the urgent need to build on (complete)
facts, and not (purely) on educated guesses or partial information, because

- the enabling nature and the important role of IT infrastructures require a
stable, safe, and forward-looking provision [395, 410, 248, 274, 230],

- potentially entailed modifications often induce not only (positive) in-
tended effects, but also (mostly negative) unavoidable side effects [6] onto
attributes (EG-1.1:3), resulting in manifold (hidden) dependencies,

- involved stakeholders tend to state disputing attribute target values due to
differing interests and objectives (EG-1.1:4), producing several correlations.

Thus, decisions must base upon comprehensive facts about all involved
aspects, correlations, and potential attribute conflicts, and decision makers
need to produce a good attribute value trade-off [436, 90] (EG-1.1:5).

(1) Prevalent HPC attributes are performance and energy efficiency [170],
exemplary defined as “time to completion of application execution” and
“power consumption in Watt per time step”, respectively. (2) Operations
must align the former to performance related provisioning obligations
stated by SLAs, the latter to expected power consumption levels of
hundreds of megawatts in the future [211, 190] and steadily increasing
electricity prices. (3) Simply speaking, operations could adapt clock
rates to address changed performance needs, and level down the HPC
infrastructure overnight to reduce power consumption. Both induce two
effects: increasing clock rates is beneficial for performance, but disad-
vantageous for energy consumption (detailed in Section 2.4.2). Another
example dealing with contrary effects increases redundancy to improve
reliability [134], which also increases energy consumption, and degrades
performance due to redundancy overhead [137]. (4) Besides the technical
correlations, target value conflicts might appear, e.g., power consumption
cannot pass a certain level, which contradicts the performance increase
according to customer demands. (5) Based on these information, a modi-
fication’s expected impact on attribute values can be evaluated to decide,
whether the expected negative side effects might outweigh the targeted
benefits, even before the (costly) investigation of its accomplishment.

EG-1.1

1.1. Motivation 3

This can be achieved by reasoning, “the process of forming conclusions,
judgments, or inferences from facts or premises”. Compiling useful results
and providing a sufficient level of detail in information require facts and
premises to fulfill two requirements:

● IT infrastructure coverage The manifold components of an IT infras-
tructure comprehensively interact [244, 401] to provide the IT in-
frastructure’s capabilities, like software execution, compute or store
(EG-1.2:1). In this context, it becomes quite difficult to separate the
specific contribution of a particular component to the exposed capa-
bilities [139, 268]. Besides, effects induced by local modifications on
a single component can quickly and easily cascade and affect the IT
infrastructure partly or completely in an unpredictable way (EG-1.2:2).
This requires reasoning to cover an IT infrastructure in its entirety
instead of its single components.

● Attribute coverage Several attributes describe an IT infrastructure
from different perspectives, producing two correlation types, which
require reasoning to cover attributes and particularly their correlations:

Inter-attribute correlation The focus on potentially differing at-
tribute sets for users and providers produces manifold correlations
that were empirically evidenced several times (EG-1.2:3).
Intra-attribute correlation Most attributes are influenced and as-
sembled by a combination of several elements (EG-1.2:4).

(1) The SuperMUC at the Leibniz Supercomputing Center (LRZ) com-
prises several components, each built of manifold sub elements (cf. Sec-
tion 3.2.1), e.g., the 18 thin node islands communicate with three storage
areas, interconnected by a specialized InfiniBand setup. (2) A clock rate
adaption (cf. EG-1.1:3) might result in more inter-node traffic, as the
faster CPUs process more data, what exceeds the local caches. (3) For
SuperMUC, users might focus on performance, the LRZ might focus on
cost-related power consumption. Barroso et al. observed in Google’s
data centers that “every gain in performance has been accompanied
by a proportional inflation in overall platform power consumption” [34,
p. 50]. (4) SuperMUC’s hardware-focused performance is determined by
computing cores, communication, and I/O performance [91, 191, 281].
Its application-focused performance is assembled by data distribution,
data unit memory access, and (software) communication patterns [31].

EG-1.2

4 Introduction

1.2 Research question and related fields
The huge amount of reasoning and analysis approaches for nearly all IT
infrastructure component types and attributes (cf. Section 7.4) greatly vary
- in general methodology, i.e., being an empirical or analytic model,
- in attributes and scope (EG-1.3:1), and
- in IT infrastructure types (EG-1.3:2).

(1) Abandah et al. [13] consider the performance (attribute) of message-
passing based node communication (focus), Contreras et al. [104] estimate
the power consumption (attribute) of Intel PXA255 processors (focus). (2)
Pfeiffer et al. [319] and Cao et al. [79] both concentrate on performance,
but the former predicts application performance on parallel computers,
the latter analyzes agent-based service discovery performance in Grids.

EG-1.3

All approaches share the limitation to a (small) subset of component
types or attributes. For instance, approaches and models related to per-
formance are usually limited to a single system or application, and allow
only the system size and job size to vary, due to the difficulty in producing
a truly comprehensive model [30]. Consequently, they neither cover an IT
infrastructure in its entirety, nor do they support inter- and intra-attribute
spanning reasoning, as required in Section 1.1. Therefore, the thesis and
presented results aim at answering the following research question:

How to facilitate reasoning about quantitative IT infrastructure
attributes to support decision-making while respecting IT
infrastructure complexity and scale as well as inter- and

intra-attribute correlations?

The research question is closely related to three fields, each covering
particular aspects and issues. The subsequent list discusses the fields ordered
according to their employment by the reasoning process:

● IT infrastructure and attribute modeling The central role of IT in-
frastructures (cf. above) cause a (nearly) steady use in production
mode. In this mode, IT infrastructures are very sensitive to intrusive
analyses, e.g., instrumenting IT infrastructure components or execut-
ing a modification and measuring its impact. This situation prohibits
reasoning on a suitable level on existing, productive systems [78, 244,
337]. Also physically copying the considered IT infrastructure com-
pletely or partly under laboratory conditions to conduct reasoning is

1.2. Research question and related fields 5

rarely possible, because this approach is mostly too expensive and
time-consuming [293, 92]. In contrast, this requires modeling the
considered IT infrastructure, attributes, and related elements. The
modeling intent faces two questions:

- Which elements need to be modeled to facilitate the motivated rea-
soning? – The diversity of IT infrastructure characteristics and
attributes requires a detailed investigation, which elements are of
relevance to achieve the research goal and suitable results.

- How to manage model complexity? – Even if a model is perfectly
valid, i.e., being sufficiently accurate for the purpose at hand [334],
it may have limited usefulness, because its size or bulkiness will
outweigh its benefits [334, 307]. Avoiding this imbalance and sup-
porting result creation in a reasonable time frame requires modeling
to find a good trade-off between simplicity, selected elements, and
granularity. Besides, a simple model is fruitful for reduced run time,
fast development, and easy result interpretation [96].

● Model selection and substitution Having an IT infrastructure model,
attribute model(s) must be assigned to IT infrastructure components
according to the reasoning objectives. Assignment faces two questions:

- How to select an appropriate attribute model? – Although the
alluded diversity of existing attribute models facilitates the use of
a specialized, elaborated model, it also poses the questions how to
select an appropriate one, and how to prioritize model aspects, like
accuracy, focus, or result interoperability. Achieving reproducible,
and objective results calls for a definition of the selection process.

- How to provide results in case no appropriate model exists? – Despite
model plurality, there might be situations no model is suitable for
a particular reasoning intent. The combination of (partial) results,
computed by assigned models, calls for alternatives that provide
(reasonable) replacement values in case no suitable model exists.

● Workload and load integration Load describes the workload induced
use of an IT infrastructure component or the entire IT infrastructure in
percent at a certain point in time in relation to its maximum capability
or capacity (cf. Section 2.3.3). Most potential model integration
candidates consume some kind of (work)load as input parameter,
due to its (empirically) evidenced (strong) influence on nearly all IT
infrastructure attributes [173, 347] (EG-1.4). (Work)load consideration
faces the following question:

6 Introduction

- How to select an appropriate workload for the current reasoning
activity? – The variety of existing workloads is split in several
(sub) groups, like applications and benchmarks [93], each pursuing
a different goal and implying certain consequences. This requires a
clear sighted selection to address implicit effects.

Koziolek [239] discusses workload impact on system response time (per-
formance), Talbot et al. [383] describe the load dependent power con-
sumption of communication components (energy efficiency), and Jones et
al. [215] analyze workload and failure rate interdependencies (reliability).

EG-1.4

1.3 Research results and contribution
The section summarizes the presented research results that address and
answer the research question discussed above. Figure 1.1 schematically
depicts the building blocks: Section 1.3.1 overviews the process model for
the integrated reasoning about quantitative IT infrastructure attributes, and
highlights its key ideas and design concepts. Section 1.3.2 introduces the
identified requirements and the extracted morphological field that guide and
scope research, respectively. Section 1.3.3 itemizes resulting publications,
and Section 1.3.4 relates the research results to existing work. All mentioned
aspects are extensively detailed in further sections as indicated.

Process model

Publications

guides

realizes

Requirements
speci�cation

Section 1.3.2 Section 1.3.1

Section 1.3.3

Arrangement of
research results

Section 1.3.4
considers

describe

Figure 1.1: Schematic overview of research results.

1.3.1 Process model
→ Fig. 1.1

(p. 6)
Section 1.2 motivates a model-based approach for reasoning about quantita-
tive IT infrastructure attributes. Three reasons disqualify one-size-fits-all
models that commonly try to cover a problem space entirely (cf. Section 4.1):
Extend of problem space, caused by the great variety of IT infrastruc-
ture component types and attributes (EG-1.5:1).
Individual parameters and objectives, required by the dynamic IT in-
frastructure surroundings, and the plurality of reasoning intents (EG-1.1:4).

1.3. Research results and contribution 7

Accuracy vs. portability, implied by the objective of generating a sus-
tainable and widely applicable solution (EG-1.5:2).

(1) In the focused field of HPC micro processor hardware, various architec-
tures offer very distinct features (cf. Section 2.2), workloads are optimized
for [48] (cf. Section 2.3). Besides, an attribute can be implemented in
manifold ways (cf. Section 2.4), e.g., performance as time to completion
or Floating point operations per second (FLOP/s). (2) Analyzing the
performance of an HPC cluster based on generic communication patterns
is portable to a variety of HPC clusters, but less accurate than a cluster
specific model, as communication patterns do not (fully) cover aspects
of the employed hardware, like Infiniband or Myrinet.

EG-1.5

The research’s driving idea to address this situation is the development
of a process model that generically formalizes how to compile an individ-
ual and casuistic reasoning model, suitable for a specific reasoning intent
(cf. Section 4.1). The reasoning model is a mathematical mapping, called
a reasoning function, of a parameter set on a vector of quantitative IT
infrastructure attribute values. Equation 1.1 depicts the reasoning function
f in its most generic form. The reasoning function’s domain is semanti-
cally decomposed in modification and configuration parameters to enable
appropriate handling, respectively (EG-4.2):

● Modification parameters Aspects being subject to change of a reason-
ing intent or planned modification, especially hardware. They are
examined in more detail, e.g., in terms of analyzed value ranges.

● Configuration parameters IT infrastructure externals and other fac-
tors, like application scaling and electricity price deviations, that
influence the reasoning outcome, but are not subject to change. In-
stead, they are (mostly) taken for granted, and a small value range
constrains reasoning.

f(mod1, ...,modn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Modification
parameters

, conf1, ..., confm

´¹¹¹¸¹¹¹¶
Configuration
parameters

´¹¹¸¹¹¹¶
Domain

) =
⎛
⎜
⎝

attr1

...
attrz

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Attribute
values

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Co domain

(1.1)

The decomposition is advantageous for reasoning efficiency and result
interpretation, but does not disadvantage reasoning methodologies, like

8 Introduction

mathematical optimization (↗KB p. 262), since both parameter sets are
treated in the same mathematical way.

Two main design concepts underlie the process model in general and the
compilation of an individual reasoning function in particular (cf. Section 4.2):

● Integration of existing artifacts The alluded central role of IT infras-
tructure attributes produces a huge amount of specialized (and mature)
models, instrumented components, and gained measurements, covering
a variety of partial aspects of a reasoning intent. The process model
bases upon integration to benefit from this situation and to enable the
use of elaborated, established, and especially validated artifacts. In
other words, the process model builds upon (important) prior work
done and results achieved by other researchers, but also makes a logical
progression by combining these results in a new way [212].

● Iterative function refinement Although a variety of factors influence
an attribute, reasoning might be interested in only a (small) subset.
Thus, reasoning function compilation begins with a coarse-grained
function skeleton and iteratively refines it until the function (co)
domain comply to the reasoning objectives (EG-4.3).

Figure 1.2 overviews the process model’s building blocks and highlights
its two parts, namely artifacts and procedures and the reasoning methodology :

● Artifacts and procedures Define and formalize notions, models, and
methods that are employed by the reasoning methodology. It consists
of seven parts, as depicted at the bottom of Figure 1.2 (cf. Chapter 5).

● Reasoning methodology Formalizes the reasoning activity as a “com-
prehensive integral series of techniques and methods creating a general
system theory” [199] (cf. [315]), considering a method as a “system of
rules and guidelines for a consistent procedure” [315, p. 41]. It consists
of three phases, as depicted at the top of Figure 1.2 (cf. Chapter 6).

A declared research objective is the achievement of a generic and widely
applicable process model. Nevertheless, based on this generic process model,
specialized forks can be derived for a purposely narrowed scope that favor
accuracy before portability in the general trade-off motivated in Section 4.1.
For instance, adapt the reasoning process model for exclusive reasoning about
upcoming mobile IT infrastructures [395] or embedded systems. Although a
fork would be less generic than the presented process model, it could benefit
when reasoning about the targeted elements, e.g., potential globally valid
assumptions could be filled out in advance.

1.3. Research results and contribution 9

Reasoning suite de�nition Reasoning function
compilation

Reasoning execution
Phase A Phase B Phase C

provided to

Reasoning project
Reasoning methodology

Identify, collect, and
specify information

and facts that guide a
reasoning project.

Select method(s) and
execute reasoning
using the compiled

function.

Iteratively re�ne the
reasoning function

skeleton according to the
reasoning suite de�nition.

Artifacts and procedures

Roles and actors

Template meta
model

Provenance infor-
mation model

IT infrastructure
notion

Measuring

IT infrastructure
attribute notion

Application proxy
workl. selection

Figure 1.2: Overview of the presented process model for the integrated
reasoning about quantitative IT infrastructure attributes.

1.3.2 Requirements specification

→ Fig. 1.1
(p. 6)

A successful and systematic development as well as result validation and
assessment prerequisite a requirement set [342, 233, 397]. Thus, research
extracted requirements for the integrated reasoning about quantitative IT
infrastructure attributes, which also precede the presented process model:

● Morphological field An analytic method to capture a (complex) domain
and to consider all possible characteristics [356]. Research formalized a
morphological field, consisting of nine dimensions and discrete values,
which collectively describe research application domain characteristics
that are important for developing the process model (cf. Chapter 2).
The morphological field scopes requirements engineering efforts, and as-
sures research relevance by framing research activities to the identified
needs [187].

● Requirements specification A “specification for a particular [...] prod-
uct [...] that performs certain functions in a specific environment” [374,
p. 3]. The thesis presents a Requirements Specification (RS) that
describes in 18 functional and eight non-functional requirements, what
the final reasoning process model is expected to do. The contained

10 Introduction

requirements originate from an adjusted Use Case Analysis [205] that
compiles, analyzes, and documents requirements based upon user
needs [200] derived from two real world scenarios:

World-class supercomputer Analyzes reasoning about the award-
winning three PetaFlop/s HPC system SuperMUC (cf. Section 3.2.1).
European-wide execution of hydro meteorology simulations
Analyzes reasoning about the Distributed Research Infrastructure for
Hydro-Meteorology (DRIHM) that enables the European-wide chained
execution of Hydro Meteorology (HM) simulations (cf. Section 3.2.2).

1.3.3 Publications
→ Fig. 1.1

(p. 6)
The subsequent lists itemize in chronological descending order all publications
published in the context of this thesis. The first list provides publications
where I was the main author, meaning I contributed the majority of the
scientific contribution, and co-authors supported with their experience. The
second list provides publications I contributed to as co-author. Each list entry
summarizes the publication’s results, highlights the respective contribution
to this thesis (indicated in parentheses), and has a reference to the detailing
bibliography entry.

Main author

All publications in the following list collectively form the motivation (Sec-
tion 1.1), and formulate the research question (Section 1.2) of this thesis.

• C. Straube, W. Hommel, and D. Kranzlmüller. “Design Criteria
and Design Concepts for an Integrated Management Plat-
form of IT Infrastructure Metrics” [1] – The invited journal arti-
cle deals with the management of IT infrastructure metrics, targeting a
high-level management cockpit. It uses findings about quantitative IT
infrastructure attributes and in particular reliability presented in [6]
(cf. below). The article covers groundwork about IT infrastructures
(Section 2.2) and measurements (Section 5.5), and it considers the
SuperMUC at the LRZ as a scenario (Section 3.2.1). Parts of the pre-
sented information model form the basis of the provenance information
model (Section 5.3). Although valid for the discussed management
cockpit, the presented bottom-up aggregation of metrics is not used
in this thesis, as explained in Section 4.3.

1.3. Research results and contribution 11

• C. Straube and D. Kranzlmüller. “A Meta Model for Predictive
Analysis of Modifications on HPDC Infrastructures” [4] – The
conference paper bases upon the Predictive Modification Effect Analysis
(PMEA) introduced in [5] (cf. below), and derives an UML meta
model for describing IT infrastructures and their attributes in a way
that facilitates PMEA. The paper covers the general notion of IT
infrastructures (Section 5.4), consisting of the graph based notion,
the black box approach, and the respective parts of the provenance
information model (Section 5.4.5).

• C. Straube and D. Kranzlmüller. “An Approach for SystemWork-
load Calculation” [5] – The conference paper addresses the central
role of workload for quantitative IT infrastructure attributes and
introduces Predictive Modification Effect Analysis (PMEA). The pa-
per discusses the basic notion of workload (Section 2.3), and load
(Section 2.3.3), and it introduces IT infrastructure description terms
(Section 5.4.4). The very specific focus of the presented workload
calculation approach is not compliant to the process model objectives
(cf. Section 4.1), what disqualifies its integration in the process model
in this thesis. Instead, the workload calculation approach is referenced
in Section 6.3.2 as a potential data source.

• C. Straube and D. Kranzlmüller. “Model-Driven Resilience As-
sessment of Modifications to HPC Infrastructures” [6] – The
conference paper bases on the Capability Effect Analysis (CEA) in-
troduced in [380] (cf. below), and it focuses on the quantitative IT
infrastructure attributes reliability and availability. The paper covers
the general understanding of reliability (Section 2.4.3), and provides
groundwork for parts of the provenance information model related to
quantitative IT infrastructure attribute modeling (Section 6.1.3).

• C. Straube and D. Kranzlmüller. “A Generic Capability Model
for Analyzing Modification Effects in HPC Infrastructures”
[380] – The poster introduces the Capability Effect Analysis (CEA),
the predecessor of PMEA. Besides, it describes a first version of
the provenance information model to describe an IT infrastructure
(Section 5.4.5), and introduces the idea of decomposing quantitative IT
infrastructure attributes into a generic concept and several instances
(Section 5.6).

• C. Straube and D. Kranzlmüller. “An IT-Infrastructure Capabil-
ity Model” [7] – The poster presents an early version of the addressed

12 Introduction

research question (Section 1.2), and discusses related research fields.
The presented simulation based approach was not followed in this the-
sis, because it contradicts the process model objectives (cf. Section 4.1),
particularly because it is not able to address the complexity and extend
of the considered IT infrastructures, as explained in Section 6.2.4.

• C. Straube, W. Hommel, and D. Kranzlmüller. “A Platform for the
Integrated Management of IT Infrastructure Metrics (Best
Paper Award)” [9] – The paper is the basis for the aforementioned
invited journal article [1]. It contains a result subset, which is ex-
tended and revised by the journal article. Consequently, the paper
also deals with the management of IT infrastructure metrics, target-
ing a high-level management cockpit. The paper focuses on metrics
regarding the quantitative IT infrastructure attribute energy efficiency
(Section 2.4.1), and it highlights research questions related to the man-
agement cockpit, which partly contributed to the research question
addressed in this thesis (Section 1.2).

• C. Straube, M. Schiffers, and D. Kranzlmüller. “Determining the
Availability of Grid Resources using Active Probing” [10] –
The paper presents the results of my diploma thesis [379] in order
to make it available to a broader scientific public. The result is an
active probing architecture to determine the availability of resources
in a Grid IT infrastructure. The paper discusses Grid IT infrastruc-
tures (Section 2.2.3), and the quantitative IT infrastructure attribute
availability (Section 2.4.3).

• C. Straube and A. Schroeder. “Architectural Constraints for
Pervasive Adaptive Applications” [11] – The conference paper
presents an internal Domain Specific Language (DSL) to define con-
straints about the components of mobile software. The paper is only
indirectly related to the thesis, as it covers mobile IT infrastructures,
which are excluded from consideration as mentioned in Section 1.3.1.

Contributing author

The first four publications in the following list describe aspects of the Dis-
tributed Research Infrastructure for Hydro-Meteorology (DRIHM) project [98].
For these papers, I developed together with the project partners the presented
DRIHM Distributed Computing Infrastructure, formulated the “DRIHMifica-
tion” process, and contributed to the described DRIHM science gateway. All
publications collectively contribute to the DRIHM scenario (Section 3.2.2).

1.3. Research results and contribution 13

The fifth publication deals with the special IT infrastructure type of Exascale
systems and contributes detail aspects to the terminology (Section 2).

• D. D’Agostino, A. Clematis, A. Galizia, A. Quarati, E. Danovaro, L.
Roverelli, G. Zereik, D. Kranzlmüller, M. Schiffers, N. gentschen Felde,
C. Straube, A. Parodi, E. Fiori, F. Delogu, O. Caumont, E. Richard,
L. Garrote, Q. Harpham, H. Jagers, V. Dimitrijevic, and L. Dekic.
“The DRIHM Project: A Flexible Approach to Integrate
HPC, Grid and Cloud Resources for Hydro-Meteorological
Research” [107].

• E. Danovaro, L. Roverelli, G. Zereik, A. Galizia, D. D’Agostino, G.
Paschina, A. Quarati, A. Clematis, F. Delogu, E. Fiori, A. Parodi,
C. Straube, N. Felde, Q. Harpham, B. Jagers, L. Garrote, L. De-
kic, M. Ivkovic, O. Caumont, and E. Richard. “Setup an Hydro-
Meteo Experiment in Minutes: the DRIHM e-Infrastructure
for Hydro-Meteo Research” [109].

• A. Galizia, D. D’Agostino, A. Quarati, G. Zereik, L. Roverelli, E.
Danovaro, A. Clematis, E. Fiori, F. Delogu, A. Parodi, C. Straube,
N. Felde, M. Schiffers, D. Kranzlmüller, Q. Harpham, B. Jagers, L.
Garrote, V. Dimitrijevic, L. Dekic, O. Caumont, and E. Richard.
“Towards an Interoperable and Distributed e-Infrastructure
for Hydro-Meteorology: the DRIHM Project” [2].

• A. Parodi, N. Rebora, E. Fiori, F. Delogu, F. Pintus, D. Kranzlmüller,
M. Schiffers, N. Felde, C. Straube, A. Clematis, D. D’Agostino, A. Gal-
izia, A. Quarati, E. Danovaro, O. Caumont, O. Nuissier, V. Ducrocq,
É. Richard, L. Garrote, M. C. Llasat, Q. Harpham, H. R. A. Jagers, A.
Tafferner, C. Forster, V. Dimitrijevic, L. Dekic, and R. Hooper. “The
DRIHM Project: Building on Cutting-Edge Information and
Communication Technology to Advance Hydro-Meteorological
Research” [3].

• C. Straube, A. Bode, A. Hoisie, D. Kranzlmüller, and W. Nagel.
“Dagstuhl Manifesto – Co-Design of Systems and Applica-
tions for Exascale” [8].

14 Introduction

1.3.4 Arrangement of research results

→ Fig. 1.1
(p. 6)

Figure 1.3 surveys a comparison of existing approaches, labeled by solid
gray bars, with results presented in this thesis, labeled by hatched bars
(cf. Section 7.4). The subsequent list explains the depicted five comparison di-
mensions and highlights the limitation of existing approaches. The presented
process model is not constrained in these dimensions due to compilation
of an individual reasoning function that enables coverage of (theoretically)
infinite sets, respectively.

Attributes

Research results

Attribute

aspects
Perspectives

Component

types
Granularity

levels

1

2

n

Covered
number Primary focus

of existing
approaches

Secondary
focus of
existing
approaches

Figure 1.3: Comparison of existing approaches with presented research
results.

● Attributes Number of simultaneously covered attributes and inter -attribute
correlations. Most existing approaches support only one attribute, a
small set also supports two attributes and their relations, e.g., the
power consumption and response time in a virtualized server sys-
tem [314].

● Attribute aspects Number of simultaneously covered aspects of a single
attribute and intra-attribute correlations (cf. Section 2.4). Most exist-
ing approaches focus on only one aspect, like the I/O performance of
HPC applications [360]. Only a small set also covers multiple aspects,
e.g., by applying a top-down approach [362].

● Perspectives Number of simultaneously applicable perspectives during
reasoning execution. A perspective describes considered elements and
relevant attributes to emphasize differing focal points: the consumer
perspective might grant major importance to workload execution

1.4. Research methodology and thesis structure 15

(elements) and its performance (attribute), whereas the provider per-
spective might be mainly interested in IT infrastructure components
(elements) and cost-reducing energy efficiency (attribute). Existing
approaches apply mostly one perspective, e.g., provisioning related
hard-disk power consumption [432], or use related HPC kernel power
consumption [389].

● Component types Number of simultaneously covered IT infrastructure
component types, prerequisited by the close collaboration of com-
ponents to render an IT infrastructure’s capabilities. Most existing
approaches cover only a small set of IT infrastructure component
types.

● Granularity levels Number of simultaneously covered granularity levels
within the (reasoning) model. Existing approaches focus on only one
level, either a (very) low or high granularity level, e.g., modeling power
consumption of a processor [104] or a data center [138], respectively.

1.4 Research methodology and thesis
structure

Based on Simon et al. [367], March et al. [266] split (IT) research activities
in two (interacting) paradigms:

● Natural Science A descriptive discipline that discovers (natural) phe-
nomena, compiles theorems, and justifies them [218] to explain how
and why things are and to understand the nature of IT [183].

● Design Science A prescriptive discipline that builds and evaluates IT
artifacts intended to attain goals and to meet or solve identified
needs or problems, respectively [368, 187]. IT artifacts are constructs
(vocabulary & symbols), models (abstractions & representations),
methods (algorithms & practices), and instances (implemented &
prototype systems) [266, 187].

The research question introduced in Section 1.2 calls for a solution that
facilitates reasoning about quantitative IT infrastructure attributes. This
recommends the Design Science paradigm as principle for the presented
process model, especially due to its problem-solving nature, the resulting
IT artifacts, and its general objective to create technical capabilities and
products for accomplishing the analysis, implementation, and use of IT

16 Introduction

systems [117, 392]. Hevner et al. [187, 186] developed a framework for
“understanding, executing, and evaluating [Design Science] research” [187, p.
79], which is applied as methodical course of research. Figure 1.4 (adapted
from [186, Figure 1]) depicts the framework’s three realms from left to right:

● Environment Defines the research project’s application domain or prob-
lem space of the phenomena of interest [368]. It comprises interacting
people, organizations, and existing or planned technical systems [365].

● Design Science Research Utilizes requirements identified in the Envi-
ronment for iterative artifact building, evaluation, and refinement.

● Knowledge Base Comprises scientific theories and engineering methods
for building and evaluation. Besides, it contains experiences and exper-
tise about the state-of-the-art in the application domain and existing
(meta) artifacts and processes, created in previous research [201, 186].
Both are provided to the other two realms.

Evaluate ...

Environment Design Science Research Knowledge Base

People, organiza-
tions, (planned)

technical systems,
problems and
opportunities

Build...

Scienti�c theories &
methods, experience

& expertise, meta
artifacts (design

products & design
processes)

... design artifacts &
processes

Application domain of
phenomena of interest

Foundations for design
science research

Relevance
Cycle

 Requirements
 Field testing

Additions
Grounding

Rigor
Cycle

Design
Cycle

Figure 1.4: Elements of the applied Design Science paradigm (adapted from
[186, Figure 1]).

Three cycles connect the introduced realms, namely the Relevance Cycle,
the Design Cycle, and the Rigor Cycle (cf. Figure 1.4), that also structure
the thesis. The iterative and parallel nature of the three cycles prohibits a
simple mapping onto the sequential chapter structure. Instead, cycles are
addressed by several (non-consecutive) chapters. Figure 1.5 overviews the
thesis’ chapters, summarizes chapter purposes and developed IT artifacts,
respectively, and illustrates the mapping of the Design Science paradigm’s
iterative activities to the sequential chapter structure. The subsequent list
explains the cycles and the related chapters, respectively:

1.4. Research methodology and thesis structure 17

● Relevance Cycle A (good) design science research undertaking should
start with the identification and examination of gaps relating
to a goal in an actual application environment [186] in order to ensure
a goal-oriented research activity and relevance. Thus, the Relevance
Cycle extracts and aggregates the (implicitly) contained goals, tasks,
problems, and opportunities [187] within the Environment. It results
in an application context consisting of requirements for the research
and a set of acceptance criteria for the ultimate evaluation of the
research results [186].

Chapter 1 Introduces on an high abstraction level the research con-
text, identifies gaps, and extracts the research question, each with
relation to reasoning about quantitative IT infrastructure attributes.
Chapter 2 Examines in an in-depth overview the Environment to
ensure a common understanding, to foster a clear terminology, and to
extract a morphological field (cf. Section 1.3.2) that scopes research
in general and requirement specification in particular.
Chapter 3 Conducts a Use Case analysis on real world scenarios
(cf. Section 1.3.2) to provide a requirements set to the Design Cycle.

● Design Cycle Based on identified gaps, the Design Cycle develops a
set of IT artifacts to close identified gaps. In particular, it
generates design alternatives and evaluates them against requirements
until a satisfactory design is achieved [368].

Chapter 4 Motivates and explains the research main approach, the
process model underlying design concepts and implementations, and
outlines the presented process model (cf. Section 1.3.1).
Chapter 5 Develops the process model’s artifacts and procedures
that form the basis for the reasoning methodology (cf. Figure 1.2).
Chapter 6 Develops the process model’s reasoning methodology that
employs the artifacts and procedures (cf. Figure 1.2).

● Rigor Cycle For the Design Science paradigm, the “essence [...] lies
in the scientific evaluation of artifacts” [201]. Thus, the Rigor Cycle
executes validation methods on the presented process model to
“rigorously demonstrate [its] utility [and] quality” [187, Table 1, p. 83].

Chapter 7 Validates the presented process model, using 1) a con-
trolled experiment to analyze the process model’s feasibility and broad
applicability, using 2) a field study to “monitor use of [the process
model] in multiple projects” [187, p. 86], and using 3) a related work
analysis to build arguments for the process model’s utility.

18 Introduction

Chapter 8 Concludes and summarizes the thesis and research results,
respectively, and discusses the refinement and reassessment process
of the developed IT artifacts [187].

The Knowledge Base relevant to the thesis is provided in Appendix A.

Purposefully built IT artifacts that address identi�ed and heretofore unsolved problems

Model Method Implementation

Evaluate

Constructs

BuildChapter

Relevance Cycle
Design Cycle

Rigor Cycle

2 4 5 6 83
Identify unsolved
problem

De�ne problem
space

Extract require-
ments & needs

Process model
fundamentals

Future
Work

Artifacts &
procedures

Reasoning
methodology

Apply solution to
scenarios

71

Figure 1.5: Overview of thesis’ structure, chapter purposes, and developed
IT artifacts, respectively.

Chapter 2
Environment –

Terminology and research
scope

This chapter discusses the research Environment and extracts a morphologi-
cal field for scoping requirements analysis and research activities. Section 2.1
motivates the discussion and introduces the applied approach, before Sec-
tion 2.2 and 2.3 consider IT infrastructures from a provider and consumer
perspective, respectively. Afterwards, Section 2.4 discusses IT infrastructure
attributes, and Section 2.5 presents the extracted morphological field.

2.1 Discussion objectives and approach

Extracting reasonable requirements in the Relevance Cycle (cf. Section 3),
and guiding IT artifact development in the Design Cycle (cf. Section 4 to 6)
mandatorily prerequisite a profound understanding and a clear notion of IT
infrastructures, their exposed characteristics, attributes, and use, to avoid
inappropriate inferences or artifacts. In order to achieve these objectives,
the chapter performs two tasks:
- Provide a discussion of the research environment (its application domain),
as further motivated and detailed in Section 2.1.1.

- Conduct an extraction of a morphological field for scoping the requirements
analysis and research, as further motivated and detailed in Section 2.1.2.

Both tasks are achieved by gathering existing notions from multiple sources,
since no source is superior to the others [426], and “different sources reduce
possible biases during the research process” [90, p. 634]. The chapter’s

19

20 Environment – Terminology and research scope

consideration and discussion of established, wide-spread, and current facts,
experiences and expertise within the application domain might hypothesize
to put this content in the Knowledge Base in Appendix A (cf. Section 1.4).
Though, it is purposely discussed in this chapter to facilitate an extensive
requirements analysis and provide foundation for successive chapters and
sections, indicated by a right arrow and the targeted section, e.g., →Section 2.

2.1.1 Discussion of the research environment

The lack of a commonly accepted IT infrastructure definition, and manifold
ways of defining IT infrastructure attributes require a thorough discussion
of the research Environment.

The extent of IT infrastructures and their involvement in a variety of ar-
eas and provisioning paradigms cause a term overloading. Furthermore, each
discipline employing and relying on IT infrastructures applies a (slightly)
different notion. This situation results in a mass of definitions, covering sev-
eral focal points and granularity levels (e.g., [131, 77, 335, 95, 176, 406, 141]).
Yet, no definition is commonly accepted as standard or widely applied [244,
410]. This produces a lack of a domain-spanning, formal definition that
could be used out-of-the-box for the presented process model [257].

The lion’s share of definitions in common is the assignment of an “enabling
foundation role” to IT infrastructures.1 The role’s point of reference is defined
in a relative way, as Figure 2.1 depicts on its left hand side in the form
of a containment hierarchy (EG-2.1), labeled as Generic view. In other
words, “what is infrastructure depends on where in the organization you are
placed” [410, p. 9]. Since this situation prohibits a fixed point of view, the
chapter discusses IT infrastructures from two perspectives, as indicated at
the very top and bottom of Figure 2.1:

● Provider perspective Covers component types, architectures, and pro-
visioning paradigms, as further detailed in Section 2.2.

● Consumer perspective Covers workload that is executed on IT infras-
tructures, as further detailed in Section 2.3.

IT infrastructure attributes are orthogonal to the IT infrastructure layers,
as depicted in Figure 2.1 on its left side. In contrast to the notion of IT
infrastructures, there is a (high level) common sense about them. Yet, the
variety and extent of IT infrastructure attributes and the complexity of their

1This notion is in line with the general term’s origin, i.e., being composed of “infra”
(lat. “beneath”, “under”) and “structure”, leading to “beneath the structure” [244, 280].

2.1. Discussion objectives and approach 21

assembly require a detailed discussion to ensure a common understanding,
also on a low level, as further detailed in Section 2.4.

On its right hand side, Figure 2.1 depicts two exemplary instances
of the relative IT infrastructure understanding. Example A (accord-
ing to Laan [244, p. 36]) highlights the involvement of “several” IT
infrastructures in application execution. For instance, the software IT
infrastructure relies on security functionality provided by the platform IT
infrastructure, which in turn uses the communication functionality of the
hardware IT infrastructure in a transparent way, respectively [24]. Exam-
ple B (according to Weill et al. [411, Fig. 1]) illustrates the deployment
of an IT infrastructure at multiple levels. Both examples emphasize the
compulsory consideration of an IT infrastructure relative to the applying
IT system [410]. An example not covered by Figure 2.1 are Content
Delivery Networks (CDN) that “place web server clusters across the globe
[...] to improve [...] responsiveness and locality” [76, p. 14] of web content.
Hence, a CDN builds on an IT infrastructure to assemble another one
that is in turn used for website delivery.

EG-2.1

Is
 IT

 in
fra

st
ru

ct
ur

e
fo

r..
.

IT system 1

IT system 2

...IT system n-1

IT system n

Generic view

Hardware

Platform

Software

Application

Example A

Outsourcing

Enterprise-wide

Business Unit-wide

Business Unit

Example B

Consumer perspective

Provider perspective

Attributes

Section 2.2

Section 2.3

Section 2.4

Figure 2.1: The notion of IT infrastructures being an “enabling founda-
tion” requires a consideration from a provider and a consumer perspective.
IT infrastructure attributes are orthogonal to the “enabling foundation”
containment hierarchy.

22 Environment – Terminology and research scope

2.1.2 Extraction of a morphological field

The introduced research Environment exposes countless characteristics, but
requirements engineering and IT artifact development can reasonably use
and handle only a (small) subset. The chapter addresses this situation by
extracting a morphological field , an analytic method to capture a (complex)
domain and consider all possible characteristics [356]. In particular, it is a
list of dimensions and possible discrete values, respectively. Discretization
of characteristics to dimensions and values allows a focused requirements
analysis in Chapter 3, because only the discrete values have to be considered,
instead of a theoretically countless set of aspects. Besides, it sets the research
scope, since it explicitly defines, which IT infrastructure characteristics have
to be covered by the Design Cycle and the developed IT artifacts, and
which characteristics are out of scope. A characteristic extraction in the
chapter’s text is indicated by MFÐÐ→dimension name. To give an idea of the
final morphological field, Table 2.1 depicts the dimensions and values, the
chapter will extract piece wise while considering the research Environment.
Section 2.5 explains the morphological field and contained dimensions and
values in detail, respectively.

Dimension Value

Perspective Provider Consumer

Scale Low High

Heterogeneity Low High

Federation No Yes

Dynamics Low High

Distribution Regional National International

Administrative
Units

1 n

Application Type Parallel Distributed

Attribute Performance Energy
efficiency

Reliability

Table 2.1: Morphological field, the chapter will extract piece wise while
considering the research Environment.

2.2. IT infrastructures from a provider perspective 23

2.2 IT infrastructures from a provider
perspective

→ Fig. 2.1
(p. 21)

From a provider MFÐÐ→Perspective, IT infrastructures differ in terms of con-
tained components, component types, the arranging architectures, and
provisioning paradigms. The section discusses these differences following
a containment hierarchy and a decreasing granularity level. On each level,
commonly contained components and prevalent applied architecture(s) are
discussed. Figure 2.2 overviews the resulting section structure and arranges
considered granularity levels and the containment hierarchy:

- Section 2.2.1 starts with a single system and contained components.
- Section 2.2.2 describes a group of linked single systems, called a cluster,
and especially High Performance Computing (HPC) clusters and the sub
type of so-called custom-built supercomputers.

- Section 2.2.3 describes Grids, which integrate, among others, all of the
aforementioned systems and architectures.

Single system (Section 2.2.1)
CPU GPU Memory

Cluster (Section 2.2.2)
Grid (Section 2.2.3)

C G

Figure 2.2: Containment hierarchy of discussed IT infrastructure elements
from a provider perspective and resulting section structure.

According to the chapter’s objective of considering details relevant to the
research (cf. Section 2.1), the section purposely focuses on a set of details.
For an extensive discussion the reader is referred to Hennessy et al. [184]
and Tanenbaum et al. [384] for computer architecture, to Bauke et al. [38]
and Buyya [75] for cluster computing, and to Foster et al. [147] for Grids.
Despite their perceived omnipresence, Cloud systems are not considered, due
to the manifold open research issues caused by the underlying virtualization
concepts. Instead, virtual systems in general and Clouds in particular are
discussed for future work in Section 8.2.3. Similar reasons constitute the non
consideration of the building that houses the IT infrastructure as further
detailed in Section 8.2.4.

24 Environment – Terminology and research scope

2.2.1 Single system

→ Fig. 2.2
(p. 23)

The section covers a single system at the center of the containment hierarchy
in Figure 2.2. According to the Von Neumann architecture (VNA) [294], Fig-
ure 2.3 (adapted from [384]) abstractly arranges the three logical components,
a single system can be split in:

● Processing Unit Executes program code and calculations, mostly as
Central Processing Unit (CPU) or Graphics Processing Unit (GPU).

● Memory hierarchy Provides storage for the processed and program
data in differing capacities and rates.

● Bus Connects processing unit(s) and memory hierarchy elements.

Figure 2.3 particularly focuses on the logical component partitioning, instead
of the physical design and assembly, in order to highlight the involved
concepts. The depicted caches, for instance, are placed in the memory
hierarchy, although they are physically part of a CPU or GPU.

Processing Unit(s)

Bus

Memory hierarchy

Memory

Size

Sp
ee
d

Storage

Cache
L1

Ln
...

Register

Co
re

Co
re

Co
re

Co
re

Figure 2.3: According to the Von Neumann architecture, a single system
can be logically split in processing unit(s), memory hierarchy, and bus.

Processing Unit

→ Fig. 2.3
(p. 24)

A processing unit, also called microprocessor2, is the hardware component
that performs the basic arithmetical, logical, and input/output operations
of the system. A microprocessor’s characterization is twofold:

2Although its widespread use, the naming of microprocessor is not fully correct, since
modern processing units contain additional components, like caches and bus control [54].
However, for the pursued chapter’s level of detail, both terms can be used synonymously.

2.2. IT infrastructures from a provider perspective 25

● Instruction Is the fundamental concept of a microprocessor’s work, and
describes an (atomic) operation the microprocessor carries out and
exhibits to the programmer. An instruction, in turn, can be split in a
couple of phases, depending on the processed data an the instruction’s
purpose (EG-2.2). Figure 2.4 arranges the correlation between time
and the just outlined concepts: a cycle is the time span between two
instruction execution starts, the clock speed specifies how many cycles
per second are executed.

The add instruction sums two Integer, Float or Decimal values,
depending on the instruction set at hand. It consists of three phases:
The fetch phase reads the instruction’s input values from memory
and places them in the processor’s internal storage, which can be
either a stack, an accumulator, or a register (cf. [184], →Section 2.4).
The execution phase executes the operation sum on these values,
the final store phase publishes the result back in memory.

EG-2.2

● Architecture Describes the microprocessor’s design and can be char-
acterized by the exposed instruction set (Complex Instruction Set
Computer (CISC) and Reduced Instruction Set Computer (RISC)),
by its parallelization capabilities (multi-thread and multi-/many-core
microprocessors), or by its support of instruction pipelining, i.e., the
parallel execution of different phases (cf. Figure 2.4). A differentiation
that is of special importance to HPC systems (cf. Section 2.2.2) is the
separation in CPUs and GPUs. The former consists of multiple (purely)
general purpose microprocessors, the latter consists of thousands of
specialized cores. Especially for computing intense scientific appli-
cations (cf. Section 2.3), many-core CPUs tend to be supplemented
by special purpose accelerators such as GPUs [27]. A widespread
embedded systems architecture is the Advanced RISC Machine (ARM)
architecture (→Section 7.2).

Time
Cycle

Clock speed

Fetch phase
Execute phase
Store phase

Figure 2.4: Mapping a microprocessor’s instruction execution on a time axis
to illustrate the correlation to cycles and clock speed.

26 Environment – Terminology and research scope

Memory hierarchy

→ Fig. 2.3
(p. 24)

According to Figure 2.3, the memory hierarchy ranges from “small fast
register memory to larger slower levels of cache memory to still larger and
slower main memory” [73, p. 190]. In other words, the closer the memory to
the microprocessor, the faster and (mostly) the smaller it is, a correlation
that was shown empirically several times (EG-2.3).

Browne et al. [73] analyzed the latency to different levels of the memory
hierarchy in the SGI Origin 2000 machine and found out that CPU
registers have a latency of 0 cycles, the L1 cache of 2-3 cycles, and
storage hundreds of millions of cycles.

EG-2.3

Bus

→ Fig. 2.3
(p. 24)

A bus is “a cost-saving and conventional connection structure [... being a]
shared data path for a set of connected functional components” [182, p. 362].
The shared use of a bus implies a potential bottleneck, which is addressed
by employing several types of specialized buses, e.g., a processor internal
bus, a processor bus, a memory bus, and a system bus [182]. Bus selection
and processor architecture have an affect on the overall system design, e.g.,
requiring a Northbridge and a Southbridge or substituting these chipsets
(partially), e.g., by Intel’s Quick Path Interconnect (QPI) [21].

2.2.2 Cluster
→ Fig. 2.2

(p. 23)
The section discusses the cluster, a group of linked single systems (cf. above),
servers or workstations that operate collaboratively to achieve a certain
goal. The term cluster primarily focuses on the architecture of a system
and describes “a type of parallel and distributed system, which consists of
a collection of inter-connected stand-alone computers working together as
a single integrated computing resource” [320, 75, 76]. The stand-alone ele-
ments, collectively called nodes, are mostly commodity-off-the-shelf (COTS)
hardware [76] exposing the following characteristics:

- Highly homogeneous hardware that runs the same type of operating
system [385], resulting in a low resource MFÐÐ→Heterogeneity.

- Located at the same data center, exposing a regional MFÐÐ→Distribution.
- Ownership by a single institution [76] and centralized managed by one

MFÐÐ→Administrative Unit.

2.2. IT infrastructures from a provider perspective 27

Figure 2.5 illustrates a typical cluster architecture, consisting of multiple
nodes that are connected by a dedicated (high speed) network [76], depicted
as dashed line. Additionally, Figure 2.5 highlights the common distinction
of cluster nodes according to their main objective:

● Head node One or multiple head nodes, also called master nodes, act as
interface to the user as depicted in Figure 2.5 on the left hand side.
Additionally, head nodes handle job organization and task submission
to the worker nodes.

● Worker node A (big) set of worker nodes execute the tasks assigned by
the head node(s) as depicted in Figure 2.5 by the task rectangle.

Head node

Cluster

Worker
node

User
Dedicated

network

Compute
(worker)
node

Storage
(worker)
node

TaskJob

Figure 2.5: Typical cluster architecture, comprising a head node, multiple
worker nodes, and a dedicated network.

The generic nature of the provided cluster definition allows a variety
of comprised hardware, ranging from Beowulf clusters [40], built of mass
market Personal Computer (PC) systems (→Section 7.2.1), up to Apple
TV [157] or Raspberry Pi [396] clusters (→Section 7.2). Besides, clusters can
be distinguished by their main objectives, e.g., achieving high availability
or facilitating load-balancing, which results in differing configurations and
framing specialized cluster types. According to the chapter’s focus on aspects
relevant to the presented research, two types are further detailed below:
- HPC clusters, and
- the so-called custom-built supercomputer, a sub type of HPC clusters.

28 Environment – Terminology and research scope

HPC cluster

In general, the architecture of a generic cluster (cf. Figure 2.5) and an HPC
cluster are very much the same [38]. In contrast, the main objective of HPC
clusters (→Section 6.2.5) – attain a preferably high performance – implies
the following four distinctive features (→Section 3.2.1):

● Problem solving paradigm The alluded main objective of HPC clus-
ters is achieved by decomposing a compute-intense (big) problem into
smaller problems that can be calculated by multiple worker nodes in
parallel (→Section 2.3.1) [306, 38]. The paradigm’s underlying driving
force is the fact that executing a huge amount of operations on one
processor, e.g., 1016, is sometimes impossible and normally slower and
more error-prone then executing the same amount of operations on
multiple processors, e.g., 109 operations on 1000 processors [38].

● Master node tasks Decompose the compute-intense (big) problem in
smaller pieces, and distribute them to the compute nodes afterwards.
Distribution decisions are mostly made by a scheduler that applies a
diversity of decision algorithms and tools.

● Worker node tasks Process the assigned small problem(s), and pro-
vide the processed data according to their compute and storage type,
respectively.

● Communication The pursued high performance calls for a specialized
network that is optimized for high performance environments, like
Gigabit Ethernet, Myrinet, Quadrics, or Infiniband. Infiniband, for
instance, is a point-to-point, bidirectional switched network that in-
terconnects compute and I/O nodes [50], allowing throughput of up
to 30 Gbit/s. These implementations differ in latency, bandwidth,
and cost [38], as empirically investigated by Liu et al. [256]. The ever
increasing speed of HPC cluster network systems, and in particular
the network interfaces and links, tends to outperform the internal bus
systems of the connected compute nodes [38]. Consequently, even
hidden and sometimes neglected elements can have a strong impact
on the overall behavior of an HPC cluster (→Section 3.4).

Supercomputer

Supercomputers (→Section 3.2.1) expose the same distinctive features as
their HPC cluster super set (cf. above), while further narrowing specific
characteristics. The most obvious one is the almost exclusive use of FLOP/s

2.2. IT infrastructures from a provider perspective 29

(cf. Section 2.4) to describe a supercomputer’s (theoretical) peak performance,
which is actually used for categorization (EG-2.4). A category label is
composed of the performance unit and “scale”, e.g., “Petascale”.

The Top500 list [128] biannually collects the peak performance in FLOP/s
of the 500 fastest supercomputers in the world. The list started in 1993
at 59.7 GigaFLOP/s and reached in 2014 33.8 PetaFLOP/s as the peak
performance of the fastest supercomputer. At the time of writing, efforts
in building “Exascale” systems were on their way [8, 43, 126].

EG-2.4

By focusing on the introduced performance description FLOP/s, super-
computers differ in two aspects to HPC clusters:

● Compute nodes To attain the extreme compute capabilities of a super-
computer, all system components and especially the compute nodes
are mostly designed in a “balanced fashion to effectively match the re-
source requirements of the underlying application, as any architectural
bottleneck will quickly render the platform intolerably inefficient” [59,
Sec. 1] (→Section 3.4). Hence, a supercomputer’s compute nodes are
also located at the same data center, and administered by one unit
(cf. above), but compared to an HPC cluster, the nodes are specifi-
cally assembled entities, instead of commodity hardware (EG-2.5). In
particular, not only one, but up to three (slightly) differing hardware
types are used, which is still considered as being homogeneous, due to
the enormous scale of a supercomputer (cf. next bullet).

The custom built nature of supercomputers takes shaping in many
ways. The compute nodes of Roadrunner , a Petascale system at the
Los Alamos National Laboratory (LANL), contain an equal number
of conventional, general-purpose microprocessors, i.e., dual-core
AMD Opteron processors, and special-purpose accelerators, i.e.,
two PowerXCell 8i processors [32]. The Terascale system IBM
BlueGene/L [160] is based on the IBM system-on-a-chip technology
and employs five interconnect networks for I/O, debug, and various
types of inter processor communication. In contrast, the Advanced
Simulation and Computing (ASCI) Purple system has “more of
the look and feel of a traditional cluster, utilizing commodity
processors, but uniquely designed networks” [192, p. 3]. Compared
to the alluded systems, the Earth Simulator is supplied by a single
manufacturer that provides a unique system [227].

EG-2.5

30 Environment – Terminology and research scope

● Scale A supercomputer exposes a much higher MFÐÐ→Scale and complexity
than common HPC clusters (→Section 3.4). Especially the amount
of cores, specialized interconnection networks, and storage capacities
differ in several magnitudes between both (EG-2.6).

Instead of having about 16 processor cores, a single memory address
space, and a simple, internal, all-to-all network connecting the cores,
most supercomputers, like the Roadrunner or the Jaguar system at
the Oak Ridge National Laboratory (ORNL) contain from tens to
hundreds of thousands of cores, as many separate address spaces,
and multiple interconnection networks with different features and
performance characteristics [31].

EG-2.6

2.2.3 Grid
→ Fig. 2.2

(p. 23)
The section covers Grids as the outer level of the introduced containment
hierarchy. In the beginning of Grid Computing [144] (→Section 3.2.2),
HPC cluster systems being able to fulfill the usually high computation
demands of scientific algorithms and questions were expensive and hard
to get access to [149]. This gap initiated and drove the development of
Grid infrastructures [436] that aim at “address[ing] large-scale computation
problems using a network of resource-sharing commodity machines that
deliver the computation power affordable only by supercomputers and large
dedicated clusters at that time” [149, p. 3]. In achieving this objective, Grids
integrate existing resources with their hardware, operating systems, local
resource management, and security infrastructure [149], resulting in a high
resource MFÐÐ→Heterogeneity. For labeling this new type of infrastructure, the
term Grid was chosen to emphasize the idea of a future in which “comput-
ing resources, compute cycles and storage, as well as expensive scientific
facilities and software, can be accessed on-demand like the electric power
utilities” [189, p. 1018] (cf. [188]). The common notion of Grids bases upon
the definition of Foster et al., saying that Grids target at “[enabling] resource
sharing and coordinated problem solving in dynamic, multi-institutional
virtual organizations” [146, 147]. Another popular, and semantically equal,
but not that often cited definition is provided by Buyya et al., stating
that a Grid is a “type of parallel and distributed system that enables the
sharing, selection, and aggregation of geographically distributed autonomous
resources dynamically at run time depending on their availability, capability,
performance, cost, and users’ quality-of-service requirements” [76, p. 3].

2.2. IT infrastructures from a provider perspective 31

Foster provides his definition’s nucleus also as three point checklist [143],
describing a Grid as a system exposing three characteristics (EG-2.7):

● Coordination of resources not being subject to central custody
Deals with the Grid vision, i.e., “enable users to use resources from a
diverse set of sites by leveraging a common set of job submission and
data management interfaces across all sites” [328, p. 104]. Thus, differ-
ent organizations from manifold countries use and provide resources,
resulting in the following characteristic set:

- Resources assemble an MFÐÐ→Inter-Organizational environment that
is based on MFÐÐ→Federation and that can be organized in either a
regional, national, or international geographical MFÐÐ→Distribution, as
done in life science disciplines since many years [241], for instance.

- Resources are maintained by several MFÐÐ→Administrative Units [333].

- Resources expose a high resource MFÐÐ→Dynamics due to the applied
operations paradigm and in particular the non-centralized and au-
tonomous administration.

● Using standard, open, general-purpose protocols and interfaces
Addresses the high resource MFÐÐ→Heterogeneity that ranges from data
storage facilities, HPC clusters and supercomputers, sensors, and
instruments to single notebooks and PDAs [339].

● Delivery of nontrivial qualities of service Requires manifold special-
ized areas to collaborate and interact in order to (successfully) operate
and manage a Grid. The involved areas are structured in many ways
according to the particular objectives and focus [148, 44, 18]. A wide-
spread structuring is provided by the Globus Toolkit 4, dividing Grid
operations in Security, Data Management, Execution Management,
Information Services, and Common Runtime [142, Fig. 2]. According
to the chapter’s focus on aspects relevant to the presented research,
only two operational aspects are detailed below (→Section 3.2.2). For
further reading, the reader is referred to Foster et al. [146, 145, 148],
and Berlich et al. [44].

Virtual Organization (VO) An organizational structure, consist-
ing of so-called real-world entities [284], like scientists, organizations,
and other stakeholders, each potentially acting as resource provider
and resource consumer [146] at the same time. The VO facilitates the
controlled sharing of provided resources to enable real-world entities

32 Environment – Terminology and research scope

to collaborate by executing (computational) tasks on shared resources
in order to achieve a common goal [418, 146, 405].
Information Service Stores and maintains meta data about Grid
resources, covering resource types, access points, and (theoretically)
available capabilities. In addition, it exposes a query interface to
schedulers for resource discovery [431] and to monitoring tools like
Nagios [202, 290] for report generation (→Section 8.2.4). A wide-
spread information service implementation is the Berkeley Database
Information Index (BDII) using the Grid specific Grid Laboratory
for a Uniform Environment-Schema (GLUE) information model [22]
developed by the GLUE Working Group [166] (→Section 3.3.2).

Real organization

National Grid
Infrastructure (NGI)

Resource VO assignment

VO
“Physics”

VO
“Chemistry”

The figure illustrates the covered Grid concepts and characteristics,
especially resource heterogeneity, federated resource provisioning, and
resource sharing within two virtual organizations, each pursuing a certain
goal in the discipline of chemistry and physics, respectively. The figure
also dumbs down the Grid infrastructure of Europe, called the European
Grid Infrastructure (EGI, →Section 3.2.2), which consists of several
National Grid Infrastructures (NGI), each resource providing country
operates. The former American equivalent to EGI was TeraGrid, an
“integrated portfolio of more than twenty HPC systems, several specialized
visualization resources and storage archives, and a dedicated continental-
scale interconnection network” [88, p. 226]. In addition to general purpose
Grids like EGI and TeraGrid, there are several specialized ones, like the
variety of medical grid projects [52, 238, 163, 241].

EG-2.7

2.3. IT infrastructures from a consumer perspective 33

2.2.4 Morphological field for the provider perspective

While considering IT infrastructures from a provider perspective, the pre-
vious sections extracted a set of dimensions and values for the pursued
morphological field, which are collected in Table 2.2.

Dimension Value

Perspective Provider Consumer

Scale Low High

Heterogeneity Low High

Federation No Yes

Dynamics Low High

Distribution Regional National International

Administrative
Units

1 n

Table 2.2: Morphological field of IT Infrastructures considered from a
provider perspective.

2.3 IT infrastructures from a consumer
perspective

→ Fig. 2.1
(p. 21)

The section investigates IT infrastructures from a consumer MFÐÐ→Perspective,
which focuses on the workload executed on the IT infrastructure and the
caused load of the IT infrastructure or its components. Figure 2.6 pulls
the elements together: at its top, Figure 2.6 depicts workload, which is the
software to be executed on the IT infrastructure, causing load. According
to literature, like Cheveresan et al. [93], workload is split in two groups:

● Application Is a software that solves a certain problem using computa-
tional facilities, as further detailed in Section 2.3.1.

● Benchmark Aims at substituting applications and at standardizing (com-
putational) work to facilitate comparison or analysis of IT infrastruc-
tures, as further detailed in Section 2.3.2

34 Environment – Terminology and research scope

The assignment of a piece of code to one of the two groups is quite
often situation specific, as it depends on the employed code elements and
objectives (EG-2.8). Consequently, the section introduces an individual set
of distinctive features to structure IT infrastructure consideration from a
consumer perspective in this thesis. In contrast, the section purposely does
not present a generic structuring.

The LINPACK benchmark can be understood as application if it is
executed in the context of performance measurements for the Top500
list [128], or it can be understood as benchmark, if it is executed to cause
load for energy consumption measurements.

EG-2.8

IT infrastructure

Application
(Section 2.3.1)

Benchmark
(Section 2.3.2)

Workload

Load
(Section 2.3.3)

Execution

Figure 2.6: Consideration of IT infrastructures from a consumer perspective
involves workload and the caused load.

2.3.1 Application

→ Fig. 2.6
(p. 34)

The generic notion of applications alluded in the introductory paragraph
results in a theoretically infinite application set to consider, ranging from
desktop tools to web platforms, and scientific problems. The section focuses
on scientific applications, because of their challenging demands on multiple
especially quantitative IT infrastructure attributes like performance, energy
efficiency or reliability (cf. Section 2.4) [373]. However, the concepts, de-
mands, and techniques described in this section apply (mostly) equally well
to other application classes. Scientific applications cover a broad range of
domains, like climate modeling [275, 3] (→Section 3.2.2), biological anal-
ysis [167], or computational physics [101] (cf. [212]), which is addressed
by several structuring approaches that differ in focus and abstraction level
(EG-2.9).

2.3. IT infrastructures from a consumer perspective 35

Employing the application’s main scaling dimension, results in, amongst
others, 1) data-intensive (large) scale data analysis, 2) (large) scale
wide-area data transfer, 3) (large) scale amount of required computation,
and 4) a (large) scale number of users [212]. Another approach splits
applications according to the used source code and data types, e.g., in
Floating-Point codes and Integer-Point codes [288].

EG-2.9

This section applies the structuring proposed by Jha et al. [212], because
it builds upon conceptual characteristics of scientific applications, instead of
implementation and programming specific details. This is of special impor-
tance to cover future developments, like potential new programming models
in upcoming Exascale systems and applications [209] (cf. Section 2.2.2),
and consequently, to come up with a structuring that is applicable for a
rather long time horizon. Jha et al. structure applications based on made
assumptions, which differ in terms of
- fault appearance and handling,
- performance measuring in time-to-solution or throughput,
- exclusive resource usage and resource sharing, and
- security threats.

Following their two MFÐÐ→Application types, the section discusses parallel and
distributed applications.

Parallel applications

Both in industry and science, advance and the emergence of new fields of
interest cause increasingly demanding and compute-intense applications.
These high performance applications are called parallel applications, if they
can be decomposed in smaller problems to be executed (in parallel) on an
HPC cluster [212] (EG-2.10). Hence, parallel applications mostly expose no
distributed execution and can be handled by one single (big) machine, like
a supercomputer (cf. Section 2.2.2).

So-called wavefront or “hyperplane” methods [193] break the computation
of algorithms having recurrences into segments and pipeline (cf. above)
them through multiple processors [321]. This is used for solving diverse
(scientific) problems, like particle physics simulations [236], or the parallel
solution of triangular systems of linear equations [325].

EG-2.10

36 Environment – Terminology and research scope

Distributed applications

The problem solving approach in several research disciplines has changed
during the last years in terms of complexity, distribution, and the amount
of processed data [116]. It evolved from mostly simple (standalone) batch
executions of data analysis tasks, to large scale and distributed execu-
tions of several elements, like heterogeneous and specialized programs, and
data items, mostly provided by multiple disciplines [261, 282, 327, 98]
(→Section 3.2.2).

Sir John Taylor [386] introduced the dedicated term “enhanced Science”
(e-Science) to name the new situation as “global collaboration in key areas
of science and the next generation of infrastructure that will enable it” [188,
189, 333]. In other words, the upcoming demand for collaboration, com-
munication, and chained execution of multiple special purpose applications
resulted in distributed applications that “ need multiple resources, or would
benefit from the use of multiple resources” [212, p. 1561]. Compared to
parallel applications, distributed applications are not concerned with decom-
posing a problem in smaller tasks (cf. above), but with composing “units
into a single application” [212, p. 1569]. Distributed applications and the
advent of e-Science highlight two concepts:

● e-Infrastructure There are several synonyms for the e-Science enabling
“next generation infrastructures”, like cyber-infrastructures (U.S.), or
e-Infrastructures (Europe) [333, 328]. For a long time the (only)
e-Infrastructures applied for scientific workflows were Grids (cf. Sec-
tion 2.2.3) [189, 188], like the Enabling Grids for e-Science (EGEE),
the TeraGrid , or the Open Science Grid . Most e-Infrastructures in-
tend to integrate existing entities as well as new systems in a dynamic
way [189], resulting in a global MFÐÐ→Distribution [212] and a process of
high MFÐÐ→Dynamics, instead of an assembly in an “entirely top-down,
orderly, and blueprint-like way” [133, p. 2]. This flexibility is required
to be able to react on the needs of scientists, to incorporate continuity
in the development of technologies, and to respect decisions often
made upon a “complex web of socio-material relations” [401, Sec. 3.1].

● Workflow A workflow is “a collection of programs organized to accomplish
some [specific goal]” [282, p. 587]. It consists of several, sometimes up
to hundreds of tasks, also called execution components [254], being an
“abstraction for the frequently occurring concept of an encapsulated
and self-contained piece of work” [212, p. 4]. Besides the ordinary
calculation, storage, and data transfer tasks, workflows require so-called

2.3. IT infrastructures from a consumer perspective 37

shimming tasks mediating syntactically or semantically mismatching
input and output data [20, 260] (→Section 3.4). Workflows are mainly
grouped in two classes [214, 249, 261, 429, 420]:

Control flow Workflow dependencies describe a control transfer that
triggers a consecutive task’s execution [140]. It is built of control
structures such as conditionals, loops, and iterations. Class members
are mainly applied in business workflow systems [19, 140, 359].
Data flow Workflow dependencies describe a data transfer from a
producing to a consuming task [116]. The availability of (all) input
data triggers the consuming task’s execution to ensure that the
producer has finished before the consumer may start [116]. The
movement of data through tasks determines the execution order of
the whole program [140], a perfect fit to the data-intensive or even
data-driven nature of scientific analyses [140] (→Section 3.2.2). Thus,
data flow workflows prevail for scientific workflows [261, 415, 366].

The notion of workflows in terms of tasks and dependencies render
graphs an efficient representation way. Consequently, most data flow
oriented workflows are represented as graphs, mostly even as Di-
rected Acyclic Graphs (DAG) [428, 429, 415]. Due to design errors
or inaccurate workflow specifications, the execution might skip at an
arbitrary point in time and require a rollback [359] (→Section 3.4).
Since workflows facilitate the composition, orchestration, and man-
agement of distributed applications and their execution in manifold
environments [438, 269, 114, 111, 395], they are increasingly employed
to conduct complex analyses [62, 115].

2.3.2 Benchmark
→ Fig. 2.6

(p. 34)
Benchmarks “emulate real-world computing tasks” [402, p. 340] to provide a
standardized set of (computing) work. This standardized work is employed
in several situations, ranging from analysis of a selected component set, and
timing the execution of some clearly defined task [106], to assessing the
relative performance of IT infrastructure components [244] (→Section 6.1.6).
To cope with the variety and extend of situations, several (specialized)
benchmark types apply differing levels of focus, pursue diverse objectives,
and expose manifold behaviors [258, 407] (→Section 6.1.6). This section
details benchmark implementation concepts that underlay most benchmarks,
and distinguishes wide-spread benchmark types (EG-2.11).3

3Appendix B on page 277 details benchmarks that are used within this thesis.

38 Environment – Terminology and research scope

Kernel benchmarks substitute real-world applications and simulate typi-
cal usage profiles of usually executed applications (→Section 5.7), like
Sweep3D and SAGE that represent typical computational and communi-
cation behavior of the ASCI workload in a balanced way [112]. Synthetic
benchmarks aim at stressing selected components for further investiga-
tion, e.g., to measure power consumption, or to analyze a component’s
fail over rate, especially when executing a real application is too difficult
or costly (→Section 6.2.4). Benchmarks employed for a particular goal are
the LINPACK benchmark and the NAS Parallel Benchmarks (NPB) [29]
for supercomputer comparison [13] (cf. Section 2.2.2).

EG-2.11

Benchmark implementation concepts

The general intent of benchmarks to provide standardized (computational)
“work” involves several tasks, particularly the formal, reproducible, and even
(mathematical) provable definition of this work. Furthermore, it contains the
work’s description in a computer-readable way, and finally its execution on
the examined IT infrastructure. Figure 2.7 arranges those tasks in four layers
that form the basis for most benchmarks, consisting of the topmost high level
specification, a set of low level implementations, their compilation resulting
in a set of binaries, and finally the binaries’ execution (→Section 6.1.6).
Subsequently, the four layers are further detailed (EG-2.12):

High level speci�cation

Low level implementation

Compilation

Execution

S

...I1 InI2

...C2,1 C2,mC2,2

IT infrastructure

Figure 2.7: The four layers that form the basis for most benchmarks.

● High level specification (Semi) formally describes the overall objec-
tives, guidelines, and limitations of the benchmark. In addition, it
motivates and documents the benchmark’s design, and it provides a
set of arithmetic functions as well as initial values.

2.3. IT infrastructures from a consumer perspective 39

● Low level implementation Realizes the high level specification, (poten-
tially) using multiple programming languages. The contingent strong
impact of a language’s inherent concepts and architecture on bench-
mark results calls for a thorough language selection (→Section 5.7).
Further aspects that might bias the benchmark results are the language
semantics, design, and general concepts (→Section 5.3).

● Compilation Creates an executable binary for a low level implemen-
tation. Most compilers apply differing optimization algorithms that
might improve real applications, but simultaneously render compo-
nent focused benchmarks useless, because “large parts of [a] program
[are] not executed because they [are] not logically necessary” [106,
p. 3] (→Section 6.1.7). This requires a clear-sighted compiler and
configuration selection.

● Execution Executes the provided binaries. Execution also faces the
problem of selections that might affect the benchmark results, e.g.,
problem size selection or input parameter files.

The high level specification of the Whetstone benchmark [106, 407] states
that “the program should be complex enough to seem typical when
presented to an intelligent compiler” [106, p. 3]. Consequently, it defines
eleven modules in pseudo code consisting of typical code blocks, like
conditional jumps, integer arithmetic, or trigonometric functions. The
most widespread low level implementations are written in C and Pascal.
Levy et al. [252] analyzed both and found out that “the C string search
uses pointers to access characters while the Pascal program uses arrays
and index variables” [252, p. 5], what underpins the required thorough
programming language selection. The alluded impact of compilation was
empirically evidenced by Wichmann [414], showing performance figures
differing by up to 20% for two Pascal implementations, having replaced
the print statements by variable checks (cf. [407]). Compared to the HPL
benchmark that puts strong demands on the input parameters and the
problem size, the Whetstone benchmark is very flexible in this regard.

EG-2.12

Even though some work denotes the four layer approach as “best prac-
tice” [407], it is a trade-off: on the one hand, it supports separation of
concerns, result reproducibility, various benchmark binaries, and taking
compiler efficiency and machine architecture differences into account [106].
On the other hand, it entails several (difficult) decisions as discussed above.

40 Environment – Terminology and research scope

Benchmark types

There are several benchmark types, whose characteristics can help to select
a benchmark for a particular situation (→Section 6.1.6, →Section 6.2.4).
Figure 2.8 depicts the five benchmark types (EG-2.13):

System
benchmark
Partial
benchmark

Combined
benchmark φ

Fo
cu

s
Bu

ild
in
g

bl
oc

ks

IT infrastructure

component

Benchmark focus

Application

Kernel

Instruction

Kernel
benchmark

Synthetic
benchmark

Figure 2.8: Benchmark types, derived from focus and building blocks.

● Focus Covers the benchmark’s elements of interest. In its upper area,
Figure 2.8 depicts an IT infrastructure and contained components
by dashed rectangles, respectively (cf. Section 2.2). According to the
considered elements, there are three benchmark types:

System benchmark Considers the entire IT infrastructure without
stressing a particular component sub set.
Partial benchmark Focuses on a (small) sub set of IT infrastructure
component types.
Combined benchmark Employs an operation ϕ to combine two or
multiple partial benchmarks to derive a new value.

● Building blocks Considers the artifacts that assemble the benchmark.
In its lower area, Figure 2.8 depicts a real world application and
contained kernels as dotted rounded rectangles, gear-wheels represent
used instructions. According to the assembling elements, there are
two benchmark types:

Kernel benchmark Consists of real world production source code,
also called application kernel. This source code focuses on a very
specific field, like CFD, and was extracted by a (performance) analyst
from a real application by getting rid of the rarely used 90% applica-
tion source code [122]. This close relation to applications caused the
advent of the synonym mini-applications, i.e., one or multiple kernels

2.3. IT infrastructures from a consumer perspective 41

combined to a (small) self-contained program. A great advantage of
kernel benchmarks is that they facilitate the analysis of architectural
system performance under realistic I/O demands and communication
patterns [59]. Besides, optimization insights gained from these studies
can be fed back directly into the original application, and indirectly
into applications with similar I/O requirements [59]. In contrast, the
main challenge of most kernel benchmarks is that they are usually
small, prone to compiler “attacks”, fit in cache, and measure only
CPU performance [122] (→Section 6.1.6).
Synthetic benchmark Consists of a set of (very) generic artificial
code blocks, like matrix multiplications, that do not solve a (scientific)
problem, but provide the tools to do so.

Exemplary system benchmarks are the already alluded NPB and the
SPEC Benchmark suite [122], an exemplary partial benchmark is
the Sustainable Memory Bandwidth in High Performance Computers
(STREAM) benchmark [271] measuring sustainable memory bandwidth
(in MB/s). The memtime benchmark underpins the potential extreme
focus of partial benchmarks as it performs a memory walk with suc-
cessive memory accesses [112]. Examples for kernel benchmarks are
Sweep3D , implementing the main processing involved in deterministic
particle transport computations [32], the Microwave Anisotropy Dataset
Computational Analysis Package (MADCAP) [58] based MADbench2
benchmark [59], stressing the HPC system with full computational com-
plexity of Cosmic Microwave Background (CMB) data analysis, or the
Livermore FORTRAN Kernels [387]. Representatives for synthetic
benchmarks are the Dhrystone benchmark [407, 408], and the already
covered Whetstone benchmark [106, 407].

EG-2.13

2.3.3 Load
→ Fig. 2.6

(p. 34)
The execution of applications and benchmarks (workload) on an IT infras-
tructure causes load. It is defined as the use level of an IT infrastructure
component or the entire IT infrastructure in percent at a certain point in
time in relation to its maximum capability or capacity (EG-2.14:1). This
section investigates load and its characteristics, as the (strong) influence of
load on nearly all attributes was empirically evidenced and underpinned in
literature (EG-2.14:2).

42 Environment – Terminology and research scope

(1) A CPU load of 50% denotes that the CPU uses 50% of its floating-
point operation capacity at the point in time t. (2) Contreras et al. state
that a processor’s power consumption “is greatly dependent” [104, Sec. 1]
on its executing workload and hence, on its load.

EG-2.14

A set of load values for a period of time assembles a load profile [336]
(→Section 3.4, →Section 6.3.2), which can greatly support investigating
and reasoning about quantitative attributes, as the profiles often exhibit
informative “phases” [130, 203] (cf. [104]).

Execute concrete
workload model

Scheduler

Convolution
3Meta model

Abstract workload
model/

application signature

<<use>>

Meta model

IT infrastructure
model/

machine pro�le

<<use>>

IT infrastructureWorkload Trace analysis 1 Simulation2

Figure 2.9: Elements and concepts involved in analytic and physical load
value derivation (adapted from [5, Fig. 1]).

Figure 2.9 pulls load derivation elements together (adapted from [5,
Fig. 1]): On the left, a hardware and resource independent abstract workload
model describes a concrete workload, on the right, an IT infrastructure
model describes a concrete IT infrastructure. Both use language constructs
provided by the correspondent meta model. Based on this basic notion,
there are three approaches to derive load values (→Section 6.3.2):

● Trace analysis and profiling 1 Bases upon workload execution [424,
219] while “the run time system captures important information in
trace files using profiling libraries” [45, p. 3] (EG-2.15). In getting exe-
cutable workload, the scheduler uses the abstract workload model and
the IT infrastructure model to create a concrete workload model that
binds application tasks to specific resources [429]. In other words, the
scheduler maps workload tasks on services or (distributed) resources
that can execute them [415, 429]. This mapping faces manifold chal-
lenges and pursues different goals [430, 416], e.g., resource availability,
temporal and causality constraints, space requirements, consideration
of multiple (parallel) workload, or execution costs in terms of financial
expenditure, execution time, or energy consumption [359, 428, 327, 415,
113]. These challenges are addressed by several existing approaches,

2.3. IT infrastructures from a consumer perspective 43

like operations research, constraint programming [206, 53], resource
allocation constraints [358], temporal logic and specialized algebras [26,
370, 369], or Markov Decision Processes [428]. All these approaches
in common is the necessity of capability and property information
(cf. Section 2.4) to select appropriate resources [428] (→Section 2.4).
Besides real workload execution, also recorded or synthetically gener-
ated workload [286] is employed, like the ASCI workload defined by
specific engineering needs [193].

Prevalent profiling libraries are the Portable Programming Inter-
face (PAPI) for performance evaluation on modern processors [73],
as used in the AutoTune project [283], or the MPI profiling API
(PMPI). In addition, several vendors provide product- or hardware-
specific libraries, like the Cray Performance Analysis Toolkit (Cray
PAT) that provides tools and an API to “collect profiling, trac-
ing and hardware counter data as the application executes” [45,
p. 2]. Hardware and performance counters are provided by modern
processors exposing various data and performance events [162].

EG-2.15

● Simulation 2 Is “an imitation (on a computer) of a system as it pro-
gresses through time” [334, p. 2]. The imitation aims at “predict[ing]
the behavior of a system under particular circumstances when it is
impossible, or at least undesirable, to experiment with the system
itself” [72, p. 1]. In the context of load value derivation, simula-
tion imitates the execution of workload, potentially including the
scheduling step (cf. above), and mostly applying the same profiling
algorithms on the gained data as “conventional” or physical trace
analysis (→Section 3.3.2).

● Convolution 3 In a (pure) mathematical sense, convolution is an oper-
ation processing two functions f and g in a particular way to produce
a third function h. In the context of load derivation, convolution
is a “computational [algebraic] mapping of an application signature
onto a machine profile” [82, p. 926] (→Section 3.3.2). An application
signature is a “summary of the [fundamental] operations to be carried
out by an application, including memory and communication access
patterns, independent of any particular machine” [83, p. 337], a ma-
chine profile is a “characterization of the rates at which a machine can
(or is projected to) carry out fundamental operations abstract from
the particular application” [84, Sec. 2].

44 Environment – Terminology and research scope

2.3.4 Morphological field for the consumer
perspective

While considering IT infrastructures from a consumer perspective, the
previous sections extracted a set of dimensions and values for the pursued
morphological field. Table 2.3 collects the extraction results and extends
the morphological field of Section 2.2, indicated by the gray and black font,
respectively.

Dimension Value

Perspective Provider Consumer

Scale Low High

Heterogeneity Low High

Federation No Yes

Dynamics Low High

Distribution Regional National International

Administrative
Units

1 n

Application Type Parallel Distributed

Table 2.3: Morphological field of IT Infrastructures summarizing a provider
and consumer perspective.

2.4 IT infrastructure attributes
→ Fig. 2.1

(p. 21)
There is a variety of ways to describe an IT infrastructure, e.g., using its
specification facts, like clock speed or allocatable amount of disk storage, or
describing its application domains, e.g., solve massively parallel computa-
tional problems (cf. Section 1.1). Another and the research underlying way
is the description of an IT infrastructure using three terms:

● Capability A qualitatively well-defined (low level) functionality that is
exposed to the user or application, like data transfer, data storage, or
computation. A capability can be used by a scheduler for mapping
workload onto IT infrastructure components [5] (cf. Section 2.3.3).

2.4. IT infrastructure attributes 45

● Property A quantitative and workload execution (cf. Section 2.3) ag-
nostic description considering IT infrastructure components as white
boxes at any time step, e.g., describing the theoretical maximum clock
speed of a component offering computation capabilities. Property val-
ues can be gathered from vendor specifications, benchmarking, trace
analysis, or any other (empirical) data source. Schedulers consume
them for mapping workload onto IT infrastructure components [5]
(cf. Section 2.3.3).

● Attribute A quantitative description of an IT infrastructure that con-
siders its components as black boxes during workload execution at a
particular time step, e.g., “power consumption in Watt per time step”
or “time to completion of result calculation”.

According to the research’s focus (cf. Chapter 1.1), the section concen-
trates on quantitative IT infrastructure attributes, from now on simply called
attributes, if naming conflicts can be precluded. The emphasis of on-going
research activities and the explicit suggestion of several publications, like the
Scientific Case [170] of the Partnership for Advanced Computing in Europe
(PRACE), or industry surveys considering key issues for IT executives [262],
call for considering the three following MFÐÐ→Attributes that are consequently
further detailed in alphabetical order:

● Energy efficiency Receives (massive) attention since power costs, espe-
cially cooling costs for supercomputers [318, 363], begun by trend to
outclass (hardware) procurement costs [34, 162], and since IT infras-
tructure providers have to tackle the fact that in 2008 “people have
begun to value the environmentally friendly attributes of IT” [289,
p. 27]. In particular, “while in previous years [research] focused strongly
and often solely on performance, energy efficiency has now become a
second and even equally important metric” [354, p. 481].

● Performance Can be seen as an “old” IT infrastructure attribute that
describes the success and quality of components, ranging from network
devices to desktop systems and entire IT infrastructures, like HPC
clusters (cf. Section 2.2.2).

● Reliability Describes the continuousness of delivering a correct service
according to functional specifications under stated conditions over a
specified period of time [137, 28]. The essential role of IT infrastruc-
tures for the everyday work in several scientific disciplines [401] and
industry [156, 74] brings reliability into consideration’s focus.

46 Environment – Terminology and research scope

Although there are opinions about attribute ordering, e.g., Saini et al.
state that “application performance is the ultimate measure of system ca-
pability” [349, Sec. 3], the section considers the three attributes equally.
Noteworthy, they are only examples and are chosen because of their impor-
tant role and prevalence. The presented research aims at covering arbitrary
attribute sets (→Section 3.4, →Section 6.1.3), especially to be able to handle
upcoming attributes in the context of Exascale systems (cf. Section 2.2.2).
Section 8.2.1 details why qualitative attributes, like Information Security
(IS) or interoperability, are not within the thesis’ scope.

The remainder of this section details the above itemized quantitative IT
infrastructure attributes by considering three aspects, respectively:
Instances Selects and discusses a (small) set of attribute instances. The
extent of attribute figures implicitly leads to an abstract summarizing
definition and a (theoretically) infinite set of concrete instances of this defi-
nition (→Section 5.6), e.g., performance can be boiled down to work/time,
and prevalent instances are FLOP/s and Byte/s.
Factors and parameters Considers factors that might impact and param-
eters to influence the attribute in general and instance values in particular.
Role of load Discusses the role of load (cf. Section 2.3.3) for the attribute
to respect the load’s strong influence [173].

2.4.1 Energy efficiency

The attribute can be split in two parts: power consumption and the employ-
ing energy efficiency. The former describes the required power or electricity
to perform a particular task, the latter uses the power consumption fig-
ures for comparing the efficiency of IT infrastructures and for evaluating
power-aware techniques [363].

● Instances The instances Cycles/Joule and FLOP/Watt are detailed
(→Section 3.2), because the former is highly relevant for microprocessor
design, and the latter is of high relevance for the Green500 list [363]
that ranks the energy efficiency of supercomputers, instead of their
performance as the Top500 list [128] does (cf. Section 2.2.2).

Cycles/Joule Counts processor cycles (cf. Section 2.2.1) that can
be executed using one Joule of energy. This attribute instance is
especially used in chip development.
FLOP/Watt An instance related to the just described Cycles/Joule
is the FLOP/Watt instance, counting the amount of executed FLOPs
(cf. Section 2.2.1) per Watt. This attribute instance is used by

2.4. IT infrastructure attributes 47

the Green500 list, in the strict sense MFLOP/Watt, that aims at
providing “a ranking of the most energy-efficient supercomputers in
the world” [164] (→Section 3.2.1).

The Power Usage Efficiency (PUE) [264] describes “the ratio of the
total energy used by the supercomputing site divided by the amount
of energy that is consumed for pure computational work” [27, p. 20].
Hence, this energy efficiency instance focuses on the IT infrastructure
surrounding and the housing building. Both aspects are not within
the scope of this thesis as discussed in Section 8.2.4.

● Factors and parameters There are several approaches, partially under
on-going research, dealing with energy efficiency improvement. They
range from frequency adaption and system shutdown to cooling tech-
nologies [27] (EG-2.16:1). Most approaches are closely (and negatively)
correlated to performance: energy efficiency improvements often induce
a (time) delay and performance decrease [363] (EG-2.16:2), and perfor-
mance improvements mostly decrease energy efficiency (EG-2.16:3).

(1) From the plurality of energy efficiency improvement approaches,
two groups are exemplified. The first group deals with the adaption
of microprocessor frequency to reduce “idle and dynamic power con-
sumption of modern processors” [37, p. 4]. Group representatives
are Dynamic Voltage and Frequency Scheduling (DVFS) [371] and
Intel’s SpeedStep technology [308]. Ge et al. [162] present a DVFS
based scheduler that decreases CPU frequency to “dramatically re-
duce the CPU’s power consumption” [162, p. 19]. The second group
deals with partial system shutdown due to idling components. A
group representative is PowerNap [277]. (2) Both groups induce the
alluded time delay, as they either slow down the system or require a
(short) component boot process. (3) Improving single-thread perfor-
mance by applying speculative execution simultaneously decreases
energy efficiency: power spent on following a speculative execution
path is lost whenever the path is not taken [27].

EG-2.16

● Role of load The close correlation between energy efficiency and load
is reflected especially by power consumption: the higher the load,
the higher the power consumption normally is. This correlation
is even manifested in some power consumption prediction models,
e.g., the Telecommunications Equipment Energy Efficiency Rating

48 Environment – Terminology and research scope

(TEEER) [383] defines the power consumption dependent on a com-
ponent’s load. Thus, on-going research calls for a detailed load con-
sideration of all IT infrastructure component types in the context of
energy efficiency [27, 162]. Schöne et al. substantiate this statement
by saying that “new hardware generations introduce more and more
energy efficiency features, resulting in a power consumption variation
by at least a factor of four between idle and full load” [354, p. 481].

2.4.2 Performance

In its most basic form, performance describes achieved work per time. Both,
work and time, are highly situation dependent, resulting in a lack of a
fundamental definition of performance that would extend the just provided
one. Instead, there is a plurality of ways to express IT infrastructure perfor-
mance (→Section 6.1.3), e.g., distinguishing theoretical peak-performance
and average performance over long-periods [212].

● Instances Subsequently, five wide-spread performance instances are con-
sidered: Million Instructions per Second (MIP/s), Floating Point
Operations per Second (FLOP/s), throughput, Time to Service Dis-
covery (TTSD), and Time to Completion (TTC) [178, 207]. Some
instances are widely applicable, like throughput and TTC, others are
focused on a specific field or provisioning paradigm (cf. Section 2.2),
like FLOP/s and TTSD. The five examples are ascending ordered ac-
cording to their level of abstraction and coverage. MIP/s, for instance,
is a very low-level CPU performance attribute, whereas TTC is capable
of describing the execution of workload on an entire IT infrastructure.
The five discussed instances are only a small selection of possible ways
to use the work per time understanding of performance. For further
reading, please refer to Kruse [242], Koziolek et al. [239], or Hennessy
et al. [184].

MIP/s As the name implies, the instance fundamentally bases upon
CPU instructions (cf. Section 2.2.1), counting how many instructions
per second can be executed. According to Hennessy et al. [184], there
are some drawbacks (cf. [242]). The most important one might be
the potentially inverse correlation between an application’s TTC and
the MIP/s value: although a CPU might have a higher MIP/s value
and execute more instructions per second, the application might run
longer, because the exhibited instructions differ. For instance, a task
that requires nInst instructions on CPUA might require only nInst

2

2.4. IT infrastructure attributes 49

on CPUB. However, there are situations when MIP/s is a helpful
performance instance, e.g., for comparing two CPU versions during
chip development or for run-time DVFS techniques [196, 195].
FLOP/s Compared to MIP/s, the performance instance FLOP/s
focuses on the executed floating point operations per second and
hence, abstracts from CPU instructions. This performance instance
is of special interest for scientific applications (→Section 3.2.1), as they
mostly (exclusively) consist of floating point operations [242]. The
today’s default benchmark for FLOP/s comparison is the LINPACK
benchmark (cf. Section 2.3.2).4 Obviously, applications that do
not employ floating point operations need a different performance
understanding.
Throughput Can be defined as the “number of requests executed
per time unit” [240, p. 233]. Since the request’s type can be set
individually, throughput is employed in manifold areas. For instance,
in the networks area, throughput is the rate of successful message or
payload delivery in a predefined time frame; in the storage area, it is
the reading and writing speed in bits/s ; batch systems use a jobs/sec
notion [239]. Yet, throughput is a super set of MIP/s and FLOP/s.
TTSD Grids rely on the coupling of distributed resources (cf. Sec-
tion 2.2.3) that provide a set of services. Using a service requires its
detection, called service discovery, and binding. Since the time to
discovery tends to strongly impact the overall execution time, TTSD
is an important performance instance for Grids (→Section 3.2.2).
Amongst others, the TTSD is influenced by service lifetime, informa-
tion staleness, and caching [79].
TTC Can be defined as the “time between sending a request and the
ending of the response by the server” [240, p. 233], producing the
synonym response time. As TTC is mostly perceived by the user, it
is of great relevance from a consumer perspective (cf. Section 2.3).
For instance, web systems and enterprise applications are expected
to provide “acceptable” response times to users [278] (cf. [240, 92]).
When considering the discovery of a service as request, TTSD can
be seen as a sub class of TTC. Figure 2.10 illustrates the term and
arranges it in the context of time. The distinctiveness of TTC is that
the generic performance notion of work per time step is inverted, and
the work is atomically described by the time.

4At the International Conference of Supercomputing in 2014 (ISC’14), the potentially
accompanying HPCG metric was presented: http://www.hpcwire.com/2014/06/26/
development-pushes-ahead-new-hpc-benchmark/.

50 Environment – Terminology and research scope

Time

Consumer
dispatches request

System starts
execution

System starts
response

System �nishes
response

Reaction
Response (=Time to completion)

Figure 2.10: Response time and time to completion (based on [239, Fig. 2]).

● Factors and parameters Although the concrete influencing hardware
components and source code blocks depend on the specific situation,
it can be stated that performance is generally influenced by a wide
range of aspects, as (empirically) evidenced several times (EG-2.17:1).
This covers both the set of IT infrastructure component types (cf. Sec-
tion 2.2) and the executed software, or in other words, the complete
hardware and software stack. For instance, the performance of an
HPC application is influenced from a software side by data structures,
problem decomposition, employed algorithms, their implementations,
used compiler(s), communication patterns, and the underlying oper-
ating system, from a hardware side from the system’s architecture,
the processors’ architecture and speed, memory hierarchy, and inter-
connect technology [84, 30, 226, 192, 228, 227, 125] (→Section 6.1.3).
Obviously, the consideration of influencing factors can arbitrarily be
focused and refined (→Section 3.4, EG-2.17:2), e.g., focusing on the
system computational noise, describing the “impact of the operating
system on the achievable application performance” [112].

(1) Kerbyson et al. [226] analyze the impact of decomposition ap-
proaches and the induced communication demands on application
performance, Hoisie et al. [192] investigate communication patterns
and behavior in the context of congestion. Carrington et al. [82]
split an HPC application in a sequential part, described by memory
traces, and a parallel part, described by communication traces.
Carter et al. demonstrated the “complex interplay between the
architectural paradigms, interconnect technology, and I/O filesys-
tem” [86, p. 186] using the MADCAP package. (2) Performance
consideration can go down to the microprocessor’s internal storage
architecture: a register storage might be faster than a stack storage,
since the former can hold variables. This, in turn, might reduce
memory traffic and finally speed up the program, as registers are
faster than memory [184] (cf. Section 2.2.1).

EG-2.17

2.4. IT infrastructure attributes 51

This situation calls for the introductory alluded black box considera-
tion [242] (→Section 3.4), as it enables providing a performance figure
for an entire IT infrastructure, despite the aforementioned complexity
and plurality of potential influencing factors. For instance, the Top500
list [128] is able to compare supercomputers by using the FLOP/s
instance that “abstracts” from the outlined complexity.

The long scientific tradition of performance research, and the variety
of influencing factors result in manifold approaches to improve and
influence performance (EG-2.18). A long but certainly not exhaustive
list contains [48, 363, 27]

- conditional compilation using pre-processor directives,
- architecture specific optimizations applied by compilers,
- static and dynamic polymorphism provided by some programming
languages,

- compile-time, launch-time and run-time choice of library imple-
mentations, cache sizes, branch predictions, speculative execution,
processor clock speed, or out-of-order execution.

However, nearly all influence parameters (indirectly) underline the
close correlation of energy efficiency and performance alluded above.

The following equation demonstrates the involvement of several
parameters in improving the TTC (timeexec) of an application:

timeexec = ninst ⋅ cpi ⋅ clockSpeed

In particular, it highlights the involvement of a software element –
the amount of instructions (ninst) – , and of an hardware element
– the clock speed (clockSpeed). Both elements are connected by
the fixed value cpi – cycles per instruction – to come up with the
TTC value. The TTC can either be improved by generating less
instructions during compilation, or by executing more cycles per
second by increasing the clock speed.

EG-2.18

● Role of load An understanding of the executed workload, its resource
utilization, and caused load is essential for most performance at-
tribute instances [45, 227]. Especially throughput and TTC are usually
strongly related to IT infrastructure load. In particular, throughput
and load are roughly negatively correlated, TTC and load positively.
Figure 2.11 depicts this situation (adapted from [239, Figure 3]).

52 Environment – Terminology and research scope

Load

TTC

Th
ro
ug

hp
ut

Figure 2.11: Illustrating correlations of load, throughput, and TTC (adapted
from [239, Figure 3]).

2.4.3 Reliability

The following discussion about reliability bases upon the groundwork of
Avizienis et al. [28] and employs current empirical data provided by Lu et
al. [259]. Furthermore, the section focuses on the notion of availability and
reliability that can be arranged in the wider field of resilience. In contrast,
the section does not discuss outtake causes, e.g., the distinction of failures
according to their causes, their severity, or their impact area. For a detailed
and fundamental introduction of failures and errors the reader is referred to
Avizienis et al. [28]. Figure 2.12 (taken from [6]) summarizes the considered
terms and their correlations, respectively.

Down

Time
Failure Failure

TTR

Component
state

Time
spans

Down Up Down

Availability

Maintenance

Up

Transition
cause

DT DT UT DT

Reliability State
Transition

T

Restoration Restoration

TTR

UT

TTR
TBF

Up

UT

T T T T

T

Figure 2.12: Correlation of component states, state transitions, and quan-
tification to derive availability and reliability figures (taken from [6]).

An IT infrastructure component is in the up state whenever it delivers
a correct service or a system function as it is described by the functional
specification [28]. A failure is a temporary or permanent termination of
this ability and it causes a transition from correct to incorrect service
or to down state [28]. A restoration (also called replacement or repair)

2.4. IT infrastructure attributes 53

causes a transition from down to up state [400, 313]. The time period a
component is in the up state or down state is described by the Uptime (UT)
or Downtime (DT), respectively. The time it takes to conduct a restoration
is measured by the Time to Repair/Restore (TTR). The time span between
the occurrence of two consecutive failures is described by the Time between
Failures (TBF) [259].

For all itemized measurements there are mean values labeled with a
prefix M. They are used to describe or calculate a component’s availability
and reliability among other capabilities. Especially the MTBF plays a
central role, because of its strong correlation to failure interpretation, .e.g,
it describes the frequency of (hardware) failures [400, 61]. An example
of the aforementioned neglected details is the equality of DT = TTR and
UT = TBF : it depends on the consideration of scheduled maintenance [259,
400], and does not influence the applied calculation methods in general, but
only the calculation input values to attain availability and reliability values.

Component availability describes the delivery of being in the up state,
component reliability describes the continuousness of being in the up state
under stated conditions over a specified period of time [137, 28].

● Instances Based on this basic understanding, there are several specialized
availability and reliability numbers (→Section 5.6).

Steady-state availability Describes the equilibrium behavior of a
component and is calculated by As = MTBF

MTBF+MTTR [137, 391, 400].
Point availability Describes the probability of finding a component
in the up state at time t [391], and is also called instantaneous
availability. It is calculated by an integral as described in [49, 391].
Bath tube curve Describes a component’s failure rate, i.e., the in-
verse of the component’s availability, as a function of the component’s
lifetime, i.e., its age. Figure 2.13 depicts a typical bath tube: On the
left hand side, there are several so-called “infant” failures, succeeded
by a long production phase and a very low failure rate, which is closed
by a phase of “wear-out” failures.

● Factors and parameters As the bath tube curve emphasizes, compo-
nent life time strongly influences availability and reliability. Besides,
they are indirectly related to performance, since the excessive heat
generation of contemporary components, especially in an HPC cluster,
impacts both [330, 363]. Arrhenius equation quantifies this correlation,
stating that “failure rate of a compute node in a supercomputer doubles
with every 10℃ rise in temperature” [363, p. 2]. There are basically
two improvement directions:

54 Environment – Terminology and research scope

Infant
failures

Production
phase

Wear-out
failures

Time

Ra
te

Figure 2.13: Exemplary bath tube curve describing the expected failure rate
of a component depending on its lifetime (taken from [137, Fig. 4]).

Redundancy Is one of the major improvement tools [134], as it “al-
lows a function to be performed on more than one node” [322]: in case
a failure causes a transition to non availability of a particular com-
ponent, the system is able to continue operation using a redundant
component instead [215]. A common way to describe IT infrastruc-
ture redundancy are boolean functions that state “component ci is
available” dependent on the contained sub components and their
availability, respectively [137] (EG-2.19). An alternative is the fault
tree, a graphical representation of a redundancy structure. Its leaves
represent availability (boolean variables), and inner nodes contain
functions to calculate the overall system availability by processing
the leave values up to the root.

The boolean function ϕ = (c1 ∨ c2) ∧ c3 expresses that a system
consisting of two redundant compute nodes c1, c2 and a network
c3 is available if the network and at least one of the two compute
nodes is available [137].

EG-2.19

Checkpointing Aims at recovering from application failure [216]
by “writing a set of files required to restart the application after
an interrupt” [108, p. 304]. The set of files, collectively called a
checkpoint, can be selected and processed on a variety of abstraction
levels, e.g., on user level or system level [134].

● Role of load Two central correlations between reliability and load (cf. Sec-
tion 2.3.3) are the average component lifetime, and the appearance of
errors [165]. The higher the average load, the lower is the component’s
expected lifetime and the higher the expected error rate, respectively.

2.5. Morphological field for the research environment 55

2.4.4 Morphological field for IT infrastructure
attributes

While considering IT infrastructure attributes, the previous sections ex-
tracted a set of dimensions and values for the pursued morphological field.
Table 2.4 collects the extraction results and extends the morphological field
of Section 2.3, indicated by the gray and black font, respectively.

Dimension Value

Perspective Provider Consumer

Scale Low High

Heterogeneity Low High

Federation No Yes

Dynamics Low High

Distribution Regional National International

Administrative
Units

1 n

Application Type Parallel Distributed

Attribute Performance Energy
efficiency

Reliability

Table 2.4: Morphological field of IT Infrastructures summarizing a provider
and consumer perspective as well as IT infrastructure attributes.

2.5 Morphological field for the research
environment

Section 2.1.2 motivates the assembly of a morphological field, an analytic
method for capturing a (complex) domain [356], to address the extend of the
research Environment and particularly to guide requirements engineering
in Chapter 3 and to scope the research in Chapters 4 to 6. The previous
sections extract a set of dimensions and values, and iteratively assemble
them to the targeted morphological field, which is depicted in Table 2.5.

56 Environment – Terminology and research scope

The itemization below provides a (non formal) definition for each dimension
pursuing two guidelines:

- Do not target a general and long-term definition, but purely ensure a
common understanding for the presented process model and the thesis.
The situation dependent nature of most contained dimensions renders this
guideline very important, because a narrowed and casuistic consideration
would be a severe problem for formulating generic definitions, but is valid
for the context of the thesis.

- Assume for all dimensions exposing an ordinal or metric scale (↗KB p. 267)
that approaches capable of tackling the high(est) value are automatically
also capable of tackling lower values. For instance, it is assumed that
an approach that covers high heterogeneity also covers low heterogeneity
(cf. Section 3.2).

The morphological field’s dimensions are ordered according to the chap-
ter’s structure, starting with the general applied perspective, followed by IT
infrastructure (provider) and workload (consumer) related dimensions, and
finalized by the IT infrastructure attribute related dimensions.

Dimension Value

Perspective Provider Consumer

Scale Low High

Heterogeneity Low High

Federation No Yes

Dynamics Low High

Distribution Regional National International

Administrative
Units

1 n

Application Type Parallel Distributed

Attribute Performance Energy
efficiency

Reliability

Table 2.5: Morphological field describing the Environment of the presented
research.

2.5. Morphological field for the research environment 57

● Perspective Particular point of view to consider an IT infrastructure.
Perspectives differ in their objectives: consumers are mainly interested
in IT infrastructure performance and especially short TTC, providers
are also interested in a cost-saving and regulations compliant operation.

● Scale The size of an IT infrastructure on a quantity basis, spanning
all component types. The dimension is relative and closely coupled
to the applied level of granularity. For instance, a Grid exhibits a
higher scale than a single HPC cluster, but within an HPC cluster,
there might be up to thousands of cores (cf. Section 2.2.2). However,
the dimension does not aim at comparing IT infrastructures, but at
classifying situations for requirements analysis.

● Heterogeneity A counter describing the amount of differing IT infras-
tructure component types. Like Scale, the dimension is relative and
situation dependent, e.g., in terms of UNIX systems a Grid tends to
be homogeneous, in terms of CPUs and architectures a Grid tends
to be highly heterogeneous. However, just as the Scale dimension,
the dimension aims at classifying situations and not at comparing IT
infrastructures in general.

● Federation A binary criterion describing whether IT infrastructure com-
ponents are provided by several resource providers or only by one.

● Dynamics The number of changes for a period of time in the IT infras-
tructure resource landscape in terms of adding and removing resources
and configuration modifications. Although the definition of both, the
change and the period of time, are situation dependent, the dimension
arranges the considered IT infrastructure types (cf. Section 2.2). For
instance, it assigns a supercomputer that is built for a couple of years
a low value, compared to a Grid’s high value due to the involvement
of several autonomous administration units.

● Distribution A classification of an IT infrastructure’s geographical dis-
tribution. Compared to the other dimensions, the distribution does
not depend on a particular situation, since the classification in regional,
national, and international bases upon universal borders.

● Administrative Units A counter describing the number of administra-
tive units that are involved in IT infrastructure management, op-
erations, and maintenance. There are only two values 1 and n to
emphasize the differences between a single HPC cluster or supercom-
puter (cf. Section 2.2.2) and a Grid (cf. Section 2.2.3).

58 Environment – Terminology and research scope

● Application Type A distinction of application types being executed on
the IT infrastructure.

● Attribute An itemization of the three most prevalent quantitative at-
tributes to describe an IT infrastructure.

Chapter 3
Relevance cycle –

Requirements specification

This chapter illustrates the research’s Relevance Cycle execution (cf. Sec-
tion 1.4), resulting in a Requirements Specification (RS) for model integration
and reasoning about quantitative IT infrastructure attributes. The employed
RS development methodology inherits from requirements engineering meth-
ods used in software engineering, because of the their elaborated and broadly
accepted nature, as the Knowledge Base motivates on page 264.

Amongst others, result reproducibility requires the explicit description
of the applied methodology. Hence, Section 3.1 starts the chapter with
introducing and explaining the applied RS engineering methodology that is
implemented by the remaining sections: Section 3.2 describes two real world
scenarios that collectively cover relevant dimension value combinations of
the morphological field extracted from the research Environment (cf. Sec-
tion 1.4) in Chapter 2. Based on scenario descriptions, Sections 3.3 and 3.4
identify a set of functional and non-functional requirements, respectively,
and Section 3.5 summarizes both in a so-called evaluation tool for use during
the Design Cycle execution in Chapters 4 to 6.

3.1 Requirements engineering methodology

A successful and systematic development process starts with requirements [342,
233] (↗KB p. 264), because they serve as foundation for project planning [12,
99] and quality assessment [397]. Requirements engineering is the process of
requirement compilation, analysis, and documentation, based upon studied
user needs [200]. Requirements engineering results in a Requirements Speci-

59

60 Relevance cycle – Requirements specification

fication (RS), a “specification for a particular [...] product [...] that performs
certain functions in a specific environment” [374, p. 3]. The RS defines
what the completed product is expected to do, but it does not cover the
production process comprising cost, delivery status, or reporting procedures.

The discipline of software engineering has been developing requirements
engineering methods since decades. As a result, these methods are time-
tested, mature, and elaborated, what recommends them as basis for a
methodology to derive a RS regarding model integration and reasoning
about quantitative IT infrastructure attributes. The research’s objective of
achieving a process model but a software product (cf. Chapter 4) calls for
an adaption that keeps generic aspects but omits software specific ones, like
user interface responsiveness.

The applied RS development methodology bases upon the Use Case
analysis introduced by Jacobson et al. in 1992 [205], and contains adaptations
from Hennicker [185] and Rupp et al. [344, 342]. The methodology is chosen,
since it answers all questions that are important to the identification of
requirements and the successive evaluation [344], e.g., “Which stakeholders
are involved in the reasoning process?”, “What is the main functionality?”,
and “How are they related to the stakeholders?”.

Figure 3.1 depicts the methodology that results from the alluded adap-
tions and that underlies the described Relevance Cycle execution. In addition,
Figure 3.1 highlights the methodology’s four steps bottom-up:

● Step 1 Starts the RS development with a thorough examination of the
research Environment, and with an extraction of a morphological
field, an analytic method to capture a (complex) domain and consider
all possible characteristics [356] for scoping requirements analysis
and research activities. In particular, Step 1 confines the aspects
that should be covered by the system, which aspects are part of
the system’s surrounding, and which aspects are in relation to the
planned system [342, 343]. This consideration is discretized in a
morphological field (cf. Section 2.5) to assure a preferably high coverage
of characteristics, as carried out in Chapter 2.

● Step 2 Describes a set of real world scenarios within the research Environ-
ment to substantiate the targeted RS. Using multiple scenarios aims
at covering a preferably wide spectrum. Nevertheless, an overarching
consideration is hard to achieve and even harder to prove. One step
towards a complete scenario set and thus, requirement completeness,
is scenario selection based on the morphological field provided by Step
1. In particular, scenario selection aims at addressing preferably all

3.1. Requirements engineering methodology 61

UC 1 ...

Requirements Speci�cation (RS)

Examine environment &
extract morph. �eld Morphological

�eld

Describe requirements
informally and textually

Extract and formalize
(non) functional

requirements

Create evaluation tool

Step summary Step implementation

Functional
requirements

UC n

Primary source Secondary source

Scenario
SuperMUC

Scenario
DRIHM

Non-Functional
requirements

Environment
examination

Table of (non) functional requirements

Chapter 2

Section 3.2

Section 3.3 & Section 3.4

Section 3.5

1

2

3

4

Step

Re
le

va
nc

e
Cy

cl
e

En
vi

ro
n-

m
en

t

Figure 3.1: Applied methodology for RS development.

relevant dimension value combinations of the morphological field. In
case a dimension exposes an ordinal or metric scale (↗KB p. 267) it is
assumed that scenarios formulating requirements about the high(est)
value implicitly also formulate requirements about all lower values.
For instance, considering a scenario exposing several administrative
domains assumes that derived requirements implicitly cover also one
administrative domain. This scenario selection procedure identifies
two real-world scenarios:

1. The world-class supercomputer SuperMUC from a provider perspec-
tive. The SuperMUC labeled scenario is considered in Section 3.2.1.

2. The Distributed Research Infrastructure for Hydro-Meteorology
(DRIHM) that enables European-wide chained execution of Hydro
Meteorology (HM) simulations, from a consumer perspective. The
DRIHM labeled scenario is considered in Section 3.2.2.

Step 2 describes for both scenarios the contained IT infrastructure,
applications, and reasoning aspects in an informal and textual way. In
preparation of the abstracting derivation of (non) functional require-
ments in the successive Step 3, a small black circle and a number, like
1 , flag relevant scenario details to ease referencing.

62 Relevance cycle – Requirements specification

● Step 3 Formalizes the non-formal scenario descriptions in a requirement
set, in particular functional requirements or Use Cases in Section 3.3,
and non-functional requirements in Section 3.4. Use Cases are ex-
tracted and abstracted in four steps [185] from real world scenarios
to employ a structured, systematic, and goal-oriented process, and to
ensure that the derived Use Cases correspond to practice’s demands:

1. determine involved Actors,
2. determine Use Cases,
3. create Use Case Diagrams, and
4. describe and refine Use Cases.

The Knowledge Base explains all employed artifacts, in particular
the Use Case template, Unified Modeling Language (UML) Use Case
diagrams, and used terms like “System”, “Actor”, and “Use Case” on
page 264. The software engineering discipline usually conducts a
distinguished step to extract functional requirements from Use Cases.
Nevertheless, according to the research’s objective to develop a process
model but a software product, this additional step would not result
in an improvement of requirements. Together with the usually high
costs of functional requirements extraction from Use Cases [233], this
recommends to disregard the additional step, and “Use Case” and
“functional requirement” are considered synonymously. The term
functional requirement is used from now on as topic to underpin the
counterpart role to non-functional requirements.

● Step 4 Summarizes the identified and formalized (non) functional require-
ments in a table to ease evaluating developed artifacts in the Rigor
Cycle in Section 7.3, and to ease analyzing related work in Section 7.4.

Step 2, Step 3, and Step 4 are collectively considered as the Relevance
Cycle execution (cf. Section 1.4), since they extract and aggregate the
goals, tasks, problems and opportunities that are (implicitly) contained
in the research Environment. The extraction and aggregation process
based on scenario consideration is the primary source for (non) functional
requirements, Environment examination (cf. Chapter 2) is the secondary
source, labeled by solid and dashed arrows in Figure 3.1, respectively.

The IEEE Recommended Practice for Software Requirements Specifica-
tions [374] defines criteria, a requirements specification, its structure, and
contained elements should meet. The following list alphabetically summa-
rizes the criteria and highlights why the explained methodology is compliant:

3.2. Scenario descriptions 63

● Complete Contain all significant requirements, e.g., functionality or
external interfaces, and define the responses to all classes of situations.
→ Requirements are collected from real-world scenarios, which in turn
cover relevant value combinations of the morphological field.

● Correct Ensure that every requirement is one the final system shall meet.
→ Requirements are extracted from demands identified in real-world
scenarios.

● Modifiable Structure and style the RS in a way that makes applying
changes to the requirements ease, complete, and consistent.
→ The applied templates and diagram types clearly delimit a particular
requirement and support its replacement and adjustment.

● Traceable State every requirement’s origin clearly.
→ The numbered black circles 1 in the scenario descriptions clearly
identify requirement origins.

● Unambiguous Ensure for every requirement exactly one interpretation.
→ The applied templates and diagram types clearly describe and
formalize a particular requirement.

● Verifiable Provide some finite cost-effective process for every requirement
with which a person or machine can check that the resulting product
meets the requirement.
→ The evaluation tool is a list of check boxes evaluation has to process.

3.2 Scenario descriptions
The section details Step 2 of the RS development methodology (cf. Fig-
ure 3.1) and describes real-world scenarios that act as foundation for (non)
functional requirement identification. Scenario selection aims at covering
related characteristics in the morphological field. Coverage of the power
set of the morphological field’s dimensions is not possible, especially be-
cause some combinations simply do not exist in reality. Instead, the most
common combinations are targeted, resulting in two scenarios. The first
one describes the world-class supercomputer SuperMUC , the second one
covers an IT infrastructure that enables the European-wide execution of
Hydro Meteorology (HM) simulation chains in the Distributed Research In-
frastructure for Hydro-Meteorology (DRIHM) project. Throughout scenario
descriptions, correlations to morphological field dimensions are indicated by
MFÐÐ→dimension. For each scenario, the following outline is applied:

64 Relevance cycle – Requirements specification

General overview Overviews the scenario context and arranges it in the
morphological field.
Details Describes selected aspects of the scenario in three groups:
- IT infrastructure, consisting of hardware, operations, and planning,
- Applications, and
- Attributes.
Reasoning Discusses reasoning about quantitative IT infrastructure at-
tributes in the scenario.

3.2.1 World-class supercomputer

The scenario examines the SuperMUC supercomputer from a provider
MFÐÐ→Perspective and focuses on the MFÐÐ→Attributes performance and energy
efficiency, as justified in following scenario’s attribute consideration. Table 3.1
arranges the scenario in the morphological field and highlights the realized
dimension values, respectively.

Dimension Value

Perspective Provider Consumer

Scale Low High

Heterogeneity Low High

Federation No Yes

Dynamics Low High

Distribution Regional National International

Administrative
Units

1 n

Application Type Parallel Distributed

Attribute Performance Energy
efficiency

Reliability

Table 3.1: Arranging the SuperMUC scenario in the morphological field.

3.2. Scenario descriptions 65

General overview

The SuperMUC is an award-winning [309] 3 PetaFlop/s (cf. Section 2.4.2)
HPC supercomputer (cf. Section 2.2.2) operated by the Leibniz Supercomput-
ing Center (LRZ) in Munich, exposing a regional geographic MFÐÐ→Distribution.
SuperMUC is one of the largest HPC systems in Europe, and since its inau-
guration in mid 2012, it resides in the top 10 of the Top500 list [128], and
has been and is employed in manifold scientific projects.1 For instance, for
three dimensional numerical simulations to analyze magnetic fields during
the formation of the first stars in the Universe, or for structural modeling of
the influenza virus A’s matrix protein M1 and its oligomerization. Amongst
others, LRZ is a Tier-0 center of the Partnership for Advanced Computing in
Europe (PRACE) 1 , an HPC infrastructure for researchers and industrial
institutions throughout Europe [311]. Besides, LRZ is part of the Gauss Cen-
ter for Supercomputing, which “boosts computational science and engineering
by offering a world-class computing and networking infrastructure” [161].

IT infrastructure

The subsequent paragraphs highlight SuperMUC’s hardware, operations
aspects and planning.

● Hardware Figure 3.2 (adapted from [381]) schematically depicts Super-
MUC’s architecture. In particular, it emphasizes SuperMUC’s low
resource MFÐÐ→Heterogeneity, and illustrates its constitution according
to the common elements of an HPC system (cf. Section 2.2.2) 2 :

Compute elements Are built of 18 identical IBM System x iData-
Plex thin node islands. An island comprises 512 nodes, each employ-
ing two Sandy Bridge-EP Intel Xeon E5-2680 8C processors having
8 cores each. Summing up with the fat node island, this results in a
high MFÐÐ→Scale of 155.656 cores 3 .
Storage elements Are split in three areas according to their in-
tent 4 , respectively. The temporary disk storage for compute job
execution runs IBM’s General Parallel File System (GPFS), a high-
performance clustered file system. The permanent storage is located
on a Network Attached Storage (NAS) based disk storage.
Dedicated network Is arranged in a switched fat tree topology, and
also split in different areas and employs different technologies. Islands

1For a current list see www.lrz.de/projekte/hlrb-projects/, last visited
25.08.2014.

66 Relevance cycle – Requirements specification

and their nodes as well as the temporary disk storage are connected
by an Infiniband interconnect (cf. Section 2.2.2), which is operated
at a Fourteen Data Rate (FDR)-10. SuperMUC’s size requires the
employment of several switches, in particular 20 big island switches
and several smaller switches within an island. The archive and backup
system is connected via a slower 10 Gb Ethernet.

Snapshots/
Replica (1.5 PB)

User homes
(1.5 PB at 10 GB/s) Internet Disaster

recovery site

Archive &
backup (~30 PB)

Support
nodes

Login
nodes

18 thin node islands
(each 8.192 cores)

...

1 fat node island
(8.200 cores)

...

Working directories
(10 PB at 200 GB/s)

...

Compute node

Storage node

In�niband
switch(es)

Figure 3.2: Schematic view of SuperMUC’s architecture (adapted from [381]).

Due to their maturity and effectiveness, some parts of the outlined
SuperMUC’s architecture are equal to the architecture of other su-
percomputers. For instance, the Columbia supercomputer, formally
located at the National Aeronautics and Space Administration (NASA),
also uses two communication fabrics: an “Infiniband switch provides
low-latency MPI communication, and a 10 Gb Ethernet switch pro-
vides user access and I/O communications” [50, p. 2]. This underpins
the central role of communication components 5 , and recommends
the achievable communication performance being one of the main
objectives of overall system design [32].

● Operations The LRZ exclusively provides and operates the SuperMUC
without any MFÐÐ→Federation. Figure 3.3 condenses the LRZ’s organiza-
tional structure for discussion below and to emphasize the involvement
of multiple stakeholders in the reasoning about quantitative IT infras-
tructure attributes, caused by the involvement of several groups in
SuperMUC’s operation. Besides the Board of directors, four groups

3.2. Scenario descriptions 67

of the department High performance systems, labeled by bold rectan-
gles in Figure 3.3, interactively operate and maintain the SuperMUC
and its surrounding 6 . Each group acts in a delimited range on its
own authority, resulting in several MFÐÐ→Administrative Units that are
responsible for SuperMUC’s provisioning:

IT infrastructure services

HPC services Application support

Distributed resources Data & storage systems

Department
High performance systems

Department
Communication

networks

Department
Central Services

Department
Customer services

& systems

Board of directors

Management

Primarily involved Secondary involved

Figure 3.3: Condensed overview of the LRZ’s organizational structure,
emphasizing the involvement of several groups in SuperMUC’s operations.

HPC services Is concerned with operational aspects of SuperMUC’s
compute nodes and Infiniband interconnect. Besides, the group is
responsible for low-level software, like programming environments
(MPI, OpenMP, etc.), compiler, performance tools, and libraries.
Application support Covers consumer related aspects 7 , especially
the execution and code-wise improvement of (scientific) applications,
software-scaling issues, and consumer support in general.
Data & storage systems Responsible for the attached storage ele-
ments, i.e., the temporary disk storage, archive, and backup facilities.
Distributed resources Develops interfaces that are exposed to ex-
ternal infrastructures, like PRACE or EGI (cf. Section 2.2.3).
Board of directors Is responsible for the SuperMUC in general 8 .

● Planning Components of an extreme scale IT infrastructure like the Su-
perMUC are highly specialized, balanced, and harmonized to achieve
maximum performance. In contrast, flexibility is neglected and re-
stricted to (broken) hardware replacement. Hence, SuperMUC has a
planning-horizon of several years, as the lack of flexibility bans any

68 Relevance cycle – Requirements specification

radical hardware changes 9 . In contrast, only small changes in the re-
source landscape can be accomplished, resulting in low MFÐÐ→Dynamics.

Applications

The alluded high specialization and extreme scale of a supercomputer apply
not only on its hardware, but also on the supported applications. The
Tianhe-2 , for instance, a supercomputer developed by China’s National
University of Defense Technology, is said to be “at the world’s frontier in
terms of calculation capacity, [...] but lacks software support” [94]. Even
though this specialization enables world-class performance for a specific
application category, other categories are comparatively slow or cannot be
executed at all.

Astrophysics / Cosmology

Biophysics/Biology/
Bioinformatics

Geophysics

High Energy Physics

Physics - Solid State
Physics - others

Engineering

Chemistry

Meteorology/
Climatology/

Oceanography

Computational
Fluid Dynamics

Informatics/
Computer Sciences

Support / Benchmarking




Figure 3.4: Distribution of scientific disciplines that used SuperMUC in
2013, collected from SuperMUC’s accounting database.

The SuperMUC is designed as general purpose HPC system that allows
the execution of manifold application types to avoid such an extreme focus.
As a consequence, more than 150 different applications run on SuperMUC
per year, ranging from medical and engineering to energy and astrophysics
applications 10 . Figure 3.4 overviews the distribution of executed jobs per
scientific discipline for the year 2013.2 Obviously, Figure 3.4 provides only a
snapshot for the considered time range, and the particular portions might
differ compared to other years. Nevertheless, Figure 3.4 and its discussion
below give a time-agnostic impression of executed applications and especially
of the variety of code.

2Data were collected from SuperMUC’s accounting database.

3.2. Scenario descriptions 69

Software from each discipline differs in many aspects and causes different
types of workload 11 . Astrophysics, for instance, often employs the Free
Fast Fourier Transform (FFTW) library [153] for computing discrete Fourier
transformations, Chemistry employs the Basic Linear Algebra Subprograms
(BLAS) library [51] for basic linear algebra operations. Further examples are
the communication behavior and employed general-purpose libraries, like
MPI, or the employed programming languages, like C, C++, and multiple
FORTRAN versions 12 .

The execution time of applications averages 5,51 hours, and ranges from
a couple of seconds to 80 hours, taken by an application of CFD, in particular
for the numerical investigation of complex multiphase flows with Lagrangian
particle methods 13 . 73.1% of jobs were completed, 26.9% were canceled
14 , labeled by a checkmark and a cross in Figure 3.4, respectively.

Most of the disciplines using the SuperMUC tend to apply computer sci-
ence instead of dealing with it directly 15 . The implied differing (technical)
user backgrounds and skills sometimes result in disproportional attribute
demands and urgently call for supporting application development and
execution, as done by LRZ’s Application support group.

Attributes

The subsequent explanation justifies, why performance and energy efficiency
(cf. Section 2.4) are of primary interest for SuperMUC’s operation 16 :

● Performance The compute-intense nature of applications executed on
SuperMUC, the comparison with other high-class supercomputers in
the Top500 list [128], and the participation in the performance-focused
PRACE, emphasize performance as primary attribute, especially the
two following performance instances 17 (cf. Section 2.4.2):

FLOP/s The nearly exclusive execution of floating point operation
based [242] scientific applications (cf. Figure 3.4) on SuperMUC
renders FLOP/s, a counter of executable floating point operations per
second, a suitable and important performance instance. In addition,
FLOP/s figures are used for public proposal applications in general,
and for determining SuperMUC’s peak performance and its Top500
list position in particular, an important Key Performance Indicator
(KPI) for scientific supercomputers.
TTC The execution of big, complex, and demanding (scientific) ap-
plications foreground TTC especially for SuperMUC’s users, as they
are interested in preferably short waiting times. In the context of

70 Relevance cycle – Requirements specification

SuperMUC’s performance, the user’s request that starts the TTC
time span (cf. Section 2.4.2) is the job submission. Consequently,
TTC can consider queuing time of the employed IBM LoadLeveler
batch system or exclude it 18 . TTC values are widespread, ranging
from minutes to several hours, as mentioned in the section above
about applications executed on SuperMUC.

Both performance instances are combined and influenced by mul-
tiple component types, even within a single domain, e.g., system
performance includes computing cores as well as communication, in-
terconnect, and I/O performance [91, 191, 281] 19 .

● Energy efficiency Energy efficiency is of paramount importance for su-
percomputers having SuperMUC’s size, and it has become a serious
concern to HPC data centers [71], because energy costs tend to out-
class (hardware) procurement costs [34] and “in many situations power
consumption is becoming the determining factor of the system size” [71,
p. 135]. Furthermore, steadily increasing electricity prices evolved to
be a severe problem, especially in the context of upcoming Exascale
systems [8] and expected consumption levels of hundreds of megawatts
in the future [211, 190] (cf. [1]). In particular, for sustainable multi-
Petascale and Exascale systems, energy efficiency is mandatory [417],
not only since the Exascale Computing study [43] set a definite power
limit of 20 Megawatt (MW) as affordable. Finally, social pressure
for “Green IT” and reducing the emission of CO2 (cf. Section 2.4.1),
underpinned by a study of the German Federal Ministry for the Envi-
ronment, Nature Conservation and Nuclear Safety (BMU) [135], call
for energy efficiency. Besides those generally applicable reasons, energy
efficiency is one of SuperMUC’s distinctiveness, as it is claimed to be
IBM’s first supercomputer using warm-water cooling.

Despite the attribute’s central role, there are no concrete attribute
instances focusing solely on SuperMUC 20 . Instead, the PUE (cf. Sec-
tion 2.4.1) is an important factor, as it also covers the special cooling
system of SuperMUC. However, to improve energy efficiency of HPC
systems, the fine-grained assessment of the power consumption of
the entire HPC system encompassing compute nodes, interconnect
networks, and storage devices is required [27] 21 .

3.2. Scenario descriptions 71

Reasoning about quantitative IT infrastructure attributes

Within the last years, modern data centers like the LRZ emerged from
research facilities to flexible business entities. This shift is an answer to
the diversity of changes in their environments, e.g., cooperation with and
participation in projects and infrastructures like PRACE (cf. Section 2.4),
arising governance duties, or continuously changing hardware and electricity
prices. This situation poses several demands on quantitative IT infrastruc-
ture attributes of a data center’s IT infrastructure, like the LRZ’s SuperMUC
22 , from several perspectives:

● Consumer perspective Attribute demands are mainly formulated by
the relationship between the LRZ and scientists, nowadays treated
like customers. The relationship’s parameters are defined in Service
Level Agreements (SLA), describing provisioning guidelines about
manifold IT infrastructure attributes like performance or reliability 23 .
Depending on the particular project’s or scientist’s needs, SLAs heavily
differ, e.g., due to different emphasis. For instance, PRACE aspires to
provide the “apex of HPC technology” [311] to Europe’s researchers,
which prioritizes performance and related aspects 24 . Since most
SLAs are formulated in an individual way, reasoning about quantitative
IT infrastructure attributes is mostly interested in descriptive statistics
25 , e.g., to identify correlations or commonalities.

● Provider perspective LRZ’s management and provisioning have to face
consumer agnostic factors in terms of operations and procurement :

Operations Covers the day-by-day use of SuperMUC and related
attributes, e.g., run SuperMUC at 50% during the night to save energy
or to address differing electricity prices between night and day 26 . As
motivated above, one of the most important attributes to operations
is energy efficiency 27 . Neglecting or even ignoring these factors
can cause severe issues, e.g., high energy consumption might produce
“unaffordable” electricity prices. The potential collision of interests
from a consumer and provider perspective might result in conflicting
attribute objectives 28 . This, in turn, recommends optimization
algorithms 29 for reasoning about quantitative IT infrastructure
attributes, because LRZ’s management aims at finding a (local)
optimal trade-off between all parties, or in other words, it aims at
“quantify[ing] impacts prior to implementation” [31, p. 43]. To support
application developers, also What-if analysis 30 is helpful for LRZ’s

72 Relevance cycle – Requirements specification

Application support group to investigate planned impacts of hardware
modifications or configuration changes to the IT infrastructure and
applications [84].
Procurement Covers aspects related to the procurement of new IT
infrastructure components, e.g., in the context of SuperMUC’s exten-
sion phase in 2015, which targets doubling SuperMUC’s performance
to a peak performance of up to 6.4 PetaFlop/s. The long-term plan-
ning horizon related to SuperMUC’s hardware calls for an eminently
thorough analysis of IT infrastructure attributes, because the very
low flexibility of supercomputers bans every radical modification for
improvement or error correction during operation. Reasoning in the
procurement 31 context wishes for What-if analysis capabilities 30
to compare competing systems and solutions, and to enable investi-
gation of varying configurations, like the trade-off between a higher
performance against increased power consumption. What-if analysis
is especially useful to system designers, as it quantifies the benefits
between alternatives [228], and it “help[s] computing centers select
the best system in an acquisition” [30, p. 194]. Reasoning targets a
“careful balance between the availability of existing components and
the need for technological advancement” [32, p. 2].

● Both perspectives SuperMUC provides functionality through a com-
plex qualitative and quantitative component interplay to deliver so-
phisticated and non-trivial computation and storage functionality, as
other contemporary HPC systems do. This close interplay hardens
identifying the specific contribution of a single component to Super-
MUC’s functionality [139, 268] 32 , which is of special importance
for both perspectives during SLA negotiation, because a SLA focuses
on the attribute value, and particularly not on value compilation. In
addition, effects induced by local modifications on a single component
can quickly and easily cascade and affect the HPC infrastructure partly
or completely in an unpredictable way.

The participation in and contribution to multiple differing projects and
the surrounding factors (cf. above) interdict a narrow consideration of only
one attribute. Instead, a flexible attribute list appropriate to the specific
situation is highly required 33 . In addition, correlations between attributes
must be covered, because each modification usually induces at least two
groups of effects, the (by definition) positive intended effects and the mostly
negative but unavoidable side effects. For instance, increasing a typical
HPC infrastructure’s redundancy to address short-time breakdown and

3.2. Scenario descriptions 73

to improve reliability [134], simultaneously increases energy consumption
and degrades performance due to redundancy overhead [137]. Subsumed,
avoiding (inadvertent) SLA violations requires consideration of all relevant
attributes as well as their correlations.

3.2.2 European-wide execution of hydro meteorology
simulations

The Distributed Research Infrastructure for Hydro-Meteorology (DRIHM) sce-
nario applies the consumer MFÐÐ→Perspective, and focuses on the MFÐÐ→Attributes
performance and reliability, to address the complexity of computational
demanding hydro-meteorological models and the negative effects of IT infras-
tructure breakdown during model execution. The attribute energy efficiency
is neglected, since it is only relevant from a provider’s perspective. Table 3.2
arranges the DRIHM scenario in the morphological field and highlights the
realized dimension values, respectively.

Dimension Value

Perspective Provider Consumer

Scale Low High

Heterogeneity Low High

Federation No Yes

Dynamics Low High

Distribution Regional National International

Administrative
Units

1 n

Application Type Parallel Distributed

Attribute Performance Energy
efficiency

Reliability

Table 3.2: Arranging the DRIHM scenario in the morphological field.

74 Relevance cycle – Requirements specification

General overview

During the last years, IT-based research activities in several disciplines
evolved from a stand-alone and separated principle of operation to a chained
and collaborative one, e.g., to investigate physical phenomena [345] (cf. Sec-
tion 2.3.1). This is also true in the Hydro Meteorological Research (HMR)
discipline: the proprietary software components that analyzed (also propri-
etary) data sets separately on systems owned and maintained by the scientist
or its home institution shall nowadays be combined to chains and workflows.
In addition, the workflows shall be executed on IT infrastructures having a
European-wide or even global geographic MFÐÐ→Distribution.

The DRIHM project [98] addresses this upcoming demand in the realm
of HMR by aiming at the implementation and operation of a distributed
and inter-organizational IT infrastructure that supports the execution of
complex HMR workflows. One of the project’s professed objectives is the use
of existing large-scale and powerful resources and other IT infrastructures.

Figure 3.5 summarizes the above outlined transition for the DRIHM
project: on the left hand side, the initial situation is characterized by
HMR scientists fulfilling several duties simultaneously, being an end user, a
model developer, and an administrator. In addition, each tool is executed
separately on proprietary resources without any data exchange. On the right
hand side, these duties and related topics are distributed and assigned to
multiple institutions. Furthermore, the tools are executed on a federated IT
infrastructure according to a chain that is (graphically) defined in a portal.

Portal
E

D

AI

Project infrastructure

...

Chain

Meta
scheduler

Resourcen

A, E, D

Resource

A, E, D

Resource

A, E, D

Resource ARAD

Processed data Repository

IT infrastructure

Job

Tool Database

A - Administrator
AD - Database
 administrator
AR - Repository
 administrator
AI - Infrastructure
 administrator
D - Model developer
E - End user

Figure 3.5: Transition from a stand-alone and separated science paradigm
to a chained and collaborative one in the HMR discipline.

3.2. Scenario descriptions 75

IT Infrastructure

The subsequent paragraphs highlight the DRIHM IT infrastructure’s hard-
ware, operations aspects and planning of modifications.

● Hardware Figure 3.6 (taken from [107]) schematically depicts the DRIHM
IT infrastructure and emphasizes its high resource MFÐÐ→Heterogeneity,
a direct consequence of the introduced objective of using existing
resources. On its left hand side, Figure 3.6 itemizes several Grid
resources, provided by single organizations as well as National Grid
Initiatives (NGI) (cf. Section 2.2.3). All resources belong to the EGI.
On its right hand side, Figure 3.6 collects all non-Grid resources, cov-
ering additional resources types, like a set of PRACE machines, Cloud
systems, and proprietary components. Based upon MFÐÐ→Federation, all
resources collectively build the DRIHM IT infrastructure.

DRIHM
users

Po
rt
al

DRIHM IT infrastructure

Grid resources Non Grid resources

NGIn

EGI
PRACE

Windows
nodes

Visualization

Data
repository

Web
Services

W
S

Cloud
services

NGI1

Figure 3.6: Schematic view of the DRIHM IT infrastructure (taken
from [107]).

● Operations According to the federated and multi institutional paradigm
underlying the DRIHM IT infrastructure, there is no central entity
being solely responsible for operations and maintenance of resources in
the drihm.eu VO.3 Instead, the contributing resource providers from
nine countries 34 are responsible only for their own resources. This

causes several MFÐÐ→Administrative Units and high MFÐÐ→Dynamics, since
resource providers apply individual maintenance cycles and policies

3https://wiki.egi.eu/wiki/EGI-DRIHM:Infrastructure

76 Relevance cycle – Requirements specification

35 . Information about Grid-based resources within the DRIHM IT
infrastructure are stored in a shared BDII 36 service (cf. Section 2.2.3),
which is updated on a daily base by the resource providing institutions
and exhibits a queryable interface.4

● Planning Compared to the SuperMUC scenario, there is no detailed long-
term planning process, but at most, abstract architectural decisions
made at the beginning of the DRIHM project. This has two reasons:
- The DRIHM IT infrastructure is a typical e-Infrastructure (cf. Sec-
tion 2.3). Thus, short-term scientist needs drive its assembly and
configuration, which prohibits a long-term planning horizon.

- The Grid-like nature and organizational structure of the DRIHM IT
infrastructure result in individual maintenance activities that are
rarely synchronized with all resource providers, and the outtake of
a particular resource is (theoretically) covered by another resource
exposing the same or similar capabilities.

Applications

The set of applications that are executed on the DRIHM IT infrastructure
was defined upfront in a first version at the beginning of the DRIHM
project [119]. During the project, this application set was slightly extended.
Figure 3.7 (adapted from [107]) overviews the considered applications and
structures them in four HMR-related groups: Meteorological, Hydrologic,
Hydraulic, and Impact. Even though HMR-driven nature of the structuring,
it also affects the workload to consider during reasoning execution, because
each application group differs in terms of generated load and demands on
quantitative IT infrastructure attributes 37 . In addition, nearly each model
is developed and maintained by a different scientist or group of scientists
38 . For instance, WRF-NMM and Meso-NH 39 are highly scaled and
compute intense parallel applications (cf. Section 2.3.1) that require powerful
HPC systems and cause (heavy) inter-node communication. In contrast,
RainFARM is a comparatively frugal Python application that runs on a
single node while achieving acceptable TTC figures.

Attributes

The consumer perspective of the DRIHM scenario focuses on performance
and reliability 40 :

4Exemplary command to get all CREAM resources:
lcg-infosites –is bdii.ipb.ac.rs –vo drihm.eu cream.

3.2. Scenario descriptions 77

WRF-NMM WRF-ARW Meso-NHRainFARM

HBV DRiFtRIBS

TELEMAC-2D HYPROM 1D SOBEK-FLOW Delft3D-FLOW

Property
Damage

Meteo-
rological

Hydrologic

Hydraulic

Impact

Figure 3.7: DRIHM model structure and a chain (adapted from [107]).

● Performance Most HMR models are computationally intensive and re-
quire an HPC cluster or even a supercomputer, like SuperMUC. Con-
sequently, performance is an important attribute from a consumer
perspective, as it reflects the time a scientist has to wait for computa-
tional results. Compared to the SuperMUC scenario, the performance
instances in the DRIHM scenario are more general:

TTC Considers the execution of both, a single model and a model
chain (cf. above). As in the SuperMUC scenario, the triggering
activity is the job submission.
TTSD Addresses the (theoretical) employment of multiple services
implementing the same HMR model 41 .

● Reliability The complexity of most HMR models causes long run times
of up to several hours or days, as discussed in the SuperMUC scenario
(cf. Figure 3.4). Thus, IT infrastructure reliability is of great impor-
tance, as the continuousness of being in the up state under stated
conditions over a specified period of time [137, 28] (cf. Section 2.4.3)
directly impacts the smoothness of an application’s execution. For
instance, an application running 24 hours also requires an IT infrastruc-
ture that is available for 24 hours. Otherwise, application execution is
interrupted and in the worst case, (partial) results are lost.

Reasoning about quantitative IT infrastructure attributes

The distributed and geographically scaled nature of the DRIHM IT infrastruc-
ture, and the absence of a central (strategic) IT infrastructure management
cause a much higher level of abstraction when reasoning about quantitative

78 Relevance cycle – Requirements specification

IT infrastructure attributes, compared to the SuperMUC scenario (cf. Sec-
tion 3.2.1). This means that reasoning in the DRIHM scenario deals with
contained systems, like the SuperMUC, as black boxes and considers only
exposed characteristics, instead of investigating hardware components down
to a single core 42 . In addition, reasoning aims at defining SLAs that guide
a more focused reasoning, as carried out in the SuperMUC scenario 43 .

3.3 Functional requirements

This section discusses functional requirements for the considered system
that should provide functionality for reasoning about quantitative IT in-
frastructure attributes. The section extracts the functional requirements
from scenario descriptions, and abstracts and formalizes them in functional
requirements or Use Cases5 within Step 3 of the RS development process
(cf. Figure 3.1). In facing the extend of extraction results, Section 3.3.1 and
3.3.2 overview the gathered eleven actors and 18 Use Cases, respectively. Ap-
pendix C provides complete details, consisting of a description, correlations,
and abstraction sources, employing the black circle flags 1 for referencing
specific aspects in the scenario descriptions.

3.3.1 Actors

An actor describes a role that interacts with the considered system (↗KB
p. 264). Noteworthy, an actor can be realized by multiple persons or in other
words, one person can realize multiple actors. For referencing in the RS,
each actor is labeled by the acronym ACT and a numbering, e.g., ACT-7.

Figure 3.8 overviews actors extracted from the scenario descriptions
in an (object-oriented) inheritance hierarchy, instead of an organizational
hierarchy describing the constitution of a company or business division,
to emphasize the abstraction level of each actor, respectively. In addition,
Figure 3.8 provides at its bottom the scenario that mainly origins an actor,
and it highlights the three actor groups that differ in available knowledge,
experience, responsibilities, and objectives:

● Provider The group is experienced in and responsible for maintaining the
considered IT infrastructure and domain specific problems. It contains
the following actors that are mainly abstracted from the SuperMUC
scenario according to the applied provider perspective:

5As established in Section 3.1, the terms are used and understood synonymously.

3.3. Functional requirements 79

ACT-1 Subsumes actors being experienced in and responsible for IT
infrastructure operations, maintenance, and provisioning.

ACT-2 Responsible for and realizes all physical operation activities
on the IT infrastructure.

ACT-3 Concerned about all non physical aspects in IT infrastruc-
ture operations, covering attribute and workload modeling
and prediction.

ACT-4 Responsible for architectural and technical long-term deci-
sions regarding the IT infrastructure, and for the evaluation
of technological trends and innovations in terms of suitability
for the IT infrastructure.

ACT-5 Executes concrete operation and maintenance activities,
like hardware replacements or incorporation of (reviewed)
modifications.

ACT-6 Highly experienced in modeling and measuring one or mul-
tiple quantitative IT infrastructure attributes and their in-
fluence factors, especially for the IT infrastructure at hand.

ACT-7 Highly experienced in the development and execution of
workload and identifying and predicting expected load, es-
pecially for the IT infrastructure at hand.

● Management The group contains only one actor that initiates reasoning
tasks and defines reasoning activities in the context of strategic decision
making. The actor belongs to both scenarios, because he acts as linking
element between provider and consumer actors:

ACT-8 Initiates and interprets reasoning activities in the context
of his responsibility for the IT infrastructure in general, and
SLA negotiation.

● Consumer The group executes (scientific) software on the IT infrastruc-
ture. It contains the following actors that are mainly abstracted from
the DRIHM scenario according to the applied consumer perspective:

ACT-9 Subsumes actors using the IT infrastructure to solve a par-
ticular (scientific) problem.

ACT-10 Represents a (scientific) project’s head, who negotiates SLAs
to define attribute value ranges for the considered IT infras-
tructure that are sufficient for the project.

ACT-11 Develops workload and especially real world applications
that run on the IT infrastructure.

80 Relevance cycle – Requirements specification

Management
(ACT-8)

Attribute
Domain Expert

(ACT-6)

Administrator
(ACT-2)

Executing
Administrator

(ACT-5)

Domain Expert
(ACT-3)

Strategic
Administrator

(ACT-4)

Workload
Domain Expert

(ACT-7)

Coordinator
(ACT-10)

Provider
(ACT-1)

Developer
(ACT-11)

Consumer
(ACT-9)

Ab
st

ra
ct

io
n

SuperMUC
DRIHM

Figure 3.8: Overview of actors extracted from the real-world scenarios.

3.3.2 Use Cases

A Use Case is a description of a system’s behavior under various condi-
tions (↗KB p. 264). For referencing in the RS, each Use Case is labeled by
the acronym UC and a numbering, e.g., UC-1. The subsequent itemization
overviews the Use Cases that were extracted from the scenario descriptions
in Section 3.2. The overview is structured in three sub systems grouping
related aspects:

● A – Reasoning objectives Continuously changing user demands, mani-
fold external factors like electricity prices or national law, and economic
purposes assemble a (theoretically) infinite set of potential reasoning
aspects and combinations. Achieving a cost-saving and effective reason-
ing in this context requires a clear-sighted initiation and justification
for a reasoning activity, and call for the identification, extraction, and
specification of reasoning objectives from the theoretical infinite set of
options and directions. Figure 3.9 overviews six Use Cases and related
actors addressing this situation:

UC-1 Initiate reasoning activity, e.g., to address a special customer
need or external factor changes.

▹ UC-1.1 Negotiate SLA and attributes.
UC-2 Define reasoning objectives and formalize them for reasoning

tool creation in sub system B and reasoning execution
guidance in sub system C.

3.3. Functional requirements 81

▹ UC-2.1 Define attribute(s) to consider.
▹ UC-2.2 Select workload to consider and (potentially) use for load

generation.
▹ UC-2.3 Select IT infrastructure component(s) to consider.

A - Reasoning objectives

<<include>>

<<include>>

<<include>>

Attribute
Domain Expert

(ACT-6)

Administrator
(ACT-2)

Workload
Domain Expert

(ACT-7)

Management
(ACT-8)

Coordinator
(ACT-10)

Select
workload
(UC-2.2)

De�ne
attribute(s)

(UC-2.1)

Select
IT infrastructure compo-

nent(s) (UC-2.3)

De�ne reason-
ing objectives

(UC-2)

Initiate reasoning
activity (UC-1)

Negotiate attributes
and SLA (UC-1.1)

Figure 3.9: Use Cases of sub system “A – Reasoning objectives”.

● B – Reasoning tools Three reasons require an elaborated model of the
IT infrastructure and its attributes to execute reasoning compliant to
the reasoning objectives defined in sub system A:

IT infrastructure unavailable The steady use of IT infrastructures
and their central role prohibit physically performing pursued reason-
ing methods, like What-if analysis, on the considered IT infrastruc-
ture, since it is mostly in production mode [78, 244, 337] (cf. Sec-
tion 1.2). In the procurement context, considered IT infrastructure
components might not be available yet [228].
Model integration Section 2.4 introduces the plurality of attribute
instances, each potentially implemented by one or multiple (mature)
models that cover a small aspect of the reasoning objectives. In order
to benefit from this situation, a model should be prepared, existing
attribute models can be incorporated in.
Parameter flexibility Reasoning based on an elaborated model fa-
cilitates a much higher flexibility in terms of reasoning parameters,
e.g., for procurement.

Figure 3.10 overviews seven Use Cases and related actors addressing
this situation:

82 Relevance cycle – Requirements specification

UC-3 Create a model of the considered IT infrastructure.
▹ UC-3.1 Split IT infrastructure modeling and delegate tasks in case

the IT infrastructure is highly scaled or complex.
▹ UC-3.2 Import modeling related data from third-party models.
▹ UC-3.3 Update the IT infrastructure model to reflect changes.
UC-4 Select a model for an attribute and related IT infrastructure

component(s).
▹ UC-4.1 Create a model proxy in case no model can be integrated.
▹ UC-4.2 Create a load profile for workload selected in UC-2.2.

B - Reasoning tools

Attribute
Domain
Expert
(ACT-6)Administrator

(ACT-2)

<<extend>>

Create
model proxy

(UC-4.1)
Workload
Domain
Expert
(ACT-7)

Create load
pro�le (UC-4.2)

{No entity
covers the entire
IT infrastructure}

{There is no
model integra-
tion candidate}

Model
part of IT infrastruc-

ture (UC-3.1)

<<extend>>

Model IT
infrastructure

(UC-3)

Import IT infra-
structure informa-

tion (UC-3.2)

Select model for attribute(s)
and component(s) (UC-4)

<<include>>

Update IT
infrastruc-
ture model

(UC-3.3) {There is a tool
storing suitable
information} <<extend>>

Figure 3.10: Use cases of the sub system “B – Reasoning tools”.

● C – Reasoning execution Guided by the reasoning objectives and us-
ing the reasoning tools defined and prepared in sub system A and B,
respectively, the reasoning investigates possible outcomes for a variety
of input parameters. The potential variety of reasoning goals require
the application of different (overlapping) reasoning approaches, e.g.,
quantifying alternatives or finding a (local) optimum for a predefined
parameter set. Depending on the reasoning results, an activity trigger
might be required, e.g., conducting a modification to improve the
mode of operation. Figure 3.11 overviews five Use Cases and related
actors addressing this situation:

UC-5 Execute reasoning based on defined objectives and using
the prepared tools.

3.4. Non-functional requirements 83

▹ UC-5.1 Execute What-if analysis based reasoning.
▹ UC-5.2 Execute optimization based reasoning.
▹ UC-5.3 Execute descriptive statistics based reasoning.
UC-6 Trigger a specific activity if required by the reasoning results.

C - Reasoning execution

Attribute
Domain Expert

(ACT-6)

Administrator
(ACT-2)

Workload
Domain Expert

(ACT-7)

Management
(ACT-8)

Execute
reasoning

(UC-5)

Trigger activity
(UC-6)

Execute
descriptive statistics based

reasoning (UC-5.3)

Execute
optimization based reason-

ing (UC-5.2)

Execute
What-if analysis based

reasoning (UC-5.1)

Figure 3.11: Use Cases of the sub system “C – Reasoning execution”.

3.4 Non-functional requirements

This section discusses non-functional requirements extracted from scenario
descriptions within Step 3 of the RS development process (cf. Figure 3.1).
In facing the extend of extraction results, the section overviews the gathered
eight non-functional requirements. Appendix C provides complete details,
consisting of a description, correlations, and abstraction sources, employing
the black circle flags 1 for referencing specific aspects in the scenario
descriptions.

In contrast to functional requirements that describe a concrete, delimited,
and implementable behavior or (partial) function [342] (cf. Section 3.3), non-
functional requirements cover the system’s overall characteristics, its use, and
quality criteria [233]. In other words, non-functional requirements are those
requirements that are not functional. A typical non-functional requirement in
the software engineering discipline is the responsiveness of user interfaces or
robustness. Non-functional requirements on the methodology for reasoning
about quantitative IT infrastructure attributes cover all aspects that impact
several elements, functional requirements, and areas. For instance, covering
all types of IT infrastructure attributes is of high importance for attribute

84 Relevance cycle – Requirements specification

and workload selection in Use Case UC-2.1 and UC-2.2, but also for IT
infrastructure modeling in Use Case UC-3.

For referencing in the RS, each non-functional requirement is labeled
by the acronym NFR and a numbering, e.g., NFR-7. Subsequently, the
identified non-functional requirements are itemized.

NFR-1 Individual component type sets

NFR-2 Individual attribute sets

NFR-3 Multiple granularity levels

NFR-4 Workload consideration

NFR-5 Job cancellation

NFR-6 Development over time

NFR-7 Simplicity

NFR-8 Efficient use

3.5 Evaluation tool
This section details the final Step 4 of the RS development process (cf. Fig-
ure 3.1) that collects all extracted (non) functional requirements in an
evaluation tool to ease and support evaluation of research results (Sec-
tion 7.3) and related work (Section 7.4) in the Rigor Cycle. The evaluation
tool consists of two tables for the functional and non-functional requirements,
respectively. A table entry consists of four elements:

● Fulfillment indicator Uses a ◻, ✓, or × to illustrate a not yet analyzed
entry, a fulfilled entry, or a not fulfilled entry, respectively.

● Identifier Contains the requirement’s identifier for referencing.

● Title Extends the identifier with the requirement’s name to ease employ-
ment of the evaluation tool.

● Justification (Optionally) explains why the particular requirement is
(not) fulfilled.

◻ UC-1 Initiate reasoning activity

◻ UC-1.1 Negotiate SLA and attributes
continued on next page

3.5. Evaluation tool 85

continued from previous page

◻ UC-2 Define reasoning objectives

◻ UC-2.1 Define attribute(s)

◻ UC-2.2 Select workload

◻ UC-2.3 Select IT infrastructure component(s)

◻ UC-3 Model IT infrastructure

◻ UC-3.1 Model part of IT infrastructure

◻ UC-3.2 Import IT infrastructure information

◻ UC-3.3 Update IT infrastructure model

◻ UC-4 Select model for attribute and component(s)

◻ UC-4.1 Create model proxy

◻ UC-4.2 Create load profile

◻ UC-5 Execute reasoning

◻ UC-5.1 Execute What-if analysis based reasoning

◻ UC-5.2 Execute optimization based reasoning

◻ UC-5.3 Execute descriptive statistics based reasoning

◻ UC-6 Trigger activity

Table 3.3: Validation tool – Functional requirements.

◻ NFR-1 Individual component type sets

◻ NFR-2 Individual attribute sets

◻ NFR-3 Multiple granularity levels

◻ NFR-4 Workload consideration

◻ NFR-5 Job cancellation

◻ NFR-6 Development over time

◻ NFR-7 Simplicity

◻ NFR-8 Efficient use

Table 3.4: Validation tool – Non-functional requirements.

Chapter 4
Design cycle –

Process model fundamentals

The chapter introduces the developed process model for the integrated
reasoning about quantitative IT infrastructure attributes and prepares its
extensive detailing in the successive Chapters 5 and 6. Section 4.1 motivates
the development of a process model, Sections 4.2 and 4.3 explain the pro-
cess model’s design concepts and implementation approaches, respectively.
Section 4.4 overviews the attained process model, whose execution instance
is from now on named a reasoning project.

4.1 Process model motivation and objectives
The Requirements Specification (RS) in Chapter 3 implies that reasoning
about quantitative IT infrastructure attributes can and should be model-
based. Three reasons disqualify a one-size-fits-all approach, an approach
that commonly tries to cover a problem space in its entirety:

● Extend of problem space Reasoning deals with IT infrastructures from
a provider and consumer perspective, and with quantitative IT infras-
tructure attributes. Considered IT infrastructures are “very diverse
architecturally” [192, p. 1], as they differ in the underlying design
philosophy, the deployed hardware, and applied configurations (cf. Sec-
tion 2.2 and 2.3). Quantitative IT infrastructure attributes expose
a plethora of (calculation) formulas, as the (small) set of abstract
attribute definitions can be realized in manifold ways (cf. Section 2.4).
This high diversity and scale produce a tremendous problem space, a
one-size-fits-all approach cannot manage [255].

87

88 Design cycle – Process model fundamentals

● Individual objectives and parameters Reasoning intents tend to pur-
sue individual set of objectives, constraints, and trade-offs [226, 122]
(EG-4.1:1), e.g., “make the data collection as accurate as possible, and
the predictions as conservative as reasonable” [112, p. 9]. Besides, rea-
soning target values “cannot be static and may change over time” [76,
p. 5], and the respective application domain might require specific
parameter sets reasoning has to process and respect, e.g., differing load
values dependent on the executed workload [226] (cf. Section 2.3.3). A
one-size-fits-all approach would inevitably omit details that theoreti-
cally might be insignificant or uninteresting for most reasoning intents,
but of high importance to a specific one.

● Accuracy vs. portability The trade-off states that it is challenging
and rarely possible to achieve high accuracy and portability at the
same time (EG-4.1:2): an accurate model is mostly highly fitted to a
specific situation or system, a portable model is mostly less accurate
due to its generic nature. In other words, a one-size-fits-all approach
can be either sufficiently accurate or widely applicable.

(1) When considering performance (cf. Section 2.4.2), computer ar-
chitects might be interested in improving a new machine’s design in
terms of FLOP/s, application developers and end users in achieving
a preferably short TTC [63]. (2) Analyzing the performance of an
HPC cluster based on generic communication patterns is portable
to a variety of HPC clusters. Yet, it is less accurate than a cluster
specific model that is able to respect the characteristics of employed
hardware, like an individual Infiniband setup (cf. Section 2.2.2),
which is not the case for a portable model.

EG-4.1

The outlined drawbacks of a one-size-fits-all reasoning model motivate
the development of a process model that generically prescribes and formalizes
how to compile an individual and casuistic reasoning model, suitable for a
specific reasoning intent. The targeted reasoning model is called a reasoning
function. It is a mathematical mapping of a parameter set on a vector
of quantitative IT infrastructure attribute values. Equation 4.1 depicts
the reasoning function f in its most generic form, its building blocks are
described subsequently:

● Domain Parameters used for attribute vector calculation, and relevant
for the specific reasoning intent. Although used in the same way in a

4.1. Process model motivation and objectives 89

mathematical sense, the domain is split in two sub sets to emphasize
differences in terms of interference, focus, and origin:

Modification parameters Describe aspects being subject to change
in the context of a reasoning intent or a planned modification. Modi-
fication parameters modi ∈Mod implicitly describe IT infrastructure
internals from a provider perspective (cf. Section 2.2), especially
contained hardware.
Configuration parameters Describe IT infrastructure externals,
particularly from a consumer perspective (cf. Section 2.3), like ap-
plication scaling behavior or the electricity price during the day.
Configuration parameters confj ∈ Conf influence the reasoning out-
come, but are not subject to change.

The introduced semantic domain decomposition is advantageous for
reasoning efficiency and result interpretation, because both sets can
be handled separately (EG-4.2): modification parameters are examined
in more detail, e.g., in terms of analyzed value ranges, and potentially
every modification parameter is covered by a dedicated person or
group being responsible for the affected IT infrastructure components
or aspects. In contrast, configuration parameters are more or less
taken for granted and a small value range constraints the reasoning
activity. Besides, decomposition enables consideration of cost to an-
alyze the “true merits of any technology or product”[34, p. 49], as it
can be handled in the role of a configuration parameter. At the same
time, semantic domain decomposition does not disadvantage reason-
ing methodologies, like mathematical optimization (↗KB p. 262) or
descriptive statistics (↗KB p. 268), because both parameter sets are
treated in the same mathematical way. Noteworthy, both sets, modifi-
cation and configuration parameters, are not compulsory mandatory
and can be set as required for the respective reasoning objectives.

● Co domain An attribute value vector (cf. Section 2.4), computed by the
compiled reasoning function according to the reasoning objectives.

f(mod1, ...,modn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Modification
parameters

, conf1, ..., confm

´¹¹¹¸¹¹¹¶
Configuration
parameters

´¹¹¸¹¹¹¶
Domain

) =
⎛
⎜
⎝

attr1

...
attrz

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Attribute
values

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Co domain

(4.1)

90 Design cycle – Process model fundamentals

An exemplary reasoning activity deals with optimizing the overall elec-
tricity price and performance of an HPC cluster dependent on the number
of its worker nodes. The number of nodes can be altered to influence
the cluster’s performance/energy price trade-off. Thus, it is treated as
modification parameter mod1. Although the electricity price and the
notional fixed load value can also be altered in some way, e.g., negotiation
with power contractors or user groups, they have a different reach, and
are treated as configuration parameters conf1 and conf2, respectively.
This decomposition of the reasoning’s three-element input parameter
set implicitly highlights, which parameters can be adapted and should
receive special attention, and which parameters must be taken as given.
This, in turn, reduces the required efforts for the pursued optimization,
because only the modification parameter is in the optimization’s search
space (↗KB p. 262), whereas configuration parameters can be fixed
values or at most a very small value range.

EG-4.2

4.2 Design concepts
The subsequent design concepts underlie the process model and its develop-
ment, aiming at fulfilling the RS defined in Chapter 3, and at achieving a
sustainable and widely applicable solution:

● Integration of existing artifacts The high relevance of IT infrastruc-
ture attributes (cf. Section 2.4) and the strong impact on day-by-day
work of IT infrastructure management and operations produce an
abundance of specialized (and mature) models, instrumented compo-
nents, and gained measurements, covering a variety of partial aspects
of a reasoning intent. The process model bases upon integration to
benefit from this situation and to enable the use of elaborated, estab-
lished, and especially validated artifacts. In particular, the process
model employs integration by

- describing the selection of suitable models and their integration in
the reasoning function, and

- using already instrumented components for the creation of model
proxy functions, in case no model can be integrated.

In other words, the process model builds upon (important) work done
and results achieved by previous researchers, but also makes a logical
progression by combining these results in a new way [212].

4.2. Design concepts 91

● Iterative function refinement Out of the variety of attribute influenc-
ing factors, reasoning might be only interested in a (small) subset.
The process model copes with these individual objectives by beginning
reasoning function compilation with a coarse-grained function skeleton,
and iteratively refining it until the reasoning function (co) domain
comply to the reasoning objectives (EG-4.3:1). Besides, several other
research transactions use iterative refinement [31, 319, 158] (EG-4.3:2).

(1) Focusing on the power consumption of Example EG-4.2, a fictive
coarse-grained reasoning function is f(n) = 9.4 × n + 4. It calcu-
lates the cluster’s power consumption by multiplying the node
consumption of 9.4 Watt by the node number n and adding a
basic consumption of 4 Watt. An iterative refinement would first
replace 9.4 by a model g(l), describing the power consumption
of one node at a load of l. Second, it would replace the fixed
value 4 by a model h(t), describing the basic consumption of the
cluster at a point in time t. The final reasoning function would
be f(l, n, t) = g(l) × n + h(t). (2) Barker et al. [31] start the mod-
eling of application performance with the coarse-grained function
Ttotal = Tcomp + Tcomm × Toverlap and iteratively replace function ele-
ments by finer-grained formulas. The same procedure is applied
by Pfeiffer et al. [319] for t = tcomp + tcomm + tio, and by Gamell et
al. [158] for the energy modeling formula E = Esystem +Ecomm.

EG-4.3

● Flexible attribute binding The plurality of factors influencing a par-
ticular attribute (cf. Section 2.4), and the variety of pursued attribute
objectives cause manifold specialized attribute instances. The process
model addresses this situation by

- decomposing the notion of a quantitative IT infrastructure attribute
in a generic concept and one or multiple concept instances, and by

- fostering flexible attribute concept and instance binding to IT in-
frastructure components on all granularity levels (EG-4.4).

The performance instance FLOP/s (cf. Section 2.4.2) matches
HPC clusters and supercomputers, but not network components.
In contrast, energy efficiency (cf. Section 2.4.1) is less constrained
and can be considered for a wide field of component types, ranging
from a single Intel PXA255 processor [104] to a data center [138].

EG-4.4

92 Design cycle – Process model fundamentals

4.3 Implementation approaches
Guided by the design concepts discussed above, implementation targets a
process model that is capable of generating significant statements in a good
or even optimal time- and cost scale, or in other words, a process model
that achieves a good trade-off between statement quality and result gaining
costs. In particular, it aims at a
- flexibly applicable, and easy to use process model,
- cost- and effort-efficient, goal-oriented reasoning function compilation,
- far-ranging support of reproducible and traceable results, and
- reduction of error-proneness by standardizing, formalizing, and automating
the reasoning activity.

Top down

IT infrastructure modelReasoning function

2

3

4

Black box White boxRe�nement

2f() =

f() =

f() =

1

∑

5 Template

Figure 4.1: Schematic overview and interrelation of the presented process
model’s implementation approaches.

Figure 4.1 arranges the implementation approaches applied to realize
the above listed items and design concepts. The following list describes the
figure elements referencing them using the symbol n :

● Reasoning objectives driven refinement 1 States that the objec-
tives of a reasoning intent strictly constrain function refinement, which
means that a refinement is executed if and only if it

- adds an additional parameter (domain),
- adds an additional attribute (co domain),
- improves the accuracy of one or multiple co domain values.

In particular, refinement is not bound to or driven by the physical
hardware’s shape, as a hardware-driven refinement tends to cause

4.3. Implementation approaches 93

dispensable efforts for the aspired reasoning (EG-4.5). Instead, driving
function refinement exclusively by reasoning objectives means to “begin
with simple models and few parameters, then add complexity only
as needed [...]” [84, Sec. 2]. Thus, it results in a focused reasoning
function that is as compact as possible and as extensive as necessary,
as illustrated in Figure 4.1: the second refinement extends only the
outer left function element, because the others wouldn’t produce a
result that complies to the reasons itemized above. Other research
transactions apply this approach, too, e.g., Carrington et al. model
parallel application performance by “adding complexity only as needed
to explain observed performance” [84, Sec. 2].

Simply stated, a hardware driven approach would refine a cluster
node down to the CPU architecture, memory, and bus to comply
to the physical hardware, irrespective of the reasoning objectives
at hand. This might be meaningful for reasoning interested in a
CPU architecture. In contrast, if reasoning deals with application
TTC, the interplay of cluster nodes is of relevance. This renders
the alluded refinement obsolete, as a consideration of the CPU
architecture might be too detailed [217].

EG-4.5

● Black box approach 2 Initially considers every reasoning function el-
ement and IT infrastructure component as black box that is refined
to a white box whenever knowledge about the black box internals is
required. This approach has two advantages:

1. A coarse-grained model can be created very quickly on an abstract
level and afterwards punctually refined, supporting a fast, effort-
efficient, and goal oriented reasoning activity.

2. System characteristics can be evaluated at the necessary level of
detail and accuracy [337] while not extending the entire model,
because only relevant parts are punctually refined, and all other
parts remain on an abstract level.

● Top-down refinement 3 Highlights the refinement direction being top-
down with reference to the granularity level of the 1) compiled reason-
ing function, the 2) covered IT infrastructure components, and the 3)
attributes. This direction has two advantages:

1. The substitution of already existing formulas in the reasoning
function implicitly dictates refinement guidelines. For instance, a

94 Design cycle – Process model fundamentals

refinement that replaces the discrete value 4 in Example EG-4.3 by
a model is implicitly guided, because the refining model must apply
the same scale, semantics, and role as the replaced discrete value.

2. The refining element can directly be compared to the replaced
function element. In case the delta is not within a (predefined)
target range, the refinement can be improved or overdone directly.

● No bottom-up aggregation 4 Emphasizes that a bottom-up aggre-
gation is explicitly not applied due to potentially severe “by-design”
problems. As carried out in [9, 1], a prevalent problem is to preserve
semantics during aggregation in terms of scale and meaning (EG-4.6).
Possible solutions face either the difficulty of formulating a generic
aggregation process, or the implicit loss of portability. In contrast, this
is not the case for the above detailed iterative top-down refinement
using a black box approach, because the alluded aggregation problems
are implicitly solved: whenever a part of the reasoning function is
refined (replaced), it is implicitly ensured that no semantic issues
appear, because otherwise, the refinement would be invalid.

A generic aggregation formula that processes performance relevant
figures bottom-up would have to tackle the difficult comparability
of CPU, memory, and interconnect performance (cf. Section 2.4).

EG-4.6

● Template-based formalization 5 Describes, dictates, and formalizes
all artifacts and actions of a reasoning project to address its compre-
hensive and versatile nature, as particularly the compilation of an
individual reasoning function covers manifold tasks and areas. Ad-
dressing the alluded variety, template-based formalization uses five
template types, each specialized for a certain situation. The decision
template, for instance, aims at supporting and accelerating a selection
process and at documenting the decision about a selection in a way
that fosters reproducibility, since a selection has the same consequences
independently from the decision maker.

4.4 Overview of the process model
The section pulls the chapter’s elements together and overviews the presented
process model for the integrated reasoning about quantitative IT infrastruc-
ture attributes. Figure 4.2 highlights the process model’s composition of
artifacts and procedures, and a reasoning methodology :

4.4. Overview of the process model 95

● Artifacts and procedures Define and formalize notions, models, and
methods that are employed by a reasoning project in seven parts:

Roles and actors Abstract stakeholders to clarify responsibilities
and to enable task assignments throughout a reasoning project.
Template meta model Provides concepts and language elements
for the template-based formalization.
Provenance information model Provides classifiers for storing par-
tial results and tracing reasoning project execution to facilitate re-
producibility.
IT infrastructure notion Describes the process model underlying
understanding of IT infrastructures.
Measuring Formalizes the gathering of measurements.
IT infrastructure attribute notion Describes the process model
underlying understanding of IT infrastructure attributes.
Application proxy workload selection Formalizes the selection
of workload alternatives whenever the original one cannot be executed.

● Reasoning methodology Formalizes the reasoning activity as a “com-
prehensive integral series of techniques and methods creating a general
system theory” [199] (cf. [315]), considering a method as a “system of
rules and guidelines for a consistent procedure” [315, p. 41]. Figure 4.2
illustrates in its upper part the methodology’s three phases:

Phase A Identifies, collects, and specifies objectives, elements, as-
sumptions, and constraints of the reasoning project and formalizes
them in a reasoning suite that steers the reasoning project’s execution,
and aligns the distributed and decoupled task execution. Besides, the
phase produces the reasoning function skeleton (cf. Equation 4.1).
Phase B Conducts the iterative top-down refinement of the reasoning
function skeleton as motivated in Section 4.3. Guided by the reasoning
suite, the phase iterates as long as elements of the reasoning function’s
(co) domain remain undefined, or as long as any other requirement
stated by the reasoning suite remains unfulfilled.
Phase C Uses the reasoning function to execute the actual reasoning.
It selects an appropriate reasoning tool, analyzes different parameter
combinations, and triggers a direct reaction on the reasoning results,
if necessary. Compared to Phase A and Phase B, the description of
Phase C is less extensive, since most decisions to make and activities
to execute in a reasoning project are covered by the first two phases.

96 Design cycle – Process model fundamentals

Reasoning suite de�nition Reasoning function
compilation

Reasoning execution
Phase A Phase B Phase C

provided to

Reasoning project
Reasoning methodology

Identify, collect, and
specify information

and facts that guide a
reasoning project.

Select method(s) and
execute reasoning
using the compiled

function.

Iteratively re�ne the
reasoning function

skeleton according to the
reasoning suite de�nition.

Artifacts and procedures

Roles and actors

Template meta
model

Provenance infor-
mation model

IT infrastructure
notion

Measuring

IT infrastructure
attribute notion

Application proxy
workl. selection

Figure 4.2: Overview of the presented process model.

The following Chapters 5 and 6 describe the process model’s artifacts
and procedures and reasoning methodology, respectively.

Chapter 5
Design cycle –

Process model artifacts and
procedures

The chapter details the process model’s artifacts and procedures that are
provided to the reasoning methodology (cf. Section 4.4). Figure 5.1 highlights
in its lower part the chapter’s focus on the contained seven parts, the chapter
details in a cascading order according to their mutual use:

● Roles and actors Abstract stakeholders in Section 5.1 to clarify respon-
sibilities and to enable task assignments in a reasoning project.

● Template meta model Provides concepts and language elements in
Section 5.2 for describing and formalizing process model elements.

● Provenance information model Provides classifiers in Section 5.3 for
storing partial results and for tracing reasoning project execution in
order to foster and ensure reproducibility.

● IT infrastructure notion Describes in Section 5.4 the process model
underlying understanding of IT infrastructures.

● Measuring Formalizes in Section 5.5 the gathering of measurements,
built of measuring objectives definition and measuring setup design.

● IT infrastructure attribute notion Describes in Section 5.6 the pro-
cess model underlying understanding of IT infrastructure attributes.

● Application proxy workload selection Formalizes in Section 5.7 work-
load replacement selection if the original one cannot be executed.

97

98 Design cycle – Process model artifacts and procedures

Reasoning suite de�nition Reasoning function
compilation

Reasoning execution
Phase A Phase B Phase C

provided to

Reasoning project
Reasoning methodology

Artifacts and procedures

Roles
and actors

Section 5.1

Template meta
model

Section 5.2

Provenance
information

model
Section 5.3

IT infrastructure
notion

Section 5.4

Measuring

Section 5.5

IT infrastructure
attribute

notion
Section 5.6

Application
proxy workload

selection
Section 5.7

Figure 5.1: Overview of the developed process model emphasizing the focus
of Chapter 5 on the artifacts and procedures part.

5.1 Roles and actors
→ Fig. 5.1

(p. 98)
Assigning tasks and responsibilities in a reasoning project and in particular
the reasoning methodology requires a set of roles and actors the duties can
be assigned to. The set of actors is not defined from scratch, but taken
from the Requirement Specifications (RS) that already extracted a set of
actors in the research Relevance Cycle (cf. Chapter 3). Besides facilitating
a cost-saving development, this also complies to NFR-8 that requires an
efficient use, because all defined actors are identified as being necessary
in real-world scenarios. Noteworthy, only the leafs of the extracted actor
hierarchy (cf. Figure 3.8 on page 80) are used, as they were directly extracted
from the scenarios. In contrast, the abstraction of commonalities to more
generic actors is necessary for the RS, but not for a reasoning project.
Elements of the resulting set are named roles but actors to avoid confusion
with entities of the RS, although the underlying concepts are the same (↗KB
p. 264). The roles are detailed below and labeled by a unique identifier, e.g.,
R1 for Role 1 :

R1 – Strategic Administrator Is responsible for architectural and technical

5.1. Roles and actors 99

long-term decisions regarding the IT infrastructure. It evaluates
technological trends and innovations in terms of suitability for the
IT infrastructure. For small IT infrastructures, it might overlap with
role R2.

R2 – Executing Administrator Executes the concrete operation and mainte-
nance of the IT infrastructure, e.g., replacement of broken hardware,
incorporation of (reviewed) modifications, maintenance of manage-
ment databases, or implementation of required software. Compared
to role R1, R2 doesn’t make any (long-term) decisions about the IT
infrastructure’s architecture. In contrast, it acts according to exter-
nally given decisions and orders. For small IT infrastructures, it might
overlap with role R1.

R3 – Attribute Domain Expert Is experienced in one or more attributes, e.g.,
performance or energy efficiency (cf. Section 2.4), especially for the
IT infrastructure at hand. In particular, the role profoundly knows
about the modeling, measuring, and other influencing factors of a set
of attributes.

R4 – Workload Domain Expert Is experienced in the development and execu-
tion of workload (cf. Section 2.3), especially for the IT infrastructure
at hand. Additionally, it is skilled in identifying and predicting the
load that is about to be generated by executing workload on the IT
infrastructure.

R5 – Management Is responsible for the IT infrastructure in general, com-
municates with (potential) consumers, and negotiates SLAs. In order
to fulfill its responsibility for the IT infrastructure, to address the
urgent need to consider influencing external factors like electricity
prices or national law, and to respect the consumer demands, role R5
initiates and interprets reasoning activities and, if necessary, triggers
follow-up activities.

R6 – Developer Develops workload and especially real world applications
(cf. Section 2.3.1) that are executed on the IT infrastructure.

100 Design cycle – Process model artifacts and procedures

5.2 Template meta model

→ Fig. 5.1
(p. 98)

A reasoning project exposes a comprehensive and versatile nature, as partic-
ularly the compilation of an individual reasoning function covers manifold
tasks and areas. The template meta model addresses this situation by
describing, dictating, and formalizing all artifacts and actions of a reasoning
project in order to
- force traceability,
- foster reproducibility,
- reduce error-proneness, and to
- support automation.

Figure 5.2 depicts the process model underlying meta model hierar-
chy (↗KB p. 259) top down: the template meta model provides language
elements and concepts in five template classes to define concrete template
models in the process model, which result in template instances that formal-
ize and guide reasoning project execution. Templates were chosen as tool,
because
- they ease work,
- they are “accepted and employed by most stakeholders” [342, p. 162],
- they support the creation of similar elements according to a common
building plan, and

- they ensure that elements of the same class have the same structure.

Reasoning project

Template meta model

Templates formalize the actions, data,
and artifacts of the process model.

Template instances document and
guide a concrete reasoning project.

Concrete template models

Language elements and concepts
dictate the creation of concrete
template models and instances.

Section 5.2

Chapter 6

implement

use

Sentence

DecisionActivity Checklist

Form

Template instances

Figure 5.2: Template meta model hierarchy applied to formalize and guide
the execution of a concrete reasoning project.

Section 5.2.1 itemizes the meta model’s design objectives and intention,
Section 5.2.2 explains fundamental concepts and the five template classes.

5.2. Template meta model 101

5.2.1 Objectives and intention

The following six objectives underlie the template meta model:

● Build on existing results There are manifold tools and approaches
addressing partial aspects of a reasoning project and also of template
meta model development, e.g., statistical regression methods (↗KB
p. 268) derive model proxy functions from measurements, and UML
activity diagrams (↗KB p. 270) formalize activities. Building on top
of these solutions is beneficial in terms of development and validation
efforts, understandability, and acceptance.

● Enforce reproducibility A main principle of a scientific mode of oper-
ation is reproducibility of conducted steps, partial results, and applied
procedures and methods. Applying the same template for the same
task(s) enforces fulfilling this profound, because it dictates the execu-
tion of the same steps to achieve a certain goal.

● Ensure coverage Rupp et al. [342, Sec. 7.1] claim specifying all aspects
that are important to the current situation. Despite the objective’s
overlap with making information explicit and with fostering repro-
ducibility, it is mentioned separately due to its fundamental role.

● Foster expandability The variety of reasoning project objectives pro-
duces an innumerable amount of potential focal points and interests.
Fostering expandability aims at enabling adaptions of the process
model to the resulting specific demands. Besides, templates entitle
predefined extension points and label tasks or entries being optional
to reduce costs, where appropriate. In contrast, reducing templates
would contradict the objective of ensuring coverage (cf. above).

● Make explicit A scientific mode of operation requires making informa-
tion, procedures, and notions explicit, especially aspects that are
normally taken for granted [80]. The involvement of multiple stake-
holders and roles in a reasoning project further emphasizes this need,
since each role comes from a (potentially) different area and applies
differing terms, concepts, and notions [342] (cf. Section 3.3.1).

● Support automation Automation is an eligible tool to reduce error-
proneness, especially caused by manual execution. Although a first step
towards automation is usually programming and scripting, template
design focused on data exchange and code generation (cf. Section 8.2.5),
because the extend and complexity of a reasoning project tend to
overburden (simple) script approaches.

102 Design cycle – Process model artifacts and procedures

5.2.2 Template classes

The section explains the template meta model building blocks in the topmost
box in Figure 5.2. In particular, it explains the following details:

● Common namespace Sets naming conventions and rules for labeling
and identifying templates and their elements, respectively.

● Class containment hierarchy Defines how templates are related.

● Template classes Formalize a reasoning project in its entirety. The
template classes “Activity” , “Checklist” , “Decision” , “Form” , and
“Sentence” were derived to address typical needs and implications
of a set of situations in a reasoning project. Template detailing is
supported by a non computer science example to focus on template
characteristics but on the example’s technical details and correctness:
A (simplified) airplane manufacturing process is chosen to highlight
template characteristics and use, because it has several aspects in
common with a reasoning project, e.g., involving several steps con-
currently executed by manifold stakeholders and roles. Obviously,
airplane manufacturing is much more complex as illustrated, but it
is a very striking example. Due to the lack of stronger structuring
parameters, the illustrative example orders template class detailing.

Common namespace

All templates are identified by a string containing the template class, an
ascending numbering, and a label (EG-5.1:1). Their elements are referenced
by a unique identifier, concatenating the parent template’s identifier and the
element identifier (EG-5.1:2). Element numbering scope is within a template,
starting at 1 for each template. To confine the depiction of certain template
elements from figures and tables, the label “Template element” is used.

(1) T-A7 – Measuring entitles a template (T) of the class activity (A),
numbered 7. (2) T-A7:D4 is the fourth decision point (D) in activity T-A7.EG-5.1

Class containment hierarchy

There is no strict containment hierarchy for templates. In contrast, a
template of class A can be used by a template of class B and vice-versa, e.g.,
an activity template could employ a form template in a particular action,
and a form template could require the explicit description of an executed
activity by providing an activity template based description.

5.2. Template meta model 103

“Sentence” template class

→ Fig. 5.2
(p. 100)

Sentence templates (T-S) formalize objectives and details about a delimited
task in a compressed and shareable way (EG-5.2). This addresses especially
the involvement of several roles and stakeholders (cf. Section 5.1) in a rea-
soning project what forcefully requires ensuring that “different [stakeholders]
use the same words for phrasing the same circumstances” [342, p. 168].
Formalization is provided in one sentence (template’s eponym) to
- describe information in a tangible and intuitive way,
- implicitly limit the information’s extend, and to
- facilitate the specification of a grammar for each sentence template to
support a flexible, compact, formal, and powerful way of definition.
Sentence templates are provided as grammars (↗KB p. 255) in order to

build on existing results (cf. Section 5.2.1). Compliant to NFR-7, grammars
are context-free, since the expressive power of context-sensitive grammars
is not required, and they use the highly compact notation of Backus and
Naur [355] (↗KB p. 255). A sentence template is split in two parts:

● Grammar part Formulates a sentence in natural language, describing a
situation, objective, or goal to achieve. Variables ⟨V⟩ represent aspects
to set when instantiating the sentence template during a reasoning
project. Production rules below the sentence define valid value ranges
for each variable and name the value providing action or template,
respectively, indicated by a ^ symbol.

● Production part “Executes” the defined production rules. The com-
plexity of a reasoning project can render the execution an extensive
endeavor, resulting in a description in paragraphs or even sections.

The following production rules describe generic (G) data types that are
used by several sentence templates:

⟨GScale⟩ ⊧ ⟨GScaleCategory⟩⟨GQuantity⟩
⟨GScaleCategory⟩ ⊧ nominal | ordinal | metric (↗KB p. 267)

⟨GQuantity⟩ ⊧Mathematical quantity (↗KB p. 263)
⟨GPercent⟩ ⊧ 0 ≤ x ≤ 100∣x ∈ R

⟨GIdentifier⟩ ⊧ Unambiguous, meaningful, preferably short string
⟨GIdentifierSet⟩ ⊧ ⟨GIdentifierSet⟩∣⟨GIdentifier⟩∣ε

⟨GRange⟩ ⊧ x, y∣x < y ∧ x ∈ R ∧ y ∈ R
⟨GValue⟩ ⊧ x ∈ R

104 Design cycle – Process model artifacts and procedures

Manufacturing assembles an ⟨AirplaneType⟩ distance airplane at
⟨Factory⟩ [according to ⟨Regulations⟩].

⟨AirplaneType⟩ ⊧ Short | Medium | Long ^ T-D1

⟨Factory⟩ ⊧ Unique identifier of factory ^ T-A1

⟨Regulations⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-C1
Sentence template T-S1 defines the objectives and ancillary conditions of
airplane manufacturing. The template’s grammar part above stipulates
the selection of an airplane type, an assembling factory, and an optional
set of regulations to fulfill. The template’s production part is provided
within the next template meta model examples.

EG-5.2

“Decision” template class

→ Fig. 5.2
(p. 100)

Decision templates (T-D) support decision making by highlighting (potential)
implications and affects of available options on reasoning project actions and
artifacts (EG-5.3:1). In conjunction with the documentation of causes for
and results of made decisions, this fosters reproducibility, because a decision
can be traced and produces the same consequences, independently from the
decision maker. Decision templates consist of three parts:

● Implication table Enumerates options and points up respective (poten-
tial) implications to the actions and elements of a reasoning project.
The implication table consists of two columns: the left column names
decision options, the right column explains the options and itemizes
respective implications, labeled by a ↦ symbol. Implications mainly
concern template elements, e.g., a particular action or decision. All
other affects are placed in the decision tool (cf. next bullet).

● Decision tool Provides a set of aspects that are relevant to the selection
and might support its taking. For instance, a decision support could
compare the difficulty on an ordinal scale of applying a set of tools,
it could be a decision tree guiding the selection by a set of questions
to answer, or it could be a comparison of pros and cons of selection
options. The diversity of selection situations bans a fixed shape of the
decision tool and a mandatory use (EG-5.3:2). Though, the decision
tool is optional and not included in all decision templates.

5.2. Template meta model 105

● Documentation Stores a decision’s reasons and results to enable tracing
and reproduction at a later point in time. Documentation employs
classifiers of the provenance information model (cf. Section 5.3) and is
optionally assisted by a form template (see description on page 107).

Opt. Explanation and implications

I1 Short – Airplane for distances of up to 1.000 km.
↦ Requires a new factory (action T-A1:A1).
↦ Requires no checklist fulfillment (variable T-

S1:⟨Regulations⟩).
I2 Medium – Airplane for distances between 1.000 and 9.000 km.

↦ Requires no new factory (action T-A1:A1).
↦ Requires fulfillment of T-C1 (variable T-S1:⟨Regulations⟩).

I3 Long – Airplane for distances of more than 9.000 km.
↦ Requires no new factory (action T-A1:A1).
↦ Requires fulfillment of even stricter checklist.

(1) Decision template T-D1 processes T-S1:⟨AirplaneType⟩ (cf. EG-
5.2). Its implication table above enumerates available options,
explanations, and selection implications, respectively. (2) The higher
Return of Investment (ROI) for medium distance airplanes is an
exemplary implication to be placed in the decision tool, as it does not
impact other templates, but only non-technical and economic aspects.
The alluded diversity renders a decision tool example dispensable.

EG-5.3

“Activity” template class

→ Fig. 5.2
(p. 100)

Activity templates (T-A) decompose a task in manageable smaller elements
by explicitly defining actions, execution ordering, partial results, and their
use to achieve a certain goal (EG-5.4). They model a process considering
concurrency, alternative ways, and specific behavior, using two parts:

● Action flow Formalizes actions and their flows, partial results, and re-
sponsibilities of a reasoning project. Modeling action flows employs
UML activity diagrams (↗KB p. 270), because they

- are closely related to the outlined intention of activity templates,
- cover process modeling, task splitting, execution ordering, loops and
concurrency, which is rather difficult in free text [344].

106 Design cycle – Process model artifacts and procedures

An action flow allocates the following meanings and elements of a
reasoning project to activity diagram nodes (↗KB p. 270):

Action Single task or step (A prefix).
Object (Partial) result or static artifact (O prefix).
Decision Decision taken during execution (D prefix).
Action input Parameter(s) given by the calling action. The param-
eter’s name in the calling action is provided in brackets.

● Action details Describes action flow part elements, mostly by an itemiza-
tion or a set of sections. Usually, each action employs further templates
to achieve its goal, e.g., an action taking a selection or documenting
results might employ a decision or form template, respectively.

D2 - Factory is compliant

[no]

[no]
[yes]

[yes]

Start preparation of
assembling factory

D1 - There is an
existing factory

O1 - Factory identi�er

A2 - Build new factory and
connect to supplier network

A1 - Select existing factory

A3 - Check factory's compliance to legal policies

Activity template T-A1 formalizes the preparation of a factory for airplane
assembly. The following simplified action details describe its action
flow depicted above: selecting an existing factory in action T-A1:A1
appropriate for airplane assembly is strongly affected by the value of
T-S1:⟨AirplaneType⟩ (cf. implication table in EG-5.3). Depending on the
result in T-A1:D1, action T-A1:A2 builds a new factory. Action T-A1:A3
checks the used factory’s compliance to legal policies employing a checklist
template. Depending on the result in T-A1:D2, the factory will be used
and its identifier in T-A1:O1 is filled in T-S1:⟨Factory⟩ (cf. EG-5.2).

EG-5.4

“Checklist” template class

→ Fig. 5.2
(p. 100)

Checklist templates (T-C) enforce the fulfillment of a requirement set and
can be used in a variety of situations (EG-5.5), e.g., describing a set of
capabilities or formulating non-functional requirements (cf. Section 3.4),
which dictate ancillary conditions and quality criteria of a system [342].

5.2. Template meta model 107

◻ Wiring is compliant to fire security policies – Wires are en-
cased by a special, heat-resistant material, which is produced with
machine “MM-200:1”. Material production and installation are moni-
tored during the entire airplane assembly process.

◻ Inter-seat space is compliant to client specification – The
seat-positioning robot can handle every non-standard distance be-
tween seats as defined by a client.

Checklist template T-C1 describes the regulations mandatory to the
airplane manufacturing process, required by T-S1:⟨Regulations⟩ (cf. EG-
5.2). The checklist template evaluates the factory newly built or selected
in activity template T-A1 (cf. EG-5.4), as both checklist entries deal
with the factory’s assembly capabilities. For instance, the heat-resistant
material encasing the wires must be provided by suppliers, integrated in
the airplane, and monitored before airplane delivery. Hence, a fulfillment
of the first entry depends on the entire manufacturing process and the
factory capabilities.

EG-5.5

“Form” template class

→ Fig. 5.2
(p. 100)

Form templates make results explicit and traceable by dictating a set of
form fields to fill (EG-5.6), each described by four entries:

● Unique identifier Unambiguously identifies the form field and enables
its external referencing. It is built according to the template meta
model’s namespace, consisting of the prefix F and a numbering.

● Title Shortly summarizes the field’s content and purpose.

● Valid data Specifies the form field’s valid data (range). It can cover
simple data types, like numbers, dates or strings, but also individual
(complex) data types, like a template identifier or an UML diagram
type. In case the valid data type is string, the entry is omitted.
Optionally, a justification for narrowing the data range can be provided.

● Filling objectives Describes the field’s purpose to support stakeholders
in filling the field in terms of information extend, coverage, and focus.

Every documentation and action requires a different set of fields. Hence,
the only field the form template class defines mandatorily is the form

108 Design cycle – Process model artifacts and procedures

identifier F1 that distinguishes several instances of the same form template.
All other fields depend on the template’s deployment and are defined as
required.

F1 – Form identifier

Filling objectives and rules – Unambiguously identify a particular
instance, i.e., a filled-out version of the form template.

F2 – Responsible engineer

Valid data – Name and email address
Filling objectives and rules – In case there are questions regarding
the airplane blueprint, provide sufficient contact information.

F3 – Blueprint

Valid data – AutoCAD diagram at scale 1:2000
Justification – Only AutoCAD diagrams are allowed, because all
involved stakeholders use this tool.
Filling objectives and rules – The AutoCAD diagram should depict
the entire airplane and highlight wiring interfaces.

An airplane is assembled according to a given blueprint. Form template T-
F1 formalizes the documentation of this blueprint. In particular, it
specifies an unique identifier for the blueprint, calls for information about
the responsible engineer, and documents the blueprint itself, provided as
AutoCAD diagram at scale 1:2000.

EG-5.6

5.3 Provenance information model
→ Fig. 5.1

(p. 98)
Provenance enforces reproducibility, ensures immutability of produced re-
sults, and eases result interpretation [151, 304] by keeping track of a data
item’s (entire) creation history [304]. Hence, provenance is seen as a critical
component of the scientific method [140, 116]. In the context of a reasoning
project, the alluded data items are all (partial) results assembled throughout
reasoning project execution and especially during the reasoning function
compilation process, like integrated models, measurements for model proxy
creation, or attribute calculation aspects.

The section details the process model’s provenance information model,
an “abstraction of real-world entities into formal constructs that can be

5.3. Provenance information model 109

represented in computer systems” [121, p. 298]. It facilitates provenance for
a reasoning project by providing capabilities to describe and store informa-
tion, data types, and relationships [181] that document the aforementioned
reasoning project data items. The provenance information model supports
all common provenance concepts, like storing meta information, enabling
integrity enforcement, ensuring non-repudiation, and fostering data trac-
ing [327], as explained throughout this section.

Besides, the provenance information model exposes a broad applicability
(cf. Section 4.1) and expandability (cf. Section 5.2.1), as its underlying object
orientation allows individual extensions by sub classing, e.g., to describe spe-
cialized IT infrastructure components as proposed by Sharapov et al. [362].
Employing object orientation for expandability support is a common ap-
proach, which is applied by wide-spread information models, like the Grid
Laboratory for a Uniform Environment-Schema (GLUE)1 (cf. Section 2.2.3)
that even recommends to “create specializations of the conceptual model
and to implement them by extending the concrete data models” [22, p. 6].
In addition, object orientation is chosen due to its understandability as well
as its modularity and reusability [390], which are important for NFR-7 and
NFR-8, respectively. According to the applied object orientation, UML class
diagrams (↗KB p. 271) formalize the provenance information model.

Section 5.3.1 explains the provenance information model package struc-
ture, the successive Sections 5.3.2, 5.3.3, and 5.3.4 detail packages consisting
of generic classifiers that are used throughout a reasoning project. All other
classifiers and packages are discussed in the remaining sections and chapters,
accordingly. For instance, Sections 5.5 and 5.6 discuss classifiers modeling
measuring aspect and IT infrastructure attributes, respectively.

5.3.1 Package structure

The extend and complexity of a reasoning project require numerous classifiers
to cover relevant details sufficiently. UML (↗KB p. 274) addresses this
extend by bundling all classifiers that are related in some way [344] in
so-called packages. In addition to this general structuring, the provenance
information model’s packaging pursues particularly two aspects:

● Flexibility Addresses the differing development pace and the probability
of adaptions, e.g., IT infrastructure classes might need adjustment
more often than scale definitions.

1Section 7.4.5 explains why existing information models are not used or extended.

110 Design cycle – Process model artifacts and procedures

● Reusability Reflects the involvement of several stakeholders in a rea-
soning project (cf. Section 5.1) and especially the need for diverse
provenance information model slices for diverse tasks (cf. NFR-8).

Hence, packaging decouples classifiers at those points that have differing
use [344] and that ease distribution of self-contained parts of the provenance
information model. Bundling classifiers in packages and simultaneously
providing clear UML package diagrams calls for describing classifier correla-
tions in class attributes, instead of the more common associations (↗KB
p. 271). Although there is no semantic difference, the latter produces several
association lines that tend to make diagrams confusing.

Figure 5.3 overviews the provenance information model in an UML pack-
age diagram, the fully detailed and complete UML class diagram is depicted
in Figure C.2 on page 312 in Appendix C. The subsequent itemization
shortly summarizes the intent of each package and contained classifiers by
anticipating details that are introduced and explained in later sections.

provenance

itinfrastructure

components datatypes

quantity

workload

attributes

instances

measuring

measurements suite

Import

Mergemanagementreasoningproject

Figure 5.3: UML package structure of the provenance information model.

reasoningproject Describes a reasoning project in general and all aspects
that affect other parts globally, e.g., constraints, assumptions, or
reasoning parameters. The package is explained in Section 5.3.4.

datatypes Provides a set of (complex) data types, like unique identifiers,
time stamps, or quantities, to enable a platform independent formal-
ization, since the provided data type concepts can be implemented
in many different ways. The containment of the unique identifier
causes a package import by all other packages. The contained package
quantity provides (helper) data types to describe a quantity, scale and
domain (↗KB p. 267). The packages are explained in Section 5.3.2.

5.3. Provenance information model 111

management Keeps records about responsibilities, and provides keywords to
tag objects.

itinfrastructure Describes a reasoning project’s IT infrastructure. Its
components and their relationships are covered by a separate package
components to foster reusability (cf. above). IT infrastructure com-
ponents are identified by a sub class of the generic UniqueId, which
causes a merge association to the datatypes package. The packages
are explained in Section 5.4.5.

attributes Covers a reasoning project’s IT infrastructure attributes. Clas-
sifiers describing attribute concepts are located in the top-level package,
the different attribute concept instance approaches in the dedicated
sub package instances. The packages are explained in Section 6.1.3.

measuring Describes all elements related to measuring, like a measuring in-
strument, or configuration parameters. A measuring result can be sim-
ple or derived measurements, which calls for a dedicated measurements
package. The packages are explained in Section 6.1.3.

workload Describes workload, load generation, and configuration parame-
ters. The package is explained in Section 6.1.6.

5.3.2 Data type package

The package groups all data types of the provenance information model that
depend on the applied implementation (EG-5.7:1), or the reasoning project
objectives (EG-5.7:2), or that expose technical or semantic encoding issues
(EG-5.7:3). In particular, the package pursues two goals:

● Support classifier reuse Achieving a broadly applicable process model
(cf. Section 4.1) also calls for a platform independent (↗KB p. 260)
provenance information model that is agnostic to implementation
details, especially specific data types. Placing these data types in a
single package encapsulates implementation approaches for their reuse
by all other classifiers in the provenance information model.

● Provide single extension point Some data types implicitly formulate
challenging issues, e.g., documenting selection reasons for a measuring
instrument in a computer-processable way. Their broadly applicable
and generic modeling is a dedicated research discipline and not within
the thesis scope, as carried out in future work (cf. Section 8.2.5). In
order to provide a single extension point to these research efforts, the

112 Design cycle – Process model artifacts and procedures

datatype package collects relevant data types to ease incorporation of
suitable modeling approaches. Accordingly, some classifier attributes
in the package are simply modeled as String, e.g., a Formula rule
or a Selection reason, since the machine-readable encoding of these
information is in the scope of the aforementioned research efforts and
not cardinally required for provenance anyway.

(1) A globally unique identifier can be implemented as Universally Unique
Identifier (UUID) in Java, or as Globally Unique Identifier (Guid) in
.Net; a time stamp can be realized as UNIX time stamp or as MySQL
DATETIME. Both examples illustrate that the same data type concept can
be implemented in manifold ways. (2) The impact of the reasoning project
objectives on the data type realization is also shown for the time stamp.
There is a wide range of time granularity in related research: Contreras
et al. [104] derive power estimates at sub-second time intervals [138], the
IBM tool Amester can sample the power consumption at intervals from
1 millisecond on up [71], and the measuring instrument Energenie EGM-
PWM-LAN (cf. Section 7.2) supports a time resolution of only 1 second.
This diversity underpins that the concrete time stamp realization depends
on the specific goals, in that case the pursued time granularity. (3) The
encoding of a mathematical formula in a generic, computer-readable way
is a semantic encoding issue, as carried out in Section 8.2.5.

EG-5.7

datatypes

value : Object
UniqueId

value : Object

Timestamp

id : UniqueId
reason : String

Selection

id : UniqueId
description : String
rule : String

Formula

id : UniqueId
minValue : Object
maxVaue : Object

Range

quantity

<<enumeration>>

id : UniqueId
label : String
domain : Domain
scale : Scale
type : QuantityType
creation : Formula

Quantity

id : UniqueId
label : String
tics : String
type : ScaleType

Scale

Primary
Additive
Derived

QuantityType
<<enumeration>>

Nominal
Ordinal
Metric

ScaleType

Domain

Figure 5.4: The provenance information model’s datatypes package, group-
ing classifiers that represent (complex) data types.

5.3. Provenance information model 113

Figure 5.4 depicts the datatype package and contained classifiers:

UniqueId An identifier being globally unique and unambiguous within a
reasoning project. The identifier value is modeled in the generic
data type Object to emphasize the need of an individual platform
specific implementation. For identification purposes, each class in the
provenance information model has an attribute id of type UniqueId.

Timestamp A point in time, whose generic data type Object emphasizes
the need for an individual platform specific implementation (EG-5.7:1).
Besides the platform specific aspects, the implementation also depends
on the time granularity required by the respective reasoning project
and the integrated models (EG-5.7:2). Achieving simplicity (cf. NFR-7,
Section 3.4) requires a time granularity definition appropriate to the
reasoning project, and particularly not as accurate as possible.

Formula A mathematical or statistical formula, e.g., describing the calcula-
tion of a derived measurement or an integrated model. The formula’s
objectives and use as well as its calculation rule are stored in the
description and rule fields, respectively. The latter one is of the
String data type due to the above outlined reasons.

Selection A made selection, e.g., in a decision template (cf. Section 5.2.2).
The selection’s justification is modeled by the class attribute reason,
having the data type String due to the above outlined reasons.

Range A (numerical) range, such as an attribute concept range (cf. Sec-
tion 6.1.3), limited by a lower and upper value.

Quantity A quantity (↗KB p. 263) whose capability is summarized in the
label field. The quantity’s building blocks domain, scale and type
are modeled by the fields domain, scale, and type, respectively. The
latter can realize three values, provided by the QuantityType enumer-
ation. The variety of potential ways to achieve additive and derived
quantities requires an explicit description of the applied processing
approach [80]. Accordingly, the creation field stores the applied
addition or derivation formula.

Domain A (mathematical) domain, like rational numbers, real numbers, or
a set of literals. There is a dedicated class to address the platform
independent objective described above.

Scale A (mathematical) scale (↗KB p. 267). The label field summarizes
its intent, the ScaleType enumeration provides its type.

114 Design cycle – Process model artifacts and procedures

5.3.3 Management package

The package provides a set of classifiers to maintain management related
information, pursuing two objectives:

● Enable provenance of responsibility The involvement of several roles
and stakeholders in a reasoning project (cf. Section 5.1) underpins
the (potential) need to do “provenance not only of data but of intel-
lectual property” [188, p. 1822], e.g., to identify the originator of a
measurement [188], model selection, or an additive quantity.

● Enable instance discovery A reasoning project requires a high number
of classifiers (cf. Section 5.3.1) and produces an even higher number
of classifier instances, which calls for support of their localization,
particularly of their instances, e.g., a specific integrated model, a
measurement value, or an IT infrastructure attribute instance.

management

id : UniqueId
name : String
email : String

Person
id : UniqueId
value : String

Keyword
id : UniqueId
label : String

Role
1..*
roles

realizedBy
0..*

Figure 5.5: The provenance information model’s management package, group-
ing classifiers for provenance of responsibility and object discovery.

Figure 5.5 depicts the management package and contained classifiers:

Role A role that is involved in a reasoning project and responsible for one
or multiple tasks according to the notion presented in Section 5.1. The
potential variety of reasoning project situations renders an extensive
role model unproductive. Instead, a role is only described by a label
field and acts as dedicated extension point for individual sub classing,
e.g., to assign authorization information or describe a role hierarchy.
A role can be realized by zero or an arbitrary set of persons.

Person A (physical) person that realizes one or multiple roles (cf. above).
Given the same reasons as for the Role class, a person is tightly
modeled, consisting of a name and email field to foster provenance of
responsibility and contacting the person. Otherwise, the class acts as
dedicated extension point for individual sub classing.

5.3. Provenance information model 115

Keyword A simple keyword that can be assigned to several elements of the
provenance information model, like measuring elements or a reasoning
project. In other words, an arbitrary set of Keyword objects can be
assigned to classifiers to facilitate searches for suitable elements, e.g.,
to support the arrangement of management reports [1].

5.3.4 Reasoning project package

The package provides classifiers for describing a reasoning project and
related elements having a global impact, namely the reasoning parameters,
constraints, and assumptions. The package description takes on a special
position, since it is split in two parts: the section at hand overviews the
package classifiers to address their central role that calls for a description
along with the also central datatype (cf. Section 5.3.2) and management
(cf. Section 5.3.3) package. In contrast, Chapter 6 extensively details the
concrete use of the classifiers as referenced subsequently. Figure 5.6 depicts
the reasoningproject package and contained classifiers:

reasoningproject

id : UniqueId
identi�er : String
objectives : String
type : RPType
quantity : Quantity
range : Range

ReasoningParameter

Con�guration
Modi�cation

RPType
<<enumeration>>

id : UniqueId
label : String
description : String

Constraint
id : UniqueId
label : String
description : String

Assumption

value : double
createdAt : Timestamp

RPValue

0..* constraints 0..* assumptions

id : UniqueId
label : String
description : String
itInfrastructure : ITInfrastructure [1]

ReasoningProject1..*
parameters

Figure 5.6: The provenance information model’s reasoningproject package,
grouping classifiers that represent execution-related (meta) information of a
reasoning project.

ReasoningProject The reasoning project, acting as umbrella and connec-
tion point to other elements. This results in a rather compact class,
built of a label and a general description of the reasoning project.

ReasoningParameter A reasoning function parameter according to the
notion presented in Section 4.1. The RPType enumeration represents

116 Design cycle – Process model artifacts and procedures

the parameter set decomposition in modification and configuration
parameters. The ReasoningParameter is connected to a reasoning
project by a composition (↗KB p. 271), because it is highly specific
and only suitable as long as the reasoning project exists. Section 6.1.4
details the class and its use in action T-A3:A4.

RPValue A single value of a reasoning parameter at a particular point in
time. The value is extracted from the ReasoningParameter class
and assigned to a time stamp to enable consideration of chronologi-
cal development, as detailed in Section 6.1.2 and stated in decision
template T-D3.

Assumption An assumption made in the context of a reasoning project.
Section 6.1.7 details the class and its use in action T-A3:A7.

Constraint A constraint that has to be respected in any situation of a
reasoning project, e.g., prohibit a special model type or negate license
fees. Section 6.1.8 details the class and its use in action T-A3:A8.

5.4 IT infrastructure notion
→ Fig. 5.1

(p. 98)
The section describes the developed notion of IT infrastructures that un-
derlies the presented process model. For illustrative purposes, Figure 5.7
overviews in a simplified exemplary HPC cluster system (cf. Section 2.2.2)
the notion’s four building blocks:

Graph-based representation 1 Models IT infrastructure components
as nodes and logical communication dependencies as edges, as carried out
in Section 5.4.1.
Interfacing with third-party models 2 Supports the data import and
exchange about the considered IT infrastructure, as detailed in Section 5.4.2.
Black box approach 3 Initially considers every IT infrastructure com-
ponent as black box, as described in Section 5.4.3.
Description terminology 4 Employs the terms capability, property, and
attribute to describe an IT infrastructure and its components, as explained
in Section 5.4.4.

Section 5.4.5 introduces the provenance information model classifiers for
IT infrastructure modeling.

5.4. IT infrastructure notion 117

Graph node
(component)

Graph edge
(Logical communication dependency)

Internal
Bus

Network
Card

In�nibandCompute Node

Local
Memory

Local
Storage Compute

Node

Compute
Node

Black box

CPU

Third-party
models

Interfacing

Component
identi�ers &

types

1

2

3White box

Model of a simpli�ed HPC cluster system based
on the applied notion of IT infrastructures

4

Compute
Node

HPC cluster system

Figure 5.7: Summarizing overview illustrating the process model underlying
notion of IT infrastructures.

5.4.1 Graph-based representation

The process model underlying notion of IT infrastructures bases upon graph
concepts to facilitate the employment of graph algorithms and methods,
e.g., assigning information to graph nodes, using dependency detection
algorithms, or defining sub graphs for delimiting a specific IT infrastructure
component sub set. Compared to other work, like Aguilera et al., who model
“a distributed system as a graph of communicating nodes [...] in which case
the edges are the network” [14, p. 75], the mapping of IT infrastructure
aspects onto graph elements is different (EG-5.8):
Node Abstracts hardware entities and models type-independent all compo-
nents of an IT infrastructure.
Edge Models logical communication dependencies between components,
instead of physical communication hardware.

Whenever two or more components communicate or exchange data, there are
a communication component (node) and logical communication dependencies
(edges). Since the lion’s share of communication is bi-directional and for the
sake of simplicity, edges are non-directed.

118 Design cycle – Process model artifacts and procedures

Figure 5.7 illustrates the graph-based notion for the exemplary HPC
cluster. Both, communication components, like the internal bus and
Infiniband, and worker components, like the local memory and the CPU,
are represented by nodes, depicted as rounded boxes. The nodes are
connected via edges, expressing a logical communication dependency and
not a physical communication. This is notably articulate for the internal
bus, which is represented by a node and not by edges.

EG-5.8

The introduced graph representation, and especially transferring com-
munication components from edges to nodes, allows reasoning to handle all
IT infrastructure components equally (cf. Section 4.1), which is urgently
required due to two reasons (cf. NFR-1 on page 84):
1. Nearly all IT infrastructure attributes are strongly influenced by commu-

nication aspects, e.g., performance is not only composed of computing
cores and I/O performance, but also of communication interconnect [91]
(cf. Section 2.4).

2. IT infrastructures render functionality by a complex qualitative and
quantitative component interplay, which avoids identifying the specific
contribution of a single component to its functionality [268].

5.4.2 Interfacing with third-party models

Use Case UC-3.2 in Section 3.3.2 outlines that available databases often
contain suitable information about the considered IT infrastructure, e.g., in a
Configuration Management Database (CMDB). To use existing information
and save efforts, foster actuality, and avoid duplicates and integrity flaws,
the process model underlying notion of IT infrastructures provides two
provenance information model elements (cf. Section 5.4.5) as interfaces to a
potentially existing database or tool landscape (EG-5.9):

● Unique identifier Identifies an IT infrastructure component. Storing
similar or even the same values as the third-party model facilitates
information exchange and keeping the model in sync with alterations
in the considered IT infrastructure, since components can easily be
related to corresponding objects.

● Component type Describes the type of an IT infrastructure component.
The usable value range is extracted from the corresponding model and
applied to describe components.

5.4. IT infrastructure notion 119

The arrow in Figure 5.7 represents the component mapping and partic-
ularly the data import in the provenance information model from the
dashed box, being arbitrary third-party models. Mapping IT infrastruc-
ture components to Common Information Model (CIM) objects [123],
for instance, would use the CIM object identifier InstanceID, inherited
from the global super class ManagedElement.InstanceID; the CIM class
inheritance hierarchy, like ManagedElement > ... > NetworkAdapter
or ManagedElement > ... >DiskDrive, would define the infrastructure
component type set.

EG-5.9

5.4.3 Black box approach

Section 4.3 introduces the black box approach as one of the process model’s
general implementation approaches, the section at hand further details it in
the context of the process model’s IT infrastructure notion.

The black box approach initially considers every IT infrastructure com-
ponent as black box, hiding the component’s internal matters. Whenever
knowledge about the black box internals is required, it is refined to a white
box, resulting in a sub graph (cf. Section 5.4.1) that consists of several newly
modeled components (EG-5.10). The black box approach has two advantages
for IT infrastructure modeling:

● Support multiple granularity levels According to its objectives, a
reasoning project might be interested in differing IT infrastructure
aspects, e.g., considering a compute node in detail to examine its
power consumption, while neglecting storage nodes. Globally increas-
ing model granularity to the desired level would quickly lead to an
unmanageable complex model due to the scale of IT infrastructures.
In contrast, multiple granularity levels within the same model are
mandatory to facilitate a good trade-off between accuracy, complexity,
and time to solution [337]. The black box approach fulfills this demand
by punctually refining only elements that are of interest for a reasoning
project and leaving all other components on a high abstraction level.

● Foster fast IT infrastructure modeling The extend of IT infrastruc-
tures mostly cause modeling being a laborious and costly task. The
black box approach reduces required cost and time in two ways:

- It allows modeling to start with a coarse-grained model consisting of
a (small) set of black boxes that are refined exclusively as required.

120 Design cycle – Process model artifacts and procedures

- Using the IT infrastructure component types (cf. Section 5.4.2),
the black box approach facilitates the (automatic) propagation of a
refinement within the entire graph: black box nodes are identified
by their type and replaced with the refining sub graph, respectively.

Algorithm 1 describes the aforementioned propagation in pseudo
code: In a preparation step, the refining sub graph is stored in
refinedBlackBox for further use (line 1). Afterwards, an iteration
over all black boxes having the same component type as the refined
black box (line 2) replaces located black boxes (currentBB) by the
sub graph in two consecutive steps. First, the black box refinement
refinedBlackBox is copied and placed into the graph by re-connecting
the edges that were previously connected to the replaced black box
(line 3). Second, the black box identifier value of all vertices in the
refining sub graph is set to facilitate recognition of initially modeled
black boxes (line 4).

Algorithm 1: Propagation of black box refinement
1 refinedBlackBox = describes refinement of blackbox
2 while currentBB = getUnrefinedBlackboxOfType(blackbox.type) do
3 placeRefinementIntoTree();
4 setBlackboxIdentifierTo(currentBB.identifier);
5 end

The HPC cluster system in Figure 5.7 consists of four compute nodes, of
whom the far left one was refined to a white box delimited by the dotted
rectangle. It consists of a Local Memory component, a CPU component,
a Local Storage component, an Internal Bus component, and a Network
Card component that collectively assembly a new sub graph. The other
three compute nodes remain black boxes.

EG-5.10

Motivation and point in time for refining a black box into a white box
depend on the reasoning project objectives and interests, as detailed in
Section 6.1.2. In particular, the reasoning objectives imply differing require-
ments on the information available about the considered IT infrastructure,
e.g., which attributes should be reasoned about for which components at
which granularity level. Consequently, the IT infrastructure notion defines
the general black box approach, but does purposely not provide a set of
black box distinctiveness or globally valid refinement rules.

5.4. IT infrastructure notion 121

5.4.4 Description terminology

Three terms, sketchy handled in Section 2.4, describe an IT infrastructure:

● Capability A qualitatively well-defined (low level) functionality that is
exposed to the user or application, like data transfer, data storage, or
computation. It is workload execution agnostic, as the functionality
remains the same, independent of the currently executed applications
or tasks. The term is of secondary interest, as is only acts as helper
information, e.g., a scheduler might use it for mapping workload
onto IT infrastructure components [5] (cf. Section 2.3.3). High-level
capabilities, like sophisticated reliable file transfer, are considered as
services that are built on top of an IT infrastructure.

● Property A quantitative description considering infrastructure compo-
nent capabilities as white boxes at any time, e.g., describing the
theoretical maximum clock speed of a component offering computation
capabilities. Property values can be gathered from vendor specifica-
tions, benchmarking, trace analysis, or any other source for (empirical)
data. It is workload execution agnostic, because the general maximum
value remains the same, independent of the currently executed applica-
tions or tasks. Exemplary property definitions can be found in the Job
Submission Description Language (JSDL) [23, Sec. 6.4] as it specifies
requirements of computational jobs. Just like capabilities, the term is
of secondary interest, as it also acts only as helper information, e.g.,
for workload mapping [5] (cf. Section 2.3.3).

● Attribute A quantitative description of an IT infrastructure that con-
siders its components as black boxes during workload execution at a
particular time step, e.g., “power consumption in Watt per time step”
or “time to completion of result calculation”. The term is of primary
interest, as it is in the main focus of the presented process model.
Attribute concepts are further detailed in the dedicated Section 5.6.

5.4.5 Provenance

Figure 5.8 depicts the provenance information model’s itinfrastructure
package to describe an IT infrastructure according to the above detailed
notion, using the following classifiers:

ITInfrastructure A representative of an IT infrastructure and connection
point for other provenance information model classifiers that need to

122 Design cycle – Process model artifacts and procedures

id : UniqueId
label : String
reasoningProj : ReasoningProject [1..*]

ITInfrastructure
id : UniqueId
label : String
description : String

Capability
id : UniqueId
label : String
description : String

Property

components

id : UniqueId
label : String

CommunicationSet

BlackBox WhiteBox 1
0..*

1
0..*

id : UniqueId
label : String
description : String

ComponentType
1 1

0..*
*

*

*

1

*

blackboxIdenti�er : String
importedFrom : String
importDate : Timestamp

Component

itinfrastructure

datatypes

UniqueId

ComponentId

Figure 5.8: The provenance information model’s itinfrastructure package,
grouping classifiers for IT infrastructure modeling.

reference the considered IT infrastructure. Though, the class contains
only a label field and a set reasoningProj of employing reasoning
projects (cf. package reasoningproject) to facilitate the IT infras-
tructure model’s reuse by multiple reasoning projects, as motivated
in Section 5.3.1. Noteworthy, the reasoningProj set is a tangible
example for the use of class fields instead of associations to describe
classifier correlations (cf. Section 5.3.1). The components of the IT
infrastructure are covered by Component objects below.

Component An IT infrastructure component according to the notion Sec-
tion 5.4.1 introduces. The class is marked abstract due to two reasons:

1. An IT infrastructure component is exclusively either a black box
or a white box (cf. Section 5.4.3), and the abstract nature of the
Component class enforces choosing one of the two options.

2. Modeling sub graphs (cf. Section 5.4.1) recommends the recursive
data structure composite pattern [159], whose contained abstract
class is realized by the Component class.

Hence, the Component class only collects commonalities of black
boxes and white boxes, namely a blackboxIdentifier as well as an
importedFrom and importDate field to trace refinements and imports
from third-party models, respectively. The provenance information

5.4. IT infrastructure notion 123

model underlying object orientation and especially the sub classing are
of special importance to component modeling, because the Component
class can be arbitrarily extended, e.g., to store additional fields like
operating system or other casuistic characteristics.

ComponentId A unique identifier of an IT infrastructure component. The
class extends the global UniqueId not to expand the field list, but
purely to enable and ease interfacing with third-party models (cf. Sec-
tion 5.4.2), by providing a dedicated class. The data type Object of
the inherited value field flexibly stores third-party identifiers, like the
instanceID of a CIM database (cf. EG-5.9).

ComponentType Set of component types as introduced in Section 5.4.2. A
composition association (↗KB p. 271) models the component type
hierarchy, because child component types must be implicitly deleted if
the parent component type disappears.

BlackBox A black box according to the notion introduced in Section 5.4.3. It
provides no additional fields, since the class’ only intend is to underpin
the black box nature. In the context of the aforementioned composite
pattern, the BlackBox class is a leaf.

WhiteBox A white box according to the notion introduced in Section 5.4.3.
It provides no additional fields, since the class’ only intend is to
underpin the white box nature. In the context of the aforementioned
composite pattern, the WhiteBox class is a composite.

CommunicationSet Collection of all components that are communicating in
some way, or in other words, a representation of logical communication
dependencies between components whose purpose is summarized in
the label field. Referring to Example EG-5.8, a CommunicationSet
would contain the internal bus and the three connected components
within the compute node white box.

Capability A component capability according to the notion introduced in
Section 5.4.4. The class provides only the fields label and description
to explain the capability in general, because its secondary role and
the variety of information required for a particular situation (cf. Sec-
tion 5.4.4) render a further refinement unsuitable. In contrast, it acts
as extension point for creating sub classes.

Property A property according to the notion introduced in Section 5.4.4.
The class provides only the fields label and description to explain

124 Design cycle – Process model artifacts and procedures

the capability in general, because its secondary role and the variety
of information required for a particular situation (cf. Section 5.4.4)
render a further refinement unsuitable. In contrast, it acts as extension
point for creating sub classes.

5.5 Measuring

→ Fig. 5.1
(p. 98)

A measuring is the “reasonable, exclusively descriptive, assessment-free, and
rule-based mapping of a finite set of characteristics at a discrete point in time
t on a symbol set” (↗KB p. 256). This definition roughly guides measuring
and implicitly defines some (high-level) quality criteria regarding measuring
execution and gained results. However, three issues require a concretion of
the alluded generic implicit criteria, and particularly a template formalization
to achieve useful results, as the subsequent itemization motivates using n
for later reference:

● Variety of methods Although most measurements can be traced back
to counting [312, 382, 16] (cf. [352]) there are several differing ap-
proaches and techniques to conduct a measuring 1 (EG-5.11).

Measuring software complexity can be achieved by counting 1) the
lines of code, 2) the hours required to understand the code, or 3)
the amount of intuitive code segments.

EG-5.11

● Uncertainty Measuring “is afflicted with [...] uncertainty, caused by im-
perfection of tools, observers and environmental factors” [377, p. 115] 2 .

● Reasoning project demands The specific circumstances of a reasoning
project tend to put further demands on the extend and obligation of
measuring rules, particularly the

1. involvement of several stakeholders with potential goal conflicts 3 ,
2. inordinate difficulty of some measuring setups caused by the com-

plexity of considered IT infrastructure elements 4 , and the
3. potentially challenging time- and cost-constraints 5 .

This requires a strict rule set for mapping facts to measurements [80].
Table 5.1 itemizes in alphabetical order four objectives for the rule set
that can be derived from the issues itemized above. Besides, Table 5.1
highlights the templates that realize the objectives and collectively formalize
a measuring.

5.5. Measuring 125

Objective Addressed issue

1 2 3 4 5

Exclusively descriptive ✓ ✓

Enforce an exclusively descriptive character without any assessment, as
measurements observe facts [80] 4 , aiming at gathering objective (raw)
data [312, 352, 382] 1 .
→ T-C2 (in T-A2:A3) validates requirements of a descriptive measuring.

Reasonable ✓ ✓

Align the measuring activity and related decisions to the respective use
in order to address the variety of measuring approaches 1 , to reduce
(dispensable) costs 5 , and to cover the diversity of real world element
characteristics (↗KB p. 256).
→ T-S2 (in T-A2:A1) explicitly specifies the measuring objectives.

Reproducible ✓ ✓

Ensure reproducibility 2 and repeatability 4 (cf. Section 5.3) of data
gathering by documenting the conditions under “which the repeatability
of measurement results is achieved” [35, p. 6].
→ T-F2 (in T-A2:A4) documents the repeatability conditions.

Stable ✓

Ensure equal measurements independently from the executing entity or
person [55]. Besides, avoid the feedback mechanism 3 , the potential
(subconsciously) influence of the measuring by the executing person, as
measurements might affect it in a negative way [56].
→ T-A2 dictates the actions of a measuring.

Table 5.1: Objective overview of templates that formalize measuring.

Section 5.5.1 describes the measuring activity T-A2, and Section 5.5.2
provides the provenance information model parts relevant to measuring.

126 Design cycle – Process model artifacts and procedures

5.5.1 Measuring activity

Activity template T-A2 - Measuring formalizes the execution of a measur-
ing as a “set of specific operations used in the performance of particular
measurements [...]” [35, p. 6], compliant to the objectives overviewed in
Table 5.1. Collectively, an execution instance of T-A2, gained data, and
achieved results are named a measuring suite. Two actions use a measuring
suite in a reasoning project (cf. Section 6):

1. Action T-A3:A13 uses it for model proxy creation.
2. Action T-A3:A16 uses it for reasoning function evaluation.

Noteworthy, the measuring activity purposely omits any interpretation
or further use of data. Instead, it encapsulates the measurement based
data gathering and provides the gained raw data for further processing
to the two calling actions T-A3:A13 and T-A3:A16, respectively. Template
element 5.1 depicts the action flow of activity template T-A2, the following
sections provide its action details. Template element 5.1 illustrates the three
parameters scale (T-A2:O1), accuracy (T-A2:O2), and application (T-A2:O3)
that are passed to the measuring activity by the two applying actions alluded
above. Besides, Template element 5.1 highlights the template’s three phases:

A3 - Design measuring
systemSetup

assembly

Execution

Preparation A1 - De�ne measuring objectives

O1 - Scale O2 - Accuracy O3 - Application

A2 - Select measuring
instrument

O5 - Documentation in provenance information model

O4 - Measuring
objectives

A5 - Execute measurements

A4 - Document measuring system

Template element 5.1: Action flow of T-A2 - Measuring.

5.5. Measuring 127

● Preparation Extracts the measuring objectives from the given param-
eters T-A2:O1, T-A2:O2, and T-A2:O3. Action T-A2:A1 transforms the
activity’s parameters into the measuring objectives T-A2:O4.

● Setup assembly Assembles the measuring setup compliant to the mea-
suring objectives. Action T-A2:A2 chooses appropriate measuring in-
strument(s), action T-A2:A3 designs and evaluates the measuring setup,
and action T-A2:A4 documents the measuring setup for reproducibility.

● Execution Executes the measuring compliant to the measuring objectives.
Action T-A2:A5 uses the assembled measuring setup, and documents
results in T-A2:O5 employing classifiers of the provenance information
model’s measuring package.

T-A2:A1 – Define measuring objectives

The three externally given parameters T-A2:O1, T-A2:O2, and T-A2:O3 dic-
tate the measuring objectives. Yet, there is an urgent need for additional
harmonization and especially formalization, as several roles, each applying
a different understanding, might be involved. Common measuring practice
further enforces this need by stating that “before a measuring is executed,
both the measurements and the measuring setup must be thoroughly speci-
fied” [377, p. 114] (EG-5.12).

The urgent need of explicitly stating measuring objectives originates in
natural science. The realm of physics substantiates the non-triviality
of a specification: measuring the length of a metal bar in micrometer
requires the indication of temperature and air pressure, which can be
omitted for measuring in millimeter [377].

EG-5.12

Action T-A2:A1 uses sentence template T-S2 - Define measuring objectives
to guide the entire measuring activity, and to synchronize (potentially
distributed) measuring results. The filled out instance of T-S2 is stored in
T-A2:O4. Template element 5.2 depicts the sentence template’s grammar
part, covering the following variables:

⟨MeasurementScale⟩ Explicitly defines the targeted scale (↗KB p. 267)
of the measurement, extracted from parameter T-A2:O1. Still, the fun-
damental role of clearly defined measuring objectives for a measuring
activity’s success calls for a dedicated variable. Besides, a mismatch
between the scale requested by the calling actions and the achieved
scale would produce unsuitable measurements.

128 Design cycle – Process model artifacts and procedures

Gain ⟨MeasurementScale⟩ with an accuracy of ⟨Accuracy⟩ on
⟨Components⟩ using ⟨Setup⟩.

⟨MeasurementScale⟩ ⊧ ⟨GScale⟩ ^ T-A2:O1

⟨Accuracy⟩ ⊧ ⟨GPercent⟩ ^ T-A2:O2

⟨Components⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-A2:O3

⟨Setup⟩ ⊧ ⟨GIdentifier⟩ ^ T-F2

Template element 5.2: Grammar part of T-S2 - Define measuring objectives.

⟨Accuracy⟩ Sets the minimum required accuracy, e.g., ±1% (↗KB p. 258),
extracted from parameter T-A2:O2. In other words, the variable speci-
fies the maximum acceptable difference between the “real” value and
the measured value, called uncertainty, each measurement is afflicted
with (cf. Section 5.5). Importantly, measurements coming without a
specified accuracy are meaningless [377].

⟨Components⟩ Entitles the IT infrastructure components, measurements
should describe. The component set is implicitly given by T-A2:O3,
because the calling actions dictate, which components to consider.

⟨Setup⟩ References the applied measuring setup, as reproducible and stable
results require a clear and explicit measuring setup.

The following sections provide the production part of sentence template T-
S2. Noteworthy, only variable T-S2:⟨Setup⟩ is further processed, the three
other variables guide this processing.

T-A2:A2 – Select measuring instrument

Mapping a finite set of characteristics on a symbol set requires a measuring
instrument. For this, DIN 1319 [35] defines in an abstract blueprint a sensor,
an amplifier/modifier, and a filter/correction (↗KB p. 256), each describing
a role that can be implemented or realized in many ways (EG-5.13).

Action T-A2:A2 selects a suitable implementation of the aforementioned
roles compliant to the measuring objectives defined in T-S2. Therefore,
the action uses decision template T-D2 – Select measuring instrument that
formalizes the selection process and consists of three elements:

5.5. Measuring 129

Implication table Lists measuring instrument criteria that might affect
other actions, as depicted in Template element 5.3.

Decision tool Itemizes criteria for choosing an appropriate measuring
instrument. For each criteria, it provides a short explanation, defines
the aspired value direction (depicted as an arrow), and optional limits
(depicted as a cross), respectively, as depicted in Template element 5.4.

Documentation Documents the made decisions regarding the measuring
instrument. Is contained in the measuring package of the provenance
information model and described Section 5.5.2.

The voltage “sensor” in a Multimeter is a physical item. In contrast, the
power consumption “sensors” Intel introduced with the Sandy Bridge
chip are Running Average Power Limit (RAPL) counters, i.e., a small
set of registers that count events [73, 175].

EG-5.13

130 Design cycle – Process model artifacts and procedures

Opt. Explanation and implications

I1 Intrusiveness – Level of instrumentation required by the mea-
suring instrument (↗KB p. 258).
↦ (High) intrusiveness potentially alters the measurement val-

ues. This might negatively impact the application of statis-
tical methods for model proxy function creation in action T-
A3:A13, because the actually sampled population might be
different to the target population [120].

I2 Accuracy – Uncertainty of the measurements gained by the
measuring instrument (set in T-S2:⟨Accuracy⟩).
↦ The poorer the accuracy (or the higher the uncertainty), the

lower the gained measurements’ quality. This might nega-
tively impact statistical methods for model proxy function
creation in action T-A3:A13.

I3 (In)direct measurements – A measuring instrument can
gain targeted measurements either directly or provide only
helper values that are processed to the targeted measurements,
e.g., calculate watt out of volt and ampere.
↦ Employing helper values requires additional processing that

might decrease accuracy. In any case, it causes additional
effort in actions T-A3:A13 and T-A3:A16.

I4 Automated logging – Data mining and (statistical) post
processing require logging and persistent storage of the collected
measurements.
↦ Manual logging is error-prone, what might negatively impact

the model proxy’s accuracy in action T-A3:A13.

Template element 5.3: Implication table of T-D2 - Select measuring instru-
ment.

5.5. Measuring 131

Intrusiveness |

Measuring accuracy |

Measuring range |

Automated logging |

Constraints ful�lled |

Low

Low

Low

No

No

High

High

High

Yes

Yes

Intrusiveness Describes the level or severity of instrumenta-
tion (↗KB p. 258), which should be preferably low [431].

Measuring accuracy Numeralizes the difference between the “real”
and the measured value. The measuring instrument’s accuracy
should match the value given in T-S2:⟨Accuracy⟩, as a lower value
is not suitable, and a higher value tends to cause dispensable
cost, because the achieved accuracy increase is not exploited by
the reasoning project. Instruments without an explicit accuracy
specification shouldn’t be used at all.

Measuring range States whether the instrument’s measuring range
covers the pursued value(s), e.g., Volt between 10 and 100V.

Automated logging States whether the measuring instrument sup-
ports automatic logging, e.g., storing measurements over time on
a SD card. This capability is not mandatory, but very beneficial
in terms of error-avoidance, effectiveness, and automation.

Constraints fulfilled States whether the measuring instrument ful-
fills criteria and constraints specified by the respective reasoning
suite T-A3:O3, like license fee limits.

Template element 5.4: Decision tool of template T-D2 - Select measuring
instrument.

132 Design cycle – Process model artifacts and procedures

T-A2:A3 – Design measuring system

Action T-A2:A3 designs the measuring system in terms of involved compo-
nents, calibrating facilities, and any other equipment. In particular, the
action plans where to place the measuring instruments, how to connect
them to controlling and storing devices, and where to place potentially
required further control instances. This design action is geared to the
policies provided by DIN 1319 (↗KB p. 258). The variety of situations
and the resulting diversity of possible measuring setups render a generic
design presetting unproductive. In contrast, action T-A2:A3 uses checklist
template T-C2 - Examine measuring setup design to evaluate a measuring
setup’s shape. Template element 5.5 depicts checklist template T-C2 that
itemizes a rule set each measuring setup should comply to.

◻ Reduce intrusiveness – The basic concepts of intrusive-
ness (↗KB p. 258) are not only applicable to a single measuring
instrument, but also to a whole measuring setup, e.g., addressing
the logging-caused load that might influence the measuring. Al-
though it is rarely possible to assemble a completely non-intrusive
setup, there are several reduction approaches, e.g., use existing
or already incorporated sensing capabilities, like operating system
performance metrics or hardware performance counters [132].

◻ Omit influencing factors – The (undetected) influence to mea-
suring mostly results in misleading measurements. Just as complete
un-intrusiveness, omitting all influencing factors is rarely possible.
One approach is to isolate considered elements, e.g., turn of LCDs
when measuring power consumption of a built-in CPU to omit all
power consumption that is not related to the CPU [104].

◻ Comply to standards – One of the most important measuring
standards is DIN 1319, detailing the components of a measuring
setup and requirements (↗KB p. 258).

◻ Fulfill measuring objectives – Before documenting the mea-
suring setup and employing it for measuring execution, a final
check should ensure that the measuring setup is compliant to the
measuring objectives defined in sentence template T-S2.

Template element 5.5: Checklist of T-C2 - Examine measuring setup design.

5.5. Measuring 133

T-A2:A4 – Document measuring system

Action T-A2:A4 documents the measuring activity, covering the measurement
procedure, equipment, and influencing quantities [35]. The action uses form
template T-F2 - Document measuring setup that instructs measuring setup
documentation as depicted in Template element 5.6.

F1 – Unique ID

Filling objectives and rules – Uniquely identify the measuring setup
for referencing, especially in T-S2:⟨Setup⟩.

F2 – Measuring information model

Valid data – UML object diagram
Justification – Documentation extends the provenance information
model, which is also provided as UML object diagram (cf. Sec-
tion 5.3).
Filling objectives and rules – Document static information about
the measuring setup, particularly employed measuring instruments,
selection causes, and measuring setup parameters.

F3 – Physical design

Valid data – UML component diagram
Justification – An UML component diagram describes the phys-
ical structure and realizing components of a system [344], while
focusing on technical components and aspects that are required
during run time, instead on internals of executed methods and
processes [344] (↗KB p. 273). This orientation recommends UML
component diagrams for measuring setup documentation.
Filling objectives and rules – Document the measuring setup in
terms of self-contained functional components, their physical com-
position, and interplay. Use the instances of the object diagram
in field T-F2:F2. In either case, the component diagram should
contain the elements stated by DIN 1319 (↗KB p. 258) and provide
implementing manifestations, accordingly.

Template element 5.6: Form of T-F2 - Document measuring setup.

134 Design cycle – Process model artifacts and procedures

T-A2:A5 – Execute measurements

Action T-A2:A5 represents measurement execution, covering the measuring
system’s employment, and the evaluation and documentation of gained
results [35]. Documentation uses the provenance information model de-
scribed in the following Section 5.5.2. The action does not provide any
concrete templates, because the variety of potential measuring instruments,
measuring systems, and required evaluation details render a concrete tem-
plate unsuitable. Instead, the action acts as an umbrella for measurement
execution to enable its explicit positioning in activity template T-A2.

5.5.2 Provenance

Figure 5.9 depicts the provenance information model’s measuring package
that provides classifiers for documenting a measuring activity. The contained
sub packages group the subsequent classifier description:

id : UniqueId
objective : String
executionStart : Timestamp
executionEnd : Timestamp
conductedBy : Role [1..*]

MeasuringSuite

MeasuringSuiteCon�gKey
<<enumeration>>

id : UniqueId
Key : MeasuringSuiteCon�gKey
Value : String

MeasuringSuiteCon�g

suite

measuring

measurements

id : UniqueId
value : double
gainedAt : Timestamp

Measurement

derivationRule : Formula
DerivedMeasurement

SimpleMeasurement

reason : Selection
Justi�cation

id : UniqueId
label : String
description : String
accuracy : double

MeasuringInstrument 1

0..*

1
0..*

Figure 5.9: The provenance information model’s measuring package, group-
ing classifiers that describe measuring execution and achieved results.

The package’s classifiers are detailed by the subsequent itemization.

suite Classifiers that document information about the measuring activity.

MeasuringSuite A measuring suite representative (cf. Section 5.5.1)
that acts as reference point for other provenance information
model classifiers. The measuring suite’s goals and intents are

5.5. Measuring 135

summarized in the objective field, the measuring suite’s ex-
ecution time in the fields executionStart and executionEnd,
and the set of roles responsible for the measuring suite in the
conductedBy list. The class does not store variables of sentence
template T-S2, as they are covered by other classifiers below.

MeasuringSuiteConfig A parameter specified for the measuring suite,
e.g., a binary flag stating whether measurements were compiled
automatically. Storing every parameter complies with the call for
reproducibility (cf. Section 5.5), especially for derived measure-
ments represented by the DerivedMeasurement class, because it
ensures that all n measurements of a series are “obtained under
repeatability conditions” [35, p. 8]. The key identifies the param-
eter, using values provided by the MeasuringSuiteConfigKey
enumeration to avoid inconsistencies due to differing keys for the
same parameter.

measurements Classifiers that document achieved measurements.

Measurement A measurement (↗KB p. 256) action T-A2:A5 gained
in the context of the associated MeasuringSuite. The class is
marked abstract, because a measurement can exclusively be either
a simple measurement or a derived measurement. Thus, the class
collects common attributes of both, namely the value and the
point in time GainedAt to document measuring over time [35].

SimpleMeasurement A simple measurement, directly gained by a mea-
suring instrument. To support reproducibility in general and
to provide “information regarding the accuracy of the measure-
ment” [35, p. 13] in particular, the class is associated to the
MeasuringInstrument, the selection rationale is stored in the
association class Justification.

DerivedMeasurement A derived measurement that is either directly
assembled by other measurement values, or indirectly deter-
mined by means of known physical or mathematical relation-
ships [35]. The former approach additionally models the associ-
ated values as composition between the DerivedMeasurement and
Measurement classes. For both approaches, the derivationRule
is stored as Formula to support traceability. Employing the
composite pattern – SimpleMeasurement is a leaf element and
DerivedMeasurement is a composite element – allows arbitrary
derivation hierarchies.

136 Design cycle – Process model artifacts and procedures

MeasuringInstrument A measuring instrument selected in action T-A2:A2.
The measuring instrument’s capability is summarized in the label field,
detailed information about the measuring instrument, like a manual
or objectives, is stored in the description field. The accuracy field
addresses the urgent need of providing measurement accuracy.

5.6 IT infrastructure attribute notion
→ Fig. 5.1

(p. 98)
Section 5.4.4 introduces IT infrastructure attributes as a quantitative de-
scription of an IT infrastructure that considers its components as black
boxes during workload execution at a particular point in time. This section
enhances the general understanding for its employment in the reasoning
methodology described in Chapter 6. For the sake of simplicity, IT infras-
tructure attributes are from now on simply called attributes if collisions are
precluded. Attribute decomposition is detailed in Section 5.6.1, the binding
of attributes to IT infrastructure components is discussed in Section 5.6.2.

5.6.1 Decomposition in concept and instances

An attribute is decomposed in a generic concept and at least one instance
of this concept.

In terms of software programming, the generic concept can be seen as
the attribute interface. It defines the concept’s name (interface name), scale
(interface return type), and an optional parameter set (interface parameters,
EG-5.14). Section 6.1.3 details the attribute concept definition in action T-
A3:A3, and relevant provenance information model parts.

An exemplary attribute concept is “power consumption (name) in Watt
per time step (scale) for a given load factor (parameters)” [383].EG-5.14

The generic concept is realized by at least one instance. Applying
again the perspective of software programming, a concept instance can
be regarded as the (interface) implementation that concretely describes
how an attribute value (return value) is computed, e.g., using common
mathematical equations, existing models, prepared regressions, or any other
solution that might be suitable for the current scenario. Section 6.2.3
explains the selection and integration of existing attribute instances in
action T-A3:A12, Section 6.2.4 describes the implementation of attribute
instances in the form of model proxy functions in action T-A3:A13.

IT infrastructure attribute decomposition has three benefits:

5.6. IT infrastructure attribute notion 137

● Facilitate top-down refinement The iterative function refinement ap-
plied in the reasoning methodology (cf. Section 4.2) is likely to re-
quire the analysis of the same attribute on several granularity levels
for a variety of IT infrastructure component types. Depending on
the reasoning objectives, considered component types, and the vary-
ing quality of data, each potential attribute instance has its specific
(dis)advantages [6] (EG-5.15). Besides, employing the justification for
the unsuitability of “one-size-fits-all” modeling (cf. Section 4.1) clarifies
that it is rarely possible to use the same attribute implementation
for all refinements. In contrast, attribute decomposition enables the
specification of a global understanding (concept) in the reasoning ob-
jectives, and the employment of a particular implementation (instance)
that is most suitable for the current refinement.

When reasoning about probability distribution based availability [6]
(concept), each distribution has specific advantages depending on
the objective, the existing empirical observation, and the considered
component type. For instance, Pareto (instance) is often advocated
for lifetime estimation, whereas Weibull (instance) is more suitable
for various resource availability data [422, 298].

EG-5.15

● Support delegation Covering several IT infrastructure components or
a whole IT infrastructure according to NFR-1 implicitly requires the
involvement of multiple areas of expertise and roles (cf. Section 5.1).
Attribute decomposition allows the delegation of tasks to appropriate
roles: the management role R5, responsible for the reasoning project,
can define the attribute concept, the attribute domain experts R3
can (independently) provide the attribute instances according to the
demands formalized in the attribute concept. This approach directly
fosters the employment of expert knowledge for each refinement, since
the attribute instance for a concrete reasoning function refinement can
be executed by the most skilled role or person.

● Support measuring Measuring theory requires the definition of a mea-
surand being independent from the applied measuring activity [80]
(EG-5.16). Attribute decomposition fulfills this need, because the mea-
surand is defined once in the attribute concept and gathered in several
ways using appropriate measuring activities for attribute instance
implementation.

138 Design cycle – Process model artifacts and procedures

Measuring the distance between two points (concept) can be
achieved by using a metering rule (instance), or by applying tri-
angulation (instance), which both result in the same distance con-
cept [65]. Thus, the distance concept can be applied on molecules
but also on the Milky Way, each using a different instance to gain
the concrete values.

EG-5.16

5.6.2 Attribute binding types

Depending on the reasoning project objectives and the attribute’s intent, its
concept and instances are defined for the same or for different granularity
levels and component types regarding the IT infrastructure (EG-5.17) [47],
as subsequently explained:

● Same granularity level The attribute concept and its instance(s) must
be defined on the same granularity level. This is particularly required
for attributes from a consumer perspective, as they use the whole IT
infrastructure or a delimited subset that provide their functionality by
a component interplay.

● Multiple granularity levels The attribute concept and its instance(s)
can be defined on several granularity levels and for multiple component
types. This is particularly the case for attributes form a provider
perspective, as each component can get a dedicated attribute instance.

An attribute requiring the same granularity level is Time to Completion
(TTC, cf. Section 2.4.2), because the TTC of a scientific application is
only meaningful for the executing IT infrastructure. Also for component
sub sets, this is valid, e.g., although TTC of the Sustainable Memory
Bandwidth in High Performance Computers (STREAM) benchmark
focuses on memory, its value strongly depends on the interplay with other
components like the CPU. An attribute supporting multiple granularity
levels is power consumption (cf. Section 2.4.1), because the concept is
defined once – “power consumption in Watt per time step” – and its
instances bound to the IT infrastructure on multiple granularity levels,
e.g., for an Intel PXA255 processor [104], or an entire data center [138].

EG-5.17

5.7. Application proxy workload selection 139

5.7 Application proxy workload selection

→ Fig. 5.1
(p. 98)

“Production” applications (cf. Section 2.3.2) directly expose the behavior
of the day-by-day IT infrastructure use. This recommends them as work-
load to use when executing reasoning and particularly for load generation.
Nevertheless, it is not always possible to run (production) applications on
each machine in question [407]. This situation calls for a workload that
substitutes or proxies the application, especially for the creation of a model
proxy function in action T-A3:A13, and for model input parameter gain in
action T-A3:A18, since both actions rely on load values for IT infrastructure
components. The plurality of potential benchmark candidates, produced by
the four layer based concept of benchmark implementation (cf. Section 2.3.2),
and the countless set of scientific applications render the obvious choice of a
proxy workload a futile endeavor. Instead, a thorough selection is required.
Even though this situation seems to call for a decision template, two reasons
recommend a checklist template:

● Comparability The most important capability of a proxy workload,
i.e., representing the substituted application appropriately, cannot be
compared, because the definition of appropriate is highly situation
specific. In addition, there is no generic “better”, like for measuring
instrument intrusiveness (cf. Template element 5.4). Instead, the
substitution’s fashion and particularly its compliance to the reasoning
project objectives must be checked. Besides, the more accurate the
workload mimics the substituted application, the higher the risk that
it cannot be executed for the same reasons that prohibit the origin
application’s execution.

● Result mapping Application substitution requires the mapping of re-
sults gained with the proxy workload on results (theoretically) gained
with the production application. Even though workload classification
approaches address this challenge [360], the mapping still causes un-
avoidable bias. Parametric benchmarks do not require the mapping
and cover a broad range of application behaviors [360], but their big
parameter set, like of the file system bandwidth testing code IOR [180],
makes their use very complex.

Checklist template T-C3 - Examine application proxy selection in Template
element 5.7 itemizes the features of a proxy workload that must be checked.

140 Design cycle – Process model artifacts and procedures

◻ Instruction mix – Each instruction (type) (cf. Section 2.3.2) ex-
hibits a specific behavior and represents a different type of workload,
like matrix multiplications or string comparisons, that potentially
produce differing load values. An appropriate representation re-
quires the workload to employ the same instruction mix or to expose
the same load behavior as the substituted application.

◻ Locality – Code element placement in cache and instruction
registers as well as the respective sizes might significantly influence
the workload execution behavior. For instance, the nine loops of the
Whetstone benchmark (cf. Section 2.3.2) are very small what causes
an extremely high code locality and cache hit rate, even for small
instruction caches [407]. Also simple code modifications, like source
code reordering, potentially alter the execution behavior [407].
Consequently, the proxy workload should manifest the same locality
as the substituted application.

◻ Complexity – Contemporary compilers provide manifold options,
especially for optimization. Avoiding the replacement of code
segments and in turn exhibiting a different workload behavior
requires the proxy workload to manifest the same code complexity
from a compiler’s point of view as the substituted application.

◻ IT infrastructure components – The possibility to bind at-
tributes on multiple granularity levels and component types (cf. Sec-
tion 5.6.2) requires a proxy workload to stress (at least) the same
elements as the substituted application.

Template element 5.7: Checklist of T-C3 - Examine application proxy selection.

5.8 Summary

The chapter at hand details and formalizes concepts, notions, and activi-
ties that collectively assemble the presented process model’s “artifacts and
procedures” part (cf. Figure 5.1), as the following itemization recapitulates:

● Roles and actors Abstract stakeholders in Section 5.1 to clarify respon-
sibilities and to enable task assignments in a reasoning project.

● Template meta model Provides concepts and language elements in
Section 5.2 for describing and formalizing process model elements.

5.8. Summary 141

● Provenance information model Provides classifiers in Section 5.3 for
storing partial results and for tracing reasoning project execution in
order to foster and ensure reproducibility.

● IT infrastructure notion Describes in Section 5.4 the process model
underlying understanding of IT infrastructures.

● Measuring Formalizes in Section 5.5 the gathering of measurements,
built of measuring objectives definition and measuring setup design.

● IT infrastructure attribute notion Describes in Section 5.6 the pro-
cess model underlying understanding of IT infrastructure attributes.

● Application proxy workload selection Formalizes in Section 5.7 work-
load replacement selection if the original one cannot be executed.

The subsequent Chapter 6 describes the process model’s reasoning
methodology that heavily employs the elements provided in this chapter.

Chapter 6
Design cycle –

Process model reasoning
methodology

The chapter details the process model’s reasoning methodology that employs
the artifacts and procedures introduced in Chapter 5. Figure 6.1 highlights
in its upper part the chapter’s focus and the methodology’s conceptual
decomposition in three phases that prepare, compile, and use the individual
reasoning function (cf. Section 4.1). The three phases reflect the three Use
Case sub systems identified in Section 3.3.2, and realize the process model
underlying design concepts (cf. Section 4.2), as subsequently illustrated:

● Phase A – Reasoning suite definition Identifies and specifies reason-
ing objectives and related information to facilitate the reasoning ob-
jectives driven refinement of the individual reasoning function (cf. Sec-
tion 4.3). The phase assembles two results:
- A so-called reasoning suite that formalizes gathered information to
steer the reasoning project, and to dictate guidelines for (partial)
result validation.

- A reasoning function skeleton that is processed by Phase B.

● Phase B – Reasoning function compilation Directed by the reason-
ing suite, the phase iteratively refines the given skeleton to a fully
functional reasoning function (cf. Section 4.2).

● Phase C – Reasoning execution Employs the given reasoning func-
tion to execute the reasoning, using differing reasoning tools, like
optimization or What-if analysis.

143

144 Design cycle – Process model reasoning methodology

Activity template T-A3 - Reasoning methodology formalizes the entire
reasoning methodology and the introduced three phases. According to the
research goal of providing a widely applicable process model (cf. Section 4.1),
activity template T-A3 describes not only primary reasoning actions, but also
secondary special cases, to cover a variety of specific situations, as well. As
an unavoidable ancillary effect of this intent, activity template T-A3 exposes
a high extend.

The chapter addresses this situation by dedicating a section to each of
the three introduced phases: Sections 6.1, 6.2, and 6.3 detail Phase A, Phase
B, and Phase C, respectively. Each section, in turn, provides the according
action flow and action details of activity template T-A3. To ease referencing,
section titles reflect action labels, e.g., “A6 – Select workload”. Template
element C.1 in Appendix C on page 314 depicts the fully detailed action
flow, containing all elements of activity template T-A3.

Reasoning suite de�nition Reasoning function
compilation

Reasoning execution
Phase A Phase B Phase C

provided to

Reasoning project
Reasoning methodology

Artifacts and procedures

Roles
and

actors

Template
meta model

Provenance
information

model

IT infrastruc-
ture notion Measuring

IT infrastr.
attribute

notion

Application
proxy workl.

selection

Identify, collect, and
specify information

and facts that guide a
reasoning project.

Select method(s) and
execute reasoning
using the compiled

function.

Iteratively re�ne the
reasoning function

skeleton according to
reasoning suite de�nition.

Section 6.1 Section 6.2 Section 6.3

Prepare Compile Use

Figure 6.1: Overview of the developed process model emphasizing the focus
of Chapter 6 on the contained reasoning methodology.

6.1 Phase A – Reasoning suite definition

→ Fig. 6.1
(p. 144)

In covering the introductory alluded high extend of a reasoning intent,
activity template T-A3 consists of more than 20 elements (cf. Template

6.1. Phase A – Reasoning suite definition 145

element C.1 on page 314). Several of them are processed by differing roles
and stakeholders (cf. Section 5.1) on multiple granularity levels and deal
with different IT infrastructure components. This (potentially) causes much
efforts, concurrent and decoupled execution, and partial results. Phase
A of activity template T-A3 aims at addressing this situation by aligning
actions, by synchronizing efforts, by merging compiled (partial) results, and
by fostering reproducibility. Therefore, the phase executes nine actions that
collectively identify and formalize information and parameters that guide
a reasoning project and particularly single actions. The phase results in a
reasoning suite (T-A3:O3), and a reasoning function skeleton (T-A3:O4).

Begin of reasoning project

A1 - Prepare reasoning suite

A2 - Select reason-
ing interests

A3 - De�ne
attribute concepts

O1 - Component
type set

A8 - Document
constraints

A7 - Document
assumptions

A6 - Select
workload

O2 - Ext. compo-
nent type set

A4 - De�ne reason-
ing parameters

A5 : Model IT
Infrastructure

O3 - Reasoning
suite de�nition

A9 - Create reasoning function skeleton

O4 - Reasoning function skeleton

Proceed with Phase B

Template element 6.1: Action flow of T-A3 - Reasoning methodology - Phase
A.

Template element 6.1 depicts the action flow of Phase A. Some actions
are executed concurrently, some sequentially, to address action result reci-

146 Design cycle – Process model reasoning methodology

procity, and reasoning project versatility. Besides, the process model’s
implementation concepts (cf. Section 4.1) order actions, pursuing a cost- and
effort-efficient, goal-oriented, and focused reasoning as well as an objective-
driven refinement. This results in four steps, defining
1. reasoning project interests and goals in action T-A3:A2,
2. the reasoning function co domain in action T-A3:A3 according to 1),
3. the reasoning function domain in action T-A3:A4 according to 1) and 2),
4. supporting elements in the remaining actions according to 1), 2), and 3).

The remainder of this section explains the action details of Phase A: ac-
tion T-A3:A1 defines sentence template T-S3 that represents the introductory
alluded reasoning suite; afterwards, actions T-A3:A2 to T-A3:A8 process con-
currently variables of the sentence template; action T-A3:A9 finally deduces
the reasoning function skeleton.

6.1.1 A1 – Prepare reasoning suite

→ T.E. 6.1
(p. 145)

Sentence template T-S3 - Define reasoning suite formalizes and represents the
reasoning suite that is assembled in Phase A. Template element 6.2 depicts
the template’s grammar part. Noteworthy, most variables are identifiers, as
the corresponding information cannot be described in one word. Instead,
the identifiers refer to the documentation parts of the employed templates.

Reason about ⟨Interest⟩ of ⟨AttributeConcepts⟩ in
⟨ITInfrastructure⟩, executing ⟨Workload⟩, applying ⟨Parameters⟩,
assuming ⟨Assumptions⟩ [, providing ⟨Constraints⟩].

⟨Interest⟩ ⊧ [trend of] value | sample | delta ^ T-A3:A2

⟨AttributeConcepts⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-A3:A3

⟨ITInfrastructure⟩ ⊧ ⟨GIdentifier⟩ ^ T-A3:A5

⟨Workload⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-A3:A6

⟨Parameters⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-A3:A4

⟨Assumptions⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-A3:A7

⟨Constraints⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-A3:A8

Template element 6.2: Grammar part of T-S3 - Define reasoning suite.

6.1. Phase A – Reasoning suite definition 147

6.1.2 A2 – Select reasoning interests

→ T.E. 6.1
(p. 145)

Variable T-S3:⟨Interest⟩ specifies the general interest of a reasoning intent.
In other words, it deals with the general meaning of an entry in the reasoning
function result vector (cf. Equation 4.1), abstracting from attributes, IT
infrastructure components, and workload. Variable T-S3:⟨Interest⟩ can take
one of the five following options (EG-6.1:1):

● 1 – Value A single value of an attribute concept for a particular modifi-
cation parameter value.

● 2 – Sample A population or sample of values (↗KB p. 268) in the
context of statistical analysis.

● 3 – Delta A delta within an attribute concept.

● 4 – Delta A delta between two attribute concepts.

● 5 – Trend A trend analysis, i.e., the development of a set of parameters
or a period of time for the other four options.

Power
consumption

Number of nodes

Value

Delta

Trend

3

Performance

4

1

2Sample

Delta

5

(1) The figure explains the options using a simplifying example: the
fictitious behavior of an HPC cluster’s power consumption (dashed) and
performance (solid) is plotted against the cluster’s number of nodes
(cf. Section 2.2.2). 2 describes the power consumption distribution, 3
describes the performance delta related to the number of nodes, respec-
tively. (2) Computing the performance delta for two amounts of nodes
requires a metric scale for the performance attribute (↗KB p. 267),
because a nominal or ordinal scale wouldn’t allow this computation.

EG-6.1

Each option puts individual (strong) requirements on the quantities
and scales (EG-6.1:2) that action T-A3:A3 and T-A3:A4 set for the reasoning
function’s (co) domain. The reasons for this impact are twofold:

148 Design cycle – Process model reasoning methodology

1. Each option requires a specific scale to achieve the targeted meaning. For
instance, computing a delta mandatorily prerequisites a metric scale, as
other scales do not allow the calculation of distances (↗KB p. 267).

2. Options that put values in correlation require all involved elements to
use the same or at least comparable quantities, because a mapping of
differently scaled values is mostly difficult or even impossible [80].
For the same reasons, option selection directly affects the set of (mathe-

matical and statistical) operations reasoning can use in Phase C.
Thus, action T-A3:A2 uses decision template T-D3 – Select reasoning

interests to select an option, and places the result in T-S3:⟨Interest⟩. T-D3
consists of three parts:

● Implication table Highlights implications on quantity and scale of the
reasoning function (co) domain. Template element 6.3 depicts the
implication table.

● Decision tool Deals with scale types (↗KB p. 267). In particular, it
compares their usage characteristics, like ease of creation, and considers
the (non) applicability of statistical tools (↗KB p. 268), indicated by
✓ and ×. Template element 6.4 depicts the decision tool.

● Documentation Documents the selected option and decision reasons.
Noteworthy, documentation is not accomplished by action T-A3:A2.
Instead, action T-A3:A3 and T-A3:A4 document the decision in the
context of scale and quantity selection as discussed above.

6.1. Phase A – Reasoning suite definition 149

Opt. Explanation and implications

I1 Value – Reasoning considers a value without any processing.
↦ Since no (mathematical) operations are performed on at-

tribute concept values, action T-A3:A3 can select attribute
concept quantities and scales freely.

I2 Sample – Reasoning considers a population.
↦ Associating domain and co domain values using correlation

methods, like Regression (↗KB p. 268), requires setting a
cardinal (co) domain in action T-A3:A3 and T-A3:A4.

↦ (Mathematical) optimization (↗KB p. 262) in action T-
A3:A19 requires metric domain values.

I3 Delta – Reasoning considers the delta between attribute values
for differing reasoning parameter values.
↦ Requires action T-A3:A3 of selecting the same or at least com-

parable quantities and metric scales [375] (↗KB p. 267) for
all involved attribute concepts, because value mapping from
differing scales tends to be difficult or even impossible [80].
In any case, it might require a preparatory processing, e.g.,
“translating” the binary availability of yes/no to 0 and 100
on a percentage metric scale.

↦ Requires action T-A3:A19 to conduct at least two reasoning
runs, one for each delta operand, respectively.

I4 Trend – Reasoning performs a trend analysis (↗KB p. 268)
about a reasoning modification or configuration parameter.
↦ Applying arithmetic operations on the reasoning parame-

ter(s) requires a metric scale in action T-A3:A4 [375].
↦ A trend analysis of development over time might require

action T-A3:A19 to execute for each time step a particular
optimization or What-if analysis run, and to store a lot
more provenance values. Although trend analysis computes
a bigger data base that might provide more insights, it also
causes higher cost.

↦ Requires action T-A3:A19 to conduct several reasoning runs,
one for each trend step, respectively.

Template element 6.3: Implication table of T-D3 - Select reasoning interests.

150 Design cycle – Process model reasoning methodology

Scale type

Nominal Ordinal Metric

Equality ✓ ✓ ✓
Frequency (abs., rel., perc.) ✓ ✓ ✓
Modus ✓ ✓ ✓
Accumulated frequency (abs., rel.) ×1) ✓ ✓
Percentile ×1) ✓ ✓
Histogram ×2) ×2) ✓
Interpretation of distance ×3) ×3) ✓
Means ×4) ×4) ✓
Ease of creation5)

Expressiveness6)

Employment7)

1. Requires ordering, which nominal scales do not provide.
2. Requires distances to calculate the width of Histogram bars, which

nominal and ordinal scales do not provide.
3. Requires distances, which nominal and ordinal scales do not provide.
4. Most mean types require arithmetic operations and distances, which

nominal and ordinal scales do not provide.
5. A scale’s capability is correlated to its difficulty of creation, since

each capability poses additional demand(s) on the scale [375], e.g.,
a nominal scale requires only a (simple) assignment of objects to
a qualitative category, a metric scale requires also an (enhanced)
distance function.

6. A scale’s expressiveness is correlated to its (implicitly) provided
information, e.g., an ordinal scale describes a hierarchy between
categories and hence, is more expressive than a nominal scale.

7. The metric scale is likely the be the most frequently used one in a
reasoning project. This is of special importance in action T-A3:A12
that selects an existing model for integration: if a model integration
candidate’s scale doesn’t match the scales of the already integrated
models, it is extremely difficult or impossible to map a nominal or
ordinal scale on a metric scale.

Template element 6.4: Decision tool of template T-D3 - Select reasoning
interests.

6.1. Phase A – Reasoning suite definition 151

6.1.3 A3 – Define attribute concepts

→ T.E. 6.1
(p. 145)

Attribute decomposition allows the distributed implementation of attribute
concept instances by differing stakeholders to employ expert knowledge
where appropriate (cf. Section 5.6). This decoupled implementation urgently
prerequisites that all involved stakeholders apply (exactly) the same concept
notion, and that applied (implementation) methods result in the same
values [80]. If prerequisites are not fulfilled, (semantic) value mismatches
are likely to produce misleading or even wrong reasoning results (EG-6.2).

An obvious mismatch is the differing description of availability in yes/no
(binary nominal scale) and probability (metric scale). Mismatches more
difficult to identify describe energy efficiency in Cycles/Watt and in
FLOP/Watt, or performance in FLOP/s and in Byte/s : both descriptions
produce a natural number, but expose fundamentally differing meanings.

EG-6.2

Thus, action T-A3:A3 formalizes an attribute concept in sentence tem-
plate T-S4 - Define attribute concept to dictate attribute concept information,
to foster a common understanding, and to guide the (distributed) attribute
instance implementation in action T-A3:A12 and T-A3:A13. Template ele-
ment 6.5 depicts the grammar part of T-S4, the subsequent itemization
details its production part. The result of action T-A3:A3 becomes part of
the reasoning suite by adding T-S4:⟨Identifier⟩ to T-S3:⟨AttributeConcepts⟩.

The attribute concept ⟨Identifier⟩ describes ⟨Objectives⟩ in
⟨Quantity⟩ of ⟨ComponentTypes⟩ provided that ⟨Constraints⟩.

⟨Identifier⟩ ⊧ ⟨GIdentifier⟩ ^ T-A3:A3

⟨Objectives⟩ ⊧ [⟨UtilFunc⟩][⟨Range⟩]String
⟨UtilFunc⟩ ⊧ A utility function ^ T-D4

⟨Range⟩ ⊧ ⟨GRange⟩ ^ T-D4

⟨Quantity⟩ ⊧ ⟨GQuantity⟩at⟨Accuracy⟩ ^ T-D5

⟨Accuracy⟩ ⊧ ⟨GPercent⟩ ^ T-D5

⟨ComponentTypes⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-D6

⟨Constraints⟩ ⊧ ⟨GIdentifierSet⟩ ^ T-F3

Template element 6.5: Grammar part of T-S4 - Define attribute concept.

152 Design cycle – Process model reasoning methodology

⟨Identifier⟩ Identifies the attribute concept within the reasoning project,
and is added to the identifier set in T-S3:⟨AttributeConcepts⟩.

⟨Objectives⟩ Describes the attribute concept goal in a non-formal, textual
way. It enhances the mostly pure numeric ⟨Quantity⟩ (cf. below) to
reduce mismatch risk, e.g., two instances apply the same quantity but
differing meanings (EG-6.2), a situation the ⟨Quantity⟩ does not cover.
The optional ⟨UtilityFunction⟩ and ⟨Range⟩ elements specify an utility
function and a variable range for the attribute concept, respectively.
Decision template T-D4 introduced below guides value setting.

⟨Quantity⟩ Describes the attribute concept goal in a formal, mostly nu-
meric way by specifying a regular quantity (cf. Section 5.2.2), and the
required accuracy. The latter must be set individually for a particular
reasoning project, as accuracy appropriateness depends on the reason-
ing and attribute concept objectives (EG-6.3). Both must comply to
the constraints specified in action T-A3:A2. Decision template T-D5
introduced below guides value setting.

Bhatia et al. [45], talk about “low” error rates of <30%, Carrington
et al. [84] conceive an error range from 1-15% as good “for simple
models”, and Davis et al. [112] label a model having an average
error of 4.8% as “very good”.

EG-6.3

⟨ComponentTypes⟩ Lists component types the attribute concept can be
bound to (cf. Section 5.6.2). The list is not fully modeled, but acts as
input T-A3:O1 for action T-A3:A4 (cf. Template element 6.1). Decision
template T-D6 introduced below guides value setting.

⟨Constraints⟩ Describes (environment) factors that might influence at-
tribute concept values and hence, must be covered (EG-6.4). The
potential extend of a constraint is covered by form template T-F3
introduced below. Its field T-F3:F1 is added to the identifier set in
T-S4:⟨Constraints⟩.

An exemplary constraint for the power consumption attribute
concept could require considering the PowerNap [277] technology,
and excluding Dynamic Frequency Voltage Scaling (DFVS) [371].
This affects the selection of model integration candidates and
requires a deactivation of DFVS for measuring.

EG-6.4

6.1. Phase A – Reasoning suite definition 153

Select attribute concept objectives

Decision template T-D4 – Select attribute concept objectives processes variable
T-S4:⟨Objectives⟩, particularly the utility function and the range. Template
element 6.6 depicts its implication table, the documentation part is taken
by the respective provenance information model packages described below.

Opt. Explanation and implications

I1 Utility function – Defines the aspired and targeted value
(range) of the attribute concept (EG-6.5).
↦ Is mandatory for selecting and using optimization algorithms

in action T-A3:A17 and T-A3:A19, respectively.
↦ Utility function definition tends to be a challenging task, as

it implicitly defines a lot of situation specific semantics [9].
Hence, it should only be defined if it is about to be used in
action T-A3:A19 to save efforts.

I2 Range – Defines the relevant attribute concept value range.
↦ The concrete range affects action T-A3:A13 and T-A3:A16:

both might gain measurements using activity template T-A2.
Thus, the measuring instrument selected in action T-A2:A2
must compulsory support the defined range, since otherwise
an appropriate measuring is not possible.

↦ Usually, the value range’s extend is not only related to the
information gain, but also to the induced costs for reasoning
execution in action T-A3:A19, because the bigger the range,
the more runs for an optimization or What-if analysis might
be required.

Template element 6.6: Implication table of T-D4 - Select attribute concept
objectives.

For the performance attribute concept Time To Completion (TTC) a
utility function could formalize that “lower is better, as users [...] prefer
short response times” [239, p. 202]

EG-6.5

154 Design cycle – Process model reasoning methodology

Select attribute concept quantity

Decision template T-D5 – Select attribute concept quantity processes variable
T-S4:⟨Quantity⟩. Template element 6.7 depicts its implication table, the
documentation part is taken by the respective provenance information model
packages described below.

Opt. Explanation and implications

I1 Quantity and scale – Describes the attribute concept’s goal
in a formal, mostly numeric way. A quantity can be primary,
additive, and derived (↗KB p. 263), a scale structures or splits a
(co) domain in categories or blocks, respectively (↗KB p. 267).
↦ The more common quantity and scale are, the more likely

it is to find an appropriate model integration candidate in
action T-A3:A12.

↦ If no suitable model integration candidate exists, model
proxy creation in action T-A3:A13 might conduct measuring,
which should be feasible for the selected quantity and scale.

I2 Accuracy – Defines the maximum acceptable uncertainty of
all attribute concept instances.
↦ The accuracy level affects action T-A3:A13 and T-A3:A16:

both might gain measurements using activity template T-A2.
Thus, the measuring instrument selected in action T-A2:A2
must compulsory support the defined accuracy level, since
otherwise an appropriate measuring is not possible. Besides,
the accuracy level and the difficulty of measuring are directly
related (cf. Section 5.5).

↦ Normally, the accuracy level influences the effectiveness of
an optimization intent [47] in action T-A3:A19.

Template element 6.7: Implication table of T-D5 - Select attribute concept
quantity.

6.1. Phase A – Reasoning suite definition 155

Select IT infrastructure component types

Decision template T-D6 – Select IT infrastructure component types processes
variable T-S4:⟨ComponentTypes⟩. Template element 6.8 depicts its impli-
cation table, its documentation part is taken by the respective provenance
information model packages described below. The resulting set of component
types is stored in T-A3:O1.

Opt. Explanation and implications

I1 Source of component type set – Describes the sources of
the type set.
↦ If there is a database storing information regarding the

considered IT infrastructure, action T-A4:A2 should extract
and import component types to reduce (modeling) costs.

I2 Component type set – Describes the IT infrastructure com-
ponent types the attribute concept is to be considered for.
↦ The component type set should be preferably small, because

all contained IT infrastructure component types, that are
potentially further extended in action T-A3:A4, must be
modeled in action T-A3:A5. Hence, the bigger the set, the
higher might modeling costs be.

↦ The component type set should be preferably small, because
potentially for every set entry, action T-A3:A12 must select a
model integration candidate, or action T-A3:A13 must create
a model proxy function. Hence, the bigger the set, the higher
might (modeling) costs be.

↦ The extend of selected IT infrastructure component types
might constrain reasoning options in action T-A3:A19, since
action T-A3:A4 can define modification parameters only for
provided component types. Thus, the smaller the component
type set, the less modification parameters might be available.

↦ The iterative reasoning function refinement in Phase B and
particularly the definition of iteration objectives in action T-
A3:A10 are guided by the selected component type hierarchy.

Template element 6.8: Implication table of T-D6 - Select IT infrastructure
component types.

156 Design cycle – Process model reasoning methodology

Document attribute concept constraints

Form template T-F3 - Document attribute concept constraints documents a
single constraint that is of importance for an attribute concept, e.g., (not)
to consider a certain functionality or configuration parameter (EG-6.4 on
page 152). Field T-F3:F1 is added to the identifier set in T-S4:⟨Constraints⟩.
Template element 6.9 depicts the form fields of T-F3.

F1 – Unique ID

Filling objectives and rules – Uniquely identify the form template
instance for referencing, especially in T-S4:⟨Constraints⟩.

F2 – Constraint

Filling objectives and rules – Explicitly state a particular configu-
ration, prerequisite, or aspect that influences the attribute concept,
e.g., (de) activating or (not) omitting a specific technology. The
description should by preferably clear and detailed to address the
diversity of involved stakeholders and to foster applying the same
setting within a reasoning project. Constraint formulation must
avoid conflicts with global reasoning project constraints specified
in action T-A3:A8.

Template element 6.9: Form of T-F3 - Document attribute concept constraints.

Attribute concept provenance

Provenance of attribute concepts and particularly of sentence template T-
S4 is realized by the provenance information model package attributes.
Figure 6.2 depicts its structure that reflects IT infrastructure attribute
decomposition (cf. Section 5.6), and the twofold attribute instance imple-
mentation by selecting an existing model (action T-A3:A12) or creating a
model proxy (action T-A3:A13). Classifiers are described below.

AttributeConcept An attribute concept according to the notion intro-
duced in Section 5.6. The class reflects sentence template T-S4
as follows: the objectives, utilFunc, and range fields use clas-
sifiers of the datatype package (cf. Section 5.3.2) to represent vari-

6.1. Phase A – Reasoning suite definition 157

able T-S4:⟨Objectives⟩; the fields quantity and minAccuracy repre-
sent variable T-S4:⟨Quantity⟩; the multiplicity of field constraints
reflects the optional character of variable T-S4:⟨Constraints⟩; the class
AttributeInstance covers variable T-S4:⟨ComponentTypes⟩ as de-
scribed below.

AttributeInstance An attribute instance according the notion introduced
in Section 5.6. A composition association (↗KB p. 271) to the
realized AttributeConcept underpins the attribute decomposition
(cf. Section 5.6.1), as an attribute instance is meaningless without
the attribute concept it implements. The label field summarizes
the attribute instance, the description field outlines the applied
realization approach. The class is marked abstract to emphasize
that an attribute instance is either an existing model (selected in ac-
tion T-A3:A12), or a model proxy function (created in action T-A3:A13).
The two sub classes ExistingModel and ModelProxyFunction de-
scribed below address this distinction. For both, the attribute value
calculating formula is stored in the implementation field, being of
Formula type provided by the datatype package (cf. Section 5.3.2).
The accuracy field documents the achieved accuracy of the attribute
instance, which has to be equal or above the minAccuracy value of
the associated AttributeConcept object. The field boundTo covers
variable T-S4:⟨ComponentTypes⟩ and references all IT infrastructure
components and types the attribute instance is bound to (cf. Sec-
tion 5.6.2).

ExistingModel An existing model selected in action T-A3:A12. The reasons
field documents selection reasons, being of the type Selection from
the datatype package (cf. Section 5.3.2).

ModelProxyFunction A function substituting a model in case no existing
model is suitable as attribute concept instance. The class is marked
abstract to emphasize that action T-A3:A13 can create a model proxy
based on measuring or based on aggregation.

MeasuredProxy An attribute instance derived from measurements. This
means that the formula, which is stored in the super class field
implementation, is based on measurements that were gained by the
associated measuring suite (cf. Section 5.5), stored in the source field.

AggregatedProxy An attribute instance based on aggregation. This means
that the formula, which is stored in the super class field implementation,

158 Design cycle – Process model reasoning methodology

describes the aggregation of those attribute instance values the com-
position association references.

AttributeInstanceValue A single attribute instance value, created at a
particular point in time. It is extracted from the AttributeInstance
to enable the consideration of multiple values for one instance, e.g.,
if T-S3:⟨Interest⟩ is set to sample. Storing the point in time enables
provenance of job cancellation and considering development over time
as required by NFR-5 and NFR-6, respectively.

attributes

id : UniqueId
identi�er : String
objectives : String
utilFunc : Formula [0..1]
range : Range [0..1]
quantity : Quantity
minAccuracy : �oat
constraints : Constraint [0..*]

AttributeConcept

instances

AggregatedProxy

source : MeasuringSuite
MeasuredProxyvalue : double

createdAt : Timestamp

AttributeInstanceValue

ModelProxyFunction
reason : Selection

ExistingModel
id : UniqueId
label : String
description : String
accuracy : double
boundTo : Component [1..*]
implementation : Formula

AttributeInstance

realizes
1

0..*

Figure 6.2: The provenance information model’s attributes package, group-
ing classifiers that describe quantitative IT infrastructure attributes.

6.1.4 A4 – Define reasoning parameters

→ T.E. 6.1
(p. 145)

Guided by decisions made in action T-A3:A2, action T-A3:A4

1. formalizes required reasoning parameter information, and
2. potentially extends the set of considered IT infrastructure component

types T-A3:O1 (cf. above) to T-A3:O2, e.g., if a modification concerns a
component type that is not yet contained.
Sentence template T-S5 - Define reasoning parameter formalizes the al-

luded reasoning parameter information. Template element 6.10 depicts its

6.1. Phase A – Reasoning suite definition 159

grammar part, its production part is detailed below. Documentation of
sentence template T-S5 employs classifiers of the provenance information
model package reasoningproject, which is explained in Section 5.3.4.

Reasoning parameter ⟨Identifier⟩ describes ⟨Objectives⟩ given in
⟨Quantity⟩.

⟨Identifier⟩ ⊧ ⟨GIdentifier⟩ ^ T-A3:A4

⟨Objectives⟩ ⊧ ⟨ParameterType⟩String ^ T-A3:A4

⟨ParameterType⟩ ⊧ Configuration|Modification ^ T-D7

⟨Quantity⟩ ⊧ ⟨GQuantity⟩[within⟨Range⟩] ^ T-D8

⟨Range⟩ ⊧ ⟨GRange⟩ ^ T-D8

Template element 6.10: Grammar part of T-S5 - Define reasoning parameter.

⟨Identifier⟩ Identifies the reasoning parameter within the reasoning project,
and is added to the identifier set in T-S3:⟨Parameters⟩.

⟨Objectives⟩ Describes the reasoning parameter’s goal in a non-formal,
textual way. It aims at enhancing the mostly pure numeric ⟨Quantity⟩
variable (cf. below) to reduce mismatch risk, e.g., two instances apply
the same quantity but apply differing meanings (EG-6.2) what is not
covered by the ⟨Quantity⟩ variable. Besides, it labels the reasoning
parameter as modification or configuration parameter (cf. Section 4.1)
in variable ⟨ParameterType⟩. Decision template T-D7 introduced below
guides value setting.

⟨Quantity⟩ Describes the reasoning parameter’s goal in a formal, mostly
numeric way. The variable specifies a regular quantity (↗KB p. 263),
and optionally a value range. The latter must be set individually for a
particular reasoning project, as range appropriateness depends on the
reasoning and attribute concept objectives. Decision template T-D8
introduced below guides value setting.

Select reasoning objectives

Decision template T-D7 – Select reasoning parameter objectives covers a rea-
soning parameter’s objectives and processes variable T-S5:⟨ParameterType⟩.

160 Design cycle – Process model reasoning methodology

Template element 6.11 depicts the template’s implication table, documen-
tation employs classifiers of the provenance information model package
reasoningproject, which is explained in Section 5.3.4.

Opt. Explanation and implications

I1 Parameter type – Defines the reasoning parameter being a
modification or configuration parameter (cf. Section 4.1).
↦ Action T-A3:A10 respects only modification parameters to

specify the goals of an iteration. Thus, each additional mod-
ification parameter tends to require an additional iteration
in the reasoning function compilation process in Phase B.

↦ Although action T-A3:A19 can theoretically apply optimiza-
tion and What-if analysis approaches on both, modifica-
tion and configuration parameters, the latter’s fixed nature
(cf. Section 4.1) renders this intent futile. Hence, if one of
the alluded reasoning tools should be used, the reasoning
parameter must be a modification parameter.

Template element 6.11: Implication table of T-D7 - Select reasoning parameter
objectives.

Select reasoning parameter quantity

Decision template T-D8 – Select reasoning parameter quantity processes vari-
able T-S5:⟨Quantity⟩. Template element 6.12 depicts the template’s implica-
tion table, documentation employs classifiers of the provenance information
model package reasoningproject, which is explained in Section 5.3.4.

6.1. Phase A – Reasoning suite definition 161

Opt. Explanation and implications

I1 Quantity and scale – Describes the reasoning parameter’s
goal in a formal, mostly numeric way (↗KB p. 263).
↦ The more common quantity and scale are, the more likely it is

that action T-A3:A12 finds an appropriate model integration
candidate, which is able to process the reasoning parameter.

↦ If no suitable model integration candidate exists, model
proxy creation in action T-A3:A13 might conduct measuring,
which should be feasible for the selected quantity and scale.

I2 Range – Defines valid or relevant minimum and maximum
values of the reasoning parameter.
↦ Setting no range renders plausibility checks in action T-

A3:A14 very difficult, as the requirements are not clear, and
especially the extremal values cannot be analyzed for odd
model behavior. For instance, if an integrated model predicts
cluster performance for up to 100 nodes, but reasoning
requires covering 200 nodes, the model might not be capable
of and particularly might compute misleading results.

↦ A big range might increase reasoning execution costs in
action T-A3:A19, because more values must be examined.

Template element 6.12: Implication table of T-D8 - Select reasoning parameter
quantity.

6.1.5 A5 – Model IT infrastructure
→ T.E. 6.1
(p. 145)

Action T-A3:A5 assembles a model of the considered IT infrastructure based
on the notion explained in Section 5.4. Guided by the reasoning objectives
driven approach (cf. Section 4.3) and the required simplicity (cf. NFR-7), it
- details only IT infrastructure elements and aspects that are important for
the reasoning project as specified in the IT infrastructure component type
list T-A3:O2, created by action T-A3:A3 and T-A3:A4,

- does explicitly not aim at describing the IT infrastructure as detailed and
extensively as possible,

- does not decide about or set the model granularity level on its own
authority, but uses the provided specifications.

162 Design cycle – Process model reasoning methodology

In doing so, action T-A3:A5 performs two tasks, namely it creates an UML
object diagram, and it places this a UML object diagram in form template to
ease its referencing.

Create UML object diagram

Activity template T-A4 - Model IT infrastructure formalizes the IT infrastruc-
ture modeling activity. It results in an UML object diagram T-A4:O3 (↗KB
p. 271) that uses classifiers of the provenance information model package
itinfrastructure (cf. Section 5.4.5). Template element 6.13 depicts the
activity template’s action flow and illustrates its main approach, i.e., iterat-
ing the given IT infrastructure component type list and expand the model
accordingly. The template’s action details are described below:

D2 - Unmodeled components
of the same type

D3 - All component types covered?

D1 - Information can be imported

[no]

[yes] [no]

[yes]

[no]

A5 - Analyze completeness of IT infrastructure model

(O2 - Extended component type set)
O1 - Component type set

A1 - Select component to model

A2 - Analyze existing databases

O2 - Model of selected component(s)

A6 - Propagate re�nement to
all modeled components

O3 - Detailed IT infrastructure object diagram

A3 - Import using component type A4 - Model component manually

[yes]

Template element 6.13: Action flow of T-A4 - Model IT infrastructure.

T-A4:A1 Selects the next component type or slice of the IT infrastructure to
model in the current iteration. Selection is applied on the remaining

6.1. Phase A – Reasoning suite definition 163

set of un-modeled component types that have not been addressed
by previous iterations. If it is the first iteration, certainly all IT
infrastructure component types provided in T-A3:O2 can be selected.
The selection is strongly driven by the reasoning project’s overall goals
and the black box approach (cf. Section 5.4.3).

T-A4:A2 Screens existing data sources for information that could be used
for interfacing with third-party models (cf. Section 5.4.2). T-A4:D1
processes the binary yes/no result about availability of (partial) data.

T-A4:A3 In case T-A4:D1 validates to yes, the action imports information
about the considered IT infrastructure components into the provenance
information model, using the component type as linking element
(cf. Section 5.4.2). The theoretical infinite set of potential data sources,
ranging from wide-spread GLUE or CIM databases (cf. Section 2.2.3)
to proprietary tools, renders import implementation a highly casuistic
task and hence, no generic import algorithm is provided.

T-A4:A4 In case T-A4:D1 validates to no, the currently iterated component(s)
is (are) modeled manually.

T-A4:O2 Stores results of actions T-A4:A3 and T-A4:A4 for further processing.

T-A4:A5 Screens the modeled IT infrastructure for completeness in general
and for components having the same type as the currently iterated
component(s), in particular. The screening result is processed by
T-A4:D2 and T-A4:D3.

T-A4:A6 In case T-A4:D2 validates to yes, there are IT infrastructure compo-
nents left that are not represented in the so far created model but are
of the same type as the currently iterated component(s). The action
executes Algorithm 1 (cf. Section 5.4.3) for propagating the modeling
results of the current iteration to the IT infrastructure object diagram.

T-A4:D3 Triggers an additional iteration if component types remain un
modeled.

T-A4:O3 The activity finishes with a provenance information model aug-
mented by objects describing the considered IT infrastructure.

Place object diagram in form template

Form template T-F4 - Document IT infrastructure model, depicted in Template
element 6.14, acts as container for the UML object diagram activity tem-
plate T-A4 creates, to enable its referencing in variable T-S3:⟨ITInfrastructure⟩.

164 Design cycle – Process model reasoning methodology

F1 – Unique ID

Filling objectives and rules – Uniquely identify the IT infrastructure
model for referencing, especially in T-S3:⟨ITInfrastructure⟩.

F2 – IT infrastructure model

Valid data – UML object diagram
Justification – The form template acts only as container for an
IT infrastructure UML object diagram to enable referencing the
diagram.
Filling objectives and rules – The UML object diagram created
by activity template T-A4. The UML object diagram models the
considered IT infrastructure according to the component type set
defined in T-A3:O2.

Template element 6.14: Form of T-F4 - Document IT infrastructure model.

6.1.6 A6 – Select workload

→ T.E. 6.1
(p. 145)

Workload and its generated load (cf. Section 2.3.3) tend to have a strong
impact on IT infrastructure attributes (cf. Section 2.4) and hence, on a
reasoning project. Besides, most model integration candidates selected
in action T-A3:A12 call in some way for (work)load input parameters [41].
Different workload classes and a variety of configurations (cf. Section 2.3)
prohibit using the workload, but require a thorough selection.

Thus, action T-A3:A6 employs decision template T-D9 – Select workload
to select suitable workload. T-D9 addresses the fact that a certain work-
load’s suitability strongly depends on the individual intent of a reasoning
project [34], and that each class and configuration has several implications on
and benefits for a reasoning project’s statements, as subsequently described.
Decision template T-D9 consists of three elements:

Implication table Considers the workload classes Application and Bench-
mark (cf. Section 2.3.1), as depicted in Template element 6.15.

Decision tool Reflects the variety and individual suitability of workload
options by targeting at a set of potential options and not on a single
one, like most of the other decision tools in this thesis. It achieves this
objective by iteratively applying reduction rules on option sets in a

6.1. Phase A – Reasoning suite definition 165

decreasing abstraction level. For instance, it starts with the general
classes Application and Benchmark, removes Application, and proceeds
with the options of the remaining Benchmark class. Three aspects
recommend using set theory for workload selection:

1. Small set sizes make it clear and intuitive to use;
2. Adjusting option sets and/or reduction rules allows customization;
3. The alluded variety calls for flexibility, which is provided by set

theory, but not by other approaches, like decision trees.

The decision tool provides for several situations the reduction rule(s)
and the sets to apply the reduction rule(s) on, as depicted in Template
element 6.16 and 6.17.

Documentation Uses the provenance information model package workload
and performs two tasks, namely it creates an UML object diagram,
and it places this a UML object diagram in form template to ease its
referencing.

(1) Reasoning could use the FLOP/s values computed by the High
Performance LINPACK (HPL) benchmark (cf. Appendix B). (2) An
instruction is not the same on a RISC and CISC machine (cf. Section 2.2.1)
and hence, “instructions per second” cannot be compared.

EG-6.6

166 Design cycle – Process model reasoning methodology

Opt. Explanation and implications

I1 Application – Covers production software executed on the IT
infrastructure (cf. Section 2.3.1).
↦ Action T-A3:A18 might require an abstract workload model

of the application for load computation (cf. Section 2.3.3).
↦ Model proxy function compilation in action T-A3:A13 or

physical load derivation in action T-A3:A18 might require
the application’s execution.

↦ The non-standardized nature of most applications prohibits
a comparison with other IT infrastructures in Phase C.

I2 Benchmark – Real-world computing task emulator (cf. Sec-
tion 2.3.2).
↦ Action T-A3:A18 might require an abstract workload model

of the benchmark for load computation (cf. Section 2.3.3).
↦ Model proxy function compilation in action T-A3:A13 or

physical load derivation in action T-A3:A18 might require
the benchmark’s execution.

↦ Enables the use of benchmark results for reasoning in ac-
tion T-A3:A19 (EG-6.6:1).

↦ Comparison of benchmark results with other IT infrastruc-
tures, e.g., in the Top500 list, requires benchmark execution
in action T-A3:A13 and T-A3:A18 to use the same/predefined
compiler and execution configurations, and ensuring of com-
parability (EG-6.6:2).

↦ The urgent need for thorough documentation of used pa-
rameters and configurations (cf. Section 2.3.2), might cause
additional effort in action T-A3:A13 and T-A3:A18.

Template element 6.15: Implication table of T-D9 - Select workload.

6.1. Phase A – Reasoning suite definition 167

The reduction rule set ⊙ is applied on the available workload options,
resulting in the final set of workload options to chose. Reduction rule
justifications base on workload notion introduced in Section 2.3.2.

Classes = {Application,Benchmark}
Benchmarks = {system, partial, combined, kernel, synthetic}

ConcreteBenchmarks = Defined according to benchmark classes

Compare results to other IT infrastructures

1. ⊙ ∪ {Classes ∖Application}
2. ⊙ ∪ {ConcreteBenchmarks ∖Not wide-spread benchmarks}

Result comparison requires “standardized” workload, which is only
achieved by benchmarks (→ 1). They must also be widespread, since
isolated used benchmarks provide no data base (→ 2). If a concrete
workload is postulated, like the HPL benchmark for the Top500
list [128], selection process chooses the dictated workload and stops.
Focus on specific domain

1. ⊙ ∪ {Benchmarks ∖ synthetic}

For reasoning projects focusing on a specific domain, e.g., HPC cluster
optimization for CFD applications, synthetic benchmarks are removed,
as they do not describe an application domain sufficiently (→ 1).
Quality criteria

1. ⊙ ∪ {ConcreteBenchmarks ∖Not well-documented benchmarks}

Especially for benchmarks there is the urgent need to document con-
figuration and compiler parameters, so all benchmarks not providing
these information are removed (→ 1).
○ Load characteristics – Load generation recommends synthetic
benchmarks, as they consist of a variety of instructions, which
mostly results in a balanced and general component load.
⊙ ∪ {Benchmarks ∖ kernel}

○ IT infrastructure components – Employed benchmarks should
stress (at least) those IT infrastructure components that are relevant
to the reasoning project as defined in T-A3:O2. Hence, either system,
partial, or combined benchmarks are suitable.

Template element 6.16: Decision tool of template T-D9 - Select workload for
workload class selection.

168 Design cycle – Process model reasoning methodology

○ Heterogeneous IT infrastructures – As Section 2.2 explains,
there is a multitude of IT infrastructures. Hence, all concrete
benchmarks that are not executable on the IT infrastructure at
hand must be removed.

○ Attribute vector values – In case the output of a benchmark
should be used in the attribute vector for reasoning, it must be
ensured that the benchmark’s statements, meanings, and scale
match the pursued objective (EG-6.7:1).

○ Proxy application – Whenever a benchmark should proxy an
application, e.g., because the application binary is not available, the
benchmark should describe the application as accurate as possible,
preferably on each creation layer (cf. Section 2.3.2, EG-6.7:2). In
any case, checklist template T-C3 (cf. Template element 5.7) must
be fulfilled.

Template element 6.17: Decision tool of template T-D9 - Select workload for
concrete benchmark selection.

(1) The Whetstone benchmark [106] results in mega Whetstone instruc-
tions per second (MWIPS), the LINPACK benchmark [125] results in
Floating Point Operations per Second (FLOP/s). Both can be used to
compare the performance of two systems, respectively. In contrast, a
MWIPS number and a FLOP/s number cannot be compared. When
using the Whetstone benchmark, IT infrastructure characteristics must
be respected, because instructions are different for CISC and RISC ma-
chines, and hence, “comparing the instructions of a CISC machine and
a RISC machine is similar to comparing Latin and Greek” [122]. The
mandatory match also applies for the workload characteristics: (2) due
to on-chip caches and optimizing compilers, small benchmarks tend to
lose their predictive value for big, memory consuming applications, since
the entire benchmark fits in the local cache [407].

EG-6.7

6.1. Phase A – Reasoning suite definition 169

Create UML object diagram

The documentation part of decision template T-D9 uses the provenance
information model package workload. Figure 6.3 depicts its structure, its
classifiers are detailed below.

key : WorkloadCon�gKey
value : Object

WorkloadCon�g

<<enumeration>>
WorkloadCon�gKey

workload

id : UniqueId
label : String
description : String

Workload

Application

SystemBenchmark
PartialBenchmark
CombinedBenchmark

<<enumeration>>
BenchmarkFocus

KernelBenchmark
SyntheticBenchmark

<<enumeration>>
BenchmarkBuildingBlocksBenchmark

focus

buildingBlocks

Figure 6.3: Classifiers of the provenance information model that represent
and describe used workload and configuration parameters, respectively.

Workload A workload according to the notion explained in Section 2.3.
The label and description fields store its name and summarize
characteristics relevant to the reasoning project, respectively. The class
is marked abstract to stress that workload is either an Application
or a Benchmark. The version field reflects the (potential) great
importance of the used parallel solver or tool version [304].

Application An application according to the notion explained in Sec-
tion 2.3.1. The huge amount of potential applications and their char-
acteristics (cf. Section 3.2.1) bans a detailed modeling. Instead, sub
classing can be used to augment the class by individual information
about the application.

Benchmark A benchmark according to the notion explained in Section 2.3.2.
The benchmark characteristics focus and building blocks are represented
by the fields focus and buildingBlocks. Both use values provided by
the enumerations BenchmarkFocus and BenchmarkBuildingBlocks,
respectively.

WorkloadConfig A single configuration parameter used for workload cre-
ation, compilation, and execution. The workload configuration is
modeled as key value store to achieve high flexibility. The key is a

170 Design cycle – Process model reasoning methodology

WorkloadConfigKey to foster type safety, the value is an Object to
underpin the variety of stored values. WorkloadConfig objects are not
associated to a Workload, but to a ReasoningSuite (cf. Section 5.3.4)
or a MeasuringSuite (cf. Section 5.5.2) to support differing configu-
rations for the same workload according to the specific situation.

Place UML object diagram on form template

Form template T-F5 - Document workload model acts as container for the
workload UML object diagram to enable its referencing in variable T-
S3:⟨Workload⟩. Template element 6.18 depicts the form template.

F1 – Unique ID

Filling objectives and rules – Uniquely identify the workload for
referencing, especially in T-S3:⟨Workload⟩.

F2 – Workload model

Valid data – UML object diagram
Justification – The form template acts only as container for a
workload UML object diagram to enable the diagram’s referencing.
Filling objectives and rules – The UML object diagram that models
the workload selected by decision template T-D9.

Template element 6.18: Form of T-F5 - Document workload model.

6.1. Phase A – Reasoning suite definition 171

6.1.7 A7 – Document assumptions

→ T.E. 6.1
(p. 145)

An assumption is understood as a statement that is accepted without proof
and regarded as fundamental to a subject (EG-6.8:1). Although as little as
possible assumptions should be made (Occam’s razor) [84], assumptions are
an essential part of modeling and are made by existing model integration
candidates that might be selected in action T-A3:A12 (EG-6.8:2).

(1) Assumptions are fundamental in several ways, e.g., microeconomics
(usually) assumes perfect competitive markets. Also the realm of com-
puter science extensively uses assumptions, e.g., about job dependencies
in workflows [437], or about preciseness of resource information for Grid
schedulers [416] while modeling performance of parallel computing on
non-dedicated heterogeneous networks of workstations [425]. (2) Pfeif-
fer et al. base their modeling on the assumption that “application run
time can be approximated as a linear combination of inverse speeds and
latencies mostly obtained from microkernels” [319, p. 1].

EG-6.8

Assumption making and in particular the quality of made assumptions
heavily depend on experience, available information, and individual efforts.
Furthermore, the (fast) development in computer science might antiquate a
written and implicitly limited set of assumptions very quickly. This renders
the definition of generically applicable rules or processes how to make a (good)
assumption difficult and questionable. Nevertheless, ensuring reproducibility
and a profound scientific mode of operation require thorough documentation
of made assumptions [80, 178], especially because they represent aspects
that are normally taken granted and are seldom made explicit. A clear
documentation also helps and eases (nearly) all activities of a reasoning
project, because difficult or expensive actions can be omitted since they are
rendered unnecessary by a made assumption.

Though, action T-A3:A7 dictates the documentation of a particular as-
sumption using form template T-F6 - Document reasoning project assumption.
The assumption’s identifier in T-F6:F1 is added to the identifier set in T-
S3:⟨Assumptions⟩, the employed provenance information model classifiers
are part of the reasoningproject package and explained in Section 5.3.4.
Template element 6.19 depicts form template T-F6.

172 Design cycle – Process model reasoning methodology

F1 – Unique ID

Filling objectives and rules – Uniquely identify the assumption for
referencing, especially in T-S3:⟨Assumptions⟩.

F2 – Assumption summary

Filling objectives and rules – (Shortly) summarize the assumption,
e.g., “considered modifications can be executed”, to ease its use.
Depending on the assumption’s extend, field T-F6:F2 is optional.

F3 – Assumption

Filling objectives and rules – Describe the made assumption as
extensive and clear as possible, and explain it in a way that is
directly testable [178].

Template element 6.19: Form of T-F6 - Document reasoning project assump-
tion.

6.1.8 A8 – Document constraints

→ T.E. 6.1
(p. 145)

Constraints state rules that span an entire reasoning project, e.g., limiting
the set of model integration candidates to a specific type, or negating license
fees. In analogy to requirements engineering, constraints can be seen as
non-functional requirements on the reasoning project. This important role
calls for a thorough constraint documentation, because they might (heavily)
influence the entire reasoning project and in particular the reasoning function
compilation process in Phase B.

Though, action T-A3:A8 dictates the documentation of a particular con-
straint using form template T-F7 - Document reasoning project constraint.
The constraint’s identifier in T-F7:F1 is added to the identifier set in T-
S3:⟨Constraints⟩, the employed provenance information model classifiers
are part of the reasoningproject package and explained in Section 5.3.4.
Template element 6.20 depicts form template T-F7.

6.1. Phase A – Reasoning suite definition 173

F1 – Unique ID

Filling objectives and rules – Uniquely identify the constraint for
referencing, especially in T-S3:⟨Constraints⟩.

F2 – Constraint summary

Filling objectives and rules – (Shortly) summarize the constraint,
e.g., “integrate only open-source models”, to ease its use. Depending
on the constraint’s extend, field T-F7:F2 is optional.

F3 – Constraint

Filling objectives and rules – Describe the constraint as extensive
and clear as possible.

Template element 6.20: Form of T-F7 - Document reasoning project constraint.

6.1.9 A9 – Create reasoning function skeleton

→ T.E. 6.1
(p. 145)

Action T-A3:A9 extracts information from sentence templates T-S4 and T-S5
to create the reasoning function skeleton depicted in Equation 6.1.

f(mod1, ...,modn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Set 1
Modification
parameters

Template T-S5

, conf1, ..., confm
´¹¹¹¸¹¹¹¶

Set 2
Configuration
parameters

Template T-S5

) =
⎛
⎜
⎝

attr1

...
attrz

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Vector

Attribute
concepts

Template T-S4

(6.1)

Set 1 Contains the modification reasoning parameters defined in sentence
template T-S5 (cf. Template element 6.10). Variable quantity, scale,
and domain are provided by the template, as well.

Set 2 Contains the configuration reasoning parameters defined in sentence
template T-S5 (cf. Template element 6.10). Variable quantity, scale,
and domain are provided by the template, as well.

Vector Contains the IT infrastructure attribute concepts defined in sentence
template T-S4 (cf. Template element 6.5).

174 Design cycle – Process model reasoning methodology

6.2 Phase B – Reasoning function
compilation

→ Fig. 6.1
(p. 144)

One of the research’s main ideas is the iterative creation of an individual
reasoning function, beginning with a coarse-grained function skeleton that
is refined until the reasoning function covers all aspects required by the
reasoning suite T-A3:O3 (cf. Section 4.1).

Phase B of activity template T-A3 formalizes this iterative assembly,
called compilation, of an individual reasoning function. Strictly guided by
the reasoning suite created in Phase A, Phase B iteratively transforms the
given reasoning function skeleton (T-A3:O4) into a full reasoning function
(T-A3:O9). Besides, Phase B augments the provenance information model
with documentation about the reasoning function compilation process (T-
A3:O10). Template element 6.21 depicts the action flow of Phase B and
emphasizes the iterative refinement.

A single iteration consists of three phases:
1. Action T-A3:A10 selects one or multiple aspects of the reasoning suite

that are not yet covered by the reasoning function. Besides, the action
investigates aspect interdependency and implications.

2. Actions T-A3:A11 to T-A3:A15 execute the iteration, expand the reasoning
function, and document partial results.

3. Action T-A3:A16 evaluates the reasoning function and triggers an addi-
tional iteration in case the reasoning function does not completely comply
to the reasoning suite.
The remainder of this section provides the action details of Phase B.

6.2. Phase B – Reasoning function compilation 175

<<structured>>
Execute iteration

D1 - An appropriate
model exists

D3 - Covers O5 completely

D2 - Model behavior
validates successfully

D4 - O8 covers O3
and O4 completely

[narrow range]

[modify function]
[no]

[no]

[yes]

[no]

Coming from Phase A

O5 - Iteration objectives

A11 - Operationalize single objective

O7 - (Mathematical) model

[yes]

O9 - Complete reasoning
function

O10 - Detailed provenance infor-
mation model object diagram

A16 - Evaluate reasoning function

O8 - Re�ned reasoning function

[yes]

A15 - Incorporate iteration results

O6 - sub set of O5

A12 - Select existing model
[yes]

A13 : Create
Model Proxy

A10 - De�ne iteration objectives

A14 - Examine
model behavior

[no]

Proceed with Phase C

Template element 6.21: Action flow of T-A3 - Reasoning methodology - Phase
B.

176 Design cycle – Process model reasoning methodology

6.2.1 A10 – Define iteration objectives

→ T.E. 6.21
(p. 175)

Action T-A3:A10 prepares an iteration’s execution by stating objectives and
rules that guide the accomplishment of action T-A3:A11 to T-A3:A15. In doing
so, it extracts a subset of the reasoning suite, formalizes these information in
sentence template T-S6 - Define iteration objectives, and places it in T-A3:O5.
Template element 6.22 depicts the sentence template’s grammar part, the
list below provides the sentence template’s production part.

Iteration ⟨Objectives⟩ of ⟨Elements⟩ in the reasoning function.

⟨Objectives⟩ ⊧ adds∣ ^ T-D10

improves accuracy (by|to)⟨GPercent⟩
⟨Elements⟩ ⊧ ⟨Parameter⟩∣⟨AttributeConcept⟩∣

⟨Elements⟩
⟨Parameter⟩ ⊧ ⟨Modification⟩∣⟨Configuration⟩

⟨Modification⟩ ⊧ ⟨GIdentifierSet⟩
⟨Configuration⟩ ⊧ ⟨GIdentifierSet⟩

⟨AttributeConcept⟩ ⊧ ⟨GIdentifierSet⟩

Template element 6.22: Grammar part of T-S6 - Define iteration objectives.

⟨Objectives⟩ Describes the iteration’s objectives, being either adding an
element to the reasoning function, or improving the accuracy of an
already existing one to or by the specified value. Theoretically, an
arbitrary set of objectives can be selected from the reasoning suite for
a particular iteration. In contrast, objective ordering is required to
strictly respect the component type hierarchy of the IT infrastructure
model in order not to contradict the applied top-down refinement and
evaluation (cf. Section 4.3, EG-6.9). Decision template T-D10 – Select
iteration objectives tackles this problem by detailing potential implica-
tions. Template element 6.23 depicts the template’s implication table,
its documentation employs classifiers of the provenance information
model package reasoningproject explained in Section 5.3.4.

⟨Elements⟩ Contains identifiers of processed attribute concepts, or modifi-
cation and configuration parameters, given by T-S3:⟨AttributeConcepts⟩
and T-S3:⟨Parameters⟩, respectively.

6.2. Phase B – Reasoning function compilation 177

Opt. Explanation and implications

I1 Extend function (co) domain – Add parameter(s) or at-
tribute vector entries within the iteration.
↦ Processing all elements that are likely to be covered by 1)

the same model integration candidate selected in action T-
A3:A12, or 2) the same measuring system used in action T-
A3:A13, increases efficiency (cf. NFR-8), because for all added
elements the same artifacts can be used.

↦ Processing all elements, action T-A3:A16 can evaluate using
the same measuring system, reduces cost, as there is no need
to execute measuring activity T-A2 several times. Instead,
the assembled measuring setup can be reused.

↦ The reasoning function’s partial refinement, the top-down
driven incorporation of refinements in action T-A3:A15, and
the immediate evaluation of those refinements in action T-
A3:A16 require compliance to the component type hierarchy
defined in T-A3:O2. Otherwise, the partial replacement of
reasoning function elements, being one of the main design
concepts (cf. Section 4.2), is not possible (EG-6.9).

Template element 6.23: Implication table of T-D10 - Select iteration objectives.

Example EG-4.3 iteratively refines the reasoning function skeleton f(n) =
9.4 × n + 4 that deals with HPC cluster power consumption. A reasoning
suite could require the final reasoning function to compute the cluster’s
power consumption depending on the CPU clock speed, and it could
dictate the component types node > CPU. If the iteration objectives do
not respect this hierarchy, iterative replacement doesn’t work: a valid
iteration objective could be “Refine 9.4 by a model that describes the
power consumption of one node at load l”. It is valid, since the fixed value
and the replacing model are on the same granularity level, i.e., the node.
The next iteration, in turn, would refine the used model by incorporating
CPU clock speed. In contrast, an invalid iteration objective would be
“Refine the coarse-grained reasoning function by a CPU model”. It is
invalid, as it skips the cluster, and values computed by the refinement
cannot reasonably be compared with the replaced value 9.4.

EG-6.9

178 Design cycle – Process model reasoning methodology

6.2.2 A11 – Operationalize single objective

→ T.E. 6.21
(p. 175)

In contrast to action T-A3:A10 that rather strategically selects iteration
objectives and examines implications, action T-A3:A11 substantiates a single
objective contained in T-A3:O5. The action operationalizes the objective by
detailing the refinement intent and specifying execution guidelines, using
form template T-F8 - Document iteration task. It is depicted in Template
element 6.24, and can be delegated to the role being responsible or executing
the iteration (cf. Section 5.1). A form template instance is stored in T-A3:O6.

F1 – Unique ID

Filling objectives and rules – Uniquely identify the operationaliza-
tion for referencing, especially in action T-A3:A12 and T-A3:A13.

F2 – Objective

Valid data – A value of variable T-S6:⟨Objectives⟩.
Filling objectives and rules – Describe the objective to implement
in the current iteration and how to refine the reasoning function.

F3 – Information regarding conduction

Filling objectives and rules – Optional field. Describe hints or
any other aspect that might support task execution according to
the specifications and demands formulated in the reasoning suite
(T-A3:O3).

Template element 6.24: Form of T-F8 - Document iteration task.

6.2. Phase B – Reasoning function compilation 179

6.2.3 A12 – Select existing model

→ T.E. 6.21
(p. 175)

One of the process model’s fundamental design concepts is the integration
of existing artifacts and particularly of existing models (cf. Section 4.2).
Thus, action T-A3:A12 uses decision template T-D11 – Select model integration
candidate to select a model integration candidate compliant to the reasoning
suite (T-A3:O3), and to the objectives of the current iteration (T-A3:O6).
Decision template T-D11 consists of three parts:

● Implication table Addresses the model integration candidate’s input
and output parameters. Because most related decisions and actions
have already been made and executed, the implication table is com-
paratively small, as depicted in Template element 6.25.

● Decision tool Considers several aspects of a model integration candidate.
At its top, Template element 6.25 overviews the aspects graphically:
each aspect is illustrated by an ordinal scale, a vertical line identifies the
requirement stated in the reasoning suite. The arrow and prohibition
sign indicate the aspired direction and invalid areas, respectively.

● Documentation Uses the attributes package of the provenance infor-
mation model as explained in Section 6.1.3.

Opt. Explanation and implications

I1 Model input – The model’s consumed input.
↦ A model supporting less input parameters than required by

the iteration objectives (T-A3:O6) tends to trigger additional
iterations in T-A3:D2. Thus, it might cause additional costs.

↦ A model consuming more input parameters than required
by the iteration objectives (T-A3:O6) might cause additional
cost when generating input values in action T-A3:A18, and
when executing the reasoning in action T-A3:A19.

I2 Model output – The model’s produced output.
↦ A model producing not all parameters required by the it-

eration objectives (T-A3:O6) tends to trigger an additional
iteration in T-A3:D2. Thus, it might cause additional costs.

Template element 6.25: Implication table of T-D11 - Select model integration
candidate.

180 Design cycle – Process model reasoning methodology

Model input parameters

Model output parameters

Component type hierarchy

Accuracy

Assumptions

Di�culty of parameter gain

Less

Less

Speci�c

Low

Less

Low

More

More

Generic

High

More

High

Model input parameters Describes the match of the model’s input
parameters, and the reasoning suite (T-A3:O3) and iteration
objectives (T-A3:O6). It should perfectly match, because less or
more input parameters might cause an additional iteration or
additional effort in value generation (cf. implication table in
Template element 6.25), respectively.

Model output parameters Describes the match of the model’s out-
put parameters, and the reasoning suite (T-A3:O3) and iteration
objectives (T-A3:O6). The model should provide at least the
required output parameters, because less might cause an ad-
ditional refinement. In contrast, more output parameters is
without problems, because they are provided as by-product.

Component type(s) Describes the IT infrastructure component
type set the model can be applied to. The arrow represents
the position in the component type hierarchy according to the
process model’s notion of IT infrastructures (cf. Section 5.4).
Usually, the focus of the candidate is correlated to its accuracy.

Accuracy Describes the model result accuracy. The value should
be preferably high in general, and above the value specified in
attribute concept definitions (cf. action T-A3:A3), in particular.

Assumptions Compares the amount of similar assumptions made
by the model and specified in the reasoning suite in T-
S3:⟨Assumptions⟩. A model making less assumptions can be
selected, a model making more should be avoided.

Difficulty of parameter gain Some models process more input pa-
rameters than required by the iteration objectives (T-A3:O6). In
this case, value assembly should be as easy as possible and avoid
problematic situations, like “there is no direct way to measure
the number of architected register file accesses (regfile)” [217].

Template element 6.26: Decision tool of template T-D11 - Select model
integration candidate.

6.2. Phase B – Reasoning function compilation 181

6.2.4 A13 – Create model proxy

→ T.E. 6.21
(p. 175)

Despite the plethora of existing models (cf. Section 7.4), requirements
formulated by the reasoning objectives in general and by decision template T-
D11 in particular might disqualify (available) model integration candidates,
as they do not fulfill all criteria (sufficiently).

Thus, action T-A3:A13 creates a model proxy function that substitutes
the missing model to enable a refinement anyhow. Compared to the (mostly)
generic and broadly applicable substituted model, the model proxy function
highly fits (over-fits) to the considered situation in order to accomplish a good
costs vs. portability trade-off (EG-6.10). Nevertheless, since the model proxy
function solely aims at replacing a model for a specific reasoning project,
and not at developing a generic and portable solution, this over-fitting can
be neglected.

A model intended at describing the “power consumption of ARM pro-
cessors” normally aims at being applicable to all ARM processors. In
contrast, a model proxy function would focus on a specific situation and
purposely omit a wide applicability, e.g., consider only an ARMv11 pro-
cessor and extraordinary configurations of the processor’s surrounding, in
order to reduce the function creation costs, caused by intense measuring
or investigation, to a minimum.

EG-6.10

The main approach of action T-A3:A13 is the derivation of a compact,
mathematical formula, based on collected raw data [30]. Both, derivation
methods and raw data sources, are manifold (EG-6.11).

Exemplary derivation methods are curve fitting [13], multiple linear
regression analysis [71], and aggregation of existing values. Also within
a method class, there are several possible approaches. Regression, for
instance, consists of linear, non linear, and multiple regression, each
posing differing requirements on the experience and data. Exemplary
data sources are measuring activities (cf. Section 5.5), hardware counters
providing “application developers [...] information about the performance
of critical parts of the application” [73, p. 189], and trace analysis.

EG-6.11

Action T-A3:A13 tackles this variety by formalizing the creation process in
activity template T-A5 - Create model proxy function. Template element 6.27
depicts the template’s action flow and highlights its three phases:

● Preparation Selects the proxy function creation method and pre pro-
cesses the reasoning suite (T-A3:O3) for decision point T-A5:D1.

182 Design cycle – Process model reasoning methodology

● Data gathering Depending on the considered IT infrastructure, the
phase executes the selected workload and measures relevant data on
the IT infrastructure, or it conducts a simulation.

● Function creation Uses the gathered raw data to derive and assemble
the final model proxy function. The main challenge for this phase is
the underlying data, as it is of varying quality [137].

Fu
nc

tio
n

cr
ea

tio
n

D
at

a
ga

th
er

in
g

Pr
ep

ar
at

io
n

D2 - Data ful�lls requirements

D1 - Consider existing system

[no]

[no][yes]

[yes]

A1 - Select function creation method

(O3 - Reasoning suite)
O1 - Reasoning suite

(O6 - sub set of O5)
O2 - Iteration speci�cations

A5 - Evaluate raw data for selected method

A6 - Create
proxy function

O4 - Evaluated
raw data

<<structured>>
Examine hypothetical system

A4 - Simulation

<<structured>>
Examine existing system

A2 - Load
generation

A3 :
Measurement

O3 - Raw data

O5 - Model
proxy function

Template element 6.27: Action flow of T-A5 - Create model proxy function.

The subsequent itemization provides the template’s action details:

T-A5:A1 Selects a model proxy function creation method (EG-6.11). Besides,
it implicitly delimits the considered IT infrastructure, and stores the
result in T-A5:D1. In addressing the variety of creation methods, ac-
tion T-A5:A1 uses decision template T-D12 – Select model proxy function
creation method for selection making. The decision template consists
of two elements:

● Implication table Highlights implications of selecting a function
creation method, and of considering a physical or hypothetical
IT infrastructure, as depicted in template element 6.28.

6.2. Phase B – Reasoning function compilation 183

● Documentation Uses classifiers of the provenance information
model, especially of the attributes and measuring packages
(cf. Section 6.1.3 and 5.5.2), depending on the applied method.

T-A5:A2 Executes the workload selected in action T-A3:A6 (contained in
parameter T-A5:O1) to generate load for measuring activities in action T-
A5:A3, which is executed in parallel. In case the selected workload
cannot be used, an alternative workload is chosen using checklist
template T-C3 (cf. Section 5.7).

T-A5:A3 Measures (relevant) raw data using activity template T-A2, while ac-
tion T-A5:A2 executes the workload. Alternatively, the action processes
log files [89]. In both cases, the result is stored in T-A5:O3.

T-A5:A4 Conducts a simulation on an IT infrastructure model, in case the
considered IT infrastructure is not available at all, or a hypothetical
IT infrastructure should be examined. In both cases, action T-A5:A2
and T-A5:A3 cannot be executed, as they require physical hardware
(cf. decision template T-D12). The result is stored in T-A5:O3.

T-A5:A5 Checks the gained raw data in T-A5:O3 to ensure compliance to the
reasoning suite (T-A5:O1), to the iteration objectives (T-A5:O2), and to
the model proxy function creation method selected in action T-A5:A1.
Although raw data gathering is formalized by a set of templates,
the fundamental role of valid data calls for an additional explicit
check [319], as a model proxy function derived from “wrong” data
tends to produce misleading results, and a “major challenge in model
building is collecting sufficient data” [319, p. 3]. Thus, action T-
A5:A5 uses checklist template T-C4 - Examine gained raw data, which
is depicted in Template element 6.29. It formalizes a set of aspects
gathered raw data (T-A5:O3) should comply to, and stores validated
data in T-A5:O4.

T-A5:A6 Creates the model proxy function based on the evaluated raw data
in T-A5:O4, using the method selected in action T-A5:A1.

184 Design cycle – Process model reasoning methodology

Opt. Explanation and implications

I1 Data gain – Addresses the different data gaining methods, a
proxy function creation method might require.
↦ (Direct) measurements in action T-A5:A3 are fast and mostly

accurate, but require instrumentation (cf. Section 5.5), and
are only applicable to (physically) existing systems [132].

↦ Especially full-system simulation in action T-A5:A4 is ex-
tremely slow compared to measurements, and cannot be
used with long applications and large data-sets [132].

↦ Simulation requires an IT infrastructure model and an appli-
cation model in action T-A5:A4, which both might be difficult
or expensive to create.

I2 Function derivation – Covers the concrete execution of the
selected function creation method.
↦ Some approaches pose strong requirements on the stake-

holder’s experience and skills in action T-A5:A6, e.g., poly-
nomial curve fitting requires a polynomial curve, whose
thorough creation tends to be a challenging task.

I3 Function use and employment – Addresses the use of the
created proxy function. In particular, it deals with the “ceteris
paribus” rule, stating that all configuration parameters should
stay the same between function creation and use.
↦ Predictions based on data derived functions are only reason-

able if it is guaranteed that the basic conditions are the same
for both [375], the function creation in activity template T-A5,
and for reasoning execution in action T-A3:A19.

↦ Although the created model proxy function is required to
comply to the specifications in T-A5:O1 and T-A5:O2, it tends
to influence the available reasoning capabilities in Phase C.
Especially the range of interest, and potential extrapolation
is relevant to action T-A3:A19.

Template element 6.28: Implication table of T-D12 - Select model proxy
function creation method.

6.2. Phase B – Reasoning function compilation 185

◻ Quantity – In case the current iteration (cf. action T-A3:A11)
processes an attribute concept, it must be ensured that the gathered
raw data applies or matches the attribute concept’s quantity as
specified in T-S4:⟨Quantity⟩, and that gathered raw data exposes
at least the required accuracy as also specified in T-S4:⟨Quantity⟩.

◻ Data processing – Gathered raw data can be processed by the
function derivation method selected in action T-A5:A1. Although
this is specified in several places, e.g., in the IT infrastructure
attribute concept definitions, this must be verified, since function
creation in action T-A5:A6 will fail otherwise. For instance, applying
regression requires cardinal values (↗KB p. 268).

◻ Quality of the fit – A prevalent indicator for data gathering
problems are outliers [319]. A first impression for data quality
can be the obtained by analyzing potential derivation results, e.g.,
considering the root mean squared error [319].

Template element 6.29: Checklist of T-C4 - Examine gained raw data.

6.2.5 A14 - Examine model behavior
→ T.E. 6.21

(p. 175)
At the current state of the iteration’s execution, a (mathematical) model is
stored in T-A3:O7 (cf. Template element 6.21). This (mathematical) model
was either evaluated for a set of criteria during its selection in action T-A3:A12,
or it was derived from raw data by a formalized activity and time-tested
methods in action T-A3:A13. Thus, the (mathematical) model is likely to be
technically sound and thoroughly created. Nevertheless, the complexity of IT
infrastructures and attribute influencing factors (cf. Section 2.4) require an
additional explicit examination of the model behavior before its incorporation
in the reasoning function in order to identify and react to potential model
restrictions or misleading results (EG-6.12:1) [118].

Possible identification approaches range in several dimensions, e.g., the
granularity level, the applied methodology, the focus, or the covered problem
causes (EG-6.12:2). This variety and the simultaneous specialization of
approaches prohibit a predefined activity compressing the required validation
tasks in a limited set of actions. Thus, action T-A3:A14 addresses this
situation by decoupling model investigation in two consecutive steps:
Examine model behavior using checklist template T-C5, and
React to potential problems using decision template T-D13.

186 Design cycle – Process model reasoning methodology

Measured
values

Real
development

Number of cores

Ti
m

e
to

co

m
pl

et
io

n

ni

Linear prediction
model f

Misleading
behavior

(1) The figure above illustrate a fictive performance model that describes
Time to Completion (TTC, cf. Section 2.4.2) for an arbitrary application
in correlation to the number of cores in an HPC cluster system (cf. Sec-
tion 2.2.2). The measured values on the figure’s left hand side indicate a
linear correlation of number of cores and TTC reduction, which is derived
to a linear prediction model f by regression. The identified linear correla-
tion is valid for up to ni cores. For more than ni cores, the TTC doesn’t
decline linearly as modeled, but tends to a static value, resulting in a
misleading model behavior. (2) A coarse-grained possibility to identify
this behavior is boiling down the problem to Amdahl’s Law [172], a fine-
grained possibility constitutes the approach of Sharapov et al. [362] who
present a process describing how workload exploits parallelism. A more
analytical approach present Nussbaum et al. [299], splitting scalability
in algorithmic and architectural aspects.

EG-6.12

Examine model behavior

Checklist template T-C5 - Examine model behavior summarizes a set of aspects
to examine before the model is incorporated in the reasoning function in
action T-A3:A15. The checklist template, depicted in Template element 6.30,
must mandatorily be applied on both, models selected in action T-A3:A12,
and model proxy functions created in action T-A3:A13, due to two reasons:
- Although most models are thoroughly developed and technical sound,
validation might be incomplete or not appropriate for the reasoning project.
For instance, validation might use workload that differs in the exposed
characteristics, compared to the workload selected in action T-A3:A6.

- Model proxy functions are created using plain mathematical/statistical
methods without a thorough consideration of computer science related
aspects, like application scaling behavior, which must be covered, as well.

6.2. Phase B – Reasoning function compilation 187

◻ Scaling behavior – Analyze the behavior of the model for in-
creasing and decreasing values of relevant characteristics. These
characteristics can cover message size (EG-6.13:1), workload varia-
tion pace (EG-6.13:2), and the problem size (EG-6.13:3).

◻ Lower/Upper limits – Investigate extreme areas of the model,
by analyzing the lower and upper limits of the recommended or
used value ranges, e.g., using reference implementations [362].

◻ Problem decomposition – Split the workload in suitable smaller
problems using analytic tools, e.g., split an application in its parallel
and sequential part according to Amdahl’s Law [172], and analyze
the transitional points, if not already done by the model.

◻ Influencing factors Identify and separate influencing factors. An
important one is system noise, defined as “operating system activity
that negatively impacts the processing capability [317]” [112, p. 2].

Template element 6.30: Checklist of T-C5 - Examine model behavior.

(1) Hoisie et al. [192] found out that the message size of communicat-
ing elements of a parallel application strongly impacts the application
performance. In particular, if “the message size is less than half the
peak bandwidth of the network, it will be latency bound, if it is larger
[...], the bandwidth will dominate” [192, p. 4]. They underpinned this
relation empirically, stating that heavily communicating applications
like SAGE (cf. Appendix B) run slower on the full Blue Gene/L ma-
chine, compared to Red Storm or Purple (cf. Section 7.4.5). (2) Ge et
al. [162] analyzed that the PAST algorithm “works well for slowly varying
workloads but incurs large performance and energy penalties for volatile
workloads” [162, p. 21]. (3) The Numerical Aerodynamic Simulation
(NAS) Parallel Benchmark (cf. Appendix B) provides several problem
sizes to enable benchmark adaptions to the considered machine(s) [29,
162]. Some applications even provide different scaling modes, e.g., “appli-
cations were run in weak scaling mode, that is where the problem size
per processor remains the same independent of the number of processors
used” [112, p. 5]. In contrast, the problem size could grow proportionally
with the number of processors [112].

EG-6.13

188 Design cycle – Process model reasoning methodology

React to potential problems

Decision template T-D13 – Select reaction to identified model behavior issues
supports the selection of an appropriate reaction to an identified problematic
model behavior. It consists of two elements:

● Implication table Lists the two reaction options to a potentially identi-
fied problematic model behavior, as depicted in Template element 6.31.

● Documentation Uses the provenance information model classifiers of
related reactions: narrowing the range (T-D13:I1) uses the attributes
and reasoningproject packages, adapting the model (T-D13:I2) af-
fects the instances package for IT infrastructure attributes.

Opt. Explanation and implications

I1 Narrow range – The reasoning parameter value range is nar-
rowed to avoid issues in border areas.
↦ A bigger value range tends to cause higher reasoning costs

in action T-A3:A19, e.g., due to more optimization runs.
↦ The narrowed range must comply with specifications in

the reasoning suite (T-A3:O3), and particularly in sentence
template T-S4 and T-S5 about the IT infrastructure attribute
concept and reasoning parameter ranges, respectively.

↦ Narrowing the range does not require an additional iteration,
as the (mathematical) model in T-A3:O7 remains as it is.

↦ A range adaption must be propagated to T-S4:⟨Objectives⟩
or T-S5:⟨Quantity⟩ of the corresponding attribute concept
or reasoning parameter, respectively.

I2 Modify model – The examined (mathematical) model in
T-A3:O7 is altered in some way, e.g., by incorporating mathe-
matical barriers or noise factors in its formula.
↦ Fostering a clean and reproducible model modification re-

quires an additional iteration of the currently processed
iteration objectives, starting at action T-A3:A11.

Template element 6.31: Implication table of T-D13 - Select reaction to identi-
fied model behavior issues.

6.3. Phase C – Reasoning execution 189

6.2.6 A15 – Incorporate iteration results

→ T.E. 6.21
(p. 175)

Action T-A3:A15 incorporates the evaluated (mathematical) model in T-A3:O7
into the reasoning function in two steps:

● Refine reasoning function Incorporates the iteration result in the al-
ready existing reasoning function (skeleton) by replacing a formula
element with a more detailed or more accurate one (cf. Section 4.2).

● Evaluate refinement Evaluates the achieved reasoning function in two
ways: First, analyze the fulfillment of the iteration’s objectives, speci-
fied in T-A3:O6, by verifying that the refinement addresses all targeted
goals. Second, compare the replaced value with values gained by
the replacing refinement [242]. In case the values are not within an
acceptable range and T-A3:D3 validates to false, another iteration is
required. In case only a little correction is necessary, the refinement
can be enhanced by correction or noise factors, to improve prediction
accuracy.

6.2.7 A16 – Evaluate reasoning function

→ T.E. 6.21
(p. 175)

As last task in Phase B of activity template T-A3, action T-A3:A16 evaluates
the complete reasoning function in T-A3:O8 on its compliance to the reasoning
suite (T-A3:O3), and on the support of the IT infrastructure attribute
concepts specified in T-S3:⟨AttributeConcepts⟩, and reasoning parameters
specified in T-S3:⟨Parameters⟩. The evaluation result is processed by T-
A3:D4 that triggers another refinement iteration, if required. Otherwise, the
final reasoning function (T-A3:O9), and a detailed object diagram of the
provenance information model (T-A3:O10) are passed over to Phase C.

6.3 Phase C – Reasoning execution

→ Fig. 6.1
(p. 144)

As explained in the previous section, Phase B of activity template T-A3
compiles an individual reasoning function and stores it in T-A3:O9.

Phase C of activity template T-A3 employs this reasoning function to
execute the concrete reasoning, guided by the reasoning suite (T-A3:O3).
Compared to Phase A and Phase B, Phase C is rather compact, since the
bulk of actions and decisions are already completed and made within the
other two phases, respectively. Template element 6.32 depicts the action flow
of Phase C and emphasizes its aforementioned little extend. The remainder
of this section provides the action details of Phase C.

190 Design cycle – Process model reasoning methodology

<<structured>>
Do reasoning

D5 - Activity/reaction required
[yes] [no]

Coming
from

Phase B
A18 - Generate

input values
A17 - Select

reasoning tool
A19 - Execute

reasoning

A20 - Trigger
activity End of reasoning project

Template element 6.32: Action flow of T-A3 - Reasoning methodology - Phase
C.

6.3.1 A17 – Select reasoning tool

→ T.E. 6.32
(p. 190)

There is a plurality of potential reasoning tools and configurations to use
with the compiled reasoning function. Two aspects reduce this set:
1. Decisions made in action T-A3:A2 might require the (non) consideration

of the development over time, and the analysis of a delta between or
within attribute(s). Thus, all reasoning tools that are not capable to
provide this functionality are disregarded.

2. The Use Case analysis explicitly calls in its sub system C – Reasoning
execution (cf. Section 3.3.2) for the support of What-if analysis, opti-
mization mechanisms, and descriptive statistics. Consequently, those
reasoning tools must be contained in the tool set.
Action T-A3:A17 focuses on the second aspect, and uses decision tem-

plate T-D14 – Select reasoning tool to select one of the three reasoning tools.
The decision template consists of three elements:

● Implication table Itemizes the three options descriptive statistics, op-
timization, and What-if analysis in alphabetical order according to
the requirements specified in the Use Case sub system C – Reasoning
execution. Template element 6.33 depicts the implication table.

● Decision tool Opposes the reasoning tools according to the three follow-
ing characteristics, as depicted in Template element 6.34:

Main focus Describes whether the reasoning tool tends to process
the reasoning function’s domain or co domain. Optimization, for
instance, mainly processes the reasoning function domain and uses
the co domain only as constraint source. In contrast, descriptive

6.3. Phase C – Reasoning execution 191

statistics mainly investigate the reasoning function’s co domain and
the calculated attribute vector.
Required domain flexibility Considers the required potential to
realize reasoning input parameter values in order to achieve reasonable
results with the particular reasoning tool. For instance, optimization
requires modifications to the IT infrastructure according to optimiza-
tion results, reflected in modification parameters (cf. Section 4.1).
In contrast, descriptive statistics makes no assumptions about the
reasoning function’s domain.
Difficulty of use Arranges the three reasoning tools according to
their employment and especially the difficulty of use. Optimization,
for instance, requires an objective function (↗KB p. 262), whose
normally difficult formulation renders optimization in general a chal-
lenging intent. In contrast, What-if analysis tries (more or less)
different domain values and considers the resulting attribute vector,
which is a comparatively easy task (↗KB p. 276). Obviously, the
level of difficulty highly depends on the particular skills, experience,
and demands, but a basic arrangement is still possible.

● Documentation Uses the class ReasoningTool in the provenance infor-
mation model package reasoningproject (cf. Section 5.3.4).

(1) Exemplary descriptive statistics scenarios analyze the distribution
of power consumption values in correlation to the number of nodes
in a cluster, or the derivation of a sensitivity measure describing the
correlation between an attribute and a modification. For instance, in
case the mean has a low distribution, it could be induced that the
modification has a small effect on the attribute, as shown by Carrington
et al. [83] for the performance of the Parallel Ocean Program (POP).
(2) An exemplary situation that contradicts the use of optimization is
a procurement decision, since there is only a limited set of available
hardware that might not be capable of providing the optimization result.
Hence, although optimization might result in a fictive option A, only the
options B and C might be available on the market at that point in time.

EG-6.14

192 Design cycle – Process model reasoning methodology

Opt. Explanation and implications

I1 Descriptive statistics – Use the tool set of descriptive statis-
tics (↗KB p. 268).
↦ Facilitates the mathematical prove of dependencies in ac-

tion T-A3:A19.
↦ Has nearly no influence on the reasoning function’s domain

and does not put any requirements on the reasoning in-
put parameters. Hence, there is probably no (technical)
implementation required in action T-A3:A20.

I2 Optimization – Use the tool set of optimization (↗KB p. 262).
↦ Requires the possibility to alter the domain values in real-

ity in action T-A3:A20, since otherwise optimization results
cannot be implemented or used (EG-6.14:2).

↦ Requires the creation of an objective function in action T-
A3:A19, which tends to be a challenging task (↗KB p. 262).

↦ Requires the definition of constraints in action T-A3:A19.
↦ Fosters automated reasoning, since all elements can be en-

coded in a computer readable way, e.g., the feasible region
and the objective function.

I3 What-if analysis – Use the tool set of What-if analysis (↗KB
p. 276).
↦ Enables the comparison of a (small) set of reasoning function

input vectors in action T-A3:A19.

Template element 6.33: Implication table of T-D14 - Select reasoning tool.

6.3. Phase C – Reasoning execution 193

High

Low

Descriptive statistics
Optimization
What-if analysis

Main
focus

Di�culty
of use

Required
domain

�exibility

Domain

Co
domain

Descriptive statistics Mainly operates on the computed attribute
vectors – the reasoning function’s co domain – and does not pose
any requirements on the reasoning function’s domain. Besides, al-
ready basic functionality, like a sample standard deviation (↗KB
p. 268), can compile useful results, what renders the employment
of descriptive statistics comparatively easy (EG-6.14:1).

Optimization Selects a sub set of a candidate set – the reasoning
function’s domain – according to an objective function and a set
of constraints [168] – the reasoning function’s co domain (↗KB
p. 262). An optimization result describes the “best” set of
modification and configuration parameters (cf. Section 4.1). This
result, in turn, should be realizable, e.g., by accomplishing a
modification to achieve the computed parameter (EG-6.14:2),
since otherwise the optimization result is useless, what poses
(strong) demands on the reasoning function’s domain. The
usually generic way of formalizing optimization problems bans
the provision of good or consistent algorithms. Instead, there
is a set of optimization problem classes that help to find and
formulate an appropriate algorithm (↗KB p. 262).

What-if analysis Focuses on both, the reasoning parameters and
attribute concepts, as it tries differing input vector combina-
tions and analyzes the results. The theoretical infinite set of
analysis possibilities strongly requires a thorough selection of
input vectors what tends to be a difficult task. In contrast to
optimization, What-if analysis does not pose any requirements
on the domain and is well suited for procurement consideration,
as different offers can be compared.

Template element 6.34: Decision tool of template T-D14 - Select reasoning
tool.

194 Design cycle – Process model reasoning methodology

6.3.2 A18 – Generate input values

→ T.E. 6.32
(p. 190)

Phase A of activity template T-A3 defines and provides most input values
of the reasoning function, either explicitly as static (numeric) values, or
implicitly as value ranges that should be analyzed, depending on action T-
A3:A2, T-A3:A3, and T-A3:A4. Nevertheless, additional input values might
be required, e.g., due to constraint definitions in action T-A3:A8. Besides,
despite the selection of appropriate workload in action T-A3:A6, load values
might still be missing, e.g., because workload execution was no necessary for
measurements. Action T-A3:A18 covers both situations: for missing input
values, it provides a dedicated scope for their generation; for missing load
values, it dictates required generation tasks.

The great extend of the load value generation problem domain (cf. Sec-
tion 2.3.3), the mostly close coupling of generation approaches to a specific
application or hardware, and the individually required granularity level ren-
der an activity template or sentence template unsuitable (EG-6.15). Instead,
action T-A3:A18 accomplishes this task in two steps, namely it selects a load
value generation approach using decision template T-D15, and it evaluates
generated results using checklist template T-C6.

Murphy [288] is an example of a high granularity level for differing load
values depending on the executed code. He empirically evidences that
integer codes perform 15% fewer memory references and perform twice
as many branches as their floating point counterparts. Implicitly, this
also illustrates the fundamental influence of the considered workload, as
scientific code tends to be built of larger building blocks due to complex
formula calculations[338]. Another approach applying a high granularity
level can be found in [5] that provides an approach for calculating the
expected load down to a single core, the memory input and output
bandwidth, and the system bus throughput. An example highlighting
the important role of the applied granularity level provide Li et al., stating
that load characteristics include “system utilization, job arrival rate and
interarrival time, job cancellation rate, job size (degree of parallelism),
job runtime, memory usage, and user/group behavior” [253, p. 177].

EG-6.15

Select load value generation approach

Decision template T-D15 – Select load value gathering method formalizes the
selection of a load value generation approach, and consists of two elements:

● Implication table Compares trace analysis, simulation, and convolution
(cf. Section 2.3.3), as depicted in Template element 6.35.

6.3. Phase C – Reasoning execution 195

● Documentation Uses the workload package of the provenance informa-
tion model detailed in Section 6.1.6.

Opt. Explanation and implications

I1 Trace analysis – Execute workload while capturing informa-
tion in trace files (EG-6.16:1) using profiling libraries or applying
measuring activity template T-A2.
↦ Requires instrumentation of hardware and software [17] (EG-

6.16:2) in action T-A3:A19. Although most vendors provide
pre-installed libraries, and despite the existence of (semi)
automated instrumentation (EG-6.16:3), this might cause
additional installation and configuration costs.

↦ Requires the execution of the workload to enable capturing
(important) information in trace files [45]. Workload is
used as selected in action T-A3:A6. If workload execution
is not possible, a proxy workload is selected using decision
template T-C3 (cf. Section 5.7).

↦ Depends on the quality of the data.
↦ Requires the thorough documentation of applied configura-

tion and deployment parameters (cf. Section 2.3.2).

I2 Simulation – Imitates a system as it progresses through time
(cf. Section 7.4.4).
↦ Especially full-system simulations tend to last very long.
↦ Requires mandatorily a concept model, whose creation tends

to be a challenging task.
↦ Benefits from the plurality of existing simulation tools.

I3 Convolution – Computationally maps an application signature
onto a machine profile (cf. Section 7.4.3).
↦ Requires a Machine Profile and an Application Signature,

e.g., using MetaSim [84].
↦ Benefits from the plurality of existing tools (cf. Section 7.4).

Template element 6.35: Implication table of T-D15 - Select load value gather-
ing method.

196 Design cycle – Process model reasoning methodology

(1) Ge et al. [162] use history-based workload prediction: during execution,
they “collect a set of performance events and summarize them [...], and
predict [...] the future workload using the history values [...]” [162,
p. 22], e.g., by employing the PAST prediction algorithm [413]. (2)
A wide-spread tool for instrumentation and information capturing is
AutoTune providing a set of annotations [283]. (3) Alkindi et al. [17]
enhance the performance prediction process in PACE [297] by utilizing
dynamic/automatic instrumentation by inserting special sensors in an
application source code.

EG-6.16

Evaluate generated results

Checklist template T-C6 - Examine load value generation guides load value
generation and result evaluation: it itemizes aspects and information that
must be respected or gathered while creating load values as input variables.
Noteworthy, checklist template T-C6 is independent of the used load value
generation approach, that might be selected by decision template T-D15, or
that might be a proprietary one. Checklist template T-C6 is depicted in
Template element 6.36, and exposes the following characteristics:
- Items are ordered according to Barker et al. [31], who start load examina-
tion with the workload’s main data structure, followed by its distribution
among and communication between parallel processes. Hence, after general
characteristics, checklist template T-C6 considers workload decomposition
and communication, before building blocks and correlations are examined.
This notion also complies with Jha et al. [212], who determine what is
distributed, how the pieces interact, and what the flow of control and
information between the pieces is.

- Items aim at providing a generic list, instead of stating concrete values, in
order to support a wide applicability (cf. Section 4.3), e.g., communication
patterns are valid for OpenMP, MPI, and Grid-wide communication.

6.3.3 A19 – Execute reasoning

→ T.E. 6.32
(p. 190)

Action T-A3:A19 uses the reasoning tool selected in action T-A3:A17 to execute
the concrete reasoning. Execution is explicitly placed in a dedicated action
and not implicitly contained in the reasoning tool selection to enable and
foster task delegation, since (potentially) different roles could be assigned for
reasoning tool selection and reasoning execution, respectively. In contrast,
action T-A3:A19 does not provide formalization or templates, because the

6.3. Phase C – Reasoning execution 197

◻ General characteristics – Cover general (meta) information
about the job, e.g., its size, number of requested processors or
its runtime [253].

◻ Decomposition – Describe a workload’s decomposition in build-
ing blocks and how the building blocks utilize parallelism. This
is correlated to the scaling behavior of the workload, because it
implies how the problem size per processor behaves.

◻ Communication – Cover the exchanged data and communica-
tion patterns of (atomic) workload building blocks. For instance,
particle-in-cell codes normally require more data movement per
computation unit than dense matrix calculations or Monte Carlo
simulations [31]. For parallel workloads, the exchanged data’s
amount and type significantly affect coherency traffic [93].

◻ Memory use – Consider the memory use and access patterns [412]
of the entire workload as well as single building blocks. A concrete
example is the correlation of the job size and the memory usage
per processor [253].

◻ Execution environment – Cover the environment of the exe-
cuted workload, e.g., is foreign workload executed at the same
time.

◻ Correlations – Describe correlations between the above itemized
aspects like memory usage vs. job size or actual run time vs. job size
[253], which can be easily checked using Pearson’s R correlations
or Spearman’s rank correlations [253].

◻ Scaling – Consider scaling behavior as carried out in action T-
A3:A14.

Template element 6.36: Checklist of T-C6 - Examine load value generation.

use of the selected reasoning tool(s) is situation specific, and relevant rules
are provided for selection in action T-A3:A17.

6.3.4 A20 – Trigger activity

→ T.E. 6.32
(p. 190)

Certain reasoning results might call for a particular activity, as described
in Use Case UC-6 (cf. Section 3.3.2). Action T-A3:A20 covers the handling
and execution of this activity. Since the concrete constitution of the activity
highly depends on the situation, the objectives of the management, and the

198 Design cycle – Process model reasoning methodology

available resources, action T-A3:A20 does not provide any details, but purely
acts as umbrella to enable a clear arrangement of activity execution in the
context of the process model, and a reasoning project. The manifestation of
this action is discussed in Section 8.2.6 as part of Future Work.

6.4 Summary
The chapter at hand details the process model’s reasoning methodology.
Reflecting the identified three Use Case sub systems (cf. Section 3.3.2), and
realizing the process model underlying design concepts (cf. Section 4.2), the
methodology consists of the following three phases:

● Phase A – Reasoning suite definition Identifies and specifies reason-
ing objectives and related information to facilitate the reasoning ob-
jectives driven refinement of the individual reasoning function (cf. Sec-
tion 4.3). The phase assembles two results:

- A reasoning suite that formalizes essential information to steer the
reasoning project, and to dictate (partial) result validation guidelines.

- A reasoning function skeleton that is processed by Phase B.

● Phase B – Reasoning function compilation Guided by the reason-
ing suite, the phase iteratively refines the given reasoning function
skeleton to a fully functional reasoning function (cf. Section 4.2).

● Phase C – Reasoning Uses the compiled reasoning function to execute
the reasoning.

Chapter 7
Rigor cycle –

Validation of the process
model

This chapter validates the presented process model for the integrated rea-
soning about quantitative IT infrastructure attributes. Section 7.1 explains
validation objectives and describes the applied validation methodology, be-
fore Sections 7.2, 7.3, and 7.4 perform the validation applying multiple
validation approaches. Collectively, the three sections cover the Rigor Cycle
and the Relevance Cycle of the applied Design Science paradigm framework
(cf. Section 1.4).

7.1 Validation objectives and methodology
According to the general demand of validating scientific results in “some
logical, objective, and algorithmic way” [231, p. 1089], the Design Science
paradigm framework underlying this thesis (cf. Section 1.4) mandatorily
postulates the “application of rigorous methods in the [...] evaluation of
the design artifact [...] to rigorously demonstrate [its] utility, quality, and
efficacy” [187, Table 1, p. 83]. For this intent, the framework provides a
taxonomy of evaluation methods (↗KB p. 253), based on Zelkowitz et al. [434,
435] who surveyed hundreds of IT research papers [235]. The following
itemization overviews the methods applied to validate the presented process
model (cf. Figure 7.1). It particularly explains method intentions, introduces
implementations, and provides a rationale for their selection, respectively.

199

200 Rigor cycle – Validation of the process model

Validation

Controlled experiment Field study Related research analysis
Section 7.2 Section 7.3 Section 7.4

Study feasibility and
broad applicability.

Monitor use in multiple
projects.

Build convincing argu-
ment for utility.

Figure 7.1: Methods applied to validate the presented process model.

● Controlled experiment The experimental method “studies [the process
model] in [a] controlled environment for qualities” [187, p. 86], especially
for feasibility, and for broad applicability.

Implementation Conducts a reasoning project about the power
consumption and performance of an experimental Raspberry Pi (RPi)
cluster to compare theory and reality [56] in Section 7.2.
Rationale The validation intent requires (full) control of and exclu-
sive access to the examined IT infrastructure. The former eliminates
bias and side effects caused by (uncontrolled) influencing factors, like
the simultaneous execution of foreign applications, the latter enables
installation of potentially required measuring instruments. Both is
seldom possible and never guaranteed for production systems like the
SuperMUC (cf. Section 3.2.1). In contrast, the used RPi cluster was
built at the chair for experimental purposes and is under full control.

● Field study The observational method “monitor[s] use of [the process
model] in multiple projects” [187, p. 86] to validate the process model’s
fulfillment of “requirements [...it was] meant to solve” [187, p. 85].

Implementation Contrasts the process model’s capabilities with the
(non) functional requirements listed in the Requirements Specification
(RS) (cf. Section 3.5) in Section 7.3.
Rationale Requirements analysis in Chapter 3 thoroughly examines
the research Environment and particularly identifies requirements
in the scenarios SuperMUC and DRIHM . These requirements are
used to validate the process model’s problem solving character, and
to apply the process model (theoretically) in its application domain.

● Related research analysis The descriptive method “use[s] information
from [related research] to build a convincing argument for the [process
model’s] utility” [187, p. 86], and to underpin non-commutability and
advance of the process model.

7.2. Controlled experiment 201

Implementation Compares the process model with related research,
split in 1) work dealing with reasoning in the context of quantitative
IT infrastructure attributes, and 2) work potentially providing partial
contributions, like IT infrastructure modeling, in Section 7.4.
Rationale The high relevance of IT infrastructure attributes cause
a plurality of specialized (and mature) models. In order to provide
“convincing arguments” for the process model’s utility, its functionality
and characteristic are compared to existing approaches.

7.2 Controlled experiment

→ Fig. 7.1
(p. 200)

The section constitutes the first validation part (cf. Section 7.1), being an
experimental validation method that analyzes IT artifacts in a “controlled
environment for qualities” [187, Tab. 2]. It conducts a reasoning project using
the presented process model. The reasoning project must be understood as
a prototypical instance, a “partial, deliberate incomplete implementation
[...] that serves as demonstrator of selected [...] characteristics in practical
use, for experimental purpose, and for collecting practical experience” [152].
The prototype targets two characteristics of the presented process model:

● Feasibility Illustrate that reasoning about quantitative IT infrastructure
attributes using the presented process model is feasible and productive,
particularly that the IT artifacts (cf. Chapter 5) and the methodology
(cf. Section 6) can be instantiated. Hence, the controlled experiment
conducts a complete prototypical reasoning project. Since it aims
at showing the process model’s feasibility and not at answering a
reasoning question under “real world” conditions, the reasoning project
represents a possible way, but not inevitably the best way. For instance,
it shows that model selection is feasible, but it purposely does not
aim at selecting the most appropriate or most accurate model, as this
wouldn’t make any difference for the general feasibility.

● Applicability Underpin the process model’s applicability not only to the
analyzed scenarios in Chapter 3, but also to completely different IT
infrastructures. Hence, the controlled experiment conducts a prototyp-
ical reasoning project on a small cluster of Raspberry Pis, a credit-card
sized computer run by an ARMv11 microprocessor. For this cluster
that has been assembled at the author’s chair, the prevalent attributes
power consumption and performance are considered (cf. Section 2.4).

202 Rigor cycle – Validation of the process model

Features and qualities of the process model that are not of primary
interest for the prototype’s intent and particularly for the two characteristics
are omitted. In particular, this applies to accuracy, as it confirms neither
the feasibility nor applicability of the process model. Instead, it depends
on the concrete making and execution of several decision and actions, like
model selection or measuring, as comprehensively carried out in Chapter 5
and 6. Generally speaking, the disregard of single features and qualities has
no effect on the prototypical instantiation of the process model, since they
do not reflect conceptual weak points, but implementation details.

The reasoning methodology’s three phases (cf. activity template T-A3)
structure the description of the controlled experiment: Section 7.2.1, 7.2.2,
and 7.2.3 describe Phase A, Phase B, and Phase C of the reasoning methodol-
ogy, respectively. For the sake of compactness, description omits introductory
paragraphs or explanations. Instead, it confines to the pure process model’s
execution and provides focused notes where suitable.

7.2.1 Phase A – Reasoning suite definition

The phase identifies, collects, and specifies relevant information that guides
and steers a reasoning project. It results in a reasoning suite, containing
the specified information, and in a reasoning function skeleton, which is
processed by the following Phase B.

T-A3:A1 – Prepare reasoning suite

The reasoning project considers as IT infrastructure a RPi Beowulf cluster
(cf. Section 7.1). Two reasons explain the selection:
1. Its assembly at the author’s chair guarantees an exclusive experimental

setup, and being under full control, as controlled experiments prerequisite.
2. The investigation of Raspberry Pi clusters by other researchers, like the

“Iridis-Pi” system of Cox et al. [105], substantiates the validation of the
process model’s applicability on relevant IT infrastructures.
The reasoning project deals with power consumption and performance

as a provider and consumer perspective attribute (cf. Section 2.1.1), re-
spectively. The reasoning project aims at answering the fictive question
“Would additional Raspberry Pi nodes increase the cluster’s performance and
would the performance increase outperform the expected power consumption
increase?”. The intent is formalized in an instance of sentence template T-S3.

7.2. Controlled experiment 203

Sentence template T-S3 instance

Reason about ⟨trend of the delta⟩ of ⟨Power Consumption, Perfor-
mance⟩ in ⟨RaspberryPi cluster⟩, executing ⟨STREAM benchmark, HPL
benchmark⟩, applying ⟨Nodecount⟩, assuming ⟨ClusterExpandability⟩,
providing ⟨NoLicences⟩.

T-A3:A2 – Select reasoning interests

Using the selection tool of decision template T-D3, the reasoning project’s
interest is defined as trend of the delta.

T-A3:A3 – Define attribute concepts

Sentence template T-S4 instance

The attribute concept ⟨Power Consumption⟩ describes ⟨the overall power
consumed for a complete workload run⟩ in ⟨Watt at ±2%⟩ of ⟨RPi cluster⟩
provided that ⟨not used nodes are not powered⟩.

Sentence template T-S4 instance

The attribute concept ⟨Performance⟩ describes ⟨a particular workload’s
time to completion (TTC)⟩ in ⟨seconds at ±2%⟩ of ⟨RPi cluster⟩ provided
that ⟨the workload is executed in parallel⟩.

Setting T-S3:⟨Interest⟩ to trend of the delta in action T-A3:A2 requires the
use of metric scales for both attribute concepts according to the implication
table of decision template T-D3. Both attribute concept definitions produce
the entry RPi cluster for the component type set T-A3:O1.

T-A3:A4 – Define reasoning parameters

Sentence template T-S5 instance

Reasoning parameter ⟨Nodecount⟩ describes ⟨the number of powered RPi
nodes in the cluster⟩ given in ⟨natural numbers between 1 to 20 ⟩.

The reasoning parameter adds the entry RPi to the component type
set T-A3:O1, resulting in T-A3:O2.

204 Rigor cycle – Validation of the process model

T-A3:A5 – Model IT infrastructure

Section 7.1 introduces the reasoning project’s IT infrastructure as an experi-
mental RPi cluster. It consists of 10 RPi Type B nodes, each running an
ARMv11 microprocessor and 512 MB memory.1 The nodes are arranged
and assembled as Beowulf cluster (cf. Section 2.2.2). Activity template T-A4
creates the IT infrastructure model documented in the form template T-F4
instance below according to the provided component type setT-A3:O2.

F1 – Unique ID

RPi cluster
F2 – IT infrastructure model

type = RPiCluster
: WhiteBox

type = RPi

: BlackBox
id = pi01

type = RPi

: BlackBox
id = pi02

type = RPi

: BlackBox
id = pi04

type = RPi

: BlackBox
id = pi03

type = RPi

: BlackBox
id = pi05

type = RPi

: BlackBox
id = pi06

type = RPi

: BlackBox
id = pi07

type = RPi

: BlackBox
id = pi08

type = RPi

: BlackBox
id = pi09

type = RPi

: BlackBox
id = pi10

: CommunicationSet
id = RaspberryPi cluster
label = “ RPis in the cluster communicating via Ethernet"

Form template T-F4 instance.

Obviously, the IT infrastructure model could be theoretically further
refined, e.g., adding a RPi’s microprocessor and memory. In contrast, the IT
infrastructure model is strictly limited to the component type set T-A3:O2,
and RPis remain black boxes, according to reasoning objectives driven
refinement (cf. Sections 4.3 and 6.1.5).

T-A3:A6 – Select workload

The controlled experiment’s objective of validating general applicability calls
for wide-spread and commonly used workload. The selection tool of decision
template T-D9 selects the STREAM and HPL benchmarks (cf. Appendix B),
accordingly. Two form template T-F5 instances detail the workload below.

1For a detailed hardware description the reader is referred to www.raspberrypi.org,
Cox et al. [105], and Klinger [234] who built the considered cluster.

7.2. Controlled experiment 205

F1 – Unique ID

STREAM benchmark
F2 – Workload model

STREAM : Benchmark
id = STREAMBenchmark
label = "STREAM benchmark"
description = "Measures sustainable memory bandwidth (in MB/s) for kernels."
buildingBlocks = SyntheticBenchmark
focus = PartialBenchmark

Form template T-F5 instance.

F1 – Unique ID

HPL benchmark
F2 – Workload model

HPL : Benchmark
id = HPLBenchmark
label = "HPL Benchmark"
description = "Measures �oating point rate (in FLOP/s) for linear equations."
buildingBlocks = KernelBenchmark
focus = SystemBenchmark

Form template T-F5 instance.

T-A3:A7 – Document assumptions
F1 – Unique ID

ClusterExpandability

F3 – Assumption

It is assumed that the number of powered RPi nodes in T-S5:⟨Nodecount⟩
can be adjusted, since it is defined as configuration parameter.

Form template T-F6 instance.

T-A3:A8 – Document constraints
F1 – Unique ID

NoLicences
F3 – Constraint
The prototypical and not economic nature of the reasoning project requires
a cost-free access to all involved artifacts, particularly to integrated models.

Form template T-F7 instance.

206 Rigor cycle – Validation of the process model

T-A3:A9 – Create reasoning function skeleton

f(Nodecount
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Modification
parameter

,Benchmark
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Configuration
parameter

) = (PowerConsumption
Performance

) (7.1)

7.2.2 Phase B – Reasoning function compilation

The phase transforms the given reasoning function skeleton to a fully func-
tional reasoning function in several iterations (cf. Section 4.2). According to
the prototypical nature of the discussed reasoning project and for the sake
of compactness, only one iteration is executed and explained.

T-A3:A10 – Define iteration objectives

Sentence template T-S6 instance

Iteration aims at ⟨adding⟩ of ⟨Benchmark, Power Consumption⟩ in the
reasoning function.

T-A3:A11 – Operationalize single objective

F1 – Unique ID

addNodeCountPerformance
F2 – Objective

Add the ⟨Benchmark⟩ configuration parameter and the attribute ⟨Power
Consumption⟩ in one step, since they are likely to use the same model
or measuring setup. The iteration considers a fixed number of 10 nodes
in the RPi cluster, since the ⟨Nodecount⟩ parameter is added in the next
iteration.

Form template T-F8 instance.

7.2. Controlled experiment 207

T-A3:A12 – Select existing model

The operationalized iteration objectives call for a model that predicts the
power consumption of the Raspberry Pi cluster for a STREAM or HPL
benchmark run. According to the prototypical nature of the reasoning
project, only a rough inquiry employing decision template T-D11 was con-
ducted, resulting in no suitable model integration candidate.

T-A3:A13 – Create model proxy

Since action T-A3:A12 does not provide any model integration candidate,
activity template T-A5 is executed to create a model proxy:

T-A5:A1 Use decision template T-D12 to chose simple regression (↗KB
p. 268) as function creation method, a wide-spread approach that
is also applied by other work, e.g., Lee et al. [250] dynamically predict
performance and power using regression models [71].

T-A5:A2 Execute the STREAM and HPL benchmarks.

T-A5:A3 Execute activity template T-A2 to gather raw data for the chosen
regression by measurement:

T-A2:A1 Define measuring objectives using sentence template T-S4.
The template instance is shown below.

T-A2:A2 Select the Energenie EGM-PWM-LAN measuring instrument
employing decision template T-D2.

T-A2:A3 Design the measuring system in the style of the Green500 list
measuring system (cf. [363, Fig. 1]) using checklist template T-C2.

T-A2:A4 Document the measuring system in the form template T-F2
instance shown below (is analogue for HPL benchmark).

T-A2:A5 Execute the measurement and document gained results. Fig-
ure 7.2 depicts fictive measurement results as box plot. According
to the iteration’s objectives in the form template T-F8 instance
above, the depicted chart shows a value range for each workload
execution, respectively.

T-A5:A5 Evaluate the raw data gained by the measurement.

T-A5:A6 Derive the regression function in Equation 7.2 from the raw data.

208 Rigor cycle – Validation of the process model

Sentence template T-S4 instance

Gain ⟨power consumption⟩ with an accuracy of ⟨±2%⟩ on ⟨RPi cluster⟩
using ⟨MeasurePowerConsumptionOfCluster⟩.

F1 – Unique ID

MeasurePowerConsumptionOfCluster

F2 – Measuring information model

: Justi�cation

STREAM : Benchmark
id = STREAMBenchmark

: MeasuringInstrument
accuracy = "2%"
label = "Energenie
EGM-PWM-LAN" : MeasuringSuite

id = validationSetup
objective = "Gain power
consumption (accuracy
2%) for RPi cluster"

: SimpleMeasurement
value = "138.13"
gainedAt = TimeA

: SimpleMeasurement
value = "135.43"
gainedAt = TimeB

: SimpleMeasurement
value = "132.72"
gainedAt = TimeC

: ModelProxyFunction

F3 – Physical design

Power in

<<delegate>>

<<manifest>>

<<artifact>>
Energenie

EGM-PWM-LAN

<<component>>
Measuring tool

<<component>>
Power supply

<<delegate>>

Power out

<<component>>
Sensor

<<component>>
Sensor Controller

Data export <<delegate>> <<component>>
External PC

<<component>>
RaspberryPi cluster

Form template T-F2 instance.

power(Benchmark) =
⎧⎪⎪⎨⎪⎪⎩

135.43 if benchmark=STREAM
143.60 if benchmark=HPL

(7.2)

7.2. Controlled experiment 209

Power consumption
in Watt

135.43
138.13

132.72

STREAM HPL

150

145

140

135

130

143.60

148.51

142.68

Figure 7.2: Box plot of fictive power consumption measurements of the RPi
cluster while executing the STREAM an HPL benchmark.

T-A3:A14 – Examine model behavior

This iteration does not expect any unpredictable model behavior, because it
processes only two measured values for two benchmark executions on a fixed
number of nodes. Hence, there are no scaling or other aspects that might
induce model anomalies (cf. Section 6.2.5). In contrast, later iterations will
use checklist template T-C5 to evaluate the model behavior, e.g., adding the
⟨Nodecount⟩ parameter could be evaluated using the high level specifications
(cf. Section 2.3.2) of both benchmarks to assess the function’s scaling and
extrapolation behavior. Adding the ⟨Performance⟩ vector item can use
results of other research groups, like Cox et al. [105], for comparison.

T-A3:A15 – Incorporate iteration results

Since the results of the currently discussed iteration wouldn’t alter Equa-
tion 7.2, a further detailing in this direction is omitted. Instead, Equation 7.3
depicts directly the final reasoning function after all iterations are executed:
the first vector entry is the power consumption, the second entry is the
performance (cf. Equation 7.1). ⟨Power Consumption⟩ values expose a linear
scaling. The ⟨STREAM ⟩ TTC grows linearly as defined in its high level
specification [271], the ⟨HPL⟩ TTC grows logarithmic.2

2As Section 7.2 introductory insistently explains, the reasoning project is a prototypical
implementation focusing on aspects of the process model’s feasibility and applicability.
Thus, the logarithmic and linear TTC scaling is theoretically derived from the high level
specifications of the considered benchmarks. In particular, it is not derived from real
measured data, as the measuring costs would contradict the prototypical idea. However,
this does not affect the validation of the process model’s feasibility and applicability.

210 Rigor cycle – Validation of the process model

f(Nodecount,Benchmark) =
⎛
⎜⎜⎜⎜⎜⎜
⎝

103.76 +
⎧⎪⎪⎨⎪⎪⎩

Nodecount × 4.9 if benchmark=STREAM
Nodecount × 3.7 if benchmark=HPL

0.2 +
⎧⎪⎪⎨⎪⎪⎩

Nodecount × 1.2 if benchmark=STREAM
log(Nodecount) × 3.4 if benchmark=HPL

⎞
⎟⎟⎟⎟⎟⎟
⎠

(7.3)

T-A3:A16 – Evaluate reasoning function

The currently discussed iteration purely bases upon measurements and the
reasoning function assembled by the iteration is consistent with Equation 7.2.
The measuring tool employed to compile the reasoning function’s version
exposes an accuracy of ±2%, which renders an additional evaluation unnec-
essary, because this value complies to the demands specified in the sentence
template T-S4 instance for power consumption (cf. action T-A3:A3). In later
iterations, the replacing refinement would be compared to the replaced
function element as described in Section 6.2.7.

7.2.3 Phase C – Reasoning execution

The phase employs the compiled reasoning function to conduct the actual
reasoning. It selects an appropriate reasoning tool, like optimization or
what-if analysis, analyzes different parameter combinations, and triggers a
direct reaction on the reasoning results, if necessary.

T-A3:A17 – Select reasoning tool

Recalling the reasoning project’s intent in Section 7.2.1, it aims at answering
the question “Would additional Raspberry Pi nodes increase the cluster’s
performance and would the performance increase outperform the expected
power consumption increase?”. The variable T-S5:⟨Nodecount⟩ limits the
amount of nodes to a range of 1 to 20. Due to the range’s small size, decision
template T-D14 selects What-if analysis as reasoning tool.

T-A3:A18 – Generate input values

For both reasoning function parameters, the modification parameter and
the configuration parameter, the value ranges are already predefined by the
reasoning suite: action T-A3:A4 limits the amount of nodes to a range of 1 to
20, action T-A3:A6 defines the workload as STREAM and HPL benchmark.

7.3. Field study 211

T-A3:A19 – Execute reasoning

Executing a What-if analysis using reasoning function in Equation 7.3,
and the input values of action T-A3:A18 computes the numbers depicted in
Figure 7.3. These results can be used to decide, how many Raspberry Pi
nodes should be contained in the cluster.

250

200

150

100

50

0

30

25

20

15

10

5

0

STREAM Performance
STREAM Power Consumption

HPL Performance
HPL Power Consumption

Performance in TTCPower Consumption in Watt

1 5 10 15 20

Figure 7.3: What-if analysis results in the prototypical reasoning project.

T-A3:A20 – Trigger activity

Based on the reasoning results computed in action T-A3:A19, the physical
assembly of the RPi cluster is triggered.

7.3 Field study

→ Fig. 7.1
(p. 200)

The section constitutes the second validation part (cf. Section 7.1), being an
observational validation method that considers the process model’s (theoret-
ical) use in two real-world projects in the research Environment. It employs
the evaluation tool (cf. Section 3.5) of the RS to emphasize that the process
model satisfies “the requirements and constraints of the problem [it was]

212 Rigor cycle – Validation of the process model

meant to solve” [187, p. 85]. In particular, Section 7.3.1 compares the pro-
cess model’s capabilities and characteristics to the functional requirements,
Section 7.3.2 to the non-functional requirements identified in and extracted
from the real-world scenarios SuperMUC and DRIHM (cf. Section 3.2).

7.3.1 Validation against functional requirements

Table 7.1 itemizes the results of validating the process model against the
functional requirements of the RS (cf. Section 3.3.2).

✓ UC-1 Initiate reasoning activity

Creating a reasoning suite in Phase A of activity template T-A3 implicitly
provides the “cogent reason” required by UC-1, because 1) its specification
references the reasons, and 2) without a cogent reason, it wouldn’t be
possible to collect all information necessary for a complete reasoning suite.

✓ UC-1.1 Negotiate SLA and attributes

Especially action T-A3:A3 and T-A3:A4 fulfill this requirement, as their
creation is closely related to the negation of concrete attribute values that
could be stated in SLAs.

✓ UC-2 Define reasoning objectives

The entire Phase A of activity template T-A3 extracts and defines not only
reasoning objectives, but also concrete reasoning parameters. Besides,
its eight actions implicitly decompose the tasks in a way that ensures
result compatibility, since every single action in activity template T-A3 is
aligned to and guided by the reasoning suite specifications.

✓ UC-2.1 Define attribute(s)

Sentence template T-S4 in action T-A3:A3 formalizes attribute defini-
tions and produces a list of attributes reasoning should consider, as
requested by UC-2.1. Besides, the mandatory fields of an attribute con-
cept (cf. Section 5.6), formalized in the provenance information model
package attributes (cf. Section 6.1.3), ensure that each list entry con-
tains (at least) a name, a scale, and a description. Finally, the central
position of the attribute definitions in the reasoning suite fosters a com-
mon understanding about the attributes between all involved actors, as
required by UC-2.1.

continued on next page

7.3. Field study 213

continued from previous page

✓ UC-2.2 Select workload

Decision template T-D9 in action T-A3:A6 formalizes workload selection
for a particular reasoning activity, resulting in a list of workload reasoning
should consider and use, as requested by UC-2.2. Classifiers in the
provenance information model package workload (cf. Section 6.1.6) ensure
that each list entry provides a description and selection justification.
Besides, T-D9 facilitates the selection of workload relevant to represent
the analyzed circumstances, as called by UC-2.2.

✓ UC-2.3 Select IT infrastructure component(s)

Actions T-A3:A3 and T-A3:A4 collectively assemble a list of IT infrastruc-
ture component types according to the targeted reasoning parameters.
Consequently, the list contains only elements that are relevant to the
specific reasoning project and ensure a cost-saving and effective IT infras-
tructure modeling in action T-A3:A5, as required by UC-2.3.

✓ UC-3 Model IT infrastructure

Activity template T-A4 in action T-A3:A5 formalizes IT infrastructure
modeling, resulting in an UML object diagram based on the classifiers of
the provenance information model package itinfrastructure (cf. Sec-
tion 5.4.5). The achieved IT infrastructure model is bound to the reasoning
suite in general and the component type list in particular, compliant to
UC-3 that requires a useful, focused, and preferably small model.

✓ UC-3.1 Model part of IT infrastructure

The flexible notion of IT infrastructure components (cf. Section 5.4),
the applied black box approach (cf. Section 5.4.3), and the provenance
information model package structure (cf. Section 5.3) enable partial
modeling of IT infrastructures, especially of large-scaled and complex
ones. For instance, a group responsible for compute nodes can model
storage elements as black boxes to emphasize a dependency, and request
a black box refinement from the storage related group.

continued on next page

214 Rigor cycle – Validation of the process model

continued from previous page

✓ UC-3.2 Import IT infrastructure information

The process model’s underlying IT infrastructure notion (cf. Section 5.4)
explicitly provides a semantic interface to third party models. As Sec-
tion 5.4.2 details, both, the unique component identifier and the compo-
nent type list, facilitate the mapping between IT infrastructure compo-
nents and entities in third party models to foster actuality, consistency,
and cost-efficient work, as required by UC-3.2. The feasible interaction
with CIM databases that uses values of the ManagedElement.InstanceID,
implicitly enables information import from other information models, be-
cause CIM supports “mappings to and from other network and system
management information models” [390, p. 678].

✓ UC-3.3 Update IT infrastructure model

The import functionality (cf. validation of UC-3.2) and the capability
of partial IT infrastructure modeling (cf. validation of UC-3.1) facili-
tate model updating and collectively fulfill UC-3.3: partial modeling
enables specific stakeholders to update their model parts, and the im-
port functionality eases this updating process. In addition, using the
ComponentIdentifier and Type classifiers in the provenance information
model package itinfrastructure (cf. Section 5.4.5) for mapping mod-
eled components to entities in third party models might render updating
the IT infrastructure model obsolete in some situations.

✓ UC-4 Select model for attribute and component(s)

Decision template T-D11 in action T-A3:A12 formalizes and guides the
selection of an existing model as integration candidate to the reasoning
function compliant to reasoning suite specifications. The decision template
also provides a dedicated selection support tool to address the extend of
existing models as requested by UC-4.

✓ UC-4.1 Create model proxy

Activity template T-A5 in action T-A3:A13 formalizes the creation of a
proxy that substitutes a missing model integration candidate. Guided
by the (co) domain of the substituted model, activity template T-A5
describes the selection of a suitable model proxy creation method as well
as the method’s execution and result validation. The activity results
in an alternative way to provide a value for the attribute/component
combination, and to enable reasoning as requested by UC-4.1.

continued on next page

7.3. Field study 215

continued from previous page

✓ UC-4.2 Create load profile

Action T-A3:A18 prepares input values for the assembled individual rea-
soning function. It particularly covers the load profile creation using
workload selected in action T-A3:A6 and consequently, fulfills UC-4.2.

✓ UC-5 Execute reasoning

The entire Phase C of activity T-A3 and particularly action T-A3:A19 cover
and conduct the reasoning execution according to the reasoning suite
specifications and employing the prepared reasoning function, as required
by UC-5. The fulfillment is further detailed for UC-5.1 and UC-5.2.

✓ UC-5.1 Execute What-if analysis based reasoning

Decision template T-D14 in action T-A3:A17 supports the selection of
What-if analysis, which is used by action T-A3:A19 to execute reasoning.

✓ UC-5.2 Execute optimization based reasoning

Decision template T-D14 in action T-A3:A17 supports the selection of
optimization, which is used by action T-A3:A19 to execute reasoning.

✓ UC-5.3 Execute descriptive statistics based reasoning

Decision template T-D14 in action T-A3:A17 supports the selection of de-
scriptive statistics, which is used by action T-A3:A19 to execute reasoning.

✓ UC-6 Trigger activity

Action T-A3:A20 handles the potential need to react to a particular rea-
soning outcome by allowing to trigger a suitable activity.

Table 7.1: Results of evaluating the process model against functional re-
quirements specified in the RS.

7.3.2 Validation against non-functional requirements

Table 7.2 itemizes the results of validating the process model against the
non-functional requirements of the RS (cf. Section 3.4).

216 Rigor cycle – Validation of the process model

✓ NFR-1 Individual component type sets

The support of individual component type sets is threefold:
IT infrastructure notion Considers an IT infrastructure component
as graph node, an arbitrary type can be assigned to (cf. Section 5.4.1).
Modeling In its itinfrastructure package, the provenance informa-
tion model provides a dedicated classifier ComponentType that is indi-
vidually assigned to a particular component, and that also supports the
description of a component type hierarchy.
Reasoning function compilation Defining the reasoning function’s
domain in action T-A3:A3 and T-A3:A4 is highly flexible and not bound to
a fixed set of component types. Additionally, model integration selection
in action T-A3:A12 is only required to comply to the reasoning suite, but
there are no constraints about IT infrastructure component types.

✓ NFR-2 Individual attribute sets

The support of individual attribute sets is twofold:
Definition Sentence template T-S4 in action T-A3:A3 exclusively formal-
izes (meta) information that must be fixed for a considered attribute.
In contrast, it does not dictate, which attribute should be considered
for a particular situation. In addition, the sentence template applies
the process model’s underlying attribute decomposition in a concept
and multiple instances (cf. Section 5.6), and consequently, supports
individual attribute instances compliant to NFR-2.
Selection and binding Actions T-A3:A12 and T-A3:A13 can select and
compile a different model or model proxy, for any attribute instance
of interest. The result, in turn, can be flexibly bound to any suitable
component in the IT infrastructure model (cf. Section 5.6.2).

continued on next page

7.3. Field study 217

continued from previous page

✓ NFR-3 Multiple granularity levels

The support of multiple granularity levels is threefold:
Graph-based notion Represents IT infrastructure components as
graph nodes (Section 5.4.1) that can be selectively replaced by a de-
tailing sub graph. This enables the consideration of some components
(nodes) on a very coarse-grained level, while other parts of the graph are
(extremely) fine-grained.
Black box approach Supports the alluded graph-based notion by pro-
viding the dedicated and tangible terms black box and white box describ-
ing a (non) refinement node (cf. Section 5.4.3), and by formulating a
black box refinement algorithm that also describes the propagation of a
refinement within the entire graph based on component types.
Provenance information model In its itinfrastructure package,
the Component classifier applies the composite pattern (cf. Section 5.4.5)
to apply punctual and partial refinements of the IT infrastructure model.
Attribute binding Allows binding an attribute concept and/or its in-
stances(s) on every granularity level (Section 5.6.2), ranging from the
entire IT infrastructure down to a single core.

✓ NFR-4 Workload consideration

The compiled reasoning function consumes individual parameters, espe-
cially (work)load values (cf. Section 4.1), as illustrated in the controlled
experiment in Section 7.2.1. The workload to execute and consider is
selected by action T-A3:A6 and used in action T-A3:A13 and T-A3:A18
for model proxy creation and input value gain, respectively. Besides,
checklist template T-C3 supports the identification of alternative workload
in case the original one cannot be executed. Consequently, workload
consideration is deeply enmeshed in the presented process model.

✓ NFR-5 Job cancellation

The ability to formulate the considered workload as reasoning input pa-
rameter (cf. NFR-4) implicitly supports job cancellation, as the parameter
value can be set to null, whenever necessary.

continued on next page

218 Rigor cycle – Validation of the process model

continued from previous page

✓ NFR-6 Development over time

As detailed in Section 6.3, the input values of the reasoning function can
be defined on a time step basis, which means that for each time step, a
different input vector can be defined. This time step, in turn, can be set
individually. Consequently, the reasoning function co domain implicitly
supports investigating the development over time, because the reasoning
function is “executed” at each time step.

✓ NFR-7 Simplicity

The process model attains simplicity in two regards:
Modeling The provenance information model classifiers represent only
mandatory core elements and provide dedicated extension capabilities
by 1) applying an object oriented approach that supports inheritance
and sub classing, and by 2) specifying dedicated interfaces to third
party models that can be used for importing or only referencing related
information. The achieved objects can easily be reused due to the
provenance information model’s package structure. For instance, a
Workload object can be assigned to a reasoning suite definition and
simultaneously to a load generation in the context of a measuring.
Together with the support of multiple granularity levels (cf. NFR-3), this
reduces the amount of stored information to a minimum.
Reasoning activity The specification of a reasoning suite in Phase A
of activity template T-A3, especially before reasoning function compila-
tion in Phase B and reasoning execution in Phase C, assures a simple,
focused, and cost-effective mode of operation, since every single action
and selection is guided by and aligned to the reasoning suite. In other
words, every unessential effort is omitted such that it leads to a (local)
optimal trade-off between accuracy and effort. For instance, the specifi-
cation of reasoning interests, of a minimum model accuracy level, and
of constraints in actions T-A3:A2, T-A3:A3, and T-A3:A8, respectively, at
the beginning of a reasoning project avoids cost and time profuseness:
model integration candidates are discard due to constraint violation even
before a costly analysis, the reasoning function integrates only models
compliant to the reasoning interest, and model proxy creation omits the
expensive achievement of a unnecessary high accuracy level. Finally, the
reasoning objectives driven refinement (cf. Section 4.3) assures a focused
and highly fitting reasoning function.

continued on next page

7.4. Related research analysis 219

continued from previous page

✓ NFR-8 Efficient use

Two approaches enable the efficient use of the presented process model:
Complete formalization Five template types (cf. Section 5.2.2) for-
malize every action to take, decision to make, and information to store
during a reasoning project in a standardized way and thus, heavily ease
the execution of a reasoning project.
Flexibility The process model’s capability to cover individual component
type and attribute sets (cf. NFR-1 and NFR-2), and to respect develop-
ment over time (cf. NFR-6), addresses the lion’s share of situations, and
renders adaptions for the bulk of reasoning projects unnecessary.

Table 7.2: Results of evaluating research results against non-functional
requirements in the requirements specification.

7.4 Related research analysis

→ Fig. 7.1
(p. 200)

The section constitutes the third validation part (cf. Section 7.1), being a
descriptive method that comparatively discusses the process model and re-
lated work “use[ing] information from [related research] to build a convincing
argument for the [process model’s] utility” [187, p. 86]. According to this
objective, related research analysis does purposely not aim at contemplating
single models or approaches in detail, but at demonstrating the process
model’s advance and particularly its expansion of existing knowledge.

Section 2.4 motivates and explains the high relevance of IT infrastructure
attributes, which causes a mass of related research. Section 7.4.1 explains
the structuring approach to address this situation and to enable the alluded
comparative discussion. Following this structuring, Sections 7.4.2, 7.4.3, and
7.4.4 present validation results, and Section 7.4.5 describes candidates for
(partial) contribution to the process model.

7.4.1 Structuring of related research

The high relevance of quantitative IT infrastructure attributes (cf. Sec-
tion 2.4), and the long history of their investigation produce a mass of
related research. Since the above motivated comparative discussion can rea-
sonably cover only a limited set, a taxonomy is applied to structure related
research. A taxonomy is chosen as it constitutes a long-term structuring
solution: taxonomy classes tend to change seldom, but class representatives

220 Rigor cycle – Validation of the process model

might change and appear frequently. Besides, comparative discussion can
investigate class characteristics and cover (all) class members simultaneously.

Related
research

Primary
focus

Secondary
focus

Provider
perspective

Consumer
perspective

Runtime

System
analysis

(Software)
development

Attribute
aspects

Modeling

Section 7.4.2

Section 7.4.4

Predictive
attribute
analysis

Contribution
candidates
Section 7.4.5

Layered
abstraction

Simulation

Section 7.4.3

Convolution

Figure 7.4: Taxonomy classifying related research for a comparative discus-
sion with the presented process model.

Figure 7.4 depicts the concretely applied taxonomy. It classifies related
research according to the pursued objectives and applied focus, and splits
related research in the following classes:

● Predictive attribute analysis Class members deal with prediction of
and reasoning about quantitative IT infrastructure attributes in a
wider sense and without prerequisiting (full) system hardware being
available. The class’ role of the process model’s “competitor” for
comparative discussion puts it in the primary focus of the related
research analysis, as indicated in Figure 7.4. The class members
underlying methodologies further split the class in three sub classes:

Layered abstraction Class members assemble their predictive mod-
els in a four-layered abstraction process. As Section 7.4.2 details,
the process applies on real-world objects analytic and empirical tools
to gain information, which in turn provide the basis for deducing
the final predictive model, mostly a mathematical formula. Class
discussion is split in a provider and a consumer perspective (cf. Sec-
tion 2.1.1) to respect that the “approach of hardware and software

7.4. Related research analysis 221

separation [is used] in many modeling activities” [228, p. 215], like
the PACE system [297].
Convolution Class members assemble their predictive model using
convolution, a process that combines an application signature and
machine profile, as detailed in Section 7.4.3. The class is not further
refined, as most convolution based research deals with quantitative
IT infrastructure attributes from a consumer perspective.
Simulation Class members employ simulation to investigate quanti-
tative IT infrastructure attributes, as discussed in Section 7.4.4.

For each of the three itemized classes, discussion characterizes aspects
important to the related research analysis, and extracts the class’
underlying general methodology. This methodology is validated against
non-functional requirements of the RS (cf. Section 3.4). In contrast,
validation omits the functional requirements, since a non-fulfillment of
the more generic non-functional requirements renders a validation of
the more focused functional requirements unnecessary. Class discussion
closes with a consideration of a selected set of class representatives to
underpin validation results.

● Contribution candidates Class members potentially contribute to the
presented process model by providing insights, tools, and information
schemes. The thesis covers class members in manifold places that
puts the class in the secondary focus of the related research analysis.
Still, it is considered in Section 7.4.5 to emphasize the differing goals
compared to the presented process model, and to highlight the at
most contributing and particularly not competing character of the
class members, although they are concerned with quantitative IT
infrastructure attributes. The class is further split in two sub classes:

Attribute aspects Related research that does not predict or reason
about quantitative IT infrastructure attribute values, but deals with
them in any other and especially purely descriptive way. Besides, class
members mandatorily prerequisite the full system hardware being
available. The application life cycle sub-divides the class in [297, 228]
- Development, which covers the development phase and considers
model developer support,

- Runtime, which examines scheduling algorithms and (real-time)
execution optimization, and

- System analysis, which investigates productive and running systems
like HPC clusters, supercomputers, or Grids.

222 Rigor cycle – Validation of the process model

Modeling Contains approaches for modeling elements related to the
process model, like the IT infrastructure.

Section 2.3.1 justifies the focus on scientific applications due to their
challenging demands on multiple especially quantitative IT infrastructure
attributes [373]. Besides, Section 2.3.1 states that the contained concepts,
demands, and techniques (mostly) apply equally well to other application
classes. Correspondingly, related research analysis focuses on work dealing
with IT infrastructure attributes from a provider and consumer perspective
in the context of scientific applications. In addition, validation results are
assumed to be applicable to work in other fields according to the alluded
argumentation. For instance, Chen et al. [92] investigate performance
modeling of component-based applications built of CORBA, Java Enterprise
Edition (J2EE), and .NET in industrial software engineering projects, but
the validation results discussed in Section 7.4.2 can be applied, as well.

7.4.2 Layered abstraction

→ Fig. 7.4
(p. 220)

Related research in this class derives in several ways predictive models
for approximating and calculating one or at most two quantitative IT
infrastructure attributes. Figure 7.5 summarizes the general model derivation
process that underlies the bulk of class members. It abstracts in five layers
the final predictive model from the considered object(s) (EG-7.1):

Ab
st
ra
ct
io
n Intent

Predictive model

Deduction

EmpiricalAnalytic
Information gain

Object(s)

Figure 7.5: The common process of predictive model assembly.

● Intent Represents the derivation process’ general goal, describing the
targeted IT infrastructure attribute and the object(s) of interest. In
this role, the intent influences all steps of the derivation process, as
it guides object(s) selection, information gathering, and deduction
method application.

7.4. Related research analysis 223

● Object(s) Contains the examined hardware or workload a predictive
model is derived for. Borrowing the understanding of measuring (↗KB
p. 256), each object owns a (theoretically) infinite set of characteristics,
describing an aspect of the object’s nature.

● Information gain Selects a (small) sub set of the alluded infinite charac-
teristic set that is of relevance for the targeted predictive model, also
called predictors [319]. It is achieved by analytically and/or empirically
analyzing the system, like source code inspection, algorithm analysis,
communication pattern recognition, or measurement.

● Deduction Based on the gained information, an abstraction and formal-
ization produces the predictive model, e.g., using regression.

● Predictive model The (abstract) predictive model describes correlations
within and information about the examined object(s), mostly in a
mathematical and parametric way that approximates and calculates
quantitative IT infrastructure attribute values.

The intent of Kerbyson et al. [226] is considering performance and scala-
bility of large-scale applications. This directly impacts object selection,
resulting in the focusing on SAGE, a large-scale parallel code written
in FORTRAN90 that uses MPI for inter-processor communications. In-
formation gain for this object is twofold: an analytic part executes “an
analysis of the code [and an] inspection of key data structures” [226,
p. 1], an empirical part conducts an “analysis of traces gathered at
run-time” [226, p. 1]. Deduction processes this information into a set of
abstracting mathematical formulas that collectively assemble the final
predictive model, i.e., “a performance model that encapsulates the code’s
crucial performance and scaling characteristics” [226, p. 1].
The intent of Pfeiffer et al. [319] is the prediction of application perfor-
mance on parallel computers (objects), and they summarize the model
assembly as follows: “model generation begins with measured values [...]
and application run times [(information gain)]. Then an automated
series of least squares fits is made using backward elimination to ensure
statistical significance [(deduction)]” [319, p. 11]. The final predictive
model is an equation that calculates the run time of several application
aspects, like non-overlapping computation and communication time.

EG-7.1

The variety within each derivation process layer (cf. Figure 7.5) produces
a plurality of predictive models. They (heavily) differ in the pursued intent

224 Rigor cycle – Validation of the process model

and hence, not only in the considered objectives, applied information gain
and deduction methods, but also in the capabilities of the finally assembled
predictive model. Despite the class’ extent, class members are not an
alternative for the presented process model, since the underlying methodology
does not validate successfully against the non-functional requirements of the
RS, as Table 7.3 explains.

× NFR-1 Individual component type sets

The high complexity, extend, and correlations exposed by the object(s)
produce a big set of aspects to cover when deriving an accurate and
comprehensive predictive model. Bailey et al. state that to address
“the difficulty in producing a truly comprehensive model, present-day
performance modeling researchers generally limit the scope of their models
to a single system and application, allowing only the system size and
job size to vary” [30, p. 186]. Hence, related research in the considered
class addresses the alluded extent by (strongly) concentrating on a small
set of details. Also Denzel et al. arrive at this conclusion, stating
that “considering established methods and tools [...], problems either
concentrate on partial aspects only or cannot scale sufficiently” [118,
p. 331]. This concentration leads to mature and precise predictions, but
at the same time, a particular predictive model can be applied only to
the specifically considered IT infrastructure components as defined in the
derivation’s intent, and it is notably not possible to use the predictive
model for individual component type sets, as requested by NFR-1.

× NFR-2 Support individual attribute sets

The variety of factors influencing quantitative IT infrastructure attributes
(cf. Section 2.4) in the derivation process’ lowest layer confirms the fo-
cusing of related research as described for NFR-1 above. This constraints
consideration to only one or at most two quantitative IT infrastructure
attributes at the same time, what causes a non-fulfillment of NFR-2. In
addition, the required selection of a deduction method in the development
process’ third layer either excludes analysis of inter- and intra-attribute
reciprocity and potential conflicts, or it hard wires reciprocity analysis in
the model, which also contradicts NFR-2.

continued on next page

7.4. Related research analysis 225

continued from previous page

× NFR-6 Development over time

Most class members fulfill NFR-4 as they address the central role of
workload execution and the caused load in an either implicit or even
explicit way. In contrast, consideration of development over time is
omitted, due to the above alluded research and modeling focus. The
non fulfillment is closely related to the support of job cancellation in
NFR-5: if the development over time is not supported, job cancellation is
automatically not supported as well, and hence, not further detailed.

Table 7.3: Validation of related research in the layered abstraction class.

Provider perspective

→ Fig. 7.4
(p. 220)

The subsequent list describes class representatives that apply a provider
perspective, as they mainly focus on hardware aspects when predicting and
modeling quantitative IT infrastructure attributes. Although discussed work
does not fulfill non-functional requirements, they are all potential model
integration candidates (cf. Section 6.2.3).

● Chip level power consumption Basmadjian et al. [37] propose a model
that estimates the dynamic power consumption (NFR-2 ×) of multi-
core processors (NFR-1 ×). Their model is split in three areas, the
processor’s chip, components within a die, and components within
a core, to address differing behaviors in terms of resource sharing
techniques, such as on-chip caches, and energy-saving mechanisms.
Each area can be refined by a dedicated formula. This results in an
elaborated model that exposes high achievements compared to other
approaches, but it does not fulfill NFR-1 and NFR-2.

● HPC network performance Martinasso et al. [276] present a model
for predicting the “elapsed time” or TTC (NFR-2 ×) of communications
that take place concurrently on high performance networks (NFR-1 ×).
They introduce the notion of dynamic contention graphs to handle
concurrent accesses, and to address dynamics of contention behavior,
an achievement compared to existing predictive models in this field.

● Grid performance Cao et al. [79] consider the TTSD (NFR-2 ×) of an
agent-based service discovery facility for Grids (NFR-1 ×). Their model
covers the resource management infrastructure using a hierarchy of
homogeneous agents, each being both, a service provider and requester.

226 Rigor cycle – Validation of the process model

The predictive performance model particularly focuses on the agent
hierarchy, the services, the requests, and optimization strategies.

Consumer perspective

→ Fig. 7.4
(p. 220)

The subsequent list describes class representatives that apply a consumer
perspective, as they mainly focus on workload aspects when predicting and
modeling quantitative IT infrastructure attributes. Although discussed work
does not fulfill non-functional requirements, they are all potential model
integration candidates (cf. Section 6.2.3).

● TTC of message-passing applications Abandah et al. [13] develop a
performance model for estimating the TTC (NFR-2 ×) of message-
passing applications based on node communication in a cluster (NFR-1
×). They analyze the application’s high-level source code and measure
a set of basic communication patterns to assemble their predictive
model. Although the development over time could be incorporated
in the model by setting the message length to zero bytes, it is not
contained in the presented version (NFR-6 ×).

● TTC of ASCI workload applications The research team of Hoisie3
et al. is concerned with performance models of the Department of
Energy (DOE) Accelerated Strategic Computing Initiative (ASCI) work-
load [228] on Petascale and Exascale systems [31] (NFR-1 ×). In par-
ticular, they focus on analytic performance (TTC) (NFR-2 ×) and
scalability models of Sweep3D [193], SAGE [226, 112], and VPIC
(cf. Appendix B), as the codes are “representative of the workload of
the ASC program at Los Alamos and elsewhere” [192, p. 7]. Resulting
models take into account “the main computation and communication
characteristics of the entire code [... and ...] encapsulate the code’s
crucial performance and scaling characteristics” [226, p. 11]. Although
they provide a kind of model assembly methodology in [31], and al-
though the models are highly elaborated and expose a very good
prediction accuracy, as proven by several machine analysis discussed
in Section 7.4.5, they are limited to a single attribute and a small set
of applications. In addition, the predictive model does not provide
a time parameter to support the development over time (NFR-6 ×).
Instead, they predict the TTC as “a function of primary computation
and communication parameters” [193, p. 3].

3Dr. Hoisie’s profile page at Pacific Northwest National Laboratory: http://www.
pnl.gov/computing/staff/staff_info.asp?staff_num=7501 (Visited 2014-07-05).

7.4. Related research analysis 227

● Power consumption of applications Brochard et al. [71] present a
model for predicting the power consumption (NFR-2 ×) of HPC appli-
cations and particularly a given benchmark. They empirically assemble
the model by executing SPEC2006 benchmarks, measuring the power
consumption using Active Energy Manager measuring tools, and deriv-
ing a model based on the characteristics measured at frequency f . The
resulting predictive model consumes the microprocessor’s frequency
(NFR-1 ×) and the performance, described in CPI (cf. Section 2.4.2),
as input parameters. The model does not provide any parameters for
the development over time (NFR-6 ×).

7.4.3 Convolution
→ Fig. 7.4
(p. 220)

Related research in this class bases upon convolution, a “computational
mapping of an application signature onto a machine profile” [82, p. 926].
As Section 2.3.3 further details, an application signature is a “summary of
the operations to be carried out by an application [...] independent of any
particular machine” [83, p. 337], a machine profile is a “characterization of
the rates at which a machine can (or is projected to) carry out fundamental
operations abstract from the particular application” [84, Sec. 2].

Convolution

Predictive model

Existing model Develop model

Layered abstraction
(Section 7.4.2)

Application signature
Existing model Develop model

Layered abstraction
(Section 7.4.2)

Machine pro�le

Figure 7.6: The general convolution process to assemble a predictive model
from an application signature and a machine profile.

A fictive convolution approach uses an existing application signature,
and creates an individual machine profile for HPC clusters. This creation
employs and relies on the layered abstraction process, which inherently
induces its validation results (cf. Table 7.3) to the machine profile. This,
in turn, influences the validation results of the convolution approach that
is constraint to HPC clusters.

EG-7.2

228 Rigor cycle – Validation of the process model

Figure 7.6 pulls elements together and emphasizes the extending character
of the convolution class compared to the layered abstraction class discussed in
Section 7.4.2. As Figure 7.6 depicts at its bottom, the application signature
and/or the machine profile might already exist or is individually created.
In either case, the layered abstraction approach is applied to achieve the
corresponding model. This causes a validation result “inheritance” (EG-7.2).
Table 7.4 explains the extension of inherited validation results.

× NFR-1 Individual component type sets

Despite the generic and methodical nature of convolution, most approaches
are constraint to a particular IT infrastructure, as “performance modeling
techniques primarily rely on combining the performance profile of an
application on a well-known HPC architecture [30, 372]” [45, p. 1]. In
other words, at least one input parameter of the computational mapping
is (mostly) limited to a specific IT infrastructure type or even a specific
system, which in turn disqualifies convolution based approaches for sup-
porting individual component type sets. Besides, the limited machine
profiles can rarely be exchanged by potentially more flexible ones, because
“the performance enhancing features of novel processing devices can be
significantly different from a conventional microprocessor-based system,
[... resulting in a..] limited applicability” [45, p. 1].

× NFR-2 Individual attribute sets

The lack of supporting individual attribute sets is caused by the in-
heritance of the layered abstraction’s validation results: Most models,
convolution consumes as input, were created using the layered abstraction
process. In turn, the input model is already limited to a particular or
very small set of quantitative IT infrastructure attributes, which results
in a limitation of the convolution based predictive model, as well.

Table 7.4: Validation of related research in the convolution class.

The subsequent list discusses class representatives, and particularly
highlights validation result inheritance alluded above:

● Performance of large-scale scientific computation Bailey et al. [30]
present a convolution based performance prediction approach. Both,
the application signature and the machine profile, are created using
the layered abstraction development process (cf. Section 7.4.2). This
causes validation result inheritance: the machine profile, for instance,

7.4. Related research analysis 229

is created by executing low level benchmarks and measuring the sys-
tem’s behavior (information gain) while focusing on memory access
and communication patterns (object(s), NFR-1 ×).

● HPC cluster The research team of Carrington4 et al. is concerned with
“gaining insight into the factors that affect performance” [84, p. 1] by
employing convolution methods. In particular, Carrington et al. work
on predicting the performance (NFR-2 ×) of scientific applications on
HPC platforms (NFR-1 ×). Both, the consumed application signatures
and machine profiles, are created using the layered abstraction: an
application’s sequential part is reflected by memory traces (objects)
collected via the MetaSim Tracer [85] (information gain), an applica-
tion’s parallel part is reflected by MPI communication traces (objects)
collected by MPIDtrace [85] (information gain) [82] (NFR-1 ×). Us-
ing the MetaSim Convolver, both are mapped to the corresponding
information in a machine profile to get the performance model of a
full parallel application (deduction) [85].

7.4.4 Simulation
→ Fig. 7.4
(p. 220)

Simulation is “an imitation (on a computer) of a system as it progresses
through time” [334, p. 2] that aims at “predict[ing] the behavior of a system
under particular circumstances when it is impossible, or at least undesirable,
to experiment with the system itself” [72, p. 1]. This behavior includes,
amongst others, communication processes in parallel applications [439]
or interactions between various hardware and software components [209].
Figure 7.7 depicts the commonly applied simulation approach (EG-7.3), and
the subsequent itemization explains contained elements.

Prediction

Analysis

Mimicking

Object(s)

Figure 7.7: Commonly applied simulation approach for predictive modeling.

4Dr. Carrington’s profile page at San Diego Supercomputer Center at University of
California: http://users.sdsc.edu/~lcarring/ (Visited 2014-07-05).

230 Rigor cycle – Validation of the process model

● Mimicking Imitates in a preferably exact way the considered system or
target machine in terms of exposed (real-time) behavior and charac-
teristics. Mimicking is executed only once [228]. A widely applied
approach is discrete even simulation, which represents “only the points
in time at which the state of the system changes” [334, p. 15]. In other
words, mimicking describes the system as a series of events, which are
sometimes split in scheduled bound events and conditional events that
depend on the system’s state [334].

● Analysis Consumes the mimicking results to compute predictions. It is
executed as often as required, focusing on different aspects and details.

BigSim is a “simulation framework that aims at providing fast and
accurate performance evaluation [...] large parallel systems using much
smaller machines” [439, p. 221]. Its mimicking part (cf. Figure 7.7) is a
parallel emulator [440] that provides a virtualized execution environment
using out-of-core execution. It produces a set of event logs capturing
the application’s computation and communication behavior. These logs
are consumed by the analysis part for post-mortem analysis using a
trace-driven parallel simulator [441] that predicts parallel performance
on multiple resolutions.

EG-7.3

The variety within each simulation layer (cf. Figure 7.7) produces a
plurality of simulation tools, ranging from full system simulators to very
focused ones. Despite this extent, class members are not an alternative for
the presented process model, since the underlying methodology validates not
against the non-functional requirements of the RS, as Table 7.5 explains.

7.4. Related research analysis 231

× NFR-1 Individual component type sets

Usually, the imitated real world objects expose a high complexity and own
a huge amount of details, e.g., “each application evidences idiosyncratic
memory usage, communication pattern, and load balance issues” [439,
p. 221]. Especially mimicking aims at exactly imitating real world objects
and at copying their (physical) configuration as accurate as possible [4].
This situation strongly requires the simulation approach to apply a narrow
focus, because “the very high degree of detail does not allow the scaling
[...] of simulation to HPC systems of many thousands of interconnected
processors, [because] this would be too time- and resource-consuming,
if not even practically impossible” [118, p. 332]. The narrow focus,
in turn, disqualifies supporting individual component type sets, and
“recorded measurements might not be useful when attempting to predict
the performance of an entirely different type of system” [439, p. 222].

(×) NFR-2 Individual attribute sets

A couple of simulation-based approaches focus on mimicking and omit
analysis. Although this additional concentration (mostly) results in an
even higher accuracy level, it lacks any attribute prediction or reasoning
capability at all. Instead, the approaches act as data providers.

× NFR-3 Support multiple granularity levels

The intent of accurately copying real world objects alluded in the valida-
tion of NFR-1 also results in the fixation of a single global granularity level,
or in other words, multiple granularity levels are not supported. The fixed
granularity level is mostly very high to enable consideration and analysis
of cycle accurate processes in microprocessors or memory to obtain precise
application execution times, IPC values, or cache miss rates [118]. Bailey
et al. argue that “cycle-accurate simulation is the performance modeling
baseline [and] given enough time [and] details about a machine, we can
always explain and predict performance by stepping through the code
instruction by instruction” [30, p. 190].

Table 7.5: Validation of related research in the simulation class.

The subsequent list discusses class representatives and highlights aspects
related to the validation above:

● DRAMSim2 Is a DDR2/3 memory system simulator [340] (NFR-1 ×),
which includes a detailed cycle-accurate model (NFR-3 ×) of a memory

232 Rigor cycle – Validation of the process model

controller that issues commands to a set of DRAM devices attached
to a standard memory bus. DRAMSim2 provides a lot of tools, like an
object-oriented programming interface and a robust visualization tool,
and it creates achievements in the simulation domain, since “many of
these CPU simulators overlook the need for accurate models of the
memory system” [340, p. 16]. Yet, the DRAMSim2 approach lacks
the analysis part and hence, is not able to analyze quantitative IT
infrastructure attributes at all (NFR-2 ×).

● End2End HPC cluster Denzel et al. [118] extend the OMNeT++ simu-
lation framework [398] to achieve a full-system event-driven end-to-end
simulation of versions of the Productive, Easy-to-use, Reliable Com-
puting System (PERCS) HPC architecture (NFR-1 ×). They replace
statistical packet generators of the OMNeT++ simulation framework
with a “new abstract computing node model that is driven by real-
world application traces” [118, p. 332] of MPI calls and computing
events in the application software. The presented approach generates
a set of values for performance instances (cf. Section 2.4.2), but does
not cover other quantitative IT infrastructure attributes (NFR-2 ×).

● Reliability Jones et al. [216] use simulation to study the impact of
sub-optimal checkpoint interval assignment (cf. Section 2.4.3) on ap-
plication efficiency. They cover reliability and performance, but they
do not support individual attribute sets (NFR-2 ×).

7.4.5 Contribution candidates
→ Fig. 7.4
(p. 220)

The class contains related research that does not “compete” with the pre-
sented process model as the previously analyzed classes. Instead, it contains
candidates for potential (partial) contributions to the presented process
model by providing insights, tools, and information schemes. Since the
entire thesis extensively covers and discusses class members whenever they
are related to a certain aspect, the class is in the secondary focus of the re-
lated research analysis and examined only selectively. The class is discussed
according to the structuring explained in Section 7.4.1.

Attribute aspects

→ Fig. 7.4
(p. 220)

The class contains research that deals with quantitative IT infrastructure
attributes in a descriptive and particularly not predictive way. The class is
considered anyway to highlight the at most contributing and particularly
not competing character of the class members, although they are concerned

7.4. Related research analysis 233

with quantitative IT infrastructure attributes. The application life cycle
structures the subsequent class discussion [297, 228].

→ Fig. 7.4
(p. 220)

● (Software) development Contains approaches, tools, and models that
support the development and design of a particular system or workload,
e.g., to support application designers and programmers in optimizing
their source code. Although class members tend to (strongly) influence
quantitative IT infrastructure attributes, they expose neither predictive
capabilities, nor contain models that could be extracted for integration.
Instead, they can be used to achieve a specific attribute target value
that has been generated by a reasoning project (cf. Section 8.2.6).

Programming models Describe the way how to design and encode
a particular (computational) problem for machine-based execution.
Bigot et al. [48], for instance, present a programming model that
aims at supporting performance portability by enabling code reuse,
particularly of hardware agnostic parts.
Libraries Provide a set of tools to solve recurring (small) tasks.
Browne et al. [73] introduce the Portable API (PAPI), a standard
programming interface for accessing hardware performance counters
available on most modern microprocessors, to improve the collection
of performance data. They aim at addressing poor documentation,
instability, or unavailability of vendor specific performance counter
access to the user level program. PAPI provides a consistent interface
and methodology for performance counter use to support application
designers and engineers. Although PAPI might (heavily) improve
the performance of a particular workload, it does not provide any
prediction or reasoning capability.

→ Fig. 7.4
(p. 220)

● Runtime Contains approaches, tools, and models related to quantitative
IT infrastructure attributes during workload or system runtime. In
contrast to the (software) development class, runtime class members
often implicitly contain models that could be extracted for integration
in an individual reasoning function (cf. action T-A3:A12).

Frequency adaptions The concept of Dynamic Voltage and Fre-
quency Scaling (DVFS) is one of the major power-saving techniques.
At a glance, it adapts the “voltage and frequency of compute cores or
other processor parts to the current system load” [354, p. 481]. There
is a bulk of related research dealing DVFS, for instance:
- Ge et al. present a “run-time scheduler [...] that supports system-
wide, application-independent, fine-grained, DVFS-based power

234 Rigor cycle – Validation of the process model

management for generic power-aware clusters” [162, p. 18]. Al-
though this scheduler (obviously) does not provide any reason-
ing capabilities, the included predictive models describing power
consumption and workload could be used for integration in ac-
tion T-A3:A12, or for input value generation in action T-A3:A18,
respectively.

- Schöne et al. present a “configurable CPU frequency governor
that adapts processor frequencies based on performance counter
measurements instead of processor load” [354, p. 481]. Based on
the measured number of executed instructions and the number
of last level cache misses (llcm) in a certain time interval, they
determine the rate of instructions/llcm that “presumably allows
[them] to estimate how strongly the current CPU load is bound
in its performance due to main memory accesses” [354, p. 482].
Their work is an example for a purely insights contributing related
research intent, as they neither provide reasoning capabilities nor
potential model integration candidates.

→ Fig. 7.4
(p. 220)

● Machine analysis Contains approaches, tools, and models that investi-
gate a particular machine, either executing day-by-day workloads or in
separate experiments. Compared to the previous two classes, research
about machine analysis tends to provide the most contribution, because
it generates a lot of insights, especially about factors that influence
quantitative IT infrastructure attributes, and it often employs models
that could be extracted for integration in action T-A3:A12.

An established research team is the one around Adolfy Hoisie (cf. Sec-
tion 7.4.2). They use their predictive models of Sweep3D, SAGE, and
VPIC (cf. Section 7.4.2) to investigate a broad set of world-leading
machines. The following alphabetically ordered list points out some
work of the team, and of other researchers. Each entry starts with
a general technical description of the analyzed system, followed by
selected details. Appendix B overviews the mentioned benchmarks.

AppleTV cluster Fürlinger et al. [157] built a cluster of four second
generation AppleTV (ATV2) devices, each connected to an Ethernet
switch and communicating via MPICH 2. An ATV2 runs an Apple A4
processor that combines an ARM Cortex-A8 running at 1 GHz with a
PowerVR SGX535 GPU, and 256 MB RAM. To run parallel jobs, they
installed an MPI distribution. They evaluated the cluster’s power
and performance characteristics, aiming at the provision of a “data
point on the current state of energy efficient parallel and distributed

7.4. Related research analysis 235

computing on ARM powered consumer electronic devices” [157, p. 2].
Using the Coremark, HPL, and membench benchmarks, they ana-
lyzed the performance of CPU cores of embedded systems, of the
interconnect, and the parallel TTC of the cluster, resulting in a peak
performance of 160.4 MFLOP/s (cf. Section 2.4.2) in double precision
arithmetic, and about 16 (MFLOP/s)/Watt.
ASCI Q Within the scope of the Advanced Simulation and Computing
(ASCI) program, ASCI Q was installed at the Los Alamos National
Laboratory (LANL) in 2003. It consisted of 2048 HP AlphaServer
ES45 nodes, which are interconnected by two rails of the Quadrics
QsNet fat-tree network [316]. As part of the alluded Hoisie research
team, Kerbyson et al. [228] analyzed the performance of ASCI Q
with the predictive performance model of SAGE, using a problem
size of 13,500 cells per processor.
BlueGene/L The IBM BlueGene/L [160] is a massively parallel su-
percomputer built of 65.536 dual-processor nodes that communicate
via five interconnect networks for I/O, debug, and various types of
interprocessor communication. BlueGene/L achieved a peak perfor-
mance of 360 TFLOP/s. Hoisie et al. [59, 192] discuss its performance
using the Sweep3D and SAGE models, and compare (normalized) per-
formance numbers with other systems [192], like the Cray Red Storm
(XT3), and ASCI Purple (IBM Power5). Borill et al. [59, 60] used the
MADbench2 benchmark to investigate specifically the (a)synchronous
I/O performance of BlueGene/L’s parallel file systems.
Columbia Built by Silicon Graphics (SGI) for the National Aero-
nautics and Space Administration (NASA) in 2004, Columbia was a
SGI Altix HPC cluster, consisting of 10.240 processors. It achieved a
peak performance of 63 TFLOP/s. Biswas et al. [50] characterized its
parallel performance in terms of floating-point performance, memory
bandwidth, and message passing communication speeds. In doing
so, they executed a subset of the HPC Challenge benchmark and
a variety of scientific applications to investigate different configura-
tion options available on Columbia with regards to their impact on
performance. Borill et al. [59, 60] used the MADbench2 benchmark
to investigate specifically the (a)synchronous I/O performance of
Columbia’s parallel file system.
Earth Simulator Is a Japanese parallel vector HPC system. It was
built as distributed memory system consisting of 640 processor nodes
that were inter-connected by a single stage full crossbar network [351,
350]. It achieved a peak performance of 40 TFLOP/s, and was

236 Rigor cycle – Validation of the process model

initially expected to achieve a sustained performance of 5 TFLOP/s
(12.5% of system-peak) on atmospheric applications [427, 227]. Carter
et al. [86] used the Microwave Anisotropy Dataset Computational
Analysis Package (MADCAP) [58] to analyze the Earth Simulator’s
performance. As part of the alluded Hoisie research team, Kerbyson
et al. [228] analyzed the performance of the Earth Simulator with the
predictive performance model of SAGE, and compared the results
with the performance numbers for the ASCI Q system.
Jaguar A Cray supercomputer consisting of 224.256 dual-core 2.6
GHz AMD Opteron processors, located at the Oak Ridge National
Laboratory (ORNL). Jaguar achieved a peak performance of 1.75
PFLOP/s. Borill et al. [59, 60] use the MADbench2 benchmark
to investigate specifically the (a)synchronous I/O performance of
Jaguar’s Lustre parallel file system.
Roadrunner An HPC system whose design represents a careful bal-
ance between components available at the market and technological
advance. It consists of the PowerXCell 8i, a processor IBM imple-
mented separately for Roadrunner, and having a peak performance
of 108.8 GFLOP/s on double-precision operations. Barker et al. [32]
employed the Sweep3D model to examine Roadrunner’s memory and
communication performance.

Modeling

→ Fig. 7.4
(p. 220)

The class covers modeling approaches and solutions related to the process
model in every regard expect quantitative IT infrastructure attributes. In
particular, it deals with IT infrastructure modeling, since extending one of the
multiple existing models would benefit from third party experience, and ease
integration in and interaction with existing (management) tools. Although
there are manifold and widespread used (meta) models and languages to
describe a network, a computer system, or a distributed system, their inherent
overhead would outweigh the benefits of extending an existing model, as
demonstrated for two commonly used IT infrastructure models [353]:

● CIM The Common Information Model (CIM) [123] of the Distributed
Management Task Force (DMTF) provides a common definition of
management information for systems, networks, applications, and
services, and allows for vendor extensions [103] in an object-oriented
and user-extensible way [121]. It aims at “enabl[ing] interoperability
and information sharing between various [network and system man-
agement] systems” [390, p. 677], and is used in manifold areas. In

7.4. Related research analysis 237

Grids (cf. Section 2.2.3), for instance, it provides the basis for a set of
Grid monitoring systems [265, 329]. The alluded intent of enabling
interoperability results in a very extensive information model. Two
reasons disqualify CIM for use or as extension base for the process
model’s provenance information model:

- CIM contains several hardware related details, like the MaxBlockSize
of a media device, which are completely dispensable for the presented
process model. The caused overhead strongly contradicts the aim of
generating significant reasoning statements in a good or even optimal
time- and cost scale (cf. Section 4.3). Nevertheless, the provenance
information model’s object orientation supports adding arbitrary
hardware details in case they are required (cf. Section 5.3).

- CIM classes mix up details and aspects that are explicitly separated
by the provenance information model’s package structure to foster
task delegation (cf. Section 5.3.1).

As a result, the required adaptions of CIM to the presented process
model’s needs would heavily outweigh the benefits of using an existing
information model.

● GLUE The Grid Laboratory Uniform Environment (GLUE) informa-
tion model of the Grid Schema Working Group in Open Grid Forum
(OGF) [166] provides capabilities for describing Grid entities, based on
“the experience of several modeling approaches being used in [...] pro-
duction Grid infrastructures” [22, p. 5]. Just like CIM is GLUE defined
in an object-oriented way and described as UML class diagrams (↗KB
p. 271), what enables individual extensions while ensuring compliance
to the standardization progress of the OGF [39]. The GLUE infor-
mation model is used in several Grid middlewares, like gLite or the
Globus Toolkit, especially for information services (cf. Section 2.2.3).
Two reasons disqualify GLUE for use or as extension base for the
process model’s provenance information model:

- GLUE focuses on Grid specific aspects and defines classes like
Computing Element, Storage Element or Endpoint, which are all
suitable for the information model’s targeted IT infrastructure com-
ponent types, but cause overhead for other IT infrastructures, like a
single system (cf. Section 2.2.1).

- Just like CIM, GLUE classes mix up details and aspects that are
explicitly separated by the provenance information model’s package
structure to foster task delegation (cf. Section 5.3.1).

238 Rigor cycle – Validation of the process model

As a result, the required adaptions of GLUE to the presented process
model’s needs would heavily outweigh the benefits of using an existing
information model.

Chapter 8
Conclusion

The chapter summarizes the thesis and points out further (research) di-
rections. Section 8.1 recapitulates the research question, and describes
the presented process model in a compressed overview, referencing several
sections to indicate detailed motivations, discussions, and explanations. Sec-
tion 8.2 highlights potentials for improvements and possible applications of
the process model, before Section 8.3 provides closing remarks.

8.1 Thesis summary

Quantitative IT infrastructure attributes describe an IT infrastructure during
workload execution (cf. Section 5.6). They are used in a variety of ways and
situations, e.g., for describing (legally binding) provisioning specifications in
Service Level Agreements (SLA). Decisions regarding attribute alignment to
(externally) given target values are required to build on (complete) facts, and
not (purely) on educated guesses or partial information (cf. Section 1.1). This
can be achieved by reasoning, “the process of forming conclusions, judgments,
or inferences from facts or premises”. Despite the plethora of existing
approaches to do reasoning for a variety of attributes and nearly all IT
infrastructure components, they are all limited in terms of IT infrastructure
coverage and attribute coverage (cf. Section 1.3.4, 7.4). Therefore, the thesis
and presented results aim at answering the following research question:

How to facilitate reasoning about quantitative IT infrastructure
attributes to support decision-making while respecting IT
infrastructure complexity and scale as well as inter- and

intra-attribute correlations?

239

240 Conclusion

The great variety of reasoning aspects and intents (cf. Section 6.1) as
well as the objective of generating a sustainable solution renders a “one-size-
fits-all” model insufficient (cf. Section 4.1). Thus, the thesis analyzes how to
achieve a flexible and sustainable solution that simultaneously benefits from
the great extend of existing approaches (cf. Section 1.3.4). The result is a
process model that generically prescribes and formalizes how to compile an
individual and casuistic reasoning model, suitable for a specific reasoning
intent (cf. Section 4.1). The produced reasoning model is a mathematical
mapping, called a reasoning function, of a parameter set on a vector of
quantitative IT infrastructure attribute values. Equation 8.1 depicts the
reasoning function f in its most generic form and highlights the seman-
tic decomposition of the reasoning function’s domain in modification and
configuration parameters (cf. Section 4.1).

f(mod1, ...,modn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Modification
parameters

, conf1, ..., confm

´¹¹¹¸¹¹¹¶
Configuration
parameters

´¹¹¸¹¹¹¶
Domain

) =
⎛
⎜
⎝

attr1

...
attrz

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Attribute
values

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Co domain

(8.1)

The process model bases upon three design concepts (cf. Section 4.2):

● Integration of existing artifacts The high relevance of IT infrastruc-
ture attributes (cf. Section 2.4) produces an abundance of specialized
(and mature) models, instrumented components, and gained measure-
ments, covering a variety of partial aspects of a reasoning intent. The
process model bases upon integration to benefit from this situation
and to use elaborated, established, and especially validated artifacts,
each addressing specific issues and respecting the individual character-
istics of a certain reasoning situation. In particular, the process model
describes the selection of suitable models and their incorporation in
the reasoning function.

● Iterative function refinement Although a variety of factors influence
an attribute, reasoning might be interested in only a (small) subset.
The process model addresses this varying demand by beginning the
reasoning function compilation with a coarse-grained function skeleton
and iteratively refining it until the function covers the domain and co
domain on a sufficient (predefined) accuracy level and extent.

8.1. Thesis summary 241

● Flexible attribute binding The huge set of influencing factors on and
objectives of an attribute causes manifold attribute specializations
(cf. Section 2.4). The process model addresses this variety by decom-
posing the notion of a quantitative IT infrastructure attribute in a
generic concept and multiple concept instances (cf. Chapter 5.6).

Figure 8.1 overviews the process model, and arranges the term reasoning
project as an execution instance. Besides, Figure 8.1 depicts the process
model’s building blocks and their grouping in two parts:

● Artifacts and procedures Defines and formalizes notions, models, and
methods that are employed by a reasoning project. It consists of seven
parts, as depicted at the bottom of Figure 8.1 (cf. Chapter 5).

● Reasoning methodology Formalizes the reasoning activity as a “com-
prehensive integral series of techniques and methods creating a general
system theory” [199] (cf. [315]), considering a method as a “system of
rules and guidelines for a consistent procedure” [315, p. 41]. It consists
of three phases, as depicted at the top of Figure 8.1 (cf. Section 6).

Reasoning suite de�nition Reasoning function
compilation

Reasoning execution
Phase A Phase B Phase C

provided to

Reasoning project
Reasoning methodology

Identify, collect, and
specify information

and facts that guide a
reasoning project.

Select method(s) and
execute reasoning
using the compiled

function.

Iteratively re�ne the
reasoning function

skeleton according to the
reasoning suite de�nition.

Artifacts and procedures

Roles and actors

Template meta
model

Provenance infor-
mation model

IT infrastructure
notion

Measuring

IT infrastructure
attribute notion

Application proxy
workl. selection

Figure 8.1: Overview of the presented process model for the integrated
reasoning about quantitative IT infrastructure attributes.

Besides, research resulted in a set of publications (cf. Section 1.3.3).

242 Conclusion

8.2 Future Work
Future work covers potential research tasks and directions in terms of
widening and using the presented process model. Figure 8.2 overviews the
directions and groups them according to the time axis that underlies a
reasoning project execution:

● Preparation Covers aspects before reasoning project execution, particu-
larly the quantification of attributes in Section 8.2.1.

● Extension Covers enhancements of the presented process model. The
group contains the coverage of human factors in Section 8.2.2, of Cloud
computing in Section 8.2.3, and of IT infrastructure surroundings in
Section 8.2.4, as well as automation support in Section 8.2.5.

● Use Covers aspects after reasoning project execution, particularly the
generation of modification recommendations based on reasoning project
results in Section 8.2.6.

Process model for the integrated
reasoning about quantitative IT

infrastructure attributes
„Reasoning project“

Preparation

Attribute
quanti�cation

Extension

Human factors

IT infrastructure
surrounding

Cloud
computing

Automation
support

Pr
es
en

te
d

re
su
lts

Fu
tu
re

w
or
k

Use

Generation of
modi�cation

recommenda-
tions

Figure 8.2: Potential research tasks and directions regarding the presented
process model.

The subsequent sections detail the alluded future work, respectively.
Resulting research tasks are more generic for the Preparation and Use group,
as they cover wider fields and research disciplines. In contrast, research
tasks in the Extension group are provided more concretely.

8.2.1 Attribute quantification

The presented process model prerequisites quantitative attributes, e.g., per-
formance in FLOP/s (cf. Section 2.4.2). Although quantitative descriptions

8.2. Future Work 243

exist for several attributes, especially for the highly relevant attributes per-
formance, energy efficiency, availability, and reliability [170] (cf. Section 2.4),
for other attributes only qualitative descriptions are available, as the two
following prevalent examples illustrate:

● Information Security (IS) Aims at ensuring confidentiality, integrity,
and availability of services and data [1, 352]. Instead of objectively
assessing, measuring, and comparing the security situation of an IT
infrastructure, this is mostly and forcedly based upon the (reliable)
gut feeling of responsible security experts and a set of standardized IS
controls, e.g., specified in ISO/IEC 27001 [204]. The wide distribution
of hypothesis-based IS consideration [210, 246], derived from known
risks or attacker models, and the “Directions in Security Metrics Re-
search” published by NIST in 2009 [208], collectively further underpin
the qualitative nature of IS consideration.

● Interoperability Describes the interaction between computing compo-
nents [90, 243]. It is understood as the “ability to exchange information
and to mutually use the information which has been exchanged” [305,
p. 43], which has been identified being a key issue [171]. In the realm
of e-Government [24], for instance, services need to be provided on a
countrywide base involving manifold agencies and institutions while
avoiding vendor lock-in. Interoperability is mainly addressed in a qual-
itative way by relying on technical specifications all involved agencies
should adopt [171].

The lack of standardized measurement units cause the (inherent) difficulty
of quantifying qualitative attributes. Covering qualitative attributes in the
reasoning process requires their quantification, because otherwise, it would
neither be possible to describe them in the reasoning functions (co) domain
(cf. Section 4.1), nor to apply (numerical) optimization problem solving
approaches (cf. Section 6.3).

8.2.2 Human factors

In comparison to science and especially to scientific applications (cf. Sec-
tion 2.3), literature about IT infrastructures in industry does not provide
concentrated statements about contained components or architectures. In-
stead, it discusses correlations, reciprocity, and dependencies of IT and
business related aspects, e.g., linkage between IT and firm performance [323,
399, 378], alignment of IT and business strategy and processes [257], risk

244 Conclusion

assessment for IT investments [404], and handling influencing factors of
environmental uncertainty on IT governance [423]. Even if literature agrees
on IT infrastructure’s important role for every firm’s operations [300, 341,
335] and on its business value creating nature [66], there are no common
technical characteristics or definitions of IT infrastructure.

Nevertheless, there are recurring patterns, concepts, and notion that can
be used to sharpen the understanding of IT infrastructure application in
industry. Several of them can be described by the morphological field in
Section 2.5, e.g., a long-term planning horizon [411, 197, 46], non-federated
resource provisioning by only one internal department or an external out-
sourcing company. In contrast, there is an important and distinguishing
aspect for IT infrastructures in industry, which is neither covered by the
morphological field nor the presented reasoning process model: the central
role of human and intellectual factors.

Basically, an IT infrastructure in industry is perceived as a combination
of “physical assets, intellectual assets, shared services, and their links” [268].
McKay et al. [274] presented in 1990 a consolidating three-layered model of
this combination, Figure 8.3 summarizes from bottom to top:

● Technical Commodities Comprises mainly general purpose commodi-
ties readily available in the market place, like hardware platforms,
operating systems, network and telecommunication technologies.

● Human Skills Collects human knowledge, skills, and experience related
to IT component development, operation, and integration as well as
IT related planning, budgeting and managing.

● Shared IT Services Is built by the “mortar” of human skills that bounds
the technical commodities into functional IT services [141].

The unique fusion of technical and human elements is identified as
important source for value creation in a mass of articles (cf. [33, 68, 67,
70, 69, 95, 110, 131, 177, 197, 220, 225, 224, 230, 248, 257, 274, 295,
300, 335, 346, 361, 364, 393, 395, 411, 410, 421]). In an inter-disciplinary
research effort, e.g., of human resources, psychology, and computer science,
it could be investigated how to cover this “human mortar” or the “human
IT-Infrastructure” [410] in the reasoning activity. This would also cover IT
infrastructure consumers, since there are “not only technical issues [...] but
also more people-centric relating to collaboration and the sharing of resources
and data” [189, p. 1029]. Results could identify additional entries in the
reasoning function’s (co) domain to handle not only technical implications,
but also human related aspects. For instance, introducing redundancy to

8.2. Future Work 245

address short-time breakdowns (cf. Section 2.4) could be reasonable from a
technical point of view, but the implied need of human skills to achieve this
goal could finally render the effort being too expensive.

Derive direct business
performance bene�ts

IT infrastructure links di�erent business units

Business Unitn

Business IT system

D
yn

am
ic

s

Business Unit1

Business IT system

Role of an enabling foundation

IT infrastructureShared IT Services

Human Expertise

Technical Commodities

(iii)

(ii)

(i)

Figure 8.3: The notion and role of IT infrastructures in industry.

8.2.3 Cloud computing

Cloud computing is an emerging provisioning and use paradigm of IT
infrastructures [436, 222, 76, 221] (cf. Section 2.2). As Armbrust et al. [25]
carry out in their research, there are manifold approaches to define this
paradigm [394] and to confine it against clusters (cf. Section 2.2.2), Grids
(cf. Section 2.2.3), and other concepts. For instance, it is the “underlying
usage or business model” [328, p. 102][149, 436], or the provision of computing
facilities “like an utility [310]” [436, p. 8] operated by a third party [149].

All these details aside, the relevant aspect is that “many key features,
such as dynamic resource assignment, are only made available through
virtualization technologies” [436, p. 9]. Generally speaking, virtualization
can be understood as the “(recursively) applied mapping of m interfaces of
[architecture] layer s to n functionally consistent interfaces of layer s − 1
using [...] abstraction” [255, p. 13]. In the context of Cloud computing,
virtualization provides “the illusion that each [Virtual Machine] has control
of a physical machine” [388, p. 385].

Both, the applied abstraction and the resulting illusion, prohibit a clear
sight on the employed IT infrastructure. Besides, existing model integration
candidates rarely address potential implications and side effects of the
abstracting virtualization, which might cause delusive findings. The arising
research task covers the identification of virtualization aspects influencing

246 Conclusion

the reasoning outcome, and their incorporation in the presented process
model. Supposable starting points are a set of correction parameters, placed
in the reasoning function, or the exclusive use of models specialized for
virtual environments, dictated as global constraint in action T-A3:A8.

8.2.4 IT infrastructure surrounding

The morphological field in Section 2.5 scopes the research to focus on the IT
infrastructure itself and to omit its physical surrounding, e.g., the building
or cooling facilities. This scoping is confirmed by the on-going research
efforts in terms of delimiting and defining the surrounding, of identifying
(relevant) characteristics, and of interacting with related disciplines, like
engineering. Collectively, these challenges call for a dedicated research effort
that is not within the scope of this thesis.

Nevertheless, some attributes can be described and considered in more
detail if reasoning covers also the IT infrastructure’s surrounding. A major
example is the attribute energy efficiency (cf. Section 2.4.1). Several work
underpins and emphasizes the consideration of the IT infrastructure’s sur-
rounding, e.g., Barroso et al. state that “typical power delivery inefficiencies
and cooling overheads will easily double that energy budget” [34, p. 50];
Auweter et al. declare that “a preparatory step to improve the energy
efficiency in HPC consists of the fine-grained assessment of the power con-
sumption of the entire HPC system encompassing [...] also site infrastructure
components for cooling, monitoring and power supply” [27, p. 19]. Another
recent example is the “4 Pillar Framework for energy efficient HPC data
centers” from Wilde et al. [417]. They aim at answering the question, what
aspects of an HPC data center play an important role for energy efficiency
improvement and identify the building infrastructure as one of the four
pillars, especially because it is involved in several energy efficiency related
Key Performance Indicators (KPI) like Power Usage Effectiveness (PUE),
Water Usage Effectiveness (WUE) or Carbon Usage Effectiveness (CUE).
Especially the PUE is highlighted by recent organizations, e.g., the PUE is
supported by the “Green Grid” [42]. Resulting research tasks are the
1. identification of connection points to the presented process model,
2. extraction of parameters for the reasoning function’s (co) domain,
3. analysis of potential impacts on reasoning results, and the
4. incorporation of gained insights in the presented process model by ex-

panding the provenance information model (cf. Section 5.3) and activity
template T-A3, especially in Phase A (cf. Section 6.1) and in Phase B
(cf. Section 6.2).

8.2. Future Work 247

8.2.5 Automation support

A reasoning project exposes a comprehensive and versatile nature, as partic-
ularly the compilation of an individual reasoning function covers manifold
tasks and areas (cf. Chapter 6). Hence, (semi) automation could ease and
assist reasoning project execution. The presented process model recom-
mends three areas for this intent and provides prepared extension points
and interfaces, respectively:

● Data exchange The data import from third party models and tools:

- For IT infrastructure modeling in action T-A3:A5, data import func-
tionality could be implemented to avoid model staleness and reduce
modeling cost. Data sources are existing management tools, like
GLUE or CIM based databases (cf. Section 7.4).

- For model proxy function creation in action T-A3:A13, data import
functionality could be implemented to omit separated measurements.
Exemplary sources are Nagios (cf. Section 2.2.3), or an approach from
Aguilera et al. [14] who provide data about performance bottlenecks
in black-box distributed systems based on passive message tracing
and offline analyze algorithms like convolution.

For both intents, implementation covers data reading, potential data
preprocessing, and suitable data use, respectively. Especially for the
first task, the provenance information model provides several dedicated
starting points (cf. Section 5.4.2).

● Code generation The automated tool creation for executing certain
actions within activity template T-A3. For instance, a Model Driven
Development (MDD) based process (↗KB p. 260) could generate a
graphical editor for IT infrastructure modeling in action T-A3:A5, or
parallel code from the reasoning function to conduct optimization runs
in action T-A3:A19 on an HPC cluster.

● Semantic checks The flexible and sustainable encoding of two semantic
concepts to facilitate their computer-aided processing:

Formulas Covers the encoding of (mathematical) formulas that are
employed for value aggregation (cf. Section 6.1.3) or quantity descrip-
tion (cf. Section 5.3.2), for instance.
Assumptions Covers the encoding of assumptions made in action
T-A3:A7, especially to assist their computer based evaluation for
plausibility, contradictory, and integrity.

248 Conclusion

For both intents, the provenance information model provides a dedi-
cated class for direct result incorporation, namely the Formula class
in the datatype package (cf. Section 5.3.2), and the Assumption class
in the reasoningproject package (cf. Section 5.3.4), respectively.

8.2.6 Generation of modification recommendations

The presented process model operates before a modification’s investigation
and its potential execution, as the process model reasons about quantitative
IT infrastructure attribute values and conflicts that might be induced by
the modification. Based on the reasoning results, the modification is further
investigated or directly initiated (cf. Use Case UC-6 in Section 3.3.2).

There are several ways to achieve a particular attribute value that has
been calculated by a reasoning project. Reliability, for instance, can be
achieved by increasing redundancy or introducing checkpointing (cf. Sec-
tion 2.4). This diversity could be addressed by an automated recommen-
dation or referral system using a reasoning project’s results. This referral
system would have to cover reciprocities, cause-effect-chains, weightings, and
cost functions for attributes and modifications to compile sustainable and
thorough recommendations, which modification(s) to choose or to execute
in order to achieve the attribute vector compiled by activity template T-A3.
The challenge of achieving the outlined referral system is to tackle the
conflicting dimensions of flexibility, universality, and the plethora of details
regarding a particular situation as well as the clear-sighted definition of
“good” target values [1].

8.3 Closing remarks
The thesis presents not only a process model for the integrated reason-
ing about quantitative IT infrastructure attributes, but also validates the
presented results to underpin research result’s quality, effectiveness, and
utility [36, 231, 434, 187]. Validation consists of three pillars:

● Feasibility A controlled experiment illustrates the feasibility and broad
applicability of the presented process model (cf. Section 7.2) by ex-
ecuting a complete reasoning project about the power consumption
and performance of a custom-built RaspberryPi cluster, assembled of
20 of-the-shelf RPis in the laboratory of the author’s chair.

● Use A field study evidences that the process model fulfills and satisfies
“the requirements and constraints of the problem [they were] meant

8.3. Closing remarks 249

to solve” [187, p. 85] (cf. Section 7.3), i.e., 17 functional and eight
non-functional requirements in the RS evaluation tool (cf. Section 3.5).

● Relevance A related work analysis underpins the research’s level of inno-
vation by comparing the presented process model to existing related
work (cf. Section 7.4), which is split in several groups distinguished by
the pursued objectives and the applied level of granularity.

Appendices

251

Appendix A
Knowledge Base

The appendix contains the Knowledge Base of the Design Science paradigm
that underlies the presented process model (cf. Section 1.4). It provides
“raw materials from and through which [...] research is accomplished” [187,
p. 80], and the foundation for rigorous design science research [186]. The
Knowledge Base furnishes elementary frameworks, instruments, models, and
methods to the Design Cycle, and methodologies and guidelines to the Rigor
Cycle [187]. The following material is provided in alphabetical order in an
extend suitable for the thesis:

- Design Science (p. 253)
- Grammar (p. 255)
- Measurement (p. 256)
- Meta Model Hierarchy (p. 259)
- Model Driven Architecture (p. 260)
- Optimization (p. 262)

- Quantity (p. 263)
- Requirements Analysis (p. 264)
- Scale (p. 267)
- Statistics (p. 268)
- Unified Modeling Language (p. 270)
- What-if analysis (p. 276)

Design Science
Design Science is a prescriptive discipline that builds and evaluates IT
artifacts intended to attain goals and to meet or solve identified needs or
problems, respectively [368, 187]. Hevner et al. [187, 186] developed a frame-
work for “understanding, executing, and evaluating [Design Science] research”
[187, p. 79]. Based on Zelkowitz et al. [434, 435], the framework provides,
amongst others, a taxonomy that splits methods for IT artifact evaluation
in five groups, overviewed in Table A.1 (taken from [187, Table 2]).

253

254 Knowledge Base

1. Observational

Case Study Study IT artifact in depth in business environment.

Field Study Monitor use of IT artifact in multiple projects.

2. Analytical

Static Analysis Examine structure of artifact for static qualities (e.g.,
complexity).

Architecture
Analysis

Study fit of artifact into technical information system
architecture.

Optimization Demonstrate inherent optimal properties of artifact or
provide optimality bounds on artifact behavior.

Dynamic Analy-
sis

Study artifact in use for dynamic qualities (e.g.,
performance).

3. Experimental

Controlled
Experiment

Study artifact in controlled environment for qualities
(e.g., usability).

Simulation Execute artifact with artificial data.

4. Testing

Functional
(Black Box)
Testing

Execute artifact interfaces to discover failures and
identify defects.

Structural
(White Box)
Testing

Perform coverage testing of some metric (e.g., execu-
tion paths) in the artifact implementation.

5. Descriptive

Informed Argu-
ment

Use information from the knowledge base (e.g., rele-
vant research) to build a convincing argument for the
artifact’s utility.

Scenarios Construct detailed scenarios around the artifact to
demonstrate its utility.

Table A.1: Methods for IT artifact evaluation, provided by the Design
Science framework of Hevner et al. [186] (taken from [187, Table 2]).

Knowledge Base 255

Grammar
Mainly applied in the discipline of theoretical computer science, a grammar
G describes syntactical production rules P of how to form strings from an
alphabet ∑. The production rules are applied on the alphabet by replacing
occurrences of a rule’s left side by its right side in a string. The result is
called a language being each arbitrary (and infinite) sub set of ∑∗. Formally
speaking, a grammar is a four tuple G = (V,∑, P, S) having the following
characteristics [355]:
V A finite set of non terminal symbols, also called variables as placeholders
for syntactical items;
∑ A finite set of terminal symbols, also called alphabet, fulfilling V ∩∑ = ∅;
P A finite set of syntactic production rules ;
S ∈ V Start variable;
Noam Chomsky defined four groups according to a grammar’s production
rules shape:

● Type 0 Production rules do not have to fulfill or respect any constraints;

● Type 1 Production rules of a type 1 or context sensitive grammar describe
rules of the form uAv → uxv, saying that A is only replaced by x if A
is in the context of u and v;

● Type 2 All production rules of a type 2 or context free grammar do not
define any context-sensitive replacements;

● Type 3 Extends type 2 grammars by constraints about the right side
of the defined production rules, stating that every rule’s right side is
either a single terminal symbol or a terminal symbol and a variable.

In contrast to the outlined syntactic procedure, a grammar does not
describe any semantic aspects or meanings of the strings. Instead, a grammar
can be used to generate a language or to recognize a string as language
member, well-known as automata theory. The thesis uses the former function
and applies the (Extended) Backus Naur Form ((E)BNF), a compact notation
of type 2 grammars [355]. Table A.2 overviews the EBNF notation elements,
providing a title, the summarized rules, the short EBNF notation, and an
explanation from top to bottom, respectively.

256 Knowledge Base

Merge Option Recursion

A→ β1

A→ β2

A→ βn

A→ αγ

A→ αβγ

A→ αγ

A→ αBγ

B → β

B → βB

A→ β1∣β2∣βn A→ α[β]γ A→ α{β}γ
Summarizes several
rules having the same

left side.

The word β can
optionally be inserted

betw. α and γ.

The word β can be
inserted zero to n

times betw. α and γ.

Table A.2: The three short notations of the Extended Backus Naur Form
(EBNF) to describe type 2 grammars.

Measurement

The Knowledge Base entry summarizes measurement concepts, terminology,
and approaches for its employment in the thesis. In contrast, the Knowledge
Base entry does not aim at providing an exhaustive discussion of the very
broad field of measurement in general, and refers the reader for detailed
information to the mass of literature, ranging from natural science philos-
ophy by Carnap [80] to physical fundamentals formalized in international
standards, like the DIN 1319 [35].

A measurement “perform[s] certain operations to determine the value
of a [measurand]” [35, p. 3], which is a “physical quantity” [35, p. 2]. Gen-
erally speaking, a measurement is the reasonable, exclusively descriptive,
assessment-free, and rule-based mapping of a finite set of characteristics at
a discrete point in time t on a symbol set. Figure A.1 (based on [55, 56, 80],
lower part taken from [35, Figure A.1]) arranges the definition’s elements
and their interplay and highlights the three structuring realms top-down:

● Facts Contains the objects being measured [35], also called the objects of
measurement. Each object owns a (theoretically) infinite set of charac-
teristics, describing an aspect of the object’s nature. Characteristics
are considered as facts, since they are as they are, independently from
a project, measurement or task.

● Measurement Enables a (reasonable) processing of the variety and ex-
tent of facts by reducing information’s complexity, dimensions, and
scale to a manageable extent [55, 56]. This abstraction is achieved by

Knowledge Base 257

1. (implicitly) reducing the set of considered characteristics, and
2. mapping the remaining characteristics’ values at a discrete point in

time on a scale (↗KB p. 267) [312, 352, 382] (cf. [352]).

Besides, the realm contains a (potential) set of influence quantities
that are “not subject of measurement but which [...] have an influence
on the value of the measurand” [35, p. 6], and an error component
causing a deviation between a measurand’s true and indicated value.

● Result Is the “value attributed to the measurand, which is normally indi-
cated by a measuring instrument or system” [35, p. 8] and collectively
defined by the above itemized elements. The measurement result at
the bottom of Figure A.1 is a super set of measured values, containing
all measured values “obtained in a series of n measurements under
repeatability conditions” [35, p. 8]. The measured values often range
around an expected value x, which is the value “approximated by the
mean of all measured values” [35, p. 8], i.e., the result of measurement.
Figure A.1 depicts the measured values distribution as normal dis-
tribution, the involved error values ex and the employed measuring
instrument(s) are detailed subsequently.

Scale

Measurand

Object of
measurement Facts

Measurement

Result

Characteristic1 Characteristicn
Characteristic2

...

In�uence quantity Error

Measurement result
e

es er
es,u es,k

x̂x x

Figure A.1: Measurement concepts and elements (based on [55, 56, 80],
lower part taken from [35, Figure A.1]).

258 Knowledge Base

Deviation from a measurand’s true value

A measurement’s error e is the difference between a measurand’s x̂ attributed
value and true value [35]. Equation A.1 (cf. [35, 377]) and Figure A.1 depict
the constitution of x̂, incorporating the influence quantity and error of
the measurement realm. x is the true value that would be obtained by a
perfect measurement [35] and that is “obfuscated” by e. It consists of the
not precisely known random error er and the systematic error es, which in
turn consists of a known component es,k and a unknown component es,u.

A measurement’s absolute error also determines its uncertainty describ-
ing the range of “values within which the true value [x] of a measurand
is estimated to lie” [35, p. 11]. According to the ISO/GUM code of prac-
tice [251], uncertainty describes the variations of obtained measured values.
For instance, an uncertainty of 1% means that ∣ x̂−xx ∣ ≤ 0.01, x̂ ∈ [0.99x, 1.01x],
and x̂ ∈ [x̂

0.99 ,
x̂

1.01]. An explanation about the differing deterministic and
stochastic uncertainty can be found in Stiller [377], further standardization
in part 3 and 4 of DIN 1319 [154, 155].

x̂ = x + er + es,k + es,u
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

es

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e

e = ∆x = x̂ − x
e

x
= ∆x

x
= x̂ − x

x

(A.1)

Measuring system

Gaining a measurand’s values employs one or multiplemeasuring instruments,
which is a “device used alone or together with other devices to perform a
measurement” [35, p. 15]. It consists of a set of specialized components, like
a sensor or an amplifier. Figure A.2 depicts the components of a common
measuring instrument and their interplay.

A measuring instrument in turn is used to assemble a measuring system,
which is a “complete set of measuring instruments and any other equipment
used to carry out a measurement” [35, p. 15]. A “series of elements in a
measuring instrument or system, constituting the path of a measurement
signal from the input to the output” [35, p. 15] is entitled a measuring chain.

Using a measuring instrument and in particular its sensor, might re-
quire instrumentation, which is “the process of adding probes to generate

Knowledge Base 259

Measurand

In�uence
quantity

Sensor Ampli�er/
Modi�er

Filter/
Correction

Data
transfer

Converts
measurand
into signal
Mostly passive

Ampli�es
signal in case
it is too weak

Corrects
systematic
and unwanted
transfer
characteristics

Sensor controller

Use

Measuring instrument

Figure A.2: Components of a measuring instrument [377, 35].

monitoring event data” [194], or generally speaking, the execution of modifi-
cations to enable measuring [55]. Exemplary instrumentation is the physical
incorporation of a sensory tool’s sensor in the observed hardware, or the
adaption of software by including additional libraries and modifying source
code. Both can be very extensive, e.g., using Intel’s Running Average Power
Limit (RAPL) counters requires not only incorporating enopt_* calls in the
code [283], but also the Performance Application Programming Interface
(PAPI) library [73].

Meta Model Hierarchy
A meta model hierarchy consists of three layers [302] (EG-A.1), as depicted
in the left side of Figure A.3 (partially taken from [302, Fig. 7.8]):

● Meta Model Provides language elements to the model and defines the
semantics for model element instantiation [302]. It can be used by
several models that share the same language elements and concepts.

● Model Describes the modeled objects in an abstracting way by focus-
ing on the relevant elements and attributes while omitting all other
details [334, 433, 324].

● Modeled objects Comprise the elements of interest, e.g., real world
physical elements (a car) or concrete object-oriented classes (Car).

260 Knowledge Base

Meta
Model

Model

M3
(MOF)

M2
(UML)

M1
(User model)

M0
(Run-time instances)

Attribute Class Instance

Car
+brand: String

:Car
brand = "BMW"

Class

a car

Meta
Model

Model

Generic meta model hierarchies Meta model hierarchy of the UML

<<instanceOf>>

Modeled
Objects

Modeled
Objects

Figure A.3: The common three layered meta model hierarchy and its
exemplary application in the UML context.

Figure A.3 depicts on its right the UML underlying meta model hierarchy:
the meta model in layer “M2” provides the language element Class to
the layer “M1” that models with it a Car, which in turn abstracts the
real world element a car in layer “M0”. The example also illustrates
the hierarchy’s recursive manner, i.e., a model can be used as a meta
model [302]: the UML language elements in layer “M2” act as meta model
for the user model in layer “M1”, and at the same time are an instance
of the meta model Meta Object Facility (MOF) [301] in layer “M3”.

EG-A.1

Model Driven Architecture
The Model Driven Architecture (MDA) is an incremental software develop-
ment approach [150, 232, 326] that provides an “infrastructure for arbitrary
[software development] methodologies” [315, S. 48]. MDA aims at auto-
matically generating genuine source code by processing and transforming
a set of models at different abstraction levels. The transformation rules,
also called mapping, are defined for the meta models of the source and
target model, respectively [315, 279, 169, 237], which renders a meta model
hierarchy a mandatory prerequisite for MDA [270]. The three following
concepts establish its name:

● Model In MDA, models do not only perform (partial) system description
and documentation tasks, but are considered equally to code and
possess a central and active role [376].

Knowledge Base 261

● Driven Precise, machine readable models at different abstraction levels
and (automated) model transformations drive the entire software
development process [357, 315]. Only the process’ very last step
generates and occasionally manually extends genuine software code.

● Architecture An architecture specifies a system’s parts and connectors
and defines rules for part interactions based on the specified connec-
tors [285]. MDA considers the aspired software product as system and
prescribes the use of certain model kinds as well as their preparation,
relationships, and interaction [285], instead of dictating particular
methodologies or modeling languages.

The alluded automated generation of software code based on model(s) is
achieved by looking at a (software) system not from only one perspective, but
by applying four views, “a representation of that system from the perspective
of a chosen viewpoint” [198]. The views’ characteristics and interactions
as well as examples (incorporated from [315]) are depicted in Figure A.4
(developed from [285, 315]) and subsequently described (EG-A.2):

● CIM The Computation Independent Model , also called domain model or
business model [334, 433, 324], describes a system and requirements
from a hardware and software agnostic perspective, mostly in natural
language. It pursues a common terminology and a well-founded under-
standing of the developed system [315] while hiding (all) information
related to the use of automated data processing systems [285].

● PIM The Platform Independent Model formalizes the CIM in a tech-
nical but still platform independent way. The CIM specification’s
mostly natural shape forces a manual CIM to PIM transformation
(cf. Figure A.4) [315].

● PSM The Platform Specific Model describes the system for a specific plat-
form, which is represented by a Platform Model (PM) that describes
the platform the aspired software product will be executed on. The
PIM’s high formalization level allows an automated transformation
consuming both, the PSM and the PM.

● PSI The Platform Specific Implementation is the genuine source code.
The high formalization level of a PIM allows an automated transfor-
mation. Although source code can be understood as a model, too, the
differing abstraction levels of PSM and PSI require a distinction to
allow manual adaptions accordingly.

262 Knowledge Base

Platform
Speci�c

Implementation
(PSI)

Platform
Speci�c

Model (PSM)

Automated transformation

Platform
Independent
Model (PIM)

Platform
Model (PM)

-publishAt: Date

<<entity>>
Catalog

-pageNo: int

<<entity>>
Page

catalogID: INTEGER
name: VARCHAR
publishDate: DATE

CATALOG
pageID: INTEGER
title: VARCHAR
pageNo: INTEGER

PAGE

Fo
rm

al
iz

at
io

n
A

bs
tr

ac
tio

n

Manual
transformation

Computer
Independent
Model (CIM)

MDA artefacts and their correlations Examples for a print product catalog

A print product catalog has a
publish date. It contains a set of
pages, each having a page number.

Natural language description

Formalized as an UML class diagram

Relations for MySQL

Figure A.4: The four MDA views on a system and their correlations as well
as an exemplary MDA model set for a printed product catalog.

Figure A.4 exemplary illustrates the discussed MDA system views for
a print product catalog. The CIM “models” the catalog to be printed
by describing in natural language its nature. These information are
manually transformed in a PIM that formalizes the information as UML
class diagram, which is a platform independent formalization. This high
level of formalization allows an automated transformation in a MySQL
database scheme, a platform specific implementation.

EG-A.2

Optimization
Several (research) disciplines employ the concepts and algorithms of (math-
ematical) optimization, some of them even longer than computer science.
All optimization problems share the mandatory definition of two elements:

Knowledge Base 263

● Search space A set S of objects available to or valid for the optimization
selection, also called choice set. The set can be (in)finite and specified
by a function or not. In either case, it must be clearly specified [168].

● Objective function The function ϕ quantitatively rates elements of S.
Depending on the applying discipline and the optimization charac-
teristic, the function is also called a cost function or indirect utility
function for minimization problems, or a utility function or fitness
function for maximization problems.

Employing these elements, an optimization problem aims at finding
an optimal solution, which is an element x∗ in the optimization problem’s
feasible region F . The element x∗ ∈ F is optimal in a sense that ϕ(x∗) ≤
ϕ(x)∀x ∈ S for a minimization problem or such that ϕ(x∗) ≥ ϕ(x)∀x ∈ S for
a maximization problem. Equation A.2 arranges the elements in a formal
way and generically specifies an instance of an optimization problem [168].

n ∈ N ∧ F ⊂ S ⊂ Rn ∧ ϕ ∶ S ↦ R ∧ opt ∈ {min, max} (A.2)

Depending on the particular objectives and characteristics of the opti-
mization problem instance, there are several classes, of which the following
list can only provide a small subset:

● Evaluation problem Identify the infimum or supremum for {ϕ(x) ∶ x ∈
F} for a minimization or maximization problem, respectively.

● Feasibility problem Check if F = ∅ is valid.

● Linear optimization problem An optimization problem working on
vectors and matrices.

● Mathematical programming An optimization problem maxϕ(x) ∶ x ∈
S, g(x) <= 0, h(x) = 0, specifying g(x) and h(x) as constraints. The
data type of S, the constraint functions, and the solving behavior
assemble several sub classes, like biconvex or dynamic problems.

Quantity
A quantity can be regarded as a countable or comparable property or aspect
of an entity. It implicitly contains a scale (↗KB p. 267) that provides
the building blocks for counting and comparison. There are three quantity
classes:

264 Knowledge Base

● Primary A primary quantity, like time or distance [80], is indispensable
for the definition or measurement of other quantities.

● Additive An additive quantity is assembled of primary quantities having
the same scale (↗KB p. 267). An additive quantity also inherits the
creation rules of the processed primary quantities.

● Derived A derived quantity is assembled of primary quantities having dif-
ferent scales [80], e.g., combining Megabit and seconds to MBit/second.
An important aspect is that derived quantities are average quantities,
since they do not consider a particular point in time, but a time frame
(“per second” can only be an average). Hence, deviation is required to
get a discrete point in time, e.g., dMBit

dt = lim∆t→0
∆MBit

∆t .

Requirements Analysis
Based on existing, established glossaries, like the IEEE Standard Glossary
of Software Engineering Terminology [200], the Knowledge Base entry sum-
marizes concepts and representation syntax, the Relevance Cycle uses in
Chapter 3 for developing a Requirements Specification (RS). It employs the
following elements that are ordered according to their mutual use:

● Requirement A requirement is a “condition or capability needed by a
user to solve a problem [...] and that must be met or possessed by a
system or system component” [200, p. 62]. The employed keywords
“must”, “must not”, “shall”, “shall not”, “should”, “should not”, and “may”
are to be interpreted as described in RFC 2119 [64]. Requirements
can be split in two groups:

Functional Describes a concrete function that can be implement,
which means “a requirement that specifies a function that a system
or system component must be able to perform” [200, p. 35].
Non-functional All requirements that are “not functional” [342], in
particular ancillary conditions and quality criteria of the developed
system. Also non-functional requirements have to be measurable to
enable fulfillment validation [233].

● Stakeholder A single person or institution that formulates requirements [233],
and interacts with the considered system.

● System Implements and provides functionality and behavior, which is
exposed to and used by the stakeholders.

Knowledge Base 265

● Actor Represents a role, human, sensor, or any other technical device
that interacts with the system [344, 303]. The actor sending a request
to the system is called primary actor [100]. Table A.3 depicts the
actor specification template that is used for actor description in the
RS according to related literature, like Marcu [267].

● Use Case In a generic form, a Use Case can be understood as “a contract
between the stakeholders of a system about its behavior” [100, p. 1].
It addresses several criteria a RS should meet and is a suitable tool to
derive requirements. In particular, it “tells coherent stories about how
the system will behave in use” [100, p. 15] and each described action
of the system “yields an observable result that is, typically, of value for
one or more actors or other stakeholders of the system” [303, p. 606].

● Representation System, actor, Use Cases, and their interactions can
be described in may different ways, e.g., text form, flow charts, Petri
Nets, or programming languages [100]. As requirements engineering
literature recommends, the RS uses the following formats:

Use Case template Kleuker et al. [233] state a set of quality criteria
Use Cases should comply to. Correspondingly, the Use Case template
in Table A.4 (combined from [100, 233]) dictates from top to bottom
an unambiguous identification, and a general description of objectives
as well as a list of involved actors, of abstraction sources, and of pre
and post conditions relative to the Use Case’s execution.
Use Case diagram The Use Case diagram is part of the Unified
Modeling Language (UML) syntax (↗KB p. 270) and represents in a
graphical way the system, actors, Use Cases, and their interactions, as
Figure A.5 exemplifies. It represents the system as a rectangle labeled
with a short name [344], the actor as a stick man [344], and Use Cases
as ellipses with a name at the center. Besides, Figure A.5 illustrates
the three Use Case relation types that aim at enabling an efficient
description of commonalities and at avoiding redundancy [233]. A
solid unlabeled arrow represents common object oriented inheritance,
stating that an element inherits all attributes and relations [344]. An
include relation describes the non-optional inclusion of Use Case B
by Use Case A: Use Case A imports the behavior and functionality
of Use Case B and hence, B is mandatory for A’s success [344, 233].
An extend relation represents the extension of Use Case A by Use
Case A2 if the assigned condition evaluates to true [233].

266 Knowledge Base

Actor Human-readable name of the actor Unique
Identifier

Description of the actor, its duties, responsibilities, and characteristics.

→ Abstraction source – Describes details the actor is abstracted from.
Uses the black circle (1) to reference details in the research Environ-
ment (cf. Chapter 2) and in scenario descriptions (cf. Section 3.2).

Table A.3: Actor specification template.

Use Case Use Case name Unique
identifier

General description of the Use Case and its objectives.

ACT-1 Involved actor(s) and their duties.

→ Abstraction source – Describes details the Use Case is abstracted
from. Uses the black circle (1) to reference details in the research En-
vironment (cf. Chapter 2) and in scenario descriptions (cf. Section 3.2).

P
R
E

◻ Pre-conditions for Use Case
execution.

◻ Post-conditions after
Use Case execution, e.g.,
achieved results.

P
O
S
T

Table A.4: Use Case specification template.

<<include>>

<<extend>>

Condition
{}

Use Case C

System

Actor
Use Case A Use Case B

Use Case A2

Figure A.5: UML compliant graphical representation of Use Cases, the
providing system, and involved actors.

Knowledge Base 267

Scale
A scale structures or splits a domain in categories or blocks, respectively.
Figure A.6 exemplary illustrates the structuring of real numbers (R) using
the scale centimeters in blocks of the same size. According to the scale’s ex-
pressiveness and delimitation, there are the three following scale classes [179],
whose containment hierarchy is emphasized by the formalizing equations,
denominated for each class, respectively:

● Nominal (categorical) Describes the (simple) assignment of objects to
a qualitative category according to a considered feature (F (object)).
Thus, a nominal scale contains a (limited) category set, denominates
a particular object’s category, and labels objects being either equal
or unequal in their category [375]. The scale’s expressiveness is pos-
itively correlated to the category width: the higher the focus of the
used categories, the higher is the (implicitly) contained information.
This information gain approach is often employed in taxonomies, e.g.,
botany zoology uses animal, vertebrate, mammal, dog, poodle (taken
from [375, p. 5]). Equation A.3 formalizes a nominal scale.

Equal(objectA, objectB) ∶= (F (objectA) = F (objectB)) (A.3)

● Ordinal (comparative) Extends the nominal scale by defining relation-
ships between objects in different categories. The relationship can be
used to compare two objects, e.g., warmer and colder. Hence, an ordi-
nal scale is a tuple consisting of a category set and an order relation on
them. Noteworthy, the order relation describes only a hierarchy, but
no distances. An exemplary ordinal scale is the transport quality of
fruits, consisting of A, B, and C (taken from [375, p. 6]). Collectively,
Equations A.3 and A.4 formalize an ordinal scale.
Compare(objectA, objectB) ∶= (F (objectA) < F (objectB)) (A.4)

● Metric Extends the ordinal scale by defining distances between categories
that enhance the information of bigger/smaller with a discrete value.
A metric scale carries the most information, as it assigns a category
(nominal), states a category hierarchy (ordinal), and also describes
distances between categories and elements. An exemplary metric
scale is kilometers per hour (taken from [375, p. 7]). Collectively,
Equations A.3, A.4, and A.5 formalize a metric scale.

MinV aue ∶= xmin ∈ R
MaxV aue ∶= xmax ∈ R

Distance(objectA, objectB) ∶= (F (objectA) ⊙ F (objectB))
(A.5)

268 Knowledge Base

„Centimeter“
+

ℝ

Metric scale

Equally sized blocks

Figure A.6: Structuring of real numbers (R) in the metric scale centimeters.

Statistics

Statistics is the “branch of scientific inquiry that provides methods for
organizing and summarizing data, and for using information in the data
to draw various conclusions” [120, p. 1]. The considered data is called the
population, a portion or subset of the population is called a sample (EG-A.3).

Assuming that the population is all U.S. colleges and universities, a
sample would be {Stanford University, Oberlin College, Iowa State
University} (taken from [120, p. 1]).

EG-A.3

Three sub branches organize statistics. Their description below focuses on
aspects relevant for the thesis. For further reading please refer to groundwork
literature, like Devore [120], Casella et al. [87], or Specht et al. [375].

● Descriptive Covers methods for organizing and summarizing data sets [287]
to process and explain a sample or a list of all population members,
and to identify correlations within the data using tables, charts, and
statistical parameters [375].The branch consists of visual representation
and numerical (summary) measures. The former contains methods
like Stem-and-Leaf Displays (cf. [120, p. 9]) or Histograms (cf. [120,
p. 13]), but is not further investigated due to the above alluded focus.
The latter is further detailed in Table A.5 (summary of [287, 120, 375])
and Figure A.7 and consists of two groups:

Measures of location Characterize the data set, and convey some
of its salient features by assembling summarizing numbers [287].
This summarizing nature implies that measures of location do “not
necessarily provide enough information” [287, p. 23] to describe the
data set exhaustively.
Measures of variability Enhance the provided location information
by additionally describing the data set’s behavior in relation to the
measures of location [375].

Knowledge Base 269

● Inferential Draws conclusions about a population based on a (small)
sample [375]. For instance, an engineer designing a new computer chip
manufactures a prototype and might want to draw conclusions about
device collaboration once they are in full-scale production [287].

● Stochastic Serves as link between descriptive and inferential statistics,
as it provides the necessary probability tools to both branches.

1 Absolute and relative fre-
quency

ni, hi = ni

n

Amount of observations having the same value absolutely (ni) and in
relation to the data set’s size (hi).

2 Cumulative absolute fre-
quency

Ni ∶=
n

∑
j=1
nj

Count of observations whose value is equal to x (Fn(x)), bigger than
x (1 − Fn(x)), or between x1 and x2 (Fn(x2) − Fn(x1)).

3 Mean/Expected value x =
n

∑
i=1

xi

n

The data set’s arithmetic average, and a measure of location.

4 Median x̃ =
⎧⎪⎪⎨⎪⎪⎩

x([n+1]/2) n odd
x
(n/2)+x([n/2]+1)

2 n even

The middle value of an ascending ordered sample, i.e., point that
divides the sample in two equal halves [287].

5 Mode

Observation that occurs most frequently.

6 Quartiles q1, q2, q3

Divide data in four equal parts. Second quartile is the median.

7 Sample range r =max(xi) −min(xi)
Difference between the largest and smallest observation.

8 Standard Deviation
√

(ai − a)2

Deviation of the ith observation from the mean, and a measure of
dispersion.

Table A.5: Overview of descriptive statistics figures and tools.

270 Knowledge Base

x μ
Sample range

xi

Standard
Deviation

q1

Cumulated
absolute
frequency

ni

Value

Mode

2

0.25

0.5

q2 q36

1

8

1
3

7

n number of observations
 in a data set
xi observation

Count

x~

4

5

Figure A.7: Overview of descriptive statistics concepts.

Unified Modeling Language
The Unified Modeling Language (UML)1 is a general-purpose, visual language
that deals with domain-independent modeling, documenting, specifying, and
visualizing complex (software) systems and their artifacts [344, 303]. It aims
at “provid[ing] system architects, software engineers, and software developers
with tools for analysis, design, and implementation of software-based systems
as well as for modeling business and similar processes” [302].

UML comes with a diversity of diagram types, each focusing on a specific
field. The Knowledge Base entry discusses five diagram types in alphabetical
order that are relevant for the thesis. For further detailed reading, please
refer to the OMG UML specification [302, 303] and Rupp et al. [344].

- Activity diagram (p. 270)
- Class and object diagram (p. 271)
- Component diagram (p. 273)

- Package diagram (p. 274)
- Use Case diagram (p. 276)

Activity Diagram

In the understanding of the OMG, an activity is “the specification of pa-
rameterized behavior as the coordinated sequencing of subordinate units

1Presented and maintained by the Object Management Group (OMG), www.omg.org

Knowledge Base 271

whose individual elements are actions” [303, p. 324]. An action is a single
step that contributes to the realization of behavior described by the alluded
activity [344]. In other words, an action is a “named element that is the
fundamental unit of executable functionality. The execution of an action
represents some transformation or processing in the modeled system, be it
a computer system or otherwise” [303, p.243]. An object is “an abstract
activity node that is part of defining object flow in an activity” [344, p. 276].

An activity diagram is a directed graph that provides capabilities to
“model and retrace complex processes” [344, p. 259], and to visually represent
the alluded activities, covering concurrency, alternatives, conditions, and
parametrization. One of its fundamental concepts is the token (cf. Petri-
Nets [331]) that logically indicates the current position within an activity
and whose arrival triggers an action’s execution. Figure A.8 depicts an
exemplary activity diagram containing the following elements:

● Action node Represents an action as rounded corner rectangle. It either
represents a not further fractionized “atomic” behavior, or it represents
an activity nesting, which is additionally labeled by a .

● Object node Represents an object as rectangle. An object node models
variables, constants or other results that might be produced by an
action. These variables can be defined within the activity, like Object
node at the bottom of Figure A.8, or outside the activity and passed
as parameter, like the Activity input on the right side of Figure A.8.

● Activity edge Connects action and object nodes, being an “abstract
class for directed connections between two activity nodes” [344, p. 282].
They are depicted as arrows that indicate the token flow direction
between the connected nodes.

● Token flow Is routed alongside defined activity edges and further con-
trolled by control nodes. Decision/merge nodes define optional or
conditional paths, fork/join nodes describe a parallel execution.

Class and object diagram

In object-oriented modeling, a class abstracts “a set of objects that share
the same specifications of features, constraints, and semantics” [303, p.48]
by describing an object’s attributes and operations. The former are com-
mon characteristics of an object set and consist of, amongst others, name,
multiplicity, and data type. The latter is a “behavioral feature of a classifier

272 Knowledge Base

Fork node

Join node

Action 4

Action 1

Action 2 Action 3

Action 5 :
Nested Action

Object node

Decision node

Merge node

Initial node

Activity �nal

[guard]

Activity edge

Activity input

Figure A.8: Exemplary UML activity diagram.

that specifies the name, type, parameters, and constraints for invoking an
associated behavior” [303, p. 104]. In contrast to the abstracting class, the
object is a non-abstract (real world) instance of a class, allocating concrete
values to the class’ attributes.

A class diagram provides capabilities to model and describe a system’s
static properties and their relationships [344] in an object-oriented way, an
object diagram is an instance of the class diagram, representing a snapshot
of concrete values. Figure A.9 depicts an class and object diagram in its
upper and lower part, respectively. It contains the following elements:

● Class Represents a class as rectangle, providing the class’ name, at-
tributes, and operations from top to bottom, as illustrated in Fig-
ure A.9 by class ClassA.

● Generalization Is a “taxonomic relationship between a more general clas-
sifier and a more specific classifier” [303, p.70]. The specific classifier
inherits all attributes and operations (features) from the general clas-
sifier. As depicted in Figure A.9, ClassB (specific classifier) inherits
two attributes and two operations form ClassA (general classifier).

● Association Describes a “set of tuples whose values refer to typed in-
stances” [303, p.36]. In other words, it describes a set of homogeneous
class relationships, like the association between ClassA and class
ClassB in Figure A.9. A specialized association is the aggregation
describing a “consists of” relationship. In Figure A.9, ClassA consists

Knowledge Base 273

of one or multiple ClassD objects, e.g., a group of people (ClassA)
consists of humans (ClassC). A stricter form of aggregation is the
composition that additionally states the lifetime of the contained
elements. In Figure A.9, ClassA consists of one or multiple ClassE
objects with the additional constraint that all ClassE objects are
destroyed when ClassA is destroyed. For instance, a cocktail (ClassA)
consists of ingredients (ClassE), but if the cocktail is destroyed, also
the ingredients are destroyed (taken from [344, p. 147]).

● Object Is a class instance, allocating discrete values to the class’ at-
tributes. An instance of a class diagram is graphically represented
by an object diagram. Figure A.9 depicts in its lower part an exem-
plary object diagram for the above discussed exemplary class diagram,
containing objects (class instances) and links (association instance).

attribute1 = "Example string”
attribute2 = false

: ClassA

-attribute1 : String
-attribute2 : Boolean
+operation1() : void
+operation2() : String

ClassA

: ClassC: association

composition

association

aggregation

ClassC

ClassE

ClassD

generalization
ClassB

Figure A.9: Exemplary UML class and object diagram.

Component diagram

A component represents a “modular part of a system that encapsulates its
contents and whose manifestation is replaceable within its environment” [303,
p.149], and that has a “concisely confined behavior that is accessible through
clearly defined interfaces” [344, p. 212]. Hence, a component defines its
behavior in terms of provided and required interfaces [303]. This behavior
can be implemented in many ways, and a concrete implementation can be
replaced by another, as long as the initially provided set of interfaces is
supported. Summarized, a component is not only a data provider, but a
self-contained application [296] (cf. [344, p. 217]).

274 Knowledge Base

A component diagram provides capabilities for describing a system’s
structure during run time with a strong focus on physical and technical
aspects, and for organizing a system’s elements in the alluded components
and their dependencies. Figure A.10 depicts an exemplary UML component
diagram containing the following elements:

● Component Represents a component according to the introduced notion
as rectangle and the component symbol in its upper right side.
Similar as actions in activity diagrams, components can be not further
fractionized “atomic” components, represented by ComponentB, or
describe component nesting, represented by ComponentA.

● Port Is a “property of a classifier [(component)] that specifies a distinct
interaction point between that classifier and its environment or between
the (behavior of the) classifier and its internal parts” [303, p.186]. In
other words, a port encapsulates a component and is exposed for the
interaction with a component’s surrounding [344]. Ports are depicted
by a square.

● Interface Connects the alluded ports and specify a contract that has to be
fulfilled by any component instance that realizes the interface [303]. In
Figure A.10, ComponentA realizes InterfaceA (ball symbol), which is
consumed by ComponentB (semi circle symbol). The interface commu-
nication is handled by the ports PortA and PortB. Interfaces are also
used to seal off internal components from external access, as shown for
Subcomponent, which is accessible through InterfacePrivate that
is delegated to PortA of ComponentA.

● Artifact Represents the implementation of a component and is “the
specification of a physical piece of information that is used or produced
by a software development process, or by deployment and operation
of a system” [303, p.203]. In Figure A.10, the behavior and the
interfaces described by ComponentA are implemented by the artifact
example.jar, which in turn uses the artifact library.jar.

Package diagram

In UML, a package “is used to group elements, and provides a namespace
for the grouped elements” [302, p. 160]. It bundles classifiers, like classes,
interfaces, or associations, that are related in some way [344]. The pack-
age’s namespace is used to extend unqualified identifiers of the contained

Knowledge Base 275

<<component>>
ComponentA

<<component>>
Subcomponent

InterfacePrivate

PortA

PortB
Interface
Public

<<manifest>>

<<component>>
ComponentB

<<use>> <<artifact>>
library.jar

<<artifact>>
example.jar

Figure A.10: Exemplary UML component diagram.

classifiers to fully qualified identifiers, consisting of the package’s name and
the classifier’s name. For instance, a class A contained in package P would
have the fully qualified identifier P::A (taken from [344, p. 169]). Package
structuring is a common concept to organize extensive and complex UML
class diagrams, models, or systems, e.g., it is extensively applied in the UML
Superstructure specification [303] and it is a common tool for describing the
layered structure of software [247] (cf. [344]).

A package diagram abstracts from the alluded classifiers and focuses
solely on the bundling packages while omitting detailed insights. Conse-
quently, the main objective of package diagrams is providing an overview of
a system. Figure A.11 depicts an exemplary package diagram, consisting of
the following elements:

● Package Is represented as rectangle, printing the package name in the
tab or in the rectangle’s header, as Figure A.11 depicts for Package1
and Package2, respectively. Besides, both packages show nesting.

● Association Describes a package relation in two ways:

Import Is a “relationship that allows the use of unqualified names to
refer to package members from other namespaces” [303, p. 112]. In
other words, it allows a package to use the classifiers of the imported
package by making them visible [344]. Figure A.11 illustrates this
for package Package4 that can use the classifiers of Package3.
Merge Defines “how the contents of one package are extended by the
contents of another package” [303, p. 113] and implicitly creates new
specialized classifiers that can be further adapted [344]. Figure A.11
depicts the (implicit) creation of new classifiers on the right hand side
in Package5’: the already existing classifier A in Package5 is sub
classed by a specializing classifier in the merge resulting Package5’.

276 Knowledge Base

In addition to this simple example, there are many more merge
alternatives, as elaborated by Rupp et al. [344, p. 173].

Package5'

Package5::A

Package1

Package2
Package4

Package3

A

Package5

A
<<merge>>

<<import>>
A

Figure A.11: Exemplary UML package diagram.

Use Case diagram

Is listed for the sake of completeness. It is explained in the context of
requirements analysis on page 264 of the Knowledge Base.

What-if analysis
A what-if analysis, also called sensitivity analysis, describes the process of
changing the used input value set of a function, also called scenario, to
examine how those changes affect the function’s outcome. It is often used to
compare different scenarios and their potential outcomes based on changing
conditions. In case a cross product of all parameters is used, it is also called
a parameter sweep.

Appendix B
Benchmark overview

The following list alphabetically overviews benchmarks that are employed
in the thesis. Each list entry consists of the benchmark’s name, its building
blocks (cf. Section 2.3.2), a summary, and a set of paper references that
provide the details. Summary description employs the four layers High level
specification (HLS), Low level implementation (LLI), Compilation (C), and
Execution (E) introduced in Section 2.3.2.

Dhrystone (Synthetic)
The Dhrystone benchmark was designed in 1984 at Siemens to measure the
Integer performance of small machines with simple architectures. Its name
is a wordplay on the Whetstone benchmark, a floating-point performance
benchmark popular at that time (cf. below). Based on a literature survey
on “the distribution of source language features in non numeric, system-type
programming” [407, p. 70], the HLS of the Dhrystone benchmark defines
12 procedures in one measurement loop, called a Dhrystone. The LLI
slightly differ, as the C and ADA version consist of 103 and 101 statements,
respectively. The execution (E) results are usually given in Dhrystones per
second. RISC machines generally beat CISC machines on the Dhrystone
benchmark, because the larger number of registers and the localities of code
and data strongly react on Dhrystone’s explicit consideration of operand
locality [255, 407, 408, 409, 122, 258].

LINPACK (Kernel)
Originally not designed as benchmark, the LINPACK evolved as one of
the most famous benchmarks which is heavily used, e.g., to categorize
supercomputers [128]. LINPACK is a package (name’s eponym) of linear
algebra subroutines often used in FORTRAN programs and hence, a kernel

277

278 Benchmark overview

Name Matrix
dimension

Optimization
allowed

Parallel
processing

LINPACK 100 100 Compiler Compiler
parallelization

possible

LINPACK 1000 1000 Manual Multiprocessor
implementations

allowed

LINPACK Parallel 1000 Manual Yes

HPLinpack Arbitrary Manual Yes

Table B.1: Overview of LINPACK versions (taken from Dongarra et al. [127]).

benchmark. Authored by Jack Dongarra in 1976, the benchmark is used
to characterize the floating-point performance of machines by Millions of
floating-point operations per second (MFLOP/s, cf. Section 2.4.2). The HLS
of LINPACK defines operations on a large matrix, particularly factoring or
decomposing the matrix “into a product of simple, well-structured matrices
which can be easily manipulated to solve the original problem” [127, p. 803].
Three configuration parameters influence its LLI (taken from [407]):
Single/double Use FORTRAN single or double precision values.
Rolled/unrolled Optimize loops at the source code level by loop unrolling.
Coded BLAS/FORTRAN BLAS Use the fundamentally important sub
package Basic Linear Algebra Subroutines (BLAS) in assembly language
or as FORTRAN library.

Depending on the matrix dimension, the allowance of optimization, and
parallel processing, there are four LINPACK types, overviewed in Table B.1
(taken from Dongarra et al. [127]). The LINPACK 1000 benchmark is also
known as Toward Peak Performance (TPP) or Best Effort version, the
Highly-Parallel LINPACK (HPLinpack) benchmark is also known as the N
× N LINPACK benchmark [407, 127, 124, 129, 157].

Benchmark overview 279

MADBench2 (Kernel)

The building blocks of the MADBench2 benchmark are kernels extracted
from a cosmology application analyzing Cosmic Microwave Background
(CMB) data sets. This is seen as a distinctive feature compared to other
I/O micro benchmarks, because it is “derived directly from an important
scientific application” [59, p. 1]. Designed as I/O micro benchmark, MAD-
Bench2 operates primarily on floating-point matrices that are too large to
maintain simultaneously in main memory, what requires several reading
and writing operations to and from disk during calculation. MADBench2
succeeds MADBench, the authors presented upfront as a lightweight ver-
sion of the Microwave Anisotropy Dataset Computational Analysis Package
(MADCAP) [57, p. 119], consisting of algorithms for reducing data sets of
CMB measurements [81, 86, 59, 58, 57].

NAS Parallel Benchmark Suite (Kernel)

The Numerical Aerodynamic Simulation (NAS) Parallel Benchmark Suite
(NPB) is a small set of programs that were designed in the 1990s to “to study
the performance of parallel supercomputers” [13, p. 1], to “analyze perfor-
mance and scalability of hardware platforms” [93, p. 75], and for “testing the
capabilities [...] of parallelization tools” [50, p. 3]. The contained benchmarks
are derived from and mimic the computation and data movement character-
istics of large-scaleComputational Fluid Dynamics (CFD) applications. The
NPB suite initially consisted of five kernels, three pseudo-applications, and
eight problem sizes, provided as “pencil-and-paper” specification. Reference
implementations use common programming models and languages, like MPI,
Java, and Performance FORTRAN [162, 349, 29, 13, 93, 373, 50, 213, 291].

SAGE (Kernel)

The benchmark kernels were extracted from SAIC’s Adaptive Grid Eulerian
(SAGE) code, a parallel, large-scale, multidimensional (1D, 2D, 3D), multi-
material, Eulerian hydrodynamics code with adaptive mesh refinement. It
is used in a wide variety of scientific and engineering problems, like water
shock, energy coupling, and hydrodynamic instability problems. Hence, the
benchmark represents a large class of production Advanced Simulation and
Computing (ASC) workloads that run on thousands of processors for months
at a time. Network bandwidth, network latency, and dimensions of the used
torus’ subset equally influence the benchmark’s (communication) perfor-
mance. Its LLI is provided in FORTRAN90 using MPI for inter-processor
communications [112, 31, 192, 226].

280 Benchmark overview

STREAM (Synthetic)
The synthetic STREAM benchmark aims at decoupling the memory consid-
eration from the hypothetical “peak” performance of the machine, and at
measuring sustainable memory bandwidth in MB/s. In doing so, its HLS
defines four operations (copied from [273]):
Copy Measures transfer rates in the absence of arithmetic.
Scale Adds simple arithmetic operation.
Sum Adds third operand for multiple load/store ports.
Triad Allows chained/overlapped/fused multiply/add operations.

The four operations are considered as representative building blocks
of long vector operations. For meaningful results, the benchmark works
with data sets and code structures that cannot be stored completely in the
available cache, but require memory traffic. The benchmark’s LLI is written
in standard FORTRAN77 and a corresponding version in C. Continuously
updated results are presented on the benchmark homepage [273]. The
STREAM benchmark is, amongst others, part of the NERSC-8/Trinity
Benchmark Suite [292] and the HPC Challenge Benchmark Suite [271, 273,
272]. Besides, there are some forks of the STREAM benchmark, like MAPS,
a “benchmark probe used to measure the rate at which a single processor
can sustain rates of loads and stores depending on the size of the problem
and the access pattern” [84, p. 3].

Sweep3D (Kernel)
The benchmark kernels were extracted from time-independent, Cartesian-
grid, single-group, “discrete ordinates” deterministic particle transport code
taken from the DOE Advanced Simulation and Computing (ASCI) workload.
In particular, the benchmarks reflects ASCI workloads at the Los Alamos
National Laboratory (LANL) and has characteristics of the computations
and communications which consume the vast majority of the cycles. The
benchmark’s LLI is provided in FORTRAN77 using MPI for inter-processor
communications and said to be sensitive to the latency of both, the memory
and the network [32, 112, 193, 192, 31, 112].

Whetstone (Synthetic)
Based on the analysis of 949 real world applications, the Whetstone bench-
mark was designed in 1972 to measure the Floating-point performance of
small machines with simple architectures. As “first program in the literature
explicitly designed for benchmarking” [407, p. 66], Whetstone set industry
standards of performance, particularly for minicomputers. Its HLS comprises

Benchmark overview 281

several modules, each addressing another typical behavior of common appli-
cations, like procedure calls or integer operations. In particular, the modules
and contained segments are defined such that “the distribution of Whetstone
instructions for the synthetic benchmark matched the distribution observed
in the program sample” [407, p. 66]. Common LLI are provided in C and
Pascal, the first LLI was written in Algol 60. The benchmark produces
speed ratings in Whetstone instructions per second [414, 106, 122, 407].

Appendix C
Research contributions

The extend of some artifacts of the presented process model recommend their
detailing in the appendix, instead in a certain section or chapter. Hence,
the following artifacts are further detailed, ordered according to their use in
the thesis:

- Actors (p. 283)
Referenced in Section 3.3.1.

- Use Cases (p. 289)
Referenced in Section 3.3.1.

- Non-functional requirements
(p. 306)
Referenced in Section 3.3.1.

- Provenance information model
(p. 312)
Referenced in Section 3.3.1.

- Action flow of activity template T-
A3 (p. 314)
Referenced in Section 3.3.1.

Actors

Figure C.1 recapitulates the actor hierarchy Chapter 3 extracts from real-
world scenarios for the Requirements Specification (RS). This section details
the depicted actors bottom-up relative to the inheritance hierarchy described
in Section 3.3.1. In particular, actors at the bottom of the hierarchy are
immediately extracted from the SuperMUC and DRIHM scenario, and
are described first. Afterwards, actors in higher levels of the inheritance
hierarchy describe commonalities of several actors and hence, are more
abstract. Detailing uses wide-spread actor templates (↗KB p. 264), and
employs black circle flags 1 for referencing specific aspects in the scenario
descriptions in Section 3.2.

283

284 Research contributions

Management
(ACT-8)

Attribute
Domain Expert

(ACT-6)

Administrator
(ACT-2)

Executing
Administrator

(ACT-5)

Domain Expert
(ACT-3)

Strategic
Administrator

(ACT-4)

Workload
Domain Expert

(ACT-7)

Coordinator
(ACT-10)

Provider
(ACT-1)

Developer
(ACT-11)

Consumer
(ACT-9)

Ab
st

ra
ct

io
n

SuperMUC
DRIHM

Figure C.1: Overview of actors extracted from examined real-world scenarios.

Actor Strategic Administrator ACT-4

Is responsible for architectural and technical long-term decisions regarding
the IT infrastructure and evaluates technological trends and innovations in
terms of suitability for the IT infrastructure. For small IT infrastructures,
the actor might overlap with actor ACT-5.

→ SuperMUC – Head of LRZ’s High performance systems department
and of the HPC services group 6 .

→ DRIHM – EGI steering committee and heads of the organizations
that provide resources to the drihm.eu VO 34 .

Table C.1: Actor “Strategic Administrator” (ACT-4).

Research contributions 285

Actor Executing Administrator ACT-5

Executes the concrete operation and maintenance of the IT infrastructure,
e.g., the replacement of broken hardware, incorporation of (reviewed)
modifications, maintenance of management databases, or implementation
of required software. Compared to actor ACT-4, the actor doesn’t make
any (long-term) decisions about the IT infrastructure’s architecture. In
contrast, the actor acts according to externally given decisions and orders.
For small IT infrastructures, the actor might overlap with actor ACT-4.

→ SuperMUC – Members of LRZ’s HPC services, Distributed resources,
and Application support groups 6 .

→ DRIHM – Administrators at the resource providing sites 34 .

Table C.2: Actor “Executing Administrator” (ACT-5).

Actor Administrator ACT-2

Is responsible for and realizes all physical operation activities on the IT
infrastructure and acts as counterpart of actor ACT-3. The actor is marked
as abstract to force a refinement in planning and executing activities by
actor ACT-4 and ACT-5, respectively. Depending on the IT infrastructure’s
scale, complexity, and organizational structure (cf. Section 2.2), the actor
might be responsible for the entire IT infrastructure or only a sub set.

→ Super class of actor ACT-4 and ACT-5.

Table C.3: Actor “Administrator” (ACT-2).

286 Research contributions

Actor Attribute Domain Expert ACT-6

The actor is highly experienced in one or more attributes, e.g., performance
or energy efficiency (cf. Section 2.4), especially for the IT infrastructure
at hand. In particular, the actor profoundly knows about the modeling,
measuring, and other influencing factors of a set of attributes. In some
situations, the actor might overlap with actor ACT-7, for instance, when
benchmarks are executed to generate load for measuring (cf. Section 2.3.3).

→ SuperMUC – Members of the HPC services division at LRZ work
on energy efficiency and performance modeling [27, 174] 16 .

→ DRIHM – Stuff members at the resource provider sites 34 . They
might be experienced about a broader range of common hardware
types, compared to the HPC services group members at LRZ in the
SuperMUC scenario (cf. above) that are very focused on SuperMUC
to tackle its custom construction.

Table C.4: Actor “Attribute Domain Expert” (ACT-6).

Actor Workload Domain Expert ACT-7

The actor is highly experienced in the development and execution of
workload (cf. Section 2.3), especially for the IT infrastructure at hand.
Additionally, he is skilled in identifying and predicting the load that is
about the be generated by executing workload on the IT infrastructure.
The actor collaborates with actor ACT-6 for load generation.

→ SuperMUC – Members of the Application support group at LRZ 7
work on workload analysis and application tuning [283].

→ DRIHM – Members of the “Services for researchers” provided by
EGI [136], especially the “Consulting and support” division.

Table C.5: Actor “Workload Domain Expert” (ACT-7).

Research contributions 287

Actor Domain Expert ACT-3

In contrast to actor ACT-2, the actor deals with all non physical aspects
of IT infrastructure operations, covering attribute and workload modeling
and prediction. To address the variety of issues and challenges in these
fields, the actor is marked abstract to force a refinement in attribute and
workload related aspects by actor ACT-6 and ACT-7, respectively.

→ Super class of actor ACT-6 and ACT-7.

Table C.6: Actor “Domain Expert” (ACT-3).

Actor Provider ACT-1

Subsumes actors being experienced in and responsible for IT infrastruc-
ture operations and maintenance in a wider sense. The actor does not
make any strategic decisions or SLA negotiation, but works according to
the decisions made by actor ACT-8. Besides, he ensures proper IT infras-
tructure provisioning to actor ACT-9, and provides consulting services to
actor ACT-8. The actor is marked abstract to force refinement.

→ Super class of actor ACT-2 and ACT-3.

Table C.7: Actor “Provider” (ACT-1).

Actor Management ACT-2

Is responsible for the IT infrastructure in general, communicates with
(potential) consumers (actor ACT-9), and negotiates SLAs. Actor ACT-2
initiates reasoning activities and interprets results to fulfill his responsi-
bility for the IT infrastructure, to address the urgent need of considering
external influencing factors like electricity prices or national law, and to
respect the consumer demands. If necessary, he triggers modifications,
actor ACT-1 implements.

→ SuperMUC – LRZ’s Board of directors 8 .
→ DRIHM – Management of each resource provisioning site.

Table C.8: Actor “Management” (ACT-2).

288 Research contributions

Actor Coordinator ACT-10

In the scientific field (see focus on scientific applications in Section 2.3),
contracts about IT infrastructure use are mostly made with a research
project but a single person. Actor ACT-10 represents the project’s head,
usually called the project coordinator, and negotiates SLAs about attribute
value ranges to ensure sufficient IT infrastructure capabilities for his
project.

→ DRIHM – The DRIHM project is coordinated by WP1 and in partic-
ular the CIMA foundation (cf. Section 3.2.2).

Table C.9: Actor “Coordinator” (ACT-10).

Actor Developer ACT-11

Develops workload and especially real world applications (cf. Section 2.3.1)
that run on the IT infrastructure. The actor is mostly a computer science
applying entity, e.g., an HMR or biology scientist, but a computer scientist.

→ SuperMUC – Users that execute the software on SuperMUC 15 .

→ DRIHM – Developer of the executed models 38 , e.g., the Centre Na-
tional de la Recherche Scientifique (CNRS) develops Meso-NH [245] 39 .

Table C.10: Actor “Developer” (ACT-11).

Actor Consumer ACT-9

Uses the IT infrastructure to solve a particular (scientific) problem (cf. Sec-
tion 2.3). Compared to actor ACT-1, the actor is mostly not a computer
scientist, but member of an applying discipline, like HMR or biology.
Hence, there is a differentiation between consuming and providing ac-
tors. This is of special relevance for actor ACT-7 and ACT-11. The actor
is marked as abstract to enforce a refinement in workload related and
contract related roles by actor ACT-11 and ACT-10, respectively.

→ Super class of actor ACT-11 and ACT-10.

Table C.11: Actor “Consumer” (ACT-9).

Research contributions 289

Functional requirements
Chapter 3 extracts 17 functional requirements from real-world scenarios
for the RS. This section details the functional requirements, using wide-
spread Use Case templates (↗KB p. 264), and employing black circle flags
1 to reference specific aspects and details in the scenario descriptions in
Section 3.2.

Use Case Initiate reasoning activity UC-1

(Potentially) high costs and efforts of (exhaustive) reasoning bans the
execution of a reasoning activity without a cogent reason. Use Case UC-1
addresses this demand for a reasoning justification by generically describ-
ing situations that explicitly require a reasoning activity. For instance,
changing customer needs, alternating varying regulations, or procurement.
Even though the list of tangible situations is rather short, there is a dedi-
cated Use Case to foster a generic and broadly applicable requirements
list. In addition, the Use Case provides input to Use Case UC-2 that
extracts and defines the objectives of a particular reasoning activity for
Use Case sub systems B and C.

ACT-8 Is responsible for the IT infrastructure in general and applies a
provider and a consumer perspective at the same time. Hence,
the actor identifies situations that call for a reasoning activity.

→ SuperMUC – In the SuperMUC scenario, there are mainly three situ-
ations that initiate a reasoning activity: changing customer needs 23 ,
changing external factors 27 , and procurement 31 .

→ DRIHM – Since the DRIHM scenario applies the consumer perspec-
tive, the rather generic Use Case is abstracted only from the provider
perspective applying SuperMUC scenario. In contrast, the DRIHM
scenario is important for the specializing Use Case UC-1.1.

Table C.12: Use Case “Initiate reasoning activity” (UC-1).

290 Research contributions

Use Case Negotiate SLA and attributes UC-1.1

A special situation that might initiate a reasoning activity is the nego-
tiation of SLAs in general, and of attribute ranges and thresholds, in
particular. The situation is described by a dedicated Use Case, because
it is the most common situation and it involves all three actor groups
(cf. Section 3.3.1), i.e., the provider perspective, the management, and the
consumer perspective. The Use Case inherits from Use Case UC-1 and
aims at 1) covering potential conflicting interests of all involved partners,
2) processing them, and 3) passing them to Use Case UC-2.

ACT-6 Actor ACT-10 is mostly no computer scientist and hence, might
pose unrealistic or conflicting demands in terms of expected
attribute ranges. To address this potential problem, actor ACT-6
participates in a consulting role and intervenes if necessary.

ACT-8 Inherited from parent Use Case UC-1. The actor is interested not
only in winning actor ACT-10 over to use the IT infrastructure,
but also in preserving the provider’s aims and rules.

ACT-10 The project coordinator, representing the IT infrastructure con-
suming entity, is interested in negotiating attribute ranges that are
beneficial from a consumer perspective, e.g., a high performance.

→ SuperMUC – SuperMUC exposes its capabilities and capacities to
manifold organizations 1 , like PRACE or the Gauss Centre for Su-
percomputing, for a diversity of applications 10 . Each of them poses
differing demands on the SuperMUC and formulates an individual
“cocktail” of attribute constraints. PRACE, for instance, is interested
in both 24 SuperMUC’s performance and reliability, to provide high
quality HPC services to its members. Besides, interest conflicts might
arise, e.g., high performance versus power consumption 28 .

→ DRIHM – The DRIHM IT infrastructure consists of several resources
from multiple resource providers 34 , e.g., a set of resources within
EGI. Each resource inclusion in the DRIHM IT infrastructure precedes
a negotiation with the providing organization, even within EGI 42 .

Table C.13: Use Case “Negotiate SLA and attributes” (UC-1.1).

Research contributions 291

Use Case Define reasoning objectives UC-2

Use Case UC-2 covers the extraction, delimitation, and explicit definition
of relevant reasoning objects and details according to the reasoning initiat-
ing input given by Use Case UC-1. In addition, the Use Case decomposes
reasoning tasks and prepares their distribution or delegation to relevant
actors in a way that ensures result compatibility for later result composi-
tion. The Use Case defines the reasoning objectives in order to foster an
efficient and cost saving reasoning by reducing unnecessary attempts, and
to ensure reproducibility.

ACT-8 Specifies the reasoning activity in terms of considered attributes,
workload, and IT infrastructure components. Implicitly, ACT-8
does a first prioritization of reasoning aspects in the context of
high-level management decision making. ACT-8 requests informa-
tion from and delegates tasks to other actors.

→ SuperMUC – The LRZ employs several groups 6 that collectively
maintain and operate SuperMUC. Each group and also each group
member has its particular experience and knowledge, which have to be
combined and integrated in the reasoning activity to achieve a profound
result. This, in turn, requires task decomposition and synchronization.

→ DRIHM – The DRIHM IT infrastructure is built by several resource
providers 34 , each pursuing individual objectives, which calls for
clearly defined reasoning objectives.

→ Environment – Reasoning activities tend to be complex and compre-
hensive, since they cover an IT infrastructure and several attributes. In
addition, multiple actors are involved in terms of knowledge, experience
and (manual) execution. Especially the “possibility factor” requires a
clearly delimited reasoning objective, since people tend to build more
complex models if their tools support it [334].

◻ A definition confines the reasoning activity and considered details.
◻ Reasoning sub tasks can be delegated to actors, e.g., IT infrastruc-

ture modeling or attribute model selection.

P
O
S
T

Table C.14: Use Case “Define reasoning objectives” (UC-2).

292 Research contributions

Use Case Define attribute(s) UC-2.1

Guided by the reasoning objectives from Use Case UC-1, Use Case UC-2.1
selects relevant attributes and defines them, respectively. The definition is
formulated in a way that 2) fosters a common understanding between all
involved actors, that 2) aligns delegated reasoning tasks, that 3) ensures
reproducibility, and that 4) eases tool preparation in Use Cases sub system
B, e.g., supporting measuring instrument or model parameter selection.

ACT-6 Selects and defines the attribute(s) as requested by actor ACT-8 in
Use Case UC-1. Since there might be multiple attributes, several
ACT-6 actors can be involved, each focusing its personal attribute.

→ SuperMUC – Although there might be a common notion about the
attributes in the focus of SuperMUC’s operation, i.e., performance and
energy efficiency, this notion might be too broad for a focused and
effective reasoning activity. For instance, the performance instances
FLOP/s and TTC 17 fundamentally differ in terms of meaning and
required measurement tools. In addition, even within an attribute
instance further clarification might be required, e.g., include or exclude
queuing time 18 .

→ Environment – An attribute tends to have several instances, , e.g.,
performance has time-to-completion and as FLOP/s (cf. Section 2.4.2),
each exposing a variety of options and requiring differing assumptions
(cf. Section 2.4). This is eminently precarious, since the backgrounds
of the involves actors tend to differ (cf. description of actor ACT-9).

◻ There is an attribute list reasoning has to cover.
◻ Each list entry contains an unambiguous name, a description about

the attribute’s objectives in the context of the reasoning activity,
and the used attribute instance (cf. Section 2.4), consisting of
calculation rules and scale (↗KB p. 267).

P
O
S
T

Table C.15: Use Case “Define attribute(s)” (UC-2.1).

Research contributions 293

Use Case Select workload UC-2.2

Guided by the reasoning objectives from Use Case UC-1, Use Case UC-2.2
selects workload that reflects the analyzed circumstances and relates to
attributes selected in Use Case UC-2.1, e.g., reason about performance
and energy consumption during CFD application execution.

ACT-7 Selects one or multiple workload elements as requested by actor
ACT-8 in Use Case UC-1. Since there might be multiple workload
classes suitable, several ACT-7 actors might be involved, each
focusing its personal workload class.

→ SuperMUC – Over 150 differing applications employ the SuperMUC,
each posing differing requirements on the IT infrastructure 11 , e.g.,
due to the great diversity of employed programming languages 12 .

→ DRIHM – Although the amount of applications in the DRIHM sce-
nario is smaller than in the SuperMUC scenario, the applications pose
extremely differing demands on the IT infrastructure and especially
the attributes. In particular, the tools differ in terms of computation
demands and generated load 37 .

→ Environment – Most attributes depend on workload and in particular
the generated IT infrastructure component load (cf. Section 2.3 and 2.4).
In addition, the concrete implementation tends to have a sever impact,
e.g., implementations of the same benchmark can vary depending on
the employed programming language (cf. Section 2.3.2).

◻ There is a workload list reasoning has to cover and use. The list
can consist of real world applications, benchmarks, or both.

◻ Each list entry contains a workload description and a selection
justification for reproducibility.

P
O
S
T

Table C.16: Use Case “Select workload” (UC-2.2).

294 Research contributions

Use Case Select IT infrastructure component(s) UC-2.3

Guided by the reasoning objectives from Use Case UC-1, Use Case UC-
2.3 selects IT infrastructure parts and delimits component types that
are affected by the considered attributes (cf. UC-2.1) and the executed
workload (cf. UC-2.2). Depending on the reasoning objectives, differing IT
infrastructure areas might be of interest in terms of (hardware) component
types, like CPU or interconnect, and scale, i.e., the number of considered
components within a component type, e.g., considering one or all CPU’s
of an HPC system.

ACT-2 Selects IT infrastructure components for reasoning as requested by
actor ACT-8 in Use Case UC-1. In addition, actor ACT-2 prepares
component selection for modeling in Use Case UC-3, e.g., in terms
of provided meta information.

ACT-6 Consultatory supports actor ACT-2 in the IT infrastructure com-
ponent selection. For instance, he highlights component types
that might have a (strong) influence on the considered attributes.

→ SuperMUC – SuperMUC is built of several specialized areas, for
instance, computing nodes and storage facilities. This specialization is
reflected in focused groups 6 . Even within a specialized area, there is
a separation, e.g., the HPC cluster file system GPFS and the backup
storage 4 . Depending on the reasoning objectives, not all hardware
types are of interest, e.g., reasoning about the power consumption
and performance of SuperMUC’s compute nodes renders coverage of
third level backup storage unnecessary. There are also situations when
not all components of the same type must be considered, e.g., in case
workload employs only a single compute node 3 .

→ Environment – Section 2.2 emphasizes that contemporary IT infras-
tructures tend to be exhaustive and complex, especially HPC clusters,
supercomputers, and Grids. But also small systems can be challenging,
depending on the applied level of granularity.

◻ There is an IT infrastructure component list reasoning has to cover.
◻ Each list entry contains a component description and a selection

justification for reproducibility.
◻ Optionally, there is an additional list containing a set of component

types reasoning has to consider.

P
O
S
T

Table C.17: Use Case “Select IT infrastructure component(s)” (UC-2.3).

Research contributions 295

Use Case Model IT infrastructure UC-3

Create a model of the IT infrastructure elements and details selected in
Use Case UC-2. In particular, modeling in Use Case UC-3 is constraint
to the given component type set, to the component number, and to the
granularity level(s) in order to compile a model that sufficiently supports
the reasoning activity at the one hand, but that is also preferably focused
and small on the other hand.

ACT-2 The actor’s responsibility for (physically) operating and maintain-
ing the considered IT infrastructure results (theoretically) in a
high level of experience and knowledge. Together with the tool
set and information, this recommends actor ACT-2 for creating
the IT infrastructure model.

P
R
E

◻ There is an IT infrastructure
component list modeling has
to cover.

◻ The list describes compo-
nent types, granularity lev-
els, and scale.

◻ There is a model describing
the IT infrastructure accord-
ing to the details defined in
Use Case UC-2. P

O
S
T

Table C.18: Use Case “Model IT infrastructure” (UC-3).

296 Research contributions

Use Case Model part of IT infrastructure UC-3.1

Especially large-scaled and/or complex IT infrastructures are built of
several specialized areas, each exhibiting differing challenges and char-
acteristics that are relevant for modeling the IT infrastructure. Use
Case UC-3.1 describes the situation of multiple entities being responsible
for the same IT infrastructure and consequently, multiple entities are
contributing to the IT infrastructure model.

ACT-2 The actor who is responsible for (physically) operating and main-
taining the considered IT infrastructure part.

→ SuperMUC – As explained in Use Case UC-2.3, SuperMUC is built of
several specialized elements. Each element might be in a specific group’s
area of accountability, e.g., the HPC Services group covers SuperMUC
itself, the Data and Storage Systems group covers storage elements 6 .
Thus, each group contributes to the overall IT infrastructure model of
SuperMUC, since each group is experienced in its particular area.

P
R
E

◻ There are clearly distin-
guished entities responsible
for each part of the consid-
ered IT infrastructure.

◻ Reasoning objectives require
coverage of at least two of
the IT infrastructure parts.

◻ There is no dedicated en-
tity capable of modeling all
required IT infrastructure
parts.

◻ There is a model describing
the requested IT infrastruc-
ture part according to the
prerequisites stated in Use
Case UC-2.

P
O
S
T

Table C.19: Use Case “Model part of IT infrastructure” (UC-3.1).

Research contributions 297

Use Case Import IT infrastructure information UC-3.2

Three reasons recommend the use of existing information to model the
IT infrastructure: 1) existing management tools or databases, like a Con-
figuration Management Database (CMDB), often already contain suitable
information about the IT infrastructure. After an optional processing step,
this information could be used as modeling and hence, reduce modeling
efforts; 2) constructing the IT infrastructure model on existing informa-
tion supports actuality, because the information updated in daily-use
management tools can be absorbed. This is of special importance for
IT infrastructures exposing high dynamics; 3) using existing information
avoids duplicates and integrity flaws. The (potential) high dynamics
of IT infrastructures requires an interface to existing management and
description approaches and tools to ease keeping the model up to date.
An interface would also be beneficial to interact with special purpose
approaches, like discrete event simulators, and hence, gaining acceptance.

ACT-2 The actor who is responsible for (physically) operating and main-
taining the considered IT infrastructure.

→ DRIHM – Uses the BDII information service to store management
information about the IT infrastructure. BDII provides a query and
export interface 36 .

→ Environment – Especially for Grids that rely on common and open
standards, there are information models describing resources, like the
GLUE scheme (cf. Section 2.2.3).

P
R
E

◻ There is a tool storing suit-
able information about the
IT infrastructure in an ap-
propriate format, like CIM
or GLUE.

◻ In case the format is not di-
rectly applicable, a mapping
is possible.

◻ The tool provides an export
interface or any other export
capability.

◻ The IT infrastructure model
describes the considered IT
infrastructure using the data
that is already maintained in
a third party tool.

◻ Redundancy or integrity
flaws are avoided.

P
O
S
T

Table C.20: Use Case “Import IT infrastructure information” (UC-3.2).

298 Research contributions

Use Case Update IT infrastructure model UC-3.3

The dynamics of IT infrastructures require updating the IT infrastructure
model entirely or partly. Especially large-scaled and/or complex IT
infrastructures are built of several specialized areas, each of them exposing
differing update cycles. Consequently, updating the IT infrastructure
model is on-demand. The updating process also employs the import
functionality described in Use Case UC-3.2.

ACT-2 The actor who is responsible for (physically) operating and main-
taining the considered IT infrastructure.

→ DRIHM – Each of the different resource providers that contribute to
the DRIHM infrastructure apply individual maintenance cycles and
dynamically add or remove resources 35 .

P
R
E

◻ An IT infrastructure model
exists.

◻ The considered IT infras-
tructure has changed physi-
cally and in a way that has
to be reflected by the IT in-
frastructure model.

◻ The IT infrastructure model
is up-to-date, which means it
described the IT infrastruc-
ture as it is. P

O
S
T

Table C.21: Use Case “Update IT infrastructure model” (UC-3.3).

Research contributions 299

Use Case Select model for attribute(s) and
component(s)

UC-4

Use Case UC-4 covers model selection according to the demands posed
by Use Cases UC-1 and UC-2. For instance, selecting a model to describe
the power consumption of processors or the reliability of storage elements.
These models are used for reasoning in sub system C. Since multiple
attributes can be covered by a single reasoning activity, Use Case UC-4 is
likely to be executed several times, namely for each considered attribute
and/or for the same attribute but differing component types.

ACT-6 The expert for the particular attribute domain.

→ SuperMUC – The variety of IT infrastructure components 2 and
attribute instances 16 calls for a clear model selection process.

→ Environment – The power set of IT infrastructure aspects and com-
ponent types (cf. Section 2.2), attributes, and attribute instances
(cf. Section 2.4) is huge. For a part of combinations, there are (mature)
models, describing a particular situation, e.g., modeling communication
performance for message-passing based node communication [13], or
estimating the power consumption of an Intel PXA255 processor [104]
(cf. Section 7.4). Addressing this variety of existing models to describe
relevant attributes prerequisites a selection before reasoning can be
executed.

P
R
E

◻ An attribute and a set of
component types were se-
lected.

◻ A model is selected that de-
scribes the considered at-
tribute for the given com-
ponent type(s) on the re-
quested level of detail.

P
O
S
T

Table C.22: Use Case “Select model for attribute(s) and component(s)”
(UC-4).

300 Research contributions

Use Case Create model proxy UC-4.1

Despite the plurality of existing models describing a variety of attributes
and aspects, there might be situations that there is no suitable model
integration candidate. This might be the case if 1) no model describes
the particular attribute for the given component type(s) at the requested
level of detail, 2) the model does not describe the attribute sufficiently,
e.g., inaccurate, or 3) other constraints might be violated, like licensing
issues. To address this situation, Use Case UC-4.1 describes the creation
of a model proxy, which is defined according to the specific reasoning
demands, ranging from a discrete number to a function compiled by any
suitable method, like measurement-based regression.

ACT-6 As expert for the considered attribute, actor ACT-6 is responsible
for the model proxy creation process.

ACT-7 Owns a supporting role in the model proxy creation process,
especially when the execution of workload is required during a
measurement and function derivation activity.

→ SuperMUC – Despite the important role of energy efficiency for
SuperMUC, there are no (time-tested) models available to describe
this attribute 20 . To enable coverage of energy efficiency in a bigger
reasoning activity requires the creation of a model proxy.

→ Environment – Model creation is mostly faced with the challenging
trade-off between accuracy and generality. The more accurate a model
is, the less is it applicable to a variety of IT infrastructure components.
This is of special importance for supercomputers that are built of
highly specialized components (cf. Section 2.2.2). Hence, depending on
the IT infrastructure and particularly its level of specialization, there
might be no models available describing the attribute(s) of interest.

P
R
E

◻ An attribute/component
combination is specified.

◻ There is no suitable model
describing the attribute
for the given component
type(s).

◻ There is an alternative way
to provide a value for the at-
tribute/component combina-
tion according to the specific
reasoning demands.

P
O
S
T

Table C.23: Use Case “Create model proxy” (UC-4.1).

Research contributions 301

Use Case Create load profile UC-4.2

Use Case UC-4.2 describes the creation of a load profile (cf. Section 2.3.3),
which is used as input by the reasoning activity in sub system C. A
load profile is especially required when the workload selected in Use
Case UC-2.2 exposes a comparatively long run time.

ACT-7 Is the expert for the considered workload. Since several work-
loads can be selected in Use Case UC-2.2, for each workload an
individual actor might be involved.

ACT-2 Is optionally involved in case actor ACT-7 requires consultative
support, e.g., regarding specific workload (profile) characteristics.

→ SuperMUC – Applications executed on SuperMUC tend to expose
a very long run time of up to 80 hours 13 . Whenever the reasoning
activity in sub system C should cover not only a snapshot, but a period
of time, a load profile is required that contains load information of the
considered IT infrastructure components.

◻ A load profile describes the load value (cf. Section 2.3.3) for each
IT infrastructure component of interest.

◻ The load profile applies the time granularity required by the rea-
soning objectives defined in Use Case UC-2. P

O
S
T

Table C.24: Use Case “Create load profile” (UC-4.2).

302 Research contributions

Use Case Execute reasoning UC-5

Use Case UC-5 acts as container for the wide field of reasoning situations.
In particular, it summarizes reasoning execution according to the objec-
tives defined in sub system A, and using the reasoning tools created in sub
system B. Due to the variety of possible reasoning approaches and their
respective suitability, the Use Case includes the specialized Use Cases
UC-5.1, UC-5.2, and UC-5.3.

ACT-8 In its responsibility of making management decisions regarding
procurement, modifications, and day-by-day operations, ACT-8
is interested in employing the reasoning tools prepared in sub
system B to support the decision making process. Since the actor
is the only one having insights in the (long-term) IT infrastructure
strategy, he is solely responsible for reasoning conduction.

ACT-6 Consultatory supports actor ACT-8 in the reasoning conduction
by providing differing information according to the specific Use
Case. Since several attributes might be involved, multiple ACT-6
actors might be involved according to their area of expertise,
respectively.

ACT-7 The influence of workload and load on nearly every attribute
(cf. Use Case UC-2.2) requires the involvement of actor ACT-7,
who particularly provides load profiles (cf. Use Case UC-4.1) as
input for the reasoning tools.

→ SuperMUC – Changes in the surrounding, use, and operations of
an HPC system like SuperMUC cause a variety of situations that
require decision making supported by reasoning about quantitative IT
infrastructure attributes 22 .

Table C.25: Use Case “Execute reasoning” (UC-5).

Research contributions 303

Use Case Execute What-if analysis based reasoning UC-5.1

Use Case UC-5.1 extends the abstract Use Case UC-5 by providing What-if
analysis functionality, whose basic concept is the variation of inputs, i.e.,
the number of operators, and the determination of potential effects [334].
In case a cross product of all parameters is used, it is also called a
parameter sweep. What if functionality is especially required to compare
and validate a set of options, e.g., comparing modification possibilities or
vendor offerings.

ACT-8 The actor aims at investigating, assessing, and comparing varying
inputs with regards to their outcome. Since only actor ACT-8
knows (theoretically) the goals and targeted outcomes, especially
in the IT infrastructure strategic context, the actor is solely
responsible for an What-if analysis based reasoning.

ACT-6 Consultatory supports actor ACT-8 in defining reasonable input
value ranges.

→ SuperMUC – The long planning horizon of supercomputers like Su-
perMUC and the difficulties to apply fundamental modifications 9 ,
e.g., to revise design mistakes, call for a thorough investigation of differ-
ent configurations and designs reflected in varying reasoning inputs 30 .
In other words, assess what the result would be if a particular input
combination is used, e.g., stated in a vendor’s procurement offer.

Table C.26: Use Case “Execute What-if analysis based reasoning” (UC-5.1).

304 Research contributions

Use Case Execute optimization based reasoning UC-5.2

Use Case UC-5.2 extends the abstract Use Case UC-5 by providing op-
timization functionality. Optimization in a mathematical sense aims at
finding a (local) maximum, i.e., the “best” element with regard to some
criteria from some set of available alternatives, for a set of pre-defined
constraints [102]. Reasoning applies this principle if several aspects are
(externally) dictated, e.g., by SLAs, regulations, or market prices. These
aspects can also formulate a set of constraints, e.g., SLAs could call for
high performance, regulations could dictate a minimum reliability value,
and market prices could pressure energy efficiency.

ACT-8 The actor aims at finding an optimum for a set of externally
given constraints. Before executing the reasoning, the constraints
might be prioritized. Since only actor ACT-8 knows (theoretically)
the entire “big picture” of the IT infrastructure, especially in a
strategic sense, the actor is solely responsible for an optimization
based reasoning.

ACT-6 Consultatory supports actor ACT-8 in defining the optimization
bounds and constraints.

→ SuperMUC – SuperMUC’s operation and management, i.e., the
board of directors 8 , is faced with a variety of (potentially) conflict-
ing attributes, e.g., low power consumption vs. high performance.
This situation calls for reasoning using mathematical optimization
approaches, since the (externally) given attribute values or ranges are
the constraints a (local) maximum is searched for 29 .

→ Environment – As motivated in Section 2.4.1, attribute improvement
attempts tend to clash, e.g., improving single-thread performance by
employing speculative path execution imperatively causes a higher
power consumption, because power spent on following a speculative
execution path is lost whenever the path is not taken. Consequently, a
(local) optimum must be found, respecting sharp and soft constraints.
.

Table C.27: Use Case “Execute optimization based reasoning” (UC-5.2).

Research contributions 305

Use Case Execute descriptive statistics based
reasoning

UC-5.3

Use Case UC-5.3 extends the abstract Use Case UC-5 by providing descrip-
tive statistics functionality, i.e., methods for organizing and summarizing
data sets [287] (↗KB p. 268). Use Case UC-5.3 is mainly interested in
the reasoning outcome and neglects the used input. In other words, the
Use Case investigates the data compiled by the reasoning and is searching
for correlations and commonalities.

ACT-8 The actor aims at identifying insights extracted from reasoning
results. Since only the ACT-8 actor knows (theoretically) the entire
“big picture” of the IT infrastructure, especially in a strategic sense,
the actor is solely responsible for an optimization based reasoning.

→ SuperMUC – The varying demands of SuperMUC’s users result in
differing SLAs. Especially supporting application development and
targeting an “optimal” adjustment of executed applications and the IT
infrastructure render descriptive statistics a suitable tool 25 .

Table C.28: Use Case “Execute descriptive statistics based reasoning” (UC-
5.3).

Use Case Trigger activity UC-6

Use Case CU-6 covers the potential need of executing a certain activity,
depending in the reasoning result compiled in Use Case UC-5. For instance,
a modification is initiated if reasoning unfolds its suitability.

ACT-8 In the context of the IT infrastructure strategy, the ACT-8 actor
decides whether a reasoning result calls for an activity. If so, he
delegates the task to the appropriate entity.

ACT-2 In case a modification is required, the ACT-2 actor is responsible
for its implementation.

→ SuperMUC – LRZ’s board of directors 8 requests the responsible
group 6 to perform activities according to reasoning results.

→ DRIHM – Reasoning about the DRIHM IT Infrastructure might
unfold the obligation of one or multiple resource providers to modify
the offered resources 42 , e.g., to comply (again) to negotiated SLAs.

Table C.29: Use Case “Trigger activity” (UC-6).

306 Research contributions

Non-functional requirements

Chapter 3 extracts eight non-functional requirements from real-world sce-
narios for the RS, which are detailed in this section. Due to the lack of
a wide-spread template, detailing uses the alike suitable Use Case tem-
plate (↗KB p. 264). Besides, it employs black circle flags 1 to reference
specific aspects and details in the scenario descriptions in Section 3.2. Non-
functional requirements NFR-1 to NFR-6 were abstracted directly from
scenario descriptions, NFR-7 to NFR-8 cover more general aspects, e.g.,
model efficiency. Thus, only the former must provide abstraction sources.

Non-functional
requirement

Individual component type sets NFR-1

Reasoning about quantitative IT infrastructure attributes is required to
support individual IT infrastructure component type sets instead of (pre-
defined) specific ones, e.g., only CPUs or only memory [30]. Requirement
NFR-1 is fulfilled, if every reasoning activity is capable of handling an
arbitrary component type set equally, e.g., IT infrastructure modeling in
Use Case UC-3 or, model proxy creation in Use Case UC-4.1.

→ SuperMUC – Reasoning about both, performance and energy effi-
ciency, is required to cover all component types, as both are com-
posed of and influenced by communication, interconnect, and I/O
aspects 19 21 . Especially communication components mustn’t be for-
gotten 5 . Furthermore, SuperMUC’s complexity, reflected by several
responsible groups 6 , hardens the extraction of a single component’s
contribution 32 . Finally, SLAs between LRZ and consumers consider
attributes as black boxes and do not consider their compilation 23 .

→ Environment – Contemporary IT infrastructures consist of a variety
of component types, which closely collaborate to provide the IT in-
frastructure’s capabilities (cf. Section 2.2). Especially the efficient and
effective use of supercomputers (cf. Section 2.2.2) rely on a balanced in-
terplay between all component types, which in turn requires reasoning
to cover all of them. The stake of a variety or even all IT infrastructure
components to an attribute was evidenced empirically several times
and is incorporated in several existing models (cf. Section 2.4.2).

Table C.30: Non-functional requirement “Individual component type sets”
(NFR-1).

Research contributions 307

Non-functional
requirement

Individual attribute sets NFR-2

In contrast to the numerable amount of attribute concepts, like perfor-
mance or reliability, there is a plurality of possible instances for each
attribute, like the performance instances FLOP/s and TTC (cf. Sec-
tion 2.4). This results in a big set of attributes to potentially reason
about. The set is further extended by upcoming attributes, e.g., in the
context approaching Exascale systems (cf. Section 2.2.2). Consequently,
there is a theoretically infinite set of attributes to reason about. Providing
a long-term solution requires the support of an individual attribute set.
This flexibility is further emphasized by the manifold objectives of IT
infrastructures, e.g., providing high performance or high dependability,
and the absence of a consensus about attributes instances to choose for a
particular attribute, e.g., energy efficiency [363].

→ SuperMUC – LRZ focuses for SuperMUC on the attributes perfor-
mance and energy efficiency, employing different instances 16 .

→ DRIHM – The requested support of individual sets covers both,
the attribute concepts and instances. DRIHM uses the TTSD 41
performance instance, which can not be applied on SuperMUC that
relies on the FLOP/s 17 performance instance. In addition, reasoning
in the DRIHM scenario is interested in other attributes 40 than
reasoning in the SuperMUC scenario.

→ Environment – There are dedicated IT infrastructure types focusing
on specific attributes, like an HPC cluster focusing on performance
(cf. Section 2.2.2). In addition, there are differences within a single
attribute (cf. Section 2.4).

Table C.31: Non-functional requirement “Individual attribute sets” (NFR-2).

308 Research contributions

Non-functional
requirement

Multiple granularity levels NFR-3

The variety of reasoning objectives, which requires support of individual
attribute sets (cf. NFR-2), also calls for support of multiple simultaneous
granularity levels during reasoning, e.g., considering a compute node very
detailed, while other components remain at an abstract level. Increasing
reasoning granularity to the desired level globally would quickly lead to an
unmanageable complex model (cf. NFR-7) due to IT infrastructure scale
and diversity. Hence, multiple levels of granularity within the same model
are mandatory to facilitate a good trade-off between accuracy, complexity,
and time to solution [337].

→ SuperMUC – SuperMUC is built of several specialized parts 2 , each
operated and maintained by a dedicated group 6 . In this context,
achieving a sufficient component coverage (cf. NFR-1) and a simple
model (cf. NFR-7) mandatory prerequisites the support of multiple
granularity levels.

→ DRIHM – Reasoning about DRIHM’s European-wide distributed
IT infrastructure might require covering all elements, or executing
reasoning for only a single resource 43 .

→ Environment – The diversity of contemporary IT infrastructures
compiles a containment hierarchy of IT infrastructure types and com-
ponents (cf. Figure 2.2 in Section 2.2 on page 23). In addition, con-
temporary HPC systems and especially supercomputers are highly
scaled, what bans a global level of detail (cf. Section 2.2.2). Finally, to
address the highly relative notion of IT infrastructures, as detailed in
Section 2.1.1, flexible modeling and reasoning is required.

Table C.32: Non-functional requirement “Multiple granularity levels” (NFR-
3).

Research contributions 309

Non-functional
requirement

Workload consideration NFR-4

The executed workload and especially the caused load have mostly a strong
impact on IT infrastructure attributes. Hence, reasoning is required to
support workload consideration [45]. Non-functional requirement NFR-4 is
fulfilled, if modeling in Use Case sub system B, and reasoning execution in
Use Case sub system C is able to address workload aspects. For instance,
when using models selected in Use Case UC-4, or when executing reasoning
Use Case UC-5. Besides, there mustn’t be constraints about the support
of certain workload aspects. In contrast, workload consideration must be
highly flexible.

→ Environment – The influence of workload and load on IT infrastruc-
ture attributes is under investigation since decades. It was empirically
evidenced, like the correlation between load and TTC, and it is incor-
porated in existing models, like the Telecommunications Equipment
Energy Efficiency Rating (TEEER) model introduced in 2011 by Ver-
izon [383] or the Modeling Assertions (MA) framework for symbolic
performance model development [15, 45] (cf. Section 2.4). Flexibility
is required by the variety of workload types, e.g., scientific workflows
consist of manifold task types (cf. Section 2.3.1).

Table C.33: Non-functional requirement “Workload consideration” (NFR-4).

310 Research contributions

Non-functional
requirement

Job cancellation NFR-5

Non-functional requirement NFR-5 extends NFR-4 as it calls for job cancel-
lation consideration, i.e., the ability to cover the cancellation of workload
execution selected in Use Case UC-2.2. It is fulfilled, if in any situation, the
(theoretical) workload execution can be stopped partially or completely
for an arbitrary IT infrastructure component set during reasoning.

→ SuperMUC – About 26% of jobs executed on SuperMUC are canceled
before a results is available 14 .

→ Environment – Due to manifold reasons, workload execution might be
canceled, e.g., design errors in workflows might cause a rollback during
execution (cf. Section 2.3.1). This is also reflected by job statistics,
demonstrating high job cancellation rates that range from 7% up to
23% [253, 97], depending on the considered user community and system.
The support of job cancellation consideration is underpinned by the
potential strong affect on the execution behavior and the TTC of other
applications running on the same resource(s) simultaneously [253].

Table C.34: Non-functional requirement “Job cancellation” (NFR-5).

Non-functional
requirement

Development over time NFR-6

Especially scientific applications (cf. Section 2.3) expose a long execution
time, ranging from a couple of minutes up to days. Addressing the
multitude of situations within this time frame requires the consideration
of development over time. This is fulfilled, if for both, attributes selected
in Use Case UC-2.1, and workload selected in Use Case UC-2.2, the
development over time can be analyzed using an arbitrary time interval.
In particular, the former requires storing attribute values for each time step,
the latter implies the ability to consume load profiles (cf. Section 2.3.3).

→ SuperMUC – Workload executed on the SuperMUC exposes execu-
tion times ranging from seconds up to 80 hours 13 . In average, a job
execution takes 5.51 hours. In addition, the electricity price varies
between night and day 26 .

Table C.35: Non-functional requirement “Development over time” (NFR-6).

Research contributions 311

Non-functional
requirement

Simplicity NFR-7

Non-functional requirement NFR-7 calls for model simplicity that can be
divided in the model’s transparency, i.e., the perceived comprehensibility,
and the model’s constructive simplicity, i.e., the characteristics of the
model itself [403]. NFR-7 is fulfilled, if all involved Use Cases, especially in
sub system B, and non-functional requirements are implemented in a way
that pursues model simplicity and complies to “Occam’s razor”, a principle
devised by William of Ockham, stating that among competing hypotheses,
the one with the fewest assumptions should be selected. Translated to
modeling, this means that it should “begin with simple models and few
parameters, then add complexity only as needed to explain [...]” [84, Sec. 2].
For instance, chosen granularity levels in Use Case UC-2.3, or chosen time
frames in non-functional requirement NFR-6 [419] should lead to a simple
model. Generally speaking, non-functional requirement NFR-3 addresses
the (classic) trade-off between accuracy and effort.

→ Environment – Modeling mainly aims at compiling a valid model,
which is a model that “is sufficiently accurate for the purpose at
hand” [334, p. 67]. Since a model’s size or bulkiness can outweigh
its benefits [334], even if it is perfectly valid, the model should be
preferably simple. Besides a reduced run time, further advantages are
a fast development, easy result interpretation [96], and reduced error
proneness [229].

Table C.36: Non-functional requirement “Simplicity” (NFR-7).

Non-functional
requirement

Efficient use NFR-8

A cost-saving, easy, and fast reasoning execution requires, amongst others,
efficient modeling, in particular for complex and/or highly scaled IT
infrastructures. This can be achieved by fostering reusability. Especially
in homogeneous IT infrastructures, component type definitions and models
as well as attribute notions and realizations should be reusable. For
instance, using the same IT infrastructure model but differing workloads
for diverse reasoning activities.

Table C.37: Non-functional requirement “Efficient use” (NFR-8).

312 Research contributions

Provenance information model overview
provenance

datatypes

value : Object
UniqueId

value : Object

Timestamp

id : UniqueId
reason : String

Selection

id : UniqueId
description : String
rule : String

Formula

id : UniqueId
minValue : Object
maxVaue : Object

Range

quantity

<<enumeration>>

id : UniqueId
label : String
domain : Domain
scale : Scale
type : QuantityType
creation : Formula

Quantity

id : UniqueId
label : String
tics : String
type : ScaleType

Scale

Primary
Additive
Derived

QuantityType
<<enumeration>>

Nominal
Ordinal
Metric

ScaleType

Domain

id : UniqueId
label : String
reasoningProj : ReasoningProject [1..*]

ITInfrastructure
id : UniqueId
label : String
description : String

Capability
id : UniqueId
label : String
description : String

Property

components

id : UniqueId
label : String

CommunicationSet

BlackBox WhiteBox 1
0..*

1
0..*

id : UniqueId
label : String
description : String

ComponentType
1 1

0..*
*

*

*

1

*

blackboxIdenti�er : String
importedFrom : String
importDate : Timestamp

Component

itinfrastructure

ComponentId

id : UniqueId
objective : String
executionStart : Timestamp
executionEnd : Timestamp
conductedBy : Role [1..*]

MeasuringSuite

MeasuringSuiteCon�gKey
<<enumeration>>

id : UniqueId
Key : MeasuringSuiteCon�gKey
Value : String

MeasuringSuiteCon�g

suite

measuring

measurements

id : UniqueId
value : double
gainedAt : Timestamp

Measurement

derivationRule : Formula

DerivedMeasurement

SimpleMeasurement

reason : Selection
Justi�cation

id : UniqueId
label : String
description : String
accuracy : double

MeasuringInstrument 1

0..*

1

0..*

key : WorkloadCon�gKey
value : Object

WorkloadCon�g

<<enumeration>>
WorkloadCon�gKey

workload

*

* *

*

Figure C.2: The provenance information model provided by the presented
process model – Part 1/2.

Research contributions 313

id : UniqueId
label : String
tics : String
type : ScaleType

Scale

<<enumeration>>

Nominal
Ordinal
Metric

ScaleType

Domain

management

id : UniqueId
name : String
email : String

Person

id : UniqueId
value : String

Keyword

id : UniqueId
label : String

Role
1..*
roles

realizedBy
0..*

reasoningproject

id : UniqueId
identi�er : String
objectives : String
type : RPType
quantity : Quantity
range : Range

ReasoningParameter

Con�guration
Modi�cation

RPType
<<enumeration>>

id : UniqueId
label : String
description : String

Constraint
id : UniqueId
label : String
description : String

Assumption

value : double
createdAt : Timestamp

RPValue

0..* constraints 0..* assumptions

id : UniqueId
label : String
description : String
itInfrastructure : ITInfrastructure [1]

ReasoningProject1..*
parameters

attributes

id : UniqueId
identi�er : String
objectives : String
quantity : Quantity
minAccuracy : �oat
range : Range [0..1]
constraints : Constraint [0..*]

AttributeConcept

instances

AggregatedProxy

source : MeasuringSuite
MeasuredProxyvalue : double

createdAt : Timestamp

AttributeInstanceValue

ModelProxyFunction
reason : Selection

ExistingModel
id : UniqueId
label : String
description : String
accuracy : double
boundTo : Component [1..*]
implementation : Formula

AttributeInstance

key : WorkloadCon�gKey
value : Object

WorkloadCon�g

<<enumeration>>
WorkloadCon�gKey

workload

id : UniqueId
label : String
description : String

Workload

Application

SystemBenchmark
PartialBenchmark
CombinedBenchmark

<<enumeration>>
BenchmarkFocus

KernelBenchmark
SyntheticBenchmark

<<enumeration>>
BenchmarkBuildingBlocks

Benchmark
focus

buildingBlocks

*

*
*

*

*

*

*

*

Figure C.3: The provenance information model provided by the presented
process model – Part 2/2.

314 Research contributions

Action flow of activity template T-A3

D5 - Activity/reaction required[yes] [no]

A18 - Generate input valuesA17 - Select reasoning tool

A19 - Execute reasoning

A20 - Trigger
activity End of reasoning project

D1 - An appropriate model exists

D3 - Covers O5 completely

D2 - Model behavior validates successfully

D4 - O8 covers O3 and O4 completely

[narrow range]

[modify
function]

[no]

[no]

[yes]

[no]

A11 - Operationalize single objective

[yes]

O9 - Complete reasoning
function

O10 - Detailed provenance
information model object diagram

A16 - Evaluate
reasoning function O8 - Re�ned reasoning function

[yes]

A15 - Incorporate iteration results

O6 - sub set of O5

A12 - Select existing model
[yes]

A13 : Create
Model Proxy

A10 - De�ne iteration objectives

A14 - Examine
model behavior

[no]

Begin of reasoning project

O1 - Component
type set

O2 - Ext. compo-
nent typ set

A5 : Model IT
Infrastructure

O3 - Reasoning
suite de�nition

A9 - Create reasoning
function skeleton

O4 - Reasoning
function skeleton

A1 - Prepare reasoning suite

A2 - Select reason-
ing interests

A3 - De�ne
attribute concepts

A6 - Select workload A7 - Document assumptions A8 - Document constraints

O5 - Iteration objectives

O7 - (Mathematical) model

A4 - De�ne reason-
ing parameters

Template element C.1: Action flow of T-A3 - Reasoning methodology.

List of Figures

1.1 Schematic overview of research results. 6
1.2 Overview of the presented process model for the integrated rea-

soning about quantitative IT infrastructure attributes. 9
1.3 Comparison of existing approaches with presented research results. 14
1.4 Elements of the applied Design Science paradigm (adapted from

[186, Figure 1]). 16
1.5 Overview of thesis’ structure, chapter purposes, and developed

IT artifacts, respectively. 18

2.1 The notion of IT infrastructures being an “enabling foundation”
requires a consideration from a provider and a consumer perspec-
tive. IT infrastructure attributes are orthogonal to the “enabling
foundation” containment hierarchy. 21

2.2 Containment hierarchy of discussed IT infrastructure elements
from a provider perspective and resulting section structure. . . . 23

2.3 According to the Von Neumann architecture, a single system can
be logically split in processing unit(s), memory hierarchy, and bus. 24

2.4 Mapping a microprocessor’s instruction execution on a time axis
to illustrate the correlation to cycles and clock speed. 25

2.5 Typical cluster architecture, comprising a head node, multiple
worker nodes, and a dedicated network. 27

2.6 Consideration of IT infrastructures from a consumer perspective
involves workload and the caused load. 34

2.7 The four layers that form the basis for most benchmarks. 38
2.8 Benchmark types, derived from focus and building blocks. 40
2.9 Elements and concepts involved in analytic and physical load

value derivation (adapted from [5, Fig. 1]). 42

315

316 List of Figures

2.10 Response time and time to completion (based on [239, Fig. 2]). . 50
2.11 Illustrating correlations of load, throughput, and TTC (adapted

from [239, Figure 3]). 52
2.12 Correlation of component states, state transitions, and quantifi-

cation to derive availability and reliability figures (taken from [6]). 52
2.13 Exemplary bath tube curve describing the expected failure rate

of a component depending on its lifetime (taken from [137, Fig. 4]). 54

3.1 Applied methodology for RS development. 61
3.2 Schematic view of SuperMUC’s architecture (adapted from [381]). 66
3.3 Condensed overview of the LRZ’s organizational structure, em-

phasizing the involvement of several groups in SuperMUC’s op-
erations. 67

3.4 Distribution of scientific disciplines that used SuperMUC in 2013,
collected from SuperMUC’s accounting database. 68

3.5 Transition from a stand-alone and separated science paradigm
to a chained and collaborative one in the HMR discipline. 74

3.6 Schematic view of the DRIHM IT infrastructure (taken from [107]). 75
3.7 DRIHM model structure and a chain (adapted from [107]). 77
3.8 Overview of actors extracted from the real-world scenarios. . . . 80
3.9 Use Cases of sub system “A – Reasoning objectives”. 81
3.10 Use cases of the sub system “B – Reasoning tools”. 82
3.11 Use Cases of the sub system “C – Reasoning execution”. 83

4.1 Schematic overview and interrelation of the presented process
model’s implementation approaches. 92

4.2 Overview of the presented process model. 96

5.1 Overview of the developed process model emphasizing the focus
of Chapter 5 on the artifacts and procedures part. 98

5.2 Template meta model hierarchy applied to formalize and guide
the execution of a concrete reasoning project. 100

5.3 UML package structure of the provenance information model. . . 110
5.4 The provenance information model’s datatypes package, group-

ing classifiers that represent (complex) data types. 112
5.5 The provenance information model’s management package, group-

ing classifiers for provenance of responsibility and object discovery.114
5.6 The provenance information model’s reasoningproject pack-

age, grouping classifiers that represent execution-related (meta)
information of a reasoning project. 115

List of Figures 317

5.7 Summarizing overview illustrating the process model underlying
notion of IT infrastructures. 117

5.8 The provenance information model’s itinfrastructure package,
grouping classifiers for IT infrastructure modeling. 122

5.9 The provenance information model’s measuring package, group-
ing classifiers that describe measuring execution and achieved
results. 134

6.1 Overview of the developed process model emphasizing the focus
of Chapter 6 on the contained reasoning methodology. 144

6.2 The provenance information model’s attributes package, group-
ing classifiers that describe quantitative IT infrastructure attributes.158

6.3 Classifiers of the provenance information model that represent
and describe used workload and configuration parameters, re-
spectively. 169

7.1 Methods applied to validate the presented process model. 200
7.2 Box plot of fictive power consumption measurements of the RPi

cluster while executing the STREAM an HPL benchmark. 209
7.3 What-if analysis results in the prototypical reasoning project. . . 211
7.4 Taxonomy classifying related research for a comparative discus-

sion with the presented process model. 220
7.5 The common process of predictive model assembly. 222
7.6 The general convolution process to assemble a predictive model

from an application signature and a machine profile. 227
7.7 Commonly applied simulation approach for predictive modeling. 229

8.1 Overview of the presented process model for the integrated rea-
soning about quantitative IT infrastructure attributes. 241

8.2 Potential research tasks and directions regarding the presented
process model. 242

8.3 The notion and role of IT infrastructures in industry. 245

A.1 Measurement concepts and elements (based on [55, 56, 80], lower
part taken from [35, Figure A.1]). 257

A.2 Components of a measuring instrument [377, 35]. 259
A.3 The common three layered meta model hierarchy and its exem-

plary application in the UML context. 260
A.4 The four MDA views on a system and their correlations as well

as an exemplary MDA model set for a printed product catalog. . 262
A.5 UML compliant graphical representation of Use Cases, the pro-

viding system, and involved actors. 266

318 List of Figures

A.6 Structuring of real numbers (R) in the metric scale centimeters. . 268
A.7 Overview of descriptive statistics concepts. 270
A.8 Exemplary UML activity diagram. 272
A.9 Exemplary UML class and object diagram. 273
A.10 Exemplary UML component diagram. 275
A.11 Exemplary UML package diagram. 276

C.1 Overview of actors extracted from examined real-world scenarios. 284
C.2 The provenance information model provided by the presented

process model – Part 1/2. 312
C.3 The provenance information model provided by the presented

process model – Part 2/2. 313

List of Tables

2.1 Morphological field, the chapter will extract piece wise while
considering the research Environment. 22

2.2 Morphological field of IT Infrastructures considered from a provider
perspective. 33

2.3 Morphological field of IT Infrastructures summarizing a provider
and consumer perspective. 44

2.4 Morphological field of IT Infrastructures summarizing a provider
and consumer perspective as well as IT infrastructure attributes. 55

2.5 Morphological field describing the Environment of the presented
research. 56

3.1 Arranging the SuperMUC scenario in the morphological field. . . 64
3.2 Arranging the DRIHM scenario in the morphological field. 73
3.3 Validation tool – Functional requirements. 85
3.4 Validation tool – Non-functional requirements. 85

5.1 Objective overview of templates that formalize measuring. 125

7.1 Results of evaluating the process model against functional re-
quirements specified in the RS. 215

7.2 Results of evaluating research results against non-functional
requirements in the requirements specification. 219

7.3 Validation of related research in the layered abstraction class. . . 225
7.4 Validation of related research in the convolution class. 228
7.5 Validation of related research in the simulation class. 231

A.1 Methods for IT artifact evaluation, provided by the Design Sci-
ence framework of Hevner et al. [186] (taken from [187, Table 2]).254

319

320 List of Tables

A.2 The three short notations of the Extended Backus Naur Form
(EBNF) to describe type 2 grammars. 256

A.3 Actor specification template. 266
A.4 Use Case specification template. 266
A.5 Overview of descriptive statistics figures and tools. 269

B.1 Overview of LINPACK versions (taken from Dongarra et al. [127]).278

C.1 Actor “Strategic Administrator” (ACT-4). 284
C.2 Actor “Executing Administrator” (ACT-5). 285
C.3 Actor “Administrator” (ACT-2). 285
C.4 Actor “Attribute Domain Expert” (ACT-6). 286
C.5 Actor “Workload Domain Expert” (ACT-7). 286
C.6 Actor “Domain Expert” (ACT-3). 287
C.7 Actor “Provider” (ACT-1). 287
C.8 Actor “Management” (ACT-2). 287
C.9 Actor “Coordinator” (ACT-10). 288
C.10 Actor “Developer” (ACT-11). 288
C.11 Actor “Consumer” (ACT-9). 288
C.12 Use Case “Initiate reasoning activity” (UC-1). 289
C.13 Use Case “Negotiate SLA and attributes” (UC-1.1). 290
C.14 Use Case “Define reasoning objectives” (UC-2). 291
C.15 Use Case “Define attribute(s)” (UC-2.1). 292
C.16 Use Case “Select workload” (UC-2.2). 293
C.17 Use Case “Select IT infrastructure component(s)” (UC-2.3). . . . 294
C.18 Use Case “Model IT infrastructure” (UC-3). 295
C.19 Use Case “Model part of IT infrastructure” (UC-3.1). 296
C.20 Use Case “Import IT infrastructure information” (UC-3.2). 297
C.21 Use Case “Update IT infrastructure model” (UC-3.3). 298
C.22 Use Case “Select model for attribute(s) and component(s)” (UC-4).299
C.23 Use Case “Create model proxy” (UC-4.1). 300
C.24 Use Case “Create load profile” (UC-4.2). 301
C.25 Use Case “Execute reasoning” (UC-5). 302
C.26 Use Case “Execute What-if analysis based reasoning” (UC-5.1). . 303
C.27 Use Case “Execute optimization based reasoning” (UC-5.2). . . . 304
C.28 Use Case “Execute descriptive statistics based reasoning” (UC-5.3).305
C.29 Use Case “Trigger activity” (UC-6). 305
C.30 Non-functional requirement “Individual component type sets”

(NFR-1). 306
C.31 Non-functional requirement “Individual attribute sets” (NFR-2). . 307
C.32 Non-functional requirement “Multiple granularity levels” (NFR-3).308

List of Tables 321

C.33 Non-functional requirement “Workload consideration” (NFR-4). . 309
C.34 Non-functional requirement “Job cancellation” (NFR-5). 310
C.35 Non-functional requirement “Development over time” (NFR-6). . 310
C.36 Non-functional requirement “Simplicity” (NFR-7). 311
C.37 Non-functional requirement “Efficient use” (NFR-8). 311

List of Template elements

5.1 Action flow of T-A2 - Measuring. 126
5.2 Grammar part of T-S2 - Define measuring objectives. 128
5.3 Implication table of T-D2 - Select measuring instrument. 130
5.4 Decision tool of template T-D2 - Select measuring instrument. . . . 131
5.5 Checklist of T-C2 - Examine measuring setup design. 132
5.6 Form of T-F2 - Document measuring setup. 133
5.7 Checklist of T-C3 - Examine application proxy selection. 140
6.1 Action flow of T-A3 - Reasoning methodology - Phase A. 145
6.2 Grammar part of T-S3 - Define reasoning suite. 146
6.3 Implication table of T-D3 - Select reasoning interests. 149
6.4 Decision tool of template T-D3 - Select reasoning interests. 150
6.5 Grammar part of T-S4 - Define attribute concept. 151
6.6 Implication table of T-D4 - Select attribute concept objectives. . . . 153
6.7 Implication table of T-D5 - Select attribute concept quantity. 154
6.8 Implication table of T-D6 - Select IT infrastructure component types.155
6.9 Form of T-F3 - Document attribute concept constraints. 156
6.10 Grammar part of T-S5 - Define reasoning parameter. 159
6.11 Implication table of T-D7 - Select reasoning parameter objectives. . 160
6.12 Implication table of T-D8 - Select reasoning parameter quantity. . . 161
6.13 Action flow of T-A4 - Model IT infrastructure. 162
6.14 Form of T-F4 - Document IT infrastructure model. 164
6.15 Implication table of T-D9 - Select workload. 166
6.16 Decision tool of template T-D9 - Select workload for workload

class selection. 167
6.17 Decision tool of template T-D9 - Select workload for concrete

benchmark selection. 168
6.18 Form of T-F5 - Document workload model. 170

323

324 List of Template elements

6.19 Form of T-F6 - Document reasoning project assumption. 172
6.20 Form of T-F7 - Document reasoning project constraint. 173
6.21 Action flow of T-A3 - Reasoning methodology - Phase B. 175
6.22 Grammar part of T-S6 - Define iteration objectives. 176
6.23 Implication table of T-D10 - Select iteration objectives. 177
6.24 Form of T-F8 - Document iteration task. 178
6.25 Implication table of T-D11 - Select model integration candidate. . . 179
6.26 Decision tool of template T-D11 - Select model integration candidate.180
6.27 Action flow of T-A5 - Create model proxy function. 182
6.28 Implication table of T-D12 - Select model proxy function creation

method. 184
6.29 Checklist of T-C4 - Examine gained raw data. 185
6.30 Checklist of T-C5 - Examine model behavior. 187
6.31 Implication table of T-D13 - Select reaction to identified model

behavior issues. 188
6.32 Action flow of T-A3 - Reasoning methodology - Phase C. 190
6.33 Implication table of T-D14 - Select reasoning tool. 192
6.34 Decision tool of template T-D14 - Select reasoning tool. 193
6.35 Implication table of T-D15 - Select load value gathering method. . . 195
6.36 Checklist of T-C6 - Examine load value generation. 197
C.1 Action flow of T-A3 - Reasoning methodology. 314

Bibliography

[1] C. Straube, W. Hommel, and D. Kranzlmüller. “Design Criteria
and Design Concepts for an Integrated Management Platform of IT
Infrastructure Metrics”. In: Journal On Advances in Systems and
Measurements 7.1&2 (July 2014), pp. 150–167. url: http://www.
thinkmind.org/download.php?articleid=sysmea_v7_n12_2014_
14.

[2] A. Galizia, D. D’Agostino, A. Quarati, G. Zereik, L. Roverelli, E.
Danovaro, A. Clematis, E. Fiori, F. Delogu, A. Parodi, C. Straube,
N. Felde, M. Schiffers, D. Kranzlmüller, Q. Harpham, B. Jagers,
L. Garrote, V. Dimitrijevic, L. Dekic, O. Caumont, and E. Richard.
“Towards an Interoperable and Distributed e-Infrastructure for Hydro-
Meteorology: the DRIHM Project”. In: Proceedings of the 7th Interna-
tional Congress on Environmental Modelling and Software (iEMSs’14).
June 2014.

[3] A. Parodi, N. Rebora, E. Fiori, F. Delogu, F. Pintus, D. Kranzlmüller,
M. Schiffers, N. Felde, C. Straube, A. Clematis, D. D’Agostino,
A. Galizia, A. Quarati, E. Danovaro, O. Caumont, O. Nuissier, V.
Ducrocq, É. Richard, L. Garrote, M. C. Llasat, Q. Harpham, H. R. A.
Jagers, A. Tafferner, C. Forster, V. Dimitrijevic, L. Dekic, and R.
Hooper. “The DRIHM Project: Building on Cutting-Edge Information
and Communication Technology to Advance Hydro-Meteorological
Research”. In: Proceedings of the 7th HyMeX Workshop. Oct. 2013.

[4] C. Straube and D. Kranzlmüller. “A Meta Model for Predictive
Analysis of Modifications on HPDC Infrastructures”. In: Proceedings
of the 11th International Conference on Modeling, Simulation and
Visualization Methods (MSV’14). July 2014.

325

326 Bibliography

[5] C. Straube and D. Kranzlmüller. “An Approach for System Workload
Calculation”. In: Proceedings of the 12th International Conference
on Parallel and Distributed Computing and Networks (PDCN’14).
IASTED, Feb. 2014. doi: 10.2316/P.2014.811-025.

[6] C. Straube and D. Kranzlmüller. “Model-Driven Resilience Assess-
ment of Modifications to HPC Infrastructures”. In: Euro-Par 2013:
Parallel Processing Workshops. Vol. 8374. Springer, 2014, pp. 707–716.
doi: 10.1007/978-3-642-54420-0_69.

[7] C. Straube and D. Kranzlmüller. “An IT-Infrastructure Capability
Model”. In: Proceedings of the 10th ACM Conference on Computing
Frontiers (CF’13). ACM, May 2013. isbn: 978-1-4503-2053-5. doi:
10.1145/2482767.2482781.

[8] C. Straube, A. Bode, A. Hoisie, D. Kranzlmüller, and W. Nagel.
“Dagstuhl Manifesto – Co-Design of Systems and Applications for
Exascale”. In: Informatik Spektrum 35.6 (Dec. 2012), pp. 464–467.
doi: 10.1007/s00287-012-0660-1.

[9] C. Straube, W. Hommel, and D. Kranzlmüller. “A Platform for the
Integrated Management of IT Infrastructure Metrics (Best Paper
Award)”. In: Proceedings of the 2nd International Conference on Ad-
vanced Communications and Computation (INFOCOMP’12). IARIA,
Oct. 2012, pp. 125–129. isbn: 978-1-61208-226-4.

[10] C. Straube, M. Schiffers, and D. Kranzlmüller. “Determining the
Availability of Grid Resources using Active Probing”. In: Proceedings
of the 11th International IEEE Symposium on Parallel and Distributed
Computing (ISPDC’12). IEEE Computer Society, June 2012, pp. 95–
102. doi: 10.1109/ISPDC.2012.21.

[11] C. Straube and A. Schroeder. “Architectural Constraints for Perva-
sive Adaptive Applications”. In: Proceedings of the 3rd International
DisCoTec Workshop on Context-Aware Adaptation Mechanisms for
Pervasive and Ubiquitous Services (CAMPUS’10). EASST, June 2010,
pp. 1–12. url: http://journal.ub.tu-berlin.de/index.php/
eceasst/article/view/398.

[12] A Guide to the Project Management Body of Knowledge: PMBOK
Guide. Vol. 5. Project Management Institute, 2013. isbn: 978-1-93558-
967-9.

[13] G. Abandah and E. Davidson. “Modeling the Communication Per-
formance of the IBM SP2”. In: Proceedings of the 10th International
Parallel Processing Symposium (IPPS ’96). 1996, pp. 249–257.

Bibliography 327

[14] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and A. Muthi-
tacharoen. “Performance Debugging for Distributed Systems of Black
Boxes”. In: ACM SIGOPS Operating Systems Review (SOSP’03) 37.5
(2003), pp. 74–89.

[15] S. Alam and J. Vetter. “A Framework to Develop Symbolic Per-
formance Models of Parallel Applications”. In: Proceedings of the
20th International Parallel and Distributed Processing Symposium
(IPDPS’06). IEEE Computer Society, 2006.

[16] J. Alger. “On Assurance, Measures, and Metrics: Definitions and Ap-
proaches”. In: Proceedings of the Workshop on Information-Security-
System Rating and Ranking (WISSSR). 2002.

[17] A. Alkindi, D. Kerbyson, and G. Nudd. “Dynamic Instrumentation
and Performance Prediction of Application Execution”. In: Proceed-
ings of the High-Performance Computing and Networking. Ed. by
B. Hertzberger, A. Hoekstra, and R. Williams. Vol. 2110. Springer,
2001, pp. 513–523.

[18] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, C. Kessel-
man, S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Fos-
ter. “Secure, Efficient Data Transport and Replica Management for
High-Performance Data-Intensive Computing”. In: Proceedings of the
18th IEEE Symposium on Mass Storage Systems and Technologies
(MSS’01). 2001.

[19] G. Alonso and C. Mohan. “Workflow Management Systems: The
Next Generation of Distributed Processing Tools”. In: Advanced
Transaction Models and Architectures. Vol. 1. 1. 1997, pp. 35–62.

[20] J. Ambite and D. Kapoor. “Automatically Composing Data Work-
flows with Relational Descriptions and Shim Services”. In: Proceedings
of the Semantic Web. Vol. 4825. Springer, 2007, pp. 15–29.

[21] An Introduction to the Intel™QuickPath Interconnect. Tech. rep.
320412-001US. Intel Corporation, 2009.

[22] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya,
M. Litmaath, P. Millar, and J. Navarro. GLUE Specification v. 2.0.
Tech. rep. GFD-R-P.147. Open Grid Forum, 2009.

[23] A. Anjomshoaa, M. Drescher, A. Ly, S. McGough, D. Pulsipher, and
A. Savva. Job Submission Description Language (JSDL) Specification.
Tech. rep. GFD-R.056 - 1.0. EGEE - Enabling Grids for e-Science,
2005.

328 Bibliography

[24] F. Arcieri, F. Fioravanti, E. Nardelli, and M. Talamo. “A Layered IT
Infrastructure for Secure Interoperability in Personal Data Registry
Digital Government Services”. In: Proceedings of the 14th Interna-
tional IEEE Workshop on Research Issues on Data Engineering:
Web Services for e-Commerce and e-Government Applications. 2004,
pp. 95–102.

[25] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing. Tech. rep. UCB/EECS-
2009-28. Electrical Engineering and Computer Sciences, University
of California at Berkeley, 2009.

[26] P. Attie, M. Singh, E. Emerson, A. Sheth, and M. Rusinkiewicz.
“Scheduling Workflows by Enforcing Intertask Dependencies”. In:
Distributed Systems Engineering 3.4 (1996), pp. 222–238.

[27] A. Auweter, A. Bode, M. Brehm, H. Huber, and D. Kranzlmüller.
“Principles of Energy Efficiency in High Performance Computing”. In:
Information and Communication on Technology for the Fight against
Global Warming. Ed. by D. Kranzlmüller and A. Toja. Vol. 6868.
Springer, 2011, pp. 18–25.

[28] A. Avizienis, J.-C. Laprie, and B. Randell. Fundamental Concepts
of Dependability. Tech. rep. University of California, Los Angeles
(UCLA), 2001.

[29] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
“The NAS Parallel Benchmarks”. In: Journal of High Performance
Computing Applications 5.3 (1991), pp. 63–73.

[30] D. Bailey and A. Snavely. “Performance Modeling: Understanding
the Past and Predicting the Future”. In: Proceedings of the Euro-Par
2005 Parallel Processing. Ed. by J. Cunha and P. Medeiros. Vol. 3648.
Springer, 2005, pp. 185–195.

[31] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S. Pakin, and
J. C. Sancho. “Using Performance Modeling to Design Large-Scale
Systems”. In: Computer 42.11 (2009), pp. 42–49.

[32] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S. Pakin,
and J. Sancho. “Entering the Petaflop Era: The Architecture and
Performance of Roadrunner”. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC’08). 2008, 1:1–1:11.

Bibliography 329

[33] J. B. Barney. “Firm Resources and Sustained Competitive Advantage”.
In: Journal of Management 7.1 (1991), pp. 99–120.

[34] L. A. Barroso. “The Price of Performance”. In: Queue 3.7 (2005),
pp. 48–53.

[35] Basic Concepts in Metrology – Part 1: General concepts. Tech. rep.
DIN 1319-1 : 1995-01. Deutsches Institut für Normierung e.V. (DIN),
1995.

[36] V. Basili. “The Role of Experimentation in Software Engineering:
Past, Current, and Future”. In: Proceedings of the 18th International
Conference on Software Engineering. 1996, pp. 442–449.

[37] R. Basmadjian and H. Meer. “Evaluating and Modeling Power Con-
sumption of Multi-Core Processors”. In: Proceedings of the 3rd Con-
ference on Future Energy Systems: Where Energy, Computing and
Communication Meet (e-Energy’12). 2012, 12:1–12:10.

[38] H. Bauke and S. Mertens. Cluster Computing: Praktische Einführung
in das Hochleistungsrechnen auf Linux-Clustern. Vol. 1. Springer,
2006. isbn: 978-3-540-42299-0.

[39] T. Baur, N. gentschen Felde, and H. Reiser. Konzepte Zum Monitoring
im Kern D-Grid. Tech. rep. Leibniz Rechenzentrum - Munich Network
Management Team, 2007.

[40] D. Becker, T. Sterling, D. Savarese, J. Dorband, U. Ranawak, and
C. Packer. “BEOWULF: A Parallel Workstation for Scientific Com-
putation”. In: Proceedings of the 24th International Conference on
Parallel Processing. 1995, pp. 11–14.

[41] S. Becker. “Performance-Related Metrics in the ISO 9126 Standard”.
In: Dependability Metrics. Lecture Notes in Computer Science 4909
(2008). Ed. by I. Eusgeld, F. C. Freiling, and R. Reussner.

[42] C. Belady, A. Rawson, J. Pflueger, and T. Cader. Green Grid Data
Center Power Efficiency Metrics: PUE and DCIE. Tech. rep. The
Green Grid, 2008.

[43] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M.
Denneau, P. Franzon, W. Harrod, K. Hill, and J. H. and. Exas-
cale Computing Study: Technology Challenges in Achieving Exascale
Systems. Tech. rep. TR-2008-13. DARPA IPTO, 2008.

[44] R. Berlich, M. Kunze, and K. Schwarz. “Grid Computing in Europe:
From Research to Deployment”. In: Proceedings of the Australasian
Workshop on Grid Computing and e-Research (ACSW Frontiers’05).
2005, pp. 21–27.

330 Bibliography

[45] N. Bhatia, S. Alam, and J. Vetter. “Performance Modeling of Emerg-
ing HPC Architectures”. In: Proceedings of the HPCMP Users Group
Conference. 2006, pp. 367–373.

[46] G. D. Bhatt and A. F. Emdad. “An Empirical Examination of the
Relationship between Information Technology (IT) Infrastructure,
Customer Focus, and Business Advantages”. In: Journal of Systems
and Information Technology 12.1 (2010), pp. 4–16.

[47] A. Bianzino, A. Raju, and D. Rossi. “Apples-to-Apples: a Framework
Analysis for Energy-Efficiency in Networks”. In: ACM SIGMETRICS
Performance Evaluation Review 38.3 (2010), pp. 81–85.

[48] J. Bigot, Z. Hou, C. Perez, and V. Pichon. “A Low Level Component
Model Enabling Performance Portability of HPC Applications”. In:
Proceedings of the 2012 SC Companion: High Performance Com-
puting, Networking, Storage and Analysis (SCC). IEEE Computer
Society, 2012, pp. 701–710.

[49] A. Birolini. Reliability Engineering: Theory and Practice. Springer,
2007.

[50] R. Biswas, M. J. Djomehri, R. Hood, H. Jin, C. Kiris, and S. Saini. “An
Application-Based Performance Characterization of the Columbia
Supercluster”. In: Proceedings of the ACM/IEEE Conference on Su-
percomputing (SC’05). 2005, pp. 26–26.

[51] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G.
Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley. “An Updated Set of Basic Linear
Algebra Subprograms (BLAS)”. In: Transactions on Mathematical
Software (TOMS) 28.2 (2002), pp. 135–151.

[52] C. Blanchet, C. Combet, and G. Deleage. “Integrating Bioinformatics
Resources on the EGEE Grid Platform”. In: Proceedings of the 6th
International IEEE Symposium on Cluster Computing and the Grid
(CCGRID’06). 2006.

[53] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Schedul-
ing Computer and Manufacturing Processes. Springer, 2001.

[54] A. Bode. “Rechnerarchitektur und Prozessoren”. In: Informatikhand-
buch. Ed. by P. Rechenberg and G. Pomberger. Hanser, 2006, pp. 333–
360.

[55] R. Böhme and F. C. Freiling. “On Metrics and Measurements”. In:
Dependability Metrics. Ed. by I. Eusgeld, F. C. Freiling, and R.
Reussner. Springer, 2008, pp. 7–13.

Bibliography 331

[56] R. Böhme and R. Reussner. “Validation of Predictions with Measure-
ments”. In: Dependability Metrics. Ed. by I. Eusgeld, F. C. Freiling,
and R. Reussner. Springer, 2008, pp. 14–18.

[57] J. Borrill, J. Carter, L. Oliker, and D. Skinner. “Integrated Perfor-
mance Monitoring of a Cosmology Application on Leading HEC
Platforms”. In: Proceedings of the International IEEE Conference on
Parallel Processing (ICPP’05). 2005, pp. 119–128.

[58] J. Borrill. “MADCAP: The Microwave Anisotropy Dataset Com-
putational Analysis Package”. In: Proceedings of the 5th European
SGI/Cray MPP Workshop 5 (1999).

[59] J. Borrill, L. Oliker, J. Shalf, and H. Shan. “Investigation of Lead-
ing HPC I/O Performance Using a Scientific-Application Derived
Benchmark”. In: Proceedings of the 21th International ACM/IEEE
Conference on Supercomputing (SC’07). 2007, pp. 1–12.

[60] J. Borrill, L. Oliker, J. Shalf, H. Shan, and A. Uselton. “HPC Global
File System Performance Analysis Using a Scientific-Application
Derived Benchmark”. In: Parallel Computing 35.6 (2009), pp. 358–
373.

[61] A. Boukerche, R. Al-Shaikh, and M. Notare. “Towards Building a
Highly-Available Cluster Based Model for High Performance Comput-
ing”. In: Proceedings of the 20th International Parallel and Distributed
Processing Symposium (IPDPS’06). IEEE Computer Society, 2006.

[62] S. Bowers, B. Ludascher, A. Ngu, and T. Critchlow. “Enabling Scien-
tific Workflow Reuse Through Structured Composition of Dataflow
and Control-Flow”. In: Proceedings of the 22th International Confer-
ence on Data Engineering Workshops. 2006, pp. 70–80.

[63] E. L. Boyd, W. Azeem, H.-H. Lee, T.-P. Shih, S.-H. Hung, and E.
Davidson. “A Hierarchical Approach to Modeling and Improving the
Performance of Scientific Applications on the KSR1”. In: Proceedings
of the International Conference on Parallel Processing (ICPP’94).
1994, pp. 188–192.

[64] S. Bradner. Key Words for Use in RFCs to Indicate Requirement
Levels. 1997.

[65] P. Bridgman. The Logic of Modern Physics. MacMillan, 1927.

[66] M. Broadbent and P. Weill. Leveraging the New Infrastructure: How
Market Leaders Capitalize on Information Technology. Harvard Busi-
ness Review Press, 1998.

332 Bibliography

[67] M. Broadbent and P. Weill. “Management by Maxim: How Busi-
ness and IT Managers Can Create IT Infrastructures”. In: Sloan
Management Review 38.3 (1997), pp. 77–92.

[68] M. Broadbent, P. Weill, T. Brien, and B.-S. Neo. “Firm Context
and Patterns of IT Infrastructure Capability”. In: Proceedings of the
7th International Conference on Information Systems (ICIS). 1996,
pp. 174–194.

[69] M. Broadbent, P. Weill, and D. S. Clair. “The Implications of Infor-
mation Technology Infrastructure for Business Process Redesign”. In:
MIS Quarterly 23.2 (1999), pp. 159–182.

[70] M. Broadbent, P. Weill, and B.-S. Neo. “Strategic Context and
Patterns of IT Infrastructure Capability”. In: The Journal of Strategic
Information Systems 8.2 (1999), pp. 157–187.

[71] L. Brochard, R. Panda, and S. Vemuganti. “Optimizing Performance
and Energy of HPC Applications on POWER7”. In: Computer Science
- Research and Development 25.3 (2010), pp. 135–140.

[72] R. Brooks and A. Tobias. “Choosing the Best Model: Level of De-
tail, Complexity, and Model Performance”. In: Mathematical and
Computer Modelling 24.4 (1996), pp. 1–14.

[73] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. “A Portable
Programming Interface for Performance Evaluation on Modern Pro-
cessors”. In: Journal of High Performance Computing Applications
14.3 (2000), pp. 189–204.

[74] A. A. Bush, A. Tiwana, and A. Rai. “Complementarities Between
Product Design Modularity and IT Infrastructure Flexibility in IT-
Enabled Supply Chains”. In: IEEE Transactions on Engineering
Management 57.2 (2010), pp. 240–254.

[75] R. Buyya. High Performance Cluster Computing: Architectures and
Systems. Prentice Hall, 1998.

[76] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberga, and I. Brandicc.
“Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the 5th Utility”. In: Future
Generation Computer Systems 25.6 (2009), pp. 599–616.

[77] T. A. Byrd and D. E. Turner. “Measuring the Flexibility of Informa-
tion Technology Infrastructure: Exploratory Analysis of a Construct”.
In: Journal of Management Information Systems 17.1 (2000), pp. 167–
208.

Bibliography 333

[78] K. L. Calvert, M. B. Doar, and E. W. Zegura. “Modeling Internet
Topology”. In: IEEE Communications Magazine 35.6 (1997), pp. 160–
163.

[79] J. Cao, D. Kerbyson, and G. Nudd. “Performance Evaluation of an
Agent-Based Resource Management infrastructure for Grid Comput-
ing”. In: Proceedings of the 1st International ACM/IEEE Symposium
on Cluster Computing and the Grid. IEEE Computer Society, 2001,
pp. 311–318.

[80] R. Carnap. Einführung in die Philosophie der Naturwissenschaft.
Vol. 1. Nymphenburger Verlagshandlung, 1969.

[81] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. “24/7
Characterization of Petascale I/O Workloads”. In: Proceedings of the
International IEEE Conference on Cluster Computing and Workshops
(CLUSTER’09). 2009, pp. 1–10.

[82] L. Carrington, A. Snavely, X. Gao, and N. Wolter. “A Performance
Prediction Framework for Scientific Applications”. In: Proceedings
of the Computational Science (ICCS’03). Vol. 2659. Springer, 2003,
pp. 926–935.

[83] L. Carrington, A. Snavely, and N. Wolter. “A Performance Predic-
tion Framework for Scientific Applications”. In: Future Generation
Computer Systems 22.3 (2006), pp. 336–346.

[84] L. Carrington, N. Wolter, and A. Snavely. “A Framework for Appli-
cation Performance Prediction to Enable Scalability Understanding”.
In: Proceedings of the Scaling to New Heights Workshop. 2002.

[85] L. Carrington, N. Wolter, A. Snavely, and C. B. Lee. “Applying
an Automated Framework to Produce Accurate Blind Performance
Predictions of Full-Scale HPC Applications”. In: Proceedings of the
Department of Defense Users Group Conference. 2004.

[86] J. Carter, J. Borrill, and L. Oliker. “Performance Characteristics of a
Cosmology Package On Leading HPC Architectures”. In: Proceedings
of the High Performance Computing (HiPC’04). Ed. by L. Bougé and
V. Prasanna. Vol. 3296. Springer, 2005, pp. 176–188.

[87] G. Casella and R. Berger. Statistical Inference. Duxbury, 2001. isbn:
978-0-53424-312-8.

[88] C. Catlett, W. Allcock, P. Andrews, R. Aydt, R. Bair, N. Balac, B.
Banister, T. Barker, M. Bartelt, and P. B. and. Teragrid: Analysis
of Organization, System Architecture, and Middleware Enabling New
Types of Applications. Tech. rep. IOS Press, 2008.

334 Bibliography

[89] C. Chandler, N. DeBardeleben, and C. Leangsuksun. “Towards Re-
silient High Performance Applications Through Real Time Reliability
Metric Generation and Autonomous Failure Correction”. In: Pro-
ceedings of the Workshop on Resiliency in High Performance. 2009,
pp. 1–6.

[90] A. Chanopas, D. Krairit, D. B. Khang, and K. Luang. “Managing
Information Technology Infrastructure: a New Flexibility Framework”.
In: Management Research News 29.10 (2006), pp. 632–651.

[91] D. Chen, N. Eisley, P. Heidelberger, S. Kumar, A. Mamidala, F.
Petrini, R. Senger, Y. Sugawara, R. Walkup, B. Steinmacher-Burow,
A. Choudhury, Y. Sabharwal, S. Singhal, and J. Parker. “Looking
Under the Hood of the IBM Blue Gene/Q Network”. In: Proceedings
of the International ACM/IEEE Conference on High Performance
Computing, Networking, Storage and Analysis (SC’12). 2012, pp. 1–
12.

[92] S. Chen, Y. Liu, I. Gorton, and A. Liu. “Performance Prediction of
Component-Based Applications”. In: Journal of Systems and Software
74.1 (2005), pp. 35–43.

[93] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov. “Char-
acteristics of Workloads Used in High Performance and Technical
Computing”. In: Proceedings of the 21th International Conference on
Supercomputing (ICS’07). 2007, pp. 73–82.

[94] China’s Supercomputing Strategy Called Out. 2014. url: http://
www.hpcwire.com/2014/07/17/dd/ (visited on 08/20/2014).

[95] S. H. Chung, T. A. Byrd, B. R. Lewis, and F. N. Ford. “An Empirical
Study of the Relationships between IT Infrastructure Flexibility,
Mass Customization, and Business Performance”. In: ACM Special
Interest Group on Management Information Systems (SIGMIS) 36.3
(2005), pp. 26–44.

[96] L. Chwif, M. Barretto, and R. Paul. “On Simulation Model Com-
plexity”. In: Proceedings of the IEEE Winter Simulation Conference.
2000, pp. 449–455.

[97] W. Cirne and F. Berman. “A Comprehensive Model of the Supercom-
puter Workload”. In: Proceedings of the International IEEE Workshop
on Workload Characterization. 2001, pp. 140–148.

Bibliography 335

[98] A. Clematis, D. D’Agostino, E. Danovaro, A. Galizia, A. Quarati,
A. Parodi, N. Rebora, T. Bedrina, D. Kranzlmüller, M. Schiffers,
B. Jagers, Q. Harpham, and P. Cros. “DRIHM: Distributed Research
Infrastructure For Hydro-Meteorology”. In: Proceedings of the 7th
International Conference on System of Systems Engineering (SoSE).
2012, pp. 149–155.

[99] CMMI for Systems Engineering/Software Engineering - Version 1.1.
Tech. rep. CMU/SEI-2002-TR-002. CMMI Institute, 2001.

[100] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2002.
[101] P. D. Coddington. “An Analysis of Distributed Computing Software

and Hardware for Applications in Computational Physics”. In: Pro-
ceedings of the 2nd International Symposium on High Performance
Distributed Computing (HPDC’93). 1993, pp. 179–186.

[102] L. Collatz and W. Wetterling. Optimierungsaufgaben. Vol. 2. Springer,
1971. isbn: 978-3-540-05616-4.

[103] Common Information Model. 2014. url: http://www.dmtf.org/
standards/cim (visited on 07/15/2014).

[104] G. Contreras and M. Martonosi. “Power Prediction for Intel XScale
Processors Using Performance Monitoring Unit Events”. In: Proceed-
ings of the International Symposium on Low Power Electronics and
Design (ISLPED’05). 2005, pp. 221–226.

[105] S. Cox, J. Cox, R. Boardman, S. Johnston, M. Scott, and N. O’Brien.
“Iridis-pi: A Low-Cost, Compact Demonstration Cluster”. In: Cluster
Computing (2013), pp. 1–10.

[106] H. J. Curnow and B. A. Wichmann. “A Synthetic Benchmark”. In:
The Computer Journal 19.1 (1976), pp. 43–49.

[107] D. D’Agostino, A. Clematis, A. Galizia, A. Quarati, E. Danovaro,
L. Roverelli, G. Zereik, D. Kranzlmüller, M. Schiffers, N. gentschen
Felde, C. Straube, A. Parodi, E. Fiori, F. Delogu, O. Caumont, E.
Richard, L. Garrote, Q. Harpham, H. Jagers, V. Dimitrijevic, and
L. Dekic. “The DRIHM Project: A Flexible Approach to Integrate
HPC, Grid and Cloud Resources for Hydro-Meteorological Research”.
In: Proceedings of the International ACM/IEEE Conference on High
Performance Computing, Networking, Storage and Analysis (SC’14).
Nov. 2014.

[108] J. T. Daly. “A Higher Order Estimate of the Optimum Checkpoint
Interval for Restart Dumps”. In: Future Generation Computer Systems
22.3 (2006), pp. 303–312.

336 Bibliography

[109] E. Danovaro, L. Roverelli, G. Zereik, A. Galizia, D. D’Agostino, G.
Paschina, A. Quarati, A. Clematis, F. Delogu, E. Fiori, A. Parodi,
C. Straube, N. Felde, Q. Harpham, B. Jagers, L. Garrote, L. Dekic,
M. Ivkovic, O. Caumont, and E. Richard. “Setup an Hydro-Meteo
Experiment in Minutes: the DRIHM e-Infrastructure for Hydro-Meteo
Research”. In: Proceedings of the 10th International IEEE Conference
on e-Science. Oct. 2014.

[110] T. Davenport and J. Linder. “Information Management Infrastruc-
ture: the New Competitive Weapon?” In: Proceedings of the 27th
International IEEE Hawaii Conference on System Sciences. 1994,
pp. 885–896.

[111] S. Davidson and J. Freire. “Provenance and Scientific Workflows:
Challenges and Opportunities”. In: Proceedings of the International
ACM SIGMOD Conference on Management of Data. 2008, pp. 1345–
1350.

[112] K. Davis, A. Hoisie, G. Johnson, D. Kerbyson, M. Lang, S. Pakin,
and F. Petrini. “A Performance and Scalability Analysis of the Blue-
Gene/L Architecture”. In: Proceedings of the ACM/IEEE Conference
on Supercomputing (SC’04). 2004.

[113] H. Davulcu, M. Kifer, L. R. Pokorny, C. R. Ramakrishnan, I. V.
Ramakrishnan, and S. Dawson. “Modeling and Analysis of Interac-
tions in Virtual Enterprises”. In: Proceedings of the 9th International
Workshop on Research Issues on Data Engineering: Information Tech-
nology for Virtual Enterprises (RIDE-VE’99). 1999, pp. 12–18.

[114] E. Deelman and A. Chervenak. “Data Management Challenges of
Data-Intensive Scientific Workflows”. In: Proceedings of the 8th In-
ternational ACM/IEEE Symposium on Cluster Computing and the
Grid (CCGRID’08). 2008, pp. 687–692.

[115] E. Deelman and Y. Gil. “Managing Large-Scale Scientific Workflows
in Distributed Environments: Experiences and Challenges”. In: Pro-
ceedings of the 2nd International IEEE Conference on e-Science and
Grid Computing (e-Science’06). 2006, pp. 144–150.

[116] E. Deelman, D. Gannon, M. Shields, and I. Taylor. “Workflows and e-
Science: An Overview of Workflow System Features and Capabilities”.
In: Future Generation Computer Systems 25.5 (2009), pp. 528–540.

[117] P. Denning. “A New Social Contract for Research”. In: Communica-
tions of the ACM 40.2 (1997), pp. 132–134.

Bibliography 337

[118] W. Denzel, J. Li, P. Walker, and Y. Jin. “A Framework for End-
to-End Simulation of High-Performance Computing Systems”. In:
SIMULATION 86.5 (2010), pp. 331–350.

[119] Description of Work – Part B - Combination of Collaborative Project
and Coordination and Support Action. Tech. rep. FP7-283568 DRIHM.
CIMA Research Foundation et al., 2012.

[120] J. Devore. Probability and Statistics for Engineering and the Sciences.
Vol. 3. Brooks/Cole, 1991. isbn: 978-0-53414-352-7.

[121] I. Diaz, G. Fernandez, M. J. Martinm, P. Gonzalez, and J. Tourino.
“Integrating the Common Information Model with MDS4”. In: Pro-
ceedings of the 9th International ACM/IEEE Conference on Grid
Computing. IEEE Computer Society, 2008, pp. 298–303.

[122] K. M. Dixit. “Overview of the SPEC Benchmarks”. In: Benchmark
Handbook: For Database and Transaction Processing Systems. Ed. by
J. Gray. Morgan Kaufmann Publishers Inc., 1992, pp. 489–521.

[123] DMTF. Common Information Model (CIM) Metamodel (Specifica-
tion). Tech. rep. DSP0004. Distributed Management Task Force
(DMTF), 2012.

[124] J. Dongarra. “Performance of Various Computers Using Standard
Linear Equations Software in a FORTRAN Environment”. In: ACM
SIGARCH Computer Architecture News 16.1 (1988), pp. 47–69.

[125] J. J. Dongarra. “The LINPACK Benchmark: An Explanation”. In:
Supercomputing. Ed. by E. N. Houstis, T. S. Papatheodorou, and
C. D. Polychronopoulos. Vol. 297. Springer, 1988, pp. 456–474.

[126] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello, B.
Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore,
A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Y. Ishikawa, F. Johnson, Z. Jin, S. Kale, R. Kenway, D.
Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,
B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M.
Mueller, W. Nagel, H. Nakashima, M. Papka, D. Reed, M. Sato, E.
Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz,
B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Trefethen,
M. Valero, A. V. D. Steen, J. Vetter, P. Williams, R. Wisniewski, and
K. Yelick. “The International Exascale Software Project Roadmap”.
In: Journal of High Performance Computing Applications 25.1 (2011),
pp. 3–60.

338 Bibliography

[127] J. Dongarra, P. Luszczek, and A. Petitet. “The LINPACK Bench-
mark: Past, Present And Future”. In: Concurrency and Computation:
Practice and Experience 15.9 (2003), pp. 803–820.

[128] J. Dongarra, H. Meuer, E. Strohmaier, and H. Simon. Top 500 List of
Supercomputer Sites. 2014. url: http://www.top500.org/ (visited
on 04/12/2014).

[129] J. Dongarra, J. Bunch, C. Moler, and G. Stewart. “LINPACK Users
Guide”. In: SIAM (1979).

[130] E. Duesterwald, J. Torrellas, and S. Dwarkadas. “Characterizing and
Predicting Program Behavior and Its Variability”. In: pp. 220–231.

[131] N. B. Duncan. “Capturing Flexibility of Information Technology
Infrastructure: A Study of Resource Characteristics and Their Mea-
sure”. In: Journal of Management Information Systems 12.2 (1995),
pp. 37–57.

[132] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan. “Full-
System Power Analysis and Modeling for Server Environments”. In:
Proceedings of the Workshop on Modeling, Benchmarking, and Simu-
lation. 2006, pp. 70–77.

[133] P. N. Edwards, S. J. Jackson, G. C. Bowker, and C. P. Knobel.
Understanding Infrastructure: Dynamics, Tensions, and Design. Tech.
rep. National Science Foundation (NSF), 2007.

[134] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C.
Engelmann. “Combining Partial Redundancy and Checkpointing for
HPC”. In: Proceedings of the 32th International IEEE Conference on
Distributed Computing Systems (ICDCS). 2012, pp. 615–626.

[135] Energy-Efficient Data Centres – Best-Practice Examples from Europe,
the USA and Asia. Tech. rep. Federal Ministry for the Environment,
Nature Conservation, Building and Nuclear Safety (BMUB), 2010.

[136] European Grid Infrastructure (EGI) - Services for researchers. 2014.
url: http://www.egi.eu/services/researchers/ (visited on
07/03/2014).

[137] I. Eusgeld, B. Fechner, F. Salfner, M. Walter, P. Limbourg, and L.
Zhang. “Hardware Reliability”. In: Dependability Metrics. Ed. by I.
Eusgeld, F. C. Freiling, and R. Reussner. Vol. 4909. Springer, 2008,
pp. 59–103.

[138] X. Fan, W.-D. Weber, and L. A. Barroso. “Power Provisioning for a
Warehouse-Sized Computer”. In: Proceedings of the 34th International
Symposium on Computer Architecture (ISCA’07). 2007, pp. 13–23.

Bibliography 339

[139] B. Farbey, D. Targett, and F. Land. “The Great IT Benefit Hunt”.
In: European Management Journal 12.3 (1994), pp. 270–279.

[140] X. Fei and S. Lu. “A Dataflow-Based Scientific Workflow Composi-
tion Framework”. In: IEEE Transactions on Services Computing 5.1
(2012), pp. 45–58.

[141] L. Fink and S. Neumann. “Exploring the Perceived Business Value
of the Flexibility Enabled by Information Technology Infrastructure”.
In: Information & Management 46.2 (2009), pp. 90–99.

[142] I. Foster. “Globus Toolkit Version 4: Software for Service-Oriented
Science”. In: Network and Parallel Computing. Vol. 3779. Springer,
2005, pp. 2–13.

[143] I. Foster. What is the Grid? A Three Point Checklist. Tech. rep.
Argonne National Laboratory & University of Chicago, 2002.

[144] I. Foster and C. Kesselman. The Grid: Blueprint for a Future Com-
puting Infrastructure. Morgan Kaufmann Publishers, Inc., 1999.

[145] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. “Grid Services for
Distributed System Integration”. In: Computer 35.6 (2002), pp. 37–
46.

[146] I. Foster, C. Kesselman, and S. Tuecke. “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations”. In: Journal of High Per-
formance Computing Applications 15.3 (2001), pp. 200–222.

[147] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. “The Physiology of
the Grid”. In: Grid Computing - Making the Global Infrastructure
Reality. Ed. by F. Berman, G. Fox, and A. J. G. Hey. John Wiley &
Sons, Inc., 2003, pp. 217–249.

[148] I. Foster and C. Kesselman. “The Grid in a Nutshell”. In: Grid
Resource Management - State of the Art and Future Trends. Ed. by
J. Nabrzyski, J. Schopf, and J. Weglarz. Kluwer Academic Publishers,
2004, pp. 3–13.

[149] I. Foster, Y. Zhao, I. Raicu, and S. Lu. “Cloud Computing and
Grid Computing 360-Degree Compared”. In: Proceedings of the Grid
Computing Environments Workshop (GCE’08). 2008, pp. 1–10.

[150] D. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, 2003. isbn: 9-780-47146-227-9.

[151] J. Freire, D. Koop, E. Santos, and C. T. Silva. “Provenance for Com-
putational Tasks: A Survey”. In: Computing in Science Engineering
10.3 (2008), pp. 11–21.

340 Bibliography

[152] T. Freund. Software Engineering durch Modellierung wissensinten-
siver Entwicklungsprozesse. GITO mbH - Verlag für Industrielle
Informationstechnik und Organisation, 2007.

[153] M. Frigo and S. Johnson. “The Design and Implementation of FFTW3”.
In: Proceedings of the IEEE 93.2 (2005), pp. 216–231.

[154] Fundamentals of Metrology - Part 3: Evaluation of Measurements
of a Single Measurand, Measurement Uncertainty. Tech. rep. DIN
1319-3:1996-05. Deutsches Institut für Normierung e.V. (DIN), 1996.

[155] Fundamentals of Metrology - Part 4: Evaluation of Measurements; Un-
certainty of Measurement. Tech. rep. DIN 1319-4:1999-02. Deutsches
Institut für Normierung e.V. (DIN), 1999.

[156] V. Fung, W. Fung, and Y. Wind. Competing in a Flat World: Building
Enterprises for a Borderless World. Pearson Prentice Hall, 2007. isbn:
978-0-13261-818-2.

[157] K. Fürlinger, C. Klausecker, and D. Kranzlmüller. “Towards Energy
Efficient Parallel Computing on Consumer Electronic Devices”. In:
Information and Communication on Technology for the Fight against
Global Warming. Ed. by D. Kranzlmüller and A. Toja. Vol. 6868.
Springer, 2011, pp. 1–9.

[158] M. Gamell, I. Rodero, M. Parashar, J. Bennett, H. Kolla, J. Chen,
P.-T. Bremer, A. Landge, A. Gyulassy, P. McCormick, S. Pakin, V.
Pascucci, and S. Klasky. “Exploring Power Behaviors and Trade-
offs of In-Situ Data Analytics”. In: Proceedings of the International
ACM/IEEE Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC’13). 2013, 77:1–77:12.

[159] E. Gamma, R. Helm, and R. E. Johnson. Design Patterns – Elements
of Reusable Object-Oriented Software. Vol. 1. Addison-Wesley, 1994.
isbn: 9-780-32170-069-8.

[160] A. Gara, M. A. Blumrich, D. Chen, G. Chiu, P. Coteus, M. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay,
T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken,
and P. Vranas. “Overview of the Blue Gene/L System Architecture”.
In: IBM Journal of Research and Development 49.2.3 (2005), pp. 195–
212.

[161] Gauss Centre for Supercomputing. 2014. url: www.gauss-centre.eu
(visited on 01/15/2014).

Bibliography 341

[162] R. Ge, X. Feng, W.-C. Feng, and K. W. Cameron. “CPU MISER: A
Performance-Directed, Run-Time System for Power-Aware Clusters”.
In: Proceedings of the International Conference on Parallel Processing
(ICPP’07). 2007, pp. 18–26.

[163] W. Gentzsch. “D-Grid, an e-Science Framework for German Scien-
tists”. In: Proceedings of the 5th International Symposium on Parallel
and Distributed Computing (ISPDC’06). 2006, pp. 12–13.

[164] Green 500 List of Supercomputer Sites. 2014. url: http://www.
green500.org/ (visited on 11/30/2013).

[165] A. Gregoriades and A. Sutcliffe. “Workload Prediction for Improved
Design and Reliability of Complex Systems”. In: Reliability Engineer-
ing & System Safety 93.4 (2008), pp. 530–549.

[166] Grid Schema Working Group (GLUE-WG). 2014. url: https://
forge.ogf.org/sf/projects/glue-wg (visited on 07/15/2014).

[167] A. Grimshaw, E. West, and W. Pearson. “No Pain and Gain! - Expe-
riences with Mentat on a Biological Application”. In: Concurrency:
Practice and Experience 5.4 (1993), pp. 309–328.

[168] P. Gritzmann.Grundlagen der mathematischen Optimierung: Diskrete
Strukturen, Komplexitätstheorie, Konvexitätstheorie, Lineare Opti-
mierung, Simplex-Algorithmus, Dualität. Vol. 1. Springer, 2013. isbn:
978-3-528-07290-2.

[169] V. Gruhn, D. Pieper, and C. Röttgers. MDA: Effektives Software-
Engineering Mit UML2 und Eclipse. Springer, 2006. isbn: 978-3-
54028-744-5.

[170] M. Guest. The Scientific Case for High Performance Computing in
Europe 2012-2020. Insight Publishers Ltd, 2013.

[171] L. Guijarro. “Interoperability Frameworks and Enterprise Architec-
tures in e-Government Initiatives in Europe and the United States”.
In: Government Information Quarterly 24.1 (2007), pp. 89–101.

[172] J. Gustafson. “Reevaluating Amdahl’s Law”. In: Communications of
the ACM 31.5 (1988), pp. 532–533.

[173] D. Hackenberg, R. Schöne, D. Molka, M. Müller, and A. Knüpfer.
“Quantifying Power Consumption Variations of HPC Systems Using
SPEC MPI Benchmarks”. In: Computer Science - Research and
Development 25.3 (2010), pp. 155–163.

342 Bibliography

[174] H. Hacker, C. Trinitis, J. Weidendorfer, and M. Brehm. “Considering
GPGPU for HPC Centers: is it Worth the Effort?” In: Facing the
Multicore-Challenge. Ed. by R. Keller, D. Kramer, and J.-P. Weiss.
Vol. 6310. Springer, 2011, pp. 118–130.

[175] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. “Measuring Energy
Consumption for Short Code Paths Using RAPL”. In: ACM SIG-
METRICS Performance Evaluation Review 40.3 (2012), pp. 13–17.

[176] A. Hanna and S. Rance. ITIL™Glossary and Abbreviations - English.
Tech. rep. 1.0. Office of Government Commerce (OGC), 2011.

[177] O. Hanseth and K. Braa. “Technology as Traitor: Emergent SAP
Infrastructure in a Global Organization”. In: Proceedings of the Inter-
national Conference on Information systems (ICIS’98). 1998, pp. 188–
196.

[178] J. Happe. “Analytical Performance Metrics”. In: Dependability Met-
rics. Lecture Notes in Computer Science 4909 (2008). Ed. by I. Eu-
sgeld, F. C. Freiling, and R. Reussner.

[179] R. Hatzinger, K. Hornik, and H. Nagel. R - Einführung in die ange-
wandte Statistik. Vol. 1. Pearson Studium, 2011. isbn: 978-3-86894-
060-2.

[180] R. Hedges, B. Loewe, T. McLarty, and C. Morrone. “Parallel File
System Testing for the Lunatic Fringe: the Care and Feeding of Rest-
less I/O Power Users”. In: Proceedings of the 22th IEEE Conference
on Mass Storage Systems and Technologies. 2005, pp. 3–17.

[181] H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of
Networked Systems – Concepts, Architectures, and Their Operational
Application. Morgan Kaufmann Publishers, Inc., 1998. isbn: 9-781-
55860-571-8.

[182] H. Hellwagner. “Arbeitsspeicher- und Bussysteme”. In: Informatikhand-
buch. Ed. by P. Rechenberg and G. Pomberger. Hanser, 2006, pp. 361–
379.

[183] C. Hempel. Philosophy Of Natural Science. 1966. isbn: 978-0-13663-
823-0.

[184] J. L. Hennessy and D. A. Patterso. Computer Architecture, A Quan-
titative Approach. 2003.

[185] R. Hennicker. Softwaretechnik – Kapitel 3 – Objektorientierte Analyse.
2012.

Bibliography 343

[186] A. Hevner. “A Three Cycle View Of Design Science Research”. In:
Scandinavian Journal of Information Systems 19.2 (2007), pp. 87–92.

[187] A. Hevner, S. March, J. Park, and S. Ram. “Design Science In Infor-
mation Systems Research”. In: MIS Quarterly 28.1 (2004), pp. 75–
105.

[188] T. Hey and A. Trefethen. “e-Science and its Implications”. In: Philo-
sophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences 361.1809 (2003),
pp. 1809–1825.

[189] T. Hey and A. Trefethen. “The UK e-Science Core Programme and
the Grid”. In: Future Generation Computer Systems 18.8 (2002),
pp. 1017–1031.

[190] D. Hitchcock and L. Nowell. Advanced Architectures and Critical
Technologies for Exascale Computing. Tech. rep. DE-FOA-0000255.
U.S. Department of Energy (DoE), 2010.

[191] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm. “Netgauge: A
Network Performance Measurement Framework”. In: Proceedings of
the High Performance Computing and Communications (HPCC’07).
Ed. by R. Perrott, B. Chapman, J. Subhlok, R. F. Mello, and L. Yang.
Vol. 4782. Springer, 2007, pp. 659–671.

[192] A. Hoisie, G. Johnson, D. Kerbyson, M. Lang, and S. Pakin. “A Perfor-
mance Comparison Through Benchmarking and Modeling of Three
Leading Supercomputers: Blue Gene/L, Red Storm, and Purple”.
In: Proceedings of the ACM/IEEE Conference on Supercomputing
(SC’06). 2006, pp. 3–13.

[193] A. Hoisie, O. Lubeck, and H. Wasserman. “Performance and Scala-
bility Analysis of Teraflop-Scale Parallel Architectures Using Multidi-
mensional Wavefront Applications”. In: Journal of High Performance
Computing Applications 14.4 (2000), pp. 330–346.

[194] J. Hollingsworth and B. Tierney. “Instrumentation and Monitoring”.
In: The Grid 2: Blueprint for a New Computing Infrastructure. Ed. by
I. Foster and C. Kesselman. Elsevier, 2003, pp. 319–351.

[195] C.-H. Hsu and W.-C. Feng. “A Power-Aware Run-Time System for
High-Performance Computing”. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC’05). 2005, pp. 1–9.

344 Bibliography

[196] C.-H. Hsu and W.-C. Feng. “Effective Dynamic Voltage Scaling
Through CPU-Boundedness Detection”. In: Power-Aware Computer
Systems. Ed. by B. Falsafi and T. N. Vijaykumar. Vol. 3471. Springer,
2005, pp. 135–149.

[197] H.-G. Hwang, R. Yeh, H.-G. Chen, J. J. Jiang, and G. Klein. “IT
Investment Strategy And IT Infrastructure Services”. In: The Review
of Business Information Systems 6.2 (2002).

[198] IEEE Recommended Practice for Architectural Description for Software-
Intensive Systems. Tech. rep. IEEE Std 1471-2000. Institute of Elec-
trical and Electronics Engineerings, Inc. (IEEE), 2000.

[199] IEEE Standard for Software Quality Assurance Plans. Tech. rep.
IEEE Std 730-1998. Institute of Electrical and Electronics Engineer-
ings, Inc. (IEEE), 1998.

[200] IEEE Standard Glossary of Software Engineering Terminology. Tech.
rep. IEEE Std 610.12-199. Institute of Electrical and Electronics
Engineers (IEEE), 1990.

[201] J. Iivari. “A Paradigmatic Analysis of Information Systems as a
Design Science”. In: Scandinavian Journal of Information Systems
19.2 (2007), pp. 39–64.

[202] E. Imamagic and D. Dobrenic. “Grid Infrastructure Monitoring Sys-
tem Based on Nagios”. In: Proceedings of the Workshop on Grid
Monitoring (GMW’07). ACM, 2007, pp. 23–28.

[203] C. Isci and M. Martonosi. “Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data”. In: Proceedings of
the 36th International IEEE/ACM Symposium on Microarchitecture
(MICRO’36). 2003, pp. 93–115.

[204] ISO/IEC 27001:2013 – Information Technology - Security Techniques
- Information Security Management Systems - Requirements. Tech.
rep. ISO/IEC 27001:2013. International Organization for Standard-
ization (ISO), 2013.

[205] I. Jacobson. Object Oriented Software Engineering: A Use Case
Driven Approach. Pearson Education, 1992. isbn: 9-788-13170-408-0.

[206] J. Jaffar and M. Maher. “Constraint Logic Programming: a Survey”.
In: The Journal of Logic Programming 19/20 (1994), pp. 503–581.

[207] R. Jain. The Art of Computer Systems Performance Analysis. Vol. 1.
John Wiley & Sons, Inc., 1991. isbn: 978-0-47150-336-1.

Bibliography 345

[208] W. Jansen. Directions in Security Metrics Research. Tech. rep. NIS-
TIR 7564. National Institute of Standards and Technology, 2009.

[209] C. Janssen, H. Adalsteinsson, and J. Kenny. “Using Simulation to
Design Extremescale Applications and Architectures: Programming
Model Exploration”. In: ACM SIGMETRICS Performance Evalua-
tion Review - Special Issue on the 1st Intl. Workshop on Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puting Systems (PMBS’10) 38.4 (2011), pp. 4–8.

[210] A. Jaquith. Security Metrics: Replacing Fear, Uncertainty, and Doubt.
Vol. 1. Addison-Wesley, 2007. isbn: 978-0-32134-998-9.

[211] D. Jensen and A. Rodrigues. “Embedded Systems and Exascale Com-
puting”. In: Computing in Science Engineering 12.6 (2010), pp. 20–
29.

[212] S. Jha, M. Cole, D. Katz, M. Parashar, O. Rana, and J. Weissman.
“Distributed Computing Practice for Large-scale Science and Engi-
neering Applications”. In: Concurrency and Computation: Practice
and Experience 25.11 (2013), pp. 1559–1585.

[213] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of
NAS Parallel Benchmarks and Its Performance. Tech. rep. NAS-99-
011. NAS System Division, NASA Ames Research Center, 1999.

[214] W. Johnston, P. Hanna, and R. Millar. “Advances in Dataflow Pro-
gramming Languages”. In: ACM Computing Surveys (CSUR) 36.1
(2004), pp. 1–34.

[215] W. Jones, J. Daly, and N. DeBardeleben. “Application Monitoring
and Checkpointing in HPC: Looking Towards Exascale Systems”. In:
Proceedings of the 50th Annual Southeast Regional Conference. 2012,
pp. 262–267.

[216] W. Jones, J. Daly, and N. DeBardeleben. “Impact of Sub-Optimal
Checkpoint Intervals on Application Efficiency in Computational
Clusters”. In: Proceedings of the 19th International ACM Symposium
on High Performance Distributed Computing (HPDC’10). ACM, 2010,
pp. 276–279.

[217] R. Joseph and M. Martonosi. “Run-time Power Estimation in High
Performance Microprocessors”. In: Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED’01). 2001,
pp. 135–140.

[218] A. Kaplan. The Conduct of Inquiry. Chandler, 1964.

346 Bibliography

[219] K. L. Karavanic and B. P. Miller. “Improving Online Performance
Diagnosis by the Use of Historical Performance Data”. In: Proceedings
of the ACM/IEEE Conference on Supercomputing. 1999, pp. 42–42.

[220] T. R. Kayworth, D. Chatterjee, and V. Sambamurthy. “Theoreti-
cal Justification for IT Infrastructure Investments”. In: Information
Resources Management Journal (IRMJ) 14.3 (2001), pp. 5–14.

[221] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa.
“Science Clouds: Early Experiences in Cloud Computing for Scientific
Applications”. In: Cloud Computing and its Applications (2008),
pp. 825–830.

[222] K. Keahey, I. Foster, T. Freeman, and X. Zhang. “Virtual Workspaces:
Achieving Quality of Service and quality of Life in the Grid”. In:
Scientific Programming 13.4 (2005), pp. 265–275.

[223] G. Kearns and A. Lederer. “A Resource-Based View of Strategic IT
Alignment: How Knowledge Sharing Creates Competitive Advantage”.
In: Decision Sciences 34.1 (2003), pp. 1–29.

[224] P. G. W. Keen. Every Manager’s Guide to Information Technology.
Harvard Business School Press, 1995.

[225] P. G. W. Keen. Shaping the Future: Business Design through Infor-
mation Technology. Harvard Business School Press, 1991.

[226] D. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,
and M. Gittings. “Predictive Performance and Scalability Modeling
of A Large-Scale Application”. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC’01). 2001, pp. 37–49.

[227] D. Kerbyson, A. Hoisie, and H. Wasserman. “A Performance Compar-
ison Between the Earth Simulator and Other Terascale Systems on a
Characteristic ASCI Workload”. In: Concurrency and Computation:
Practice and Experience 17.10 (2005), pp. 1219–1238.

[228] D. Kerbyson, A. Hoisie, and H. Wasserman. “Modelling the Perfor-
mance of Large-Scale Systems”. In: IEE Proceedings-Software 150.4
(2003), pp. 214–221.

[229] O. Khalili, J. He, C. Olschanowsky, A. Snavely, and H. Casanova.
“Measuring the Performance and Reliability of Production Computa-
tional Grids”. In: Proceedings of the 7th International ACM/IEEE
Conference on Grid Computing. 2006, pp. 293–300.

Bibliography 347

[230] W. R. King and P. R. Flor. “The Development of Global IT Infrastruc-
ture”. In: Omega – Special Issue on Multiple Criteria Decision Making
for Engineering 36.3 (2008). Ed. by M. M. Wiecek, M. Ehrgott, G.
Fadel, and J. Figueira, pp. 486–504.

[231] G. Kleindorfer, L. O’Neill, and R. Ganeshan. “Validation in Simula-
tion: Various Positions in the Philosophy of Science”. In: Management
Science 44.8 (1998), pp. 1087–1099.

[232] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture - Practice And Promise. Addison-Wesley, 2003.
isbn: 978-0-32119-442-8.

[233] S. Kleuker. Grundkurs Software-Engineering mit UML: Der pragma-
tische Weg zu erfolgreichen Softwareprojekten. Vol. 3. Springer, 2013.
isbn: 9-783-65800-641-9.

[234] M. Klinger. “Evaluating the Feasibility and Performance of a Model
Raspberry Pi Beowulf Cluster”. Bachelor thesis. Ludwig-Maximilians-
Universität München, 2013.

[235] S. Knittl. “Werkzeugunterstützung für interorganisationales IT-Service-
Management - ein Referenzmodell für die Erstellung einer ioCMDB”.
PhD thesis. Technische Universität München (TUM), 2012.

[236] K. Koch, R. Baker, and R. Alcouffe. “Solution of the First-Order
Form of the 3-D Discrete Ordinates Equation on A Massively Parallel
Processor”. In: Transactions of the American Nuclear Society 65.108
(1992), pp. 198–199.

[237] N. Koch, A. Knapp, G. Zhang, and H. Baumeister. “Uml-Based Web
Engineering: An Approach Based on Standards”. In: Proceedings of
the Web Engineering: Modelling and Implementing Web Applications.
Ed. by G. Rossi, O. Pastor, D. Schwabe, and L. Olsina. Vol. 12. 2008,
pp. 157–191.

[238] S. Kottha, K. Peter, T. Steinke, J. Bart, J. Falkner, A. Weisbecker,
F. Viezens, Y. Mohammed, U. Sax, A. Hoheisel, T. Ernst, D. Som-
merfeld, D. Krefting, and M. Vossberg. “Medical Image Processing
in MediGRID”. In: Proceedings of the German e-Science Conference.
2007, pp. 1–10.

[239] H. Koziolek. “Introduction to Performance Metrics”. In: Dependability
Metrics. Lecture Notes in Computer Science 4909 (2008). Ed. by I.
Eusgeld, F. C. Freiling, and R. Reussner.

348 Bibliography

[240] H. Koziolek and J. Happe. “Performance Metrics for Specific Do-
mains”. In: Dependability Metrics. Lecture Notes in Computer Science
4909 (2008). Ed. by I. Eusgeld, F. C. Freiling, and R. Reussner.

[241] D. Krefting, J. Bart, K. Beronov, O. Dzhimova, J. Falkner, M. Har-
tung, A. Hoheisel, T. Knoch, T. Lingner, Y. Mohammed, K. Peter, E.
Rahm, U. Sax, D. Sommerfeld, T. Steinke, T. Tolxdorff, F. Viezens, M.
Vossberg, and A. Weisbecker. “MediGRID: Towards a User Friendly
Secured Grid Infrastructure”. In: Future Generation Computer Sys-
tems 25.3 (2009), pp. 326–336.

[242] H. G. Kruse. Leistungsbewertung bei Computersystemen – Praktische
Performance-Analyse von Rechnern und ihrer Kommunikation. Vol. 1.
Springer, 2009. isbn: 9-783-54071-053-0.

[243] B. Kryza,
bibinitperiod Skitaã, J. Kitowski, M. Li, and T. Itagaki. “Analy-
sis of Interoperability Issues Between EGEE and VEGA Grid In-
frastructures”. In: Proceedings of the High Performance Computing
and Communications. Ed. by M. Gerndt. Vol. 4208. Springer, 2006,
pp. 793–802.

[244] S. Laan. IT Infrastructure Architecture – Infrastructure Building
Blocks and Concepts. Lulu Press, Inc., 2011. isbn: 9-781-44788-128-5.

[245] J. P. Lafore, J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J.
Duron, C. Fischer, P. Héreil, P. Mascart, V. Masson, J. P. Pinty,
J. L. Redelsperger, E. Richard, and J.-G. Arellano. “The Meso-NH
Atmospheric Simulation System. Part I: Adiabatic Formulation and
Control Simulations”. In: Annales Geophysicae 16.1 (1997), pp. 90–
109.

[246] H. Langweg. “Framework for Malware Resistance Metrics”. In: Pro-
ceedings of the 2nd Workshop on Quality of Protection (QoP’06).
ACM, 2006, pp. 39–44.

[247] C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Vol. 3.
Prentice Hall, 2004. isbn: 978-0-13148-906-6.

[248] C. C. H. Law and E. W. T. Ngai. “IT Infrastructure Capabilities and
Business Process Improvements: Association with IT Governance
Characteristics”. In: Information Resources Management Journal
(IRMJ) 20.4 (2007).

[249] E. A. Lee and T. M. Parks. “Dataflow Process Networks”. In: Pro-
ceedings of the IEEE 83.5 (1995), pp. 773–801.

Bibliography 349

[250] S.-J. Lee, H.-K. Lee, and P.-C. Yew. “Runtime Performance Projection
Model for Dynamic Power Management”. In: Advances in Computer
Systems Architecture. Ed. by L. Choi, Y. Paek, and S. Cho. Vol. 4697.
Springer, 2007, pp. 186–197.

[251] Leitfaden zur Angabe von Unsicherheiten beim Messen. Tech. rep.
DIN V ENV 13005. Deutsche Institut für Normung e. V. (DIN), 1999.

[252] H. Levy and D. Clark. “On the Use of Benchmarks for Measuring
System Performance”. In: ACM SIGARCH Computer Architecture
News 10.6 (1982), pp. 5–8.

[253] H. Li, D. Groep, and L. Wolters. “Workload Characteristics of a
Multi-Cluster Supercomputer”. In: Proceedings of the Job Scheduling
Strategies for Parallel Processing. Ed. by D. Feitelson, L. Rudolph,
and U. Schwiegelshohn. Vol. 3277. Springer, 2005, pp. 176–193.

[254] C. Lin, S. Lu, X. Fei, D. Pai, and J. Hua. “A Task Abstraction and
Mapping Approach to the Shimming Problem in Scientific Workflows”.
In: Proceedings of the International IEEE Conference on Services
Computing (SCC’09). 2009, pp. 284–291.

[255] T. Lindinger. “Optimierung des Wirkungsgrades virtueller Infras-
trukturen”. PhD thesis. Fakultät für Mathematik, Informatik und
Statistik der Ludwig-Maximilians-Universität München, 2009.

[256] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D.
Buntinas, P. Wyckoff, and D. K. Panda. “Performance Comparison
of MPI Implementations Over InfiniBand, Myrinet and Quadrics”.
In: Proceedings of the ACM/IEEE Conference on Supercomputing
(SC’03). 2003, pp. 58–58.

[257] S. Liu. “A Practical Framework for Discussing IT Infrastructure”. In:
IT Professional 4.4 (2002), pp. 14–21.

[258] D. Lojewski. “Benchmarking und Systemvergleich von Mikrocon-
trollern”. Diploma thesis. Hochschule Harz - Fachbereich Automa-
tisierung und Informatik - Studiengang Informatik im Netz, 2007.

[259] C.-D. Lu. “Failure Data Analysis of HPC Systems”. In: Journal of
CoRR abs/1302.4779 (2013).

[260] B. Ludascher, S. Bowers, T. McPhillips, and N. Podhorszki. “Scientific
Workflows: More e-Science Mileage from Cyberinfrastructure”. In:
Proceedings of the 2nd International IEEE Conference on e-Science
and Grid Computing (e-Science’06). 2006, pp. 145–153.

350 Bibliography

[261] B. Ludäscher, M. Weske, T. McPhillips, and S. Bowers. “Scientific
Workflows: Business as Usual?” In: Proceedings of the Business Pro-
cess Management. Vol. 5701. Springer, 2009, pp. 31–47.

[262] J. Luftman and T. Ben-Zvi. “Key Issues for IT Executives 2009:
Difficult Economy’s Impact on IT”. In: MIS Quarterly Executive 9.1
(2010), pp. 203–213.

[263] J. Luftman and T. Ben-Zvi. “Key Issues for IT Executives 2010: Ju-
dicious IT Investments Continue Post-Recession”. In: MIS Quarterly
Executive 9.4 (2010), pp. 263–273.

[264] C. Malone and C. Belady. “Metrics to Characterize Data Center & IT
Equipment Energy Use”. In: Proceedings of the Digital Power Forum.
2006.

[265] H. Mao, L. Huang, and M. Li. “Web Resource Monitoring Based on
Common information Model”. In: Proceedings of the IEEE Services
Computing (APSCC’06). 2006, pp. 520–525.

[266] S. March and G. Smith. “Design and Natural Science Research on
Information Technology”. In: Decision Support Systems 15.4 (1995),
pp. 251–266.

[267] G.-P. Marcu. “Architekturkonzepte für interorganisationales Fehler-
management”. PhD thesis. Fakultät für Mathematik, Informatik und
Statistik der Ludwig-Maximilians-Universität München, 2011.

[268] M. Al-Mashari and M. Zairi. “Creating a Fit Between BPR and IT
Infrastructure: A Proposed Framework for Effective Implementation”.
In: Journal of Flexible Manufacturing Systems 12.4 (2000), pp. 253–
274.

[269] A. Mayer, S. McGough, N. Furmento, W. Lee, M. Gulamali, S.
Newhouse, and J. Darlington. “Workflow Expression: Comparison of
Spatial and Temporal Approaches”. In: Proceedings of the Workflow
in Grid Systems Workshop (GGF-10). 2004.

[270] P. Mayer. “MDD4SOA – Model-Driven Development for Service-
Oriented Architectures”. PhD thesis. Ludwig-Maximilians-Universität
München, 2010.

[271] J. McCalpin. “Memory Bandwidth and Machine Balance in Current
High Performance Computers”. In: Technical Committee on Computer
Architecture (TCCA) Newsletter (1995), pp. 19–25.

[272] J. McCalpin. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Tech. rep. Continually updated. University
of Virginia, 2007.

Bibliography 351

[273] J. McCalpin. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. 2014. url: http://www.cs.virginia.
edu/stream/ (visited on 07/31/2014).

[274] D. McKay and D. Brockway. “Building I/T infrastructure for the
1990s”. In: Stage by Stage 9.3 (1989), pp. 1–11.

[275] C. R. Mechoso, C. C. Ma, J. D. Farrara, J. A. Spahr, R. W. Moore,
W. P. Dannevik, M. F. Wehner, P. Eltgroth, and A. A. Mirin. “Dis-
tributing A Climate Model Across Gigabit Networks”. In: Proceedings
of the 1st International Symposium on High-Performance Distributed
Computing (HPDC-1). 1992, pp. 16–25.

[276] J.-F. Méhaut and M. Martinasso. “A Contention-Aware Performance
Model for HPC-Based Networks: A Case Study of the InfiniBand
Network”. In: Proceedings of the Euro-Par 2011 Parallel Processing.
Ed. by E. Jeannot. Vol. 6852. Springer, 2011, pp. 91–102.

[277] D. Meisner, B. Gold, and T. Wenisch. “PowerNap: Eliminating Server
Idle Power”. In: Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems. 2009, pp. 205–216.

[278] D. Menasce and V. Almeida. Capacity Planning for Web Services:
Metrics, Models, and Methods. Prentice Hall, 2001. isbn: 978-0-13065-
903-3.

[279] T. Mens, P. V. Gorp, and K. Czarnecki. “A Taxonomy of Model
Transformations”. In: Proceedings of the Language Engineering for
Model-Driven Software Development. Ed. by J. Bezivin and R. Heckel.
Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2005.

[280] Merriam Webster’s Collegiate Dictionary. Merriam Webster, 1993.

[281] M. Meswani, M. Laurenzano, L. Carrington, and A. Snavely. “Mod-
eling and Predicting Disk I/O Time of HPC Applications”. In: Pro-
ceedings of the High Performance Computing Modernization Program
Users Group Conference (HPCMP-UGC). 2010, pp. 478–486.

[282] L. Meyer, S. Rössle, P. Bisch, and M. Mattoso. “Parallelism in Bioin-
formatics Workflows”. In: Proceedings of the High Performance Com-
puting for Computational Science (VECPAR’04). Ed. by M. Daydé,
J. Dongarra, V. Hernández, and J. Palma. Vol. 3402. Springer, 2005,
pp. 583–597.

352 Bibliography

[283] R. Miceli, G. Civario, A. Sikora, E. César, M. Gerndt, H. Haitof,
C. Navarrete, S. Benkner, M. Sandrieser, L. Morin, and F. Bodin.
“AutoTune: A Plugin-Driven Approach to the Automatic Tuning of
Parallel Applications”. In: Applied Parallel and Scientific Computing.
Ed. by P. Manninen and P. Öster. Vol. 7782. Springer, 2013, pp. 328–
342.

[284] J.-M. Milke, M. Schiffers, and W. Ziegler. “Virtuelle Organisatio-
nen in Grids: Charakterisierung und Management”. In: Praxis der
Informationsverarbeitung und Kommunikation (PIK). Ed. by O. v.
Spaniol. 2006, pp. 165–170.

[285] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Tech. rep.
omg/2003-06-01. Object Management Group (OMG), 2003.

[286] D. Molka, D. Hackenberg, T. Minartz, R. Schöne, and W. Nagel.
“Flexible Workload Generation for HPC Cluster Efficiency Bench-
marking”. In: Computer Science - Research and Development 27.4
(2012), pp. 235–243.

[287] D. Montgomery and G. Runger. Applied Statistics and Probability for
Engineers. John Wiley & Sons, Inc., 1994. isbn: 978-0-47154-041-0.

[288] R. Murphy. “On the Effects of Memory Latency and Bandwidth
on Supercomputer Application Performance”. In: Proceedings of the
10th International IEEE Symposium on Workload Characterization
(IISWC’07). 2007, pp. 35–43.

[289] S. Murugesan. “Harnessing Green IT: Principles and Practices”. In:
IT Professional 10.1 (2008), pp. 24–33.

[290] Nagios – The Industry Standard in IT Infrastructure Monitoring.
2014. url: www.nagios.com (visited on 08/11/2014).

[291] NASA Advanced Supercomputing Division. NAS Parallel Bench-
marks. 2014. url: http://www.nas.nasa.gov/publications/npb.
html (visited on 08/19/2014).

[292] National Energy Research Scientific Computing Center (NERSC).
NERSC-8 / Trinity Benchmarks. 2014. url: http://www.nersc.
gov/users/computational- systems/nersc- 8- system- cori/
nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-
benchmarks (visited on 07/31/2014).

[293] T. Necker. “Entwicklung eines objektorientierten Werkzeugs für ver-
schiedene Verfahren der parallelen ereignisgesteuerten Simulation - 69.
Bericht über verkehrstheoretische Arbeiten”. PhD thesis. Universität
Stuttgart, 1998.

Bibliography 353

[294] J. von Neumann. “First Draft of a Report on the EDVAC”. In: Annals
of the History of Computing 15.4 (1993), pp. 27–75.

[295] F. Niederman, J. C. Brancheau, and J. C. Wetherbe. “Information
Systems Management Issues for the 1990s”. In: MIS Quarterly 15.4
(1991), pp. 475–500.

[296] O. Nierstrasz, S. Gibbs, and D. Tsichritzis. “Component-Oriented
Software Development”. In: Communications of the ACM - Special
Issue on Analysis and Modeling in Software Development 35.9 (1992),
pp. 160–165.

[297] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper,
and D. V. Wilcox. “PACE – A Toolset for the Performance Prediction
of Parallel and Distributed Systems”. In: Journal of High Performance
Computing Applications 14.3 (2000), pp. 228–251.

[298] D. Nurmi, J. Brevik, and R. Wolski. “Modeling Machine Availability
in Enterprise and Wide-Area Distributed Computing Environments”.
In: Proceedings of the Euro-Par 2005 Parallel Processing. Ed. by J.
Cunha and P. Medeiros. Vol. 3648. Springer, 2005, pp. 432–441.

[299] D. Nussbaum and A. Agarwal. “Scalability of Parallel Machines”. In:
Communications of the ACM 34.3 (1991), pp. 57–61.

[300] M. Nyrhinen. “IT Infrastructure: Structure, Properties and Processes”.
In: Sprouts: Working Papers on Information Systems 6 (2006).

[301] Object Management Group (OMG). OMG Meta Object Facility
(MOF) Core Specification, Version 2.4.1. Tech. rep. formal/2011-08-
07. Object Management Group, 2011.

[302] Object Management Group (OMG). OMG Unified Modeling Language
(OMG UML), Infrastructure, Version 2.4.1. Tech. rep. formal/2011-
08-05. Object Management Group (OMG), 2011.

[303] Object Management Group (OMG). OMG Unified Modeling Language
(OMG UML), Superstructure, Version 2.4.1. Tech. rep. formal/2011-
08-06. Object Management Group, 2011.

[304] E. Ogasawara, D. Oliveira, F. Chirigati, C. E. Barbosa, R. Elias,
V. Braganholo, A. Coutinho, and M. Mattoso. “Exploring Many
Task Computing in Scientific Workflows”. In: Proceedings of the 2nd
Workshop on Many-Task Computing on Grids and Supercomputers
(MTAGS’09). 2009, pp. 1–10.

[305] On the Legal Protection of Computer Programs. Tech. rep. Council
Directive 91/250/EEC. Commission Of the European Communities
(CEC), 1991.

354 Bibliography

[306] P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann
Publishers, 1997. isbn: 9-781-55860-339-4.

[307] S. Pakin. “The Design and Implementation of a Domain-Specific
Language for Network Performance Testing”. In: IEEE Transactions
on Parallel and Distributed Systems 18.10 (2007), pp. 1436–1449.

[308] V. Pallipadi. “Enhanced Intel Speedstep Technology and Demand-
Based Switching on Linux”. In: Intel Developer Service (2009).

[309] L. Palm. “LRZ Awarded German Data Centre Prize”. In: Inside –
Innovatives Supercomuting in Deutschland 10.1 (2012). Ed. by R.
Klank.

[310] D. F. Parkhill. The Challenge of the Computer Utility. Addison-
Wesley, 1966. isbn: 978-0-20105-720-1.

[311] Partnership for Advanced Computing in Europe (PRACE). 2013. url:
www.prace-project.eu (visited on 11/30/2012).

[312] S. C. Payne. A Guide to Security Metrics. Tech. rep. SANS Institute,
2006.

[313] G. Pedicini and J. Green. “SPOTlight on Testing: Stability, Perfor-
mance and Operational Testing of LANL HPC Clusters”. In: Proceed-
ings of the International ACM/IEEE Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC’11). 2011,
pp. 1–8.

[314] M. Pedram and I. Hwang. “Power and Performance Modeling in
a Virtualized Server System”. In: Proceedings of the 39th Interna-
tional Conference on Parallel Processing Workshops (ICPPW). 2010,
pp. 520–526.

[315] R. Petrasch and O. Meimberg. Model Driven Architecture - Eine
praxisorientierte Einführung in die MDA. Vol. 1. dpunkt.verlag, 2006.
isbn: 978-3-89864-343-6.

[316] F. Petrini, W.-C. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. “The
Quadrics Network: High-Performance Clustering Technology”. In:
IEEE Micro 22.1 (2002), pp. 46–57.

[317] F. Petrini, D. Kerbyson, and S. Pakin. “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q”. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC’03). 2003, pp. 55–72.

Bibliography 355

[318] F. Petrini, J. Moreira, J. Nieplocha, M. Seager, C. Stunkel, G. Thor-
son, P. Terry, and S. Varadarajan. “What are the Future Trends in
High-Performance Interconnects for Parallel Computers”. In: Proceed-
ings of the 12th IEEE Symposium on High Performance Interconnects.
2004.

[319] W. Pfeiffer and N. J. Wright. “Modeling and Predicting Application
Performance on Parallel Computers Using HPC Challenge Bench-
marks”. In: Proceedings of the International IEEE Symposium on
Parallel and Distributed Processing (IPDPS’08). 2008, pp. 1–12.

[320] G. Pfister. In Search of Clusters. Vol. 2. Prentice Hall, 1997. isbn:
9-780-13899-709-0.

[321] G. Pfister. In Search of Clusters: The Coming Battle in Lowly Parallel
Computing. Prentice-Hall, Inc., 1995. isbn: 978-0-13437-625-7.

[322] C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Vol. 4.
Prentice Hall, 2007.

[323] T. C. Powell and A. Dent-Micallef. “Information Technology as Com-
petitive Advantage: the Role of Human, Business, and Technology
Resources”. In: Strategic Management Journal 18.5 (1997), pp. 375–
405.

[324] J. Pras and A. Schoenwaelder. On the Difference between Information
Models and Data Models. Tech. rep. RfC 3444. The Internet Society,
Network Working Group, 2003.

[325] J. Qin, K. Y. Chan, and P. Manneback. “Performance Analysis in Par-
allel Triangular Solver”. In: Proceedings of the 2nd International IEEE
Conference on Algorithms & Architectures for Parallel Processing
(ICAPP’96). 1996, pp. 405–412.

[326] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie. Model
Driven Architecture With Executable UML. Cambridge University
Press, 2004. isbn: 978-0-52153-771-1.

[327] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou,
K. Vahi, K. Blackburn, D. Meyers, and M. Samidi. “Scheduling Data-
Intensive Workflows onto Storage-Constrained Distributed Resources”.
In: Proceedings of the 7th International IEEE Symposium on Cluster
Computing and the Grid (CCGRID’07). 2007, pp. 401–409.

[328] L. Ramakrishnan, K. Jackson, S. Canon, S. Cholia, and J. Shalf.
“Defining Future Platform Requirements for e-Science Clouds”. In:
Proceedings of the 1st ACM Symposium on Cloud Computing. ACM,
2010, pp. 101–106.

356 Bibliography

[329] S. Ravelomanana, S. C. S. Bianchi, C. Joumaa, and M. Sibilla. “A
Contextual Grid Monitoring by a Model Driven Approach”. In: Pro-
ceedings of the International Conference on Internet and Web Appli-
cations and Services (AICT-ICIW’06). 2006, pp. 37–37.

[330] D. Reed. High-End Computing: the Challenge of Scale. Tech. rep. Los
Alamos National Laboratory (LANL), 2004.

[331] W. Reisig. Petrinetze – Modellierungstechnik, Analysemethoden, Fall-
studien. Vieweg+Teubner Verlag, 2010. isbn: 9-783-83489-708-4.

[332] M. Riedel, A. Streit, F. Wolf, T. Lippert, and D. Kranzlmüller.
“Classification of Different Approaches for e-Science Applications in
Next Generation Computing Infrastructures”. In: Proceedings of the
4th International IEEE Conference on eScience (eScience’08). 2008,
pp. 198–205.

[333] M. Riedel, F. Wolf, D. Kranzlmüller, A. Streit, and T. Lippert.
“Research Advances by Using Interoperable e-Science Infrastructures”.
In: Cluster Computing 12.4 (2009), pp. 357–372.

[334] S. Robinson. Simulation: The Practice of Model Development and
Use. John Wiley & Sons, Ltd., 2004. isbn: 9-780-47009-278-1.

[335] J. F. Rockart, M. J. Earl, and J. W. Ross. “Eight Imperatives for the
New IT Organization”. In: Sloan Management Review 38.1 (1996),
pp. 43–54.

[336] I. Rodero, S. Chandra, M. Parashar, R. Muralidhar, H. Seshadri,
and S. Poole. “Investigating the Potential of Application-Centric
Aggressive Power Management for HPC Workloads”. In: Proceedings
of the International Conference on High Performance Computing
(HiPC). 2010, pp. 1–10.

[337] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Old-
field, M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls,
and B. Jacob. “The Structural Simulation Toolkit”. In: ACM SIG-
METRICS Performance Evaluation Review - Special Issue on the 1st
Intl. Workshop on Performance Modeling, Benchmarking and Sim-
ulation of High Performance Computing Systems (PMBS’10) 38.4
(2011), pp. 37–42.

[338] A. Rodrigues, R. Murphy, P. Kogge, and K. Underwood. “Character-
izing a New Class of Threads in Scientific Applications for High End
Supercomputers”. In: Proceedings of the 18th International Conference
on Supercomputing (ICS’04). 2004, pp. 164–174.

Bibliography 357

[339] B. Rood and M. Lewis. “Multi-state Grid Resource Availability Char-
acterization”. In: Proceedings of the 8th International ACM/IEEE
Conference on Grid Computing (GRID’07). IEEE Computer Society,
2007, pp. 42–49.

[340] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. “DRAMSim2: A Cycle
Accurate Memory System Simulator”. In: Computer Architecture
Letters 10.1 (2011), pp. 16–19.

[341] J. Ross, C. Beath, and D. Goodhu. Reinventing the IT Organization:
Final Report to the Advanced Practices Council of SIM International.
Tech. rep. Sloan School of Management, MIT, 1995.

[342] C. Rupp. Requirements-Engineering und -Management: Professionelle,
iterative Anforderungsanalyse für die Praxis. Vol. 5. München: Hanser,
2009. isbn: 978-3-44641-841-7.

[343] C. Rupp and K. Pohl. Basiswissen Requirements Engineering: Aus-
und Weiterbildung nach IREB-Standard zum Certified Professional
for Requirements Engineering Foundation Level. Vol. 2. dpunkt.verlag,
2009. isbn: 978-3-89864-708-3.

[344] C. Rupp, S. Queins, and B. Zengler. UML 2 glasklar: Praxiswissen
für die UML-Modellierung. Vol. 3. Carl Hanser Verlag GmbH & CO.
KG, 2007. isbn: 9-783-44641-118-0.

[345] K. Rycerz, E. Ciepiela, G. Dyk, D. Groen, T. Gubala, D. Harezlak,
M. Pawlik, J. Suter, S. Zasada, P. Coveney, and M. Bubak. “Support
for Multiscale Simulations with Molecular Dynamics”. In: Procedia
Computer Science 18 (2013), pp. 1116–1125.

[346] M. Sääksjärvi. “The Roles of Corporate IT Infrastructure and Their
Impact on IS Effeciveness”. In: Proceedings of the 8th European
Conference on Information Systems (ECIS’2000). 2000.

[347] A. Sabetta and H. Koziolek. “Measuring Performance Metrics: Tech-
niques and Tools”. In: Dependability Metrics. Ed. by I. Eusgeld, F. C.
Freiling, and R. Reussner. Vol. 4909. Springer, 2008, pp. 226–232.

[348] R. Sabherwal and Y. E. Chan. “Alignment Between Business and IS
Strategies: A Study of Prospectors, Analyzers, and Defenders”. In:
Information Systems Research 12.1 (2001), pp. 11–33.

[349] S. Saini, D. Talcott, D. Jespersen, J. Djomehri, H. Jin, and R. Biswas.
“Scientific Application-based Performance Comparison of SGI Altix
4700, IBM POWER5+, and SGI ICE 8200 Supercomputers”. In: Pro-
ceedings of the ACM/IEEE Conference on Supercomputing (SC’08).
2008, pp. 1–12.

358 Bibliography

[350] T. Sato. “Can the Earth Simulator Change the Way Humans Think?”
In: Proceedings of the 16th International Conference on Supercom-
puting (ICS’02). 2002, pp. 1–1.

[351] T. Sato, S. Kitawaki, and M. Yokokawa. “Earth Simulator Running”.
In: Proceedings of the Proceedings of ISC. 2002, pp. 20–22.

[352] R. Savola. “Towards a Security Metrics Taxonomy for the Information
and Communication Technology Industry”. In: Proceedings of the
International IEEE Conference on Software Engineering Advances
(ICSEA’07). 2007.

[353] M. Schiffers. “Management dynamischer Virtueller Organisationen
in Grids”. PhD thesis. Fakultät für Mathematik, Informatik und
Statistik der Ludwig-Maximilians-Universität München, 2007.

[354] R. Schöne and D. Hackenberg. “On-Line Analysis of Hardware Per-
formance Events for Workload Characterization and Processor Fre-
quency Scaling Decisions”. In: Proceedings of the 2nd International
ACM/SPEC Conference on Performance Engineering (ICPE’11).
2011, pp. 481–486.

[355] U. Schöning. Theoretische Informatik - kurzgefasst. Vol. 4. Spektrum
Akademischer Verlag, 2008. isbn: 978-3-82741-824-1.

[356] M. Schulte-Zurhausen. Organisation. Vol. 4. Vahlen Franz GmbH,
2005. isbn: 978-3-80063-205-3.

[357] B. Selic. “The Pragmatics of Model-Driven Development”. In: IEEE
Software 20.5 (2003), pp. 19–25.

[358] P. Senkul, M. Kifer, and I. Toroslu. “A Logical Framework for Schedul-
ing Workflows Under Resource Allocation Constraints”. In: Proceed-
ings of the 28th International Conference on Very Large Data Bases
(VLDB’02). 2002, pp. 694–705.

[359] P. Senkul and I. Toroslu. “An Architecture for Workflow Scheduling
under Resource Allocation Constraints”. In: Information Systems
30.5 (2005), pp. 399–422.

[360] H. Shan, K. Antypas, and J. Shalf. “Characterizing and Predicting
the I/O Performance of HPC Applications Using a Parameterized
Synthetic Benchmark”. In: Proceedings of the ACM/IEEE Conference
on Supercomputing (SC’08). 2008, pp. 1–12.

[361] S. Shang and P. B. Seddon. “Assessing and Managing the Bene-
fits of Enterprise Systems: the Business Manager’s Perspective”. In:
Information Systems Journal 12.4 (2002), pp. 271–299.

Bibliography 359

[362] I. Sharapov, R. Kroeger, G. Delamarter, R. Cheveresan, and M.
Ramsay. “A Case Study in Top-Down Performance Estimation for a
Large-Scale Parallel Application”. In: Proceedings of the 11th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’06). ACM, 2006, pp. 81–89. isbn: 1-59593-189-9.

[363] S. Sharma, C.-H. Hsu, and W.-C. Feng. “Making a Case for a
Green500 List”. In: Proceedings of the Parallel and Distributed Pro-
cessing Symposium (IPDPS’06). 2006, pp. 1–8.

[364] S. K. Sia, C. Soh, and P. Weill. “Global IT Management: Structuring
for Scale, Responsiveness, and Innovation”. In: Proceedings of the 3rd
ACM Communications of the ACM 53.3 (2010), pp. 59–64.

[365] M. Silver, L. Markus, and C. M. Beath. “The Information Technology
Interaction Model: A Foundation for the MBA Core Course”. In: MIS
Quarterly 19.3 (1995), pp. 361–390.

[366] Y. Simmhan and L. Ramakrishnan. “Comparison of Resource Plat-
form Selection Approaches for Scientific Workflows”. In: Proceedings
of the 19th International ACM Symposium on High Performance
Distributed Computing. ACM, 2010, pp. 445–450.

[367] H. A. Simon. The Sciences Of The Artificial. Vol. 2. 1981. isbn:
978-0-26226-449-5.

[368] H. Simon. The Sciences Of The Artificial. Vol. 3. MIT Press, 1996.
isbn: 978-0-26226-449-5.

[369] M. Singh. “Synthesizing Distributed Constrained Events from Trans-
actional Workflow Specifications”. In: Proceedings of the 12th Inter-
national Conference on Data Engineering. 1996, pp. 616–623.

[370] M. Singh. “Semantical Considerations on Workflows: An Algebra
for Intertask Dependencies”. In: Proceedings of the International
Workshop on Database Programming Languages, 1995, pp. 1–17.

[371] A. Sinha and A. P. Chandrakasan. “Dynamic Voltage Scheduling
using Adaptive Filtering of Workload Traces”. In: Proceedings of the
14th International Conference on VLSI Design. 2001, pp. 221–226.

[372] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha. “A Framework for Performance Modeling and Pre-
diction”. In: Proceedings of the ACM/IEEE Conference on Supercom-
puting (SC’02). 2002, pp. 21–21.

360 Bibliography

[373] A. Snavely, N. Wolter, and L. Carrington. “Modeling Application
Performance by Convolving Machine Signatures with Application
Profiles”. In: Proceedings of the International IEEE Workshop on
Workload Characterization. 2001, pp. 149–156.

[374] Software Engineering Standards Committee (SESC). IEEE Recom-
mended Practice for Software Requirements Specifications. Tech. rep.
IEEE Std 830-1998. Institute of Electrical and Electronics Engineer-
ings, Inc. (IEEE), 1998.

[375] K. Specht, R. Bulander, and W. Gohout. Statistik für Wirtschaft und
Technik. Oldenbourg Verlag, 2012. isbn: 978-3-48671-356-5.

[376] T. Stahl and M. Völter. Model-Driven Software Development – Tech-
nology, Engineering, Management. John Wiley & Sons, Inc., 2006.
isbn: 978-0-470-02570-3.

[377] C. Stiller. “Grundbegriffe der Messtechnik”. In: Grundlagen der Mess-
und Regelungstechnik. Ed. by C. Stiller. Shaker Verlag, 2006, pp. 113–
128.

[378] P. A. Strassmann. The Business Value of Computers. Vol. 1. The
Infomation Economic Press, 1990. isbn: 9-780-96204-132-7.

[379] C. Straube. “DAGA – Active Probing zur Bestimmung der Verfüg-
barkeit von Grid-Ressourcen”. Diploma thesis. Ludwig-Maximilians-
Universität München, 2011.

[380] C. Straube and D. Kranzlmüller. “A Generic Capability Model for An-
alyzing Modification Effects in HPC Infrastructures”. Poster presenta-
tion at the 22nd International ACM Symposium on High Performance
Parallel and Distributed Computing (HPDC’13). 2013.

[381] System Configuration Details. 2014. url: http://www.lrz.de/
services / compute / supermuc / systemdescription/ (visited on
08/15/2014).

[382] System Security Engineering - Capability Maturity Model – Model
Description Document. Tech. rep. 3.0. Carnegie Mellon University,
2003.

[383] T. Talbot and H. Davis. Verizon NEBS TM Compliance: Energy
Efficiency Requirements for Telecommunications Equipment. Tech.
rep. VZ.TPR.9205. Verizon, 2011.

[384] A. S. Tanenbaum. Computerarchitektur - Strukturen - Konzepte -
Grundlagen. Vol. 5. Addison-Wesley, 2005. isbn: 978-3-82737-151-5.

Bibliography 361

[385] A. Tanenbaum and M. V. Steen. Verteilte Systeme - Prinzipien Und
Paradigmen. Vol. 2. Addison-Wesley, 2007. isbn: 978-3-82737-293-2.

[386] J. Taylor. Enhanced-Science (e-Science) Definition. 2013. url: www.e-
science.clrc.ac.uk (visited on 03/20/2013).

[387] The Livermore Fortran Kernels: A Computer Test of the Numerical
Performance Range. Tech. rep. UCRL-5375. Lawrence Livermore
National Laboratory, 1986.

[388] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya. “DCSim: A Data
Centre Simulation tool for Evaluating Dynamic Virtualized Resource
Management”. In: Proceedings of the 8th International Conference and
Workshop on Systems Virtualization Management (SVM), Network
and Service Management (CNSM). 2012, pp. 385–392.

[389] A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely. “Mod-
eling Power and Energy Usage of HPC Kernels”. In: Proceedings
of the 26th International IEEE Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW’12). 2012, pp. 990–998.

[390] V. Tosic and S. Dordevic-Kajan. “The Common Information Model
(CIM) Standard – An Analysis of Features and Open Issues”. In: Pro-
ceedings of the 4th International Conference on Telecommunications
in Modern Satellite, Cable and Broadcasting Services (TELSIKS’99).
1999, pp. 677–680.

[391] K. Trivedi. Probability and Statistics with Reliability Queuing and
Computer Science Applications. Vol. 2. John Wiley & Sons, Inc., 2001.
isbn: 978-0-47133-341-8.

[392] D. Tsichritzis. “Beyond Calculation”. In: Beyond Calculation: The
Next Fifty Years of Computing. Ed. by P. Denning and R. Metcalfe.
1997, pp. 259–265.

[393] P. Turnbull. “Effective Investment in Information Infrastructures”.
In: Information and Software Technology 33.3 (1991), pp. 191–199.

[394] Twenty-One Experts Define Cloud Computing. 2014. url: http:
//cloudcomputing.sys-con.com/node/612375/print (visited on
08/11/2014).

[395] A. Umar. “IT Infrastructure to Enable Next Generation Enterprises”.
In: Information Systems Frontiers 7.3 (2005), pp. 217–256.

[396] E. Upton and G. Halfacree. Raspberry Pi User Guide. Wiley, 2013.
isbn: 978-1-11879-546-0.

362 Bibliography

[397] U. Valentini, R. Weißbach, R. Fahney, T. Gartung, J. Glunde, A.
Herrmann, A. Hoffmann, and E. Knauss. Requirements Engineering
und Projektmanagement. Springer, 2013. isbn: 9-783-64229-432-7.

[398] A. Varga. “The OMNeT++ Discrete Event Simulation System”. In:
Proceedings of the European Simulation Multiconference (ESM’01).
2001, pp. 185–192.

[399] N. Venkatraman. “IT-Enabled Business Transformation from Au-
tomation to Business Scope Redefinition”. In: Sloan Management
Review 35.2 (1994).

[400] S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, and M. Jaeger.
“General Availability Model for Multilayer Transport Networks”. In:
Proceedings of the 5th International Workshop on Design of Reliable
Communication Networks (DRCN’05). IEEE Computer Society, 2005,
pp. 1–8.

[401] A. Voss, M. Mascord, M. Fraser, M. Jirotka, R. Procter, P. Halfpenny,
D. Fergusson, M. Atkinson, S. Dunn, and T. B. and. “e-Research
Infrastructure Development and Community Engagement”. In: Pro-
ceedings of the UK e-Science All Hands Meeting. 2007.

[402] L. Wang and S. U. Khan. “Review of Performance Metrics for Green
Data Centers: a Taxonomy Study”. In: The Journal of Supercomputing
63.3 (2011), pp. 639–656.

[403] S. C. Ward. “Arguments for Constructively Simple Models”. In: Jour-
nal of the Operational Research Society 40.2 (1989), pp. 141–153.

[404] T. Warner. “Information Technology as Competitive Burden”. In:
Sloan Management Review 29.1 (1987), pp. 55–61.

[405] G. Wasson and M. Humphrey. “Policy And Enforcement In Virtual
Organizations”. In: Proceedings of the 4th International Workshop on
Grid Computing (GRID’03). 2003, pp. 125–132.

[406] J. Watt, O. Ajayi, J. Jiang, J. Koetsier, and R. O. Sinnott. “A
Shibboleth-Protected Privilege Management Infrastructure for e-
Science Education”. In: Proceedings of the 6th International IEEE
Symposium on Cluster Computing and the Grid (CCGRID’06). 2006,
pp. 356–364.

[407] R. P. Weicker. “An Overview Of Common Benchmarks”. In: Computer
23.12 (1990), pp. 65–75.

[408] R. Weicker. “A Detailed Look At Some Popular Benchmarks”. In:
Parallel Computing 17.10 (1991), pp. 1153–1172.

Bibliography 363

[409] R. Weicker. “Dhrystone: A Synthetic Systems Programming Bench-
mark”. In: Communications of the ACM 27.10 (1984), pp. 1013–
1030.

[410] P. Weill. The Role and Value of Information Technology Infrastruc-
ture: Some Empirical Observations. Tech. rep. Sloan WP No. 3433-92.
Massachusetts Institute of Technology (MIT), Sloan School of Man-
agement, 1992.

[411] P. Weill, M. Subramani, and M. Broadbent. IT Infrastructure for
Strategic Agility. Tech. rep. Massachusetts Institute of Technology
(MIT), Sloan School of Management, 2002.

[412] J. Weinberg, M. McCracken, E. Strohmaier, and A. Snavely. “Quanti-
fying Locality In The Memory Access Patterns of HPC Applications”.
In: Proceedings of the ACM/IEEE Conference on Supercomputing
(SC’05). 2005, pp. 50–60.

[413] M. Weiser, B. Welch, A. Demers, and S. Shenker. “Scheduling for
Reduced CPU Energy”. In: Mobile Computing. Ed. by T. Imielinski
and H. Korth. Vol. 353. Springer, 1996, pp. 449–471.

[414] B. Wichmann. Validation Code for the Whetstone Benchmark. Tech.
rep. NPL-DITC 107/8. National Physical Laboratory, 1988.

[415] M. Wieczorek, A. Hoheisel, and R. Prodan. “Taxonomies of the Multi-
Criteria Grid Workflow Scheduling Problem”. In: Proceedings of the
Grid Middleware and Services. Springer, 2008, pp. 237–264.

[416] M. Wieczorek, R. Prodan, and T. Fahringer. “Comparison of Work-
flow Scheduling Strategies on the Grid”. In: Proceedings of the Paral-
lel Processing and Applied Mathematics. Vol. 3911. Springer, 2006,
pp. 792–800.

[417] T. Wilde, A. Auweter, and H. Shoukourian. “The 4 Pillar Framework
for Energy Efficient HPC Data Centers”. In: Computer Science -
Research and Development (2013), pp. 1–11.

[418] B. Wilkinson. Grid Computing - Techniques and Applications. Chap-
man & Hall/CRC Computational Science, 2009. isbn: 978-1-42006-
954-9.

[419] T. Willemain. “Insights on Modeling from a Dozen Experts”. In:
Operations Research 42.2 (1994), pp. 213–222.

[420] D. Woollard, N. Medvidovic, Y. Gil, and C. A. Mattmann. “Scientific
Software as Workflows: From Discovery to Distribution”. In: IEEE
Software 25.4 (2008), pp. 37–43.

364 Bibliography

[421] W. Xia and W. R. King. Determinants of Organizational IT Infras-
tructure Capabilities: An Empirical Study. Tech. rep. Carlson School
of Management, University of Minnesota, 2002.

[422] J. Xu, Z. Kalbarczyk, and R. K. Iyer. “Networked Windows NT
System Field Failure Data Analysis”. In: Proceedings of the Inter-
national Pacific Rim Symposium on Dependable Computing. 1999,
pp. 178–185.

[423] L. Xue, G. Ray, and B. Gu. “Environmental Uncertainty and IT In-
frastructure Governance: A Curvilinear Relationship”. In: Information
Systems Research (INFORMS) 22.2 (2011), pp. 389–399.

[424] T. Yang, X. Ma, and F. Mueller. “Predicting Parallel Applications’
Performance Across Platforms Using Partial Execution”. In: Pro-
ceedings of the ACM/IEEE Conference on Supercomputing (SC’02).
2002.

[425] Y. Yang, X. Zhang, and Y. Song. “An Effective and Practical Per-
formance Prediction Model for Parallel Computing on Nondedicated
Heterogeneous NOW”. In: Journal of Parallel and Distributed Com-
puting 38.1 (1996), pp. 63–80.

[426] R. K. Yin. Case Study Research: Design and Methods. Vol. 4. SAGE
Publications, 2008.

[427] M. Yokokawa. “Present Status of Development of the Earth Simulator”.
In: Proceedings of the Innovative Architecture for Future Generation
High-Performance Processors and Systems. 2001, pp. 93–99.

[428] J. Yu, R. Buyya, and C. K. Tham. “Cost-Based Scheduling of Sci-
entific Workflow Applications on Utility Grids”. In: Proceedings of
the 1st International Conference on e-Science and Grid Computing.
2005, pp. 139–147.

[429] J. Yu and R. Buyya. “A Taxonomy of Scientific Workflow Management
Systems for Grid Computing”. In: Journal of Grid Computing 3.3-4
(2005), pp. 171–200.

[430] J. Yu, R. Buyya, and K. Ramamohanarao. “Workflow Scheduling
Algorithms for Grid Computing”. In: Proceedings of the Metaheuristics
for Scheduling in Distributed Computing Environments. Ed. by F.
Xhafa and A. Abraham. Vol. 146. Springer, 2008, pp. 173–214.

[431] S. Zanikolas and R. Sakellariou. “A Taxonomy of Grid Monitoring
Systems”. In: Future Generation Computer Systems 21.1 (2005),
pp. 163–188.

Bibliography 365

[432] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and
R. Wang. “Modeling Hard-Disk Power Consumption”. In: Proceedings
of the 2nd Conference on File and Storage Technologies (FAST’03).
2003, pp. 217–230.

[433] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling
and Simulation – Integrating Discrete Event and Continous Complex
Dynamics Systems. Vol. 2. Academic Press, 2000. isbn: 9-780-12778-
455-7.

[434] M. V. Zelkowitz and D. R. Wallace. “Experimental Models for Vali-
dating Technology”. In: IEEE Computer 31.5 (1998), pp. 23–31.

[435] M. Zelkowitz. “An Update to Experimental Models for Validating
Computer Technology”. In: Journal of Systems and Software 82.3
(2009), pp. 373–376.

[436] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud Computing: State-of-
the-Art and Research Challenges”. In: Journal of Internet Services
and Applications 1.1 (2010), pp. 7–18.

[437] H. Zhao and R. Sakellariou. “Advance Reservation Policies for Work-
flows”. In: Proceedings of the Job Scheduling Strategies for Parallel
Processing. Ed. by E. Frachtenberg. Vol. 4376. Springer, 2007, pp. 47–
67.

[438] Y. Zhao, I. Raicu, and I. Foster. “Scientific Workflow Systems for
21st Century, New Bottle or New Wine?” In: Proceedings of the IEEE
Congress on Services - Part I. 2008, pp. 467–471.

[439] G. Zheng, G. Gupta, E. Bohm, I. Dooley, and L. V. Kale. “Simulating
Large Scale Parallel Applications Using Statistical Models for Se-
quential Execution Blocks”. In: Proceedings of the 16th International
IEEE Conference on Parallel and Distributed Systems (ICPADS’10).
2010, pp. 221–228.

[440] G. Zheng, A. K. Singla, J. M. Unger, and L. Kalé. “A Parallel-Object
Programming Model for Petaflops Machines and Blue Gene/cyclops”.
In: Proceedings of the International IEEE Parallel and Distributed
Processing Symposium. 2002, pp. 8–16.

[441] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. Kalé. “Simulation-
Based Performance Prediction for Large Parallel Machines”. In: Jour-
nal of Parallel Programming 33.2-3 (2005), pp. 183–207.

Abbreviations and index

ASCI Advanced Simulation and Computing
BLAS Basic Linear Algebra Subroutines
CDN Content Delivery Networks
CFD Computational Fluid Dynamics
CIM Common Information Model
CMB Cosmic Microwave Background
CMDB Configuration Management Database
COTS Commodity-off-the-shelf
CPU Central Processing Unit
CUE Carbon Usage Effectiveness
DMTF Distributed Management Task Force
DOE Department of Energy
DRIHM Distributed Research Infrastructure for Hydro Meteorology
DVFS Dynamic Voltage and Frequency Scheduling
EBNF Extended Backus Naur Form
EGEE Enabling Grids for e-Science
FLOP Floating Point Operation
GLUE Grid Laboratory Uniform Environment
GPFS General Parallel File System
GPU Graphics Processing Unit
HM Hydro Meteorology
HPC High Performance Computing

367

368 Bibliography

HPL High Performance LINPACK
IT Information Technology
JSDL Job Submission Description Language
KPI Key Performance Indicators
LANL Los Alamos National Laboratory
LRZ Leibniz Supercomputing Center
MADCAP Microwave Anisotropy Dataset Computational Analysis

Package
MDA Model Driven Architecture
MDD Model Driven Development
MOF Meta Object Facility
MPI Message Passing Interface
NAS Network Attached Storage
NASA National Aeronautics and Space Administration
NGI National Grid Initiatives
OGF Open Grid Forum
ORNL Oak Ridge National Laboratory
PAPI Performance Application Programming Interface
PERCS Productive, Easy-to-use, Reliable Computing System
PIM Platform Independent Model
PRACE Partnership for Advanced Computing in Europe

Platform Specific Implementation
PSM Platform Specific Model
PUE Power Usage Efficiency
QPI Quick Path Interconnect
RAPL Running Average Power Limit
RDL Resource Description Language
RPi Raspberry Pi
RS Requirements Specification
SNMP Simple Network Management Model
SLA Service Level Agreement
SGI Silicon Graphics
TOC Total Cost of Ownership
UML Unified Modeling Language

A
Actor . 62
Apple TV . 27
ASCI 29, 226, 235, 280
ASCI machines

Purple.187, 235
Q . 235

AutoTune . 196

B
BDII . 32
Benchmark

Kernel . 41
LINPACK 38, 165
MADbench2 41
MADCAP 41, 279
NAS 38, 187, 279
Partial . 41
STREAM 41, 138
Sweep3D 41
Synthetic 41
Whetstone.41

Beowulf . 27
BLAS . 278

C
Carbon Usage Effectiveness . . 246
Chipset . 26

Northbridge 26
Southbridge 26

CIM 119, 236, 247, 261
CISC. .25
Clock speed 25
Cluster . 26
CMB . 279
CMDB. 118
Content Delivery Network 21
COTS. .26
CPU . 24
Cray machines

Jaguar.30, 236
Red Storm 187, 235

Cycle . 25

D
Design Cycle17
Design Science 15
DMTF . 236
DOE. 226
DRIHM 10, 63, 73, 200
DVFS47, 152, 233

E
e-Infrastructure 36
e-Science . 36
Earth Simulator 235
EBNF . 255
EGEE. .36
Exascale . . 29, 35, 46, 70, 226, 307

G
Globus Toolkit 237
GLUE 32, 109, 237, 247
GPFS . 65
GPU . 24
Grammar .255
Grid . 23, 30

H
High Performance Computing . . 1,

23
HMR. .74
Hydro Meteorology 63

I
IBM . 235
IBM machines

BlueGene/L 187, 235
Instruction . 25
Intel . 47
IOR. .139

369

370 Abbreviations and index

IT governance 2

J
J2EE . 222
JSDL . 121

K
Knowledge Base 18, 253
KPI . 69, 246

L
Laboratory

LANL 29, 235, 280
ORNL. 30, 236

LRZ . 3, 65

M
MDA . 260
MDD . 247
Measurement.256
Meta model hierarchy 259
Meta Object Facility 260
Morphological field 9, 22, 55
MPI . 234

N
Nagios . 32
NASA. 66, 235
Network Attached Storage.65
NGI. .75

O
OGF . 237
OMNeT++ 232
One-size-fits-all 6, 87, 88, 240
Open Science Grid 36
Optimization 262

P
PAPI 43, 233, 259
PERCS . 232
Performance

FLOP/s. .7, 48, 168, 292, 307

MIP/s . 48
Throughput48
TTC. . .48, 138, 153, 292, 307
TTSD . 48

PetaFLOP.10, 29
Petascale 29, 70, 226
PIM. .261
Power Usage Effectiveness 246
PowerNap 47, 152
PRACE 45, 65
Production rule255
PSI . 261, 368
PSM . 261
PUE . 47

Q
Quick Path Interconnect 26

R
RAPL. 129, 259
Raspberry Pi 27, 200
Reasoning function 7, 88
Relevance Cycle17
Requirements Specification87, 200,

264
Rigor Cycle 17
RISC. .25
Roadrunner 29

S
Service Level Agreement 1, 71
SGI . 235
SGI machines

Columbia 235
Simulation chain 63
SLA . 239
SpeedStep . 47
SuperMUC. 3, 63, 65, 200

T
TeraGrid . 36
Terascale . 29

Abbreviations and index 371

Tianhe-2 . 68
Total Cost of Ownership 1

U
Unified Modeling Language. . . .62

textbf . 270
Use Case . 62

V
Von Neumann architecture 24

W
Water Usage Effectiveness 246

