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Abstract

Postural control during standing and walking is an inherently unstable task requiring the inter-

action of various biomechanical, sensory, and neurophysiological mechanisms to shape stable 

patterns of whole-body coordination that are able to counteract postural disequilibrium. This 

thesis focused on the examination of central aspects of the functional roles of these mechanisms 

and the modes of interaction between them. A further aim was to determine the conditions of 

dynamic stability for healthy standing and walking performance as well as for certain balance 

and gait disorders.

By studying movement fluctuations in the walking pattern it could be demonstrated that dynamic 

stability during walking depends on gait speed and is differentially regulated for the medio-lateral 

and the fore-aft walking planes. Stability control in the fore-aft walking plane exhibits attractor 

dynamics typical for a dynamical system. Accordingly, the most stable pattern of movement coor-

dination in terms of minimal fluctuations in the order parameter (i.e., the relative phase between 

the two oscillating legs) can be observed at the attractor of self-paced walking. Critical fluctuations 

occur at increasingly non-preferred speeds, indicating a loss of dynamic gait stability close to the 

speed boundaries of the walking mode. Moreover, stability control during slow walking is critically 

dependent on sensory feedback control, whereas dynamic stability during fast walking relies 

mainly on the smooth operation of cerebellar pacemaker regions. Disturbances of sensory and 

cerebellar locomotor control in certain gait disorders could be further linked to a loss of dynamic 

gait stability, in particular an increased risk of falls.

Furthermore, this thesis examined alterations in the sensorimotor postural control scheme that 

may trigger the experience of subjective imbalance and vertigo in the conditions of phobic postural 

vertigo and visual height intolerance. Both conditions are characterized by an inadequate mode 

of balance regulation featuring increased levels of open-loop balance control and a precipitate 

integration of closed-loop sensory feedback into the postural control scheme. This inadequate 

balance control strategy is accompanied by a stiffening of the anti-gravity musculature and is 

elicited by specific influences of attention and sensory feedback control. 

A b s t r A c t



	

The findings of this thesis contribute to the understanding of central sensorimotor mechanisms 

involved in the control of dynamic postural stability during standing and walking. They further 

provide relevant information for the differential diagnosis and fall risk estimation of certain bal-

ance and gait disorders. 
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1	 Introduction

The ability to control our body’s position in space relies on the complex interaction of the mus-

culoskeletal and neural systems, collectively referred to as the postural control system. Human 

posture is inherently unstable since two-thirds of the body mass is located two-thirds of body 

height above the ground. Thus, even small deviations from a perfectly upright body position cause 

a gravity-induced torque, which acts on the body by accelerating it further away from the upright 

position (Peterka, 2002, Winter, 1995a). To achieve a stable postural control, the high dimensionality 

of the body, i.e., the high number of muscles and joints involved in postural movements, must be 

reduced to a system with stable and flexible patterns of coordination that can counteract postural 

disequilibrium (Bernstein, 1967, Turvey, 1990). Several biomechanical, sensory, and neurophysiologi-

cal mechanisms and constraints act together in shaping such patterns of whole-body coordination 

during the behavioral tasks of quiet standing and walking. 

The following introduction reviews basic biomechanical, sensory, and neurophysiological aspects 

of postural control for human standing and walking behavior. Hereafter, a theoretical framework 

for studying postural control dynamics, i.e., the dynamic systems theory, is presented, which  allows 

to investigate how stable patterns of movement emerge, how they are maintained, or how they 

become unstable again. An important concept in describing standing and walking behavior 

from a dynamic systems theory perspective is the role of variability in the control of movement. 

 Therefore, time series approaches are introduced that allow the quantification of various features 

of movement variability. At the end of this introduction, the scope and the aims of this thesis are 

delineated.

I n t r o d u c t I o n



	

1.1	 BIOMECHANICAL ASPECTS AND MOVEMENT STRATEGIES 
OF POSTURAL CONTROL

Postural stability depends on the control of both gravitational forces to maintain posture and 

acceleration forces to maintain equilibrium (Horak et al., 1997, Massion, 1992, Nashner, 1993). Ac-

celeration forces may be elicited from within the body as a result of voluntary movement or from 

outside as a consequence of unexpected external disturbance (Huxham et al., 2001). Central to 

postural stability is the ability to maintain the body’s center of mass (CoM) within the limits of the 

base of support (BoS) (Nashner, 1993, Winter, 1995b, figure 1A). When this condition is satisfied, the 

standing person can resist destabilizing influences of gravity and actively move the CoM. Hereby, 

the CoM is defined as the point that is the center of the total body mass. The BoS is defined as the 

area within the perimeter of contact between the support surface and the two feet. Finally, the 

center of pressure (CoP) is the center of the distribution of the total force applied to the support 

surface. The CoP continuously moves around the CoM to keep the CoM within the limits of the 

BoS (Benda et al., 1994, Hof et al., 2005). It has been proposed that postural stability depends on 

the relationship between the CoM and the CoP rather than the dynamics of the CoM or CoP alone 

(Corriveau et al., 2001, Winter, 1995a). Accordingly, the scalar distance between the CoM and the CoP 

at any given point of time represents the degree of stability. This distance, which is proportional to 

the horizontal acceleration of the CoM, is suggested to be the error signal that drives the postural 

control system during balance control (Pai and Patton, 1997, Shumway-Cook and Woollacott, 2012).

Postural control, even during quiet stance, is dynamic, since standing is a quite unstable task char-

acterized by small amounts of spontaneous postural sway and periodic corrections to overcome 

the destabilizing influence of gravity (Nashner, 1993, Scott and Dzendolet, 1972). Dynamic stability 

describes the neuromuscular system’s capacity to restore or maintain a function successfully, 

despite naturally occurring disturbances. Because quiet stance is characterized by body sway, 

movement strategies are required to maintain dynamic postural stability. To examine movement 

strategies involved in postural control, the body has been modeled as a single-segment inverted 

pendulum pivoting around the ankle (Geursen et al., 1976, Winter, 1995a). In the inverted pendulum 

model of human balance, movement around the ankle joint mainly controls body sway. More 
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recently, however, it was demonstrated that the body during quiet stance behaves rather like a 

two-segment pendulum (legs and trunk) with both in-phase and anti-phase patterns of control 

(Creath et al., 2005). Correspondingly, two primary coordinative movement strategies are involved 

in maintaining an upright stance: (1) an ankle strategy for low sway frequencies (<1 Hz) in which 

both leg and trunk segments move in phase, and (2) a hip strategy for higher sway frequencies 

(>1 Hz) in which leg and trunk segments move out of phase (Creath et al., 2005, Horak and Nashner, 

1986, Nashner, 1993). Both of these movement strategies are always present during control of 

upright stance, but one may predominate depending on sensory information and task condition 

(Horak et al., 1997).

A B

com

com projected
outside of bos

com projected
within bos

com

Figure 1   Stability requirements during standing and walking. (A) Control of postural stability while standing requires that the 
vertical projection of the center of mass (COM) is maintained within the base of support (BOS), defined as the area within the 
perimeter of contact between the support surface and the two feet. (b) While walking, the vertical projection of the COM falls 
outside the BOS most of the time and has to be recaptured by placement of the swinging limb.

Postural control, that ensures stability, is also essential for mobility tasks, such as walking. Control-

ling postural stability during walking is quite different and far more complex than while maintain-

ing upright stance (Winter, 1995a). While the task during standing is to maintain the body’s CoM 

within the BoS, the CoM during walking does not stay within the support base of the feet, and 

thus the body is in a continuous state of imbalance, with each step preventing a fall (figure 1B). The 

only stabilizing period during walking is the double-support phase, when both feet are in contact 

with the ground and the whole-body CoM remains within the BoS (Krebs et al., 2002, Winter, 1983). 



	

However, for 80% of the gait cycle, postural control relies on single-support stance, during which 

the BoS is minimized to the width of the supporting foot and the CoM is located outside of the 

BoS (Winter et al., 1990, Woollacott and Tang, 1997). To prevent a fall, the swinging foot is placed 

ahead of the CoM as it moves forward, thereby ensuring control of the CoM relative to a moving 

BoS (Shumway-Cook and Woollacott, 2012). Thus, gait balance is maintained by regulating the 

interaction between CoM and BoS (Lugade et al., 2011). Accordingly, by modeling gait as a general-

ized inverted pendulum with a moveable support point, it could be demonstrated that a stable 

gait is achieved as a function of the CoM position and velocity at the moment of foot placement 

(Redfern and Schumann, 1994, Townsend, 1985). It has been proposed that as in the case of quiet 

standing, ankle and hip movement strategies may serve to control dynamic postural stability 

during the task of walking (Nashner and Forssberg, 1986, Winter, 1995a).

So far, it has been pointed out that walking and even quiet standing are dynamic processes in which 

the configuration of support and the relative orientation of body parts are continuously shifting 

due to naturally occurring disturbances and voluntary motor acts. Therefore, specific movement 

patterns, such as the above-mentioned ankle and hip strategies are essential to maintain dynamic 

equilibrium despite ongoing disturbances of postural stability. These postural movement strate-

gies are applied in both feedforward and feedback control modes to ensure equilibrium under 

different circumstances (Aruin and Latash, 1995, Li and Aruin, 2007, Massion, 1992, Nashner and 

Forssberg, 1986, Reed-Troy and Grabiner, 2005). Feedforward control refers to postural adjustments 

that are made in anticipation of a voluntary movement (such as the voluntary displacement of 

the CoM during walking) that is potentially destabilizing, in order to maintain stability during the 

movement. In contrast, feedback control refers to postural responses that occur following sensory 

feedback (visual, vestibular, or somatosensory) from external perturbations (such as an unexpected 

disruption of the gait cycle due to a slip). 
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1.2	 SENSORY SYSTEMS IN POSTURAL CONTROL

Sensory control essentially contributes to the regulation of postural stability while standing as well 

as walking. The effective generation and application of forces for controlling the body’s position 

in space relies on an accurate picture of where the body is in space and whether it is stationary 

or in motion. Furthermore, efficient postural control requires the continuous monitoring of the 

reafferent sensory consequences of body movements (Paulus et al., 1984). Under normal conditions, 

peripheral sensory inputs from the visual, vestibular, and somatosensory systems are available to 

detect the body’s position and movement in space with respect to gravity and the environment. 

Each of these sensory systems provides different information and therefore a specific frame of 

reference for postural control (Gurfinkel and Levick, 1991).

The visual system provides information on the position and motion of the head with respect 

to the surrounding environment as well as a reference for verticality (Horak and Macpherson, 

1996). Movements of the body in space generate a continuously changing optic flow field on the 

retina, which provides information about the direction and speed in which the body is moving 

(Gibson, 1958, Rossignol et al., 2006). Previous research has provided several insights into the active 

contribution of visual feedback control on balance regulation during quiet stance. Deprivation of 

visual information leads to a significant increase of sway amplitude during quiet stance (Black 

et al., 1982, Romberg, 1853). Furthermore, stimulation with continuous or transient visual motion 

cues influences body sway behavior (Berthoz et al., 1979, Brandt et al., 1976, Lee and Lishman, 1975, 

Paulus et al., 1984). Visual information also modulates locomotion in a variety of ways and influ-

ences postural control during walking in a phase-dependent manner (Hollands and Marple-Horvat, 

1996). Feedforward control by the visual system is used to regulate gait both on the local level (i.e., 

step-to-step basis) as well as on a global level (i.e., navigational tasks) (Patla, 1997). Visual flow cues 

have been shown to provide information about walking speed (Lackner and DiZio, 2000, Rossignol 

et al., 2006). Correspondingly, it could be demonstrated that artificially produced optic flows trig-

ger locomotion that is perfectly adapted to the speed of the optic flow (Davis and Ayers, 1972). 

Besides walking speed, the absence or perturbation of visual flow information has been shown to 

affect numerous other aspects of the walking kinematics: head direction, cadence, stride length, 



	

stance phase duration, swing limb trajectory, foot elevation, and upper body stability (Assaiante 

et al., 1989, Bauby and Kuo, 2000, Cromwell et al., 2002, Hollands and Marple-Horvat, 1996, Jahn 

et al., 2001, Marco et al., 2012, Patla and Goodale, 1996, Patla, 1997, Rhea and Rietdyk, 2007). 

The vestibular system supplies the postural control system with information about the position 

and movement of the head with respect to gravity and inertial forces, thereby providing a stable 

gravito-inertial frame of reference for balance control (Angelaki and Cullen, 2008, Pozzo et al., 1990, 

Pozzo et al., 1995). By indicating the direction and velocity of sudden changes in head movement, 

vestibular signals are thought to trigger the onset of automatic postural responses (Horak et al., 

1994b) as well as to modulate the amplitude of these responses with respect to the amplitude of 

the postural disturbance (Allum et al., 1993a, Horak et al., 1990, Macpherson and Inglis, 1993). The 

vestibular system has further been proposed to contribute to postural control via sensory reaf-

ference by determining the appropriateness and effectiveness of triggered postural responses to 

balance disturbances (Inglis et al., 1995). Moreover, it has been shown that the vestibular system 

plays an essential role in organizing the hip strategy for postural control (Allum et al., 1993b, 

Horak et al., 1990). During quiet stance, the absence of vestibular feedback control can be mainly 

compensated for by information from other sensory modalities; however a complete loss of pos-

tural equilibrium may result if visual and somatosensory sources provide inadequate orientation 

information (Horak et al., 1990, Nashner et al., 1982b). For navigational tasks, such as walking to 

a previously seen target in the dark, vestibular involvement has been demonstrated to play an 

essential role (Fitzpatrick et al., 1999, Jahn et al., 2000). When walking slowly, unilateral vestibular 

deficits result in significant deviations towards the lesioned side (Brandt et al., 1999, Brandt, 2000, 

Brandt et al., 2001, Jahn et al., 2000). Furthermore, there is evidence that vestibular feedback 

regulates the gait kinematics, in particular the timing and magnitude of foot displacement, in a 

phase-dependent manner (Bent et al., 2004).

The somatosensory system contributes to the postural control system by providing information 

about the position and motion of the body with reference to the supporting surfaces. In addition, 

somatosensory inputs throughout the body report information about the relationship of body 
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segments to one another. A loss of somatosensory input from the lower limbs is known to result 

in increased body sway (Diener et al., 1984, Horak et al., 1990, Magnusson et al., 1990). It could 

be demonstrated that two types of somatosensory information are in particular necessary to 

adequately signal the onset and magnitude of disturbances in postural stability and subsequently 

trigger adequate postural responses to restore equilibrium: (1) the muscle proprioceptors and 

joint afferents, which signal joint position and movement, and (2) the mechanoreceptors in the 

soles of the feet, which report the changing patterns of pressure and shear forces resulting from 

body movements (Inglis et al., 1994). Furthermore, the utilization of the ankle strategy is thought 

to require adequate surface somatosensory information (Gutierrez et al., 2001, Horak et al., 1990, 

Inglis et al., 1994). During locomotion, the somatosensory system is thought to differentially influ-

ence the walking dynamics, depending on the gait phase (Zehr and Stein, 1999). Proprioceptively 

mediated stretch reflexes are modulated throughout the gait cycle. At the end of the stance phase, 

they are facilitated in the gastrocnemius and soleus, thereby enabling compensation for ground 

irregularities and assisting in push-off. However, during the swing phase, they are inhibited to 

prevent stretch-reflex-mediated plantar-flexion during ankle dorsiflexion (Rossignol et al., 2006, 

Sinkjær et al., 1996). A reduction or loss of somatosensory inputs from the lower limbs results 

in reduced modulation of the gait dynamics, thereby affecting various aspects of the walking 

kinematics such as walking speed, stride time, stride length, base width, and double support 

duration (Allet et al., 2008, Courtemanche et al., 1996, Mueller et al., 1994)

So far, each of the sensory systems has been shown to provide important information for the 

regulation of balance equilibrium during quiet standing as well as walking. Maintaining postural 

stability essentially relies on the way in which these different sources of sensory information are 

processed and integrated into the postural control scheme. Previous research has suggested that 

sensory cues are combined in an essentially linear manner, i.e., each sensory system detects an error 

indicating deviation of body orientation from a reference position (Fitzpatrick et al., 1996, Johans-

son et al., 1988, Maki et al., 1987). More recently it could be demonstrated that sensory integration 

and postural regulation appear to be linear processes only for specific sensory conditions and fixed 

stimulus amplitudes. When stimulus conditions change, nonlinearities in these processes become 



	

apparent (Oie et al., 2001, Peterka, 2002). Therefore, sensory contributions to postural control ap-

pear to be context-dependent (Forssberg and Nashner, 1982a, Horak and Macpherson, 1996). In line 

with this observation, it has been proposed that the postural control system is able to reweight 

sensory inputs in order to optimize balance regulation in altered sensory environments (Oie et al., 

2002). Hereby, the sensory weighting implies that the gain of a sensory input will depend on its 

accuracy as a reference for body motion. In this view, the ability to maintain stability in a variety of 

environments relies on the considerable redundancy of available senses and the ability to modify 

the relative importance of any of these senses for postural control. Several experiments have 

provided evidence for the hypothesis that a sensory reweighting occurs during postural control 

(Brandt et al., 1998, Jeka et al., 2000, Kuo et al., 1998, Nashner, 1982a). Furthermore it was observed 

that in addition to external environmental factors, features of the internally driven motor program 

can also influence the way in which sensory information is integrated into the postural control 

system. Accordingly, walking speed itself affects the amount of sensory integration for locomo-

tor control. The impact of sensory loss or perturbation decreases with increasing walking speed 

(Brandt et al., 1999, Brandt, 2000, Jahn et al., 2000, Jahn et al., 2001). Correspondingly, functional 

imaging could confirm that sensory cortex activity is decreased at faster walking speeds (Jahn et 

al., 2004, Jahn et al., 2008a).

1.3	 NEUROPHYSIOLOGY OF POSTURAL CONTROL

Up to this point, it has been discussed how postural control during standing and walking arises 

from the dynamic interaction between motor strategies, which organize movements appropriate 

for controlling the body’s position in space and sensory strategies, which process and integrate 

sensory information from the visual, vestibular, and somatosensory systems for adequate postural 

adjustments. The operation of these sensorimotor control strategies relies on the cooperative 

effort of many neurophysiological systems. The neural subsystems involved in postural and loco-

motor control are organized both hierarchically and in parallel, thereby ensuring stable system 

operation even if a disturbance or malfunction occurs in single subsystems (Shumway-Cook and 

Woollacott, 2012). Knowledge of how postural and locomotor functions are distributed within 
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different parts of the nervous system has been mainly derived from research on animal models 

of different complexity (Deliagina et al., 2006, Deliagina et al., 2007) and more recently from 

neuroimaging studies on human stance and gait control (Fukuyama et al., 1997, Gramann et al., 

2011, Jahn et al., 2008b, Ouchi et al., 1999).

The involvement of spinal, brainstem, cerebellar, and basal ganglia circuits in mediating postural 

responses during standing could be demonstrated in animal models (Magnus, 1926, Sherrington, 

1910) and by clinical studies in humans (Bronstein et al., 1990, Horak and Diener, 1994a, Lewko, 

1996). The spinal neural circuitry by itself appears to be able to activate anti-gravity (extensor) 

muscles tonically for appropriate anti-gravity support (Fung and Macpherson, 1999). However, 

postural stability is not solely organized at the spinal level, but requires control by higher supraspi-

nal centers like the brainstem and the cerebellum. Brainstem nuclei were shown to contribute to 

the regulation of anti-gravity muscle tone (Mori et al., 1989), the integration of sensory inputs for 

balance control (Xerri et al., 1988), the organization of anticipatory control accompanying voluntary 

movements (Takakusaki et al., 2004), as well as the restoration of equilibrium following distur-

bance of balance (Stapley and Drew, 2009). The cerebellum is an important site for the integration 

of sensory information into the postural control scheme (Ito, 1984). It is involved in the adaption 

and coordination of reactive postural adjustments based on prior practice and experience (Thach 

and Bastian, 2004). Furthermore, the cerebellum is thought to ensure the appropriate scaling of 

postural response magnitudes for anticipatory postural adjustments (Horak and Diener, 1994a, 

Timmann and Horak, 1997). The basal ganglia have been proposed to contribute to the ability to 

quickly modify muscle patterns with respect to changing task and environmental conditions. Cor-

respondingly, it was shown that the dysfunction of basal ganglia due to Parkinson’s disease results 

in an inability to alter the magnitude and pattern of postural responses for changes in postural 

demands (Beckley et al., 1993, Bloem et al., 1995, Horak et al., 2005). Therefore, it has been suggested 

that the basal ganglia are critical for pre-selecting a brainstem response pattern optimal for the 

initial conditions, with the result that an appropriate response can be rapidly triggered (Jacobs and 

Horak, 2007). Cortical involvement in shaping postural responses has been proposed to contribute 

(1) via a cerebellar-cortical loop to the adaption of postural responses based on prior experience, 



	

and (2) via a ganglia-cortical loop to the pre-selection and optimization of postural responses 

based on current context (Jacobs and Horak, 2007).
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Figure 2   Diagram of the hierarchical locomotor network showing the cortex, the basal ganglia (striatum; pallidum), the thalamus, 
the brainstem and cerebellar locomotor regions (mesencephalic locomotor region, MLr; subthalamic locomotor region, sLr; ponto-
medullary reticular formation, PMrF; cerebellar locomotor region, cLr), and spinal pattern generators (cPG). Descending pathways 
are depicted by dotted lines, ascending pathways by solid lines. Cortical signals project to the brainstem locomotor regions via 
the striatum and pallidum. These signals are conveyed from the pallidum via the SLR to the MLR and are further transmitted to 
the PMRF, where they converge with signals from the CLR. The CLR also projects signals to the MLR via the thalamus and the basal 
ganglia and receives input from the cerebellar cortex. The PMRF is a major site of interaction between ascending and descending 
pathways. Cortical signals are modulated via the basal ganglia-thalamocortical circuitry. Adapted from Jahn et al., 2008a with 
reprint permission from Elsevier. 

The basic rhythmic movements of the legs and arms, which are central to locomotor pattern 

formation, are thought to be largely established by central pattern generators (CPG), i.e., neuronal 

circuits (networks of interneurons) within the spinal cord. The CPG is defined as a neural circuit that 

can produce self-sustained patterns of behavior, independently of sensory input (Grillner, 2003, 

Grillner and Wallen, 1985). Our understanding of the basic principles governing CPG function has 

been mainly gained from research on invertebrates, rats and cats. There is only indirect evidence 

for the presence of spinal CPGs in humans (Dietz, 2003). Although spinal CPGs were shown to 

be able to produce stereotyped locomotor patterns, descending inputs from supraspinal control 
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centers and sensory feedback are required for the modulation of the locomotor pattern to ensure 

adaptability to task and environmental conditions (Armstrong, 1988, Drew et al., 2004, Takakusaki, 

2013). Animal research and neuroimaging studies of human locomotion could identify a supraspi-

nal locomotor network that includes control centers in the brainstem, cerebellum, basal ganglia, 

and the frontal cortex (figure 2). Recordings from neurons in all these regions have shown the 

presence of rhythmical activity during locomotion. This indicates that all these sites are involved 

in the production of the normal walking pattern. Within this supraspinal locomotor circuitry, the 

initiation and termination of gait, changes in direction and velocity during walking, as well as 

navigational tasks are regulated (Armstrong, 1988, Jahn et al., 2008b, Shik and Orlovsky, 1976). 

Brainstem locomotor centers include the mesencephalic locomotor region (MLR) and the sub-

thalamic locomotor region (SLR). Electrical stimulation of these sites has been shown to initiate 

locomotion and to dictate the level of force during stepping (Drew et al., 2004). The brainstem 

locomotor regions receive afferent projections from the basal ganglia, the sensorimotor cortex, 

and the limbic system. Their descending projections reach spinal CPGs via the pontomedullary 

reticular formation (PMRF), the major site for interaction between descending and ascending 

pathways. Cerebellar locomotor regions (CLR) are thought to contribute to temporal and spatial 

coordination of walking movements. It has been proposed that automatic aspects of gait control 

are mediated via a cerebellar pacemaker region in the medial zone of the cerebellum, which re-

ceives sensory input from the somatosensory, vestibular, and visual systems and sends rhythmic 

outputs to the brainstem (Mori et al., 1999, Mori et al., 2001). This cerebellar pacemaker region 

demonstrates enhanced activity with increasing gait speed (Jahn et al., 2008a). Intermediate 

cerebellar zones receive afferent somatosensory input from the limbs via spinocerebellar pathways 

and send modulating signals to the brainstem, which are further relayed to the spinal CPGs for 

shaping and fine-tuning the gait pattern (Grillner and Zangger, 1979). The lateral cerebellum may 

play a role in adjusting gait in novel contexts and when visual guidance is disturbed (Takakusaki 

et al., 2008). Correspondingly, cerebellar dysfunction leads to ataxic gait, which is characterized 

by a highly variable and poorly accurate locomotor pattern including variable foot placements, 

irregular foot trajectories, and an unstable, stumbling walking path (Ilg and Timmann, 2013, Ilg et 



	

al., 2007, Morton and Bastian, 2004). The basal ganglia have been hypothesized to be involved in 

the control of appropriate muscle tone, the modulation of rhythmic stepping movements, and the 

initiation of locomotion. Output nuclei of the basal ganglia send inhibitory projections to the MLR. 

Disinhibition of these projections has been shown to trigger gait initiation (Hashimoto, 2006). An 

increased output of the basal ganglia, as presumed to occur in Parkinson’s disease (DeLong, 1990), 

has been shown to result in a suppression of locomotion and an increase in postural muscle tone 

(Takakusaki et al., 2011, Takakusaki et al., 2003). Cortical regions, including the premotor area and 

the supplementary motor area, are thought to contribute to cognitive aspects of locomotor control, 

visuomotor coordination during gait initiation, as well as obstacle avoidance tasks and anticipatory 

control of walking (Hanakawa et al., 1999, Takakusaki, 2013, Wiesendanger et al., 1987). Locomotor 

regions in the cerebral cortex send projections to the brainstem, forming the cortico-reticulo-

spinal pathway for automated and voluntary control of locomotion (Mori et al., 2001). Additionally, 

locomotor cortex areas are connected to the cerebellum via the thalamus and pontine nuclei as 

well as to the basal ganglia via the basal ganglia-thalamocortical circuitry (Hashimoto, 2006). 

1.4	 POSTURAL CONTROL FROM THE DYNAMIC SYSTEMS THEORY PERSPECTIVE

So far, basic biomechanical, sensory and neurophysiological mechanisms and constraints have 

been discussed that are involved in shaping whole-body coordination for postural control tasks 

such as quiet standing and walking. The emergence of stable, coordinated patterns of movement 

that can counteract postural disequilibrium relies on the complex interaction between these 

mechanisms and constraints. In the following, a theoretical framework of motor control will be 

introduced that allows to determine and analyze the specific conditions under which stable pat-

terns of movement will arise and to further examine how they are maintained or will become 

unstable again. 

The human musculoskeletal apparatus is characterized by a large number of muscles and joints, all 

of which have to be controlled during the execution of coordinated postural movements. Accord-

ingly, each movement involved in postural control comprises a state space of many dimensions; 
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the problem of coordination therefore is to reduce the high-dimensional state space into a state 

space of few dimensions by bringing into proper relation the multiple and different component 

parts of the motor apparatus (Turvey, 1990). Because each postural motor task involves a reduction 

of the numerous kinematic degrees of freedom present within the postural motor apparatus, there 

is an infinite number of appropriate movements that can equivalently solve this task. The problem 

of how the postural control system is capable of choosing among various equivalent movement 

solutions and of coordinating the many muscles and joints involved in a movement, was first 

addressed by the Russian physiologist Nikolai Bernstein: “it is clear that the basic difficulties for 

co-ordination consist precisely in the extreme abundance of degrees of freedom, with which the 

centre is not at first in a position to deal” (Bernstein, 1967). As a solution to the degrees of freedom 

problem, Bernstein hypothesized that there is no central control unit which individually regulates 

each free variable of the musculoskeletal system. Instead the control of coordinated movement 

would be distributed throughout many interacting subsystems working cooperatively together. 

By means of such cooperative interaction the postural control system should be able to group 

together degrees of freedom, resulting in emergent patterns of collective action that may simplify 

the control of the complex musculoskeletal apparatus. More specifically, Bernstein proposed the 

existence of a specific muscle synergy organization, in which groups of muscles are constrained 

to collectively act together as a unit (Bernstein, 1967, Ting and McKay, 2007). The combination of 

only a few of these muscle synergies should be able to make up the whole variety of movements 

required for postural control. The presumed presence of muscle synergies would thereby also solve 

the movement redundancy problem by providing a manageable repertoire of available motor 

reconfiguration patterns that may be selected on the basis of the specific movement context (Chiel 

et al., 2009). Later research has redefined Bernstein’s initial conception of synergies, suggesting 

that synergies are not primarily used to eliminate redundant degrees of freedom but to ensure 

both stability (i.e., the ability to persist under various environmental conditions) and flexibility 

(i.e., the ability to adjust to changing internal or external conditions) of the movement patterns 

(Latash et al., 2007, Thelen et al., 1994). 



	

Bernstein’s theory of motor control entails an early account of the principle of self-organization 

that is central to a dynamic systems theory perspective, namely the hypothesis that out of the 

cooperative interaction between various subsystems, stable macroscopic collective patterns of 

organization can emerge without the need for a central control unit (Turvey, 1990). Self-organi-

zation thereby implies a significant reduction of the degrees of freedom of the system, which 

macroscopically manifests itself in an increase of order, i.e., pattern formation (Haken, 2012). The 

dynamic systems theory attempts to formulate general principles that capture the dynamics 

of self-organizing multi-component systems (Haken, 1977, Kelso, 1995). From the perspective of 

dynamic systems theory, the postural control network is considered a dynamical system, character-

ized by preferred modes of coordination that emerge from various interacting mechanisms and 

constraints (Beek et al., 1995, Collins and Stewart, 1993a, West and Scafetta, 2003). Thus, central 

to this kind of approach is the identification of such preferred modes that lawfully constrain the 

collective order and patterning of standing and walking movements (Richardson et al., 2007).

Within this theoretical framework, the studied system is subject to control parameters, which 

may be fixed from factors external to the system or generated from within the system itself. 

A control parameter is a variable that regulates change in the behavior of the whole system. 

Control parameters, if changed continuously, take a system through its repertoire of coordinated 

patterns. These patterns of whole-system coordination can be characterized by low-dimensional 

collective variables, so-called order parameters whose dynamics are function-dependent. The order 

parameter characterizes the system’s behavior macroscopically and provides a measure for the 

organizational state of the system. On the one hand, the order parameter determines or – using the 

technical term of dynamic systems theory – enslaves the behavior of the individual components 

of the system. On the other, the individual components generate the behavior of the order param-

eter through their coordinated action. Thus, the coordinated interaction of the individual system 

components enables the emergence of an order parameter that in turn governs the behavior of 

the individual components. Dynamic systems theory refers to this phenomenon of bidirectional 

causation between different levels of a system as circular causality. 
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The dynamics of an order parameter φ  can be explored with the help of a potential function φV( )  

that describes the magnitude and the direction of the tendency of φ  to change as a function of 

its own value (Beek et al., 1995, Haken et al., 1985). Accordingly, the equations of motion for order 

parameters are of the form:

�φ
φ
φ

=−
dV( )
d

.

When the time-derivative of the system is zero, the system is in equilibrium. If this equilibrium 

state is a (local) minimum of φV( ),  then the system is stable; if not, the system is unstable. Stable 

equilibrium states of coordinated behavior are referred to as attractor states of the system (Stro-

gatz, 2001). For each such attractor, its basin of attraction refers to the region in the phase space 

of the system in which all initial conditions converge to that attractor. Thus, when the system 

self-organizes itself under the influence of an order parameter, the system is attracted to one of 

the attractor states of the order parameter dynamics, i.e., it settles into a stable mode of behavior 

that it prefers over all possible modes. The stability of a specific attractor is relative to the depth 

of the (local) minimum of φV( )  and the steepness of the slope toward the minimal value, both of 

which depend on the value of the control parameter of the system (Haken et al., 1985). (Figure 3A)

As the control parameter is scaled up or down, the stability conditions of the system’s behavior 

become altered. When the control parameter passes through a so-called critical point, a previ-

ously stable coordinated behavior of the system becomes unstable, and the system switches to 

a new stable pattern of coordination beyond the critical point (Smith and Thelen, 1993, Turvey, 

1990; figures 3B and 3C). At such abrupt changes in the system’s organization of behavior – also 

referred to as non-equilibrium phase transitions – one can observe (1) a sudden jump in the order 

parameter while continuous change takes place in the control parameter, reflecting the nonlinear-

ity within the system’s behavior, and (2) a qualitative change in the order parameter, reflecting 

a reorganization of the system’s global behavior (Diedrich and Warren Jr, 1995, Haken, 1977). Ac-

cording to the dynamic systems theory, there are two early warning signals in the dynamics of a 

system approaching a critical point of phase transition: critical slowing down (i.e., slower recovery 

of the order parameter’s dynamics from perturbations) as well as critical fluctuations, that is both 



	

increased amplitudes of the naturally occurring fluctuations in the order parameter and increased 

autocorrelations within these fluctuations (Ives, 1995, Kelso et al., 1986, Scheffer et al., 2009). Thus, 

critical fluctuations of the order parameter are an essential characteristic of instabilities within 

the studied system. Their experimental detection provides evidence that observed patterns in the 

examined system correspond to attractor states and that the switching between states is due to 

loss of stability (Schöner and Kelso, 1988, Thelen et al., 1994). 
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Figure 3   Concept of attractor states and non-equilibrium phase transitions. Within the framework of dynamic systems theory, the 
global behavior of a dynamical system is governed by a smooth potential V, that is a function of the order parameter φ  and the 
control parameter. (A) The system is in equilibrium, when the time-derivative of the system is zero. If the equilibrium state of the 
system is a (local) minimum of V, then the system’s global behavior is stable. Stable equilibrium states are referred to as attractor 
states of the system. The basin of attraction of an attractor state refers to the region in the system’s phase state in which all initial 
conditions converge to the attractor. (b) If the control parameter is scaled up, the stability conditions of the system become altered, 
i.e., the attractor respectively the (local) minimum of V  flattens and the basin of attraction shrinks. (c) In a non-equilibrium phase 
transition, as the control parameter passes through a critical point, the previously stable organization of the system’s behavior 
becomes unstable, and the system switches to a new stable attractor state beyond the critical point. A non-equilibrium phase 
transition is characterized by a sudden jump of the order parameter φ  while there is continuous change in the control parameter, 
and a qualitative change in φ  reflecting the global reorganization of the system’s behavior.

The above-introduced concepts from dynamic systems theory were applied in previous studies on 

standing and walking behavior. In the case of walking, gait velocity was identified to be a relevant 

control parameter of the locomotor system (Kugler and Turvey, 1987, Wagenaar and van Emmerik, 

1994), because transitions between distinct gait patterns occur when the walking individual is 

forced to locomote faster or when electrical stimulation to certain midbrain areas is increased 

(Hoyt and Taylor, 1981, Shik et al., 1965). Correspondingly, the relative phase φrel  between the oscil-

lating legs has been suggested to be an order parameter of the locomotor system (Schöner et 

al., 1990). Individually preferred walking velocity was thus considered to be the attractor state of 
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walking behavior with respect to the dynamics of the order parameter φrel  (Diedrich and Warren 

Jr, 1995). Bardy and colleagues have studied postural control dynamics during standing within the 

dynamic systems theory (Bardy et al., 2002, Bardy et al., 1999). They considered the relative phase 

φrel  between angular movements of the hips and of the ankles as an order parameter of quiet 

stance behavior. This order parameter was shown to exhibit the attractor states of in-phase (φrel ≈ 

0°) and anti-phase (φrel ≈ 180°) coordination. Furthermore, it could be demonstrated that changes 

between these stable modes of behavior feature the characteristics of non-equilibrium phase 

transitions, including critical slowing down and critical fluctuations (Bardy et al., 2002, James, 2014).

1.5	 TIME SERIES APPROACHES FOR THE ANALYSIS OF MOVEMENT VARIABILITY

For a long time, movement variability was considered to be simply the consequence of errors in 

motor performance or assigned to random neural noise (Faisal et al., 2008, Hausdorff, 2005). How-

ever, by considering postural control from the dynamic systems theory perspective it has become 

apparent that fluctuations within a certain pattern of coordinated movement are a meaningful 

inherent characteristic of the motor behavior and are closely linked to the stability of the move-

ment pattern. Furthermore, previous studies provided evidence that quantitative approaches to 

postural control behavior that are based on averaging movement performance over time, could 

conceal the control principles that underlie the observed postural dynamics and emphasized the 

value of movement fluctuation analysis for disclosing such principles (Hausdorff, 2005, Newell et 

al., 1993). Studying movement fluctuations in postural control behavior is therefore essential in 

order to determine both the stable attractor states and the conditions for instability in standing 

and walking behavior as well as the underlying sensorimotor control principles of these behavioral 

tasks. The following paragraphs will introduce central time series approaches used in the studies 

of this thesis that allow to analyze distinct complementary features of movement fluctuations 

in standing and walking behavior.



	

1.5.1	 Coefficient of variation

The above discussion of non-equilibrium phase transitions has shown that the amplitude of 

fluctuations in the order parameter is an important parameter for determining the system’s sta-

bility. The fluctuation amplitude can be quantified by the coefficient of variation (CV), which is a 

normalized measure of the statistical dispersion of a time series. The CV is defined as the ratio of 

the standard deviation σ  to the mean µ:

σ
µ

=CV ,

and represents the extent of variability in relation to the mean of a time series.

1.5.2	 Detrended fluctuation analysis

Besides the amplitude of order parameter fluctuations, the strength of autocorrelations within 

these fluctuations (i.e., the memory properties of the time series) is another central parameter 

for assessing the stability of the studied system. When considering autocorrelations within a 

time series xk , the correlation of the values xk  and +xk t  for different time lags t is of interest. To 

get rid of a constant offset in the data, the mean is subtracted from the time series x x xk k≡ − . 

The correlations between x -values separated by t  steps are then quantitatively defined by the 

autocorrelation function (Kantelhardt et al., 2001):

∑= =
−+ +

=

−

C(t ) x x
N t

x x1
k k t k k t

k

N t

1
.

If the time series xk  is uncorrelated, C(t )  = 0 for t > 0. The presence of short-range correlations 

in xk  is indicated by an exponentially declining C(t ), C(t ) ~ e( )t−τ with a decay time τ . For the 

case of long-range correlations in xk , C(t )  declines as a power-law, C(t ) ~ t γ−  with an exponent 

0 < γ < 1. However, the direct calculation of C(t )  is usually not reliable due to noise superimposed 

on the recorded time series xk  or unknown underlying trends, i.e., non-stationarities within the 

time series. 
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To evaluate the correlation characteristics within noisy non-stationary time series, a type of root 

mean square analysis called detrended fluctuation analysis (DFA) was developed by Peng and col-

leagues (Peng et al., 1995). The DFA method first forms an accumulated sum ∑= −
=

Y (i) x xkk 1

i  

of the time series xk  of length N.   This integration step has been suggested to avoid shortcomings 

of earlier methods (Delignieres et al., 2005). Thereafter, Y (i)  is divided into non-overlapping seg-

ments ≡











N N
ss  of equal length s, ranging from 4 to N / 4 data points. In the next step the local 

trend pv  for each segment v  is calculated by a least squares fit to the data and subtracted from 

the segment yielding the detrended time series = −Y (i) Y (i) p (i)s v  for the segment duration s.  

After the variance =F (v) Y (i)s
2

s
2  of the detrended series is calculated, the DFA fluctuation function: 

∑=












=

F(s) 1
N

F (v)s
2

v 1

Ns
1
2

,

for the scale s  is obtained, which increases with s  by a power-law F(s) ~ sα  with the scaling 

exponent α . The scaling exponent α  gives a quantitative measure for the strength of long-range 

correlations within the time series. A scaling exponent α = 0.5 indicates uncorrelated data (i.e., 

white noise); α  values between 0.5 and 1.0 indicate persistent long-range power-law correla-

tions; the closer α  is to 1.0 the greater the influence of the distant past when compared with the 

influence of the recent past. The case of α = 1.0 corresponds to 1/f noise, where present events 

are approximately equally correlated with events from the recent and the very distant past. For 

α > 1.0 correlations exist but cease to be of a power-law form; α = 1.5 indicates brown noise, i.e., 

integrated white noise. Brown noise is influenced by the recent past much more strongly than 

by the distant past and is therefore characterized by only local correlations (Fossion et al., 2010, 

Keshner, 1982, Peng et al., 1995).

1.5.3	 Phase synchronization

As mentioned above, the phase relationship between the oscillating legs during walking has been 

suggested to be an order parameter of the walking behavior. To examine the dynamics of this order 

parameter, one can study the fluctuations within the relative timing behavior of the oscillating 

legs by performing a type of phase synchronization analysis (Bartsch et al., 2007b, Strogatz, 2001). 



	

For this purpose, the phase difference between the right and left leg can be determined by using 

the time series of heel-strike (hs) events tkhs  and toe-off (to) events tkto  of the left and right foot: 

ϕ π∆ =
−
−+

2 t t
t tk

m k
m,ri

k
hs,le

k 1
hs,le

k
hs,le ,

where tkhs,le  refers to the k th heel strike event of the left leg and tkm,ri  either to the k th heel-strike 

( m =hs) or toe-off ( m = to) event of the right leg. This yields the time series of phase differences, 

ψ ϕ ϕ ϕ ϕ=∆ ∆ ∆ ∆, ,..., , ,...1
hs

1
to

k
hs

k
to . Since a typical result is ϕ ϕ∆ ≠ ∆hs to , the time series of the nor-

malized phase differences � � � � �ψ ϕ ϕ ϕ ϕ=∆ ∆ ∆ ∆, ,..., , ,...1
hs

1
to

k
hs

k
to   with �ϕ ϕ ϕ ϕ∆ =∆ − ∆ − ∆

1
2
( )k

hs
k
hs hs to  

and �ϕ ϕ ϕ ϕ∆ =∆ + ∆ − ∆
1
2
( )k

to
k
to hs to  is calculated. In order to quantify the distribution of the 

phase differences, the Shannon entropy ∑=−
=

S p ln( p )i ii 1

N  is calculated from the histogram of 

�ψ . Finally, the phase synchronization index is defined by:

ρ=
−S S

S
max

max

,

where =S ln(N )max  (i.e., a uniform distribution of �ψ ). According to this formula, ρ = 0 indicates 

no synchronization, whereas ρ = 1 means a maximal synchronization.

1.5.4	 Stabilogram diffusion analysis

To specifically assess the correlations in experimental CoP time series during quiet standing, Col-

lins and De Luca introduced a time series approach called stabilogram diffusion analysis (SDA) 

(Collins and De Luca, 1993b, Collins and De Luca, 1994). SDA assumes that the CoP trajectory during 

quiet stance can be modeled as a process of coupled, correlated random walks and analyses the 

diffusion properties of this process. A typical SDA shows that spontaneous body sway is charac-

terized by a two-part behavior, indicating that open-loop control governs postural behavior over 

short-term intervals while long-term intervals are regulated by closed-loop control (Collins et al., 

1995, Collins and De Luca, 1993). An open-loop control system operates without sensory feedback 

and determines the steady-state activity of anti-gravity muscles (Laughton et al., 2003). Open-

loop feed-forward control thus represents the motor commands that place the body in a desired 
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posture. In contrast, closed-loop control relies on sensory feedback from the visual, vestibular, and 

proprioceptive systems. Closed-loop feedback control corrects drifts away from desired posture 

due to the effects of gravity, stochastic variations in muscle tone, etc. Intervention of feedback 

control might be triggered when CoP displacement exceeds certain boundaries (Collins and De 

Luca, 1993b) or when CoP velocity reaches a certain threshold (Delignieres et al., 2011). The time 

threshold at which postural control switches from open- to closed-loop behavior is delimited by 

the so-called critical point.
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Figure 4   Stabilogram diffusion analysis: (A) Diagram illustrating the method for calculating the mean squared displacement 
∆ r2  as a function of the time interval ∆ t  for a CoP trajectory consisting of N  data points (x , y ; x , y ;...; x , y )N N1 1 2 2 .   For a given 
∆ t  (spanning m  data intervals) the mean squared displacement can be calculated as follows: ∑∆ = ∆ −

∆ =

−r ( r ) / (N m)
t ii

N m2 2
1

.  
(b) Stabilogram diffusion plot ( ∆ r2  vs. ∆ t ) obtained from the above-described method applied on a CoP time series. Diffusion 
coefficients Ds  and Dl  are computed from the slopes of the fitted lines to the short-term and long-term regions. The critical point 
is defined as the intersection of the lines fitted to the short- and long-term regions. The resulting diffusion plot reflects the two-part 
behavior of spontaneous body sway: over short-term intervals open-loop control governs postural behavior, while long-term intervals 
are regulated by closed-loop control. Adapted from Collins and De Luca, 1993b with reprint permission from Springer Verlag. 



	

The CoP SDAs can be calculated with the following equation:

[ ]∆ = +∆ −r r(t t ) r(t )2 2 ,

where i  indicates the calculation of the mean of the time series (figure 4A). This computation 

is repeated for increasing values of ∆t  in the range of 0-10 s . The resulting diffusion plot shows 

the mean squared displacements against the time intervals ∆t . The short- and long-term diffu-

sion coefficients −D (mm s )s
2 1  and −D (mm s )l

2 1  are determined by linear fits to the diffusion plot. 

The critical point coordinates ∆t (s)c  (critical time) and ∆ r (mm )2
c

2  (critical displacement) are 

obtained from the intersection point of the linear fits to the short- and long-term regions (figure 4B). 

The scaling exponents for the short- and long-term region Hs  and Hl  can be determined by linear 

fits to the log-log plot of the SDA. These exponents, which lie in the range 0 < H < 1, quantify the 

correlation between the step increments, which make up the stabilogram time series. For H > 0.5 

past and future increments are positively correlated. For H < 0.5, past and future increments are 

negatively correlated.

1.6	 AIMS OF THE THESIS

The preceding sections of the introduction highlighted the various biomechanical, sensory, and 

neurophysiological mechanisms involved in establishing a stable postural performance during 

standing and walking behavior. The studies of this thesis aim to contribute to the understanding of 

the functional roles and the modes of interaction of these mechanisms that make up the postural 

control scheme in the healthy as well as in the pathologically disturbed standing and walking 

performance. In addition, these studies share the attempt to shed more light on the stability 

conditions of postural control in the healthy standing and walking behavior as well as in certain 

relevant gait and balance disorders. Finally, a central endeavor of the following studies was to focus 

on the clinical relevance of their research findings and to connect them to the clinical praxis by 

(1) establishing appropriate objective measures for the differential diagnosis of certain gait and 

balance disorders, (2) by monitoring the effects of medical treatments by means of the established 

measures, and (3) by promoting fall risk estimation procedures for the investigated pathological 
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conditions. On the basis of the dynamic systems theory perspective on postural control, the studies 

presented here focus on the analysis of fluctuations within the patterns of coordinated movement 

during standing and walking behavior to disclose the sensorimotor principles underlying the 

performance of these behavioral tasks and to evaluate their stability conditions in the healthy 

and pathologically disturbed conditions. Especially for the case of gait analysis, the whole dynamic 

range of walking speed (i.e., the control parameter for gait dynamics) was considered in order to 

examine both the stable attractor states and the conditions for instability in healthy walkers and 

patients with certain sensorimotor gait disorders.

The study presented in chapter 2.1 investigated stability control and attractor dynamics of the 

healthy human walking behavior by examining patterns of optimization in single- and inter-leg 

gait dynamics. This study tried to clarify the following key questions: How do temporal fluctuation 

and synchronization properties of single- and inter-leg gait dynamics depend on the walking speed 

and do these properties exhibit a pattern of optimization in terms of stability at the attractor of the 

preferred walking mode? The studies presented in chapters 2.2 – 2.4 investigated sensory feedback 

from the visual, proprioceptive, and vestibular systems for the control of locomotion. Sensory 

feedback control is thought to play an important role in adjusting stride-to-stride trajectories to 

maintain balance and in smoothing unintended irregularities during walking (Gandevia and Burke, 

1992, Nashner, 1980). These studies addressed the following key questions: Does sensory feedback 

control of locomotion depend on the walking speed? What influence does sensory feedback have 

on stability control during walking and what kind of gait instabilities arise due to absent or patho-

logically disturbed sensory feedback control of locomotion? The studies presented in chapters 

2.4 – 2.8 examined the role of cerebellar locomotor control. The cerebellum is an important relay 

region for sensory integration into the locomotor network and provides rhythmic input for the 

coordination of the walking pattern (Mori et al., 1999, Mori et al., 2001). The key questions posed by 

these studies were: Do cerebellar locomotor functions depend on the walking speed? What specific 

role do cerebellar locomotor functions play in stability control during walking, and what kind of 

gait instabilities arise due to disturbed cerebellar locomotor control in patients with cerebellar 

ataxia? These studies furthermore examined the therapeutic effects of 4-Aminopyridine on the 



	

gait disorder in cerebellar ataxia. The studies presented in chapters 2.9 – 2.11 examined postural 

control in two distinct forms of subjective imbalance and vertigo, i.e., phobic postural vertigo 

and visual height intolerance. Individuals suffering from one of these conditions under certain 

circumstances experience subjective imbalance and vertigo, despite normal outcomes in clinical 

balance tests (Brandt, 1996, Brandt and Huppert, 2014). These studies examined the following key 

questions: Do individuals suffering from subjective vertigo exhibit altered strategies of postural 

control and patterns of anti-gravity muscle innervation? Are these alterations due to influences 

of sensory feedback control, attention, and/or anxiety? 

The following section (2.1 – 2.11) presents all studies conducted within the scope of this doctoral 

thesis. In the subsequent section (3.1 & 3.2), the key findings of these studies will be comprehen-

sively discussed.
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2	 Cumulative Thesis

This cumulative thesis consists of eleven published research articles. Full papers are presented in 

the following and the author contributorship is stated. The complete list of publications, including 

those which are not part of this thesis, can be found in the curriculum vitae. The research articles 

are presented in the following order:

zz Wuehr M, Pradhan C, Brandt T, Jahn K, Schniepp R. Patterns of optimization in single- 

and inter-leg gait dynamics. Gait Posture. 2014;39(2):733-8.

The author of this thesis designed the experiment and performed the gait carpet and treadmill recordings, 

analyzed the data including the programming of the data analysis procedures, and wrote the manuscript. 

zz Wuehr M, Schniepp R, Pradhan C, Ilmberger J, Strupp M, Brandt T, Jahn K. Differential effects 

of absent visual feedback control on gait variability during different locomotion speeds. 

Exp Brain Res. 2013;224(2):287-94.

The author of this thesis designed the experiment and performed the gait carpet and treadmill recordings, 

analyzed the data including the programming of the data analysis procedures, and wrote the manuscript. 

zz  Wuehr M, Schniepp R, Schlick C, Huth S, Pradhan C, Dieterich M, Brandt T, Jahn K. Sensory 

loss and walking speed related factors for gait alterations in patients with peripheral 

neuropathy. Gait Posture. 2014;39(3):852-58.

The author of this thesis designed the experiment, assisted in performing the gait carpet recordings and 

the fall risk assessment, analyzed the data including the programming of the data analysis procedures, 

and wrote the manuscript. 

zz  Schniepp R, Wuehr M, Neuhaeusser M, Kamenova M, Dimitriadis K, Klopstock T, Strupp 

M, Brandt T, Jahn K. Locomotion speed determines gait variability in cerebellar ataxia 

and vestibular failure. Mov Disord. 2012;27(1):125-31.

The author of this thesis participated in designing the experiment, assisted in performing the gait carpet 

recordings and in analyzing the data including the programming of the data analysis procedures, and wrote 

parts of the methods and discussion section of the manuscript. 



	

zz Wuehr M, Schniepp R, Ilmberger J, Brandt T, Jahn K. Speed-dependent temporospatial gait 

variability and long-range correlations in cerebellar ataxia. Gait Posture. 2013;37(2):214-8.

The author of this thesis designed the experiment and performed the gait carpet and treadmill recordings, 

analyzed the data including the programming of the data analysis procedures, and wrote the manuscript. 

zz Schniepp R, Wuehr M, Ackl N, Danek A, Brandt T, Strupp M, Jahn K. 4-Aminopyridine improves 

gait variability in cerebellar ataxia due to CACNA 1A mutation. J Neurol. 2011;258(9):1708-11

The author of this thesis participated in designing the experiment, assisted in performing the gait carpet 

recordings and in analyzing the data including the programming of the data analysis procedures, and wrote the 

methodological part of the manuscript. 

zz Schniepp R, Wuehr M, Neuhaeusser M, Benecke AK, Adrion C, Brandt T, Jahn K. 4-Aminopyridine 

and cerebellar gait: a retrospective case series. J Neurol. 2012;259(11):2491-3.

The author of this thesis participated in designing the experiment and assisted in analyzing the data including 

the programming of the data analysis procedures.

zz Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, Brandt T, Jahn K. Increased 

gait variability is associated with the history of falls in patients with cerebellar ataxia. 

J Neurol. 2014;261(1):213-23.

The author of this thesis participated in designing the experiment, assisted in performing the fall risk assessment 

and in analyzing the data including the programming of the data analysis procedures, and wrote parts of the 

methods section of the manuscript.

zz Schniepp R*, Wuehr M*, Pradhan C, Novozhilov S, Krafczyk S, Brandt T, Jahn K. Nonlinear 

variability of body sway in patients with phobic postural vertigo. Frontiers in neurology. 

2013;4:115. 

* equal contribution

The author of this thesis designed the experiment, analyzed the posturography data including the programming 

of the data analysis procedures, and wrote the manuscript. 
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zz Wuehr M, Pradhan C, Novozhilov S, Krafczyk S, Brandt T, Jahn K, Schniepp R. Inadequate 

interaction between open- and closed-loop postural control in phobic postural vertigo. 

J Neurol. 2013;260(5):1314-23.

The author of this thesis designed the experiment, analyzed the posturography data including the programming 

of the data analysis procedures, and wrote the manuscript. 

zz Wuehr M, Kugler G, Schniepp R, Eckl M, Pradhan C, Jahn K, Huppert D, Brandt T. Balance 

control and anti gravity muscle activity during the experience of fear at heights. 

Physiological Reports. 2014;2(2).

The author of this thesis participated in designing the experiment and performed the posturographic and 

electromyographic recordings, analyzed the data including the programming of the data analysis procedures, 

and wrote the manuscript. 
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3	 Discussion

In the following section, the key findings of the studies presented in the previous chapters will 

be discussed with respect to their functional relevance for sensorimotor postural stability control 

during standing and walking as well as regarding their clinical implications. 

3.1	 STABILITY CONTROL DURING LOCOMOTION

3.1.1	 Gait fluctuations and stability control in healthy walkers

The healthy human walking pattern is characterized by highly complex dynamics that result 

from the interaction of active sensory and passive biomechanical regulatory processes operating 

on multiple time scales. Consequently, temporospatial gait cycle parameters not only exhibit 

stride-to-stride fluctuations but also comprise complex fractal-like long-range correlations, i.e., 

fluctuations at any arbitrary point of time are statistically related to fluctuations at other time 

points (Hausdorff, 2005, Hausdorff et al., 1996, Terrier et al., 2005). The amplitude of stride-to-stride 

fluctuations is commonly referred to as gait variability magnitude, whereas the long-range cor-

relations within the stride-to-stride fluctuations are referred to as the structure of gait variability. 

From a dynamic systems theory perspective, both of these characteristics of the stride-to-stride 

fluctuations in the walking pattern can be regarded as relevant markers for the degree of dynamic 

gait stability. Accordingly it could be demonstrated that increased variability magnitudes and a 

breakdown of variability structure are associated with increased risk of falls (Herman et al., 2005, 

Maki, 1997). 

Dynamic systems theory furthermore supposes that the characteristics of these gait fluctuations 

depend on the control parameter, i.e., walking velocity, and exhibit alterations when the control 

parameter is scaled up or down (Haken, 1977, Kelso, 1995). The studies presented in chapters 2.1 – 2.5 

confirm this supposition by demonstrating the speed dependency of gait variability magnitude 

and structure. They further reveal that the speed dependency of gait variability is differentially 

regulated for the medio-lateral walking plane (i.e., base width) and the fore-aft walking plane 



	

(i.e., stride time and stride length) (Schniepp et al., 2012b, Wuehr et al., 2013b, Wuehr et al., 2013c, 

Wuehr et al., 2014b, Wuehr et al., 2014c). Different control strategies apparently underlie each of 

these directions. Accordingly, we could show that stride-to-stride fluctuations in the medio-lateral 

walking plane are characterized by large variability magnitudes that even increase for faster walk-

ing speeds due to a decrease of the BoS with faster walking modes. The structure of medio-lateral 

gait fluctuations featured low fractal dimensionality close to a random-like white noise process. 

Walking adjustments in the medio-lateral direction are thought to be actively controlled by inte-

grative sensory feedback because the passive dynamics of walking appear to be quite unstable 

in this direction (Bauby and Kuo, 2000, O’Connor and Kuo, 2009). The observed large variability 

magnitudes and the absence of long-range correlations within the medio-lateral stride-to-stride 

fluctuations confirm this hypothesis. Thus, these findings indicate that the dynamic stabilization 

of the medio-lateral walking plane is governed by the active control mode of reactive tuning that 

acts on short-term time scales, thereby evoking single-frequency responses to restore the stability 

of the walking subject (Lipsitz, 2002). 

In the fore-aft walking plane, both the magnitude and the structure of temporospatial gait fluctua-

tions were shown to exhibit a curvilinear dependency on walking speed with minimal levels of 

gait variability magnitude and structure at the velocity of self-paced walking in accordance with 

previous studies (Jordan et al., 2007, Yamasaki et al., 1991, Yamasaki et al., 1984). Increasing levels of 

gait variability magnitude and structure at slow and fast walking speeds most likely reflect critical 

fluctuations as an early warning signal of non-equilibrium phase transitions (Haken, 1977, Scheffer 

et al., 2009). Thus, enhanced instabilities in walking control occur when the walking velocity is 

close to the walk-run or walk-stand transition. In contrast, minimal levels of gait variability and 

structure at preferred walking speed are thought to reflect the attractor dynamics of the locomotor 

system (Jordan et al., 2007). Preferred walking speed, as it is related to the eigenfrequency of the 

leg, has been supposed to be the most stable walking mode, featuring lowest energy consumption 

and symmetry of ground reaction forces (Breit and Whalen, 1997, Holt et al., 1990, Holt et al., 1995, 

Jordan et al., 2007, Zarrugh et al., 1974). The obvious reduction of temporospatial long-range cor-

relations in the walking pattern at preferred speed has been suggested to reflect, on the one hand, 
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the larger number of degrees of freedom that constrain the locomotor system at the preferred 

walking mode and to indicate, on the other, an enhanced stability in terms of a higher flexibility 

and adaptability (Jordan et al., 2007). 

The attractor dynamics of the locomotor system were further explored in greater detail by evaluat-

ing the fluctuation dynamics in the relative phase between the legs. Human locomotion is based 

on coordinated rhythmic activity, in which the legs function as two weakly coupled oscillators (Beek 

et al., 1995). Accordingly, within the framework of dynamic pattern theory it was hypothesized that 

the relative phase between the two oscillating legs serves as an order parameter of the locomotor 

system and that the fluctuations within this order parameter represent the attractor dynamics 

of gait (Schöner et al., 1990). By evaluating the phase synchronization dynamics between the legs 

over the whole speed spectrum of walking, we were able to confirm this hypothesis (Wuehr et 

al., 2014b). Phase synchronization between the two oscillating legs was most consistent during 

preferred walking and exhibited critical fluctuations at the speed boundaries of walking behavior. 

Enhanced inter-leg phase-synchronization has been shown to be directly linked to gait stability by 

implying shorter recovery times from external destabilizing perturbations of the walking pattern 

(Krasovsky et al., 2012, Krasovsky et al., 2013). Thus, an increasing variance in the relative phase 

between the two oscillating legs at increasingly non-preferred walking speeds indicates slower 

recovery dynamics from perturbations, which represents another early warning signal of non-

equilibrium phase transitions (Haken, 1977, Scheffer et al., 2009). Furthermore, at the transition 

from walking to running mode the occurrence of a qualitative reorganization of inter-leg phasing 

as well as a sudden jump in relative phase could be demonstrated, which represent two hallmarks 

of a non-equilibrium phase transition (Diedrich and Warren Jr, 1995).

In summary, both single- and inter-leg gait dynamics were investigated over the whole velocity 

spectrum of walking to disclose patterns of optimization within and between these dynamics. 

Thereby it was demonstrated that the attractor state of preferred walking is characterized by 

minimal single-leg variability magnitude and structure as well as a most consistent inter-leg 

phase relationship. Moreover, it was found that the amount of long-range correlations in single-leg 



	

dynamics and the amount of inter-leg phase synchronization are significantly interrelated (Wuehr 

et al., 2014b). A decrease in single-leg long-range correlations entailed an increase in inter-leg 

phase synchronization. It has been demonstrated both theoretically and experimentally that less 

correlated noise, externally imposed on two weakly coupled oscillators, increases the phase syn-

chronization between them, whereas strongly correlated noise suppresses it (Bartsch et al., 2007a, 

Kiss et al., 2003, Zhou et al., 2002). Thus, single-leg and inter-leg dynamics are likely to exhibit a 

collective pattern of optimization at the attractor of preferred walking speed. Less correlated noise 

in the single-leg dynamics at self-paced walking, imposed on the two coupled oscillating legs, 

increases the phase synchronization between the legs and thereby enhances gait stability at the 

attractor state of walking. The observed inverse pairing of correlation and synchronization in gait 

dynamics might in fact be a more general characteristic of physiological systems under neuronal 

regulation. Accordingly, it was shown that increased cardio-respiratory phase synchronization 

occurs during deep sleep, when long-range correlations in the cardiac and respiratory dynamics 

are weakest (Bartsch et al., 2012).

3.1.2	 Sensory feedback control of gait stability

It is well established that sensory signals contribute to shaping the locomotor pattern and adapt-

ing it to environmental demands (Büschges and El Manira, 1998). Sensory feedback control is 

thought to be particularly important for adjusting stride-to-stride trajectories in order to maintain 

balance and for smoothing unintended irregularities during walking (Gandevia and Burke, 1992, 

Nashner, 1980) and should therefore have a greater influence on the stride-to-stride fluctuations 

within the gait pattern than on the mean temporospatial characteristics of walking (Dingwell et 

al., 2000). It has been further hypothesized that a disturbance of sensory feedback control might 

alter the inherent complexity of the walking dynamics to a less complex response mode of reactive 

tuning, which operates over relatively short time periods to restore the stability of the walking 

subject (Lauk et al., 1998, Lipsitz, 2002). The studies presented in chapters 2.2 – 2.4 address these 

hypotheses by examining the influence of (1) absent visual feedback control (in blindfolded healthy 

individuals), (2) deficient proprioceptive feedback control (in patients with peripheral neuropathy), 
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as well as (3) deficient vestibular feedback control (in patients with bilateral vestibular failure) on 

stability control during walking.

Deficient sensory feedback control of locomotion is known to affect multiple characteristics of the 

walking kinematics including stride time, stride length, base width, and double support duration 

(Allet et al., 2008, Hallemans et al., 2009, Ishikawa et al., 1993). However, it could be demonstrated 

that these apparent alterations in the mean temporospatial characteristics of the walking pat-

tern are due to a slowing down of walking speed under deficient sensory feedback control and 

cannot be directly attributed to sensory loss itself (Hallemans et al., 2009, Wuehr et al., 2014c). 

In contrast, we showed that sensory feedback control has a direct effect on the stride-to-stride 

fluctuations in the walking pattern. This effect is comparable for the different sensory modalities 

(i.e., visual, proprioceptive, and vestibular) and is differentially pronounced for fluctuations in the 

medio-lateral and the fore-aft walking directions. Observations in healthy subjects suggest that 

stability control of gait in the medio-lateral walking plane is governed by a control mode of reactive 

tuning, which is characterized by the active stabilization of walking based on sensory feedback 

mechanisms (Bauby and Kuo, 2000, Wuehr et al., 2013c). Moreover, the dominance of this control 

mode for medio-lateral gait stabilization does not depend on the actual walking speed (Wuehr et 

al., 2013c). Correspondingly, active stabilization in the medio-lateral plane should be highly sensitive 

to defects in sensory feedback control. The studies presented in chapters 2.2 and 2.3 confirm this 

assumption by showing that deficiencies in visual and proprioceptive feedback control lead to a 

general increase in the magnitude of medio-lateral gait variability at all walking speeds (Wuehr 

et al., 2013c, Wuehr et al., 2014c). An increase of medio-lateral gait variability has been associated 

with a decline in dynamic gait stability and a higher risk of falls (Brach et al., 2005, Owings and 

Grabiner, 2004).

Stabilization in the fore-aft walking plane has been proposed to be established primarily by passive 

biomechanical regulatory processes and should be therefore essentially independent of high-level 

neural feedback control (Bauby and Kuo, 2000, Gates et al., 2007, Mcgeer, 1990). Consequently, the 

regulation of fore-aft gait variability should be rather insensitive to perturbations or deficiencies 



	

in the active sensory feedback control. However, the studies presented in chapters 2.2 – 2.4 could 

demonstrate that deficiencies in sensory feedback control of locomotion have a direct effect on 

gait stabilization in the fore-aft walking plane. Disturbances in either visual, proprioceptive, or 

vestibular feedback control consistently led to an increase in the magnitude and a decrease in the 

structure of fore-aft gait variability, thus indicating explicit involvement of active sensory control 

mechanisms that stabilize gait in the fore-aft plane (Schniepp et al., 2012b, Wuehr et al., 2013c, 

Wuehr et al., 2014c). Furthermore, fore-aft gait stabilization was even more affected if more than 

one sensory modality was disturbed during locomotion (Wuehr et al., 2014c).

The effect of deficient sensory feedback control on fore-aft stride-to-stride fluctuations differed 

considerably for different walking speeds; while major changes occurred at slow walking, the effect 

diminished at preferred and fast gait speeds. This speed-dependent impact of sensory feedback 

information on the fore-aft gait variability supports the hypothesis of a speed-dependent sensory 

locomotor control in the fore-aft walking plane. Accordingly, active sensory feedback control is 

necessary for balance control mainly during slow locomotion, whereas fast locomotion is thought 

to be primarily achieved by highly automated central pattern generators in the spinal cord (Brandt 

et al., 1999, Brandt, 2000, Jahn et al., 2000, Jahn et al., 2001). In agreement with this model, motor 

imagery studies with fMRI could demonstrate that activations of sensory cortex areas decrease 

during running and fast walking (Jahn et al., 2004, Jahn et al., 2008a). 

Walking instabilities and a higher risk of falls are common in patients suffering from deficient 

feedback control of one or more sensory modalities (Lord, 2006, Richardson et al., 1992, Whitney et 

al., 2000). Moreover, the relationship between increased fore-aft gait variability and an increased 

risk of falls is well established (Guimaraes and Isaacs, 1980, Hausdorff, 2005, Maki, 1997). We further 

demonstrated that the fore-aft gait variability levels of patients with peripheral neuropathy during 

walking slowly and walking with eyes closed were the only gait characteristics that showed a 

significant association with their history of falls (Wuehr et al., 2014c).
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3.1.3	 Cerebellar control of gait stability

The cerebellum is involved in gait control: it functions as an important relay region for the inte-

gration of multi-sensory information into the locomotor network and further provides rhythmic 

input for the coordination of the walking pattern (Mori et al., 1999, Mori et al., 2001). Cerebellar 

damage has been shown to result, on the one hand, in a poor accuracy of the walking movements 

(i.e., increased step width, variable foot displacement, irregular foot trajectories, and a stumbling 

walking path) commonly referred to as ataxic gait (Ilg and Timmann, 2013, Morton and Bastian, 

2004), and on the other, in an increased gait variability and a high risk of falling (Fonteyn et al., 2010, 

Ilg et al., 2007, Ilg et al., 2008). However, the specific influence of the cerebellar locomotor function 

on the regulation of temporospatial stride-to-stride fluctuations and the control of dynamic gait 

stability has so far not been elucidated in detail. The studies presented in chapters 2.4 – 2.8 address 

this topic, in particular by aiming to clarify how cerebellar locomotor function contributes to gait 

stabilization and whether this contribution is dependent on the walking speed.

Observations in healthy walkers revealed that gait stabilization is differentially regulated in the 

medio-lateral and fore-aft walking planes (Bauby and Kuo, 2000, Wuehr et al., 2013c). Correspond-

ingly, we showed that cerebellar dysfunction has a different impact on the stride-to-stride 

fluctuations in both walking planes. Deficient cerebellar locomotor control led to a decrease of 

medio-lateral variability structure at all walking speeds (Wuehr et al., 2013b). Since walking adjust-

ments in the medio-lateral direction are thought to be actively controlled by integrative sensory 

feedback, this observation most likely reflects the impaired sensory integration function of the 

cerebellum (Walter et al., 2006). The observed alterations in medio-lateral variability have also 

been linked to an increased risk of falls (Brach et al., 2005, Owings and Grabiner, 2004).

In the fore-aft walking plane, cerebellar dysfunction led to both an increase of gait variability mag-

nitude and a decrease of gait variability structure (Schniepp et al., 2012b, Wuehr et al., 2013b). This 

effect was dependent on the walking speed, mostly affecting the walking pattern during slow and 

fast locomotion, whereas the preferred walking mode remained unimpaired. The twofold effect 

of cerebellar dysfunction on gait variability at slow and fast walking can be interpreted to reflect 



	

two different aspects of cerebellar locomotor control. Accordingly, gait variability alterations during 

slow walking might reflect impaired sensory integration of cerebellar locomotor regions. Purkinje 

cells, which are the sole output of the computational circuitry of the cerebellar cortex, supply in 

their firing rate and pattern of activity the signals required for the execution and coordination 

of rhythmic walking movements (Ito, 1984, Walter et al., 2006). In the absence of synaptic input, 

the intrinsically driven pacemaking of Purkinje cells has been shown to be very regular (Womack 

and Khodakhah, 2002). The spontaneous activity of these cells is shaped by time-variant sensory 

information relayed over numerous synaptic inputs (Häusser and Clark, 1997). It could be dem-

onstrated in the animal model that decreased precision of the intrinsic pacemaking in Purkinje 

cells due to cerebellar damage leads to impaired integration of sensory information within the 

cerebellum and consequently to a more variable motor output (Walter et al., 2006). According to 

the concept of a speed-dependent sensory integration into the locomotor network (Brandt et al., 

1999, Brandt, 2000, Jahn et al., 2000, Jahn et al., 2001), disturbed sensory integration within the 

cerebellum should affect the dynamics of stride-to-stride fluctuations predominantly during slow 

walking in agreement with the experimental observations. In contrast, alterations in gait variability 

during fast walking might reflect impaired cerebellar pacemaker function. In the animal model it 

could be shown that a loss in precision of the intrinsic pacemaking activity of cerebellar Purkinje 

cells results in impaired cerebellar locomotor function and a more variable motor output (De 

Zeeuw et al., 2011, Walter et al., 2006). Moreover, the cerebellar pacemaker region demonstrates 

enhanced activity with increasing gait speed (Jahn et al., 2008a). Consequently, impaired cerebellar 

pacemaker function should influence the dynamics of stride-to-stride fluctuations predominantly 

during fast walking. This again is consistent with the experimental observations. 

The assumption that cerebellar Purkinje cell function is directly involved in the regulation of gait 

variability is further supported by evidence of a case study (chapter 2.6) on two individuals with 

cerebellar ataxia caused by mutations in the gene CACNA 1A encoding the CaV2.1α 1 subunit of 

the P/Q-type voltage-gated calcium channel (Schniepp et al., 2011). These mutations have been 

shown to result in an overall reduction in the P/Q-type calcium current (Fletcher et al., 1996). A 

consequence of this reduction in the P/Q calcium current is a loss of precision of pacemaking 
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activity in cerebellar Purkinje cells (Walter et al., 2006). Alterations in stride-to-stride fluctua-

tions typical for cerebellar patients could be observed in both individuals: their gait variability 

magnitudes were pathologically increased, predominantly for slow and fast walking speeds. Both 

subjects were treated with 4-Aminopyridine (4-AP), a reversible potassium channel blocker. 4-AP 

has been shown to reduce the frequency and severity of attacks in episodic ataxia type 2 (Löhle et 

al., 2008, Strupp et al., 2004) and to suppress downbeat nystagmus in cerebellar patients (Kalla 

et al., 2007). In the animal model, 4-AP was shown to restore diminished precision of pacemaking 

in cerebellar Purkinje cells by prolonging the action potential and increasing the action potential 

afterhyperpolarization (Alviña and Khodakhah, 2010). Accordingly, treatment with 4-AP led to a 

considerable decrease of gait variability magnitude at slow walking speeds and an even greater 

decrease at fast walking modes in both subjects, presumably due to a restoration of pacemaking 

precision in cerebellar Purkinje cells. Furthermore, in both subjects, treatment with 4-AP resulted 

in a reduced subjective fall risk, measured by the Falls Efficacy Scale-International (Kempen et 

al., 2007). The beneficial therapeutic effect of 4-AP on gait variability alterations due to cerebel-

lar dysfunction could be further confirmed in a subsequent case series study (chapter 2.7) of 31 

patients with different cerebellar disorders (Schniepp et al., 2012a).

The above-mentioned insights into the characteristic impairments of gait stability control due 

to cerebellar dysfunction are not only of value for monitoring medical treatment effects but may 

also promote fall risk estimation procedures. Accordingly, in a fall risk study on cerebellar patients 

(chapter 2.8) we demonstrated that the amount of fore-aft variability is significantly associated 

with the fall history of patients. This finding even allowed us to discriminate between occasional 

and frequent fallers (Schniepp et al., 2014b). 

Finally, the observed effect of cerebellar dysfunction on the structure of gait variability supports 

the supposition that long-range correlations within the stride-to-stride fluctuations of the walking 

pattern do not solely have a biomechanical origin (Gates et al., 2007), but more likely arise from 

the interference of higher neural and biomechanical oscillatory dynamics (Hausdorff et al., 1995, 

Hausdorff et al., 1997). 



	

3.1.4	 Conclusions and directions for further research

Dynamic gait stability depends on the walking speed and is differentially regulated in the medio-

lateral and fore-aft walking planes. Studying the fluctuations of the locomotor system’s order 

parameter (i.e., the fluctuations within the relative phase between the two oscillating legs) allows 

us to disclose the attractor dynamics of the walking mode. Accordingly, gait at preferred velocity 

is characterized by minimal fluctuations in the order parameter and thus represents the attractor 

state of the walking mode. If the control parameter of gait (i.e., the walking velocity) is scaled up 

or down, the dynamics of the order parameter exhibit critical fluctuations, indicating that walking 

at increasingly non-preferred gait speeds implies a decline in dynamic gait stability. 
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Figure 5   Speed-dependent control of gait stability. The stability of the walking pattern is reflected in the fluctuations of the 
order parameter of the locomotor system, i.e., the fluctuations within the relative phase between the two oscillating legs. The 
stability conditions of the locomotor system alter if the control parameter (i.e., gait velocity) is scaled up or down. Accordingly, 
preferred walking speed represents the attractor state of walking behavior with minimal fluctuations in the order parameter. At 
increasingly non-preferred walking speeds, critical fluctuations in the order parameter occur which reflect a loss of dynamic gait 
stability close to the speed boundaries of the walking mode. The regulation of gait fluctuations during slow walking speeds is 
critically dependent on sensory feedback control, whereas gait fluctuations during fast walking are mainly regulated by cerebellar 
locomotor regions. The pattern of optimization at preferred walking speed is essentially independent of active sensory feedback or 
cerebellar locomotor control and presumably arises from passive biomechanical tuning mechanisms. 

The regulation of gait fluctuations during slow walking is critically dependent on sensory feedback 

control. Accordingly, a disturbance in the operation of sensory feedback mechanisms (either due 

to false or absent sensory input or due to deficient supraspinal sensory integration) results in 

a critical rise of stride-to-stride fluctuations, predominantly during slow locomotion speeds. In 

contrast, the regulation of gait fluctuation during fast walking relies on the smooth operation 
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of cerebellar locomotor control. Deficient cerebellar pacemaker function correspondingly results 

in critically increased stride-to-stride fluctuations primarily during fast locomotion speeds. Criti-

cally increased gait fluctuations due to deficient sensory or cerebellar locomotor control involve 

a decline of dynamic gait stability, which is indicated by an increased risk of falls. Furthermore, 

disturbances in either sensory or cerebellar locomotor control do not appear to influence the 

attractor dynamics at self-paced walking, suggesting that the apparent pattern of optimization 

at preferred walking speed emerges from passive biomechanical tuning mechanisms. (Figure 5)

The studies presented here examined dynamic gait stability exclusively during the performance of 

steady-state locomotion. To gain a more comprehensive understanding of the control mechanisms 

and the conditions of dynamic gait stability, complementary studies are required that evaluate 

stability control of walking during disequilibrium states. Postural disequilibrium states may be 

induced internally by the performance of complex postural maneuvers (i.e., turns, changes in 

walking direction, etc.) or triggered externally by targeted mechanical perturbations of the steady-

state walking condition. Experiments including targeted perturbations of the steady-state walking 

condition would allow an evaluation of the recovery dynamics of the walking system. A system’s 

recovery rate after small perturbation has been shown to reflect the degree of the system’s overall 

stability. Consequently, besides critical order parameter fluctuations, slower recovery dynamics 

from perturbations represent an essential early warning signal of a non-equilibrium phase transi-

tion (Haken, 1977, Scheffer et al., 2009). So far, experimental setups including targeted perturba-

tions of the steady-state walking condition were limited to the examination of only one gait speed, 

thereby neglecting the attractor dynamics of walking (Krasovsky et al., 2012, Krasovsky et al., 2013). 

Future studies should therefore address both the influence of walking speed as well as the impact 

of disturbed sensory or supraspinal locomotor control on the recovery dynamics of walking. 

 

 

 



	

3.2	 POSTURAL CONTROL IN CONDITIONS OF SUBJECTIVE IMBALANCE  
AND VERTIGO

3.2.1	 Postural control in phobic postural vertigo

The syndrome of phobic postural vertigo (PPV) is characterized by subjective dizziness and a dis-

turbance of balance while standing and walking, despite normal values in clinical balance tests 

(Brandt, 1996). PPV – also termed visual vertigo syndrome (Bronstein, 1995) or chronic subjective 

dizziness (Staab and Ruckenstein, 2007) – is one of the primary and secondary somatoform diz-

ziness syndromes (Best et al., 2006, Eckhardt-Henn et al., 2003, Furman and Jacob, 1997). As one 

of the most frequent causes of chronic dizziness, it has a high impact on functioning and quality 

of life (Best et al., 2006). 

Stable balance control during standing requires the continuous evaluation of reafferent sensory 

feedback of self-generated body movements (Morasso et al., 1999). Inadequate compensation for 

self-induced sensory stimulation, which triggers the perception of motion illusions due to self-

motion, has been hypothesized to be the mechanism underlying subjective vertigo in PPV (Brandt 

and Dieterich, 1986, Brandt, 1996). According to this hypothesis, self-motion-induced reafferent 

sensory stimulation would be wrongly perceived as motion in the environment. This would hap-

pen because the predictive efference copy signal reflecting the consequences of self-generated 

body movements, necessary to compensate for the reafferent stimulus, is inappropriate (Pomper 

et al., 2013). The mismatch between anticipated and actual motion perception has been further 

hypothesized to be caused by an inadequate postural control strategy, which implies anxious 

controlling of balance regulation and the conscious perception of sensorimotor adjustments that 

would normally be accomplished unconsciously (Brandt, 1996). 

Previous studies reported first evidence for the presence of an inadequate postural control scheme 

in PPV, e.g., an increase in muscle expenditure and high-frequency body sway (Holmberg et al., 

2003, Krafczyk et al., 1999). Such postural control alterations are comparable to that observed in 

healthy subjects when confronted with a demanding balance situation, such as standing on a high 

platform (Carpenter et al., 2001). Furthermore, during the performance of a complex balance task, 
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such as tandem stance on foam rubber with eyes closed, the postural behavior of patients with 

PPV assimilated to that of healthy persons standing under the same condition (Querner et al., 

2000). These findings indicate that subjective imbalance in PPV is caused by the application of an 

inappropriate balance strategy due to anxious control of posture (Holmberg et al., 2005, Tjernstrom 

et al., 2009). The purpose of the studies presented in chapters 2.9 and 2.10 was to further elucidate 

and characterize the sensorimotor mechanisms underlying inadequate postural control in PPV. 

The study presented in chapter 2.9 characterized postural performance in PPV by evaluating, on the 

one hand, the structure of body sway variability, i.e., the strength of long-range correlations within 

the CoP time series, and on the other, the regularity of the CoP time series by means of a sample 

entropy analysis (Lake et al., 2002, Richman and Moorman, 2000). Healthy balance performance 

under normal stance conditions is known to exhibit highly irregular, complex dynamics represent-

ing the interaction of regulatory processes, which operate on different time scales (Donker et 

al., 2007). Such processes are thought to enable the postural control system to prepare postural 

responses to sudden balancing stresses and to thereby enhance the overall stability of a standing 

subject (Lipsitz, 2002). In contrast, we showed that postural control in patients with PPV under 

normal balance conditions is characterized by a less complex, i.e., more constrained and regular 

mode of standing compared to that of healthy subjects (Schniepp et al., 2013). Patients with PPV 

exhibited an increase in strength of long-range correlations within the CoP time series. The stron-

ger dependency between different time scales within the CoP signal indicates a decrease in the 

number of independently controllable system elements contributing to the motor output. This 

results in a more constrained mode of postural control with decreased dynamic stability (Jordan 

et al., 2007, Slifkin and Newell, 1999). Furthermore, the postural performance of patients with PPV 

featured an increase in regularity within the CoP time series. Decreased complexity in terms of 

a more regular sway pattern indicates that the postural behavior is more rigid within repeating 

patterns, thereby losing adaptability and dynamic stability (Borg and Laxåback, 2010). 

Previous studies provided evidence for a close connection between the regularity of CoP displace-

ments and the amount of attention invested in postural control (Donker et al., 2007). Consequently, 



	

increased regularity within the sway pattern of patients with PPV suggests that inadequate bal-

ance performance in PPV is caused by a shift to a more attentional mode of postural control. This 

supposition is further supported by the observation that the less complex sway pattern of patients 

with PPV while standing under normal balance conditions resembles the sway pattern of healthy 

subjects while performing a more complex, attention-demanding balance task (Donker et al., 

2007, Duarte and Sternad, 2008, Schniepp et al., 2013). In conformance with previous observations, 

we further demonstrated that during the performance of such complex, attention-demanding 

balance tasks the postural behavior of patients with PPV assimilates to that of healthy subjects 

performing the same task (Querner et al., 2000). Taken together, these observations support the 

hypothesis that patients with PPV apply at baseline a postural control strategy governed by exag-

gerated attentional involvement that is used in the healthy mode only for the most demanding 

balance tasks. In accordance with this hypothesis, we showed that walking of patients with PPV 

is associated with increased attentional demands and features the typical characteristics of a 

cautious gait (Schniepp et al., 2014a).

The study presented in chapter 2.10 further examined inadequate postural behavior in PPV within 

the framework of SDA (Collins and De Luca, 1993b), in order to determine the characteristics and 

modes of interaction of open- and closed-loop processes that make up the postural control scheme 

in PPV. It was found that patients with PPV exhibit a considerable increase in their steady-state 

behavior of open-loop postural control, while normal closed-loop activity (Wuehr et al., 2013a). 

Increased open-loop activity has been associated with an increase in stiffness and a decrease of 

damping of the postural control system (Collins et al., 1995, Collins and De Luca, 1993b, Peterka, 

2000). Accordingly, this finding suggests a stiffening of the musculoskeletal system due to in-

creased muscular activity across the joints of the lower limbs. It is known that the force output of 

skeletal muscles contains noise-like fluctuations (De Luca et al., 1982) that increase with muscle 

activity (Galganski et al., 1993). Larger noise-like fluctuations over joints caused by increased levels 

of muscle activity would therefore lead to amplified short-term postural sway which reflects 

the amount of open-loop activity in the postural control scheme. Correspondingly, it could be 

shown that the extent of open-loop activity and the amount of anti-gravity muscle co-contraction 
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are positively correlated (Laughton et al., 2003). This line of interpretation is consistent with the 

hypothesis that inadequate postural performance in patients with PPV might be caused by an 

increase in co-contraction of anti-gravity muscles (Krafczyk et al., 1999, Querner et al., 2000) – a 

pattern of muscle activation that is applied by healthy subjects only if they consciously concen-

trate on balance control, i.e., when learning a new motor task or when uncertainty exists about a 

required task (De Luca and Mambrito, 1987, Smith, 1981). 

Furthermore, balance behavior in patients with PPV featured a precipitate transition behavior 

from the open- to the closed-loop control mode (Wuehr et al., 2013a). The critical point of transi-

tion between the two control modes has been associated with the first-level stability limit of the 

postural control system, i.e., its primary feedback threshold (Collins and De Luca, 1993b). An earlier 

transition significantly shortens the effective range of the steady-state open-loop regime and 

thereby lowers the primary sensory feedback threshold of the postural control scheme. In healthy 

subjects, the complexity of the stochastic open-loop steady-state behavior enables the postural 

control system to flexibly adapt closed-loop responses to sudden balancing stresses. In contrast, 

limited open-loop control in patients with PPV triggers precipitate integration of sensory feedback 

into the postural control scheme, which may lead to maladaptive responses to external perturba-

tions. Such shortcomings in closed-loop sensory feedback control could also be responsible for a 

mismatch between anticipated and actual motion perception, which has been hypothesized to 

underlie subjective vertigo in PPV (Brandt and Dieterich, 1986, Brandt, 1996). 

Altogether, these findings suggest that PPV does not involve a functional disturbance of the pos-

tural control system. However, the open- and closed-loop control system as a whole appears to be 

not optimally tuned in patients with PPV. The control systems are working but in an inadequate 

way, with the result that they are not as smoothly and efficiently functioning as in healthy sub-

jects. This inadequately tuned balance regulation might further elicit the experience of subjective 

imbalance and vertigo in patients with PPV.

 



	

3.2.2	 Postural control in visual height intolerance

Visual stimulation of heights is known to provoke individual responses that vary on a continuum 

from physiological visual height imbalance to acrophobia, the severest end of the spectrum 

(Brandt and Huppert, 2014, Salassa and Zapala, 2009). The common response experienced by 

everyone is a physiological visual height imbalance that results from a mismatch between visual 

distance cues and the perception of self-movement, when the distance between eyes and nearest 

objects in the environment reaches a certain threshold (Brandt et al., 1980, Salassa and Zapala, 

2009). Acrophobia is defined to be a specific phobia, implying that an anticipatory fear leads to 

avoidance of heights (Clarke, 1995). In-between the common physiological and the phobic reaction 

to heights, there is a stimulus-dependent visual height intolerance (vHI), which causes the appre-

hension of losing balance or falling, but does not meet the diagnostic criteria of a specific phobia 

(Brandt et al., 2012, Brandt and Huppert, 2014). VHI has been shown to affect almost one third of 

the general population (Huppert et al., 2013). Individuals susceptible to vHI experience subjective 

postural imbalance with to-and-fro vertigo when confronted with a height stimulus. The study 

presented in chapter 2.11 explored alterations in postural control and anti-gravity muscle activity 

that trigger subjective vertigo in subjects susceptible to vHI during height exposure. Furthermore, 

the specific influences of visual stimulation and attention on altered postural performance in vHI 

were determined. 

While standing at heights, susceptible individuals exhibited alterations in their postural control 

scheme that clearly resembled those observed in patients with PPV, namely (1) an increased steady-

state activity of open-loop control, and (2) a lowered threshold for sensory feedback integration into 

the postural control regime (Wuehr et al., 2014a). These alterations in postural control were further 

linked to specific changes in muscle innervation patterns, in particular an enhanced co-contraction 

of anti-gravity leg and neck muscles. The observed stiffening of the neck musculature agrees with 

the previously reported reduction of spontaneous head movement in subjects susceptible to 

vHI during height exposure (Kugler et al., 2013). Changes in leg muscle activation during height 

threat might partly result from a leaning away from the edge (Carpenter et al., 2001, Pasman et 

al., 2011). An increased stiffness and immobilization of the musculoskeletal system, as exhibited by 
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susceptible individuals while standing at heights, has been further demonstrated to significantly 

impair postural equilibrium control during free stance (De Freitas et al., 2009, Gruneberg et al., 

2004, Koskimies et al., 1997).

The observed alterations in postural control and accompanying muscle innervation patterns for 

individuals susceptible to vHI during height exposure were only present when the distance be-

tween stationary contrasts in the surrounding and the eyes was critically large. They disappeared 

when nearby stationary cues in the periphery of the visual field were provided. A critically increased 

eye-object distance has been shown to result in a mismatch between visual distance cues and 

the perception of self-movement, which as a consequence triggers postural imbalance – a phe-

nomenon called physiological visual height imbalance (Bles et al., 1980, Brandt et al., 1980). These 

observations suggest that physiological visual height imbalance triggers postural disequilibrium 

in vHI. However, altered balance control also diminished when the attentional focus of susceptible 

individuals was distracted from the height threat, i.e., during the performance of a cognitive dual 

task. Increased attention to balance regulation indicates an anxious control of posture (Maki 

and McIlroy, 1996). Moreover, fear at heights appears to not only influence the balance strategy 

in susceptible individuals but also restricts their visual exploration, which suggests an anxiety-

driven visual avoidance behavior (Kugler et al., 2013). Taken together, these findings indicate two 

distinct sources for postural imbalance in individuals susceptible to vHI: both the critical distance 

to stationary surroundings in the visual environment and the anxiety evoked by a height threat 

appear to trigger inadequate balance control in these subjects.

Finally, all observed alterations in balance behavior during height exposure were associated with 

the subjective estimates of fear experienced by susceptible individuals during height threat. This 

suggests that the degree of manifestation of altered postural control and the amount of anxiety 

experienced during height threat are mutually linked in individuals susceptible to vHI, leading to 

a vicious circle of fear, perception, and postural instability (Schaeffler et al., 2013). 



	

3.2.3	 Conclusions and directions for further research

The studies presented here reveal a notable conformance of the inadequate mode of balance 

regulation in individuals suffering from either PPV or vHI. This observation suggests that a gen-

eral anxiety-driven rather than a height-specific motor reaction may underlie these two distinct 

forms of subjective imbalance and vertigo. Taken together, the above-discussed findings allow to 

hypothesize the following circular cascade of symptom emergence in PPV and vHI: (1) An exag-

gerated conscious concentration on the regulation of postural stability might trigger (2) higher 

levels of co-contraction in anti-gravity muscles. This stiffening of the musculoskeletal system 

would in turn lead to (3) the observed inadequate mode of interaction between open- and closed-

loop mechanisms within the postural control system, which as a consequence might elicit (4) 

the experience of subjective imbalance and vertigo. Subjective imbalance in turn would further 

increase (1) the conscious concentration on balance regulation. (Figure 6)
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Figure 6   Hypothetical cascade of symptom emergence in PPV and vHI: (1) An exaggerated conscious concentration on control of 
postural stability might trigger (2) increased levels of anti-gravity muscle co-contraction. This in turn would lead to (3) an inadequate 
mode of interaction between open- and closed-loop mechanisms within the postural control system that as a consequence might 
elicit (4) the experience of subjective imbalance and vertigo. Subjective imbalance in turn would further enhance (1) conscious 
control of posture. 

So far, the hypothesis of enhanced anti-gravity muscle co-contraction has only been verified for 

the condition of vHI. It remains to be validated for patients with PPV. Furthermore, dual task 



d I s c u s s I o n  |  P o s t u r A L  c o n t r o L  I n  c o n d I t I o n s  o F  s u b J E c t I V E  I M b A L A n c E  A n d  V E r t I G o 	 78  |  79

examinations are required to directly evaluate the influence of attention and anxiety on the 

postural performance of patients with PPV, as it has already been accomplished for individuals 

susceptible to vHI. The studies presented here examined postural equilibrium control in PPV and 

vHI solely under the steady-state condition of quiet standing. To further elucidate the consequenc-

es of altered postural performance in PPV and vHI for the control of dynamic postural stability, 

complementary studies are needed that assess the quality of postural responses and the course 

of recovery from momentary states of postural disequilibrium. For this purpose, transient postural 

destabilization may be either induced internally by the performance of active body movements 

or triggered externally by mechanical perturbation of the steady-state stance condition. Such 

experimental setups will also allow validation of the presumed mismatch between anticipated 

and actual motion perception that has been hypothesized to elicit subjective vertigo in both PPV 

and vHI.
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