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1 Summary 

 

Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most 

frequent cause of dementia. To date, there are few approved symptomatic drugs for 

treatment of AD, which show little or no effect on disease progression. Impaired 

intracellular calcium homeostasis is one of the underling mechanisms responsible for 

synaptic dysfunction. In addition, calcium dysregulation is believed to occur early in the 

cascade of events leading to AD. Mutations in presenilins (PS1 and PS2) account for the 

vast majority of early onset familial Alzheimer’s disease cases (FAD). Beside the well-

investigated role of presenilins as the catalytic unit in γ-secretase complex, their 

involvement in regulation of intracellular calcium homeostasis has recently gained 

growing attention in AD research. 

 

In brief, within this study we characterized the role of presenilin mutations in AD-

associated impairment of endoplasmic reticulum (ER) calcium homeostasis. Based on 

those findings, we examined the possibility of pharmacologically reversing the disrupted 

calcium homeostasis in the ER as an innovative approach for AD drug discovery. 

Therefore, we developed a fully automated high-throughput calcium imaging assay 

utilizing a genetically-encoded calcium sensor and subsequently screened a large 

collection of compounds. High-throughput drug screening led to the identification of a 

number of novel drug candidates that were characterized and validated for their relevance 

in AD therapy using a number of secondary assays. 

 

In the first part of this work, we reveal that the overexpression of PS1 full-length 

holoprotein, in particular familial Alzheimer’s disease-causing forms of PS1 (FAD-PS1), 

result in significantly attenuated calcium release from thapsigargin- and bradykinin-

sensitive ER calcium stores. Interestingly, treatment of HEK293 cells with γ-secretase 

inhibitors also lead to decreased amount of calcium release from ER accompanying 

elevated PS1 holoprotein levels. Similarly, the knockdown of PEN-2 that is associated 

with deficient PS1 endoproteolysis and accumulation of its holoprotein form also leads to 

decreased ER calcium release. Notably, we detected enhanced PS1 holoprotein levels in 

postmortem brains of patients harboring FAD-PS1 mutations. Taken together, the 
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conditions in which the amount of full-length PS1 holoprotein is enhanced often resulted 

in decreased calcium release from ER. Based on these results and the proposed leak 

channel activity of presenilins in the ER, we suggest that the disturbed ER calcium 

homeostasis mediated by the elevation of PS1 holoprotein levels may be a contributing 

factor to the pathogenesis of AD. 

 

On the other hand, we also found that FAD-PS1 mutations cause remarkably enhanced 
muscarinic agonist-evoked calcium release from ER, a mechanism that may potentially 

compensate for the lowered ER calcium content. In the second part of the work, we aimed 

at screening compounds that can reverse the potentiated muscarinic agonist-evoked 

calcium release in FAD-PS1-expressing cells, as a robust phenotypic readout. 

Accordingly, we developed a fully automated high-throughput calcium imaging assay 

utilizing a FRET-based calcium indicator at single-cell resolution for compound 

screening. Initially, we employed the developed assay for a pilot screen with a library of 

72 known ion channel ligands. This led to the identification of Bepridil, a calcium 

channel antagonist drug, which was capable of partially reversing the potentiated FAD-

PS1-induced ER calcium release from ER. We detected increased AMPK activity upon 

treatment of cells with Bepridil in a dose-dependent manner. AMPK activation by 

Bepridil is most likely a calcium-dependent phenomenon, since CaMKK inhibition by 

STO-609 abolishes the Bepridil-induced AMPK activation. In accordance with another 

study, we detected lowered Amyloid-β (Aβ) peptide production, increased sAPPα and 

decreased sAPPβ levels upon Bepridil treatment. Therefore, based on the results here, we 

propose a novel calcium-dependent mode of action for Bepridil that through activation of 

AMPK can shift the balance of downstream APP processing from amyloidogenic β-

cleavage towards non-amyloidogenic α-cleavage. 

 

In the third and final part of this work, we performed a truly high-throughput compound 

screen with a diverse library of 20,000 small molecules. This novel screen yielded five 

lead structures identified upon structure-activity-relationship analysis. Amongst them 

were tetrahydrocarbazoles, a novel multifactorial class of compounds that can reverse the 

impaired ER calcium homeostasis. We found that tetrahydrocarbazole lead structure, 

firstly, dampens the potentiated calcium release from ER in HEK293 cells expressing 

FAD-PS1 mutations. Secondly, the lead structure also improves mitochondrial function, 

measured by increased mitochondrial membrane potential. Thirdly, the same lead 
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structure also attenuates the production of Aβ peptides by decreasing the cleavage of 

Amyloid Precursor Protein (APP) by β-secretase, without notably affecting α- and γ-

secretase cleavage activities. Considering tetrahydrocarbazoles’ multiple modes of action 

by addressing three key pathological aspects of AD, this compound class holds promise 

for development of a potentially effective AD drug candidate. 
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2 Introduction 
 

2.1 Alzheimer’s disease 

 

Alzheimer's disease (AD) is the most common form of dementia and a growing threat to 

our aging society [1]. This progressive neurodegenerative disorder is characterized by 

global cognitive decline involving memory, orientation, judgment, and reasoning [2]. The 

estimations suggest that currently over 22 million patients are suffering from AD 

worldwide [1]. AD was described for the first time over a hundred years ago by Alois 

Alzheimer, a German psychiatrist and neuropathologist as "eine eigenartige Erkrankung 

der Hirnrinde" (a peculiar disease of the cerebral cortex) [3]. That work was based on 

monitoring the long-term clinical course of his first AD case Mrs. Auguste Deter, a 51-

year-old lady whom was admitted to Frankfurt community psychiatric hospital for 

paranoia, progressive sleep and memory disturbance, aggression, and confusion [4]. After 

the death of the patient 5 years later, in the microscopic preparations of her brain 

autopsies, Dr. Alzheimer detected the presence of distinctive deposits, which he would 

describe them as “miliary bodies” and “dense bundles of fibrils”, that later respectively 

became known as amyloid plaques and neurofibrillary tangles [3, 5].  

 

The majority of AD cases are sporadic with no obvious implication of genetic factors and 

the typical age of onset older than 65 [6]. Age is the principal risk factor of developing 

sporadic AD [7]. After the age of 65, the overall prevalence of AD doubles every five 

years [8]. However, in less than 1% of AD patients, known as familial Alzheimer’s 

disease (FAD) cases, the dominantly inherited mutations in Amyloid Precursor Protein 

(APP), Presenilin-1 and Presenilin-2 (PS1 and PS2) genes lead to early-onset cases of AD 

[9]. While sporadic and familial AD follow a very similar course, in the case of familial 

AD the disease progression rate is much faster [10]. 
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Figure 2.1. Original microscopic brain preparation of the first AD case described by A. Alzheimer 
The presence of amyloid plaques and neurofibrillary tangles in brain autopsies of Auguste Deter, the first AD 
case described by Alois Alzheimer (Source: Archives of Center for Neuropathology and Prion Research, 
Ludwig Maximilian University of Munich). 
 

 

Today after more than a century from the discovery of AD, despite the countless 

breakthroughs in understanding the underlying mechanisms governing the disease 

progression, the etiology of AD (in particular sporadic AD) remains largely unknown 

[11]. The latter is thought to be one of the reasons for the very little success in the 

development of effective AD therapies [12]. The current AD treatments are very 

insufficient and the few approved AD drugs in the market show symptomatic relief at the 

best and only delay the progression of the disease temporarily [1, 13]. The major 

hallmarks of AD are the accumulation of intracellular neurofibrillary tangles and 

extracellular plaques of amyloid beta (Aβ) protein in the brain [5]. In accordance, the 

current AD drug development strategies mainly focus on targeting these two major 

disease hallmarks [14-16]. However, those events correspond to late stages of AD during 

which the irreversible brain damage has likely already occurred [17]. In view of the 

unsuccessful outcome of all clinical trials with Aβ-targeted drug candidates so far, it is 

suggested that in future clinical trials, drugs should be administrated early enough to 

asymptomatic patients as a preventative measure [18-21]. In addition, it is not fully 

understood whether Aβ plaque and tangle pathologies are the actual causes or rather the 

symptoms of AD [22]. Those are some of the possible reasons for the consistent recent 

failure of disease-modifying drug candidates targeting Aβ and tangle pathologies in late 

clinical phases. 
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2.2 Calcium signaling in health and disease 

 

Calcium is a key second messenger involved in regulation of many physiological and 

pathological processes. Learning and memory, muscle contraction, synaptic transmission, 

secretion, motility, membrane trafficking, excitability, gene expression, and cell division 

are examples of processes that are being regulated by calcium signaling [23]. Therefore 

regulation of calcium homeostasis in space, time and magnitude is essential for the 

cellular function and viability [24]. Neurons maintain this tight regulation through a set of 

machinery consisting of calcium buffers, binding proteins, pumps and sequestering 

mechanisms [25]. The cytosolic calcium concentration is particularly regulated by the 

action of receptor-operated, voltage-gated, and store-operated calcium channels located in 

the plasma or ER membrane. The calcium concentration in the ER lumen is more than 

1000-fold higher than in the cytosol [26]. The basal cytosolic concentration is maintained 

at very low levels (50-300 nM) and only after activation by extracellular influx or from 

intracellular stores, it rapidly reaches low micromolar levels [22]. Too high cytosolic 

calcium concentrations lead to cell death, whereas too low levels impair neuronal 

function [27]. Liberation of calcium from ER into the cytosol is mediated through two 

major calcium channels on the ER membrane, one being inositol-1,4,5- triphosphate 

receptors (IP3R) and the other one Ryanodine receptors (RyR). The IP3R are activated by 

binding of IP3 molecule, which is generated by stimulating G-protein-coupled receptors 

on the plasma membrane by agonists (Figure 3.2). Only in the presence of IP3, calcium 

ions can potentiate the calcium release from IP3R [28]. In addition, RyRs are activated 

directly by calcium ions through a process known as “calcium-induced calcium release” 

(CICR), while substances like caffeine can enhance the sensitivity of RyR to its native 

activator calcium [22, 24, 29, 30]. The tight regulation of ER calcium release is crucial 

for rapid neuronal responses to synaptic inputs, action potentials and synaptic plasticity 

[31]. 

2.3 Impairment of calcium homeostasis in Alzheimer’s disease 

 

Among many different hypotheses, it is believed that calcium dysregulation plays a key 

role in the pathophysiology of AD [22, 32]. Disrupted cellular calcium homeostasis 

impairs synaptic plasticity, mitochondrial function, membrane excitability, APP 

processing, Tau phosphorylation and increases susceptibility to apoptosis, practically all 
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being features of AD [33]. The involvement of calcium dyshomeostasis in the 

pathogenesis of AD has been acknowledged over the last 2 decades [34, 35]. In late 80s 

and early 90s, Zaven Khachaturian postulated a role for disrupted calcium homeostasis in 

aging and pathogenesis of AD. He suggested that lifelong impairment of calcium 

homeostasis eventually results in neurodegeneration [31]. Even prior to that, indirect cues 

indicated the activation of calcium-dependent proteins in postmortem brains of AD 

patients, pointing towards the involvement of calcium in AD pathogenesis [36]. 

Interestingly, Memantine, one of the only few approved drugs for treatment of moderate-

to-severe AD, is an NMDA receptor antagonist, which by inhibition of sustained calcium 

influx leads to stabilization of intracellular calcium homeostasis [37].  

 

Long preceding the manifestation of pathological hallmarks and cognitive deficits in AD 

[25], the intracellular neural calcium homeostasis is likely to be altered due to either 

aging or alternatively by familial Alzheimer’s disease linked mutations in the Presenilin 

genes (FAD-PS) [38-41, 42; discussed in section 3]. It is suggested that age-dependent 

alterations in the calcium homeostasis may lead to altered neuronal excitability, a 

phenomenon similar the effect of FAD-PS mutations [42-45]. Moreover, impaired 

calcium signaling in peripheral tissues was proposed as diagnostic biomarkers of mild AD 

[46, 47]. Notably, alterations in ER calcium channels were found to correlate with 

neurofibrillary and Aβ pathology in AD brain [48]. Furthermore, the long-term disruption 

of calcium homeostasis triggers and accelerates both Aβ and tangle pathologies [39, 49, 

50]. Essentially, AD is believed to be primarily a disorder of synaptic failure [51]. In AD, 

calcium dysregulation is a proximal event in disease progression which plays a key role in 

synaptic failure and neuronal loss [52]. Notably, the latter irreversible pathological events 

correlate best with cognitive loss and the stages of dementia [53, 54]. 

 

2.4 APP processing and amyloid pathology in AD 

 

As indicated in section 2.1, one of the AD hallmarks is the generation of amyloid plaques, 

the extracellular insoluble protein deposits found in the brains of AD patients [55]. The 

major constituent of the amyloid plaques is a 4 kDa peptide called Aβ which can be 

ranging from 36-43 amino acids in length [7]. However, Aβ peptides with 40 or 42 amino 

acids are the most prevalent species [7, 56]. In “amyloid hypothesis”, the accumulation of 
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Aβ because of imbalanced Aβ production, clearance and aggregation, is believed to 

initiate a pathogenic cascade ultimately leading to AD [55]. 

 

After over 20 years since it was proposed, amyloid hypothesis still dominates the AD 

field [57]. However, poor correlation between Aβ deposits and the course of AD, 

substantial differences between early- and late-onset AD cases, pathological assessments 

indicating the secondary nature of lesions/proteins/cascades, poor reproducibility of 

soluble species in the lab, and the irrelevance of synaptic assessment to pathological 

interpretation, are some of the issues which altogether have resulted in a debate as to how 

far this hypothesis shall be pursued in the drug discovery of AD [58]. 

 

Aβ is the product of regulated intramembrane proteolysis (RIP) of Amyloid Precursor 

Protein (APP) [55, 59]. APP is a type I transmembrane protein which can be cleaved by 

three different enzymes: α-secretase and β-secretase in the extracellular domain and γ-

secretase in the transmembrane region [60]. In the amyloidogenic pathway, Aβ is 

generated from the sequential proteolytic cleavage of APP, first at β-site by a β-secretase 

called BACE (β-site APP cleaving enzyme), followed by PS-containing γ-secretase 

complex at the γ-site of APP [32]. Alternatively, in a competing non-amyloidogenic 

pathway, α-secretase can cleave APP at α-site within the Aβ domain to preclude Aβ 

generation [60] (Figure 2.2). 

 

The β-cleavage takes place within the ectodomain of APP in close proximity of the 

transmembrane domain. Soluble APP ectodomain (sAPPβ) and membrane-bound C-

terminal fragment C99 are the products of APP cleavage with β-secretase. Subsequently, 

C99 is cleaved by γ-secretase resulting in secretion of Aβ in the extracellular and the 

formation of the APP intracellular domain (AICD). Alternatively, in the non-

amyloidogenic pathway, from the cleavage of APP with metalloprotease α-secretase, 

soluble APP ectodomain (sAPPα) and a C-terminal fragment (C83) are produced. Next, 

C83 is cleaved by γ-secretase resulting is secretion of p3 peptide (3 kDa) and generation 

of AICD [61, 62] (Figure 2.2). 
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Figure 2.2. APP processing by α-, β- and γ-secretase 
In amyloidogenic processing of APP, Aβ is generated from the sequential cleavage by β-secretase and γ-
secretase. However, in non-amyloidogenic pathway, the cleavage of APP with α-secretase within the Aβ 
domain precludes the formation of Aβ [Adapted from Lichtenthaler et al., Reference number 61]. 
 

Currently most attempts in AD drug development are targeted at Aβ pathology [63]. 

These approaches aim at inhibition or modulation of the proteolytic cleavage of APP in 

order to decrease the neurotoxic Aβ formation, enhance Aβ clearance using 

immunotherapy, influence Aβ aggregation, neutralize Aβ toxicity, or remove existing Aβ 

aggregates [14, 57]. 

 

While our understanding of pathological versus physiological roles of APP and Aβ are 

rather limited [64, 65], there seems to be also a certain level of uncertainty as to which 

type of Aβ is the most relevant species to be targeted in anti-Aβ therapy [66]. In addition, 

it is not fully understood how much decrease in Aβ burden is optimal to yield clinical 

efficacy. Furthermore, many AD clinical trials so far did not address disease modification 

at the right progression stage and with the right AD patient population category [67]. 
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2.5 The interplay between calcium and amyloid pathology in AD 

 

The connection between calcium and Aβ pathology is mutual. Calcium triggers Aβ 

pathology, but also gets triggered by it [49]. The maintenance of low cytosolic calcium 

concentration with respect to extracellular environment and intracellular stores is essential 

for the neuronal function [68]. High cytosolic calcium concentrations, originated either 

from extracellular calcium influx or from intracellular stores increase Aβ production, 

aggregation, and Aβ42:Aβ40 ratio [22, 50, 69-76]. The knockdown of two main 

components of ER calcium homeostasis, namely IP3R and SERCA2b, was shown to 

mediate decreased Aβ generation [69, 72]. How disrupted calcium homeostasis exactly 

contributes to amplified Aβ pathology is not yet fully understood. Nevertheless, it seems 

that calcium affects several factors involved in APP processing. For example, it has been 

demonstrated that calcium can enhance the BACE1 proteolytic activity [39]. 

 

On the other hand, already in early 90s, Mattson and colleagues could show that Aβ 

causes destabilization of neuronal calcium homeostasis and consequently vulnerability to 

excitotoxicity [77]. The role on Aβ in disrupting cellular calcium homeostasis is mainly 

attributed to the stimulated calcium influx from extracellular [78]. Several modes of 

action have been proposed to explain the Aβ-dependent enhanced calcium influx. For 

example Aβ oligomers have been shown to directly form pores on lipid bilayers [79-81], 

disrupt membranes [82, 83], form ROS causing lipid peroxidation [84] or impair 

membrane ATPase activity [85]. Aβ oligomers have been also shown to modulate the 

activity of NMDA receptors [86] and thus lead to NMDA-mediated excitotoxicity [87], 

while on the other hand suppress the activity of P/Q-type voltage-gated calcium channels 

[88]. 2-photon in vivo calcium imaging in AD mouse models has revealed that there are 

clusters of hyperactive neurons and calcium overload in neurites in close proximity of 

senile plaques [89, 90]. On the other hand, a recent study found no correlation between 

the evoked calcium responses and the distance from Aβ plaques in pyramidal 

hippocampal CA1 neurons of an APP/PS1 mouse model of AD [91].  

 

Interestingly upon exposure of cortical neurons with extracellular Aβ42, a specific 

upregulation in RyR3 levels can be detected [92]. The latter seems to play a protective 

role, since the knockdown of RyR3 led to increased neuronal cell death [93]. In contrast, 
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treatment of PC12 expressing FAD-PS cells with dantrolene an inhibitor of RyR 

attenuates glutamate and Aβ-induced toxicity [94, 95]. Remarkably, RyR2 isoform is 

densely expressed in the same brain regions that are most vulnerable in AD pathology, 

particularly hippocampus, whereas the RyR3 isoform has a diffuse and sparse expression 

pattern [96]. Furthermore, a recent study also shows that intracellular application Aβ42 

soluble oligomers (but not monomers) causes release of calcium from IP3Rs, a 

mechanism which may contribute to the cytotoxic effects of Aβ [97]. 

 

In 6-8 week old presymptomatic 3xTg-AD mice, already a selective upregulation of 

RyR2 isoform can be detected [98]. Interestingly at this young age, these mice do not 

show any cognitive or neurophysiological impairment [99]. In agreement with these data, 

RyR2 mRNA levels were shown to be increased in brain samples from patients with 

mild-cognitive-impairment (MCI) compared to individuals with no cognitive impairment 

[100]. Therefore, the upregulation of RyR2 might reflect a compensatory mechanism to 

normalize the disrupted ER calcium homeostasis in order to maintain a healthy neuronal 

transmission and plasticity during presymptomatic stages of the disease. However, 

maintaining this balance over the course of years might influence the disease process. 

Once the chronic calcium assaults overwhelm those neuronal compensatory mechanisms, 

the impairments in synaptic plasticity and LTP become apparent and neurodegeneration is 

likely to occur [101]. On the other hand, high levels of Aβ42 resembling the later stages 

of the disease induce specific upregulation of RyR3 isoform [92]  

 

2.6 Connection between calcium and tau pathology in AD 

 

Another hallmark of AD is the accumulation of neurofibrillary tangles in the brain, which 

are common filamentous inclusions in tauopathies [5, 102]. A strong correlation is found 

between the neurofibrillary tangle pathology and the severity of AD [103, 104]. These 

tangles are mainly composed of paired helical filaments of abnormally 

hyperphosphorylated tau, a microtubule-associated protein [105, 106]. Under 

physiological conditions soluble tau protein is involved in stabilization of axonal 

microtubules, however under pathological conditions tau undergoes aggregation due to 

hyperphosphorylation as a result of imbalanced activity of tau kinases and phosphatases 

[107, 108]. The activity of many kinases associated with tau hyperphoshorylation is 
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calcium-dependent. For example Ca2+/calmodulin-dependent protein kinase II (CaMKII) 

and it downstream target AMP-activated protein kinase (AMPK) are implicated in Tau 

phosphorylation [109]. In addition, calcium ions stimulate proteolytic cleavage of p35 to 

p25 which leads to aberrant activation of kinase 5 (Cdk5), yet another kinase involved in 

tau phosphorylation [110]. Notably, Memantine can inhibit and reverse tau 

hyperphosphorylation [111], presumably by stabilization of disrupted cellular calcium 

homeostasis. Interestingly several proteins involved in calcium signaling are associated 

with tauopathies. Calpains [112], calcineurin [113], transglutaminase [114] and a novel 

EF-hand domain-containing calcium-binding protein [115] are examples of that. Similar 

to the feed-forward relationship between Aβ and calcium, there is also a feed-forward 

relationship between tau hyperphosphorylation tau and increased intracellular calcium 

concentrations. It is suggested that extracellular tau by interacting with muscarinic 

receptors can also promote the release of calcium from ER [116]. This would result in a 

vicious cycle in which the excess calcium triggers the calcium-activated kinases and tau 

hyperphoshphorylation, compromising the integrity of neuronal processes, altering 

signaling cascades, and upregulating cholinergic receptor activation coupled to calcium 

release [41, 117]. 

 

2.7 Mitochondrial dysfunction in Alzheimer’s disease 

 

Mitochondria are dynamic ATP-generating organelles which are responsible for more 

than 90% of cellular energy production [118]. In particular, due to the limited glycolytic 

capacity of neurons and their strong dependence on aerobic oxidative phosphorylation, 

mitochondrial energy production plays an important role in the brain [119]. Mitochondria 

are implicated in many cellular functions including intracellular calcium homeostasis, 

alteration of cellular reduction-oxidation potentials, free radical scavenging and activation 

of caspase-mediated apoptosis [120]. Mitochondria buffer the changes in the local 

calcium concentration proximal to plasma membrane and ER, regulate calcium flux and 

modulate the frequency of calcium oscillations [121]. The mitochondrial calcium uptake 

particularly plays an important role in synaptic transmission at presynapses [122]. 

Both functionally and physically, ER and mitochondria are interdependent. The 

interaction between them is mainly through the zones where the two organelles come into 
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close contact [123]. These zones known as ER-mitochondria-associated-membranes 

(MEM) are loci of calcium shuttling between ER and mitochondria [124], playing an 

important role in many fundamental biological processes [125] (Figure 2.3). Particularly, 

calcium release from IP3R to mitochondria is essential for the maintenance of 

mitochondrial functions [126]. Importantly presenilin mutations have been shown to also 

modulate the shuttling of calcium between ER and mitochondria [127]. Therefore, it is 

plausible that the disruption in the ER calcium homeostasis also affects mitochondrial 

activity. Furthermore, mitochondrial calcium overload is proposed to underlie the 

oligomeric Aβ-induced toxicity, a phenomenon which can be reversed by non-steroidal 

anti-inflammatory drugs (NSAIDs) [128]. 

 

 

Figure 2.3. Shutting of calcium between ER and mitochondria 
Calcium ions are shuttled between ER and mitochondria at the junctions between the two organelles, known 
as ER-mitochondria-associated-membranes (MEM). The shuttling is mediated by the IP3R at the ER 
membrane and the calcium uniporter in the inner mitochondrial membrane [Adapted from Collins et al., 
Reference number 129]. 

 

Mitochondrial dysfunction is a key early event in the course of aging and in the 

pathogenesis many neurodegenerative disorders, including AD [120, 130-135]. Examples 

of AD-associated mitochondrial dysfunctions are decreased number of neuronal 

mitochondria, increased mitochondrial DNA content, lowered glucose metabolism, 

imbalanced mitochondrial fission and fusion, impaired mitochondrial trafficking, and 
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reduced mitochondrial membrane potential [136-140]. The functions of several crucial 

mitochondrial enzymes have been demonstrated to be inhibited by Aβ exposure in brain 

or in isolated mitochondria [141, 142]. Moreover, mitochondrial dysfunction is believed 

to be implicated in the dysfunction and loss of synapses as well as neuronal apoptosis in 

AD [51, 143, 144]. In this context, Aβ has been demonstrated to induce mitochondrial 

dysfunction and morphological changes accompanied by decreased amount of synpatic 

proteins [145]. Morphological studies indicate a strong correlation between mitochondrial 

pathology with dystrophic dendrites, loss of dendritic branches and the pathological 

alteration of the dendritic spines [146]. Therefore, improving mitochondrial function by 

itself is considered as a viable approach in AD drug development [133, 147-149]. 

Recently a drug known as Dimebon (Latrepirdine) made its way to clinical phase III trials 

for AD [150]. Despite its late-stage failure, the beneficial biological effects of Dimebon 

were mainly attributed to improving mitochondrial function [151, 152].  

 

2.8 The therapy of Alzheimer’s disease 

Currently, all of the AD drugs in the market are symptomatic, whereas the drugs in 

development are mostly disease-modifying, in the sense that these novel treatments are 

targeted at the pathological steps leading to AD, with the aim of interfering with the 

evolution of the disease [15].  

 

2.8.1 Symptomatic therapy 

The first drugs developed for AD were acetylcholinesterase inhibitors (AChEI) [15]. 

These drugs were developed on the basis of the cholinergic hypothesis of AD which 

argues that the cholinergic deficits, in particular decreased acetylcholine levels and the 

loss of basal forebrain cholinergic neurons, are implicated in the pathogenesis of AD 

[153]. Currently there are 3 approved AChEIs in the market for treatment of mild-to-

moderate AD patients: Donepezil (Pfizer), Rivastigmine (Novartis) and Galantamine 

(Janssen) [154]. Tacrine (First Horizon Pharmaceuticals) was the first AChEI approved 

drug for treatment of AD in 1993, which is not anymore being used due to the damage it 

causes to the liver [155]. Donepezil is now also approved for treatment of severe AD 

patients in the US [156]. The development of further cholinergic drugs is still ongoing. 
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Apart from AChEIs, Memantine (Merz, Forest, and Lundbeck) is a further symptomatic 

therapeutic option for treatment of moderate-to-severe AD [154]. Memantine is an 

uncompetitive, moderate-affinity NMDA receptor antagonist, which is believed to protect 

neurons from excitotoxicity [15, 154]. 

 

2.8.2 Disease-modifying therapy 

In contrast to the partial success in development of symptomatic drugs for treatment of 

AD, in spite of huge investments towards the development of Alzheimer’s disease-

modifying therapies, the field has faced the consistent failure of disease-modifying 

approaches for AD in preclinical and clinical phases [20]. 

 

2.8.2.1 Amyloid-targeted therapies 

On the basis of the widely accepted amyloid hypothesis of AD and its central role in the 

diagnosis of the disease, the majority of disease-modifying approaches have largely 

focused on the development of medicines targeting Aβ pathology [154]. In essence, such 

approaches suggest that excessive levels of Aβ in its different forms, e.g. plaques, soluble 

oligomers, fibrils, protofibrils… play a causative role in the pathogenesis of AD. 

Therefore, the removal of such neurotoxic Aβ should results in clinical efficacy. Here, we 

try to summarize the most important therapeutic interventions targeting Aβ pathology. 

 

2.8.2.1.1 β-secretase inhibitors 

Since the first step in APP processing is the β-secretase cleavage, several BACE1 inhibitors have 

been developed as potential therapeutics for AD. However, BACE1 inhibition turns out to be a 

challenging approach for two major reasons: Firstly, BACE1 cleaves many substrates 

beside APP with important physiological roles. Therefore, BACE1 inhibition may cause 

undesired toxic side effects. Secondly, BACE1 has a relatively wide active site. 

Therefore, BACE1 inhibitors are often bulky molecules that do not readily cross the 

blood-brain barrier [14, 154]. 

Due to such difficulties, only a small number of BACE1 inhibitors entered early clinical 

trials while the majority of β-secretase inhibitors are still in preclinical stages [157]. 
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2.8.2.1.2 γ-secretase inhibitors and modulators 

γ-secretase is a multiprotein complex inside of which presenilins (PS1 and PS2) are 

responsible for the final enzymatic cleavage of APP that results in formation of Aβ. 

Similar to β-secretase, γ-secretase also cleaves many transmembrane protein substrates. 

Accordingly, γ-secretase inhibition was shown to be associated with side-effects which 

are often related to Notch signaling [158]. Although, several γ-secretase inhibitors 

reached clinical trials, their late clinical trials were often prematurely interrupted due to 

toxicity and detrimental effects on cognition and functionality of treated patients. Those 

side effects are believed to be caused by impaired Notch processing and accumulation of 

neurotoxic APP-CTF [159]. More recently, γ-secretase inhibitors with high selectivity to 

APP are being developed [160]. 

In addition, a particular focus has been put towards the development of γ-secretase 

modulators (GSMs). GSMs specifically lower the production of amyloidogenic Aβ42 

peptides, while increasing the production of shorter Aβ species (e.g. Aβ38) [158, 159, 

161]. Importantly, GSMs alter APP processing without the Notch-based adverse effects 

[14]. A subset of non-steroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, 

indomethacin, and sulindac sulfide, were shown to possess the properties of GSMs [14, 

15, 154]. 

2.8.2.1.3 α-secretase activators 

Enhancing α-secretase activity and shifting APP processing towards non-amyloidogenic 

pathway results in decreased Aβ production and increased levels of neuroprotective 

sAPPα peptide [64, 162]. Therefore, stimulating α-secretase activity has been regarded as 

a valuable approach in AD drug development [163]. Although several α-secretase 

activators failed to show desired clinical efficacy, encouraging safety results support the 

development of further α-secretase activators with improved clinical efficacies [15, 164]. 

2.8.2.1.4 Anti Aβ aggregation drugs 

The hypothesis that Aβ aggregation leads to formation of oligomeric Aβ species that 

impair synaptic function and plasticity has led to development of drugs which are aimed 

at preventing Aβ aggregation or destabilizing Aβ oligomers [14]. Glycosaminoglycans 
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that binds to Aβ monomers and prevent oligomer formation [165], zinc- and copper-

chelating compounds which dissolve amyloid deposits [14, 15, 166], and scyllo-inositols 

which directly bind to Aβ oligomers and promote the dissociation of Aβ aggregates are 

examples of such drugs [167, 168]. Based on the lack of clear-cut clinical efficacy results, 

large-scale phase 3 clinical studies are required in order to better evaluate the potential of 

anti-Aβ aggregation agents as AD therapeutics [14, 15, 154, 162, 168]. 

2.8.2.1.5 Immunotherapy 

Both active immunization (vaccination) and passive immunization (monoclonal 

antibodies) are regarded as promising approaches that aim at increasing Aβ clearance 

which may potentially affect Aβ production, aggregation and deposition [162, 169]. In 

active immunization, the immune system is stimulated to promote formation of antibodies 

against pathogenic forms of Aβ, whereas in passive immunotherapy antibodies are 

delivered exogenously [169]. Although a number of immunotherapy approaches were 

associated with adverse side effects [14, 170-172], currently several antibodies are under 

investigation in clinical and preclinical phases for AD [14, 15, 154, 173]. 

 

2.8.2.2 Tau-targeted therapies 

 

On the basis of the hypothesis that tau pathology strongly contributes to the pathogenesis 

of AD and its strong correlation with the stage of the disease, a number of tau-targeted 

AD therapeutic approaches are being developed [107, 174]. Amongst them are drugs in 

clinical trials which are interfering with either tau aggregation or phosphorylation [154, 

175-178]. Based on recent immunization studies in AD mouse models, both tau 

vaccination and the use of tau antibodies were proposed as potential AD therapeutic 

modalities [179-181]. However, given the fact that tau is an intracellular protein, 

development of a successful tau immunotherapy appears to be rather challenging [15]. 
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2.8.2.3 Alternative therapies 

 

Stem cells, neurotrophins, enhancers of mitochondrial function, anti-inflammatory 

medications, antioxidants, neuroprotective agents, as well as drugs modulating cholesterol 

and vascular-related risk factors are some of the alternative approaches currently being 

investigated in preclinical and clinical stages for AD therapy [14, 154, 162]. 

 

2.9 The development status of calcium signaling-targeted therapies for AD 

 

2.9.1 Pharmacological modulation of extracellular calcium flux 
 

2.9.1.1 Receptor-operated calcium channels (ROCC) 

 

Despite efforts in drug discovery and development of ion channel blockers and their 

promising results in AD animal models, memantine remains to be the first and only 

clinically approved drug in Europe and North America for treatment of moderate-to-

severe AD patients [37, 182, 183]. The beneficial effects of memantine are only marginal 

[184], however, they are attributed to blockage of NMDA receptor and thus restoring the 

excess calcium influx to physiological levels. This results in lowered cytosolic calcium 

concentration, enhanced CCE and increased ER calcium load and in turn potentiated 

agonist-induced calcium release [185]. EVT 101, a NR2B-selective NMDA receptor 

antagonist, is currently in clinical trials for AD [186].  

 

Aβ42 (but not Aβ40), has been shown to interact and exert inhibitory effects on synaptic 

AMPA receptors, a phenomenon which may contribute to AD-associated memory 

impairments [187]. This finding provides an explanation for the observed downscaling of 

AMPA receptor activity accompanied with memory impairments in APP/PS1 double 

knock-in AD mouse model [188, 189]. Indeed AMPA receptor activators have been 

shown to reverse the age-associated memory loss and improve learning in rats, however 

with no efficacy in AD patients [190]. Interestingly, Dimebon apart from improving 

mitochondrial activity was shown to block NMDA receptors and potentiate the activity of 

AMPA receptors as well [191].  
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2.9.1.2 Voltage-gated calcium channels (VGCC) 

 

The involvement of VGCCs in AD is known for quite some time. Aβ has been shown to 

enhance calcium influx through L-type VGCCs [192]. Therefore blocking VGCC is an 

interesting target for AD therapy [193]. Nimodipine (an L-type calcium channel 

antagonist) has been shown to attenuate the neurotoxicity mediated by Aβ-induced 

potentiation of calcium influx [192] and Aβ accumulation caused by neuronal 

depolarization and increased cytosolic calcium concentration [74]. However due to mixed 

results in terms of clinical efficacy of Nimodipine in AD and other dementias, its 

usefulness still a matter of debate [194]. MEM 1003 is a Nimodipine-related compound, 

which is currently in late clinical trials for AD [195, 196]. 

 

Nimmrich et al. demonstrated that Aβ oligomers can impair presynaptic P/Q-type 

calcium currents at both GABAergic and glutamatergic synapses [88]. Roscovitine is a 

drug which was shown to enhance the P/Q-type calcium currents [197] and rescue the 

impaired vesicle trafficking in hippocampal neurons induced by Aβ oligomers [88].  
 

2.9.2 Pharmacological modulation of ER calcium signaling 

 

Manipulating ER calcium homeostasis in the context of clinical therapeutics has been so 

far only rarely investigated and never examined for neurodegenerative diseases. 

Modulation of the elements involved in the ER calcium homeostasis has been tested in 

cell culture. Blockade of SERCA pump with Thapsigargin led to increased cytosolic 

calcium concentration through blocking calcium uptake into ER, caspase-3 activation and 

thus enhanced apoptosis. Similarly, Aβ-induced apoptosis is also associated with 

increased cytosolic calcium concentration and capase-3 activity [198]. However, 

SERCA2b loss of function by siRNA knockdown or pharmacologically by Thapsigargin 

or CPA was shown to lower Aβ levels [72, 199] 

 

Blockade of IP3R with Xestosponginn B or C, and RyR with dantrolene restores the 

elevated cytosolic calcium concentrations and protects against Aβ-induced apoptosis 

[200, 201]. On the other hand, treatment with Caffeine sensitizes FAD-PS1 expressing 

neurons to Aβ-induced apoptosis [202]. Genetic ablation of IP3R in cells expressing 

FAD-PS1 also results in remarkable reduction in Aβ levels [69]. Indeed, pharmacological 



DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS | 21 

normalization of disrupted ER calcium signaling by blocking hyperactivated RyR 

channels with dantrolene was demonstrated to restore synaptic transmission and synaptic 

plasticity, reduce memory deficits and Aβ burden, increase PSD-95 expression, and 

improve learning and memory in different AD mouse models [203-205]. By contrast, 

another study shows that long-term feeding of dantrolene to APP/PS1 mice [206], results 

in increased Aβ-load accompanied with synaptic marker loss and atrophies in 

hippocampus and cortex [207]. Notably, dantrolene has been already used for treatment 

of malignant hypothermia, neuroleptic malignant syndrome, muscle spasticity and ecstasy 

intoxication. Procaine and tetracaine, two other inhibitors of RyR have been used as local 

anesthetics. Benzothiazepine K201, a RyR-stabilizing compound is being tested for 

treatment of defective RyR channel gating conditions, such as heart failure and kidney 

disease [208]. Therefore, therapeutic modalities aiming at manipulation of ER calcium 

homeostasis present a novel strategy for treatment a wide range of diseases.  
 

2.10 Calcium Imaging 

 

Calcium imaging is technique to monitor and quantify the calcium concentrations and 

calcium dynamics in the living cells. This is achieved through the use of either synthetic 

organic molecules with selective affinity to calcium (calcium dyes) or genetically 

engineered calcium indicators (GECIs) [209]. Both of these methods rely on the changes 

in fluorescence properties of the indicator upon calcium binding. Calcium indicators can 

be either single-wavelength or ratiometric. The advantage of ratiometric indicators is the 

distinct emission (or excitation) properties in calcium-free and calcium-bound states, 

which minimizes the risk of artifacts.  

The concept of using Green Fluorescent Protein (GFP) as biosensors was employed in 

development of genetically engineered calcium indicators as well. Two important classes 

of GECIs are either FRET (Förster Resonance Energy Transfer)-based or single-emission 

calcium indicators [210]. Cameleons are a subclass of FRET-based calcium sensor fusion 

proteins that consist of cyan (CFP) and yellow (YFP) fluorescent protein domains, which 

are linked by calmodulin (CaM), the calmodulin-binding peptide M13 (Figure 6.2a). 

Binding of calcium to CaM results in the conformational change of CaM causing 

wrapping around the M13 domain and thus increasing the FRET between CFP and YFP 
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[211]. In single-emission calcium indicators, the change in the fluorescence intensity of a 

single fluorescent protein is proportional to the amount and change in the calcium 

concentration [210]. Yellow Cameleon 3.6. (YC3.6) is a bright FRET-based calcium 

indicator with about 6-fold wide dynamic range and thus an enhanced signal-to-noise 

ratio [212]. It is photostable and absorbs a great amount of light.  

The advantage of genetically engineered calcium probes compared to synthetic organic 

dyes is the possibility to perform long-term calcium imaging without the drawbacks 

involved in dye loading, washing and leakage, therefore making it ideal for high-

throughput calcium imaging. In addition, in contrast to synthetic calcium dyes, it possible 

to target GECIs to specific compartments and generate stable lines or transgenic animals 

expressing the calcium sensor.  

Opera®, a high-throughput confocal laser scanning imaging system (PerkinElmer), was 

used for calcium imaging in the present work. It combines high sub-cellular resolution 

and speed, in combination with flexible image analysis software, Acapella® [213]. The 

system includes an on-board dispensing unit suitable for applying small drug volumes 

while imaging live cells under environmental control of temperature, CO2 and humidity. 

High resolution is achieved by using confocal imaging and water immersion lenses 

creating an optimal reader for calcium imaging based high-throughput screening. We 

equipped the Opera® system with Bravo® (Agilent technologies), an automated liquid 

handling robot, which works under a laminar flow hood and suitable for sterile cell based 

assays. 
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3.1 Abstract 

 

Mutations in presenilins are responsible for the vast majority of early-onset familial 

Alzheimer’s disease cases. Full-length presenilin structure is composed of nine 

transmembrane domains, which are localized on the endoplasmic reticulum membrane. 

Upon endoproteolytic cleavage, presenilins assemble into the γ-secretase multiprotein 

complex and subsequently get transported to the cell surface. There is a wealth of 

knowledge around the role of presenilins as the catalytic component of γ-secretase, their 

involvement in amyloid precursor protein processing and generation of neurotoxic β-

amyloid species. However, recent findings have revealed a wide range of γ-secretase-

independent presenilin functions, including involvement in calcium homeostasis. 

Particularly, familial Alzheimer’s disease presenilin mutations have been shown to 

interfere with the function of several molecular elements involved in endoplasmic 

reticulum calcium homeostasis. Presenilins modulate the activity of IP3 and Ryanodine 

receptor channels, regulate SERCA pump function, affect capacitative calcium entry and 

function per se as endoplasmic reticulum calcium leak conductance pores. 

 

 

Keywords: Presenilin, Calcium, Endoplasmic reticulum, Alzheimer’s disease 



DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS | 25 

 

3.2 Introduction 

 

Presenilin (PS) mutations account for over 90% of human familial Alzheimer’s disease 

(FAD) cases. Beyond the intensively characterized role of PS as the catalytic core of γ-

secretase multimeric enzyme complex [214], presenilins have been shown to be 

implicated also in a wide range of γ-secretase-independent functions including β-catenin 

regulation, signal transduction, cell adhesion, protein trafficking and turnover, apoptosis, 

synaptic function, tau phosphorylation and calcium homeostasis [215]. γ-secretase is 

responsible for the regulated intramembrane proteolysis (RIP) of over 60 different 

substrates, including amyloid precursor protein (APP) and Notch. Yet, γ-secretase is best 

known for its involvement in formation of β-amyloid (Aβ) peptide, which is generated 

from sequential proteolytic cleavage of APP in Alzheimer’s disease (AD) [214]. The 

discovery of PS came from the work of Sherrington and colleagues in 1995. Their 

genome-wide screen revealed that missense mutations in the PS1 gene (originally known 

as S182) lead to early-onset FAD cases [216]. This finding was shortly complemented by 

an independent study which reported that the PS1 homologous gene in Caenorhabditis 

elegans (sel-12) is implicated in Notch signaling [217]. Meanwhile, PS homologues have 

been identified in several other species, ranging from mammals to frogs, flies, worms, 

fish and plants [218]. PS1 and PS2 are the two highly homologous forms of PS in 

mammals which are respectively located on chromosomes 14q24.3 and 1q42.2 [214]. In 

this review article, we mainly highlight the role of PS in the context of calcium signaling, 

particularly in relation to disrupted calcium homeostasis implicated in the pathogenesis of 

Alzheimer’s disease (AD). 
 

3.3 Structure 

 

Although the crystal structure of PS is not yet resolved, there is strong evidence in favor 

of a nine transmembrane domain (TMD) structure model (Figure 3.1). PS holoprotein is 

~50 kDa in size which undergoes endoproteolysis within a putatively large intracellular 

loop between TMD6 and TMD7 to generate a ~30 kDa N-terminal fragment (NTF) and a 

~20 kDa C-terminal fragment (CTF) which remain associated as a heterodimer [214]. 
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NMR studies could only determine the structure of PS1-CTF, containing a half-

membrane-spanning helix, a severely kinked helical structure toward the carboxyl 

terminus as well as a soluble helix in the unstructured amino-terminal loop of the CTF 

[219]. Despite the lack of NMR structure for PS1-NTF, it is generally agreed upon that 

the PS1-NTF has a classical transmembrane topology consisting of six α-helices. 

 

3.4 Expression, activation and turnover 

 

The expression of both PS1 and PS2 is detectable throughout the brain, in most adult 

human tissues and regulated during development [218]. PS is primarily localized to the 

ER and Golgi apparatus, but also a small fraction is located at the cell surface [218] 

(Figure 3.2). In the brain, endogenous PS is predominantly present as N- and C-terminal 

fragments, while the immature precursor full-length PS holoprotein (PS-FL) is only 

faintly detectable. This is also reflected by the short half-life (~1.5 h) and rapid turnover 

of PS-FL compared to its more stable endoproteolytic fragments with longer half-lives 

(~24 h) [220]. However, upon PS overexpression, the NTF and CTF levels reach a 

saturation threshold, beyond which PS-FL gets accumulated [218]. The proteasomal 

pathway is responsible for the degradation of PS-FL [221]. Endoproteolytic cleavage of 

PS-FL occurs primarily within the ER. Upon association of PS proteolytic fragments with 

three other ER transmembrane proteins (Nicastrin, Aph-1 and Pen-2), a complex is 

formed and subsequently transported to the Golgi through several vesicular transport 

cycles and trafficked to the plasma membrane where it functions as γ-secretase [214].  

 

3.5 Role in calcium homeostasis 

 

In 1994, the involvement of PS in ER calcium signaling was demonstrated for the first 

time. Ito and colleagues observed exaggerated agonist-evoked calcium release from IP3 

receptor (IP3R) channels in fibroblasts from AD patients harboring FAD-PS mutations 

[222]. Guo and colleagues confirmed those data in neuronal-like cells. They observed 

remarkably enhanced IP3R-evoked calcium responses in PC12 cells expressing FAD-PS1 

compared to those expressing wildtype PS1 [223]. Numerous follow-up studies have 

confirmed FAD-PS-mediated excessive ER calcium release in other models including 
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Xenopus oocytes [224], primary neuronal culture [202], acutely dissociated neurons [225] 

and brain slices of adult FAD-PS1 mice [226]. In addition to the greater magnitude of 

IP3R-evoked calcium release, remarkable increase in the percentage of stimuli-responsive 

cells accompanied expression of FAD-PS1 [226]. Using PS-DKO MEF cells (PS1 and 

PS2 double knock out mouse embryonic fibroblasts) of the same origin, inconsistent 

results have been obtained describing either attenuated [227] or amplified [228] calcium 

release from ER. Etcheberrigaray et al. detected an altered IP3R-mediated calcium release 

in fibroblasts from a large proportion of AD family members prior to the appearance of 

overt AD clinical symptoms, but not in family member subjects who failed to develop 

AD [229]. These data supported the “calcium hypothesis” of AD and led to many follow-

up studies, which aimed to mechanistically explore the role of FAD-PS mutations in 

potentiating ER calcium release, which will be discussed later. 

 

Interestingly, calcium release from Ryanodine receptors (RyR) was also potentiated as a 

consequence of FAD-PS expression (Figure 3.2). In PC12 cells and primary hippocampal 

neurons, upregulation of RyR expression level and enhanced RyR-evoked calcium release 

by caffeine was observed [202]. Likewise, RyR-evoked calcium responses were amplified 

in slices from young, adult and aged FAD-PS1 knock-in mice, accompanying increased 

RyR expression [230]. This effect was most remarkable in dendrites and particularly in 

dendritic spines, but also detectable in soma and perinuclear regions [98]. From the 

earlier studies taken together, the “calcium overload” hypothesis was proposed arguing 

that the ER calcium overload is the cause of excessive ER calcium release. The 

interesting finding of the Bezprozvanny group, that PS holoprotein forms passive calcium 

leak channels on planar lipid bilayers and the leak activity to be impaired by FAD-PS 

mutations, came in support of the “calcium overload” hypothesis [228]. They argue that 

RyR upregulation in FAD-PS cells is a neuroprotective compensatory mechanism to 

normalize the overloaded ER calcium levels [207]. They hypothesize that the hydrophilic 

water-filled catalytic cavity of PS may function as a low conductance calcium-permeable 

pore [231]. They also demonstrated a correlation between the effects of FAD-PS 

mutations in terms of the leak activity and different AD clinical phenotypes by calcium 

imaging of patient-derived lymphoblasts [40]. However, more recent data have 

challenged the PS “leak channel” theory [232] and “calcium overload” hypothesis. [69, 

233]. Using several different cell lines and various calcium imaging protocols and 

indicators, the Foskett team investigated ER calcium filling rates, steady-state ER calcium 
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levels and calcium leak rates from ER. However, they could not provide consistent 

supporting evidence in favor of “leak channel” hypothesis [232]. The results from their 

study and several other recent works indicate that FAD-PS mutations lead to an 

unchanged or even attenuated ER calcium level by directly monitoring the absolute 

calcium content of the ER [69, 232-234]. 

 

The FAD-PS mutations do not seem to change the abundance or distribution of IP3 

receptors. However, single IP3R channel recordings in FAD-patient-derived lymphoblasts 

and Sf9 cells have revealed that through physical and functional interaction of IP3R 

channels with FAD-PS holoprotein, IP3Rs become more sensitive. The direct 

consequence of this is the excessive calcium release from ER even under resting 

conditions and sub-threshold IP3 molecule levels, i.e. calcium leakage in the absence of 

muscarinic receptor agonists [69] (Figure 3.2). FAD-PS mutations exert their stimulatory 

effect by enhancing the modal gating activity of IP3R and shifting the balance towards 

burst mode with high open-probability and repetitive openings and away from closed-

probability mode with only brief openings [69, 235]. Similarly, PS2-NTF facilitates the 

single channel activity of mouse brain RyR through its direct physical interaction with 

RyR at the cytosolic side of the ER membrane [236]. This interaction seems to play a role 

in modulating neurotransmitter release in hippocampus, as it was shown that specific 

inactivation of PS at presynapses (but not postsynpases) impairs glutamate release, 

synaptic facilitation and LTP, suggesting a primary role for presynaptic pathomechanisms 

in AD initiation [237]. Intracellular store calcium handling plays a crucial role in synaptic 

function. Indeed, several genetic and electrophysiological studies have pointed towards 

the role of PS in synaptic plasticity. Since PS associates with NMDA receptors, PS-DKO 

mice present lowered synaptic NMDA receptor levels, synaptic and memory deficits as 

well as neurodegeneration with increasing age [238]. In young presymptomatic 3xTg-AD 

mouse model, enhanced calcium release from RyRs accompanies subtle alterations in 

mechanisms underlying hippocampal synaptic transmission, which are typically masked 

by compensatory factors in early disease stages and only detectable under RyR blockade 

conditions [98]. Moreover, hippocampal neuronal cultures from PS1 knockout and PS1-

M146V mice show disrupted homeostatic synaptic scaling of excitatory synapses, which 

reflects disturbances in the neuronal ability to tune with changes in the network activity 

[239]. Furthermore, we have demonstrated that PS1 influences the structural plasticity of 

postsynaptic dendritic spines in the somatosensory cortex [240]. 



DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS | 29 

Calsenilin and calmyrin are further proteins involved in ER calcium homeostasis, which 

have been also shown to interact with presenilins [241, 242]. Coexpression of calsenilin 

reverses the FAD-PS specific potentiation of IP3R-evoked calcium release [243]. FAD-PS 

mutations have been shown to increase the neuronal vulnerability to Aβ and glutamate 

through activation of caspase-3 as a result of RyR3 isoform upregulation and enhanced 

RyR-mediated calcium release [244]. 

 

FAD-PS mutations have been shown to increase the neuronal vulnerability to Aβ and 

glutamate through caspase-3 activation as a result of RyR3 isoform upregulation and 

enhanced RyR-mediated calcium release in PC12 cells [244]. Notably, the FAD-PS 

mediated vulnerability and apoptosis can be normalized by pharmacologically or 

functionally inhibiting the IP3R-CaMKIV-CREB pathway in SH-SY5Y cells [201]. In 

PS-DKO MEFs, the expression of IP3R was remarkably upregulated [227]. Moreover, 

FAD-PS mutations lead to enhanced basal activity of phospholipase C (PLC) in SH-

SY5Y cells, which in turn result in increased production of IP3 molecule, mediating 

amplified calcium release from IP3R channels [200] (Figure 3.2). Therefore, it is crucial 

to distinguish the FAD-PS-mediated excessive calcium release as a result of IP3R/RyR 

hyperactivity from ER “calcium overload”. 

 

In fibroblasts, the interaction of PS and SERCA2b was demonstrated by their 

colocalization and coimmunoprecipitation [72]. This interaction is required for the 

regulation of the SERCA pump activity. The same study shows that Xenopus oocytes 

harboring FAD-PS1 more effectively sequester calcium from cytosol into the ER than 

oocytes expressing wildtype PS1 protein [72] (Figure 3.2). In contrast, another study in 

MEFs and SH-SY5Y cells claims that both wildtype PS2 and FAD-PS2 reduce the 

SERCA2b activity [233]. 

 

Capacitive calcium entry (CCE) is the process of refilling intracellular calcium stores 

through store-operated calcium channels (SOCC) on the plasma membrane. Calcium 

imaging in SH-SY5Y cells and primary neurons revealed that CCE is attenuated as a 

result of FAD-PS mutations and potentiated as a result of PS knockout or deficiency [245, 

246] (Figure 3.2). Bojarksi et al. found altered expression levels of STIMs, key proteins 

involved in CCE, in PS-DKO MEFs and patient-derived B-lymphocytes expressing FAD-

PS mutations [247]. 
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As reviewed, the exact mechanism responsible for the FAD-PS mediated amplified ER 

calcium release is still controversial. However, the consequence of this phenomenon is 

the elevation of cytosolic calcium concentration and enhanced neuronal vulnerability to 

stressors. Because calcium itself is the co-agonist of both IP3R and RyR, the elevated 

cytosolic calcium concentration in turn initiates a long-term feed-forward mechanism 

causing a vicious cycle in which the calcium waves and calcium-induced calcium release 

(CICR) become increasingly exaggerated in space, time, and amplitude. 
 

3.6 PS as a therapeutic target for Alzheimer’s disease treatment 

 

Since PS forms the catalytic component of γ-secretase, inhibition or modulation of its 

function serves as the prime therapeutic target for AD drug candidates interfering with Aβ 

generation. However, in view of the unexceptional failures of recent Aβ-focused therapies 

in clinical trials and the emerging non-proteolytic PS functions, future PS-targeted 

therapies should not only focus on interfering with γ-secretase proteolytic activity, but 

rather address the broad spectrum of PS functions, particularly those implicated in the 

pathogenesis of AD (e.g. disrupted calcium homeostasis). 
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Figure 3.1. Schematic representation of human PS1 structure 
PS1 holoprotrein is proposed to consist of nine TM domains on the ER membrane. PS1 undergoes 
endoproteolytic cleavage at a large cytosolic loop between TMD6 and TMD7 to generate N- and C-terminal 
fragments. 

 

 

Figure 3.2. Physiological versus pathological FAD-PS-mediated ER calcium homeostasis 
Calcium concentration in the ER is approximately 1000 folds higher than cytosol. FAD-PS mutations (lower 
panel) potentiate the IP3R- and RyR-induced calcium release, upregulate RyR expression, increase PLC 
basal activity and IP3 molecule generation, enhance SERCA pump function and attenuate CCE, as 
compared to wildtype PS (upper panel). Moreover, PS-FL holoprotein per se may function as passive 
calcium leak channel on the ER membrane, while most FAD-PS mutations lead to the loss of this activity. 
The direction and the size of the arrows respectively represent the direction and amount of calcium 
mobilization. 
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4 Aim of the study 

 

Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most 

frequent cause of dementia. The current AD drugs in the market are purely symptomatic, 

with little or no effect on the disease progression. Moreover, the recent failure in 

development of disease-modifying therapies for AD (which were largely targeted at 

amyloid and tangle pathologies) justifies the importance of a shift towards alternative 

novel drug targets. Based on the hypothesis that impaired intracellular calcium 

homeostasis is an early event in AD progression, which is also likely to underlie the AD-

associated synaptic dysfunction, here we aimed at development of calcium signaling-

targeted therapeutic modalities for treatment and/or prevention of AD. 

In brief, the goal of this project was to characterize the disturbances in the endoplasmic 

reticulum (ER) calcium homeostasis in AD, and to address the latter pathophysiological 

phenomenon as a therapeutic target for disease-modifying drug discovery of AD. To that 

end, the specific aims of this thesis were: 

(i) Investigation of the role presenilin (PS) holoprotein upregulation in the 

impairment of ER calcium homeostasis in AD. 

(ii) Development of a novel FRET-based high-throughput calcium imaging assay 

for a phenotypic drug screening targeted at ER calcium dyshomeostasis. 

Screening aimed at identification of compounds that reverse the impaired ER 

calcium signaling phenotype associated with FAD-linked PS mutations. 

(iii) Implementation of the high-throughput calcium imaging assay for a large-

scale primary compound screen with a library of over 20,000 small molecules 

and identification active hits and lead structures. 

(iv) Validation and characterization of the identified lead structures using multiple 

AD-relevant secondary assays. 

 



34 | DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS 



DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS | 35 

CUMULATIVE THESIS: PAPER II 

 

5 Involvement of presenilin holoprotein upregulation in calcium 

dyshomeostasis of Alzheimer’s disease 
 

 

Kamran Honarnejad1,2,3, Christian K.E. Jung1,2, Sven Lammich4, Thomas Arzberger2, 

Hans Kretzschmar2, Jochen Herms1,2,5  

 
1 Department of Translational Brain Research, DZNE – German Center for 

Neurodegenerative Diseases, Munich, Germany 
2 Center for Neuropathology and Prion Research, Ludwig Maximilian University, 

Munich, Germany 
3 Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, 

Germany 
4 Adolf Butenandt Institute - Biochemistry, Ludwig Maximilian University, Munich, 

Germany 
5 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 

 

 

This manuscript has been peer-reviewed and published under the indicated citation: 
Honarnejad K, Jung CK, Lammich S, Arzberger T, Kretzschmar H, Herms J.; J Cell Mol 
Med. 2013 Feb;17(2):293-302. doi: 10.1111/jcmm.12008. 
 
This article was published under a Creative Commons Attribution License (CC-BY). 
 
The author of this doctoral thesis has majorly contributed to this work by conceiving, 
designing and performing the experiments, analyzing the data, writing the entire 
manuscript and designing all the figures. 
 



36 | DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS 

 

5.1 Abstract 

 

Mutations in presenilins (PS1 and PS2) account for the vast majority of early onset 

familial Alzheimer’s disease cases. Beside the well investigated role of presenilins as the 

catalytic unit in γ-secretase complex, their involvement in regulation of intracellular 

calcium homeostasis has recently come into more focus of Alzheimer’s disease research. 

Here we report that the overexpression of PS1 full-length holoprotein forms, in particular 

familial Alzheimer’s disease-causing forms of PS1, result in significantly attenuated 

calcium release from thapsigargin- and bradykinin-sensitive stores. Interestingly, 

treatment of HEK293 cells with γ-secretase inhibitors also leads to decreased amount of 

calcium release from endoplasmic reticulum (ER) accompanying elevated PS1 

holoprotein levels. Similarly, the knockdown of PEN-2 which is associated with deficient 

PS1 endoproteolysis and accumulation of its holoprotein form also leads to decreased ER 

calcium release. Notably, we detected enhanced PS1 holoprotein levels also in 

postmortem brains of patients carrying familial Alzheimer’s disease PS1 mutations. 

Taken together, the conditions in which the amount of full length PS1 holoprotein is 

increased result in reduction of calcium release from ER. Based on these results, we 

propose that the disturbed ER calcium homeostasis mediated by the elevation of PS1 

holoprotein levels may be a contributing factor to the pathogenesis of Alzheimer’s 

disease. 

 

 

Keywords: Presenilin, Holoprotein, Calcium, Alzheimer’s disease, Endoplasmic 

Reticulum 
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5.2 Introduction 

 

Alzheimer’s disease (AD) is the most common form of adult dementia characterized by 

the extracellular accumulation of amyloid beta (Aβ) protein and formation of intracellular 

neurofibrillary tangles leading to neuronal dystrophy and loss [13, 248]. Mutations in 

presenilins (PS) account for the majority of early onset familial Alzheimer’s disease 

(FAD) cases [249]. Upon undergoing endoproteolytic processing and forming N- and C-

terminal fragments (NTF and CTF), PS functions as the catalytic subunit of γ-secretase 

multiprotein complex on the cell surface, comprising PS, Nicastrin, Aph-1, and PEN-2 

[250]. Among over 60 different type I transmembrane protein substrates, γ-secretase 

sequentially cleaves amyloid precursor protein (APP) after β-secretase cleavage to 

generate Aβ [251]. FAD mutations in PS have been shown to alter the cleavage of APP in 

favor of neurotoxic Aβ42 generation [252]. However growing body of evidence also 

indicates that FAD-PS mutations impair several intracellular calcium signaling 

mechanisms, particularly endoplasmic reticulum (ER) calcium homeostasis [22, 253]. 

Uncleaved full-length (FL) PS holoprotein is approximately 50 kDa in size and primarily 

located on the ER membrane [254]. ER calcium store has approximately 1000-fold higher 

calcium concentration than cytosol [26]. The exact molecular mechanism as to how FAD-

PS mutations cause ER calcium dyshomeostasis is not fully resolved. Yet PS have been 

shown to affect multiple components of ER calcium handling [255]. PS holoprotein has 

been proposed to form passive calcium leak channel on the ER membrane [228, 256] 

through its hydrophilic catalytic cavity [231], regulate Inositol 1,4,5-triphosphate (InsP3) 

receptor gating [69, 235], Ryanodine receptor (RyR) channel activity [236, 257] and 

abundance [202]. PS have also been shown to interact with Sarco/endoplasmic reticulum 

calcium-ATPase (SERCA) pump which actively transfers calcium from cytosol into the 

ER [258], and to modulate this function [72, 233]. Capacitative calcium entry (CCE) – 

the process of refilling intracellular calcium stores through plasma membrane channels – 

has been shown to be attenuated in cells expressing FAD PS mutants [246, 259]. 

Moreover, PS2 modulates calcium shuttling between ER and mitochondria [127]. Here 

we aimed to examine the potential role of impaired PS endoproteolysis leading to 

accumulation of PS holoprotein on the ER membrane [260, 261] in the context of 

disrupted ER calcium homeostasis in AD. 
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5.3 Materials and Methods 

 

5.3.1 Cell culture and cell lines 

 

Human embryonic kidney 293 (HEK293) cells were cultured in Dulbecco’s modified 

eagle medium (DMEM) supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin while being incubated at 37°C, 5% CO2 and 90% humidity. PS1-

overexpressing and PEN-2 knockdown HEK293 lines were generously provided by Dr. 

H. Steiner. HEK293 cells stably expressing either PS1 wild type or mutant variants, or 

AChRa1 were generated by transfection of HEK293 cells with the respective cDNA 

cloned into pcDNA3.1/Zeo (+) (Invitrogen, Carlsbad, CA, USA) and subsequent 

selection for zeocin (100 µg/ml) resistance. Likewise, RNA interference-mediated PEN-2 

stable knockdown clone was generated by stable transfection of pSUPER/PEN-2-163 and 

pcDNA3.1/Hygro(-) (Invitrogen) into HEK293 cells and subsequent  selection for 

hygromycin (100 μg/ml) resistance [262]. 

 

5.3.2 Calcium imaging 

 

One day prior to the experiment, HEK293 cells were plated in a 96-well collagen coated 

microplate (Greiner BioOne GmbH, Frickenhausen, Germany) at 40,000 cells/well. 

Cytosolic calcium concentration was measured using the Fluo-4 NW kit (Invitrogen 

Corporation, Madison, WI, USA) according to manufacturer’s instructions. Briefly, the 

growth medium was exchanged with a freshly mixed calcium-free assay buffer. The cells 

were incubated at 37°C for 30 minutes, then for an additional 30 minutes at room 

temperature. Fluorimetric calcium measurements were performed utilizing a confocal 

laser-scanning system (Carl Zeiss AG, Jena, Germany) equipped with a climate control 

chamber (EMBL, Heidelberg, Germany). Cells were then imaged using a 40x oil 

immersion objective (Zeiss Plan-Apochromat, Zeiss; 40x NA 1.3). Excitation of the cells 

was performed at 488 nm with an Argon Laser (Zeiss) and the emission was collected 

using band pass filter (500–550 nm). Time-lapse fluorescence images were acquired at 5 s 

interval for Thapsigargin (TP; 1 µM) and 1 s interval for Bradykinin (BK; 300 nM) and 

Carbachol (CCh; 10 µM). Subsequently images were analyzed by defining typically 20-



DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS | 39 

30 regions of interest (ROI) for individual cells in each well using the Zeiss LSM 510 

Meta Software. Data analysis was performed using Microsoft EXCEL (Microsoft, Seattle, 

WA, USA), Sigma Plot (SPSS, Chicago, IL, USA) and GraphPad Prism 5.0b (GraphPad 

Software, San Diego, CA, USA). All fluorescence data are expressed as ΔF/F0 = (F – 

F0)/F0, where F is the measured fluorescence signal at any given time and F0 is the 

average fluorescence from the scans preceding stimulation.  

 

If not otherwise stated, values represent mean ± standard error of the mean (SEM). To 

test significance, student's t-test (two tailed) was performed and differences were 

considered statistically significant if p < 0.05. 

 

5.3.3 Treatment with γ-secretase inhibitors 

 

HEK293 cells were grown to 60-70% confluency inside of 10 cm petri dishes. γ-secretase 

inhibitors (all from Calbiochem, Darmstadt, Germany) were added to the growth medium 

and incubated for 24 hours at concentrations which were reported to inhibit the γ-

secretase activity. DAPT, Gamma IV and Gamma XXI were used respectively at 10 µM, 

2.7 µM and 300 nM concentration. Controls were treated in parallel with DMSO vehicle 

instead of inhibitors. 

 

5.3.4 Western blot 
 

HEK293 cells were lysed in “complete lysis-M buffer” with protease inhibitor mix 

(Roche, Molecular Biochemicals, Indianapolis, IN, USA) according to the manufacturer’s 

instructions. Similarly for human brain material, a small piece from frozen postmortem 

frontal cortex of FAD as well as control cases were cut and homogenized in 

sucrose/hepes buffer with PMSF. Protein concentrations were measured using BCA 

assay. Equal amounts of protein samples were separated in a 10% tris-glycine SDS-

PAGE and transferred to PVDF-membrane (Millipore, Corporation, Bedford, MA, USA). 

For detection of presenilin holoprotein, a rabbit polyclonal antibody against a MBP/PS1-

loop (aa 263-407) fusion protein was used at 1:500 dilution (antibody 5023; a kind gift 

from Dr. H. Steiner [263]). Mouse monoclonal anti-Tubulin (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) was used at 1:1000 dilution for loading control and corresponding 

AP-coupled secondary antibodies (Thermo Scientific, Waltham, MA, USA) at 1:5000 
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dilution. Chemiluminescent reaction was performed with CDP-Star (Roche Molecular 

Biochemicals) and detected with a Chemocam Imager (INTAS Science Imaging 

Instruments GmbH, Göttingen, Germany). Western blot bands were quantified using 

Advanced Image Data Analyzer/2D Densiotometry 3.52 (Raytest GmbH, Straubenhardt, 

Germany). 

 

5.3.5 Human subjects 

 

In total seven frontal cortex samples comprising three FAD-PS1 and one FAD-APP 

mutation carrying patients as well as three control individuals were collected from 

BrainNet Europe. The staging of samples was determined according to Braak & Braak 

during routine postmortem tissue diagnostics by skilled neuropathologists [264]. The use 

of human tissue samples was approved by the institutional review board of the University 

of Munich (BrainNet: Brain Banking Center Munich). 

 

5.4 Results 

 

5.4.1 Effect of PS1 holoprotein overexpression on calcium release from ER 

 

To assess the role of increased PS1 holoprotein levels in the ER calcium homeostasis, we 

used HEK293 cells stably expressing either wild type or several different mutant forms of 

PS1. Typically the endogenous PS1 holoprotein level is relatively low, being on the 

border line of detection [265]. We confirmed remarkable increase in PS1 holoprotein 

expression level by western blotting protein lystes from PS1 stable lines (Figure 5.1a). 

Densitometric analysis indicate 6-7 fold increase in the PS1 full length holoprotein levels 

in all stable clones compared to the wild type HEK293 cells (Figure 5.1b). Likewise the 

PS1-CTF levels were increased in all the clones, except for PS1-DeltaE9 and PS1-D385N 

which both lack the endoproteolytic cleavage site (Figure 5.1a). Overexpression of wild 

type PS1 and to a higher degree various FAD-PS1 mutants led to significantly lowered 

calcium release from ER in comparison to the untransfected controls. The ER calcium 

responses were generated by applying Bradykinin (BK). Application of BK leads to 

liberation of calcium from InsP3-sensitive ER stores. The peak amplitude of the BK-

evoked calcium release alone in wild type PS1 (wtPS1) overexpressing cells was 
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decreased to 71 ±2.2% of control wild type HEK293 cells. All FAD-PS1 mutants further 

lowered the amplitude of BK-evoked calcium release peak size as follows: PS1-DeltaE9 

to 41 ±2.5%, PS1-M146L to 38 ±3.4%, PS1-G384 to 35 ±1.2% and PS1-L166P to 25 

±1.4% of the wild type HEK293 controls (Figure 5.1d). These results were confirmed 

using Thapsigargin (TP) as well. TP is an inhibitor of SERCA pump that blocks calcium 

uptake into ER, causing the diffusion of calcium from ER into the cytosol due to a very 

strong calcium gradient. Following a similar trend, the peak amplitude of TP-evoked 

calcium release in wtPS1 overexpressing cells was reduced to 65 ±1.9 %, in PS1-DeltaE9 

to 29 ±2.1%, in PS1-M146L to 49 ±2.9 %, in PS1-G384 to 35 ±3.2 % and in PS1-L166P 

to 47 ±2.1 % of the wild type HEK293 controls (Figure 5.1f). Importantly, 

overexpression of a mutant form of PS1 being functionally inactive for γ-secretase 

substrate cleavage (PS1-D385N) [266], also resulted in lowered BK-evoked (to 28 ±1.6% 

of wild type) and TP-evoked (to 45 ±3.3 % of wild type) calcium liberation from ER, 

indicating that the observed effects are independent of γ-secretase substrate cleavage 

activity (Figure 5.1d and 5.1f). Moreover, there was no correlation observed between the 

PS1-CTF levels and the attenuated calcium response from ER. PS1-DeltaE9 and PS1-

D385N mutants, which do not undergo endoproteolysis and thus do not generate PS1-

CTF, showed comparable attenuation of ER calcium release as to the rest of FAD-PS1 

mutants which generate approximately proportionate levels of PS1-CTF. Conversely, the 

amplitude of calcium release upon activation of muscarinic receptors with carbachol 

(CCh) was enhanced in FAD-PS1 mutant and PS1-D385N expressing cells (Figure 5.1h). 

On a note, the overexpression of rat nicotinic acetylcholine receptor subunit alpha 1 

(rAChRα1), an unrelated protein which also localizes to the ER did not alter the 

amplitude of BK-evoked calcium release in HEK293 cells (Figure 5.1i). 

 

5.4.2 Effect of γ-secretase inhibitors on calcium release from ER 

 

Next, we investigated the effect of acute γ-secretase inhibition on the ER calcium release. 

After treatment of HEK293 cells for 24 hours with three different γ-secretase inhibitors, 

we measured BK-evoked calcium responses. Treatment with each of the three γ-secretase 

blockers, resulted in significantly lowered BK-evoked calcium response compared to 

vehicle treated controls. The peak amplitude for BK-evoked calcium release for cells 

treated with DAPT, Gamma IV and Gamma XXI were respectively 80 ±2.5%, 58 ±3.3% 

and 75 ±2.8% of that for DMSO treated cells (Figure 5.2a). As another parameter 
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proportional to the amount of released ER calcium, the area under the curve (AUC) of 

BK-evoked calcium responses were calculated. Following a similar trend, the AUC for 

cells treated with DAPT, Gamma IV and Gamma XXI were respectively 61 ±5.1%, 42 

±6.1% and 48 ±6.1% of DMSO-treated cells (Figure 5.2b). Likewise, the amplitude of 

TP- and CCh-evoked calcium responses were attenuated in γ-secretase inhibitor treated 

HEK293 cells (Figure 5.2c and 5.2d). However, treating wtPS1- and PS1-D385N-

overexpressing cells with DAPT did not further potentiate the reduction of BK-evoked 

calcium release (Figure 5.2g and 5.2h). γ-secretase inhibitors were used at concentrations 

which were previously described to inhibit the γ-secretase activity. Based on the literature 

that suggest γ-secretase activity is required for endoproteolysis of PS [267], we postulated 

that the treatment with γ-secretase blockers might inhibit the endoproteolysis of PS1 itself 

as well. Despite the expected faint expression of PS1 holoprotein at endogenous levels 

which could only be detected at longer exposures, we could indeed detect a modest 

increase in the PS1 holoprotein levels upon 24 hours treatment of cells with each of the 

three γ-secretase inhibitors by western blotting (Figure 5.2e). Treatment with DAPT, 

Gamma IV and Gamma XXI respectively led to 48 ±4.1%, 45 ±5.4% and 34 ±4.6% 

increase in detected PS1 holoprotein levels by western blot (Figure 5.2f). 

 

5.4.3 Effect of PEN-2 knockdown on ER calcium release 

 

PEN-2 (Presenilin enhancer 2) is a key regulatory component of the γ-secretase complex 

[268]. PEN-2 is necessary for the proper assembly of active γ-secretase complex and the 

knockdown of PEN-2 is associated with deficiency in PS endoproteolysis leading to 

stabilization and accumulation of PS holoprotein [269, 270]. Here we used RNA 

interference-mediated PEN-2 stable knockdown (PEN-2 KD) in HEK293 cells [262]. The 

cell line was previously characterized by Prokop and colleagues. In this cell line, 

increased PS1 holoprotein levels accompanying the downregulation of PEN-2 was 

demonstrated [262]. The interaction of PS holoprotein with PEN-2 is a key step for PS 

holoprotein to adopt a conformation which allows its endoproteolytic cleavage [262]. The 

PS1 holoprotein increase was confirmed in PEN-2 KD cells (Figure 5.3e). Here we report 

that BK-evoked calcium release is attenuated in PEN-2 knockdown cells relative to wild 

type controls, similar to the observation made in PS1 overexpressing cells. The peak 

amplitude and the area under the curve in PEN-2 KD cells were respectively 42 ±4.9% 

and 55 ±6.6% of those for wild type cells (Figure 5.3a and 5.3b). Similarly, the amplitude 
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of TP- and CCh-evoked calcium responses were also decreased in PEN-2 KD cells 

(Figure 5.3c and 5.3d). 

 

5.4.4 PS1 holoprotein in brains of FAD-PS1 patients 

 

To assess the physiological relevance of the finding that the accumulation of PS 

holoprotein is associated with the attenuated ER calcium release in the context of AD 

pathogenesis, we compared the PS1 holoprotein levels in the postmortem frontal cortices 

of FAD patients relative to non-demented control cases. As expected, the amount of PS1 

holoprotein level in control individuals was relatively low. However we observed on 

average 1.7 fold significant increase in PS1 holoprotein levels in three FAD-PS1 patient 

cases. In contrast, the level of PS1 holoprotein in a FAD-APP patient was comparable to 

the controls (Figure 5.4a and 5.4b). Table 5.1 summarizes the patient data from which the 

samples were collected. 

 

 

5.5 Discussion 

 

Here we report that the conditions causing an enhancement in the amount of PS1 

holoprotein, result in attenuated calcium release from the ER. Only very little is known 

about the exact mechanism of PS holoprotein endoproteolysis. Despite the controversial 

findings, some FAD-PS mutations have been shown to impair the PS endoproteolysis 

leading to accumulation of PS holoprotein primarily on the ER membrane [260, 261]. 

 

Although there exists evidence in favor of FAD-PS mediated “ER calcium overload” 

theory [271], the results presented here and several other studies show that the FAD-PS 

and to a lesser extent wild type PS lead to either attenuated or unchanged ER calcium [69, 

127, 233-235, 259, 272-274]. The reason behind such discrepancies is not completely 

clear. However, in comparing such data one has to critically discriminate between the 

FAD-PS mediated hyperactivity of InsP3R or RyR channels from “ER calcium overload”. 

Those exaggerated calcium responses may simply be a result of enhanced receptor gating 

and/or density [69, 202, 235, 257], increased basal phospholipase C (PLC) activity and 

the consequent overproduction of InsP3 molecule [200, 275], or a combination of those, 
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while being independent from ER calcium content. While previous studies have 

demonstrated the biochemical interaction between PS1 and InsP3R [69], it is established 

that the overxpression of FAD-PS does not alter the abundance of InsP3 receptors [276]. 

Notably, we have also observed augmented carbachol (CCh)-evoked calcium responses in 

FAD-PS1 mutant bearing cells (Figure 5.1g and 5.1h). While calcium release upon 

stimulation with both BK and CCh is associated with G-protein coupled receptor (GPCR) 

activation and InsP3 generation, in spite of sharing the same calcium pools, such 

differential effects between BK- and CCh-evoked calcium responses have been 

previously described in airway smooth muscle and neuroblastoma cells and proposed to 

be regulated by differences in the specific PLC involvement and the expression of 

muscarinic receptors [277, 278]. Furthermore, activation of muscarinic receptors with 

CCh is associated with remarkably higher InsP3 generation as to the activation of 

bradykinin receptors by BK [279]. Therefore it is possible that in CCh-evoked calcium 

release experiments (but not BK-evoked), the contribution of FAD-PS1 mediated 

hyperactivity of InsP3 receptors [69, 235], can mask the lowered ER calcium content. 

Although CCh has been reported to induce calcium release also from RyRs in an InsP3R-

dependent manner [280], due to extremely low expression levels of RyR in HEK293 

cells, the contribution of RyRs in the observed differential effects is rather unlikely [281]. 

Further work is needed to comprehensively elucidate the differences between BK- and 

CCh-evoked calcium responses in the context of FAD-PS expression. 

 

It has been proposed that the holoprotein form of PS can function as passive calcium leak 

channels on the ER membrane allowing the leakage of calcium into the cytoplasm [207, 

228, 256]. Majority of FAD-PS mutations lead to loss of this function, some do not affect 

and others even cause a further gain of this function [40]. Independently from how FAD-

PS mutations modulate the leak activity, it is plausible that the increase in PS holoprotein 

amounts may directly increase the degree of passive calcium leakage from ER to 

cytoplasm. This can explain our observation that conditions increasing the amount of PS1 

holoprotein result in reduced ER calcium. Constant enhanced calcium leakage from ER 

into cytoplasm as a result of PS holoprotein accumulation will in turn affect the calcium 

equilibrium between ER and cytosplasm in which the reached steady state of ER calcium 

level is relatively low. Similar to FAD-PS1 mutants, a loss of function mutant for γ-

secretase activity (PS1-D385N) [266] showed reduced calcium release from ER. This 

observation is in line with another finding showing that γ-secretase cleavage activity is 
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dispensable for the reduction of ER calcium levels, demonstrated using a different γ-

secretase inactive mutant (PS2-D366A) [272]. The PS-mediated attenuation of ER 

calcium release seems to be a specific effect and not caused by ER stress or protein 

overload, since the overexpression of rAChRα1 which also accumulates at the ER [282], 

did not alter the amplitude of BK-evoked calcium release. 

 

We demonstrated that treatment with γ-secretase inhibitors lowers the magnitude of 

calcium release from ER in HEK293 cells. A similar finding has been previously 

described by others as well [283]. However here we propose an alternative explanation 

for this phenomenon which is independent from γ-secretase substrate cleavage activity 

and the suggested functional role for APP intracellular domain (AICD) in calcium 

signaling [283]. We reveal convincing evidence that treatment of HEK293 cells with γ-

secretase blockers results in enhanced PS1 holoprotein levels. This is not very surprising 

given that γ-secretase blockers may also simultaneously inhibit the PS autocatalytic 

activity. The elevated PS1 holoprotein levels would in turn lead to enhanced leakage of 

calcium from ER into cytosol and consequently lowered ER calcium content. Further 

support for this hypothesis comes from the work of Fukumori and colleagues which 

nicely demonstrate that the PS holoprotein endoproteolysis is indeed autolytic [267]. 

Although the detected increase in PS holoprotein was only marginal, in view of extremely 

low levels of endogenously expressed PS holoprotein as well as the tremendous calcium 

gradient between ER and cytosol [26], even such minor but sustained enhancements in 

passive calcium leakage through PS holoprotein may heavily impact the calcium 

equilibrium between ER and cytosol. In both wtPS1 and PS1-D385N overexpressing 

cells, treatment with DAPT did not further reduce the amplitude of BK-evoked calcium 

release. These findings are indeed in line with our hypothesis, since PS1-D385N mutant 

is deficient for endoproteolysis and a marginal increase in PS1 holoprotein levels caused 

by DAPT treatment in wtPS1 cells would be negligible in the presence of constitutive 

PS1 overexpression which accompany abounding PS1 holoprotein levels. In view of 

therapeutic applications, the finding that γ-secretase inhibitors can elevate the PS 

holoprotein levels reflects yet another potential undesirable side-effect associated with the 

use of γ-secretase inhibitors (apart from unspecifically blocking the processing of several 

substrates other than APP) which should be taken into consideration [284]. 

Likewise, we demonstrated that the knockdown of PEN-2 leads to attenuated ER calcium 

release. Prokop and colleagues have shown that the knockdown of PEN-2 is associated 
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with deficiency in PS1 endoproteolysis and accumulation of PS1 holoprotein [262]. Using 

the same cell line, here we show reduced BK-, TP- and CCh-evoked ER calcium 

responses as well. These findings reinforce an inverse correlation between the PS 

holoprotein levels and the amount of calcium release from ER. 

 

In previous studies utilizing AD patient post-mortem brains, the activation of calcium-

dependent proteases and the alterations in the activity and abundance of proteins involved 

in calcium homeostasis were detected [285-287]. In this study, in spite of limited number 

of human postmortem brains from FAD-PS1 cases, we reveal convincing indication that 

the amount of PS1 is upregulated in the brains of patients harboring different FAD-PS1 

mutations. Evidence exists that even in brains of sporadic late-onset AD cases, PS1 

protein and mRNA levels and γ-secretase activity are upregulated [288]. Li et al. have 

postulated that presenilin upregulation may contribute to sporadic AD as a risk factor in 

the context of γ-secretase activity [289]. However, more detailed studies are needed to 

address whether the disturbed calcium homeostasis associated with PS holoprotein 

accumulation plays a role in the pathogenesis of late onset sporadic AD cases too. PS 

holoprotein is quite unstable with a relatively short half-life (~1.5 hours) and a rapid 

turnover [220]. Indeed, FAD-PS1 DeltaE9 mutant was shown to possess relatively higher 

stability and a longer half-life (~40 hours) [220]. Weihl and colleagues have suggested 

that FAD-PS mutations can alter the stability of PS holoprotein in a cell-type and 

differentiation-state dependent manner [290]. Given the emerging roles for PS outside of 

γ-secretase complex, increased stability and/or accumulation of PS holoprotein may have 

direct implications in pathophysiology of AD, particularly through their involvement in 

disruption of ER calcium homeostasis.  

 

The disturbances in ER calcium homeostasis have been observed in both familial and 

sporadic AD cases long preceding the disease hallmarks, i.e. senile plaque and tangle 

pathology [98, 116]. While increasing age is the main risk factor for development of 

sporadic AD, indications suggest that age-dependent alterations in the calcium 

homeostasis may contribute to the pathogenesis of sporadic AD as well [291]. Moreover 

calcium dysregulation plays a key role in synaptic failure and neuronal loss [52]. Notably, 

the latter pathological events correlate best with the stages of dementia [53]. Therefore, 

better understanding the underlying mechanisms responsible for the disruption of ER 
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calcium homeostasis would be valuable in development of therapies targeting calcium 

dyshomeostasis as an early event in AD pathogenesis. 

 

There are controversies in the literature as to how FAD-PS mutations alter ER calcium 

handling. These variations were mainly attributed to differences in methodologies used, 

different cells types and mutations. However based on the results here, we suggest that in 

the experimental setups where either wild type or mutant PS forms are overexpressed, 

possible differences in the PS expression levels may potentially give rise to the 

inconsistencies between independent studies. This point becomes even more critical 

taking into account that the expression level of PS holoprotein is quite low under 

physiological conditions. Given the fact that only a fraction of PS can incorporate into γ-

secretase complex [292], constitutive overexpression might be suitable for studying the 

effect of PS mutations on γ-secretase activity. However when FAD-PS-dependent 

alterations in the ER calcium homeostasis are investigated, overexpression of PS might 

not fully resemble their role in pathophysiological circumstances. Therefore the use of 

patient derived FAD-PS cells (e.g. fibroblasts, lymphocytes, etc) which express PS 

holoprotein at endogenous levels may be more appropriate. On the other hand, since 

FAD-PS mutations alter the stability of PS holoprotein in a cell-type and differentiation-

state dependent manner [290], calcium homeostasis in periphery might not exactly 

correspond to the FAD-PS-mediated disruption of calcium homeostasis in the brain. 

Despite the mentioned drawbacks associated with the use of overexpression and 

secondary cell models, HEK293 cells were suitable for the purpose of this study. 

Regulation of calcium homeostasis in neurons is a very complex mechanism which is 

tightly controlled by the functions of multiple molecular elements. The existence of 

compensatory mechanisms which by masking studied effect can efficiently restore 

balanced calcium homeostasis makes the manipulation of calcium signaling in neurons 

for studying cause-effect relationships rather challenging. By contrast, in simpler cell 

models (e.g. HEK293 cells), in shortage of such efficient compensatory mechanisms, 

directly assessing the effect of PS1 holoprotein accumulation on ER calcium homeostasis 

was more readily possible. 

 

Taken together our results reinforce the notion that the accumulation of full length forms 

of PS (as a result of e.g. impaired PS autoendoproteolysis) result in reduced ER calcium 

content. Therefore future studies are necessary to examine whether the adverse FAD-PS-



48 | DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS 

mediated effects on the functions of several ER calcium handling elements, including 

described loss of PS calcium leak channel activity [228], enhanced InsP3 [69, 235], and 

RyR channel activity [236, 257] and abundance [202, 230] could be secondary 

mechanisms to compensate for the PS holoprotein-associated attenuation of ER calcium 

load.  
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Table 5.1: Human frontal cortex postmortem brain materials examined for PS1 holoprotein levels 
 

Sample 
Number 

Diagnosis Age 
(years) 

Sex Postmortem 
interval (hours) 

Braak&Braak 
Stage 

RZ145 Control 85 F 20 I 
RZ340 Control 54 M 9.5 0 
RZ342 Control 83 F 22 II 
RZ179 PS1 Leu286Val 57 M 44 VI 
RZ265 PS1 Leu174Arg 57 F 34 VI 
RZ272 PS1 Ile143Thr 39 M 7 VI 
RZ421 APP Thr714Ile 49 M 48 VI 
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Figure 5.1. Altered calcium release from ER in PS1-overexpressing HEK293 cells 
(a) Representative immunoblot indicating the expression of PS1 in HEK293 cells. The expression of PS1-FL 
holoprotein and PS1-CTF protein were analyzed using MBP/PS1-loop (aa 263-407) antibody on western blot 
using the protein lystes from wild type cells, cells stably overexpressing wild type PS1, several FAD-PS1 
mutants and a γ-secretase inactive mutant (PS1-D385N). 5 µg of protein lysate was loaded into each lane 
on the gel. 
(b) Densitometric quantification of PS1-FL band intensity normalized to loading control Tubulin (n=3). 
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(c) Representative traces of BK-evoked, (e) TP-evoked and (g) CCh-evoked calcium releases for wild type 
HEK293 cells, HEK293 cells stably overexpressing wild type or mutant PS1 and the corresponding calcium 
images for the time points indicated with arrows displayed in pseudocolors. 
 
(d) Average peak amplitude of BK-evoked and (f) TP-evoked calcium release from ER are significantly 
reduced in cells stably expressing wild type PS1 versus wild type HEK293 cells. Furthermore BK- and TP-
evoked calcium responses are significantly attenuated in cells overexpressing mutants form of PS1 in 
comparison to both wild type PS1-overexpressing and plain wild type HEK293 cells. 
(h) Average peak amplitude of Carbachol (CCh)-evoked calcium release from ER is significantly amplified in 
HEK293 cells stably expressing mutant forms of PS1 relative to cell stably expressing wild type PS1 and 
plain wild type HEK293 cells (*** P<0.001). 
(i) Average peak amplitude of BK-evoked calcium release from ER is unchanged in HEK293 cells stably 
overexpressing rAChRα1 relative to wild type HEK293 cells. 
(n.s.: non-significant) 
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Figure 5.2. Attenuated calcium release from ER after treatment of HEK293 cells with γ-secretase 
inhibitors 
(a) Average peak amplitude and (b) the area under the curve (AUC) of BK-evoked calcium release and (c) 
the average peak amplitude of TP- and (d) CCh-evoked calcium release from ER are significantly reduced in 
HEK293 cells treated with γ-secretase inhibitors for 24 hours. DAPT, Gamma IV and Gamma XXI were used 
respectively at 10 µM, 2.7 µM and 300 nM concentration (* P < 0.05, ** P<0.01 and *** P<0.001). 
(e) Increase in PS1-FL (holoprotein) levels were detected by western blot in HEK293 cells. (f) Densitometric 
quantification of PS1-FL band intensities normalized to loading control Tubulin in (e) (n=3). 10 µg of protein 
lysate was loaded into each lane on the gel (* P<0.05 and ** P<0.01). 
Average peak amplitude of BK-evoked calcium response in (g) wild type PS1- and (h) PS1-D385N-
overexpressing HEK293 cells is unchanged after treatment with DAPT for 24 hours. 
(n.s.: non-significant) 
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Figure 5.3. Attenuated calcium release from ER in PEN-2 KD cells 
(a) Average peak amplitude and (b) the area under the curve (AUC) of BK-evoked calcium release and (c) 
the average peak amplitude of TP- and (d) CCh-evoked calcium release from ER are significantly reduced in 
PEN-2 KD cells compared to wild type HEK293 cells (** P<0.01). 
(e) Increased PS1-FL (holoprotein) levels detected by western blot in PEN-2 KD cells. 10 µg of protein lysate 
was loaded into each lane. 
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Figure 5.4: Elevation of PS1 holoprotein levels in frontal cortices of FAD-PS1 patients 
(a) Significant increase in PS1-FL (holoprotein) levels was detected by western blot in postmortem frontal 
cortex samples from FAD-PS1 cases (RZ179, RZ265 and RZ272), but not in a FAD-APP case (RZ421), 
compared to control cases (RZ145, RZ340 and RZ342). 15 µg of brain homogenate was loaded in each lane 
on the gel (** P<0.01). 
(b) Densitometric quantification of PS1-FL band intensities normalized to loading control Tubulin in (a).  



DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS | 55 

CUMULATIVE THESIS: PAPER III 
 
6 Development and Implementation of a High-throughput Compound 

Screening Assay for Targeting Disrupted ER Calcium Homeostasis 

in Alzheimer’s Disease 
 

 

Kamran Honarnejad1,2,3, Alexander Daschner1,2, Armin Giese2, Andrea Zall4, Boris 

Schmidt4, Aleksandra Szybinska5, Jacek Kuznicki5, Jochen Herms1,2,6 

 
1 Department of Translational Brain Research, DZNE – German Center for 

Neurodegenerative Diseases, Munich, Germany 
2 Center for Neuropathology and Prion Research; Ludwig Maximilian University, 

Munich, Germany 
3 Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, 

Germany 
4 Clemens Schöpf Institute of Chemistry and Biochemistry, Technische Universität 

Darmstadt, Darmstadt, Germany 
5 Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 

Warsaw, Poland 
6 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 

 

 

Keywords: High-throughput screening; Drug Discovery; Alzheimer’s disease; Bepridil; 

Endoplasmic Reticulum; Calcium 

 

This manuscript has been peer-reviewed and published in its essence under the indicated 
citation: 
Honarnejad K, Daschner A, Giese A, Zall A, Schmidt B, Szybinska A, Kuznicki J, Herms 
J.; PLoS One. 2013 Nov 15;8(11):e80645. doi: 10.1371/journal.pone.0080645 
 
This article was published under a Creative Commons Attribution License (CC-BY). 
 
The author of this doctoral thesis has majorly contributed to this work by conceiving, 
designing and performing the experiments, analyzing parts of the data, preparing the 
figures and entirely writing the manuscript. 



56 | DISCOVERY AND CHARACTERIZATION OF NOVEL DRUGS FOR TREATMENT OF AD FROM A HTS 

 

6.1 Abstract 

 

Disrupted intracellular calcium homeostasis occurs early in the cascade of events leading 

to Alzheimer’s disease (AD) pathology. Particularly familial AD mutations linked to 

Presenilins result in exaggerated agonist-evoked calcium release from endoplasmic 

reticulum (ER). Here we report the development of a fully automated high-throughput 

calcium imaging assay utilizing a genetically-encoded FRET-based calcium indicator at 

single cell resolution for compound screening. The established high-throughput screening 

assay offers several advantages over conventional high-throughput calcium imaging 

technologies. We employed this assay for drug discovery in AD by screening compound 

libraries consisting of over 20,000 small molecules followed by structure-activity-

relationship analysis. This led to the identification of Bepridil, a calcium channel 

antagonist drug in addition to four further lead structures capable of normalizing the 

potentiated FAD-PS1-induced calcium release from ER. We detected increased AMPK 

activity upon treatment of cells with Bepridil in a dose-dependent manner. AMPK 

activation by Bepridil is most likely a calcium-dependent phenomenon, since CaMKK 

inhibition by STO-609 abolishes the Bepridil-induced AMPK activation. Interestingly, it 

has recently been reported that Bepridil can reduce Aβ production by lowering BACE1 

activity. Indeed, we also detected lowered Aβ, increased sAPPα and decreased sAPPβ 

fragment levels upon Bepridil treatment. Therefore based on the results here, we propose 

a novel calcium-dependent mode of action for Bepridil which through activation of 

AMPK can shift the balance of downstream APP processing from amyloidogenic β-

cleavage towards non-amyloidogenic α-cleavage. 
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6.2 Introduction 

 

Alzheimer's disease (AD) is the most common form of dementia [293]. Major 

breakthroughs in understanding the underlying pathomechanisms of AD within the last 

few decades have not yet yielded effective disease-modifying therapies. The major 

hallmarks of AD are the accumulation of intracellular neurofibrillary tangles of 

hyperphosphorylated tau protein and extracellular plaques of β-amyloid (Aβ) protein in 

brain [293]. Current AD drug development mainly focuses on targeting these two major 

pathological features. However, there is evidence that long before the manifestation of 

those hallmarks and cognitive deficits in AD, the neuronal calcium homeostasis is 

disturbed as a result of aging or due to missense mutations in Presenilin genes – the most 

common cause of early onset familial AD (FAD) [25, 40-42, 52, 255]. Long-term 

disruption of calcium homeostasis has been shown to both trigger and accelerate Aβ and 

tangle pathologies [49, 50, 294-296]. Moreover, calcium dysregulation as an early event 

in AD progression plays a key role in synaptic failure and neuron loss [53, 297]. Notably, 

the latter irreversible pathological events correlate best with the stages of dementia [53, 

298]. Calcium alterations in peripheral tissues have been even proposed as diagnostic 

markers for mild AD [47]. Interestingly, Memantine, one of the only few approved drugs 

for treatment of moderate-to-severe AD patients, is an NMDA receptor antagonist which 

by inhibition of sustained calcium influx leads to stabilization of intracellular calcium 

homeostasis [37]. Therefore, restoring disrupted calcium homeostasis as an early event 

leading to cellular dysfunction may open novel avenues to more efficient treatment of AD 

patients. Hence, we examined the possibility of stabilizing intracellular store calcium 

homeostasis, particularly in the endoplasmic reticulum (ER), as an innovative target for 

AD drug discovery. To that end, we developed a high-throughput compound screening 

assay and screened over 20,000 small molecules which led to the identification of lead 

structures which can stabilize the familial Alzheimer’s disease linked mutant Presenilin 1 

(FAD-PS1) mediated disruption of ER calcium homeostasis.  
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6.3 Materials and Methods 

 

6.3.1 Cell culture and cell lines 

 

Human embryonic kidney 293 (HEK293) cells were cultured in Dulbecco’s modified 

eagle medium (DMEM) supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin while being incubated at 37°C, 5% CO2 and 90% humidity. All 

stable PS1 lines (generously provided by Dr. S. Lammich) were carrying PS1 variants 

that were cloned into pcDNA3.1/Zeo(+) and selected via Zeocin antibiotic resistance. The 

PS1 lines were then stably transfected with YC3.6/pcDNA3 construct (kindly provided by 

Dr. A. Miyawaki) and respectively isolated by G418 antibiotic resistance leading to 

generation of double stable lines. The APP- , C99- and APPsw/PS1-M146L-

overexpressing HEK293 lines were kindly provided by Dr. S. Lichtenthaler and Dr. H. 

Steiner and cultured as it has been previously described [299, 300]. 

 
6.3.2 Compound Library 

 

DIVERSetTM 1 and 2 libraries (ChemBridge Corp., San Diego, CA, USA), each 

containing a diverse collection of 10,000 hand-synthesized small molecules (in total 

20,000 compounds) as well as a medium size ion channel ligand library (Enzo Life 

Sciences GmbH, Lörrach, Germany) comprising 72 further structures were used for high-

throughput compound screening. Compounds fulfilled the “Lipinski´s rule of 5”, 

indicating their high druglikeness potential [301]. 

 
6.3.3 High-throughput calcium imaging assay and automated image analysis 

 

For the primary screen, HEK293 cells stably expressing PS1-M146L and Yellow 

Cameleon 3.6. (YC3.6) were seeded at 13,000 cells/well in 40 µl of growth medium on 

collagen-coated 384-well CellCarrier plates (PerkinElmer, Rodgau, Germany). After 6 h, 

using an automated pipetting robot (Bravo®; Agilent Technologies, Santa Clara, CA, 

USA), library compounds were added to each well at the final concentration of 10 µM in 

1% DMSO, each in 4 replicates. All plates contained Thapsigargin (TP; 1 µM; 

Calbiochem, Darmstadt, Germany), Cyclopiazonic acid (CPA; 20 µM; Calbiochem) and 
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3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8; 50 µM; Sigma-

Aldrich, Taufkirchen, Germany) as positive controls, as well as untreated and DMSO 

vehicle-treated wells. After 24 h using the pipetting robot, DRAQ5 (Biostatus Ltd, 

Leicestershire, UK), a far-red fluorescent nuclear dye, was added to each well at the final 

concentration of 500 nM. After 2 h, plates were measured for Carbachol (CCh)-induced 

calcium release using the Opera® high-throughput confocal imaging platform 

(PerkinElmer Cellular Technologies GmbH, Hamburg, Germany). Throughout imaging 

of the entire plate, 37°C temperature, 5% CO2 and 90% humidity was maintained in the 

plate chamber. Using a 442 nm laser, YC3.6 was excited and its CFP and YFP emissions 

were separated respectively using 483/35 nm and 540/75 nm filters. Additionally, using a 

640 nm laser DRAQ5 dye was excited and its emission was collected by 690/50 nm filter 

in order to locate the nuclei. Imaging was performed with a 20x water immersion 

autofocus objective. The duration of the entire time-lapse calcium imaging for each well 

was 23.5 s. This was achieved by imaging at 2.5 s interval resolution prior to dispensing 

CCh (for 5 s) to monitor the basal calcium levels. Next, the CCh-induced calcium rise and 

decay was monitored for 18.5 s post dispensing. Imaging was performed first at 1 s 

interval resolution immediately after dispensing (for 5 s) and subsequently at 2.5 s 

interval resolution (for 12.5 s). During dispensing, 10 µl of CCh (Calbiochem) diluted in 

HBSS (10 µM) was injected to each well concurrent with calcium imaging by an 

automated dispensing unit which is part of the Opera® platform. Imaging was performed 

sequentially for all 384 wells. Using Acapella® software (PerkinElmer Cellular 

Technologies GmbH), an automated image analysis tool was developed to translate 

fluorescent signals to numerical values. Here, DRAQ5 and YC3.6 signals were used 

respectively to detect single cell nuclei and single cell boundaries over the entire course 

of time-lapse calcium imaging. After assigning each cell to its segmented nuclei and 

excluding the cells positioned at the edges of the imaging frames, calcium transients for 

every cell were monitored by plotting the kinetics of YFP/CFP versus time and 

normalizing the signals using the equation, ΔF/F0 = (F – F0)/ F0, where F is the measured 

fluorescence signal at any given time and F0 is the average fluorescence signal of the time 

points preceding CCh application. The peak amplitude of calcium rise upon CCh 

injection was the output of automated image analysis at single cell level. Non-responsive 

cells to CCh were excluded from analysis by setting an arbitrarily defined threshold. The 

average peak amplitude of all responsive cells in each well was calculated as the final 

readout in this assay. 
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6.3.4 Data mining 

 

Data mining, clustering and identification of the lead structures were performed with the 

Benchware DataMiner software (Tripos, St. Louis, MO, USA). 

 

6.3.5 Cytotoxcity assay 

 

The cytotoxicity of the compounds was assessed in vitro using the 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay kit (Roche 

Diagnostics GmbH, Mannheim, Germany) according to manufacturer’s instructions and 

previously described protocols [302]. In brief, HEK293 cells were cultured at a density of 

35,000 cells/well in 96-well cell culture plates (Nunc GmbH, Langenselbold, Germany). 

On the next day, compounds (10 µM) were added to separate wells in triplicates. Cells 

viability was analyzed after 24 h incubation with the compounds. For this purpose, 10 µl 

of MTT (5 mg/ml in PBS) was pipetted to each well, followed by 4 h incubation at 37°C. 

The formed formazan crystals were dissolved by adding 100 µl of 10% SDS (dissolved in 

0.01 M HCl) to each well and the plates were shaken vigorously to ensure complete 

solubilization. The absorbance was measured at 560 nm using a microtiter-plate reader 

(FLUOstar Optima, BMG Labtech GmbH, Ortenberg, Germany). Values are presented as 

percentage of viable cells. 

 

6.3.6 Aβ measurements 

 

Levels of three different Aβ species (Aβ38, Aβ40 and Aβ42) were measured using 

sandwich ELISA. Pools of HEK293 cells stably transfected with APPsw/PS1-M146L or 

APP were used to study the effect of compounds on Aβ generation. According to Page et. 

al. [300], cells were seeded at a density of 200,000 cells/well in collagen/poly-L-lysine 

(PLL)-coated 24-well plates and incubated for 24 h in growth medium. Next, the medium 

was exchanged with 500 µl of fresh medium containing either Bepridil (3 - 30 µM, 

Sigma-Aldrich), STO-609 (50 µM, Calbiochem) or the positive controls DAPT (10 µM, 

Calbiochem) and Sulindac sulfide (50 µM, Sigma-Aldrich) or vehicle. After 16 h 

conditioned medium was collected and the levels of secreted Aβ38, Aβ40 and Aβ42 

fragments were quantified using “Human (6E10) Abeta 3-Plex” sandwich ELISA 
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immunoassay kit (Meso Scale Discovery, Rockville, MD, USA) according to the 

instructions of the manufacturer. In brief, 150 µl of blocker reagent was added to each 

well of the ELISA plate and incubated for 1 h at room temperature, followed by 3x 

washing using TRIS wash buffer. Next, 25 µl of detection antibody was added to each 

well. At appropriate dilution, each of the samples or calibration standards were added to 

separate wells of ELISA plate and incubated for 2 h at room temperature, followed by 3x 

washing using TRIS wash buffer. Finally 150 µl of read buffer was added to the wells. 

The light emission after electrochemical stimulation was measured using Sector Imager 

2400 reader (Meso Scale Discovery). Based on the values generated with calibration 

standards, corresponding concentrations of Aβ species were calculated using the Meso 

Scale Discovery Workbench software. All measurements were performed in four 

replicates. 

 
6.3.7 sAPPα and sAPPβ measurements 

 

Levels of sAPPα and sAPPβ fragments were measured using sandwich ELISA. HEK293 

cells stably expressing APP or APPsw/PS1-M146L were seeded at a density of 200,000 

cells/well in collagen/poly-L-lysine (PLL)-coated 24-well plates and incubated for 24 h in 

growth medium. Next, the medium was exchanged with 500 µl of fresh medium 

containing either compounds or vehicle. After 16 h conditioned medium was collected 

and the levels of secreted sAPPα and sAPPβ fragments were quantified using 

sAPPα/sAPPβ sandwich ELISA immunoassay kit (Meso Scale Discovery) according to 

the instructions of the manufacturer. In brief, 150 µl of blocker reagent was added to each 

well of the ELISA plate and incubated for 1 h at room temperature, followed by 3x 

washing using TRIS wash buffer. Next, 25 µl of samples or calibration standards were 

added to separate wells of ELISA plate and incubated for 1 h at room temperature, 

followed by 3x washing using TRIS wash buffer. Then 25 µl of detection antibody was 

added to each well and incubated for 1 h at room temperature, followed by 3x washing 

using TRIS wash buffer. Finally, 150 µl of read buffer was added to the wells. The light 

emission after electrochemical stimulation was measured using Sector Imager 2400 

reader (Meso Scale Discovery). Based on the values generated with calibration standards, 

corresponding concentrations of sAPPα and sAPPβ were calculated using the Meso Scale 

Discovery Workbench software. All measurements we performed in four replicates. 
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6.3.8 AMPK activity assay 

 

The AMP-activated protein kinase (AMPK) activity was determined by means of 

measuring pThr172AMPK levels using sandwich ELISA immunoassay (Invitrogen Corp., 

Camarillo, CA, USA). HEK293 cells were seeded at a density of 200,000 cells/well on 

collagen/poly-L-lysine (PLL)-coated 24-well plates and incubated for 24 h in growth 

medium. Next, medium was exchanged with 500 µl of fresh medium containing Bepridil 

(0.1 - 50 µM; Sigma-Aldrich) and/or STO-609 (50 µM; Calbiochem), or DMSO vehicle. 

After 16 h medium was removed and wells were washed 3x with ice cold PBS. Next the 

cells were lysed in 120 µl of ice cold lysis buffer and the lysates were used to quantify the 

AMPK activity level using the method adapted from Moreno-Navarrete et al. [303]. The 

assay was performed according to the manufacturer’s instructions. In brief, to each well 

of the ELISA plate 100 µl of the lysates or calibration standards was added and incubated 

for 2 h at room temperature, followed by 4x washing using assay wash buffer. Next 100 

µl of detection antibody was added to each well and incubated for 1 h at room 

temperature, followed by 4x washing using assay wash buffer. Then 100 µl of HRP anti-

rabbit antibody was added to the wells and incubated for 30 min at room temperature, 

followed by 4x washing using the assay wash buffer. Finally 100 µl of stabilized 

chromagen was added to the wells and the reaction was stopped after 30 min by adding 

“stop” solution to the wells. The absorbance was measured at 450 nm using a microtiter-

plate reader (FLUOstar Optima, BMG Labtech GmbH). pAMPK levels were calculated 

based on the absorptions of the standards and their calibration curve. All the 

measurements were performed in duplicates. 

 
6.3.9 Statistical data analysis 

 

GraphPad Prism 5.0b (GraphPad Software, San Diego, CA, USA) was used for statistical 

analysis of the data. Values represent mean ± standard deviation. To test significance, 

two-tailed student's t-test was performed and differences were considered statistically 

significant if p < 0.05. The Z’-factors were computed according to Zhang et al. [304], 

where TP was used as a positive and DMSO as a negative control. 
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6.4 Results 

 

6.4.1 FAD-PS1 mutations enhance the amplitude of CCh-induced calcium release 

and the number of responsive cells 

 

Mutations in presenilins (PS1 and PS2) account for the vast majority of early onset 

familial Alzheimer’s disease (FAD) cases. These mutations result in enhancement of 

inositol 1,4,5-trisphosphate (IP3) receptor sensitivity [69, 235]. As expected, the peak size 

of CCh-evoked calcium release in all FAD-PS1 lines was approximately 3 folds higher 

than in wild type PS1 line (Figure 6.1a). Moreover, a remarkable increase in the number 

of CCh-responsive cells was consistently detected in all FAD-PS1 lines. In wild type PS1 

line, only 29% of the cell population was CCh-responsive, whereas in all FAD-PS1 

mutant lines, over 95% of the cell population responded to CCh (10 µM) (Figure 6.1b). 

Taken together, FAD-PS1 expression enhances the number of responsive cells to CCh 

and amplifies the peak size of CCh-evoked calcium response. Likewise, the expression of 

a γ-secretase-deficient mutant form of PS1 (PS1-D385N) results in increased 

responsiveness to CCh and augmented calcium release from ER upon CCh stimulation 

(Figure 6.1a and 6.1b). In the next set of experiments, the augmented CCh-evoked 

calcium release in FAD-PS1 expressing cells was used as the target to screen for 

compounds that can restore exaggerated calcium release to physiological levels. 

 

6.4.2 High-throughput compound screening assay enables the discovery novel lead 

structures 

 

We addressed intracellular store calcium dyshomeostasis as an innovative target for drug 

discovery with a novel FRET single-cell-based calcium imaging technique in a fully 

automated high-throughput kinetic assay on the Opera® system (PerkinElmer) for 

compound screening.  

 

Yellow Cameleon 3.6 (YC3.6), a superior genetically-encoded FRET-based calcium 

probe with expanded dynamic range and fast kinetics [212], was introduced to HEK293 

cells as a tool to monitor both the basal calcium concentrations and the released calcium 

from ER in real-time by confocal imaging. YC3.6 is composed of CFP and YFP linked 
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via calmodulin (CaM) and a CaM-binding peptide (M13). Upon calcium binding it 

undergoes a conformational change and thereby FRET efficiency increases (Figure 6.2a) 

[212]. The assay readout was the peak size of potentiated inositol-1,4,5-trisphosphate 

receptor (IP3R)-evoked calcium release from ER in HEK293 cells carrying a disease-

causing mutated form of PS1 (PS1-M146L). Agonist-induced IP3 production by CCh 

results in calcium release from ER (Figure 6.2b). As presented here and reported by 

others as well [223], FAD-PS mutations mediate exaggerated CCh-induced calcium 

release compared to wild type PS1 expressing cells (Figures 6.1a and 6.2c). Notably, 

CCh-evoked calcium responses were evaluated at several different CCh concentrations. 

However, the most remarkable difference in the peak size of CCh-evoked calcium release 

in FAD-PS1 versus wild type PS1 lines was detected at 10 µM CCh (data not shown). 

 

As illustrated in figure 6.2d, HEK293 cells stably coexpressing FAD-linked PS1-M146L 

mutation and YC3.6 were seeded on 384-well optical bottom plates. After 6 h, 

compounds from the library plates were added to separate wells using a pipetting robot. 

After 24 h incubation with compounds, DRAQ5 nuclear marker was added to the wells. 

After 2 h, time-lapse calcium imaging was performed and CCh-induced calcium release 

was monitored sequentially for each well with the use of YC3.6 calcium indicator. In 

addition, the signal of DRAQ5 dye was also collected throughout the entire course of 

time-lapse imaging. Using “Acapella” software (PerkinElmer), an automated image 

analysis tool was developed to convert fluorescent signals in large number of cell 

populations to numerical values. To that end, DRAQ5 signal was used to detect all nuclei 

in each frame and the YC3.6 signal was used to assign the detected single cell boundaries 

to their corresponding segmented nuclei over the entire course of time-lapse calcium 

imaging. On average, approximately 150-200 cells were detected for each well. For every 

detected cell, calcium transients were measured by calculating YFP/CFP over the course 

of imaging. The peak amplitude size of the calcium rise upon CCh injection was the 

output of automated analysis at single cell level. The ability to simultaneously monitor 

calcium transients for all individual cells of a well enabled us to filter out CCh-non-

responsive cells from the analysis by setting an arbitrarily defined threshold. The average 

peak amplitude of all responsive cells in a well was calculated as the final output of the 

image analysis tool. 
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The performance of the high-throughput compound screening assay remained very robust 

throughout screening of 201 plates (Z’-factor > 0.8). Z’-factors for ten randomly selected 

screened plates are presented in figure 6.2e. The average Z’-factor for those ten plates 

was determined to be 0.806 ±0.029, reflecting a robust assay for high-throughput 

screening (HTS). 

 

After filtering the autofluorescent and highly toxic compounds, 53 active small molecule 

hits were identified from the primary screen (Figure 6.3). A compound was regarded as 

active if the peak size of calcium release in cells treated with that compound was 90% or 

smaller than the peak size of DMSO-treated controls on the same plate. To each library 

compound a numerical value typically <1.0 was assigned indicating a measure for its 

efficacy, calculated by dividing the peak size of calcium release in cells treated with that 

given compound to the peak size of DMSO-treated controls on the same plate. Hereafter, 

we refer to this value as “normalized ER calcium response”. In figure 6.3, the list of all 

hits from the primary screen including their chemical structures and corresponding 

normalized ER calcium response values is presented. 

 

The activity of the entire set of 53 hits in terms of reducing the peak size of CCh-evoked 

calcium release was validated and confirmed in PS1-M146L line again (Figure 6.4a). 

Moreover, all primary hits were capable to attenuate the CCh-evoked calcium release in 

three other cell lines expressing either different FAD-PS1 mutations (PS1-DeltaE9 and 

PS1-C92S) or a γ-secretase-deficient PS1 mutant (PS1-D385N) (Figures 6.4e-6.4g). This 

indicates that the activity of the identified hits in normalizing the exaggerated FAD-PS1-

mediated CCh-evoked calcium release is indeed not only specific to the FAD-PS1 

mutation used in the primary screen, but present across other examined PS1 mutations as 

well.  

 

53 structures identified from the primary screen were classified into different categories 

based on their efficacy in attenuating the peak size of the CCh-evoked calcium release 

(Figure 6.4c and 6.4d). These categories are separated according to the corresponding 

value of normalized ER calcium response, presented as percentages relative to the peak 

size of DMSO-treated control. 
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Next, we performed an MTT assay in order to assess the cytotoxicity of the entire set of 

53 hits generated from the primary screen. Majority of identified active compounds 

showed no toxicity and HEK293 cells treated with 10 µM of the compounds for 24 h 

remained viable (Figure 6.4h). Treatment with only 5 compounds, 3 of which belonging 

to Thiazolidine lead structure, resulted in 30-40% reduction in cellular viability. 

 

After performing structure-activity-relationship (SAR) studies with the entire collection 

of library compounds using “Benchware DataMiner” software (Tripos), 4 different lead 

structures were identified. Those structures belonged to following compound classes: 

Thiazolidine, Phenothiazine, Imidazole and Benzhydrilpiperidinamin (Figure 6.4b, 6.S1, 

6.S2, 6.S3 and 6.S4). To that end, first the library consisting of 20,000 compounds was 

imported to the data mining software and active compounds (normalized ER calcium 

response < 0.9) were selected. Using the “OptiSim” algorithm groups of similar 

compounds, called clusters, were identified. Subsequently inactive compounds were 

added to the existing clusters. Then the clusters were combined according to their 

structures in order to reduce their number. Then a SAR map of the clusters was generated 

and clusters with more than 50% active compounds were represented as stars and clusters 

with less than 50% active compounds as rectangles. In addition, all clusters that have 

more than 4 active compounds were colored in blue and otherwise in red. The sizes of the 

symbols correlate directly with the number of compounds in each cluster (Figure 6.4b). 

 

6.4.3 Effect of Bepridil on CCh-evoked calcium release from ER 

 

In addition to 4 discovered lead structures, the HTS led to the identification of Bepridil, a 

calcium antagonist drug which was previously shown to be beneficial against AD through 

simultaneously targeting β- and γ-secretases [299]. In view of the detected Bepridil 

activity in dampening the exaggerated FAD-PS1-mediated calcium release and the 

promising indications linking it to lowered Aβ generation, we synthesized 15 derivative 

structures in an attempt to generate Bepridil-analogous molecules with improved efficacy 

(Figure 6.S5). The derivatisation strategy aimed to explore the contribution of different 

fragments to the potency and efficacy by removal of these moieties (BSc4040 and 

BSc4209). We varied the lipophilicity (BSc4040 and BSc3946), solubility, basicity 

(BSc4049) and membrane permeation by introduction of an ammonium salt (BSc3947) or 

sulfonic acid (BSc3963) and carboxylic acids (BSc3964 and BSc4065). Using the same 
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HTS assay employed in primary screening, we measured dose-dependent effects for 

Bepridil and its synthesized derivatives at 30, 10, 3, 1, 0.3 and 0.1 µM (Figure 6.5). The 

chemical modifications in the structure of Bepridil did not further improve the efficacy in 

attenuating the CCh-evoked calcium release (Figure 6.5). Therefore in the following 

experiments the original Bepridil structure identified from the primary screen was further 

characterized to determine its mode of action. Notably, Bepridil had no effect on the peak 

size of CCh-evoked calcium release in wildtype PS1 expressing cells (Figure 6.S6). 

 

6.4.4 Effect of Bepridil on APP processing and Aβ generation 

 

Mitterreiter and colleagues have shown that Bepridil treatment decreases the formation of 

Aβ by shifting the balance of APP processing from amyloidogenic β-cleavage towards 

non-amyloidogenic α-cleavage [299]. In line with their observation, we also detected 

reductions in the level of secreted Aβ38, Aβ40 and Aβ42 peptides upon 16 h exposure of 

APPsw/PS1-M146L-overexpressing HEK293 cells with Bepridil at 30 µM (Figure 6.6a). 

Likewise, in APP-overexpressing HEK293 cells we detected lower Aβ38, Aβ40 and 

Aβ42 generation after Bepridil treatment (30 µM) for 16 h (Figure 6.S7a). However, upon 

Bepridil treatment at lower concentrations (10 µM and 3 µM), we detected reduced Aβ38 

and Aβ40, but increased Aβ42 levels (Figure 6.S7a). Treatment of C99-overexpressing 

HEK293 cells with Bepridil (30 µM) also leads to decreased Aβ38 and Aβ40 and 

increased Aβ42 levels, suggesting an inverse γ-secretase modulator (iGSM), as previously 

also described [299] (Figure 6.S7b). The reduction in the Aβ amounts was accompanied 

by an increase in sAPPα and a decrease in sAPPβ secreted fragments in a dose-dependent 

manner, indicating that Bepridil treatment indeed enhances the activity of α-secretase and 

inhibits the activity of β-secretase in two different cell lines (Figure 6.6b and 6.S7c). 

Furthermore, we also tested the effect the other active compounds derived from the 

primary calcium screen on Aβ peptide production. Depending on the compound tested, 

we detected increased, decreased or unchanged Aβ levels upon 16 h exposure of 

APPsw/PS1-M146L HEK293 cells with the compounds (Figure 6.S8). 

 

6.4.5 Effect of Bepridil on AMPK activity 

 

There exists evidence that the activation of AMP-activated protein kinase (AMPK) is 

partially calcium-dependent and modulating its activity affects APP processing [305]. In 
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order to assess the effect of Bepridil on AMPK activity, we measured phosphorylated 

AMPK (pAMPK) levels. pAMPK is the activated form of AMPK and its phosphorylation 

is directly associated with AMPK activity [305]. We detected increased pAMPK levels 

upon 16 h treatment of HEK293 cells with Bepridil in a dose-dependent manner (Figure 

6.6c). Calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) is an upstream 

kinase responsible for calcium-dependent activation of AMPK [306, 307]. In order to 

examine whether AMPK activation by Bepridil is a CaMKKβ-dependent phenomenon, 

we used STO-609, a specific CaMKK inhibitor [308]. Indeed, cotreatment of HEK293 

cells with STO-609 and Bepridil partially abolished the Bepridil-dependent AMPK 

activation (Figure 6.6d). Moreover, CaMKK inhibition with STO-609 also reversed the 

Bepridil-mediated increase in sAPPα, but not the decrease in sAPPβ (Figure 6.S7d).  

 

6.5 Discussion 

 

Here we describe the development and implementation of a high-throughput compound 

screening assay targeting ER calcium dysregulation as an innovative approach for AD 

drug discovery. As opposed to the majority of AD drug discovery strategies that target 

late stage disease hallmarks, this approach targets one of the earliest and most upstream 

events in AD progression before the appearance of characteristic AD pathological 

features. Targeting late events in the course of the AD, during which the disease has 

likely reached an irreversible stage, could be one of the reasons for the consistent recent 

failure of disease-modifying AD drug candidates targeting Aβ and tangle pathologies in 

late clinical phases [14]. To our knowledge, the possibility of targeting disrupted ER store 

calcium homeostasis as an upstream event in disease pathogenesis has never been 

examined in AD drug discovery in the past.  

 

The HTS assay developed offers several advantages compared to current calcium 

measurement screening technologies. Firstly, the use of genetically-encoded calcium 

sensors as opposed to conventional synthetic organic dyes allows monitoring long-term 

intracellular calcium dynamics without the drawbacks caused by dye toxicity, loading, 

washing and leakage. In addition to being able to follow long-term calcium 

concentrations, short-term calcium imaging can be performed at multiple time points, 

which could even be spread over several days. Since the Opera® HTS platform is 
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equipped with an environmental control chamber, excellent long-term cell viability 

conditions are ensured by maintaining regulated temperature, humidity and CO2. 

Secondly, the developed HTS assay allows performing rapid automated dispensing of 

reagent jets to individual wells during calcium measurements with no time lag between 

dispensing and imaging. The latter is ideal for kinetic measurements that require rapid 

imaging with no delay post dispensing, e.g. fast agonist-induced calcium release. Thirdly, 

the single-cell-based nature of this assay in combination with automated image analysis 

enables the detection of even slight changes in calcium concentration which cannot be 

achieved with the use of conventional single-well-based calcium measurement screening 

technologies (e.g. FLIPR) [309]. Moreover, the ability to simultaneously monitor calcium 

transients for individual cells of a well, allows applying multiple filtering parameters in 

image analysis software to set apart different cell subpopulations from each other, e.g. 

“active” from “inactive”, “responsive” from “non-responsive”, “transfected” from 

“untransfeced” cells, etc. The latter is not possible in single-well-based calcium 

measurement assays. Furthermore, the assay offers superior robustness reflected by Z’-

factor > 0.8. Overall, the aforementioned advantages of the developed HTS assay enabled 

us to identify drugs, which by having even a modest effect on exaggerated IP3R-evoked 

calcium signals may be beneficial for AD therapy. 

 

Calcium alterations associated with FAD-PS expression provide ideal means to 

investigate the disruption of ER calcium homeostasis. FAD-PS-dependent calcium 

alterations in intracellular calcium stores have been linked to synaptic dysfunction, the 

underlying basis of cognitive impairment in AD [310]. Nevertheless, the potential of the 

developed HTS assay is not only restricted to FAD drug discovery. Early studies indicate 

that the disrupted ER calcium release correlates with Aβ and tangle pathologies in AD 

[48]. During physiological aging [52, 311] and in several neurodegenerative diseases [25, 

312] the neuronal store calcium homeostasis is also altered. Yet the alterations in ER 

calcium homeostasis during aging are much more subtle [313]. Notably, age is the main 

risk factor for developing sporadic AD [314]. Moreover, PS1 mutations are also 

associated with heart failure and cardiac diseases as a result of similar alterations in ER 

calcium signaling as in AD [315]. Therefore, targeting intracellular store calcium 

homeostasis in HTS assays may allow the identification of drugs relevant for treatment of 

undesired effects associated with physiological aging and a wide range of 

neurodegenerative and cardiac diseases. As recently reviewed by Chadwick et al., ER is 
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not a classical AD drug target, however due to its multifactorial involvement in several 

cellular aspects of AD, even a modest modulation in its function may present tremendous 

therapeutic efficacy [316].  

 

Screening of over 20,000 small molecules using the HTS assay yielded the discovery of 

four lead structures and 53 primary hit molecules, one of them being Bepridil, a calcium 

channel blocker. Bepridil specifically attenuated the FAD-PS1-mediated exaggerated ER 

calcium release, without affecting the latter in wildtype PS1 expressing cells. Bepridil is 

reported to modulate APP processing by simultaneously affecting the activity of β- and γ-

secretases [299]. Hence, we synthesized 15 Bepridil derivatives in an attempt to identify 

analogous structures with improved efficacy and potency in restoring the exaggerated 

IP3R-evoked calcium release in cells carrying FAD-linked PS1 mutations. However, the 

modifications in the chemical structure of Bepridil did not further improve the activity of 

synthesized derivatives in the ER calcium release assay. 

 

Bepridil treatment increased the activity of AMPK in a dose-dependent manner. We 

demonstrate that Bepridil-associated AMPK activation is indeed a CaMKKβ-dependent 

mechanism, since CaMKKβ inhibitor STO-609 partially abolishes the Bepridil-mediated 

activation of AMPK. Such a partial effect may be due to incomplete CaMKKβ inhibition 

by STO-609 and the residual activity of calcium-stimulated CaMKKβ. 

 

Based on our finding that Bepridil dampens the calcium release from ER, at the first sight 

it may appear that, in contradiction to our hypothesis, Bepridil should lower the AMPK 

activity. However, the control of AMPK activation is a complex mechanism which is 

regulated in a context- and tissue-dependent manner [317]. While calcium can activate 

AMPK, chronic elevated cytosolic calcium concentrations have been shown to lower the 

AMPK activity [318]. The consequence of the FAD-PS-associated exaggerated calcium 

release from ER may also be chronically increased cytosolic calcium concentrations. 

Moreover, both in AD and aging, where long-term disturbed calcium homeostasis is 

present, declined AMPK activity has been described [305, 319]. 

 

Alterations in intracellular calcium homeostasis can directly affect Aβ production [49]. 

Indeed, many of the active compounds identified from the primary calcium screen either 

increased or decreased the production of Aβ peptides. Such a wide range of effects on Aβ 
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generation is rather predictable, since most likely those compounds target different 

components of intracellular calcium homeostasis, thus, also differently affecting APP 

processing. In accordance with the findings of Mitterreiter et al. [299], we also detected 

less Aβ generation upon Bepridil treatment. Here we propose an alternative calcium-

dependent mechanism for the described Bepridil-mediated decrease in β-secretase 

cleavage and the consequent lowered Aβ production [299]. Several publications have 

previously demonstrated that AMPK is implicated in APP metabolism and its 

pharmacological activation is associated with reduced Aβ generation [320, 321]. 

Interestingly the activity of SIRT1, a downstream protein target of AMPK activation, 

leads to lowered Aβ production through ADAM10 activation [322], the major 

physiologically relevant form of APP α-secretase [323]. Moreover, AMPK activation has 

been shown to be associated with reduced expression of BACE1 [324]. Taken together, 

the observed simultaneous Bepridil-dependent increase in sAPPα and decrease in sAPPβ 

cleavage products may respectively be attributed to ADAM10 activation and BACE1 

downregulation, mediated by increased AMPK activity. Indeed, CaMKKβ inhibition with 

STO-609 reversed the Bepridil-dependent increase in secreted sAPPα, however did not 

rescue the decreased sAPPβ levels. This might be due to the fact that BACE1 activity 

itself is calcium-dependent [39], thus interfering with calcium homeostasis and CaMKKβ 

activity may also additionally affect APP processing through calcium-dependent, but 

AMPK-independent mechanisms. 

 

In cells overexpressing C99, which is the β-cleaved product of APP and the substrate for 

γ-secretase, treatment with Bepridil decreased Aβ38 and Aβ40 levels, but on the other 

hand increased Aβ42 amounts. Mitterreiter et al. have also described such a concurrent 

iGSM feature for Bepridil.  This might also explain our observation that in APP-

overexpressing cells, Bepridil treatment at lower concentrations (10 µM and 3 µM) 

increases, but at higher concentration (30 µM) decreases Aβ42 levels. However, Aβ38 

and Aβ40 levels were decreased at all Bepridil concentrations in all cell types tested. In 

other words, it appears that at low Bepridil concentrations, the iGSM effect of Bepridil 

(increase in Aβ42 levels) overbalances the reduced BACE1 activity (decrease in Aβ42 

levels), whereas at higher Bepridil concentrations this effect is visa versa. 

 

There exists evidence that calcium ions can directly regulate the activity of γ-secretase 

[325] and BACE1 [39]. Therefore we cannot exclude the possibility that stabilization of 
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ER calcium by treatment with Bepridil may also reduce the activity of γ-secretase and 

BACE1 and thus lead to lowered Aβ production. Mitterreiter et al. report that APP 

protein expression level is indeed unaffected by Bepridil treatment [299]. Therefore the 

possibility that reduced APP protein levels may account for Bepridil-dependent Aβ 

reduction can be excluded. 

 

Mitterreiter et al. have already described that Bepridil can inhibit β-secretase cleavage by 

mildly raising the membrane-proximal endosomal pH, while independently modulating γ-

secretase activity as well [299]. Here we describe an additional mode of action for 

Bepridil which involves AMPK activation, a mechanism modulating APP processing. 

AMPK activity is implicated in several aspects involved in AD pathogenesis [305]. For 

example, AMPK activation has been shown to promote autophagy and Aβ clearance 

[326, 327] and also regulate tau phosphorylation through direct and indirect mechanisms 

[328, 329]. In view of such promising indications, the potential protective role of Bepridil 

associated with improved Aβ clearance or tau pathology should be examined in more 

complex models.  

 

Novel molecular target(s) of Bepridil are yet to be determined. However, based on the 

known function of Bepridil as a calcium channel blocker, one may speculate that by 

dampening the hyperactivated calcium channels located on the ER [69, 230], Bepridil 

could stabilize the disturbed ER calcium homeostasis. Indeed, treatment with ryanodine 

receptor (RyR) blocker dantrolene was shown to reduce Aβ burden, increase PSD-95 

expression and improve learning and memory in a APPsw-expressing mouse model of 

AD [204]. Moreover, PS holoprotein has been shown to form passive leak calcium 

channel on the ER membrane [228]. Therefore future studies are necessary to closely 

examine whether Bepridil exerts any modulatory effect on the activity of ER calcium 

receptor channels or the passive calcium leakage through PS holoprotein.  

 

In this report, we focused on characterization of Bepridil, a hit identified from the HTS. 

However other lead structures and hits identified from the primary screen may also 

provide therapeutic potential for AD treatment which shall be investigated in future. 
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Figure 6.1. CCh–induced calcium release in HEK293 carrying PS1 mutations 
(a) The average peak amplitude of CCh-induced calcium release is significantly potentiated in FAD and 
inactive PS1 mutants compared to wild type PS1 cells (*** P<0.001). 
(b) The average number of responsive cells to CCh is remarkably increased in cells expressing FAD and 
inactive PS1 mutants compared to wild type PS1 cells (*** P<0.001). 
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Figure 6.2. Work flow of the high-throughput FRET calcium imaging based compound screening 
assay and data analysis 
(a) Structure of the calcium sensor YC3.6 which is a fusion protein composed of CFP and YFP attached via 
calmodulin (CaM) and a CaM-binding peptide (M13). Calcium binding brings CFP and YFP together, shifting 
the emission of 480 nm to 535 nm upon excitation at 440 nm. 
(b) CCh application initiates a pathway which results in calcium release from ER. CCh exposure leads to G-
coupled activation of PLC catalyzing the hydrolysis of the membrane-associated PIP2 molecule to IP3. 
Binding of IP3 molecule to IP3 receptor channels (IP3R) on the ER membrane in turn leads to opening of IP3R 
channels and calcium release from ER to cytosol. 
(c) Representative calcium transients of CCh-evoked calcium release in cells expressing FAD-linked PS 
mutant versus wildtype PS. FAD-PS expressing cells show an exaggerated calcium release upon CCh 
exposure. The arrow shows the time point at which CCh is applied. The HTS screening rationale was to 
identify drugs that can restore the FAD-PS-associated potentiation of CCh-evoked calcium release to the 
level of wildtype PS. 
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(d) HEK293 cells stably expressing PS1-M146L and YC3.6 calcium indicator are seeded in 384-well format 
plates. 6-8 h post seeding, using a pipetting robot, library compounds are added to separate wells. After 24 
h, to stain nuclei, DRAQ5 is added to each well using the pipetting robot. After 2 h plates are confocally 
imaged by Opera® system which is equipped with a fast dispensing unit applying CCh to each well during 
time-lapse imaging. An image analysis tool within the Acapella® software is developed to automatically 
analyze single cell calcium transients. Using DRAQ5 nuclear segmentation, image analysis tool detects the 
boundaries of individual cells in the first time point and measures then the intensities of in FRET–acceptor 
and –donor over the course of imaging. The FRET efficiency of individual cells are then calculated and 
normalized. For each cell the signal maximum (peak) is determined. The compounds which attenuated the 
peak amplitude of CCh-induced calcium release to <90% of the DMSO controls were regarded as hit. Finally 
by data mining and determining the structure-activity-relationships (SAR) of the entire library consisting of 
over 20,000 compounds, active lead structures were identified. 
(e) Z’-factor as a measure for the robustness of the screening assay is evaluated for ten randomly selected 
imaged plates. The average Z’-factor for the screened plates exceeded 0.8. 
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Figure 6.3. Active structures identified from primary HTS screen 
Shown are 53 small molecules identified from the primary screen with their chemical structure and the 
corresponding normalized ER calcium response values generated at 10 µM, as a measure for their activity. 
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Figure 6.4. Validation of primary hits, structure-activity-relationship (SAR) analysis and their in vitro 
cytotoxicity 
(a) The activity of all 53 primary hits was validated in PS1-M146L/YC3.6 line. All the hits were capable of 
reducing the peak size of CCh-induced calcium release to <90% of DMSO-treated controls. 
(b) The structure-activity-relationship (SAR) map of the screened compounds. The symbols represent 
compound clusters generated by Benchware DataMiner software. The distance between the clusters 
correlates with the similarity between their chemical structures. The number of compounds within a cluster is 
illustrated by the size of the symbol. A cluster with more than 50% active compounds is represented by a 
star, and marked in blue if the actual number of active compounds is greater than 4. The highlighted 
identified lead structures belong to compound classes Thiazolidine (blue), Phenothiazine (green), Imidazole 
(turquoise) and Benzhydrilpiperidinamin (brown). 
Primary hits were also active in HEK293 cells expressing (e) PS1-DeltaE9/YC3.6, (f) PS1-C92S/YC3.6, and 
(g) PS1-D385N/YC3.6, by attenuating the mutant PS1-induced amplified calcium release.  
(c) and (d) The hits from the primary screen were classified into 8 categories based on their efficacy in 
lowering the CCh-evoked calcium release. These categories are separated according to the value of 
normalized ER calcium response. The noted numbers in each category indicates the number of compounds 
belonging to that catagory. 
(h) Viability of HEK293 cells treated with the primary screen hits was assessed by means of MTT assay after 
24 h compound treatment. Values are presented as percentage of viable cells. 
In (a), (e), (f) and (g), the peak size of DMSO-treated control is set to 1. Each color denotes a different lead 
structure in (a), (b), (e), (f), (g) and (h). The data for analogous molecules belonging to the same lead 
structure are marked with the same color. 
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Figure 6.5. Dose-dependent effect of Bepridil and its derivative structures on the amplitude of CCh-
evoked ER calcium release in PS1-M146L cells 
The effect of Bepridil and its 15 synthesized derivative structures were tested at 30, 10, 3, 1, 0.3 and 0.1 µM. 
The peak size of DMSO-treated control is set to 1. The relative peak amplitude of CCh-evoked calcium 
release is plotted for each treatment condition. Compounds BSc3947 and BSc4209 were toxic at 30 µM 
concentration.  
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Figure 6.6. Effect of on Bepridil on APP processing and AMPK activity 
(a) Reduced production of Aβ38, Aβ40 and Aβ42 after 16 h Bepridil (30 µM) treatment in HEK293 cells 
coexpressing APPsw and PS1-M146L. Sulindac sulfide (50 µM) was used as a γ-secretase modulator 
control.  
(b) Increased levels of sAPPα and decreased sAPPβ secreted fragments after 16 h treatment with Bepridil in 
HEK293 cells coexpressing APPsw and PS1-M146L. 
(c) Dose-dependent activation of AMPK upon 16 h treatment of HEK293 cells with Bepridil. 
(d) Cotreatment with STO-609 (50 µM) partially abolishes the Bepridil-dependent activation of AMPK in 
HEK293 cells. 
(n.s.: non-significant; * P<0.05, ** P<0.01 and *** P<0.001). 
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Figure 6.S1. Shown are the 11 compounds belonging to the lead structure Phenothiazine. Their chemical 
structure, physical properties and normalized CCh-evoked calcium release peak size are presented at 10 µM 
as a measure for their activity in the ER calcium release assay. 
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Figure 6.S2. Shown are the 7 compounds belonging to the lead structure Thiazolidine. Their chemical 
structure, physical properties and normalized CCh-evoked calcium release peak size are presented at 10 µM 
as a measure for their activity in the ER calcium release assay. 
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Figure 6.S3. Shown are the 5 compounds belonging to the lead structure Benzhydrilpiperidinamin. Their 
chemical structure, physical properties and normalized CCh-evoked calcium release peak size are presented 
at 10 µM as a measure for their activity in the ER calcium release assay. 
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Figure 6.S4. Shown are the 3 compounds belonging to the lead structure Imidazole. Their chemical 
structure, physical properties and normalized CCh-evoked calcium release peak size are presented at 10 µM 
as a measure for their activity in the ER calcium release assay. 
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Figure 6.S5. Shown are Bepridil and 15 synthesized derivatives, their chemical structure, physical properties 
and the normalized CCh-evoked calcium release peak size at 10 µM as a measure for their activity in the ER 
calcium release assay. 
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Figure 6.S6. The effect of Bepridil on the amplitude of CCh-evoked ER calcium release in wildtype 
PS1-expressing HEK293 cells 
Bepridil (30 µM) does not alter the amplitude of CCh-evoked ER calcium release in wildtype PS1-expressing 
HEK293 cells. The peak size of DMSO-treated control is set to 1. Thapsigargin (1 µM), CPA (20 µM) and 
TMB-8 (50 µM) were used as positive controls. 
(n.s.: non-significant and *** P<0.001). 
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Figure 6.S7. Effect of on Bepridil on APP processing 
(a) Altered production of Aβ38, Aβ40 and Aβ42 after 16 h treatment of APP-overexpressing HEK293 cells 
with Bepridil. DAPT (10 µM), a γ-secretase inhibitor, was used as a positive control. 
(b) Altered production of Aβ38, Aβ40 and Aβ42 after 16 h treatment of C99-overexpressing HEK293 cells 
with Bepridil (30 µM). Sulindac sulfide (50 µM), a γ-secretase modulator, was used as a positive control. 
(c) Increased levels of sAPPα and decreased sAPPβ secreted fragments after 16 h treatment with Bepridil in 
APP-overexpressing HEK293 cells. 
(d) Cotreatment with STO-609 (50 µM) reverses the Bepridil-dependent (30 µM) increase in sAPPα (but not 
the decrease in sAPPβ) in HEK293 cells coexpressing APPsw and PS1-M146L. 
(n.s.: non-significant; * P<0.05, ** P<0.01 and *** P<0.001). 
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Figure 6.S8. Effects of the active compounds from the calcium HTS on Aβ production 
Altered production of Aβ38, Aβ40 and Aβ42 after 16 h treatment of HEK293 cells coexpressing APPsw and 
PS1-M146L with the active structures identified from the calcium HTS. DAPT (10 µM) was used as a γ-
secretase inhibitor control.  
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7.1 Abstract 

 

Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most 

frequent cause of dementia. To date, there are few approved drugs for AD, which show 

little or no effect on disease progression. Impaired intracellular calcium homeostasis is 

believed to occur early in the cascade of events leading to AD. Here we examined the 

possibility of normalizing the disrupted calcium homeostasis in the endoplasmic 

reticulum (ER) store as an innovative approach for AD drug discovery. High-throughput 

screening of a small-molecule compound library led to the identification of 

tetrahydrocarbazoles, a novel multifactorial class of compounds that can normalize the 

impaired ER calcium homeostasis. We found that the tetrahydrocarbazole lead structure, 

firstly, dampens the enhanced calcium release from ER in HEK293 cells expressing 

familial Alzheimer's disease (FAD)-linked presenilin 1 mutations. Secondly, the lead 

structure also improves mitochondrial function, measured by increased mitochondrial 

membrane potential. Thirdly, the same lead structure also attenuates the production of 

amyloid-beta (Aβ) peptides by decreasing the cleavage of Amyloid Precursor Protein 

(APP) by β-secretase, without notably affecting α- and γ-secretase cleavage activities. 

Considering the multiple modes of action of tetrahydrocarbazoles in addressing three key 

pathological aspects of AD, these compounds hold promise for development of a 

potentially effective AD drug candidate. 
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7.2 Introduction 

 

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly [293]. 

Currently, there is no effective therapeutic modality for prevention, halting or reversal of 

AD [330]. The two principal neuropathological hallmarks of AD are the accumulation of 

extracellular plaques of β-amyloid (Aβ) peptides and intracellular neurofibrillary tangles 

of hyperphosphorylated tau protein in the brain. Aβ and tau are thus the prime drug 

targets for development of disease-modifying therapy in AD [293]. Nevertheless, the lack 

of breakthrough in effective therapy, along with the consistent failure of drug candidates 

targeting late-stage Aβ and tau pathologies in clinical trials, have recently led to a major 

shift in the search for alternative AD drug targets [14]. Importantly, dysregulated calcium 

signaling plays a central role in AD pathogenesis [22, 29], for example by triggering both 

Aβ and tau pathology [48, 50]. Indeed, calcium imaging with cells derived from mild-

cognitive-impairment (MCI) subjects, familial and sporadic AD patients [46, 229], and 

neurons from transgenic AD mouse models [331] indicate that disturbances in 

endoplasmic reticulum (ER) calcium homeostasis are early events in AD pathogenesis, 

most likely preceding the clinical manifestation of the disease [41]. Practically, every 

gene that is known to directly cause AD or increase susceptibility to it, somehow also 

affects calcium homeostasis [22]. Hence, therapeutic interventions aiming at preventing 

such early calcium dyshomeostasis have been proposed to present a promising 

opportunity for disease-modifying therapy of AD [6]. Furthermore, due to the 

multifactorial involvement of ER in the pathogenesis of AD, even minimal levels of 

therapeutic modulation in the ER may yield tremendous therapeutic efficacy [316]. In 

light of such indications and the novelty of this approach, we developed and performed a 

high-throughput screen for small-molecule compounds that can normalize the enhanced 

agonist-evoked ER calcium release phenotype in HEK293 cells expressing FAD-linked 

Presenilin-1 (PS1) mutations. Various mechanisms have been proposed to underlie the 

FAD-PS1-mediated enhancement of the ER calcium release, e.g. enhanced inositol 1,4,5-

trisphosphate (IP3) and ryanodine receptor (RyR) channel activities, altered 

sarcoendoplasmic reticulum calcium transport ATPase (SERCA) pump function, 

decreased capacitative calcium entry and loss of ER passive calcium leakage [255]. 

Irrespective of the controversies in the field as to which of these are the primary causative 

and which the secondary phenomena, we performed a large-scale phenotypic compound 
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screening [332]. This resulted in identification of a novel class of chemical structures that 

normalize the exaggerated calcium release from ER in cells expressing a FAD-PS1 

mutation. Stabilization of calcium signaling by the identified lead structure was 

accompanied by improved mitochondrial function and decreased Aβ peptide production. 

 

7.3 Material and Methods 

 

7.3.1 Cell culture and cell lines 

 

Human embryonic kidney 293 (HEK293) cells were cultured in Dulbecco’s modified 

eagle medium (DMEM) supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin while being incubated at 37°C, 5% CO2 and 90% humidity. The 

stable PS1 lines (generously provided by Dr. S. Lammich) were carrying PS1 variants 

that were cloned into pcDNA3.1/Zeo(+) and single cells were selected via Zeocin 

antibiotic resistance [333, 334]. The PS1 lines were then stably transfected with 

YC3.6/pcDNA3 construct (kindly provided by Dr. A. Miyawaki) and single cells were 

respectively isolated by G418 antibiotic resistance leading to generation of double stable 

lines. The APP- , C99- and APPsw/PS1-M146L-overexpressing HEK293 lines were 

kindly provided by Dr. S. Lichtenthaler and Dr. H. Steiner and cultured as previously 

described [299, 300]. 

 
7.3.2 Automated high-throughput FRET-based calcium imaging and image analysis 

 

HEK293 cells stably expressing PS1-M146L and Yellow Cameleon 3.6. (YC3.6) [212], 

were seeded at 13,000 cells/well in 40 µl of growth medium on collagen-coated 384-well 

CellCarrier plates (PerkinElmer, Rodgau, Germany). After 6 h, using an automated 

pipetting robot (Bravo, Agilent Technologies, Santa Clara, CA, USA), library compounds 

were added to each well at the final concentration of 10 µM in 1% DMSO, each in 4 

replicates. All plates contained Thapsigargin (TP; 1 µM; Calbiochem, Darmstadt, 

Germany), Cyclopiazonic acid (CPA; 20 µM; Calbiochem), 3,4,5-trimethoxybenzoic acid 

8-(diethylamino)octyl ester (TMB-8; 50 µM; Sigma-Aldrich, Taufkirchen, Germany) and 

Bepridil (20 µM; Sigma-Aldrich) as positive controls reducing the amount of calcium 

release from ER, as well as untreated and DMSO vehicle-treated wells. After 24 h using 
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the pipetting robot, DRAQ5 (Biostatus Ltd, Leicestershire, UK), a far-red fluorescent 

nuclear dye, was added to each well at the final concentration of 500 nM. After 2 h, plates 

were measured for CCh-induced calcium release using Opera® high-throughput confocal 

imaging platform (PerkinElmer Cellular Technologies GmbH, Hamburg, Germany). 

Throughout imaging of the entire plate, 37°C temperature, 5% CO2 and 90% humidity 

was maintained in the plate chamber. Using a 442 nm laser, YC3.6 was excited and its 

CFP and YFP emissions were separated respectively using 483/35 nm and 540/75 nm 

filters. Additionally, using a 640 nm laser DRAQ5 dye was excited and its emission was 

collected by 690/50 nm filter in order to locate the nuclei. Imaging was performed with a 

20x water immersion autofocus objective. The duration of the entire time-lapse calcium 

imaging for each well was 23.5 s. This was achieved by imaging at 2.5 s interval 

resolution prior to dispensing CCh (for 5 s) to monitor the basal calcium levels. Next, the 

CCh-induced calcium rise and decay were monitored for 18.5 s post dispensing. Imaging 

was performed first at 1 s interval resolution immediately after dispensing (for 5 s) and 

subsequently at 2.5 s interval resolution (for 12.5 s). During dispensing, 10 µl of CCh 

(Calbiochem) diluted in HBSS (10 µM) was injected to each well concurrent with 

calcium imaging by an automated dispensing unit which is part of the Opera® platform. 

Imaging was performed sequentially for all 384 wells. Using Acapella® software 

(PerkinElmer Cellular Technologies GmbH), an automated image analysis tool was 

developed to translate fluorescent signals to numerical values. Here, DRAQ5 and YC3.6 

signals were used respectively to detect single cell nuclei and single cell boundaries over 

the entire course of time-lapse calcium imaging. After assigning each cell to its 

segmented nuclei and excluding the cells positioned at the edges of the imaging frames, 

calcium transients for every cell were monitored by plotting the kinetics of YFP/CFP 

versus time and normalizing the signals using the equation, ΔF/F0 = (F – F0)/ F0, where F 

is the measured fluorescence signal at any given time and F0 is the average fluorescence 

signal of the time points preceding CCh application. The peak amplitude of calcium rise 

upon CCh injection was the output of automated image analysis at single cell level. Non-

responsive cells to CCh were excluded from analysis by setting an arbitrarily defined 

threshold. The average peak amplitude of all responsive cells in each well was calculated 

as the final readout in this assay. 
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7.3.3 Mitochondrial membrane potential TMRM assay 

 

The measurement method for mitochondrial membrane potential with TMRM dye was 

adapted from Scaduto et al. [335]. HEK293 cells were seeded at the density of 50,000 

cells/well on collagen/poly-L-lysine (PLL)-coated 96-well plates (Advanced-TC plates, 

Greiner Bio-One GmbH, Frickenhausen, Germany) and incubated for 24 h. Next, the cells 

were loaded with 50 nM tetramethylrhodamine methyl ester (TMRM; Invitrogen, 

Carlsbad, CA, USA) dye in the presence of either tetrahydrocarbazoles analogues (10 

µM), positive control Dimebon (10 µM; Sigma-Aldrich), or DMSO vehicle which were 

pre-incubated on the cells 1 h prior to adding of TMRM dye. After 30 min each well was 

washed 3 times using PBS. Fresh medium containing each of the corresponding tested 

compounds (10 µM) was added into the wells. Live cell image acquisition was performed 

using inverted confocal microscope LSM510 with 25x magnification (Carl Zeiss 

MicroImaging GmbH, Jena, Germany) and the images were analyzed using ImageJ (NIH, 

USA) software to quantify the intensity of TMRM fluorescence signal. All measurements 

were performed with at least eight replicates. 

 

7.3.4 Aβ measurements 

 

The levels of three different Aβ species (Aβ38, Aβ40 and Aβ42) were measured using 

sandwich ELISA. Pools of HEK293 cells stably transfected with either APPsw/PS1-

M146L or APP were used to study the effect of compounds on Aβ generation. According 

to Page et. al. [300], cells were seeded at a density of 200,000 cells/well in collagen/poly-

L-lysine (PLL)-coated 24-well plates and incubated for 24 h in growth medium. Next, the 

medium was exchanged with 500 µl of fresh medium containing either the tested 

compounds, or the positive controls DAPT (10 µM, Calbiochem), Sulindac sulfide (50 

µM, Sigma-Aldrich), Bepridil (30 µM, Sigma-Aldrich) [299], or DMSO vehicle. After 16 

h conditioned medium was collected and the levels of secreted Aβ38, Aβ40 and Aβ42 

fragments were quantified using “Human (6E10) Abeta 3-Plex” sandwich ELISA 

immunoassay kit (Meso Scale Discovery, Rockville, MD, USA) according to the 

instructions of the manufacturer. In brief, 150 µl of blocker reagent was added to each 

well and incubated for 1 h at room temperature, followed by 3x washing using TRIS wash 

buffer. Next, 25 µl of detection antibody was added to each well. At appropriate dilution, 

each of the samples or calibration standards were added to separate wells of ELISA plate 
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and incubated for 2 h at room temperature, followed by 3x washing using TRIS wash 

buffer. Finally, 150 µl of read buffer was added to the wells. The light emission after 

electrochemical stimulation was measured using Sector Imager 2400 reader (Meso Scale 

Discovery). Based on the values generated with calibration standards, corresponding 

concentrations of Aβ species were calculated using the Meso Scale Discovery Workbench 

software. All measurements were performed with at least two replicates. 

 

 
7.3.5 sAPPα and sAPPβ measurements 

 

Levels of sAPPα and sAPPβ fragments were measured using sandwich ELISA adapted 

from Colombo et al. [336]. Wild type HEK293 cells were seeded at a density of 200,000 

cells/well in collagen/poly-L-lysine (PLL)-coated 24-well plates and incubated for 24 h in 

growth medium. Next, the medium was exchanged with 500 µl of fresh medium 

containing either compounds or vehicle. After 16 h conditioned medium was collected 

and the levels of secreted sAPPα and sAPPβ fragments were quantified using 

sAPPα/sAPPβ sandwich ELISA immunoassay kit (Meso Scale Discovery) according to 

the instructions of the manufacturer. Briefly, 150 µl of blocker reagent was added to each 

well of the ELISA plate and incubated for 1 h at room temperature, followed by 3x 

washing using TRIS wash buffer. Next, 25 µl of samples or calibration standards were 

added to separate wells of ELISA plate and incubated for 1 h at room temperature, 

followed by 3x washing using TRIS wash buffer. Then 25 µl of detection antibody was 

added to each well and incubated for 1 h at room temperature, followed by 3x washing 

using TRIS wash buffer. Finally, 150 µl of read buffer was added to the wells. The light 

emission after electrochemical stimulation was measured using Sector Imager 2400 

reader (Meso Scale Discovery). Based on the values generated with calibration standards, 

corresponding concentrations of sAPPα and sAPPβ were calculated using the Meso Scale 

Discovery Workbench software. All measurements were performed in four replicates. 

 

7.3.6 Statistical data analysis 

 

GraphPad Prism 5.0b (GraphPad Software, San Diego, CA, USA) was used for statistical 

analysis of the data. For comparison and p-value determination, we used one-way 

analysis of variance (ANOVA) method, followed by Dunnett's multiple comparison test. 
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All data are represented as means ± standard deviation. Differences were considered 

statistically significant if p < 0.05. 

 

7.4 Results  

 

7.4.1 Discovery of a novel lead structure from a high-throughput compound screen 

targeting disrupted ER calcium homeostasis 

 

In light of growing evidence towards the role of impaired intracellular store calcium 

homeostasis in the pathogenesis of Alzheimer’s disease [271], here we screened for low-

molecular-weight compounds that can normalize the disrupted ER calcium homeostasis. 

We chose the potentiated agonist-evoked ER calcium release in FAD-PS1-expressing 

cells as a robust phenotypic model to target ER calcium dyshomeostasis for AD drug 

discovery [332, 337]. 

 

All mutant PS1 lines tested revealed remarkably enhanced calcium release when 

compared to wild type PS1-expressing cells (Figure 7.1a). A phenotypic screening for 

compounds that are capable of dampening the potentiated Carbachol (CCh)-evoked ER 

calcium release in PS1-M146L HEK293 cells was subsequently performed. Screening a 

diverse compound library consisting of 20,000 small molecules led to the discovery of a 

novel lead structure. Six recognized analogues of the lead structure in the library, which 

showed activity in the screen (Figure 7.1b), remained active across several other mutant 

PS1-expressing lines (Figure 7.1c, d, e). Importantly, the amplitude of CCh-evoked 

calcium release in wild type PS1 expressing cells was not significantly altered (Figure 

7.1f). For the primary screen, a compound was regarded as active if it reduced the peak 

amplitude of CCh-induced calcium release to <90% of DMSO-treated controls 

(normalized ER calcium < 0.9). 

 

The discovered lead structure, identified as and hereafter called tetrahydrocarbazoles, 

consists of a core moiety having two variable R groups, shown as R1 and R2 (Figure 

7.1g). Comprehensive data mining revealed that the entire compound library contained 10 
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analogues of the lead structure, 8 of which were found to be active in the screen (Figure 

7.1g). 

 

7.4.2 Tetrahydrocarbazoles attenuate the FAD-PS1 mediated exaggerated ER 

calcium release 

 

In order to explore the contribution of different R1 and R2 groups to the activity of the 

lead structure, we further tested 28 commercially available tetrahydrocarbazole analogues 

and related structures. We also validated the activity of the 10 structures previously 

identified from the primary screen (Figure 7.2a and 7.S1). Based on the structure-activity-

relationship (SAR) knowledge gained, we synthesized 23 further derivative structures 

with the aim of reaching an improved efficacy (Figure 7.2b and 7.S2). Replacement of 

nitro group at R1 position with other electron-withdrawing substituents, e.g. halogens, 

trifluoromethyl, and cyano groups, maintains the activity of the lead structure, while other 

small substituents, e.g. hydrogen, lead to the loss of activity. Aliphatic residues at R2 

position (e.g. 5781439, 5781448, 5781457, gea_87) diminish that effect, while additional 

attachment of an aromatic motif (e.g. phenyl group) is beneficial to the activity (e.g. 

5781464, 5781441). 

 

7.4.3 Tetrahydrocarbazoles increase the mitochondrial membrane potential 

 

It has been demonstrated that ER and mitochondria are physically and functionally 

interdependent [338]. Constitutive calcium release from IP3R to mitochondria is a crucial 

mechanism involved in mitochondrial function [126]. Indications suggest that FAD-PS 

mutations affect the physical interaction between ER and mitochondria [339], leading to 

altered shuttling of calcium between the two organelles and modulating the mitochondrial 

calcium uptake [127]. Thus, in the next set of experiments we explored whether the 

modulation of ER calcium homeostasis by the lead structure also affects mitochondrial 

function. To that end, we analyzed mitochondrial membrane potential as an important 

parameter for addressing mitochondrial activity. We used TMRM dye, a fluorescent 

rhodamine derivative, to monitor mitochondrial membrane potential [335]. Indeed, 

pretreatment of HEK293 cells for 1 h with several lead structure analogues led to a 

remarkable increase in the mitochondrial membrane potential, measured by the TMRM 
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fluorescence signal (Figure 7.3a and 7.3b). At 10 µM, the increases in mitochondrial 

membrane potential after treatment with many of the analogues were comparable or even 

superior to that for Dimebon, a known enhancer of mitochondrial activity [152] (Figure 

7.3a and 7.3b). We particularly found that compounds 5781464 and 5781441, 

respectively possessing N-(1-benzylpiperidin-4-yl) and N-(1-phenethylpiperidin-4-yl) 

groups at their R2 position, were among the most active compounds both in terms of 

efficacy and potency (Figure 7.3b and 7.3d). Therefore, in several lead structure 

derivatives that we synthesized, the R2 position remained incorporating N-(1-

benzylpiperidin-4-yl) or N-(1-phenethylpiperidin-4-yl) groups, while we varied the 

groups at R1 position to explore their influence on the activity of the lead structure 

(Figure 7.S2). Indeed the latter analogues were also among the most active synthesized 

compounds in enhancing mitochondrial function (Figure 7.3c). Therefore, we concluded 

that the highest activity in terms of improving mitochondrial membrane potential is 

achieved if the lead structure possesses N-(1-benzylpiperidin-4-yl) or N-(1-

phenethylpiperidin-4-yl) groups at R2 position, given that R1 position incorporates 

electron-withdrawing residues. Exemplarily, the EC50 for one of the most promising 

synthesized derivatives of the lead structure (gea_133; R1 : cyano) was determined to be 

at the therapeutically relevant value of 4.84 µM (Figure 7.3d). Moreover, the efficacy of 

compound gea_133 was remarkably higher than the one of Dimebon, especially at 

concentrations beyond 1 µM (Figure 7.3d). 

 

7.4.4 Tetrahydrocarbazoles lower Aβ peptide production 

 

Next, we studied the impact of tetrahydrocarbazoles on the production of Aβ peptides. 

Modulation of intracellular calcium homeostasis directly affects Aβ production [49]. 

Thus, we hypothesized that normalizing the disrupted ER calcium homeostasis may 

additionally result in lowered Aβ production. Indeed we detected remarkably decreased 

levels of secreted Aβ38, Aβ40 and Aβ42 peptides upon 16 h treatment of HEK293 cells 

expressing either APPsw/PS1-M146L or wildtype APP with the lead structure analogues 

at 10 µM (Figure 7.4a, 7.4c and 7.S3). The IC50 of the select analogues in terms of 

decreasing levels of all three Aβ species lies in the low micromolar range (Figure 7.5a, b, 

c). However, compound treatment in both cell lines did not affect the Aβ42/Aβ40 ratio 

for most analogues, suggesting that the identified lead structure is not a γ-secretase 
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modulator (Figures 7.4b, 7.4d and 7.S4). In order to investigate the γ-cleavage of APP 

independently from its β-cleavage, we used HEK293 cells expressing C99, the β-cleaved 

C-terminal fragment of APP and the substrate for γ-secretase. Here we observed that 

treatment of HEK293-C99 cells with the majority of the lead structure derivatives tested, 

did not (or only marginally) affect the production of Aβ38, Aβ40 and Aβ42 (Figure 7.6a). 

Moreover, Aβ42/Aβ40 ratios remained unaffected upon exposure of HEK293-C99 cells 

with the lead structure analogues (Figure 7.6b). Taken together, these results support the 

conclusion that the detected decrease in Aβ peptide levels is not a γ-secretase-dependent 

phenomenon. In accordance, we postulated that reduced β-cleavage of APP may 

contribute to lowered Aβ generation. Hence, we measured the levels of sAPPα and 

sAPPβ, the first cleavage products of APP, generated by α-secretase and β-secretase, 

respectively. Indeed, we detected significantly decreased levels of secreted sAPPβ, while 

sAPPα levels were unaffected (or only mildly reduced) upon treatment of wildtype 

HEK293 cells with most lead structure derivatives (Figure 7.4e). These results imply that 

the attenuated Aβ production caused by the lead structure is mediated through decreased 

cleavage of APP by β-secretase. The SAR analysis among the lead structure analogues in 

terms of lowering Aβ production was comparable to their determined SAR for increasing 

mitochondrial membrane potential. We found that analogues incorporating electron-

withdrawing residues at R1 position, in combination with N-(1-benzypiperidin-4-yl) or N-

(1-phenethylpiperidin-4-yl) at R2 show the most robust reduction in Aβ production 

(Figure 7.4a). 

 

7.5 Discussion  

 

Dysfunction and loss of neurons and synapses are by far the best available correlates of 

cognitive deficits in AD patients [53, 297]. Regulation of calcium homeostasis is essential 

for neuronal function and synaptic activity [27]. Early-stage aberrant calcium signaling in 

AD is proposed to underlie the late-stage synaptic dysfunction and memory deficits [98]. 

Notably, alterations in ER calcium channels were found to correlate with neurofibrillary 

and Aβ pathologies of AD brain [48]. Moreover, altered calcium homeostasis in 

peripheral tissues was proposed as diagnostic biomarkers of mild AD [46, 47]. 

Furthermore, the beneficial effects of Memantine, an NMDA receptor antagonist, for 
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treatment of moderate-to-severe AD patients reinforce the relevance of calcium-

signaling-targeted AD therapy [37]. Indeed, pharmacological normalization of disrupted 

ER calcium signaling by blocking hyperactivated RyR channels with dantrolene was 

demonstrated to restore synaptic transmission and plasticity, decrease Aβ burden, 

increase PSD-95 expression, and improve learning and memory in different AD mouse 

models [203, 204]. Altogether, given the central role of calcium both in triggering the 

early disease-initiating pathomechanisms as well as accelerating the AD pathology at 

later stages [294], targeting altered calcium signaling presents an attractive target for both 

AD prevention and treatment. Accordingly, we developed and performed a high-

throughput screen for compounds that can normalize the aberrant ER calcium 

homeostasis phenotype caused by FAD-linked PS1 mutations [255]. This approach led to 

the discovery of tetrahydrocarbazoles, a novel lead structure capable of lowering the 

exaggerated CCh-evoked ER calcium release in FAD-PS1 cells. 

 

In addition to the stabilization of ER calcium homeostasis, we observed that 

tetrahydrocarbazoles can improve mitochondrial function, measured by increased 

mitochondrial membrane potential. Mitochondrial dysfunction is proposed to act as a 

trigger in AD pathogenesis and a contributing factor to both onset and progression of the 

disease [134]. In addition to aberrant calcium homeostasis, mitochondrial dysfunction is 

an additional early event in the course of AD, thus presenting an attractive target for 

preventative therapy [340]. Growing body of evidence indicates that the ER–

mitochondria physical interfaces and calcium shuttling between the two organelles 

through IP3 receptors play a crucial role in the regulation of mitochondrial function [126], 

which appears to be affected in AD [127, 339]. Treatment with many of the lead structure 

derivatives resulted in a larger increase in the mitochondrial membrane potential than 

treatment with Dimebon. The latter suggests higher efficacy for tetrahydrocarbazoles 

compared to Dimebon. Despite not having reached the efficacy endpoints in clinical 

phase III, Dimebon is a drug which is thought to be beneficial in particular stages of the 

disease [341]. It was demonstrated that Dimebon can improve cognitive functions in 

mild-to-moderate Alzheimer’s disease patients [342, 343], presumably by enhancing the 

mitochondrial activity [152, 344]. 

 

We also found that treatment with many tetrahydrocarbazole analogues results in notably 

less Aβ38, Aβ40 and Aβ42 production in two different cell lines. Yet, Aβ42/Aβ40 ratios 
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remained largely unchanged. The latter indicates that the identified lead structure does not 

possess the properties of a γ-secretase modulator (GSM). GSMs are characterized by 

decreased production of longer Aβ species (e.g. Aβ42) accompanied by increased 

generation of shorter Aβ species (e.g. Aβ38 and Aβ40), resulting in lowering of 

Aβ42/Aβ40 ratio [161]. Although there is evidence that γ-secretase activity may be 

affected by calcium ions [325], the detected decreases in Aβ levels were not 

predominantly caused by γ-secretase inhibition. The evidence for the latter comes from 

the experiments with HEK293-C99 cells, suitable for exclusively addressing the γ-

secretase cleavage of APP (independently from β-secretase activity). In HEK293-C99 

cells, we detected unchanged or only slightly decreased Aβ levels upon treatment with the 

derivative structures tested. These minor reductions in Aβ levels caused by some lead 

structure derivatives can be due to the fact that calcium ions can modulate the γ-secretase 

activity to some extent [325]. However, such minor effects cannot account for the 

remarkable decrease in Aβ levels observed after treatment of APPsw/PS1-M146L and 

APP-expressing cells with tetrahydrocarbazole analogues. Our findings rather suggest 

that lowered Aβ production is mainly attributed to decreased β-cleavage of APP. We 

detected remarkably decreased sAPPβ levels upon exposure of HEK293 cells with the 

lead structure derivatives. Indeed, it has been demonstrated that calcium directly enhances 

the proteolytic activity of β-secretase (BACE1) [39]. Therefore, it is plausible that 

stabilization of ER calcium homeostasis by the lead structure results in lowered BACE1 

activity and consequently decreased Aβ production. The decrease in sAPPβ was not 

accompanied by an increase sAPPα, indicating that the lead structure does not alter the α-

secretase cleavage activity. The lack of inverse coupling between α- and β-secretase 

activities in frequently used cell lines, e.g. HEK293 cells, may explain our finding that the 

lead structure lowers sAPPβ generation without changing sAPPα levels [336]. The 

observation that most lead structure analogues do not affect Aβ and sAPPα levels, 

respectively in HEK293-C99 and wildtype HEK293 cells (e.g. gea_133), indicates that 

the decreased Aβ production through lowering β-cleavage of APP is indeed a specific 

effect which is not caused by reduced protein production. 

 

The structure-activity-relationship analysis revealed that the effect of lead structure 

analogues is most prominent with specific residues at C-6 (R1) and the exocyclic amino 

group (R2). We found that when R1 represents halogens and other electron-withdrawing 

substituents, e.g. nitro, trifluoromethyl, and cyano, this leads to a strong increase in 
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mitochondrial membrane potential, while also strongly attenuating Aβ peptide production 

and ER calcium release.  On the other hand, substitution at C-7 and C-8 (gea_84) was 

found to be detrimental to the activity. Furthermore, N-methylation at either the pyrrole 

nitrogen (gea_90) or the side chain secondary amino group (gea_92) led to the complete 

loss of the activity. Merely aliphatic residues at the exocyclic nitrogen (R2; i.e. 5781439, 

5781448, 5781457, gea_87) result in lowering or loss of the activity, while additional 

attachment of an aromatic motif (phenyl group) shows benefit in all three assays (i.e. 

5781464, 5781441). The best effect in all of the three assays was detectable for 

tetrahydrocarbazoles containing a diamino side chain R2 (aminopiperidine) with an 

attached N-benzyl or N-phenethyl residue (i.e. 5781441, 5781464, gea_96, gea_97, 

gea_101, gea_102, gea_130, gea_133). Therefore, by a systematic optimization of lead 

structure analogues, we generated a subclass of compounds that are highly active in all 

three assays. 

 

The vast majority of AD patients are sporadic late-onset cases and age remains the main 

risk factor for developing sporadic AD [345]. Importantly, aging process involves 

disturbances in the intracellular calcium homeostasis, particularly in ER and mitochondria 

[346, 347]. Lymphocytes derived from sporadic AD patients show elevated cytosolic 

basal calcium concentrations and disturbed ER calcium homeostasis [46, 348]. Every 

gene that is known to increase susceptibility to AD also modulates some aspect of 

calcium signaling [22]. In particular, a polymorphism in the CALHM1 gene encoding an 

ion channel’s pore-forming subunit that affects intracellular calcium homeostasis has 

been linked to susceptibility to sporadic AD [71, 349]. Along with the ER stress, 

mitochondrial damage also contributes to aging process [350].  Moreover, sporadic AD is 

associated with reduced mitochondrial membrane potential [351] as well as elevated 

BACE1 activity [352] which in turn leads to increased Aβ production and plaque 

deposition [353]. Therefore we predict that the benefits of tetrahydrocarbazoles, will not 

be limited to familial AD cases, but also may present a high potential for sporadic AD 

cases as well (patent pending; PCT/EP2013/055969). 

 

It is established that modulation of ER calcium homeostasis can affect mitochondrial 

function [126] and APP metabolism [49]. However, since the direct molecular target(s) of 

tetrahydrocarbazoles remain unknown, this study is limited by the fact that we cannot 

firmly conclude that the improved mitochondrial activity and decreased Aβ production 
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are downstream effects of normalizing calcium homeostasis. Therefore, future studies 

addressing the exact molecular target(s) of tetrahydrocarbazole lead structure and their 

detailed therapeutic mode of action are of utmost importance. Whether or not the 

beneficial effects of tetrahydrocarbazoles on calcium homeostasis, mitochondrial function 

and APP processing follow a dependency, should not, however jeopardize the therapeutic 

relevance of this discovery. Another important open question which remains to be 

elucidated is whether tetrahydrocarbazoles also reverse the late-stage Aβ-plaque-

dependent calcium disturbances in the brain [89, 90], which may be caused by Aβ-

induced calcium release from ER [354]. Apart from IP3 receptor channel gating itself 

[69], multiple upstream elements of IP3R-mediated calcium release are affected in AD, 

e.g. GPCR in general [355], and muscarinic receptors in particular [356], G-proteins 

[357], as well as PLC [358]. Given that the screening hits may potentially target any of 

those upstream elements, such a phenotypic multi-targeted drug screening assay provides 

the important advantage of collectively addressing several aspects of AD. 

 

AD is believed to be a multifactorial disease, caused by complex interactions among 

several contributing pathomechanisms [330, 359]. Nevertheless, the majority of current 

disease-modifying drug development strategies address only single aspects of the disease. 

Therefore, similar to combinational therapy [330], drugs such as tetrahydrocarbazoles 

which simultaneously address several central pathophysiological aspects of AD are 

clearly of advantage. 
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Figure 7.1. Tetrahydrocarbazole analogue screening hits/lead structure and their effects on FAD-PS1-
mediated disrupted ER calcium release 
(a) The peak amplitude of CCh-evoked calcium release in HEK293 cells expressing wild type PS1, FAD-
linked (PS1-M146L, PS1-C92S and PS1-DeltaE9) or a γ-secretase deficient (PS1-D385N) PS1 mutations. 
The effect of six tetrahydrocarbazole hits identified from the primary screen at 10 µM in (b) PS1-M146L, (c) 
PS1-C92S, (d) PS1-DeltaE9, (e) PS1-D385 and (f) wild type PS1 expressing HEK293 cells on the peak 
amplitude of CCh-evoked calcium release. CPA, an inhibitor of calcium-dependent ATPases, was used as a 
positive control. (g) The tetrahydrocarbazole lead structure, identified from a high-throughput compound 
screen for substances stabilizing the exaggerated CCh-evoked calcium release in PS1-M146L HEK293 
cells. Illustrated are chemical structures of the ten tetrahydrocarbazole analogues present in the entire 
screened compound library. The upper and lower panels indicate, respectively, eight active and two inactive 
analogues of the lead structure. Compounds capable of reducing the peak amplitude of CCh-induced 
calcium release to <90% of DMSO-treated controls (normalized ER calcium < 0.9) were regarded as active 
hits. 
(n.s.: non-significant; * P<0.05, ** P<0.01 and *** P<0.001; n=4). 
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Figure 7.2. The effects of tetrahydrocarbazole analogues on the FAD-PS1-mediated disrupted ER 
calcium release 
(a) The activity of commercially available and (b) synthesized tetrahydrocarbazole analogues tested at 10 
µM in PS1-M146L HEK293 cells. The presented values indicate the normalized peak amplitude of CCh-
evoked calcium release for cells treated with each compound for 24 h relative to the peak amplitude of 
DMSO-treated control (normalized ER calcium). Compounds marked with # symbol possess a certain level 
of toxicity which interferes with calcium release measurement in this assay. TP (1 µM), CPA (20 µM), TMB-8 
(50 µM) and Bepridil (20 µM), all lowering the amount of calcium release from ER, were used as positive 
controls. 
(n.s.: non-significant; * P<0.05, ** P<0.01 and *** P<0.001; n=4). 
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Figure 7.3. The effect of tetrahydrocarbazole analogues on mitochondrial membrane potential 
(a) Representative TMRM staining images of HEK293 cells pretreated for 1 h with the indicated 
tetrahydrocarbazole analogues (10 µM) or Dimebon (10 µM) as a positive control, relative to DMSO-treated 
control (scale bars: 100 µm). 
(b) Quantification of the average TMRM staining signals showing relative intensity for commercially available 
analogues of the tetrahydrocarbazole lead structure upon 1 h pretreatment of HEK293 cells (10 µM). The 
bars highlighted with single- and double-stripes represent the most active compounds 5781464 and 
5781441, which respectively possess N-(1-benzylpiperidin-4-yl) and N-(1-phenethylpiperidin-4-yl) groups at 
their R2 position. 
(c) Quantification of average TMRM intensity for synthesized tetrahydrocarbazole derivatives tested at 10 
µM. The marked single-striped bars represent the analogous structures similar to 5781464, possessing N-(1-
benzylpiperidin-4-yl) at their R2 position, and double-striped bars represent derivative compounds similar to 
5781441, which contain N-(1-phenethylpiperidin-4-yl) group at R2 position. 
(d) Quantification of average dose-dependent TMRM relative intensities for 3 select analogues of the lead 
structure tested at 6 different concentrations relative to Dimebon. The EC50 of all analogues tested lies at low 
micromolar range. 
All values are normalized to DMSO value, which is set to 1. 
(n.s.: non-significant; * P<0.05, ** P<0.01 and *** P<0.001; n=8). 
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Figure 7.4. The effect of tetrahydrocarbazoles on APP processing 
(a) Relative Aβ38, Aβ40 and Aβ42 levels, decreased after 16 h treatment with synthesized 
tetrahydrocarbazole derivatives at 10 µM in HEK293 cells coexpressing APPsw and PS1-M146L. Sulindac 
sulfide (50 µM) a γ-secretase modulator, and DAPT (10 µM) a γ-secretase inhibitor, were used as positive 
controls. Inside of the box, a schematic illustration of APP processing by α-, β- and γ-secretase is presented. 
(b) Relative Aβ42/Aβ40 ratios calculated from (a). Treatment with the majority of the lead structure 
derivatives does not alter Aβ42/Aβ40 ratio, whereas positive control Sulindac sulfide significantly lowers 
Aβ42/Aβ40 ratio. 
(c) Relative Aβ38, Aβ40 and Aβ42 levels are decreased after 16 h treatment with select tetrahydrocarbazole 
derivatives at 10 µM in HEK293 cells overexpressing wild type APP. 
(d) Relative Aβ42/Aβ40 ratios calculated from (c). Treatment with select lead structure derivatives tested 
does not alter Aβ42/Aβ40 ratio. 
(e) Relative sAPPα and sAPPβ levels after 16 h compound treatment in wild type HEK293 cells. Treatment 
with select tetrahydrocarbazole derivatives does not (or only marginally) affect secreted sAPPα levels, 
whereas secreted sAPPβ fragment levels are remarkably decreased. 
All values are normalized to the value of DMSO, which is set to 1. 
(n.s.: non-significant; * P<0.05, ** P<0.01 and *** P<0.001; n=2). 
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Figure 7.5. Dose-dependent effects of tetrahydrocarbazole derivatives on Aβ production 
The effect of three select synthesized derivatives of tetrahydrocarbazole lead structure on the production of 
(a) Aβ38, (b) Aβ40 and (c) Aβ42 peptides tested at 6 different concentrations in APPsw/PS1-M146L-
expressing HEK293 cells. The IC50 of all Aβ species for all derivative structures tested lies at low micomolar 
range. All values are normalized to the value of DMSO, which is set to 1. (n.s.: non-significant; * P<0.05, ** 
P<0.01 and *** P<0.001; n=4). 
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Figure 7.6. The effect of synthesized tetrahydrocarbazole analogues on γ-secretase cleavage activity 
in HEK293-C99 cells 
(a) Relative Aβ38, Aβ40 and Aβ42 levels after 16 h treatment with select tetrahydrocarbazole derivatives at 
10 µM in HEK293-C99 cells. Sulindac sulfide (50 µM), Bepridil (30 µM) and DAPT (10 µM), respectively, a γ-
secretase modulator, an iGSM, and a γ-secretase inhibitor, were used as positive controls. All values are 
normalized to the value of DMSO, which is set to 1. (n.s.: non-significant; * P<0.05, ** P<0.01 and *** 
P<0.001; n=2). 
(b) Relative Aβ42/Aβ40 ratios calculated from (a). Treatment with tested analogues does not alter 
Aβ42/Aβ40 ratios, whereas positive controls Sulindac sulfide and Bepridil, respectively lead to a significant 
decrease and increase in Aβ42/Aβ40 ratios. All values are normalized to the value of DMSO, which is set to 
1. (n.s.: non-significant; * P<0.05, ** P<0.01 and *** P<0.001; n=2). 
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Figure 7.S1. The list of commercially available tetrahydrocarbazole analogues 
Shown are 38 tested commercially available tetrahydrocarbazole analogues. Next to their chemical structure 
and physical properties, the measures for their activity in different assays are presented with their 
corresponding normalized values for: CCh-evoked calcium release peak; mitochondrial membrane potential 
(TMRM); and the levels of three different secreted Aβ peptides (measured at 10 µM). 
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Figure 7.S2. The list of synthesized tetrahydrocarbazole analogues 
Shown are 23 strategically synthesized tetrahydrocarbazole analogues. Next to their chemical structure and 
physical properties, the measures for their activity in different assays are presented with their corresponding 
normalized values for: CCh-evoked calcium release peak; mitochondrial membrane potential (TMRM); and 
the levels of three different secreted Aβ peptides (measured at 10 µM).  
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Figure 7.S3. The effect of commercially available tetrahydrocarbazole analogues on Aβ production 
Relative Aβ38, Aβ40 and Aβ42 levels are decreased after 16 h treatment with commercially available 
tetrahydrocarbazole analogues at 10 µM in HEK293 cells coexpressing APPsw and PS1-M146L. Sulindac 
sulfide (50 µM) and DAPT (10 µM), respectively, a γ-secretase modulator and a γ-secretase inhibitor, were 
used as positive controls. All the values are normalized to the value of DMSO, which is set to 1. (n.s.: non-
significant; * P<0.05, ** P<0.01 and *** P<0.001; n=2). 
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Figure 7.S4. The effect of commercially available tetrahydrocarbazole analogues on Aβ42/Aβ40 ratio 
Relative Aβ42/Aβ40 ratios calculated from figure 7.S2. Treatment with the majority of the lead structure 
derivatives does not alter the Aβ42/Aβ40 ratio, whereas the positive control Sulindac sulfide (but not DAPT), 
significantly lowers the Aβ42/Aβ40 ratio. All values are normalized to the value of DMSO, which is set to 1. 
(n.s.: non-significant; * P<0.05, ** P<0.01 and *** P<0.001; n=2). 
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7.6 Supplementary Material 
 
Commercially available compound library and derivatives: The DIVERSet® compound 

library and further commercially available tetrahydrocarbazole analogues and related 

structures were obtained from ChemBridge (ChemBridge Corp., San Diego, CA). The 

database for the library compounds and the tested analogues are available at 

http://www.chembridge.com and https://www.hit2lead.com 
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8 General Discussion 
 

8.1 The role of presenilin holoprotein upregulation in AD-associated calcium 

dyshomeostasis 

 

In the first part of this work, we could shed light on some of the controversies regarding 

the role of presenilins in the ER calcium homeostasis. Our results suggest that conditions 

enhancing the amount of PS1 holoprotein result in reduced ER calcium content. 

Therefore, in view of the impaired PS autoendoproteolysis caused by FAD-PS mutations 

and the leak channel property of PS holoprotein, we propose that the consequent 

increased stability and/or accumulation of PS holoprotein may directly contribute to AD 

pathogenesis by affecting the ER calcium homeostasis. Considering the strong 

concentration gradient of calcium ions between ER and cytosol, in addition to very low 

PS holoprotein expression levels under physiological circumstances, even minor 

upregulation in the PS holoprotein level may alter intracellular calcium signaling 

remarkably. 

 

Particularly, in HEK293 cells carrying FAD-PS1 mutations, we detected lowered ER 

calcium release in response to stimulation with TP and BK. However, amplified CCh-

induced ER calcium response was detected in the FAD-PS1 cells. Here we argue that in 

the case of stimulation with TP and BK, lowered ER calcium content is the cause for the 

attenuated calcium release from ER. However, in the event of stimulation with CCh, 

compensatory mechanisms seem to be in action that can mask the lowered ER calcium 

content of FAD-PS1 cells. Stimulation with CCh typically generates higher levels of IP3 

molecule compared to stimulation with BK [279]. The latter in combination with FAD-

PS1-mediated oversensitized IP3Rs [69, 235], result in amplified calcium release from ER 

upon CCh stimulation. Despite the contradicting data around this topic, evidence in 

support of our hypothesis comes from the studies that detected decreased ER calcium 

load by directly measuring the absolute amount of ER calcium in cells harboring FAD-PS 

mutations [233, 234].  
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We also observed that treatment of HEK293 cells with three different γ-secretase 

inhibitors result in lowered calcium release from ER, accompanied by elevated levels of 

PS1 holoprotein, presumably due to inhibition of PS autoendoproteolysis. This indicates a 

potentially neglected side effect for this class of drugs, which may unexpectedly even 

accelerate the disease progression. Thus, in view of these findings we suggest that the 

development of medicines targeting PS molecules and/or γ-secretase complex (e.g. γ-

secretase inhibitors and modulators), should carefully address their impact on intracellular 

calcium homeostasis as well. 

 

Within this study, we could detect elevated levels of PS1 holoprotein in the postmortem 

brain samples of AD patients carrying FAD-PS1 mutations. On the basis this finding, one 

could argue that in the AD population carrying FAD-PS mutations, increased PS 

holoprotein levels may underlie the AD-associated impairments of ER calcium 

homeostasis. On other hand, regarding sporadic AD and FAD-APP cases, other 

pathological mechanisms can potentially exist which may eventually give rise to such 

impairments in the intracellular calcium homeostasis [291]. However, in the case of 

sporadic AD, as the disease follows a slower progression, those underlying mechanisms 

responsible for calcium dyshomeostasis are likely to have more subtle effects. 

 

Overall, with respect to the passive calcium leak channel activity of PS holoprotein on the 

ER membrane [228], we demonstrated that conditions decreasing the autocatalytic 

function of PS holoprotein result in accumulation of its holoprotein form, which in turn 

affects the ER calcium homeostasis. Within this study, a number of different approaches 

were used to mimic the accumulation of PS holoprotein (overexpression of wild type and 

mutant PS1 variants, treatment with γ-secretase inhibitors, and the knockdown of PEN-2). 

These approaches resulted in attenuated ER calcium response, likely because of enhanced 

continuous calcium leakage from ER into cytosol and the subsequent decrease in the ER 

calcium load. 

 

Given that numerous mechanisms have been associated with the expression of FAD-PS1 

mutants (e.g. modulated IP3R, RyR, SERCA, PS holoprotein leak channel activity and 

CCE) [255], one may argue that such mechanisms are downstream effects of PS1 

holoprotein accumulation, developed to compensate the decrease in the ER calcium load. 
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8.2 Development of a high-throughput FRET-based calcium imaging assay 

for drug screening in AD 

 

Based on our findings regarding the role of presenilins in calcium signaling and the 

growing evidence towards the involvement of impaired intracellular store calcium 

homeostasis in the pathogenesis of AD, we took a calcium-signaling-targeted approach 

for AD drug discovery [332, 337].  

 

To that end, we combined intracellular calcium dyshomeostasis as a novel target for drug 

screening with an innovative FRET-based confocal calcium imaging technique in a fully 

automated high-throughput manner using Opera® system. This assay targets calcium 

dysregulation in the ER as a unique approach for AD drug discovery. In contrast to the 

mainstream AD drug development paradigms, our approach targets one of the earliest (if 

not the most upstream) events in the AD progression, long before the appearance of 

characteristic disease hallmarks and cognitive deficits. The latter promises a huge clinical 

potential for prevention, halting, or reversal of AD. To the best of our knowledge, the 

possibility of normalizing the impaired ER store calcium homeostasis has never been 

examined in high-throughput drug discovery of neurodegenerative diseases [332, 337]. 

 

Using the developed assay, we can measure the basal cytosolic calcium concentrations 

and follow the rises in calcium levels (e.g. ER calcium release), simultaneously in 

hundreds of single cells expressing a genetically-encoded calcium indicator. For the 

purpose of this assay, it was essential that the Opera® system is equipped with a dispenser 

unit, which allowed performing rapid automated dispensing of reagent jets to individual 

wells during calcium measurements with no time lag between dispensing and imaging. 

This was necessary for kinetic measurements that require rapid imaging with no delay 

post dispensing, e.g. fast agonist-induced calcium release [332, 337]. 

 

The single-cell-based feature in this assay is particularly advantageous, as it enables the 

detection of minimal changes in calcium dynamics that may not be detectable in 
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conventional single-well-based calcium measurement screening technologies. Moreover, 

the ability to follow calcium transients in individual cells allows distinguishing distinct 

cell subpopulations by applying different filtering parameters in image analysis, which is 

another limiting factor in the single-well-based calcium imaging assays [332, 337]. 

 

Traditionally, small calcium dyes are used for conventional calcium imaging. However, 

their use in high-throughput fashion is prone to a number of disadvantages associated 

with long-term dye toxicity, loading, washing and leakage. Importantly, the use of 

genetically-encoded calcium sensors solves the cytotoxicity issue and enables monitoring 

calcium transients over extended periods and following both slow and fast kinetic events.  

 

Here, the developed assay was validated for CCh-induced calcium release in double-

stable HEK293 line transfected with a FAD-PS1 variant and YC3.6. The assay proved to 

be optimal for high-throughput screening, as it provided a reliable window of separation 

between positive and negative controls, reflected by the robust Z’-factor > 0.8. 

 

While the HTS assay was primarily developed for large-scale compound screening 

purposes, potentially it can be applied to other applications as well. For example, the 

assay in its current form can be easily adapted to high-throughput RNAi screens. 

Performing siRNA screens on the basis of the established HTS assay would identify 

potential novel genes and pathways that are involved in the FAD-PS1 associated ER 

calcium dyshomeostasis. Such genes and pathways may even serve as future novel AD 

drug targets. Furthermore, the established assay has the potential of being employed in 

the early diagnostics of AD. A recent study shows that intracellular calcium homeostasis 

is impaired in the peripheral cells (e.g. lymphocytes) derived from patients with mild 

cognitive impairment and sporadic AD [46]. According to this finding, it is feasible to 

utilize the established automated calcium imaging assay for monitoring such calcium 

disturbances at early stages of the disease. However, due to issues associated with the 

lack of adhesion in lymphocytes and the difficulties in introducing YC3.6 calcium 

indicator into primary cells, further adjustments are necessary to optimize the assay for 

automated diagnostic purposes. 
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Although for the purpose of this project we particularly focused on the use of FAD-PS 

expressing HEK293 cells in the assay, nevertheless, the developed HTS system provides 

a broad potential to be applied to sporadic AD and many other disease conditions 

associated with impaired calcium homeostasis. Amongst them are many 

neurodegenerative and cardiac disorders and aging. 

 

As opposed to the bulk of current AD drug discovery approaches that largely rely on 

“target-based” assays, here we developed a “phenotypic” screening approach. Various 

mechanisms have been proposed to underlie the FAD-PS1-mediated enhancement of the 

ER calcium release, e.g. enhanced IP3 and ryanodine receptor (RyR) channel activities, 

altered SERCA function, decreased store-operated calcium entry (SOCE), and loss of PS 

holoprotein passive calcium leakage activity [255]. Irrespective as to whether those are 

the primary causative factors or only downstream secondary phenomena, the present 

phenotypic assay enables identification of all compounds that can reverse the exaggerated 

agonist-evoked ER calcium release phenotype in HEK293 cells expressing FAD-PS, 

independent of their mechanism of action. [332, 337]. 

 

Apart from the oversensitivity of IP3R itself [69, 235], several upstream components of 

IP3R-mediated calcium response are also affected in AD, e.g. G-protein coupled receptors 

(GPCR) generally [355], and muscarinic receptors particularly [356], G-proteins [357], 

and PLC [200]. The combination of those effects in cells expressing FAD-PS1-linked 

mutations result in an exaggerated IP3R-mediated calcium response compared to wild 

type PS1 expressing cells [223]. Since the hits from the screen may potentially target any 

of those upstream components, a phenotypic “multi-targeted” compound screening 

approach as such, provides the advantage of jointly addressing several AD aspects. 

Considering the recent failure of AD drug candidates identified from target-based 

approaches, such a multi-targeted phenotypic drug discovery assay may present a 

promising alternative for identification of novel drugs for AD [332]. 
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8.3 High-throughput screening of compound libraries, discovery and 

characterization of novel drugs for treatment of AD 

 

The developed assay was initially employed in a medium-size pilot screen with a library 

of ion channel ligands, from which Bepridil was identified as an active hit. The ion 

channel ligand library was chosen based on the interdependence of ER calcium with basal 

cytosolic calcium levels and calcium influx. Moreover, we postulated that calcium 

channel blockers might potentially modulate the activity of ER calcium channels or 

passive calcium leakage through presenilin holoprotein. We found that Bepridil could 

reverse the FAD-PS1-dependent potentiation of agonist-evoked ER calcium release. 

 

Interestingly, Bepridil was recently proposed as an AD therapeutic drug candidate based 

on the finding that it lowers Aβ peptide production. We confirmed those findings and 

demonstrated that Bepridil attenuates Aβ production by shifting the amyloidogenic β-

cleavage of APP towards non-amyloidogenic α-cleavage, while simultaneously 

possessing an iGSM mode of action. In addition, we revealed that Bepridil treatment also 

results in AMPK activation. The activation of AMPK is known to increase α-secretase 

activity that accompanies decreased β-secretase activity. Therefore, we propose that 

beneficial effects of Bepridil in lowering Aβ levels could be at least partially related to 

AMPK activation.  

 

After a successful pilot screen, we subsequently performed a large-scale screen with a 

diverse compound library comprising 20,000 low-molecular-weight molecules, which 

resulted in the identification of five lead structures, one of them being 

tetrahydrocarbazoles. Characterization of this lead structure using additional AD-relevant 

secondary assays indicated a multifactorial mode of action for tetrahydrocarbazoles. This 

class of compounds was able to simultaneously normalize the ER calcium homeostasis, 

enhance mitochondrial function and lower Aβ production through decreasing β-secretase 

cleavage. 
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Notably, for two other lead structures identified in the primary screen, Phenothiazines and 

Thiazolidines, existing evidence supports the beneficial role of those compound classes 

for AD treatment [360-362]. Such indications validate the relevance our phenotypic 

screening strategy as well as the lead structures identified from it [332]. 

 

AD is a multifactorial disease, which is believed to be caused by complex interactions 

among several contributing pathomechanisms [330]. Therefore, in view of the 

multifactoriality of tetrahydrocarbazoles, we propose that this novel class of compounds 

may present the basis for an effective therapeutic modality by collectively addressing 

three central AD-associated pathological mechanisms. 

 

Based on the hypothesis that impaired calcium homeostasis is an early event in the AD 

pathology, it was anticipated that the pharmacological normalization of ER calcium 

homeostasis may prevent the appearance of late-stage AD pathologies. Indeed, 

stabilization of calcium signaling interfered with the appearance of characteristic AD 

features. In the case of Bepridil, normalization of ER calcium homeostasis led to lowered 

Aβ production by enhancing AMPK activity in a calcium-dependent manner. Similarly, 

normalization of ER calcium signaling with tetrahydrocarbazoles resulted in improved 

mitochondrial function, decreased β-secretase activity and lowered Aβ production. 

However, since the molecular targets of the identified lead structures are not yet 

determined we cannot firmly conclude whether the detected changes in APP processing 

and mitochondrial function are indeed downstream effects of the modulation of 

intracellular calcium homeostasis. 

 

While strong evidence supports the “association” of Aβ pathology with AD, the field has 

begun to question the “causative” role of Aβ in the pathogenesis of AD [363]. We could 

show that pharmacological normalization of calcium homeostasis lowers Aβ production. 

Although the field has recently faced the failure of many Aβ-focused therapeutic 

modalities, our results indicate that targeting calcium homeostasis as an upstream event 

affects the downstream Aβ pathology in AD. Even if therapeutic removal of Aβ would 

not provide the desired clinical efficacy by itself, nevertheless, Aβ pathology is indicative 

of disease progression and a relevant biomarker for AD. Hence, the identified lead 

structures ameliorate the disease hallmarks (which may not necessarily be the causes of 

AD) by targeting and normalizing intracellular calcium homeostasis. 
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Impaired maintenance of physiological intracellular calcium homeostasis is critically 

involved in the pathophysiology of many diseases and aging [35, 346, 347]. Thus, 

compounds that stabilize the intracellular calcium homeostasis may be of potential benefit 

against aging and different disease conditions such as dementia, neurodegeneration, 

central nervous system and cardiovascular disorders [315, 364]. For example, FAD-PS 

mutations are associated with dilated cardiomyopathy and in many pathological 

conditions, including cardiac hypertrophy, and the IP3R activity is altered in a number of 

neurodegenerative disorders. 

 

Therefore, targeting disrupted calcium homeostasis and pharmacologically restoring the 

physiological calcium signaling, particularly in ER, opens novel avenues to more 

efficiently treat AD and several other human diseases and conditions which are associated 

with impaired intracellular calcium homeostasis. In this work, the beneficial effects of 

identified compounds were particularly investigated and confirmed in cellular models of 

FAD. 
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