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ABSTRACT 

Synthesis and assembly of plastidial proteins and protein complexes is mainly regulated by 

nucleus-encoded factors which act on various steps of gene expression. The present study was 

aimed to identifying such regulatory factors involved in the expression and assembly of 

photosystem II subunits by a forward genetic approach. 

16 nuclear insertion mutants from the green alga C. reinhardtii exhibiting a PSII deficient 

phenotype were used to identify potentially new candidate proteins. Following an initial 

phenotypical characterization, including the analysis of chloroplast transcripts, protein 

synthesis and accumulation, eight mutants were selected for the identification the underlying 

genetic cause of a mutant phenotype. By hybridizations of genomic DNA, as well as PCR or 

map based approaches for five out of these eight mutants the corresponding mutated gene 

could be identified. Only one mutant was verified to possess a mutation which is allelic to a 

previously described one, nac2, involved in psbD mRNA stabilization. However, four genes 

were identified encoding for proteins not known so far to be involved in PSII synthesis: a 

putative transcription factor (mutant 45a), a speract/scavenger receptor domain protein 

(mutant 42b), OHP2 (one helix protein 2, mutant 101a), a member of the light-harvesting-like 

(LIL) protein family, as well as CLR24 (mutant 101b), a member of the OPR 

(octotricopeptide repeat) repeat protein family. 

To elucidate the role of OHP2 and CLR24 in photosynthesis, a detailed molecular and 

phenotypical characterization of the mutants was performed. At this, a specific function of 

OHP2 in accumulation of the PSII reaction center protein D1 was observed. Pulse labeling 

and transcript hybridization experiments suggested a role of OHP2 either in the translation 

process of the psbA mRNA or in stabilization of the encoded D1 protein.  

The second protein, CLR24, belongs to the OPR family, whose members are thought to fulfill 

diverse functions during post-transcriptional regulation in chloroplasts via predicted RNA 

binding capacities. A biochemical analysis showed a function of CLR24 in the formation of 

PSII dimers and super complexes, but not PSII monomers. Furthermore, transcript 

hybridizations of the clr24 mutant revealed an altered processing of polycistronic atpA-psbI-

cemA-atpH messages, which leads to the loss of mature psbI transcripts, encoding a small 

PSII subunit described to be involved in PSII dimer stabilization. Therefore, a role of CLR24 

in stabilization/processing of the psbI transcript is indicated, whose absence causes a defect in 

PSII complex formation and reduced photosynthetic activity. 
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To investigate the function of the single OPR protein identified in Arabidopsis thaliana, 

AtRAP, T-DNA insertion lines were subjected to phenotypical and biochemical analyses. 

AtRAP mutants revealed growth retardation, a pale green phenotype, and reduced 

photosynthetic activity. Furthermore, the mutants exhibited normal levels of abundant 

chloroplast transcripts, whereas their translation and therefore accumulation of chloroplast 

encoded proteins was dramatically reduced in early growth stages. RNA hybridizations 

showed a severely affected maturation of 16S rRNA: while decreased levels of mature 16S 

rRNA were detected in AtRAP T-DNA lines, a larger precursor accumulated as compared to 

the wild-type. Therefore, a function of AtRAP in 16S rRNA processing is postulated.  
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ZUSAMMENFASSUNG 

Die Synthese und Assemblierung plastidärer Proteine und Proteinkomplexe wird vor allem 

durch kernkodierte Proteine reguliert, die auf verschiedenen Ebenen der Genexpression 

wirken. Ziel der vorliegenden Arbeit war eine Identifizierung solcher, in die Expression und 

Assemblierung von Untereinheiten des Photosystems II involvierter Faktoren, durch einen 

vorwärts gerichteten genetischen Ansatz. 

Zur Identifizierung neuer potentieller Kandidatenproteine wurden 16 Insertionsmutanten der 

Grünalge Chlamydomonas reinhardtii verwendet, die einen PSII-defizienten Phänotyp 

aufwiesen. Nach einer initialen phänotypischen Charakterisierung, die die Analyse plastidärer 

Transkripte, der Proteinsynthese- und akkumulation umfasste, wurden acht Mutanten zur 

Identifizierung der zugrunde liegenden genetischen Ursache des Mutantenphänotyps, 

ausgewählt. Mit Hilfe von Hybridisierungen genomischer DNA, sowie Karten- und PCR-

basierten Ansätzen war es möglich, für fünf der acht Mutanten das korrespondierende 

mutierte Gen zu identifizieren. Hierbei wurde lediglich für eine der Mutanten eine Mutation 

verifiziert, die allelisch zu einer bereits zuvor beschriebenen im Nac2-Lokus ist, der eine 

Rolle in der psbD mRNA Stabilisierung spielt. Dahingegen wurden vier Gene identifiziert, die 

für Proteine kodieren, von denen eine Involvierung in die PSII-Synthese bislang unbekannt 

war: ein putativer Transkriptionsfaktor (Mutante 45a), ein speract/scavenger 

Rezeptordomänen-Protein (Mutante 42b), OHP2 (one helix protein 2, Mutante 101a), ein 

Vertreter der LIL (light-harvesting-like) Proteinfamilie, sowie CLR24, einen Vertreter der 

OPR (octotricopeptide repeat) Proteinfamilie (mutant 101b). 

Zur Aufklärung der Rolle von OHP2 und CLR24 in der Photosynthese wurde eine detaillierte 

molekulare und phänotypische Charakterisierung der Mutanten vorgenommen. Hierbei konnte 

eine spezifische Funktion von OHP2 in der Akkumulation des PSII Reaktionszentrumproteins 

D1 beobachtet werden. Pulsmarkierungs- und Transkripthybridisierungsexperimente 

suggerieren hierbei entweder eine Rolle von OHP2 im Translationsprozess der psbA mRNA 

oder aber in der Stabilisierung des kodierten D1 Proteins. 

Das zweite Protein, CLR24, gehört zur OPR Familie, von deren Vertretern angenommen wird, 

dass sie mit Hilfe einer vorhergesagten RNA-Bindungsfähigkeit diverse Funktionen während 

der post-transkriptionellen Regulation in den Chloroplasten erfüllen. Eine biochemische 

Analyse zeigte hierbei, dass CLR24 in die Formation von PSII-Dimeren und –

Superkomplexen, nicht aber die von PSII-Monomeren involviert ist. Des Weiteren zeigten 

Transkripthybridisierungen der clr24 Mutante eine veränderte Prozesszierung des 
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polycistronischen atpA-psbI-cemA-atpH Transkriptes, die zum Verlust reifer psbI mRNA führt. 

Die psbI mRNA kodiert eine kleine Untereinheit des PSII, die eine beschriebene Funktion in 

der PSII-Dimerformation aufweist. Es wird daher eine Rolle von CLR24 in der 

Stabilisierung/Prozessierung des psbI Transkriptes angenommen, dessen Abwesenheit einen 

Defekt der PSII Komplexformation und reduzierte photosynthetische Aktivität mit sich bringt. 

Um die Funktion des einzigen in Arabidopsis thaliana identifizierten OPR Proteins, AtRAP, 

zu untersuchen, wurden entsprechende T-DNA Insertionslinien einer phänotypischen und 

biochemischen Analyse unterzogen. Die AtRAP-Mutanten zeigten hierbei ein verzögertes 

Wachstum, einen hellgrünen Phänotyp, sowie reduzierte photosynthetische Aktivität. Des 

Weiteren wiesen die Mutanten normale Mengen abundanter plastidärer Transkripte auf, 

wohingegen die Translation und die damit verbundene Akkumulation Chloroplasten-kodierter 

Proteine in frühen Wachstumsstadien dramatisch reduziert waren. RNA-Hybridisierungen 

zeigten einen deutlichen Effekt auf die Reifung der 16S rRNA: während verringerte Mengen 

reifer 16S rRNA detektiert wurden, akkumulierte im Vergleich zum Wildtyp ein längerer 

Vorläufer in den AtRAP T-DNA Linien. Es wird daher eine Funktion des AtRAP Proteins in 

der 16S rRNA Prozessierung postuliert. 
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1 INTRODUCTION  

Photosynthesis gives plants, algae, and cyanobacteria the ability to use sunlight to extract 

electrons from water, at this providing energy for growth. In plants and algae, photosynthesis 

is performed in chloroplasts. 

1.1 Endosymbiosis and chloroplast gene transfer 

It is widely accepted that chloroplasts, similar to mitochondria, descended from a free-living 

bacterial ancestor, which invaded or was engulfed by a mitochondrion-possessing eukaryote 

between 1.5 and 1.2 billion years ago. Due to these endosymbiotic events, ongoing gene 

transfer events from organelle to nucleus are observed in eukaryotic photosynthetic organisms, 

leading to severely reduced organellar genomes (reviewed in Kutschera and Niklas, 2005). 

Nowadays only a few proteins (~100) are encoded in the chloroplast genome, among which 

are proteins for transcription (RNA polymerase subunits), translation (ribosomal proteins, 

rRNAs and tRNAs), as well as photosynthesis (Sato et al., 1999). Approximately 4500 

proteins of the ancestral endosymbiont are currently encoded in the nucleus (Martin et al., 

2002; Timmis et al., 2004). For instance, the chloroplast genome of A. thaliana only contains 

85 protein-encoding genes and 44 genes for structural RNAs (Sato et al., 1999). The rest of 

the chloroplastic proteins are encoded by the nuclear genome (reviewed in Jarvis and Soll, 

2001). That means, most proteins (93% ~99%) found in organelles are encoded in the nucleus, 

synthesized in the cytoplasm and then imported into the organelles via N-terminal transit 

peptides. 

The interdependence of genetic systems of chloroplasts, mitochondria and the nucleus 

requires an inter-compartmental signaling to allow for a coordinated interplay of the three 

compartments (Herrmann and Neupert, 2003). 

1.2 Photosynthesis  

Photosynthetic organisms, such as plants, green algae (eukaryotes) and cyanobacteria 

(prokaryotes) are defined as photoautotrophs due to their usage of sunlight to synthesize 

organic sugars from inorganic substances.  

During photosynthesis, light energy is transformed into chemical energy in form of NADPH 

and ATP (light-dependent reactions), which are later employed by the light-independent 

Calvin-Benson cycle via the RuBisCo (Ribulose-1, 5-bisphosphate carboxylase oxygenase) 
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complex, to incorporate atmospheric carbon into organic compounds (Figure 1.1). The 

photosynthesis light reactions of eukaryotes take place in the chloroplast thylakoid 

membranes, and plasma membranes of prokaryotes. The cooperative actions of 

photosynthesis rely on four large protein complexes, i. e. the photosystems I and II (PSI and 

PSII), the cytochrome b6f complex (Cyt b6f) and an ATP synthase, and peripheral light-

harvesting complexes (LHCs) which are together participating in the linear electron transport. 

Firstly, in LHCs, the photon-excited chlorophyll pigments (Chl*), either quench to the ground 

state via emitting fluorescence, or drive photochemical reactions by transferring energy to the 

PSII reaction center. The transferred energy is subsequently used to split H2O into oxygen, 

protons, and electrons by the Oxygen Evolving Complex (OEC) attached to PSII. Later on, 

protons accumulating in the lumen generate a proton gradient across the thylakoid membrane, 

which can be used by the ATP synthase to produce ATP. Electrons transferred from PSII to 

PSI via the Cyt b6f complex finally reduce NADP
+
 to NADPH.  

Each of the above four complexes contains multiple subunits encoded by both nucleus and 

chloroplast (Figure 1.1). For instance in higher plants, PSII comprises 27~28 subunits, Cyt b6f 

8 subunits, PSI 21 subunits, and the ATP synthase 9 subunits (Dekker and Boekema, 2005; 

Lennartz et al., 2001; McCarty et al., 2000; Zolla et al., 2007).  

 

 

 

 
 

Figure 1.1 Major thylakoid proteins and protein complexes of the Arabidopsis thaliana chloroplast (adapted 

from Allen et al., 2011). Photosystem II (PSII), cytochrome b6f (Cyt b6f), photosystem I (PSI) and ATP synthase 

are shown. Polypeptide subunits encoded in the chloroplast are colored green; polypeptide subunits encoded in 

the nucleus are colored yellow. For further explanation, see text. 
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1.2.1 Photosystem II 

As PSII confers a charge separation which results in water splitting and the production of O2, 

it is considered as the key protein complex of photosynthesis light reactions. To elucidate the 

exact working mode of this protein-pigment super-complex, it is studied comprehensively in 

prokaryotes and eukaryotes. At this, researchers currently mainly focus on high-resolution 

structures of intact PSII complexes and its subunits, the interaction of these complexes into 

higher order organizations, as well as the identification of accessory protein factors involved 

in these assembly processes (reviewed in Kouril et al., 2012; Nixon et al., 2010). 

1.2.1.1 The composition of photosystem II 

Crystal structure data of PSII from various photosynthetic bacteria demonstrated that PSII 

complexes arrange to super-complexes with almost 1100 kDa (Dekker and Boekema, 2005). 

These super-complexes are composed of PSII dimers and light harvesting complexes (LHCs) 

possessing most of the sunlight-absorbing pigments. The monomeric PSII consists of many 

known subunits, the number of which is continuously increasing due to the usage of more 

sensitive electron microscopy (Allen et al., 2011). So far, almost 40 protein subunits have 

been revealed, among which the attachment sites of abundant subunits were clarified in 

cyanobacteria these years (Figure 1.2). D1 and D2 are located in the middle of the complex 

forming the reaction center (RC). Each of these proteins contains five transmembrane α-

helices, which bind pigment-co-factors, like chlorophyll, pheophytin, and plastoquinone 

(reviewed in Schlodder et al., 2008; Sugiura et al., 2008). 

CP43 and CP47, composing the core antenna, are located on either side of the RC, each 

possessing six transmembrane α-helices, which bind chlorophyll a and β-carotene. 

Additionally, Ferreira (2004) reported that CP43, together with D1, participates in the ligation 

of the CaMn4 cluster, which is essential for water-splitting. 

Moreover, a number of low molecular weight (LMW) proteins are surrounding these subunits, 

on the periphery of the complex, which are variable from cyanobacteria to chloroplasts 

depending on the species (reviewed in Enami et al., 2008 section 1.3.3.2) .As described above, 

the pigment binding LHCs also associate with PSII dimers as organism-dependent antenna 

systems: for instance, water-soluble, extrinsic phycobilisomes in cyanobacteria and red algae, 

and membrane-embedded light-harvesting chlorophyll-a/b-binding (CAB) subunits in 

chloroplasts (reviewed in Green, 2005). 
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Figure 1.2 Subunit organization of a PSII dimer from cyanobacteria, viewed from the cytoplasmic side of 

the membrane (adapted from Nixon et al., 2010). Two PSII monomers are shown in the picture, separated by a 

black dashed line. The subunits are given in different colors in the monomer on the left side, such as D1 (yellow), 

D2 (orange), CP43 (green), CP47 (red), cytochrome b-559 (purple) and the remaining 11 small subunits (grey). 

The cylinders represent the α-helical elements of each subunit. The elliptical black dashed circle represents the 

D1–D2–Cyt b-559 sub-complex. The monomer on the right side is indicated with the same color coding system 

and represents the co-factors of PSII: chlorophylls (green), carotenoids (orange), pheophytins (yellow), 

plastoquinones (red), and haem (blue), shown in stick form. 

 

1.2.1.2 The assembly of photosystem II 

Even though the biogenesis of PSII complexes is also studied in green algae and higher plants, 

most detailed information originate from photosynthetic bacteria. A recent review from Nixon 

(2010) summarizes the PSII assembly process in Synechocystis sp. PCC 6803, which is shown 

in Figure 1.3. The assembly starts firstly from insertion of the anchor protein D2, which acts 

as a scaffold for subsequent steps, followed by multiple assembly steps which involve the 

participation of distinct protein factors, only some of which are found in the final functional 

PSII complexes (compare sections 1.2.1.3). Described in brief, the formation of the D2-Cytb-

559 sub-complex initiates the assembly of PSII monomers, and then a PSII RC-like complex 

is formed after the insertion of D1 and other small proteins into the D2-Cytb559 sub-complex. 

Afterwards the RC47 complex is formed by insertion of CP47 into the PSII RC-like complex, 

followed by attachment of CP43 to form the monomeric PSII core complex (RCC1). This 

PSII core complex is the starting formation for light-driven assembly of the oxygen-evolving 

complex (OEC), which completes the formation of PSII monomers. 
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Figure 1.3 Assembly of the PSII complex in Synechocystis sp. PCC 6803 (adapted from Nixon et al., 2010). 

The upper case letters represent the corresponding LMW proteins: PsbE, PsbF, PsbH, PsbI and PsbK, as well as 

the extrinsic subunits PsbO, PsbU and PsbV. The small CAB-like proteins are indicated by small chlorophyll 

a/b-binding-like proteins (SCPs). 

 

 

As mentioned above, PSII exists mainly in the dimeric form, which is named RCC2 (Dekker 

and Boekema, 2005, Figure 1.3). The PSII dimeric structure has been clarified from two 

thermophilic cyanobacteria, Thermosynechococcus elongatus and Thermosynechococcus 

vulcanus, at resolutions of 3.8-2.9 Å. Both the structure data and biochemical results approve 

two PSII monomers to be connected by several low molecular weight subunits located on 

their surface (Kawakami et al., 2011b). Various protein factors are involved in the formation 

and stabilization of PSII dimers, which will be introduced in the following section. 

With recent progresses by single particle electron microscopy, atomic force microscopy, and 

tomographic reconstruction of intact and fragmented chloroplasts, the supramolecular 

organization of PSII was studied. A variable amount of peripheral antenna proteins associate 

with dimeric PSII core complexes to form PSII-LHCII supercomplexes. For example, a study 

on spinach demonstrated that C2 (dimeric PSII core center) associate firstly with two LHCII 

S-trimers (strongly binding trimer) together with two copies of CP29 (Lhcb4), CP26 (Lhcb5) 

extending to a C2S2 supercomplex, and then two M-trimers (medium strength binding) bind to 

C2S2 together with two copies of CP24 (Lhcb6) to achieve a C2S2M2 supercomplex. 

Furthermore, there are also LHCII L-trimers loosely bound to the supercomplex, which is 

only present in certain species (reviewed in Dekker and Boekema, 2005). 
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1.2.1.3 Proteins involved in the assembly and sustenance of PSII 

Nowadays, besides structural studies, lots of efforts have also been put on the identification 

and analysis of protein factors involved in PSII assembly and stabilization. These factors 

could either constructively or transiently participate in PSII formation. Transiently involved 

auxiliary proteins, which are mostly encoded by the nucleus, are not found in functional PSII 

complexes. Among all the assembly factors which have been characterized till now, several 

are highly conserved in cyanobacteria and chloroplasts. For example, Hcf136 (also termed 

Ycf48), of which homologs are found in both Arabidopsis thaliana and Synechocystis sp. 

PCC 6803, functions in PSII assembly and stabilization (Komenda et al., 2008; Meurer et al., 

1998). Its binding site on the PSII reaction center and its 3D structure has also been 

determined recently (Komenda et al., 2008). There are still many conserved nucleus-encoded 

proteins with potential function on PSII complex formation, whose exact role needs to be 

clarified in the future. One protein family thought to be involved in PSII assembly is 

represented by light-harvesting-like (LIL) proteins which will be introduced in section 

1.2.1.3.1. 

In addition, several PSII low molecular weight (LMW) subunits, encoded by the nucleus or 

chloroplast, were found to be involved in PSII assembly or stabilization. For example, the 

LMW proteins Psb27, Psb28 and Psb29 were identified as substoichiometric components 

associating with PSII RC47 sub-complexes to form the final active PSII complexes (Kashino 

et al., 2002). More LMW proteins required for assembly or stabilization of PSII complexes, 

especially PSII dimers, will be introduced in section 1.2.1.3.2.  

1.2.1.3.1 LIL (light-harvesting-like) proteins - auxiliary factors involved in PSII assembly 

Although, compared to structural PSII subunits, the detection of auxiliary proteins which are 

normally low abundant or only transiently expressed, is difficult, several assembly factors 

have been identified, which are proposed to play a role in pigment binding and assembly. 

Among those factors are members of several famous protein families, like the ALB (albino) 

proteins, which were thought to be involved in LHCII assembly in both A. thaliana and C. 

reinhardtii, as well as the LPA (low PSII accumulation) family, which was reported to 

function during the assembly of the chlorophyll binding protein CP43 (Cai et al., 2010; 

Göhrea et al., 2006). Since the assembly of pigments seems to play a role for the entire PSII 

assembly process, the members of the LIL (light-harvesting-like protein) family attracted 

more attention nowadays.  
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LIL proteins are stress induced short-lived proteins with low molecular mass, located in 

thylakoid membranes of chloroplasts as well as plasma membranes of cyanobacteria. Protein 

sequence analyses indicate that LIL proteins share similar sequences with LHCII of higher 

plants with conserved chlorophyll binding residues. The LIL proteins consist of three groups: 

(I) three-helix ELIPs (one super protein family called early light-induced proteins); (II) two-

helix SEPs (stress-enhanced proteins) and (III) one-helix HLIPs (high-light-induced proteins), 

including OHP (one-helix proteins) and SCPs (small chlorophyll a/b-binding-like proteins) in 

prokaryotic organisms (Adamska et al., 2001). Although being able to bind pigments, LIL 

proteins do not have functions in light energy harvesting and their precise roles are only 

beginning to be elucidated (Mulo et al., 2008). In A. thaliana, the amount of ELIP transcripts 

and proteins increases depending on the light intensity (Heddad et al., 2006). It was also 

described that the accumulation of AtELIP1 and carotenoid biosynthesis related (CBP) 

proteins in green algae starts right after the increase of photodamaged PSII centers (Hutin et 

al., 2003; Jin et al., 2003; Jin et al., 2001). Hence, the LIL proteins were speculated to play a 

protective function in the thylakoid membranes by binding free chlorophylls which are 

released during photoinhibition. Alternatively, they could be involved in the assembly of 

pigment-protein complexes (Hutin et al., 2003). 

As described above, LIL proteins are conserved in many photosynthetic organisms, for 

instance, light induced one-helix proteins have been found in cyanobacteria, green algae and 

higher plants, but their exact functions, especially on PSII assembly, still require further 

characterization.  

1.2.1.3.2  Low molecular weight proteins 

From the high resolution data of the 3D PSII structure, the presence of many low molecular 

weight (LMW) proteins is observed, which are encoded either by the nucleus or chloroplast 

genome. More than half of the LMW proteins are less than 15 kDa, and most of them consist 

of a single transmembrane α-helix (reviewed in Shi et al., 2012). As mentioned above, some 

of these LMWs function as assembly or stabilization factors for PSII complexes, which were 

firstly speculated by their structure model, and then confirmed by biochemical analyses.  

Besides LMW proteins referred above, like Psb27, Psb28 and Psb30, there are more small 

PSII subunits approved to be PSII assembly factors. For instance, in most oxygenic 

phototropic organisms, the psbEFLJ operon encodes four small subunits PsbE, PsbF, PsbL 

and PsbJ, among which, PsbE and PsbF are involved in the early steps of PSII assembly. 

Consequently PsbE and PsbF deletion mutants from C. reinhardtii and tobacco are not able to 
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perform photoautotrophic growth (Morais et al., 1998; Pakrasi et al., 1991; Suorsa et al., 2004; 

Swiatek et al., 2003). Furthermore, PsbL deletion mutants from Thermosynechococcus 

elongatus and tobacco do not assemble detectable PSII dimers, whereas PsbJ is involved in 

the assembly of the water splitting complex (Ohad et al., 2004; Suorsa et al., 2004; Swiatek et 

al., 2003). Apparently, there are various functions performed by LMW proteins in PSII 

complex assembly or stabilization, as well as photoprotection, electron transfer and so on, 

which could be deduced from mutant phenotypes. A summary of respective mutant 

phenotypes in cyanobacteria and eukaryotes and proposed functions of corresponding LMW 

proteins are given in Table 1.1, which is mainly focusing on PSII dimer formation or 

stabilization. 

There are still increasing amounts of LMW proteins being found in both prokaryotes and 

eukaryotes. But similar to LIL proteins, their precise subcellular localizations and biological 

functions leave researchers a large space to explore.  

 

 

Table 1.1 LMWs involved in PSII dimer formation or stabilization and corresponding mutant phenotypes. 

Protein 
Prokaryotic mutants 

(cyanobacteria) 

Eukaryotic mutants (Arabidopsis/ 

Chlamydomonas/ Tobacco) 
Function References 

PsbI 

photoautotrophic growth;  

less oxygen evolution; 

light sensitivity;  no PSII 

dimers  

photoautotrophic growth under low 

light; less oxygen evolution;  

dramatically reduced PSII dimers;  

light sensitivity 

PSII dimerization/stabilization; 

maintenance of PSII structure 

and function under high light 

(Ikeuchi et al., 1991; Künstner et 

al., 1995; Schwenkert et al., 

2006) 

PsbK 
photoautotrophic growth; 

low electron transport 

no photoautotrophic growth; only 

10% of  PSII left;  no PSII activity 

plastoquinone binding;  

PSII stabilization 

(Ikeuchi et al., 1991; Iwai et al., 

2010; Takahashi et al., 1994) 

PsbL 

no photoautotrophic 

growth;  no oxygen 

evolution 

no photoautotrophic growth;  

no or reduced photosynthetic 

activity; no PSII dimers 

donor side electron transfer;  

PSII stabilization 

(Anbudurai and Pakrasi, 1993; 

Luo and Eaton-Rye, 2008; 

Swiatek et al., 2003) 

PsbM 

light sensitivity; rapid 

photoinactivation; less 

PSII dimers 

light sensitivity; reduced 

phosphorylation of D1 and D2  

PSII dimerization (Kawakami et al., 2011a; Umate 

et al., 2007)  

PsbH 

slower photoautotrophic 

growth; low oxygen 

evolution; no PSII dimers 

no PSII dimers,  

no PSII activity 

PS II dimerization (Iwai et al., 2006; O'Connor et 

al., 1998) 

PsbTc 

photoautotrophic growth;  

normal oxygen evolution;  

less PSII dimers 

photoautotrophic growth;  

light sensitivity 

recovery of photodamaged 

PSII;  PSII dimerization 

/stabilization 

(Bentley et al., 2008; Iwai et al., 

2004; Ohnishi et al., 2007; 

Ohnishi and Takahashi, 2001, 

2008) 

PsbW 

no homologue photoautotrophic growth;   

no PSII dimers; light sensitivity ; 

slower recovery from 

photoinhibition 

PSII dimerization; 

photoprotection 

(Boekema et al., 2000; García-

Cerdán et al., 2011; Shi et al., 

2000; Thidholm et al., 2002) 

Psb30 

photoautotrophic growth;  

reduced oxygen evolution 

under high light; less PSII 

dimers  

no mutant available indirect PSII dimer stabilization (Inoue-Kashino et al., 2008; 

Sugiura et al., 2010)  

Psb32 
severe photoinhibition;  

slower recovery rates 

light sensitivity; more PSII 

monomers and less PSII dimers 

functions in PSII repair cycle; 

PSII dimerization 

(Mulo et al., 2008; Sirpiö et al., 

2007; Wegener et al., 2011) 
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1.3 Chloroplast gene expression  

In higher plants, two distinct RNA polymerases (RNAP), the plastid-encoded plastid RNA 

polymerase (PEP) and the nuclear-encoded plastid RNA polymerase (NEP) are involved in 

transcription of chloroplast genes (reviewed in Borner et al., 2011). The PEP polymerase is 

verified to have a cyanobacterial origin (Navarro et al., 2000; Pfannschmidt and Link, 1997; 

Severinov et al., 1996). The recognition of promoters by the PEP polymerase is mediated by 

nucleus-encoded differentially expressed sigma-like transcription factors (SLF) (Isono et al., 

1997; Little and Hallick, 1988; Suzuki et al., 2004). The activated PEP complex contains 

several accessory proteins encoded by nuclear genes, which shows that the nuclear genome 

has an obvious impact on the regulation of chloroplast genome transcription (Pfalz et al., 2006; 

Pfannschmidt et al., 2000; Suzuki et al., 2004). The other RNA polymerase, NEP, is a single 

polypeptide chain encoded in the nucleus, similar to the mitochondrial RNAP of yeast, and 

RNAPs from bacteriophages T7, T3, and SP6 (reviewed in Cahoon and Stern, 2001; Liere et 

al., 2011). It is thought that both RNA polymerases act cooperatively in plastid transcription. 

NEP is primarily responsible for transcribing genes encoding proteins of the plastid genetic 

machinery and PEP genes, whereas PEP is mainly responsible for transcribing 

photosynthesis-related genes.  

Interestingly, the NEP polymerase is not present in algae, like C. reinhardtii, Ostreococcus 

and Thalassiosira (Armbrust et al., 2004; Derelle et al., 2006). All attempts to obtain algae 

mutants with disruptions of PEP subunit encoding genes failed, which demonstrated that all 

chloroplast genes of C. reinhardtii are likely transcribed by PEP (Fischer et al., 1996; Smith, 

2002). 

The products of both polymerases are typically polycistronic transcripts. Most primary 

transcripts need extensive splicing, endonucleolytic cleavage, 5’ and 3’- end maturation, 

and/or editing (Monde et al., 2000). The plastid genomes in plants and algae contain 

numerous introns, defined as group I or group II. The C. reinhardtii chloroplast has 5 group I 

and 2 group II introns, whereas plants have ~ 17 groups II and only 1 group I intron (reviewed 

in Herrin and Nickelsen, 2004). The processing of both intron classes is under various 

regulations, for instance, the psbA mRNA splicing in C. reinhardtii is dependent on light 

variations, and moreover, most chloroplast transcripts are predominantly unspliced in leaf 

meristems and roots. (Barkan, 1989; Deshpande et al., 1997). 

The translation of chloroplast genes is performed by a prokaryote-like translation apparatus, 

consisting of a 70S ribosome that contains 23S, 16S and 5S rRNAs, which is different from 

the cytosolic 80S ribosome (Manuell et al., 2004; Trempe and Glitz, 1981). The general 
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mechanism of translation is closely related to the involvement of regulatory factors. These 

regulators play important roles during translation initiation, elongation, and stabilization and 

will be introduced in the following chapter. 

1.3.1  Regulation of chloroplast gene expression 

Chloroplasts retained their own gene expression machinery, but given that chloroplast 

proteins are encoded in two separate genomes, a coordinated expression is required to 

produce correct amounts of organellar proteins and support their functions. Due to the limited 

number of chloroplast encoded proteins, this coordination mostly relies on nucleus-encoded 

regulators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Regulation of chloroplast gene expression by nucleus-encoded regulators (adapted from Bohne et 

al., 2009). For further explanation, see text. 

 

 

Increasing numbers of nuclear mutants with disrupted chloroplast gene expression have led to 

the identification of many genes whose products either directly or indirectly participate in 

protein expression processes, i.e. transcription, post-transcriptional processes, and translation 

(Figure 1.4). Regulatory proteins acting at different levels of chloroplast gene expression as 

well as internal and external signals influencing these processes are described in more detail 

in the following sections.  
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1.3.1.1 Transcriptional regulation 

Beside the above mentioned sigma-like factors, only a few nuclear gene products have been 

revealed to be involved in plastid transcription. In mature plant chloroplasts, the transcription 

rates of genes encoding the reaction center proteins of PSI and PSII are controlled by the 

redox state of the plastoquinone pool (Pfannschmidt et al., 1999). Two kinases, STN7 (on 

thylakoid membranes) and CSK (in the stroma) in A. thaliana chloroplasts are thought to 

influence chloroplast transcription in a redox-dependent manner (Bonardi et al., 2005; 

Pesaresi et al., 2009; Puthiyaveetil et al., 2008). Moreover, the accumulation of chloroplast 

transcripts seems to be dependent on light quality and quantity as well as the developmental 

stage of the plastid (Emanuel et al., 2004; Link et al., 1996; Mayfield et al., 1995; Mullet, 

1993; Rapp et al., 1992; Zoschke et al., 2007). For instance, in barley, psbD-psbC transcript 

accumulation is induced by blue light, but neither by red nor by far-red light (Gamble and 

Mullet, 1989).  

However, transcriptional regulation seems to play only a secondary role and most regulation 

of chloroplast gene expression is observed at subsequent levels. 

1.3.1.2 Posttranscriptional regulation 

Most regulations of chloroplast gene expression are post-transcriptional. These processes are 

controlled by nucleus-encoded proteins, which are also named as post-transcriptional 

regulators of organelle gene expression (ROGEs). ROGEs function in two typical classes of 

regulation: one is required for the maturation (mRNA processing, splicing and editing) and/or 

stabilization of organellar transcripts, the other one is involved in translation (translation 

initiation, elongation and stabilization) of organellar transcripts (Raynaud et al., 2007).  

1.3.1.2.1 Transcript maturation and stabilization 

It was demonstrated that translation of individual mRNAs usually needs processed, shorter 

transcripts. The processing of chloroplast mRNA is a two-step mechanism: endonucleolytic 

cleavage, and exonucleolytic processing (Monde et al., 2000). This process in land plants and 

C. reinhardtii typically works at the 5’ ends of mRNA, which was first reported for the psbA 

mRNA processing in C. reinhardtii and then psbB and psbD (Bruick and Mayfield, 1998; 

Nickelsen et al., 1999; Vaistij et al., 2000). The same phenomenon was also observed in land 

plants. For instance, the maize chloroplast RNA processing 1 (crp1) gene, encoding a 

pentatricopeptide repeat protein (PPR), is required for cleaving petD coding sequences from a 
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polycistronic precursor. Furthermore, the A. thaliana HCF107 protein is necessary for 

obtaining psbH transcripts with fully processed 5’ termini (Barkan and Goldschmidt-Clermont, 

2000; Barkan et al., 1994). It was reported that the unsuccessful cleavage of mRNAs leads to 

loss of corresponding proteins, which suggest that 5’ processing of chloroplast mRNAs assists 

to increase the translational efficiency. The detailed processing mechanism is still under 

investigation, including 3’ termini processing and protection of RNA from the action of 

RNases. It is widely accepted that processing events are regulated by the coordination of 

several factors, among which nucleus-encoded regulators play essential roles. A summary of 

nuclear encoded stabilization and maturation factors identified in C. reinhardtii is given in 

Table 1.2. 

The next step for mRNA maturation is splicing of transcripts, either cis-splicing or trans-

splicing, which is also under the control of nuclear regulators (reviewed in Herrin and 

Nickelsen, 2004). For instance, at least 14 nuclear gene products required for psaA trans-

splicing have been found in C. reinhardtii (Goldschmidt-Clermont et al., 1990). Several of 

them were reported to be involved in the splicing of both types of introns. However, most 

regulators function specifically in the splicing of either intron I or II. Interestingly, most of the 

regulators have their specific targets, while only a few examples seem to fulfill a more general 

functions (Balczun et al., 2006; Glanz et al., 2006; Kroeger et al., 2009; Merendino et al., 

2006; Ostersetzer et al., 2005; Williams-Carrier et al., 2008). In C. reinhardtii, research about 

group I intron splicing is very limited, on the contrary, genetic analyses of group II intron 

splicing in chloroplasts have been more fruitful (Perron et al., 2004).  

In land plants, the editing of chloroplast RNA nucleotides from cytidine to uracil residues is 

another important maturation step, which also requires regulators encoded by nucleus, 

whereas no editing of RNAs is known to occur in green algae like C. reinhardtii. Most editing 

sites are located in reading frames except a few in non-coding regions (reviewed in Stern et al., 

2010). Trans-acting factors bind to transcripts via cis-element adjacent to the editing site to 

facilitate access of an unidentified RNA-editing enzyme. Several members of the 

pentatricopeptide repeat protein family have been characterized to be essential for RNA 

editing in A. thaliana (reviewed in Small and Peeters, 2000). 

The translation rate of mature chloroplast mRNAs also highly relies on RNA stability, which 

could be influenced by decay pathway. Three processes contribute  to the degradation of 

transcripts by various RNases: endonucleolytic cleavage, polyadenylation, and exonucleolytic 

decay, among which, the first one is the rate-limiting step (reviewed in Stern et al., 2010). 

Various regulator proteins are required to protect mRNAs from endonucleolytic and 

exonucleolytic degradation, and most of them are repeat proteins, such as TPR and PPR, 
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which often protect 5’ termini of mRNAs from exonuclease degradation (Boudreau et al., 

2000; Loiselay et al., 2008). More details will be introduced in the later chapters. 

1.3.1.2.2 Translational regulation 

Numerous nucleus-encoded regulators have been found to function during chloroplast protein 

synthesis (Figure 1.5), which include certain plastid ribosomal proteins, initiation factors, 

elongation factors and tRNA synthetases (reviewed in Harris et al., 1994).  

 

 

 

 

Figure 1.5 Cloned nucleus-encoded factors involved in the translation of thylakoid proteins.  

Regulators in dark grey were characterized in C. reinhardtii, the ones in light gray in higher plants (Figure 

kindly provided by A. Bohne). 

 

 

 
It is worth noticing that, unlike prokaryotic RNA translation, the Shine-Dalgarno (SD) 

sequence is not always necessary for eukaryotic ribosome binding. It was observed that a lack 

of SD sequences can be compensated by sequence specific factors guiding the ribosomes to 

their sites of action (Hirose and Sugiura, 1996). In vitro and in vivo approaches were applied 

on wild-type and 5’ UTR mutants to reveal translational elements in both tobacco and C. 

reinhardtii (Manuell et al., 2004; Yukawa et al., 2007). Till now, the 5’ UTR region of 

chloroplast mRNA is verified to be the translation initiation site, by means of biochemical 

approaches. 
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Several nuclear gene products were identified, which influence chloroplast translation. For 

instance, CRP1 from maize, and HCF107 and HCF173 from A. thaliana are required for 

petA/petD, psbB and psbA mRNA translation, respectively (Sane et al., 2005; Schmitz-

Linneweber et al., 2005; Schult et al., 2007). In C. reinhardtii, the most predominant even 

though controversially discussed example is the regulation of D1 protein synthesis, which is 

dependent on a multi-subunit complex (Harris, 2009; Manuell et al., 2004; Uniacke and 

Zerges, 2009). By affinity chromatography using the psbA 5’ UTR as ligand, four subunits 

were isolated of this complex, which includes a 63 kDa protein disulfide isomerase (cPDI), a 

47/70 kDa poly (A)-binding protein (cPAB1), a 55 kDa protein (RB55), and RB38. 

Furthermore, TBA1, an oxidoreductase was described to control the D1 synthesis via redox 

regulation in C. reinhardtii. In addition, an independent RNA binding protein of 63 kDa 

(RBP63) was identified to bind to an adenosine-rich region upstream of the psbA start codon 

(Ossenbühl. et al., 2002). On the other hand, D1 synthesis seems not to be controlled by its 5’ 

UTR during recovery from photoinhibition (Minai et al., 2006). Another example for 

translational regulation is the D2 synthesis, where the tetratricopeptide repeat (TPR) protein 

Nac2 and the RNA binding protein RBP40 coordinately function in the alteration of psbD 

mRNA secondary structure and translation initiation.  

It is necessary to notice that in C. reinhardtii, a further level of translational regulation named 

CES (control by epistasy of synthesis) principle was described these years, which controls the 

translation and assembly of photosynthesis complexes. Under this CES principle, complex 

assembly starts firstly from insertion of an anchor protein (also called dominant subunit), 

which acts as a scaffold for following assembly steps. For instance, D2 is the anchor protein 

for PSII, PetB for Cyt b6f, and PsaB for PSI. In the absence of these proteins, translation of 

the next protein to be inserted in the complex is inhibited (Choquet and Vallon, 2000). In 

terms of that, within the same complex, translation of specific chloroplast mRNAs might be 

influenced by translation deficiency of another mRNA via feedback mechanisms.  

From all the information above, it is readily identifiable that C. reinhardtii as one the most 

predominant model organisms, was highly employed for the characterization of nucleus-

encoded factors which are involved in chloroplast gene expression. Therefore, a 

comprehensive summary of cloned factors involved in regulation of chloroplast gene 

expression in C. reinhardtii is given below in Table 1.2. 

 

 

 

 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=readily&trestr=0x8004
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Table 1.2 Cloned nucleus-encoded regulatory factors involved in chloroplast gene expression  

                 in C. reinhardtii 

Factor Homology Target Reference 

Transcription factors: 

RpoD (Sig1) Sigma factor RNA-polymerase (Bohne et al., 2006; Carter et al., 2004 ) 

RNA stability factors: 

Mbb1 TPR-protein psbB (Vaistij et al., 2000) 

Nac2 TPR-protein psbD (Boudreau et al., 2000) 

Mca1 PPR-protein petA (Loiselay et al., 2008) 

Mcd1 OPR-protein petD (Murakami et al., 2005) 

MRL1 PPR-protein rbcL (Johnson et al., 2010) 

RNA processing factors: 

Raa1 OPR-protein psaA (Merendino et al., 2006; Perron et al., 2004)  

Raa2 (Maa1) Pseudouridin-Synthetase psaA (Perron et al., 1999) 

Raa3 Pyridoxamine-5-phosphate oxidase psaA (Rivier et al., 2001) 

Raa4 - psaA (Glanz et al., 2012) 

Rat1 Poly (ADP-ribose)-polymerase tscA 3’ (Balczun et al., 2005) 

Rat2 - tscA 3’ (Balczun et al., 2005) 

Translation factors: 

Tba1 Oxidoreductase psbA (Somanchi et al., 2005) 

cPAB1 Poly (A)-binding protein psbA (Yohn et al., 1998) 

cPDI Protein disulfide isomerase psbA (Kim and Mayfield, 1997) 

RBP40 (RB38) - psbD (Schwarz et al., 2007) 

Tca1 - petA (Raynaud et al., 2007) 

DLA2 E2 subunit pyruvate dehydrogenase psbA Bohne and Nickelsen, unpublished  

TBC2 OPR protein psbC (Auchincloss et al., 2002) 

NAC2 TPR protein psbD (Boudreau et al., 2000) 

AC115 - psbD (Rattanachaikunsopon et al., 1999) 

TAB2 ATAB2 psaB (Dauvillee et al., 2003) 

TDA1 OPR protein atpA (Eberhard et al., 2011) 

 

1.3.2 Nucleus-encoded repeat protein families involved in the regulation of chloroplast 

gene expression 

In the last chapter, several nucleus-encoded regulators have already been introduced. Mostly, 

these regulatory factors belong to either pioneer proteins which are not conserved among 

eukaryotes, or protein families which are defined by their tandem motif repeats (compare 

Table 1.2). Moreover, these repeat protein families were verified to be involved in protein-
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protein or protein-RNA interaction. So far, tetratricopeptide repeat (TPR), pentatricopeptide 

repeat (PPR), and octotricopeptide repeat (OPR) proteins have been characterized and are 

described below. 

1.3.2.1 TPR proteins 

TPR proteins are studied extensively among three repeat protein families, with anti-parallel α-

helices TPR motifs which generate a helical structure with an amphipathic character (Blatch 

and Lassle, 1999; Sikorski et al., 1990). The TPR repeat structure has been confirmed by 

crystallization for several cases with an example of the protein phosphatase 5 shown in Figure 

1.6 (reviewed in D'Andrea and Regan, 2003; Das et al., 1998).  

 

 

 

Figure 1.6 Structure of a tetratricopeptide repeat (TPR) motif (adapted from D'Andrea and Regan, 2003).  

a: Schematic representation of the secondary structure of 34 amino acids in TPR motif with original consensus 

sequence shown above the helices. Helix A, helix B, and the loop region are shown in red, blue and black, 

respectively. b: Front and c: perpendicular views of the three TPRs of protein phosphatase 5. 

 

 
The TPR motif consists of 34 degenerate amino acid residues, arranged in 3-16 tandem 

repeats. Only a few positions of these residues are conserved. The structure of the TPR 

domain was studied intensively in the past. Using mutagenesis on specific amino acids within 

the TPR domain revealed highly conserved residues to be mainly responsible for structure 

maintenance, whereas the other non-conserved ones are related to specific protein functions 

(Letunic et al., 2002; Prapapanich et al., 1996). TPR proteins are highly conserved in all the 

organisms, such as bacteria, fungi, plants, insects, animals, and humans. There are no 
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significant differences between prokaryotic and eukaryotic TPR domains (Blatch and Lassle, 

1999). Moreover, they are verified to participate in various processes via protein-protein 

interactions, such as RNA processing, cell cycle, protein folding as well as protein 

transporting (reviewed in D'Andrea and Regan, 2003). 

The first TPR protein named nuc2
+
 was characterized in yeast, involved in the cell division 

cycle (Hirano et al., 1990; Sikorski et al., 1990). Till now, 22-26 TPR proteins have been 

identified by sequence analysis in Synechocystis, one example of which is PratA, involved in 

the maturation process of the D1 protein (Klinkert et al., 2004; Schottkowski et al., 2009a). 

Pitt is another TPR in Synechocystis, necessary for the early steps of photosynthetic 

pigment/protein complex formation (Schottkowski et al., 2009b). In C. reinhardtii, the 

nucleus-encoded Nac2 protein functions in stabilizing the psbD transcript, together with other 

protein partners (Boudreau et al., 2000; Schwarz et al., 2007). The above mentioned 

orthologous proteins Hcf107 in A. thaliana and MbbI in C. reinhardtii are two other TPR 

proteins responsible for psbH and psbB transcript stability, respectively (Felder et al., 2001; 

Vaistij et al., 2000). The A. thaliana LPA1 is another prominent TPR protein involved in PSII 

assembly; however its homolog in C. reinhardtii, REP27, is considered to participate in the 

repair cycle of PSII (Park et al., 2007; Peng et al., 2006).  

The well-defined TPR profile and complete sequencing of several model organism genomes 

provide possibilities to predict members of the entire TPR-protein family. However, their 

interaction partners as well as precise molecular working modes require further verification.  

1.3.2.2 PPR proteins 

The PPR (pentatricopeptide repeat) proteins belong to another group of repeat protein, with 

presence of degenerate 35 amino acid motif, repeated in up to 30 tandem (Small and Peeters, 

2000). The PPR proteins are also predicted to contain an array of α-helices, which classify 

them as a member of the “α-solenoid” super family together with TPRs (Small and Peeters, 

2000). PPR proteins were first characterized in A. thaliana, followed by continuing 

identifications in different organisms. The PPR proteins are widely distributed in eukaryotes, 

especially in plants, but not in prokaryotes. For instance, there are approximately 450 PPRs in 

A. thaliana and the number increases to 600 in both poplar and Vitis. However, the number of 

PPRs is significantly reduced in algae, only 11 in C. reinhardtii (Schmitz-Linneweber and 

Small, 2008). 

Genetic studies together with biochemical identifications of PPR proteins revealed that they 

are required for a wide range of post-transcriptional regulations, via their involvement in 
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organellar RNA metabolism. A domain-swap experiment between A. thaliana PPR proteins 

CRP1 and CRR4 demonstrated that PPR domains are responsible for RNA binding (Okuda et 

al., 2007). Therefore, PPRs were inferred to participate in various steps of RNA metabolism. 

For example, an RNA splicing function was approved for the chloroplast OTP51 protein from 

A. thaliana, which is required for splicing of the second intron of ycf3 mRNA (de Longevialle 

et al., 2008). Moreover, the PPR4 protein in maize is responsible for trans-splicing of intron 

of the rps12 mRNA (Schmitz-Linneweber et al., 2006). In addition, PPR’s RNA editing 

functions were also observed in plants, for instance, the above mentioned A. thaliana CRR4 

and CRR21 proteins are required for the edition of the ndhD transcript (Kotera et al., 2005; 

Okuda et al., 2007). Moreover, some PPR proteins are essential for organellar transcripts 

stabilization. Taken C. reinhardtii as an example, two characterized PPRs, MCA1 and MRL1, 

were proved to participate in the stabilization of petA and rbcL mRNAs, respectively 

(Johnson et al., 2010; Loiselay et al., 2008). The same function is also reported in higher 

plants. The A. thaliana PGR3 protein stabilizes petL transcripts, and PPR5 in maize stabilizes 

trnG-UCC precursor (Beick et al., 2008; Yamazaki et al., 2004). On the other hand, some 

PPRs perform a completely opposite function to stabilization by being a processing factor, 

such as CRP1 protein in maize, which is an endonuclease itself and required for the 

processing of the petD mRNA from a polycistronic precursor (Fisk et al., 1999; Schmitz-

Linneweber et al., 2005). A translation activation function is also found for several PPRs, such 

as the above mentioned maize CRP1, which initiates the translation of petA and psaC mRNA, 

and A. thaliana CRR2 protein, essential for the expression of chloroplast ndhB (Fisk et al., 

1999; Hashimoto et al., 2003; Meierhoff et al., 2003; Schmitz-Linneweber et al., 2005). One 

special example also shows PPR’s involvement in the coordination of chloroplast and nucleus 

gene expression. At this, GUN1 (genomes uncoupled 1), is involved in retrograde signaling 

from the chloroplast to the nucleus (Koussevitzky et al., 2007). 

1.3.2.3 OPR proteins 

OPR (octotricopeptide repeat) proteins were characterized recently as a new α-solenoid super 

family, like TPRs and PPRs, with degenerate 38-40 amino acid repeats (Eberhard et al., 2011). 

Although the structure of the OPR motif is still unclear, the secondary structure prediction 

speculated super helical motifs formed by arrayed α-helices (Eberhard et al., 2011). 

Bioinformatic analyses show that OPR proteins are distributed quite differently among all the 

organisms. There are more than 100 OPR proteins present in C. reinhardtii with predicted 

organellar localizations, whereas only one single OPR was found in A. thaliana (O. Vallon, A. 
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Bohne, L. Cerutti, J. D. Rochaix, unpublished data). Based on the high number of OPRs 

found in C. reinhardtii, a logo plot of OPR motifs occurring in this alga is given in Figure 1.7. 

Frequently emerging residues within the motif are represented by LWALA at positions 11-15 

and a previously described PPPEW motif (positions 22-27; Eberhard et al., 2011).  

 

 

 

 
 

Figure 1.7 Logo plot of the over-represented motif from OPR repeats found in C. reinhardtii.  
The height of each nucleotide is shown proportional to its frequency, with the most common nucleotides on top 

(O. Vallon, A. Bohne, L. Cerutti, J. D. Rochaix, unpublished data).  
 

 

 

The newly identified OPR proteins are thought to play roles during RNA metabolism. Till 

now, three OPR proteins from C. reinhardtii were characterized to participate in RNA 

processing. For example, RAT2, localized in the chloroplast stroma, is clarified to be involved 

in the 3’ end processing/maturation of tscA (Balczun et al., 2005). The tscA RNA is a co-factor, 

which participates in trans-splicing of intron I of psaA mRNA. In addition, RAA1 is another 

OPR protein found in a large ribonucleo-protein complex, which is involved in trans-splicing 

of both intron I and intron II of the psaA mRNA. Unlike RAT2, RAA1 was found in thylakoid 

membranes. Two functional domains were found in RAA1, one in the C-terminus, responsible 

for splicing of intron I, and the other in the central part needed for trans-splicing of intron II 

(Merendino et al., 2006). Moreover, recently MCD1 has also been considered to be an OPR 

protein. The MCD1 protein was approved to interact with the 5’ UTR of petD mRNA and 

protect this transcript from degradation by 5’ exoribonucleolytic cleavage (Murakami et al., 

2005). Besides the regulation of RNA processing, OPR proteins also play essential roles 

during translation processes. The TBC2 protein, possessing nine OPR motifs, was shown to 

be part of a large protein complex (~ 400 kDa), localized in chloroplast stroma fraction, where 

it is involved in CP43 translation via interaction with the 5’UTR of the psbC mRNA 

(Auchincloss et al., 2002). Another translational regulator is TDA1, with OPR repeats present 
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at the C-terminus, which is described to participate in the translation of atpA transcripts 

(Eberhard et al., 2011). 

All evidences mentioned above show that the members of the OPR repeat protein family play 

diverse and important roles during post-transcriptional regulation via their participation in 

RNA metabolisms.  

1.4 Model organisms: Arabidopsis thaliana and Chlamydomonas reinhardtii 

In land plants, most genetic studies of nuclear genes involved in plastid gene expression have 

been carried out in Arabidopsis thaliana, which offers well developed genetic tools and 

abilities to clone nuclear genes defined by mutations. A. thaliana possesses only a small 

nuclear genome of 157 Mb, which facilitates genetic mapping. Meanwhile, a huge A. thaliana 

T-DNA insertion mutant collection gives convenient support for research. Although A. 

thaliana offers advantages of nuclear transformation, the plastid transformation is still not 

available. In addition, sugar dependent growth of A. thaliana mutants causes complications 

for phenotype analysis and biochemical approaches. Therefore, alternative model organisms 

are required (Sheen, 1999).   

Chlamydomonas reinhardtii, as one of the outstanding model organisms, is an unicellular 

green alga, with the ability to grow heterotrophically in the acetate-containing media, where it 

still assembles fully functional thylakoid membrane complexes (reviewed in Nickelsen and 

Kück, 2000). The structure specialties include a single cup-shaped chloroplast containing the 

photoreceptive “eye spot”, which allows the cell to perform phototaxis, and the pyrenoid, 

where the carbon dioxide fixation and protein synthesis happen, including PSII assembly 

(Harris, 2001; Uniacke and Zerges, 2008). In addition, structure and function analyses of 

flagella, light perception, cell-cell recognition and cell cycle control also attract lots of 

attention (Harris, 2001). Advantageous features of C. reinhardtii include the ease of obtaining 

and maintaining non-photosynthetic mutants, and the well-developed technologies for 

transforming both nuclear and plastid genomes (Rochaix, 1995). Meanwhile, both the 

availability of the complete genome sequence of C. reinhardtii and BAC (bacteria artificial 

chromosome) clones, which cover the respective genomic regions for complementation, let C. 

reinhardtii face a bright future as a model system (Meslet-Cladiere and Vallon, 2011).  
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1.5 Aims of this study 

Photosynthesis is the most studied field in plant sciences. However, the exact working modes 

of already described proteins involved in chloroplast gene expression are often still little 

understood. Additionally, many yet unknown nucleus encoded proteins are speculated to 

perform important roles in the expression and assembly of photosynthesis-related complexes.  

As photosystem II is considered to represent the key protein complex of photosynthesis light 

reactions, the present study was designed to extend the knowledge of factors participating in 

the expression and assembly of PSII subunits. Therefore, 16 nuclear insertion mutants from 

the green alga C. reinhardtii revealing a PSII deficient phenotype were used in a forward 

genetic approach to identify potentially new candidate proteins. Following an initial 

phenotypical characterization, promising mutants were chosen for the identification of 

mutated genes causing the PSII phenotype by a PCR based approach. For five out of eight 

mutants the corresponding mutated gene could be identified. Two of them, possessing 

insertions in the OHP2 or CLR24 gene, respectively, were selected for a detailed molecular 

and phenotypical characterization to elucidate the role of encoded proteins in photosynthesis. 

Whereas OHP2 (one helix protein 2) represents a member of the light-harvesting-like (LIL) 

protein family, with one predicted transmembrane region, CLR24 belongs to the newly found 

α-solenoid OPR super family, which is thought to have diverse functions during post-

transcriptional regulation. Molecular analyses were carried out to confirm the mutagenesis, 

followed by biochemical approaches to reveal putative protein interaction partners or RNA 

targets. 

Given that all known members of the OPR family investigated so far in C. reinhardtii are 

involved in chloroplast gene expression it became particularly interesting to elucidate the 

function of the single OPR protein, AtRAP, encoded by the nuclear genome of A. thaliana. To 

gain insights, mutant lines with T-DNA insertions in AtRAP were used for phenotypical and 

molecular characterization of the protein function including the investigation of putative RNA 

targets.
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2 MATERIALS AND METHODS 

2.1 Materials 

All the chemicals used in this study were p.A. quality and purchased from Roth, Sigma, 

Merck or AppliChem if not indicated otherwise. The instruments used in this study are 

mentioned in the text. An overview of suppliers can be found in Table 2.1. 

 

Table 2.1 List of all suppliers for chemicals, enzymes and laboratory equipment 

Supplier Address 

Agrisera Agrisera AB, Vännäs, Sweden 

Amersham Biosciences Amersham Biosciences Europe GmbH, Freiburg, Germany 

Biometra Biometra GmbH, Göttingen, Germany 

Biozym Biozym Diagnostik GmbH, Hameln, Germany 

BioRad Bio-Rad Laboratories, München, Germany 

Epicentre  Epicentre biotechnology, Madison, USA 

Fermentas Fermentas GmbH, St. Leon-Rot, Germany 

Fuji FUJI FILM Europe, Düsseldorf, Germany 

GE Healthcare GE Healthcare, München, Germany 

Hartmann Analytic Hartmann Analytic GmbH, Braunschweig, Germany 

Invitrogen Invitrogen GmbH, Karlsruhe, Germany 

Metabion Metabion international AG, Martinsried, Germany 

Miltenyi Biotec Miltenyi Biotec, Bergisch Gladbach, Germany 

Millipore Millipore Corp., Bedford, USA 

MWG Biotech Eurofins MWG operon, Ebersberg, Germany 

PeqLab PeqLab biotechnologie, Erlangen, Germany 

Photon Systems Instruments Photon Systems Instruments, Högrova, Czech Republic 

Pierce Pierce, Rockford, USA 

Promega Promega Corporation, Madison, USA 

Qiagen Qiagen, Hilden, Germany 

Roche Roche Diagnostics GmbH, Mannheim, Germany 

Roth C. Roth GmbH & Co, Karlsruhe, Germany 

Scotts  Scotts Deutschland GMBH, Hildesheim, Germany 

Serva Serva Feinbiochemika, Heidelberg, Germany 

Sigma Sigma Chemical Company, St. Louis, USA 

Stratagene Stratagene, La Jolla, USA 

Thermo Scientific Thermo Scientific, Rockfold, USA 

Whatman Whatman Paper, Maidstone, England 

Zeiss Carl Zeiss MicroImaging GmbH, Göttingen, Germany 
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2.1.1 Enzymes and Kits 

Enzymes used for cloning were obtained from Fermentas and NEB with specific buffer 

systems supplied by the corresponding companies. Protease Inhibitor cocktail (PIC) was 

purchased from Roche and RNase A from Roth. 

The following kits were used in this study according to manufacturer’s protocols: 

 

 Perfectprep Gel Cleanup Kit (Eppendorf) 

 TripleMaster PCR System (Eppendorf) 

 CloneJET PCR Cloning Kit (Fermentas) 

 Plasmid Mini and Midi Kits (Qiagen) 

 DNeasy Plant Mini Kit (Qiagen) 

 TriReagent (Sigma) 

 Monster ScriptTM III Reverse Transcriptase (Invitrogen) 

2.1.2 Membranes 

Nitrocellulose membranes were obtained from AppliChem and positively-charged Nylon 

membranes from Roth. 

2.1.3 Antibodies 

Table 2.2 List of antibodies and respective titers used in this research work 

Antibody  Titer  Reference  

Primary (for C. reinhardtii)   

Anti-RbcL 1:5000 provided by G. F. Wildner (Ruhr Universität Bochum) 

Anti-PsaA 1:1000 Agrisera 

Anti-D2 (Rabbit 6442) 1:2000 Biogenes 

Anti-Cytb6 1:1000 Agrisera 

Anti-CP43 1:1000 Agrisera 

Primary (for A. thaliana)   

Anti-D1 (Rabbit 1698) 1:1000 Biogenes 

Anti-D2 (Rabbit 6442) 1:2000 Biogenes 

Anti-LHCII 1:3000 Agrisera 

Anti-PsaA 1:1000 Agrisera 

Anti-RbcL 1:5000 provided by G. F. Wildner (Ruhr Universität Bochum) 

Secondary    

anti-rabbit IgG HRP 1:10000 GE Healthcare 

Anti-digoxigenin 1:20000 Roche 
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2.1.4 Oligonucleotides 

All oligonucleotides were ordered from Metabion. Lyophilized oligonucleotides were 

resuspended in sterile, ddH2O to a final concentration of 100 μM and stored at -20°C. 

Sequences of used oligonucleotides are denoted in respective chapters in Methods. 

2.1.5 DNA-Vectors 

DNA-vectors used in this work are listed in Table 2.3.  

 

Table 2.3 List of DNA-vectors used 

Plasmid Description Reference 

pJET1.2/blunt Cloning vector; confers ampicillin resistance in E. coli Fermentas 

pGEX4T-1 Overexpression vector for GST based recombinant fusion proteins 

under control of lac promoter; confers ampicillin resistance in E. coli 

GE Healthcare 

pBC1-CrGFP pBC1 expression vector containing the C. reinhardtii codon adapted 

GFP coding sequence (CrGFP) under control of the PsaD 5’ and 3’ 

UTRs; confers paromomycin resistance in C. reinhardtii by expression 

of the APHVIII gene and ampicillin resistance in E. coli 

(Neupert et al., 2009) 

pBC1 pBC1 containing the Streptomyces aminoglycoside 3'-

phosphotransferase typeVIII encoding gene (aphVIII) under control of 

RBCS promoter was used for the generation of PSII mutants described 

in this study 

(Sizova et al., 1996) 

pMS188 pMS188 containing the zeocin resistance gene (ble) under control of 

both HSP70A and RBCS2 promoters was used for the generation of 

PSII mutants described in this study 

(Schroda et al., 2002) 

 

2.1.6 Escherichia coli strains 

Recombinant plasmids were propagated in Escherichia coli (E. coli) strain XL1-Blue [endA1 

gyrA96 hsdR17 lac recA1 relA1 supE44 thi-1 F ṕroAB lacIq Z_M15 Tn10 (Tetr)] (Stratagene).  

2.1.7 Arabidopsis thaliana strains 

Wild-type: Arabidopsis thaliana ecotype Columbia-0 (Col-0). 

Insertion mutant lines carrying T-DNA insertions were identified by searching the insertion 

flanking database SIGNAL (http://signal.salk.edu/cgi-bin/tdnaexpress). The AtRAP-1 

(sail_1223_C10) and the AtRAP-2 (sail_1225_B10) mutants derive from the Syngenta 

Arabidopsis Insertion Library (SAIL) T-DNA collection with both of them in the Columbia-0 

http://signal.salk.edu/cgi-bin/tdnaexpress
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(Col-0) background (Sessions et al., 2002). The T-DNA lines were ordered from the 

Arabidopsis Biological Resource Center (ABRC). Construct used for generation of T-DNA 

lines was pDAP101 (http://www.arabidopsis.org/abrc/pDAP101.pdf).  

The primers used in section 3.5.2 for detecting homozygous mutants are listed below: 

31890-fw2 (P1):    ACTCTCTGTTAAAAATCACAGCA 

31890-fw (P2):      TTAAGGGTCAAGAGATTGCTC 

31890-rev (P3):     AATCAAGCCCTGTACTTATAAGAA 

 

2.1.8 Chlamydomonas reinhardtii strains 

The C. reinhardtii strains used in this research work are stated in the following Table 2.4 

Table 2.4 List of C. reinhardtii strains 

Strain Description Reference 

cc406 Cell wall deficient (cw15) wild-type strain 
Genetic Centre, Duke University, Durham, 

North Carolina; Davies DR, Plaskitt A, 1971 

Jex4 wild-type mt
+
 strain with cell wall (Houille-Vernes et al., 2011) 

XS1 cw15 arg7 mt
+
 (Johnson, 2007) 

Fud7 
Deletion mutation spanning the psbA gene in 

CC-741 
(Bennoun et al., 1980)  

nac2-26 
Cell wall deficient (cw15) Photosystem II 

mutant 
(Boudreau et al., 2000) 

222E 
A nuclear mutant specifically fails to 

accumulate psbB transcripts  
(Monod et al., 1992) 

101a 

 

PSII mutants generated by nuclear 

transformation of the wild-type strain Jex4 

with the vector pBC1 (section 3.1) 

generated by Dr. Xenie Johnson, 

CNRS/Université Pierre et Marie Curie, 

Institut de Biologie Physico-Chimique 

45a 

101b 

42b 

41a 

42d 

41b 

44d 

102a 

BC1D7 

PSII mutants generated by nuclear 

transformation of the wild-type strain XS1 

with the vector pBC1 (section 3.1) 

BC1H3 

P10B3 

AP15-2Ci 

BC1H9 

Z1G4 PSII mutants generated by nuclear 

transformation of the wild-type strain XS1 

with the vector pMS188 (section 3.1) Z1D8 

 

 

http://www.arabidopsis.org/abrc/pDAP101.pdf
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2.2 Methods 

2.2.1 Growth of bacterial strains 

E. coli strains were grown in LB medium (1% tryptone, 1% NaCl, 0.5% yeast extract, pH 7.0) 

under standard conditions (Sambrook J, 2001). 1.5% agar was applied to obtain LB media 

plates. For selection media, proper amounts of antibiotics were added under sterile conditions 

after the media was cooled down to approximately 60°C after autoclaving. 

2.2.2 Growth of Chlamydomonas reinhardtii strains  

C. reinhardtii strains were maintained at 25°C on Tris-acetate-phosphate (TAP) agar medium 

at medium light (30 µE m
-2 

s
-1

) if not indicated otherwise (Harris, 2009). Liquid cultures were 

grown to a density of ~2 x 10
6
 cells/mL in TAPS medium (TAP medium containing 1% 

sorbitol). For photoautotrophic growth experiments, C. reinhardtii strains were also cultured 

in high salt (HSM) medium (Sager, 1953)  

2.2.3 Growth of Arabidopsis thaliana plants 

A. thaliana seeds were stratified for 2 days at 2-5°C in the dark to break dormancy and then 

sown out on plastic trays with soil. Plants were grown under controlled green house 

conditions (PFD 70-90 µE m
-2 

s
-1

, 16 h light/ 8 h dark cycles). Fertilization with “Osmocote 

Plus” (Scotts) was performed according to manufacturer’s instructions. 

2.2.4 Nucleic acids methods 

2.2.4.1 Isolation of nucleic acids 

2.2.4.1.1 Isolation of plasmid DNA from E. coli 

Isolation of plasmid DNA from E. coli at small scale was carried out by alkaline lysis of 

bacteria using standard protocols as described (Sambrook J, 2001). For large scale and pure 

plasmid DNA isolation, the Midi Kit (Qiagen) was used according to the manufacturer’s 

protocol.  
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2.2.4.1.2  Isolation of genomic DNA from Chlamydomonas reinhardtii  

The genomic DNA of C. reinhardtii was isolated from 50 mL (~2 × 10
6
 cells/mL) C. 

reinhardtii liquid culture. The culture was harvested at 1100 g, 4
o
C for 6 min and DNA was 

extracted using the DNeasy Plant Mini Kit (Qiagen) according to manufacturer’s protocol. 

2.2.4.1.3 Isolation of genomic DNA from Arabidopsis thaliana 

Genomic DNA of A. thaliana was isolated by vortexing of leaf material ( 2-3 leaves from 4-

week old plants) frozen in liquid nitrogen in 1.5 mL microcentrifuge tubes with metal beads 

for 30s, followed by addition of isolation buffer (200 mM Tris/HCl pH 7.5, 250 mM NaCl, 25 

mM EDTA, 0.5% SDS). After centrifugation (16000 g, RT, 20 min) the genomic DNA was 

precipitated by addition of 0.8 volumes of isopropanol to the supernatant. The precipitated 

DNA was collected by centrifugation (2000 g, 4
o
C, 30 min), washed with 75% Ethanol, and 

finally resuspended in 50 µL ddH2O. 

2.2.4.1.4 Isolation of total cellular RNA from Chlamydomonas reinhardtii 

15 mL liquid cultures of C. reinhardtii were harvested at early log phase (~1 × 10
6
–2 × 10

6
 

cells/mL) by centrifugation at 1100 g, 4
o
C for 6 min and total cellular RNA was extracted by 

using the TRI reagent (Sigma), according to the manufacturer's instructions. 

2.2.4.1.5 Isolation of total cellular RNA from Arabidopsis thaliana 

Total RNA of A. thaliana from fresh tissue (4-5 leaves from 3-week old plants or 2-3 leaves 

from 6-week old plants) was extracted by breaking of leaf material frozen in liquid nitrogen 

with metal beads in 1.5 mL microcentrifuge tube. RNA was subsequently extracted from 

ground tissue by using TRI reagent (Sigma), according to the manufacturer's instructions. 

2.2.4.1.6 Determination of nucleic acid concentrations 

The quality and quantity of nucleic acids were determined optically in ethidium bromide-

stained agarose gels (section 2.2.4.2). In addition, UV absorption at 260 nm was measured by 

a Novaspec III photometer (Amersham Biosciences), and concentrations were calculated 

assuming an optical density OD260 = 1 corresponding to 50 μg/mL for double-stranded DNA 

and 40 μg/mL for RNA. The purity of the sample was estimated by the ratio of absorption at 

260 to 280 nm. 
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2.2.4.2 Nucleic acid electrophoreses 

2.2.4.2.1 Agarose gel electrophoresis of DNA 

DNA samples were supplemented with 6 × DNA loading buffer (0.25% (w/v) bromophenol 

blue, 30% (v/v) glycerol) and separated depending on their size in 1-2% (w/v) agarose 

(Genxpress) gels containing 0.5 μg/mL ethidium bromide in 1 × TAE buffer. Using 1 × TAE 

as running buffer, electrophoreses were carried out at 5-10 V/cm in a horizontal gel apparatus 

(i-Mupid, Advance). Following electrophoresis, DNAs were visualized under UV light 

employing an Alpha Imager station (Alpha Innotech Corporation). 5 μL of standard DNA 

ladders (Fermentas) were used as molecular weight markers. 

1 × TAE:  40 mM Tris-Cl, pH 8.0 

  20 mM acetic acid 

2 mM EDTA 
 

2.2.4.2.2 Agarose gel electrophoresis of RNA 

RNA samples were supplemented with equal volumes of 2 × RNA loading dye and denatured 

at 65°C for 5 min prior loading to the gel. Depending on the demands of experiments, RNAs 

were electrophoretically separated in 1-2% formaldehyde-agarose gels (1/40 vol 

formaldehyde in 1 × MOPS buffer). Electrophoresis was carried out in a horizontal 

electrophoresis gel chamber (Life Technologies) at 80 V. Fractionated RNA were visualized 

under UV trans-illumination by using an Alpha Imager station (Alpha Innotech Corporation). 

2 μL of high range RNA markers (Fermentas) were applied to control the length of the 

separated RNA fragments. 

 

1 × MOPS buffer: 20 mM MOPS 

5 mM Na-acetate 

1 mM EDTA pH 7.0 

 

2 × RNA loading dye: 50% (v/v) formamide 

17.5% (v/v) formaldehyde 

20% glycerol 

1.25 mM EDTA, pH 8.0 

1.27 mM ethidium bromide 

0.2% (w/v) bromophenol blue 

in 1 × MOPS buffer 
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2.2.4.3 cDNA synthesis and RT-PCR 

For cDNA synthesis, reverse transcription (RT) reactions were performed with 100-500 ng of 

total cellular RNA by using the MonsterScript
TM

 1
ST

-Strand cDNA Synthesis Kit according to 

the manufacturer’s instructions. Prior to RT reactions, RNAs were treated with DNase I 

(RNase free; Promega) to avoid contaminations with genomic DNA. 0.25 µL cDNA were 

used for subsequent PCR reactions (section 2.2.4.4.1). 

2.2.4.4 Cloning 

Standard cloning procedures were performed as described in Sambrook and Russell (2001). 

Purification of plasmid DNAs by QIAquick Gel Extraction Kit (Qiagen), DNA ligations by 

means of T4 DNA ligase (Fermentas), restriction cleavage by endonuclease enzymes 

(Fermentas) were performed according to the manufacturer’s instructions. For direct cloning 

of PCR products in the pJet1.2 cloning vector, the Clonejet cloning kit (Fermentas) was used 

according to the manufacturer's instructions. 

2.2.4.4.1 Polymerase chain reaction (PCR) 

Specific DNA sequences from genomic, plasmid and cDNA were amplified using Taq DNA 

polymerase in a Master Cycler (Eppendorf). Standard 25 μL PCR reactions were prepared 

with PCR buffer (670 mM Tris-Cl pH 8.0, 67 mM MgCl2 and 0.01% Tween20), 200 µM 

dNTPs and 10 pmol of each primer. The amount of DNA template varied from 1 ng (plasmid 

DNA) to 100 ng (genomic DNA). After a 3 min denaturation step at 94°C, 35 cycles were 

performed, which included denaturation at 94°C (1 min), annealing at 50-65°C (45 seconds), 

depending on Tm of primer set, and extension at 72°C (1 min/kb). An additional elongation 

step was carried out at 72°C for 10 min. PCR products were analyzed by agarose gel 

electrophoresis (section 2.2.4.2.1). 

For synthesis of digoxigenin labeled probes used in section 2.2.4.6 (Southern) and section 

2.2.4.7 (Northern), dNTPs were replaced by dig-dNTP. The mixture of dig-dNTP was set up 

as following: dATP (2 mM), dCTP (2 mM), dGTP (2 mM), dTTP (1.3 mM), dig DIG-11-

dUTP (Roche) (0.7 mM). 
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2.2.4.4.2 Sequencing 

For sequencing of plasmids, samples containing 200–300 ng of DNA with 10 pmol of the 

respective primer listed in Table 2.5 were prepared. The sequencing of DNA samples was 

carried out by the department of Genetics LMU. 

 

Table 2.5 Primers used for sequencing 

Name of primers  Sequence 5’ to 3’ 

inv-APHV-rev2 (P4) TTGATTTTGGCCTCTTTCTCCATGG 

PsaD FW (for pBC1; ohp2 complementation) AGGTTTCCTCGCCGAGCAAG 

PsaD RV (for pBC1;  ohp2 complementation) TCCGATCCCGTATCAATCAG 

pJET1.2 Forward CGACTCACTATAGGGAGAGCGGC 

pJET1.2 Reverse AAGAACATCGATTTTCCATGGCAG 

  

2.2.4.4.3 Transformation of E. coli 

For heat shock transformation, plasmid DNAs or ligation products were added to 50 μL 

aliquots of competent XL1 blue cells and incubated on ice for 5 min. After the incubation, the 

cells were transferred to 42°C for 45-60 seconds and then immediately cooled on ice for 2 

min. The transformants were plated on selective LB agar plates and incubated 14 to 16 h at 

37°C. 

2.2.4.5 Inverse PCR on Chlamydomonas reinhardtii genomic DNA 

Genomic DNA of C. reinhardtii mutants was isolated as described in section 2.2.4.1.2. 100 ng 

gDNA was digested by restriction enzymes PstI or NheI (with none and one cutting site in 

pBC1 cassette, respectively). Digestion products were purified by the phenol/chloroform 

method (Sambrook J, 2001), followed by NaAc-ETOH precipitation, and finally resuspended 

in 20 μL ddH2O. To obtain circular DNA templates for subsequent PCR reactions, digestion 

products were self-ligated by T4 DNA Ligase in 100 μL reaction systems over night at 16℃. 

Ligation products were purified as described above and used as templates for nested PCR 

reactions. The primary PCR was performed with first set of primers (P1 and P2) using 5 µL 

ligation products as template. The resulting product was then used as template for a second 

PCR reaction using another set of primers: P3 and P4 (for positions of primers compare 

Figure 3.2.3 in results section).  
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The PCR reactions were carried out as described in chapter 2.2.4.4.1, with primers shown in 

Table 2.6. The obtained product was sequenced as described in section 2.2.4.4.2 to obtain the 

flanking regions of mutants. 

 

Table 2.6 Primers used for inverse PCR 

Name of primers  Sequence 5’ to 3’ 

inv-APHV-fw (first set of primers P1) GTCCATGCTTCGAAATTCTTCAGC  

inv-APHV-rev (first set of primers P2) TGTCCGTTCGATCGCAGTCT   

inv-APHV-fw2 (Second set of primers P3) GTTGCAAGTCAAATCTGCAAGCAC 

inv-APHV-rev2 (Second set of primers P4) TTGATTTTGGCCTCTTTCTCCATGG 

  

2.2.4.6 Southern blot (digoxigenin labeled DNA probes) 

C. reinhardtii genomic DNA was prepared using the Plant DNA miniprep kit as described in 

section 2.2.4.1.2. The procedures for Southern blot were performed generally as described by 

Sambrook and Russell (2001). 10 μg gDNA were digested with appropriate restriction 

enzymes overnight in 100 μL reaction systems. Digestion products were precipitated by 

NaAc-ETOH method, and resuspended in 25 μL ddH2O. Electrophoresis was performed in 

0.8% Agarose gels at 40 V in 1 × TPE (360 mM Tris, 300 mM Na2HPO4, 70 mM EDTA) 

overnight. Agarose gels were stained with EB (0.2 pg/mL) for 20 min in 1 × TPE buffer and 

photographed under UV light beside a fluorescent ruler. The gel was depurinated in 0.25 M 

HCl for 15 min, followed by incubation in denaturing solution (0.4 M NaOH, 0.6 M NaCl) for 

30 min, and neutralization solution (1 M Tris-HCl pH 8.0, 1.5 M NaCl) for 30 min. After 

briefly soaking the gel in 20 × SSC (3 M NaCl, 0.3 Na3Citrate, pH 7.0), DNAs were 

transferred to Roti Nylon
+
 membranes (Roth) for 15 h. The blot was washed in 2 × SSC, and 

then cross-linked by UV light (UV Crosslinker, UVC 500, Hoefer). After 1 h prehybridization 

at 68°C with prewarmed pre-Hyb solution (0.25M Na2HPO4, pH 7.2, 1 mM EDTA, 20% SDS, 

0.5% Block reagent (Roche)), 2.5 ng/mL pre-Hyb buffer of a gene specific digoxigenin 

labeled probe (obtained by PCR as described in section 2.2.4.4.1 using primers denoted in 

Table 2.7) was added, and hybridization was performed overnight at 68°C. The DNA blot was 

washed 3 × 20 min with Hyb-wash buffer (20 mM Na2HPO4, 1 mM EDTA, 1% SDS) at 65°C, 

then 1 × 5 min in wash buffer I (0.1 M maleic acid, pH 8.0, 3 M NaCl, 0.3% Tween20) at 

room temperature. After 1 h incubation in blocking buffer (1% block reagent (Roche), 0.1 M 

maleic acid, 3 M NaCl, 0.3% Tween), an anti-Digoxigenin Antibody (listed in Table 2.2) was 

applied. After 30 min, the blot was washed 4 × 10 min with wash buffer I. For signal detection, 

CDP star (Roche, 1:100) was applied in substrate buffer (0.1 M Tris-HCl, 0.1 M NaCl, 50 
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mM MgCl2) on the equalized blot, and chemiluminescence detected by exposure to X-ray 

films (Fuji). 

  

Table 2.7 Primers used for Southern blot analysis 

Name of primers  Sequence 5’ to 3’ 

nac2-fw GGATGTCCGTTGCAGTTTGTTGA  

nac2-rev CCATTCACGCCGTTGTGCTTA     

101b-fw (P5) AACCTGTACAACCAGGCTTTG 

101b-rev (P6) TGCACAACGTACAACACTCAC 

OHP2-fw2 (previously named OHP1-fw2) GTGCACACGTATCACTTCTG 

OHP2-rev2 (previously named OHP1-rev2 ) GCACACTTACCAGTCAGCAT 

45a-fw TAGACGCAATGGAACGCAAGT 

45a-rev TGTCTCTTTACTCCCTGACTC 

42b-fw ATGGTTCAATCATGTCGGGCAACT 

42b-rev AAGCAAACACATAGACACGCATGC 

hit2-fw ( for 101a Figure 3.2.4) ATTAACAGCACCCTGCAACTACCA 

hit2-rev ( for 101a Figure 3.2.4) AACGTGATGCTGCCGTCATAAGGT 

pBC1-APHV-fw AGACTGCGATCGAACGGACA 

pBC1-APHV-rev GCTGAAGAATTTCGAAGCATGGAC 

pMS-ble-fw CACAAAGGCTAGGCGCCAATGCAA 

pMS-ble-rev TCCATTTACACGGAGCGGGGAT 

 

2.2.4.7 Northern blot (digoxigenin labeled probe) 

Total RNA from either C. reinhardtii or A. thaliana was extracted as described in sections 

2.2.4.1.4 and 2.2.4.1.5. The procedures for Northern blots were generally performed as 

described by Sambrook (2001). In brief, total RNA separated on denaturing formaldehyde 

agarose gels (1% or 2%), was transferred to Roti Nylon
+
 membrane (Roth), followed by UV 

light cross-linking (UV Crosslinker, UVC 500, Hoefer). Dig-labeled probes were synthesized 

by PCR as described in section 2.2.4.4.1 using primers denoted in Table 2.8. Hybridizations 

and detection of dig-labeled probes are the same as described in section 2.2.4.6.  

 

Table 2.8 Primers used for Northern blot analysis 

Name of the primers Sequence 5’ to 3’ 

P1-fw (for probe A in Figure 3.4.8) TCGCTGTGATCGAATAAGAA 

P1-rev (for probe A in Figure 3.4.8) GCTTCCTTCTTCGTAGACAA 

P2-fw (for probe B in Figure 3.4.8) AGGGAGAGCTAATGCTTCTT 

P2-rev (for probe B in Figure 3.4.8) AACGAAAGAAGGCTTCCACC 

P3-fw (for probe C in Figure 3.4.8) GGGCTATTAGCTCAGTGGTA 

P3-rev (for probe C in Figure 3.4.8) GGGCGCGCTCTACCACTGAG 
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4.5Srrn-fw CGAGACGAGCCGTTTATCAT 

4.5Srrn-rev TTCAAGTCTACCGGTCTGTT 

5Srrn-fw ATTCTGGTGTCCTAGGCGTA 

5Srrn-rev ATCCTGGCGTCGAGCTATTT 

23Srrn-fw TTCAAACGAGGAAAGGCTTA 

23Srrn-rev AGGAGAGCACTCATCTTG 

atpA-fw CTTAGGTCGTGTAGTTGACG 

atpA-rev CTGCAGAACCTACACGTGAT 

cemA-fw ATTTATTTTCCTGACGGCGA 

cemA-rev TACCTGTTTGACTTTCTGGA 

PsbK-fw ATGACAACTTTAGCACTGGTACTT  

PsbK-rev TTAACGGAAACTAACAGCTGCTTG 

PsbM-fw TTAGTCTTGAGTAGAAGCTGTTTT 

PsbM-rev ATGGAAGTAAATATTTACGGATTA 

PsbZ-fw AAACTACAAATGAGTTTAAAATAC 

PsbZ-rev ATGACATCAATCCTTCAAGTT 

PsbT-fw TTATTTAATCATACGTGGAGGAT 

PsbT-rev ATGGAAGCTTTAGTATATACTTT 

PsbL-fw ATGGCTAGACCAAATCCAAAT A 

PsbL-rev TAGTTAAAGATATAACTAGA 

PsbI-fw ATGTTAACATTAAAAATTTTTGTT  

PsbI-rev TTAGTCTAAATTTTTACCTGG 

cemA3'-atpH Fw TACAACCAAATAGGTTTCAATAG 

cemA3'-atpH Rev CCATACCAGGACCAATAGC 

atpA5’ Fw GCCACTGTTCACTCCTC 

atpA5’ Rv TCTGGAGTACGCATTGCC 

rbcL Fw AAGATTCAGCAGCTACAGC 

rbcL Rv CACTGCCTCTAATAAAGTCTAC 

psbD Fw GCCGTAGGGTTG AATG 

psbD Rv GTTGGTGTCAACTTGGTGG 

psbA Fw TCTAGCCTATGGGCTCGT 

psbA Rv ACCGAAACGGTAACCTTC  

 

2.2.5 Protein methods 

2.2.5.1  Determination of protein concentrations 

Protein concentrations were determined as described by Bradford (1976), using the Roti®-

Quant protein assay (Roth). 
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2.2.5.2 Total protein preparation from Chlamydomonas reinhardtii 

Total protein from cell wall less C. reinhardtii strains was prepared from 15 mL light green 

culture growing in dim light. Cells were collected by centrifugation for 5 min, 1000 g, at 

room temperature. 200 μL-400 μL 2 × lysis buffers (120 mM KCl, 20 mM tricine pH 7.8, 0.4 

mM EDTA, 5 mM β-mercaptoethanol, 0.2% -1% Triton×100) was used for resuspension. 

Lysis was performed by mixing thoroughly with pipette on ice. The protein concentration was 

measured by Bradford Protein Assay (Bradford et al., 1976).  

Total protein from C. reinhardtii with cell wall was prepared from 15 mL light green culture 

grown in moderate light (30 µE m
-2 

s
-1

). Cells were collected by centrifugation for 5 min, 

1000 g, at room temperature. 500 μL lysis buffer (200 mM Tris-Cl, pH 8.0, 150 mM NaCl, 50 

mM MgCl2, 20 mM EDTA, 0.02 g/mL Nonidet P40, 5 mM β-mercaptoethanol) was used for 

resuspension. 1/2 volume of glass beads (0.5 mm dia) were added into resuspension, followed 

by vortexing for 1 min to break the cell wall. The supernatant collected by centrifugation for 5 

min at 20000 g, 4°C was used for further immunoblot assays (section 2.2.5.7). 

2.2.5.3 Total protein preparation from Arabidopsis thaliana 

Total protein from A. thaliana was obtained from 3~8-week-old leaves. Leaves were frozen in 

liquid nitrogen, subsequently broken with metal beads by vortexing for 1 min. Solubilisation 

buffer (100 mM Tris pH 8.0, 50 mM EDTA pH 8.0, 0.25 M NaCl, 1 mM DTT and 0.7% SDS) 

was added to the ground tissue, then incubated at 68°C for 10 min and centrifuged at 16000 g 

for 10 min at room temperature to remove cellular debris. The supernatant was used for 

protein analysis by SDS-PAGE and immunoblot described in sections 2.2.5.6 and 2.2.5.7, 

respectively. The protein concentration was measured by Bradford Protein Assay (Bradford, 

1976).  

2.2.5.4 Membrane protein preparation from Chlamydomonas reinhardtii 

For C. reinhardtii membrane protein preparations used for BN-gels (section 2.2.5.8), cells (~2 

×10
6
 cells/mL) were harvested from 20 mL culture by centrifugation at 6000 g, 10 min, 4°C, 

and resuspended in 1 mL TMK buffer (10 mM Tris/HCl, pH 6.8; 10 mM MgCl2; 20 mM KCl, 

with protease inhibitors). Cells were broken with glass beads by vortexing 2 × 60 seconds 

with an intermediate cooling on ice for at least 2 min, and centrifuged at 3000 g for 1 min to 

remove glass beads. Supernatants were collected and centrifuged for 10 min, 20000 g at 4°C. 

The pellet was washed twice with 500 μL TMK buffer, and finally resuspended in 500 μL 
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TMK buffer. The chlorophyll concentration was measured as follows: 20 µL resuspended 

membranes were added to 980 µL 80% acetone, incubated for 30 min in the dark, and 

centrifuged for 10 min, 2800 g at 4°C. The supernatant was collected to measure the OD652 in 

a spectrophotometer (Bio Rad). Chl a (mg/ml) = A652 nm x 1.45. The obtained membrane 

proteins were used for 2D blue native PAGE analyses (section 2.2.5.8).  

2.2.5.5 Chloroplast isolation and thylakoid extraction from Arabidopsis thaliana 

Leaves of 3~8-week-old plants were homogenized in homogenization buffer (0.45 M Sorbitol, 

20 mM Tricine-KOH pH 8.4, 10 mM EDTA, 10 mM NaHCO3 and 0.1% BSA). The mixture 

was filtered through a double-layer-Miracloth (Calbiochem), and the filtrate was centrifuged 

at 300 g, 4°C for 4 min in a Beckman JA-14 rotor. The pellet was resuspended carefully in 

resuspension buffer (0.3 M Sorbitol, 20 mM Tricine-KOH pH 8.4, 2.5 mM EDTA and 5 mM 

MgCl2), and the suspension was centrifuged (low acceleration, no break) through a 2-step-

Percoll gradient (40%-80% (v/v) in 1 × resuspension buffer) in a JS13-1 rotor, at 3250 g, 4°C 

for 20 min. Intact chloroplasts were harvested at the interface of the 2-step-percoll gradient, 

washed once with resuspension buffer and centrifuged in a JS13-1 rotor at 1000 g, 4°C for 4 

min.  

For thylakoid extraction, intact chloroplasts were lysed in extraction buffer (30 mM HEPES-

KOH pH 8.0, 60 mM KOAc and 10 mM MgOAc) by passing the suspension through a 24-

gauge syringe 50 times, and centrifuged at 4°C, 16000 g for 60 min. The pellet (thylakoid 

membrane fraction) was washed twice with TMK buffer (10 mM pH 6.8 Tris-HCl, 10 mM 

MgCl2 and 20 mM KCl) and used for further analysis by 2D BN-gels (section 2.2.5.8). 

2.2.5.6  SDS polyacrylamide gel electrophoresis (SDS PAGE) 

The concentration of protein obtained in section 2.2.5.2 and 2.2.5.3 was determined by 

Bradford Protein Assay (Bradford, 1976).  

Identical amounts of proteins were separated in discontinuous polyacrylamide gels according 

to their molecular weight as described by Laemmli (1970). A BioRad miniProtein II gel 

system (BioRad) was used to prepare and run the gels. Protein samples were solubilized in 5 

× SDS loading buffer (10% SDS, 20% glycerol, 20% ß-mercaptoethanol and 0.1% 

bromophenol blue in 250 mM Tris-Cl pH 6.8), denatured at 95ºC (soluble proteins) or 55 ºC 

(membrane proteins) for 10 min, loaded and separated by SDS-PAGE (10% -16% acrylamide) 

as described by Schagger and von Jagow (1987). The running buffer used for gel 

electrophoresis consisted of 25 mM Tris-Cl, 0.192 M glycine and 0.1% SDS. After 
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electrophoresis, proteins were visualized by Coomassie Blue stained gels, or detected by 

using immunoblot analyses (section 2.2.5.7). 

2.2.5.7 Immunoblot assays 

Proteins were separated by SDS-PAGE (section 2.2.5.6), transferred to nitrocellulose 

membranes (pore size 0.45 μm, AppliChem) in transfer buffer (48 mM Tris, 39 mM glycine, 

0.037 % SDS, 20% MeOH) for 1.5 h at 0.8 mA/cm
2 

using a semi-dry blot transfer apparatus 

(Peqlab). To visualize the quality of transferred protein, the membrane was stained briefly in 

Ponceau S solution (0.2% Ponceau S, 1% acetic acid). Subsequently, the nitrocellulose 

membrane was incubated in blocking buffer (5% milk powder in 1 × TBS-T (150 mM NaCl, 

7.7 mM Tris-Cl pH 7.5, 0.1%Tween)) for 1-2 h at room temperature, followed by incubation 

with the primary antibody in blocking buffer at 4°C overnight. Dilutions of respective 

antibodies are denoted in Table 2.2. Afterwards, the nitrocellulose membrane was washed 3 × 

10 min in 1 × TBS-T, and then incubated with the secondary antibody for 1 h at room 

temperature. The membrane was again washed 3 × 10 min in 1×TBS-T. HRP conjugated 

antibodies were detected by enhanced chemiluminescence (ECL) solution (Thermo Scientific) 

and exposure to X-ray films (Fuji). 

2.2.5.8 2D Blue Native-PAGE 

For the first dimensional analysis of total membranes from C. reinhardtii or thylakoid 

membranes from A. thaliana, respectively, (compare sections 2.2.5.4 and 2.2.5.5) by Blue 

Native-PAGE, membranes corresponding to 25 μg of chlorophyll were resuspended in 60 μL 

ACA Buffer (750 mM ε-aminocaproic acid, 50 mM Bis-Tris-Cl pH 7.0, 5 mM pH 7.0 EDTA, 

50 mM NaCl). Thylakoids were solubilized on ice for 10 min by applying n-dodecyl-β-D-

maltoside (β-DM) to a final concentration of 1.5% (w/v). After centrifugation at 16000 g, 4°C 

for 20 min, the supernatant was mixed with 1/20 volume of BN loading dye (750 mM ε-

aminocaproic acid and 5% Coomassie G 250 (w/v)) and fractionated in a non-denaturing 

4.5%-12% BN-PAGE gel (polyacrylamide gel containing 0.5 M ε-aminocaproic acid, 20% 

glycerol and 50 mM Bis-Tris-Cl pH 7.0). The BN-PAGE was carried out overnight with 

cathode buffer (50 mM Tricine, 15 mM Bis-Tris-Cl pH 7.0 and 0.02 g/ mL Coomassie G 250) 

and anode buffer (50 mM Bis-Tris-HCl pH 7.0) at a constant voltage of 70 V at 4°C. A 

Biometra maxigel system (G 48) was used to run the gels. 

For the second dimension (2D-PAGE), gel lanes from the first dimension were cut off, 

denatured in denaturing buffer (0.125 M Tris-HCl pH 6.8, 4 g/mL SDS and 1% β-



2 MATERIAL AND METHODS            47 

mercaptoethanol) for 30 min at room temperature, and resolved on the second dimension of 

Urea gel (15% acrylamide, 60 g/ mL urea). Gels were either stained with Coomassie Blue/ 

silver staining to visualize proteins or specific proteins were detected using immunoblot 

detection (section 2.2.5.7). 

2.2.5.9  In vivo translation assay of Chlamydomonas reinhardtii thylakoid proteins 

In vivo radioactive 
35

S labeling of C. reinhardtii thylakoid proteins was principally performed 

as described by Klinkert (2006). 50-100 mL C. reinhardtii culture with a density of 2×10
6
 

cells/mL were collected by centrifugation at 1000 g, 5 min at room temperature, washed 

carefully once with TAPS-B buffer and then resuspended in 10 mL TAPS-B buffer 

(composition described below). The cultures were transferred to sterile 50 mL Erlenmeyer 

flasks. After shaking for 16 h in medium light, cells were collected again by centrifugation 

(1000 g, 5 min, RT), washed carefully in TAPS-B/T buffer (composition described below), 

and finally resuspended exactly in 10 mL TAPS-B/T. The cultures were shaken for 2 h in the 

dark for sulfur-starvation. The chlorophyll content of the cells was measured by acetone assay 

as described in section 2.2.5.4. and resuspended to a final density of 80 µg chl/mL. 250 µL of 

this suspension were incubated with 25 μL cycloheximide stock solution (100 μg/mL) in the 

dark for 10 min. 12.5 μL 
35

S (10 mCi/mL, Hartmann analytic) was added to the culture, 

immediately followed by illumination with light (50 µE/m
2
/s) for 30 min. The labeled cells 

were harvested by centrifugation at 20000 g for 15 min, broken by pipetting in lysis buffer A 

(10 mM HEPES pH 7.8, 10 mM EDTA, protease inhibitor cocktail). Membranes were 

collected by spinning down at 20000 g for 25 min, 4°C, and resuspended in 100 µL buffer B 

(10 mM Tricine, 10 mM EDTA, pH 7.8). 

Membrane proteins were resolved in denaturing 16% SDS PAGE gel with 60 g/ mL urea. The 

gel was stained with Coomassie Blue to visualize proteins according to standard protocols, 

and dried on a Whatman filter (MUNKTELL) by a dryer (Model 583, Bio Rad). After 

exposure to a PhosphoImager Screen, radioactive labeled proteins were detected and 

quantified with the Typhoon PhosphorImager (GE healthcare). 

 

- TAPS-B (1 L):  Tris base 2.42 g 

0.5 mM KPO4 

100 × Beijerink Pulse 10 mL 

Trace 1 mL 

Sorbitol 10 g, pH 7.0 

 

- TAPS-B/T (1 L):  Tris base 2.42 g 
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0.5 mM KPO4 

100 × Beijerink Pulse 10 mL 

Sorbitol 10 g, pH 7.0 

 

- 100 × Beijerink Pulse(1 L): NH4Cl 40 g  

CaCl2× 2 H2O 5 g,  

MgCl2× 6 H2O 8.25 g 

 

- Trace (1 L):   FeSO4×7H2O 4.99 g 

Na2EDTA 50 g 

ZnSO4×7H2O 22 g 

H3BO3 11.4 g 

MnCl2× 4H2O 5.06 g 

CoCl2×6H2O 1.61 g 

CuSO4×5H2O 1.57 g 

(NH4)6Mo7O24×4H2O 1.1 g 

pH 6.5-6.8 
 

2.2.5.10 In vivo translation assay of Arabidopsis thaliana thylakoid proteins 

In vivo radioactive 
35

S labeling of thylakoid proteins was performed as described by Pesaresi 

(2006). Five A. thaliana leaves harvested at the 12-leaf rosette stage were pressed softly 

against a sandpaper, and vacuum infiltrated in a 20 mL syringe with 5 mL TME Buffer (20 

mM Tris-Cl pH 6.8, 10 mM MgCl2
 
and 5 mM EDTA) containing 1 mCi 

35
S Methionine, 20 

μg/mL cycloheximide and 0.1% Tween-20. After infiltration, leaves were illuminated with 

light (50 µE m
-2 

s
-1

) for 30 min. Thylakoids were isolated and resolved on SDS-PAGE as 

described in section 2.2.5.5 and 2.2.5.6. The gel was stained with Coomassie Blue, and dried 

on a Whatman paper (MUNKTELL) by the drier (Bio Rad). After exposure to a 

PhosphorImager screen, radioactive labeled proteins were detected and quantified with a 

Typhoon PhosphorImager (GE healthcare). 

2.2.6 Chlorophyll fluorescence QY-max measurement 

The maximum quantum yield of PSII photochemistry (QY-max) was detected using the 

Fluorcam system (Photon systems instruments) according to the manual. C. reinhardtii strains 

were dark adapted for 10 min and minimal fluorescence (Fo) was measured. Then, pulses (0.8 

s) of white light (5000 mmol photons m22 s21) were applied to determine the maximum 

fluorescence (Fm) and the ratio (Fm – Fo)/Fm = Fv/Fm (maximum quantum yield of PSII) 

was calculated. 
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2.2.7 Electroporation of Chlamydomonas reinhardtii 

Nuclear transformation of cell-walled C. reinhardtii cells was carried out using the 

electroporation method (Shimogawara et al., 1998). Briefly, cells of C. reinhardtii were grown 

in 100 mL TAPS medium to a cell density of 1-2 × 10
6
 cells/mL. Cells were harvested by 

centrifugation (1100 g, 6 min, RT) and resuspended in TAPS medium to a density of 1 × 10
8
 

cells/mL. 300 μL cells, 2 µg plasmid DNA and 40 µg carrier DNA (salmon fish sperm) were 

mixed in a sterile electroporation cuvette, and incubated at 16°C for 20 min. In parallel, 

identical set-ups without plasmid DNA were used as negative controls. The electroporation 

was performed with standard setting (R = high range; electric field = 1 kV; C = 10 μF). After 

the transformation, the cuvettes with cells were incubated again at 16°C for 20 min.  

Selection of complemented strains was carried out by plating transformants on HSM plates, 

growing under high light condition for 10 days. Selection of paromomycin resistant clones 

was approved by diluting 250 μL of transformed cells with 25 mL TAPS medium and growing 

under low light for 18 h for regeneration. Afterwards the cells were collected by 

centrifugation at 2000 g for 5 min at RT, and then resuspended in 500 μL TAPS medium. 

Aliquots of 50 μL were plated on TAP agar plates supplemented with 10 µg/mL paromomycin. 

Plates were kept under dim light or in the dark, and scored for transformants about 2 weeks 

after plating. 

2.2.8 Complementation of Chlamydomonas reinhardtii 

The complementation of C. reinhardtii mutants was performed either by using BAC (bacterial 

artificial chromosome) clone DNA (for mutant 45a and 101b) or PCR amplified cDNA (for 

mutant 101a). Electroporation was employed as described in section 2.2.7. 

The BAC clones named 35E19 (109 kbp, corresponding to PTQ13131.y3) and 28D19 (53 kbp, 

corresponding to PTQ10634) were selected for complementation of mutants 45a and 101b 

respectively, and ordered from BAC Resource Center (Clemson University). BAC DNAs 

were prepared by using the Midi Kit (Qiagen) according to the manufacturer’s instructions. 

The successful complimented strains were selected by photoautotrophic growth on HSM 

plates. 

For complementation of 101a, the full length cDNA sequence of OHP2 was amplified by 

standard PCR reactions (section 2.2.4.4.1), using primers with additional NdeI and EcoRI 

cutting site, shown below: 

OHP1-fw4: catatgTCGATTGCTGCACTCCG  

OHP1-rev4: gaattcTTAGTCCAG GTCCACGATG 
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The amplified sequence was then ligated into the pBC1 vector (pJR38, Neupert et al., 2009) 

via NdeI/ EcoRI restriction sites, thus replacing the GFP coding sequence. This construct was 

then transformed into 101a mutant via electroporation. The positive transformants were 

selected first by growth on paromomycin TAP plates, then photoautotrophic growth on HSM 

plates. 

2.2.9 Crossing of Chlamydomonas reinhardtii 

The crossing of C. reinhardtii was performed by Dr. Olivier Vallon (CNRS, Paris, France), as 

described principally by Harris (1989). In brief, healthy growing parental strains with 

opposite mating types were transferred to TAP-N (TAP without NH4Cl) plates and grown for 

3-4 days till the cells became yellowish. Cells of both mating types were resuspended in 1 mL 

ddH2O with 1% sorbitol and shaked for 1 h under dim light. The mating step was set up by 

mixing these two cultures in 50 mL sterilized flasks and keeping it under high light (100 

µE/m
2
/s) without shaking. 70 µL of mating cells were taken by pipette and dropped on TAP 

(3% washed agar) plates after 2 h, 3 h and 4 h. The plates with drops were dried and kept 

under moderate light overnight, followed by growth in the dark for 1-2 weeks for the 

development of zygotes. The grown zygotes were picked up and tetrads with 4 or more 

progenies inside were opened carefully. Released progenies were subsequently collected by 

self-made glass hook for further analyses.  

2.2.10 Bioinformatics sources 

All software tools mentioned below were applied with default parameters unless stated 

otherwise. 

2.2.10.1 Prediction of gene models 

For gene model analysis and the obtainment of EST and genome sequences, the C. reinhardtii 

Genome Browser from the U.S. Department of Energy Joint Genome Institute (DOI JGI, 

(http://genome.jgi-psf.org/Chlre4/Chlre4.home.html), the UCLA browser for C. reinhardtii 

454 EST reads (http://genomes.mcdb.ucla.edu/Cre454/) and the browser of the National 

Center for Biotechnology Information employing the BLASTp and tBLASTn algorithms 

(NCBI, http://www.ncbi.nlm.nih.gov/BLAST) were used. The applied AUGUSTUS gene 

models (version 10.2) and gene identifiers were generated on evidence-based predictions 

using the v4 Chlamy genome assembly and the program AUGUSTUS (Stanke et al., 2004). 

http://genome.jgi-psf.org/Chlre4/Chlre4.home.html
http://www.ncbi.nlm.nih.gov/BLAST
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For A. thaliana, the browser of The Arabidopsis Information Resource (TAIR, 

http://www.arabidopsis.org) was used for gene model analysis and Blast search.  

2.2.10.2 Prediction of protein localization and transit peptides 

The prediction of protein localizations and transit peptides was based on Target-P version 1.1, 

Predotar and ChloroP (Emanuelsson et al., 2000; Emanuelsson et al., 1999; Small et al., 2004) 

2.2.10.3 Protein properties and repeat predictions 

The ProtParam tool on the ExPASy server was used for basic protein property predictions, 

like theoretical molecular weight calculations (Gasteiger et al., 2003). The OPR repeats were 

predicted manually in NCBI by amino acid sequence alignments with the OPR consensus 

sequence.  

 

http://www.arabidopsis.org/
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3 RESULTS 

3.1 Characterization of Chlamydomonas reinhardtii PSII mutants 

To find so far unidentified proteins involved in photosynthesis and to attain a better 

understanding of the regulation of chloroplast gene expression in C. reinhardtii, a forward 

genetic approach was applied. 16 PSII mutants, provided by Dr. Xenie Johnson 

(CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris), were 

obtained by random insertion of the vectors pBC1 or pMS188 into the nuclear genome of C. 

reinhardtii wild-type strains Jex4 or XS1 (sections 2.1.5 and 2.1.8, Table 3.2.1). PSII-specific 

mutants were selected by primary phenotypical analyses based on their inability to grow 

photoautotrophically on minimal medium and increased chlorophyll fluorescence as 

determined by QY-max measurements. As summarized in Table 3.2.1, none of the mutants 

was able to grow photoautotrophically on minimal medium, with the exception of mutant 

101b, which showed a slight growth. All mutants revealed significant lower QY-max values 

(0.01 - 0.42) than the wild-type (~ 0.8).  

In order to gain insights into the molecular basis for the mutant phenotypes, the accumulation 

of core proteins from photosynthetic complexes was investigated by determination of the 

levels  of the PSII reaction center protein D2, the large subunit of RuBisCo (RbcL), Cytb6 of 

the Cytochrom b6f complex and PsaA of the PSI complex. As shown in Figure 3.1.1, the 

accumulation of the D2 protein was significantly reduced in these 16 PSII mutants, which is 

in agreement with reduced QY-max values, especially in those mutants with no detectable D2, 

i.e., BC1H9 (QY-max=0.09), BC1D7 (QY-max=0.02), 42d (QY-max=0.09) and 101a (QY-

max=0.02). Mutants, which revealed higher QY-max values (above 0.3), such as 44d (QY-

max=0.42), 102a (QY-max=0.33), 101b (QY-max=0.35) and 42b (QY-max=0.37), 

accumulated more D2 proteins than the formerly described ones. At this, a clear correlation of 

increased chlorophyll fluorescence and reduced D2 protein accumulation was observed. 

However, almost all the mutants had wild-type protein levels of subunits from other 

chloroplast complexes, such as RbcL, Cytb6 and PsaA, whereas the Z1D8 mutant is an 

exception, in which the RbcL protein was completely missing (Figure 3.1.1, upper panel).  
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Figure 3.1.1 Accumulation of core proteins from chloroplast photosynthetic complexes in investigated PSII 

mutants. Immunoblots of total cell extracts from wild-type (WT) and 16 PSII mutants using antibodies against 

proteins indicated on the right side. Dilution series of wild-type proteins loaded in the lanes were marked as WT 

100%, 50% and 25%. 

 

 

In order to obtain indications if reduced transcript abundances changed protein stability or 

synthesis rates and were consequently responsible for reduced PSII protein levels in the 

described mutants, transcript accumulation analyses were performed. Northern blot analyses 

were accomplished by using specific probes for psbA, psbD and rbcL, encoding for D1, D2 

and RbcL proteins, respectively (primers used for amplifying probes are listed in Table 2.8). 

As shown in Figure 3.1.2, almost all the mutants accumulate psbA and psbD mRNAs to wild-

type levels, except BC1D7 and 42d mutants, which show undetectable amounts of psbD or 

psbA mRNA, respectively. These results indicate that except for BC1D7 and 42d, the reduced 

D2 accumulation of the rest 14 PSII mutants is due to posttranscriptional defects, as the 

transcript level for psbD is unaltered. The reason for reduced D2 accumulation can be protein 

synthesis or stabilization defects. These hypotheses were tested by in vivo labeling 

experiments as described below. However, the loss of psbA transcript in 42d and psbD 

transcript in BC1D7 may be due to a transcription or mRNA stabilization defect. In the Z1D8 

mutant, rbcL mRNA accumulates to the wild-type level, which indicates that it could be an 

RbcL translation or stabilization mutant.  
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Figure 3.1.2 Accumulation of photosynthesis related chloroplast transcripts. 3 µg of total cellular RNA from 

wild-type and 16 PSII mutants were fractionated by denaturing agarose gel electrophoresis and blotted onto 

nylon membrane. Membranes were hybridized with probes specific for psbA and psbD. For loading control, the 

same blots were hybridized with probes specific for atpB and rbcL transcripts, respectively. The Nac2-26 and 

Fud7 mutants were employed as negative controls for psbD and psbA mRNA accumulation. 

 

In vivo labeling of thylakoid proteins was carried out for mutants Z1D8, Z1G4, AP15-2Ci, 

BC1D7, BC1H9, BC1H3, P10B3, 101a, 101b, 45a, 42b (Figure 3.1.3). It was observed that, 

in Z1G4, AP15-2Ci and 101a mutants, there is no detectable D1 protein synthesized. These 

observations suggest that these mutants are having a defect in D1 synthesis. Or alternatively, 

the protein is rapidly degraded. In accordance with a lack of detectable psbD mRNA, the 

BC1D7 mutant shows no D2 synthesis. In addition, D1 is also not synthesized or rapidly 

degraded in the BC1D7 mutant, while the CP47 accumulation is reduced, as expected from 

the CES principle (section 1.3.1.2.2). A similar phenotype has been reported previously for 

the Nac2-26 mutant (Boudreau et al., 2000). Also no D2 synthesis was observed in the 

BC1H9 mutant, even though no changes in psbD mRNA levels were observed, pointing to a 

D2 protein synthesis or stability defect. In BCIH3 and P10B3 mutants, the translation of CP43 

is strongly reduced, which suggests they might share a similar molecular phenotype with the 

Tbc2 mutants published before (Auchincloss et al., 2002, Figure 3.1.3 A). Moreover, 45a also 

showed a D2 synthesis phenotype due to undetectable D2 protein in in vivo labeling 

experiments (Figure 3.1.3 B). An additional protein accumulation was observed between the 

size of D1 and D2 in the 45a mutant, which may correspond to be a precursor or modified 

form of the D1 protein (Figure 3.1.3 B). However, there is no clear change in thylakoid 

protein synthesis in 101b and 42b mutants, which suggests the mutated genes might encode 

proteins which could either stabilize the PSII subunits or are involved in the assembly of PSII 

complexes. Moreover, it is easy to find there is no detectable RbcL signal for Z1D8 mutant, 

which is in accordance with Western blot analysis (Figure 3.1.1). According to these 
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observations, Z1D8 shows multiple phenotypes, i.e. a PSII and also a RuBisCo deficient 

phenotype.  

              A 

 

             B 

 

Figure 3.1.3 Synthesis of PSII subunits by radioactive in vivo labeling of newly synthesized proteins. 

(A) Incorporation of 
14

C into chloroplast proteins of wild-type and PSII mutants. After labeling for 20 min in the 

presence of cycloheximide, thylakoid membranes were isolated, fractionated by 5%~14% SDS-PAGE and 

detected by autoradiography (performed together by Dr. Olivier Vallon and Fei Wang). 

(B) Incorporation of 
35

S into thylakoid membrane proteins of wild-type, Fud7 (a psbA mRNA deletion mutant), 

Nac2-26 (a D2 protein synthesis defect mutant due to psbD mRNA instability), 222E (a CP47 protein synthesis 

defect mutant due to psbB mRNA instability), and PSII mutants under investigation. After labeling for 20 min in 

the presence of cycloheximide, thylakoid membranes were isolated, fractionated by 14% SDS-PAGE and 

detected by autoradiography. 
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3.2 Identification of mutated genes in Chlamydomonas reinhardtii PSII mutants 

3.2.1 Determination of copy numbers of the inserted cassette in PSII mutants 

As described previously, during generation of insertional mutants, the vector is randomly 

integrated into the nuclear genome of C. reinhardtii, which can also produce mutants with 

multiple insertions. Since single insertional mutants are of particular interest for further 

molecular work, it was necessary to determine the copy number of the inserted cassette by 

Southern blot analysis. The probes used specifically detected either the ble gene on pMS188 

or the aphVIII gene on pBC1, conferring the antibiotic resistance used for selection of C. 

reinhardtii mutants. From the Southern results, several mutants were clearly found to be 

single insertional mutants, which include Z1D8, 41a, 41b, 42b, 42d, 45a, 44d, 101a, 101b and 

102a. These mutants were certainly preferential for further molecular research. For Z1G4, 

P10B3, AP152Ci and BC1H9, there were at least two insertions of the respective vector found, 

indicating that they are multiple insertional mutants. It is worth noticing that AP152Ci and 

BC1H9 have the same hybridization signal from both PstI and NheI digestion, which 

supposes one of these two mutants might be contaminated by the other; further more 

molecular analysis is required for clarification. No visible signal was detected in BC1D7 and 

BC1H3 which might indicate the insertion of truncated transformation vectors or genomic 

rearrangements limiting the detection of the mutagen (Figure 3.2.1).  

 

 

   

Figure 3.2.1 Southern blot analyses determining the copy number of the mutagenic vectors. 10 µg of 

genomic DNA were fractionated by 0.8% agarose gels after digestion by appropriate restriction enzymes labeled 

under each blot. Gels were blotted onto nylon membranes, and hybridized with probes specifically detecting the 

ble gene for Z1G4, Z1D8 or the aphVIII gene for BC1D7, BC1H3, P10B3, AP152Ci, BC1H9, 41a, 41b, 42b, 42d, 

45a, 44d, 101a, 101b, 102a (primers  used are listed in Table 2.7). Molecular size markers are labeled at the right. 
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Table 3.2.1 shows a detailed summary of the above mentioned results from all 16 PSII 

mutants under investigation. 

 

Table 3.2.1 Summary of the phenotypical characterization of 16 investigated PSII mutants.  

N.d.: not determined; 0: not detectable; WT: wild-type transcript or protein levels 

Mutant Mutant generation Photosynthetic  activity Protein/transcript accumulation Chloroplast  protein synthesis 

recipient 

strain 
vector 

copy 

number 

Photoauto-

trophic growth 

QY- 

max 

D2 

Protein 

RbcL 

protein 

psbD 

mRNA 

psbA 

mRNA 

rbcL 

mRNA 
D1 D2 CP43 CP47 RbcL 

101a 

Jex4 

pBC1 

1 - 

 

 

no growth on 

minimal medium 

101b slightly 

grows. 

0.02 0 

WT 

WT 

WT 

WT 

0 WT WT WT WT 

45a 1 - 0.24 ↓ 0 0 WT ↓ WT 

101b 1 Slight growth 0.35 ↓ WT WT WT WT WT 

42b 1 - 0.37 ↓ WT WT WT WT WT 

41a 1 - 0.01 ↓ 

N.d. 

42d 1 - 0.09 0 0 

41b 1 - 0.26 ↓ 

WT 

44d 1 - 0.42 ↓ 

102a 1 - 0.33 ↓ 

BC1D7 

XS1 

0 - 0.02 0 0 0 0 WT ↓ WT 

BC1H3 0 - 0.05 ↓ 

WT 

WT WT ↓ WT WT 

P10B3 2 - 0.16 ↓ WT WT ↓ WT WT 

AP15-2Ci 2 - 0.23 ↓ 0 WT ↓ ↓ WT 

BC1H9 2 - 0.09 0 0 0 WT ↓ WT 

Z1G4 pMS 

188 

2 - 0.15 ↓ 0 WT WT WT WT 

Z1D8 1 - 0.30 ↓ 0 0 0 ↓ ↓ 0 

 

3.2.2  BC1D7 is a Nac2 mutant 

Since the PSII activity was found to be affected in all mutants described in section 3.1, a 

further goal was the identification of corresponding mutated genes. In order to exclude the 

possibility that the mutated genes are already cloned and have been published before, 

Southern blot analyses were carried out for all mutants with probes specifically detecting the 

TBA1, MBB1, and Nac2 genes, of which the encoded proteins are known to reveal PSII 

related phenotypes (Boudreau et al., 2000; Somanchi et al., 2005; Vaistij et al., 2000). None of 

the mutants showed an insertion in these investigated genes (data not shown), with the 

exception of BC1D7. This mutant was verified to be a Nac2 mutant, with the Nac2 gene 

disrupted by an insertion (Figure 3.2.2). In addition, BC1D7 could also be complemented with 

cosmid DNA (cosnac5) containing the Nac2 gene, which further confirmed the conclusion 

above (performed by Dr. Olivier Vallon and Fei Wang). All of these results explain the Nac2-

like phenotype of BC1D7 described above (chapter 3.1), and suggest that this mutant is allelic 

to the previously described Nac2-26 mutant. Hence, this mutant was excluded from further 

analysis. 
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                A 

 

 

                 

 

 B 

                         

 

 

3.2.3 Identification of mutated genes by inverse PCR 

Among the nine PSII mutants revealing single insertion of the mutagen, eight mutants with 

severely affected PSII performance (shown in chapter 3.1) were chosen for gene identification, 

which are Z1D8, 41a, 41b, 42b, 42d, 45a, 101a and 101b. Therefore, the inverse PCR 

technique described in Figure 3.2.3.was employed.  

By applying this technique, the insertional site of the mutagen was identified successfully for 

four of the mutants (101b, 45a, 42b, and 101a). Products from two sets of independent PCRs 

with different restriction enzymes were obtained for sequencing (Figures 3.2.3 and 3.2.4; 

sequencing results are attached in annex). The sequencing results were analyzed by the 

BLAST tool in the Chlamydomonas JGI4 database. Both of the PCR products obtained by the 

use of two different restriction enzymes identified the same flanking genes. A hypothetic 

protein of 306 kDa was found to be encoded by the mutated gene in the 45a mutant (insertion 

happened in the 27
th

 exon), which revealed one Zinc finger domain and AAA-like domains, 

often found in helicase enzymes by a NCBI search for conserved domains. This might 

indicate a function of this protein in DNA repair or as a transcription factor. 

 

Figure 3.2.2 Southern blot analysis of genomic 

DNA from wild-type and the BC1D7 mutant. 

(A) The Nac2 gene structure is shown with exons 

indicated with black boxes. The probe and 

restriction enzyme recognition sites for SmaI used 

in Southern blot analysis are indicated. 

(B) 10 µg of genomic DNA were fractionated in 

an 0.8% agarose gel after digestion by the 

restriction enzyme SmaI, blotted onto a nylon 

membrane, and hybridized with a probe 

specifically detecting the Nac2 gene (primes used 

are listed in Table 2.7). Molecular size markers 

are labeled at the right. 
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Figure 3.2.3 Inverse PCR for identification of mutated genes. The procedure is exemplarily shown for the 

insertion of the pBC1 vector. The mutant genomic DNA (grey line) with inserted pBC1 vector (black box) is 

shown, the dashed lines represent the cutting site by relevant restriction enzymes. The inverse PCR was carried 

out as following: the genomic DNA from PSII mutants was digested with restriction enzymes PstI or NheI, 

respectively. The digested fragment was ligated by T4 ligase overnight to get circular DNA for inverse PCR. 

Primer P1 and P2 (correspond to inv-APHV-fw and inv-APHV-rev in Table 2.6) were applied for the 1
st
 PCR, 

whose product was used as a template for 2
nd

 PCR with primer P3 and P4 (correspond to inv-APHV-fw2 and 

inv-APHV-rev2 in Table 2.6). The PCR product was used for flanking DNA sequencing with primer P4.  

 

 

Another hypothetic protein of 429 kDa was identified in the 42b mutant (the insertion 

happened in the 15
th

 exon), which has a speract/scavenger receptor domain reported for 

several extracellular receptors and may be involved in protein-protein interactions. However, 

both proteins found to be mutated in 45a and 42b seem to be algae specific and not conserved 

in the green lineage as concluded from protein Blast analysis. In 101a, a hypothetic protein 

encoded on chromosome 11 was revealed (the insertion happened inside the intron between 

the last two exons), which contains a CUE domain reported to bind ubiquitin. In the 101b 

mutant, the CLR24 gene on chromosome 6 was found to be disrupted (insertion happened 

before the last exon), encoding a protein of the OPR family. Features of identified genes and 

gene products are summarized in Table 3.2.2. 
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Table 3.2.2 Summary of mutated genes in 45a, 42b, 101a, and 101b identified by inverse PCR 

Mutant Genome position
a
 Augustus 10 gene model

b
 Homologies

c
 Predicted protein size

d
 

45a 
chromosome_3:2410185-

2428209  

Cre03.g166850 Zn finger 306 kDa 

42b 
chromosome_12:818276

4-8207719 

Cre12.g552700 Speract/scavenger 

receptor domain 

429 kDa 

101a 
chromosome_11:218828

5-2191749 

Cre11.g480000 CUE 31 kDa 

101b 
chromosome_6:2889693-

2895667 

Cre06.g272450 OPR  138 kDa 

a 
according to the University of California Los Angeles (UCLA) browser for Chlamydomonas 454 EST reads 

(http://genomes.mcdb.ucla.edu/Cre454/);
b  

(Stanke and Waack, 2003); 
c
 obtained from pfam 26.0 (Punta et al., 

2012);
d
 deduced by ProtParam Tool (Wilkins et al., 1999). 

 

 

Southern blot analyses on the disrupted genes for all the four mutants were carried out to 

confirm the insertion site. As shown in Figure 3.2.4, all mutant genomic DNAs revealed 

altered hybridization patterns as compared to the wild-type, at this confirming an insertion in 

the identified genes.  

Furthermore, the mutation found in 45a was determined to be linked with the PSII phenotype 

by BAC clone complementation, as described in section 2.2.8 (data not shown). Additionally, 

the insertion in 101b was approved by both BAC clone complementation and co-segregation 

analysis as described below in chapter 3.4.1.2. The complementation of 42b by BAC DNA 

was not successful, either due to the technical reasons, or the identified mutation was not 

linked to the PSII phenotype. For the 101a mutant, the co-segregation analysis showed that 

the mutation found by inverse PCR did not correlate with the PSII phenotype (data not 

shown), indicating a second mutation in the genome of this mutant. Hence, another molecular 

method was employed to identify the actual mutation site responsible for the phenotype, 

which is described in section 3.3.2.  

Among the four PSII mutants with identified mutated genes, 42b and 45a were not further 

investigated due to the extremely high molecular weight of the proteins encoded by the 

mutated genes (306/429 kDa) and their little conservation within the plant kingdom. 

Therefore, the further molecular and phenotypical analysis was focused on mutants 101a and 

101b (chapter 3.3 and 3.4). 
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A    

    

 

B 

 

 

 

 

Figure 3.2.4 Southern blot on genomic DNA of 42b, 45a, 101b, and 101a to confirm the insertion site. 

(A) Schematic of the insertion sites of the pBC1 vector in 42b, 45a, 101a, and 101b. For simplification, the 

exon/intron structure is not specified in the mutant genomic DNA, truncated presentation of long genes are 

indicated by horizontal double lines. The restriction enzymes PstI and NheI used for inverse PCR are indicated 

in vertical arrows with real lines, and BamHI, XmaI, HindIII used for Southern blot are indicated in vertical 

arrows with dashed lines. The primers P1, P2, P3 and P4 used for inverse PCR are indicated by horizontal 

arrows, corresponding to inv-APHV-fw, inv-APHV-rev, inv-APHV-fw2 and inv-APHV-rev2 respectively, listed 

in Table 2.6. 

(B) Southern blot analyses. 10 µg of genomic DNA was fractionated along with a molecular size marker by 

0.8% agarose gels after digestion by appropriate restriction enzymes labeled under each blot. The fractionated 

DNAs were blotted onto nylon membranes, and hybridized with probes specifically detecting the mutated genes 

shown in (A). The primers used are listed in Table 2.7.  
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3.3 Characterization of the Chlamydomonas reinhardtii 101a (ohp2) mutant 

3.3.1 Localization of the mutated gene in the 101a (ohp2) mutant 

Since the inverse PCR could not identify the mutation causing the PSII phenotype, another 

molecular technique based on the principle of map-based cloning was performed to determine 

the second mutated gene. The 101a mutant was crossed with the wild-type stain (WT S24 

mt+), and the progenies from complete and incomplete tetrads were collected for further 

analyses. The separation of wild-type and PSII deficient progenies were precisely 2:2, which 

indicated only one mutation in the mutant genome caused PSII phenotype. Interestingly, all of 

the 47 PSII deficient progenies were found to be mating type minus (mt-). This was confirmed 

by PCRs on mating type specific genes Mid (mt-) and FusI (mt+), which can be considered as 

linked gene makers to localize the mutated site. The PCR results shown in Figure 3.3.1 

revealed a linkage between the Mid gene and the PSII phenotype in all 47 progenies. 

Therefore, the mutated site in 101a was suggested to be inside or close to the mating type 

minus region, which is on the 6 chromosome of C. reinhardtii.  

 

 

 

Figure 3.3.1 Detection of Mid and FusI genes by PCR on progenies with PSII phenotype (1-47) and the 

mt+ wild-type stain (WT+). Primers were applied for PCR reactions, specific for Mid and FusI genes (mid-fw: 

ATGGCCTGTTTCTTAGC, mid-rev: CTACATGTGTTTCTTGACG, fus1-fw: ATGCCTATCTTTCTCATTCT, 

fus1-rev: GCAAAATACACGTCTGGAAG). Molecular size markers are indicated on the left (M). 

 

 

As the mutated gene is linked to the mating type minus region, a manual search of this region 

for potentially mutated candidate genes was performed. Several genes predicted to be related 

to photosynthesis, were selected for PCR analyses such as CGL70, CRB1, and OHP2. Among 

these candidates, the OHP2 gene (gene structure shown in Figure 3.3.2 A), which is 

approximately 30 kb upstream of the mating type minus region, appeared to be undetectable 

in all the PSII deficient progenies (Figure 3.3.2 B), whereas the other genes tested were 

unaltered (data not shown). This OHP2 gene in C. reinhardtii encodes the light induced one 
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helix protein 2, which will be described in more detail in section 3.3.3. Southern blot analysis 

with an OHP2-specific probe (Figure 3.3.2 A) confirmed the mutation of the OHP2 gene in 

the 101a mutant (Figure 3.3.2 C). Accordingly, the 101a mutant was renamed as ohp2 mutant.  

 

A                                                                                                                                     C 

 
 
B 

 
 

 

Figure 3.3.2 Molecular analyses of the ohp2 mutant 

(A) Gene model of OHP2 in C. reinhardtii. Exons are shown by black solid boxes, introns by conjunctive black 

lines, and untranslated regions (UTR) by black solid boxes with smaller size. P1 and P2 (correspond to OHP1-

fw2 and OHP1-rev2 listed in Table 2.7) are gene specific primers used to generate the probe for Southern blot 

shown in (C). 

(B) PCR on progenies with PSII deficient phenotypes (numbered 1-47) and the wild-type stain (WT), with 

primers P1 and P2 specific for the OHP2 gene, as shown in (A). 

(C) Southern blot analysis of genomic DNA from the wild-type and the ohp2 mutant. 10 µg of genomic DNA 

were fractionated in a 0.8% agarose gel after digestion by restriction enzyme HindIII or PstI, respectively, 

blotted onto a nylon membrane, and hybridized with the probe indicated in (A) 

 

 

3.3.2 Complementation of the ohp2 mutant by OHP2 cDNA 

To further confirm that the loss of functional OHP2 is responsible for the PSII phenotype of 

the 101a mutant, complementation studies were performed. The full length cDNA of OHP2 

was PCR amplified and ligated downstream of the strong PsaD promoter in the pBC1 vector. 

The pBC1-OHP2 construct was transformed into the ohp2 mutant via electroporation (section 

2.2.8). Positive transformants were selected by paromomycin resistance, followed by 

photoautotrophic growth tests on minimal medium plates. The growth phenotype of positive 

transformants was restored to that of the wild-type, which was also reflected by reduced 

chlorophyll fluorescence as stated from almost wild-type-like QY-max values (Figure 3.3.3). 
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Finally, it could be concluded that, the OHP2 gene is disrupted in the ohp2 mutant and 

responsible for the PSII phenotype. 

 

 

 

 

 

 

 

Figure 3.3.3 Photoautotrophic growth test of an 

ohp2 complemented strain. The wild-type, ohp2 

and ohp2 complemented ohp2::OHP2 cells were 

resuspended in ddH2O at a concentration of 10
5 

cells/mL and spotted onto Petri dishes of TAP or 

HSM media and grown for 7d under higher light 

(HL) at 100 µE/m
2
/s) or low light (LL) at 

30 µE/m
2
/s). 

 

 

 

 

 

3.3.3 Description of OHP2 protein in Chlamydomonas reinhardtii 

OHP2 encodes a protein of 144 amino acids (Figure 3.3.4) belonging to the family of LIL 

proteins introduced in section 1.2.1.3.1. The N-terminal 49 amino acids are predicted to 

represent a chloroplast targeting peptide (cTP) by ChloroP (Emanuelsson et al., 1999). The 

mature protein without cTP is calculated to have a molecular weight of 11.4 kDa by ExPASy 

(Gasteiger et al., 2003). The OHP2 protein is predicted to contain a transmembrane helix 

(amino acids 103-125) by the TMpred server 

(http://www.ch.embnet.org/software/TMPRED_form.html), which is surrounded by a  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.4 Protein primary structure of OHP2 in C. reinhardtii. Schematic (upper panel) and amino acid 

sequence (lower panel) of the OHP2 protein are shown. Protein domains were predicted by ChloroP and TMpred. 

The chloroplast transit peptide is shown as a box with oblique line; the chlorophyll binding region is shown as a 

solid black box; the predicted transmembrane domain is indicated by a black line under the amino acid sequence, 

and the dashed line represents the other predicted hydrophobic region. The highly conserved amino acids among 

the OHP2 homologues are highlighted with bigger size. 

http://www.ch.embnet.org/software/TMPRED_form.html
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predicted chlorophyll binding region, with certain highly conserved amino acid (Adamska et 

al., 2001), shown in Figure 3.3.4. A second predicted hydrophobic segment presents at the C-

terminus between amino acids 131-138, which is suggested to be a putative membrane anchor 

(Andersson et al., 2003).  

By performing BLAST analysis against the non-redundant protein database in NCBI, OHP2 

homologues were identified in higher plants, and also in mosses but not in non-photosynthetic 

organisms. Protein sequences of OHP2 homologues were aligned with ClustalW, and 

manually modified with BOXSHADE (http://www.ch.embnet.org/software/BOX_form.html). 

It can be observed that OHP2 and its homologues share low conservation at the N-terminus 

containing the chloroplast transit peptide (cTP) but a highly conserved putative 

transmembrane (TM) domain region at the C-terminus (Figure 3.3.5). This TM region 

overlaps a putative chlorophyll binding domain also described for other LIL proteins 

(Adamska et al., 2001), which possess several highly conserved residues as indicated in 

Figure 3.3.4 (lower panel). 

 

 

 

Figure 3.3.5 Sequence alignment of OHP2 homologues in different species. By Blast search, OHP2 

homologues in Chlamydomonas (Chlamydomonas reinhardtii, GI: 159477110), Arabidopsis ( Arabidopsis 

thaliana, GI: 42562501), Moss (Physcomitrella patens, GI: 168007372 ), Grape (Vitis vinifera, GI: 359493153), 

Poplar (Populus trichocarpa, GI: 224062862 ), Rice (Oryza sativa Japonica, GI: 297597102), Brachypodium 

(Brachypodium distachyon, GI: 357135380), Glycine (Glycine max, GI: 356576079), and Sorghum (Sorghum 

bicolor, GI:  42053441) were obtained from NCBI (www.ncbi.nlm.nih.gov).  The multiple sequence alignment 

was performed by using ClustalW (Thompson et al., 2002) and Boxshade 

(http://www.ch.embnet.org/software/BOX_form.html). Black boxes indicate strictly conserved amino acids, and 

gray boxes closely related ones.  

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=5936173&RID=PCASKCE9016&log$=geneexplicitprot&blast_rank=1
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=7483193&RID=PCAHYUCM016&log$=geneexplicitprot&blast_rank=1
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3.3.4 Phenotype description of the ohp2 mutant 

To summarize the phenotype analyses described in chapters 3.1 and 3.3 in detail: The QY-max 

value of the ohp2 mutant was observed to be 0.01, while that of the wild-type is 0.78, which 

means the mutant almost completely lost its PSII activity (compare Table 3.2.1). Accordingly, 

the ohp2 mutant cannot grow photoautotrophically on HSM media (Figure 3.3.2). 

Furthermore, there is no detectable accumulation of D2 protein in ohp2 mutant, whereas RbcL 

and the PSI core subunit PsaA accumulate to wild-type levels (Figure 3.1.1). In parallel, 

Northern blot analyses on psbA and psbD mRNA were carried out. The accumulation of psbA 

and psbD transcripts did not show any differences between the wild-type and the ohp2 mutant 

(Figure 3.1.2), which demonstrates that the OHP2 protein is not involved in transcriptional 

regulation or transcript stabilization, but in later steps of PSII subunit synthesis or assembly. 

In order to verify the reason which can explain the loss of PSII in the ohp2 mutant, in vivo 

labeling experiments were performed on wild-type, ohp2 mutant, and other PSII deficient 

mutants as controls. As shown in Figure 3.1.3 B, the ohp2 mutant has almost no detectable D1 

protein as compared to the wild-type, but normal amounts of other subunits of PSII and 

ATPase, which indicates that specifically the normal transcribed psbA transcript could not be 

translated into D1 protein in the ohp2 mutant, or the newly synthesized D1 protein is not 

stable. The pattern of thylakoid protein synthesis of the ohp2 mutant is similar to that of the 

Fud7 mutant, which is a psbA deletion mutant. Taken together, the results suggest that OHP2 

might be involved in translation or stabilization of D1 subunits. 
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3.4 Characterization of the Chlamydomonas reinhardtii 101b (clr24) mutant 

The 101b mutant was renamed as clr24 since the CLR24 gene was shown to be disrupted in 

the 101b mutant (chapter 3.2). In the following, co-segregation and complementation assays 

were performed to confirm that the mutated CLR24 gene actually causes the PSII phenotype 

in the 101b mutant. Furthermore, different biochemical experiments were carried out to 

investigate the precise phenotype of clr24. As CLR24 belongs to the OPR protein family, 

whose members are described to be involved in organellar RNA metabolism, this chapter also 

includes the analysis of putative RNA targets of the CLR24 protein to elucidate its function. 

3.4.1 The mutation in CLR24 causes the PSII phenotype 

To confirm a correlation of the PSII phenotype and the mutation in the CLR24 gene co-

segregation and complementation assays were performed on the 101b mutant. 

The co-segregation analysis was carried out in collaboration with Dr. Olivier Vallon 

(CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris). The 

clr24 mutant which is an mt- strain was crossed with mt+ wild-type strain. Tetrads were 

separated in the 4-progeny-stage, and 37 progenies from 10 complete and incomplete tetrads 

were collected for further analysis. Wild-type progenies and PSII deficient progenies showed 

a 2:2 segregation, which confirmed that only one single gene involved in photosynthesis is 

interrupted in the clr24 mutant. In addition, PCR analyses and QY-max measurements for all 

progenies confirmed a correlation of the PSII phenotype and the mutation in CLR24 (Figure 

3.4.1).  
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Figure 3.4.1 Co-segregation analysis of clr24 mutant.  

(A) Insertion site of the mutagen in the CLR24 gene in the clr24 mutant. Exons are shown as black boxes and 

introns as gray lines. The locations of both the aphVIII gene and the promoters of the mutagen are indicated, 

together with the primers and restriction enzyme restriction sites used for inverse PCR (section 2.2.4.5). 

(B) PCR analysis of 37 progenies from clr24 x WT crossing. 10 tetrads were analyzed by PCR with primers 

shown in (A) and listed in Table 2.6. Here, exemplarily shown only 7 out of 37 progenies (1-7). 
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To further verify the role of CLR24 in photosynthesis, complementation studies were 

performed (Figure 3.2.4). For this purpose, BAC DNA containing the genomic CLR24 region 

was transformed into the clr24 mutant (section 2.2.8). The successful integration of the 

CLR24 gene was confirmed by PCR (Figure 3.4.2 A). The complemented strains 

clr24::CLR24 showed higher QY-max values (0.65~0.72) as compared to the clr24 mutant 

(~0.35), with a restored ability to grow photoautotrophically on minimal medium (Figure 

3.4.2). Taken together, complementation and co-segregation results clearly confirmed the 

mutation in the CLR24 gene to be responsible for the photosynthesis defect of the 101b 

mutant. 

 

A                                                                              B 

 

           
 
Figure 3.4.2 Complementation of the clr24 mutant. 

(A) Confirmation of CLR24 integration into the genome of the clr24 mutant after BAC clone transformation. 

Positive clr24 complemented line (clr24::CLR24), wild-type (WT), and the clr24 mutant (clr24) were screened 

by PCR with primers P5 and P6 shown in Figure 3.4.1 A 

(B) Photoautotrophic growth test of a complemented strain on HSM plates. Cells of wild-type, clr24 mutant and 

complement strain were resuspended in ddH2O at a concentration of 10
5 
cells/mL and spotted onto Petri dishes of 

TAP and HSM media, grown for 7d under low light (LL, 30 µE/m
2
/s) or high light (HL, 100 µE/m

2
/s) conditions, 

respectively. QY-max values are indicated. 

 

 

3.4.2 Description of the CLR24 protein in Chlamydomonas reinhardtii 

The CLR24 gene encodes a protein of 1330 amino acids (138 kDa) and belongs to the OPR 

protein family (section 1.3.2.3). The N-terminal 74 amino acids are predicted by ChloroP as 

plastid targeting sequence (Figure 3.4.3 A) and the mature protein is calculated to have a 

molecular weight of 132 kDa. CLR24 contains 14 OPR motifs, of which each is predicted to 

form two -helices (Figure 3.4.3 A). A multiple alignment of these 14 OPR repeats reveals, 

for all of the repeats a higher similarity to the consensus sequence in the first predicted helix 
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containing the LWALA motif than in the second one (Figure 3.4.3 B, compare section 

1.3.2.3). 

 

A 
  

 

 

B 

 

Figure 3.4.3 Features of the CLR24 protein of C. reinhardtii 

(A) Schematic (upper panel) structure and amino acid sequence (lower panel) of CLR24. The plastid transit 

sequence predicted by ChloroP is shown as a dashed box; the OPR repeats obtained by alignment with the OPR 

protein consensus sequence are shown as solid boxes. The predicted helical structures obtained by Jpred 

(www.compbio.dundee.ac.uk/www.jpred) are indicated as black lines below the amino acid sequence. 

(B) Multiple sequence alignment between the OPR consensus sequence and CLR24 OPR repeats was performed 

by Genedoc. Dark gray boxes indicate more conserved amino acids, and light gray boxes less conserved ones. 
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3.4.3 The formation of PSII dimers and supercomplexes is affected in the clr24 mutant 

As already revealed in the initial analysis of all investigated PSII mutants in chapter 3.2, the 

clr24 (101b) mutant showed a reduced D2 protein accumulation, only weak photoautotrophic 

growth, and increased chlorophyll fluorescence as indicated by a QY-max value of 0.35 

(compare Table 3.2.1). However, no defects were observed in transcript accumulations or in 

thylakoid protein synthesis. These results indicate that the translation apparatus in the clr24 

mutant is functional as in the wild-type, and CLR24 could be involved in the post-

translational regulation of PSII subunits such as assembly or stabilization of PSII complexes. 

Therefore, further phenotypic analyses were carried out to gain insights into the precise 

function of the CLR24 protein.  

As introduced before, PSII complexes are multi-protein complexes, which are composed of 

more than 20 subunits, including the core subunit D1 and D2 (section 1.2.1.1). All the 

subunits are stabilized upon successful assembly into a complex. In case of assembly defects, 

their accumulation is affected due to the degradation mechanisms (Choquet et al., 2001). In 

order to verify the reason for the reduced accumulation of the D2 protein in the clr24 mutant, 

photosynthetic complexes of the wild-type and the clr24 mutant were analyzed by blue native 

PAGE  (section 2.2.5.8, Figure 3.4.4). The results obtained indicate that the inter-complex 

stoichiometry is largely changed in the clr24 mutant, and all forms of PSII complexes are 

reduced dramatically, such as PSII monomers, dimers, and supercomplexes (Figure 3.4.4 A). 

In the second dimension, denaturing SDS-PAGE was carried out to analyze the abundance of 

individual subunits in different complexes. In the clr24 mutant, PSII subunits were severely 

reduced in the PSII monomer, and only traces of PSII dimers can be observed, while the super 

molecular structure of PSII was not detectable (Figure 3.4.4 B).  

In order to confirm the results obtained from stained gels in Figure 3.4.4 B, immunoblot 

analyses were carried out on the second dimension, by using antibodies against D2 and CP43. 

As shown in Figure 3.4.4 C, the PSII dimers are detected at much reduced levels and 

supercomplexes are completely undetectable. Furthermore, the PSII monomers also show a 

reduced accumulation in the clr24 mutant. The antenna protein CP43, which is involved in 

PSII assembly at a later stage, is also reduced in PSII monomers (Figure 3.4.4 C). Although in 

the one-dimensional SDS-PAGE gel of in vivo pulse labeled proteins, there was no change of 

protein synthesis detectable (Figure 3.1.3 B), a second dimension SDS-PAGE gel showed 

obvious differences (Figure 3.4.5). The 
35

S labeled thylakoid proteins were obtained from 
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             A                                                                      B 
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Figure 3.4.4 Accumulation of PSII complexes  

(A) BN-PAGE analyses of thylakoid photosynthetic complexes. Thylakoids from wild-type and the clr24 mutant 

were solubilized with 1.5% (w/v) β-DM. Extracts were fractionated by 4.5%-15% BN-PAGE. Complexes 

detected were identified in accordance with previously published profiles (Granvogl et al., 2006; Peng et al., 

2008; Schwenkert et al., 2006): PSI-NDH supercomplex (PSI-NDH; I), PSI-LHCII complex (II), PSII 

supercomplexes (PSII super; III), PSI monomers and PSII dimers (PSI monomer and PSII dimer; IV), PSII 

monomers (PSIImonomer; V), CP43-free PSII monomers (CP43-PSII; VI), trimeric LHCII (LHCII trimer; VII), 

and monomeric LHCII (LHCII monomer; VIII).  

(B) 2D SDS-PAGE separation of thylakoid protein complexes. Individual lanes from BN-PAGE gels as in (A) 

were fractionated in the presence of 30% urea by gel electrophoresis on 15% polyacrylamide gels. Gels were 

visualized by silver staining. The identity of relevant proteins is indicated by arrows. 

(C) Detection of PSII assembly complexes by immunoblot analyses of 2D BN/SDS gels as in (B) with 

antibodies against D2 and CP43. Positions of PSII complexes PSII SC, PSII supercomplexes; PSII dimers; PSII 

monomers and CP43-free PSII monomers are indicated. Cyt b6 antibody was applied as the loading control. 

 



3 RESULTS                    72 

both the wild-type and the clr24 mutant as described (section 2.2.5.9). The labeled thylakoids 

were separated on blue native PAGE, followed by 2D SDS-PAGE analysis. These results 

show that D1/D2 proteins are synthesized at normal levels, but cannot be efficiently 

assembled into higher order complexes. Accordingly, there is almost no detectable D2 in PSII 

dimers and supercomplexes. From these results, it can be concluded that the formation of PSII 

dimers is affected in the clr24 mutant. Taken together with previous studies on PSII super 

molecular organization which report that most functional PSII complexes are in the dimer 

form, it can be assumed that the defect on PSII dimer formation in the clr24 mutant causes the 

PSII deficient phenotype.  

 

 

 
 
 

Figure 3.4.5 PSII complexes assembly detected by In vivo labeling. Thylakoid membrane proteins of wild-

type and clr24 strains were labeled with 
35

S as described in Figure 3.1.3 B, and fractionated by 2D BN/SDS-

PAGE. The labeled complexes were visualized by autoradiography. The positions of different PSII assembly 

complexes are indicated on the bottom of the figure. 
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3.4.4 Functional analyses of the CLR24 protein 

According to the results obtained (section 3.4.3), the CLR24 protein functions in PSII dimer 

formation. However, the precise mechanism by which CLR24 influences this PSII assembly 

step remained unclear. Based on the assumption that CLR24 is involved in chloroplast RNA 

metabolism, this chapter focuses on the identification of a CLR24 specific RNA target.  

3.4.4.1 PsbI transcripts are not detectable in the clr24 mutant 

As transcripts of PSII subunits, like psbA or psbD, were normally synthesized and translated 

in the clr24 mutant, the function of CLR24 in PSII assembly might be rather indirect. 

According to previous studies, PSII dimer formation in C. reinhardtii requires the 

involvement of several subunits with low molecular weight, which are encoded by the 

chloroplast genome (Rochaix, 2011, section 1.2.1.3). Since OPR proteins are predicted to 

have an RNA-binding domain, it was of particular interest to investigate the involvement of 

CLR24 in PSII dimer formation via interaction with transcripts of those small subunits. 

In order to prove the above mentioned hypothesis, six transcripts of small chloroplast encoded 

subunits, which have been characterized to participate in PSII dimer formation, including psbI, 

psbK, psbL, psbM, psbT, and psbZ, were investigated via Northern analyses in the clr24 

mutant along with wild-type. No difference in the accumulation of psbK, psbL, psbM, psbT, 

and psbZ was detected in the clr24 mutant as compared to wild-type. But interestingly, it was 

observed that psbI transcripts are undetectable in the clr24 mutant (Figure 3.4.6). The psbI 

mRNA encodes a small subunit with 37 amino acids, which is described to be involved in 

PSII dimer formation in tobacco (Schwenkert et al., 2006). 

 

 

Figure 3.4.6 Transcript accumulation analyses on chloroplast genome encoded small subunits involved in 

PSII assembly. 5 µg of total RNA from wild-type (WT) and the clr24 mutant (clr24) were hybridized with 

probes specific for psbI, psbK, psbL, psbM, psbT, psbZ, respectively. rbcL transcripts and the ethidium bromide 

stained agarose gel (EtBr) were used as a loading control. All the signals detected are mature monocistronic 

transcripts. The change in psbI transcript accumulation is indicated by a star. 
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3.4.4.2 Altered processing of atpA-psbI-cemA-atpH polycistronic transcripts in the clr24 

mutant 

The psbI mRNA is co-transcribed with atpA, cemA, and atpH, which encode alpha-subunit of 

the coupling-factor-1 (CF1) ATP synthase, a chloroplast envelope membrane protein and 

subunit III of the CF0 ATP synthase respectively. The psbI mRNA can occur as monocistronic, 

dicistronic, as well as polycistronic transcripts, due to three promoters used during 

transcription (Drapier et al., 1998, compare Figure 3.4.7 A). Since the mature psbI 

monocistronic transcript is undetectable in clr24 mutant (Figure 3.4.6), Northern analyses of  

          

A 

 

B 

 
 

 

  

Figure 3.4.7 Transcript abundance of the chloroplast psbI gene cluster. 

(A) Map of the psbI gene cluster. Genes are indicated by solid black boxes and mapped promoters by bent 

arrows (Drapier et al., 1998). Transcripts are depicted as black horizontal arrows and labeled by numbers 1-8 

according to Drapier at al. (1998) . Corresponding transcript sizes are indicated at the right. Positions of probes 

used in (B) are shown above the map (A-E). 

(B) Northern blot analysis of the psbI gene cluster. 5 µg of total RNA from wild-type and the clr24 mutant were 

hybridized with 5 different probes (A-E). The lower autoradiogram in E is a weaker exposure from the same blot 

as upper part to get clearer resolution. The EtBr-stained gels of rRNA (EtBr) are used as a loading control.  
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the entire atpA-psbI-cemA-atpH gene cluster were carried out to investigate its processing. 

Probes for Northern analyses were generated either at the coding region of atpA, psbI, and 

cemA (B, C, D in Figure 3.4.7 A), or at the processing sites (A, E in Figure 3.4.7 A) to detect 

different processed transcripts. The abundance of the polycistronic atpA-psbI-cemA-atpH 

transcript in clr24 seemed to be slightly increased (Figure 3.4.7 B, probes B and D). 

In contrast, the psbI-cemA dicistronic transcripts (arrow 6 in Figure 3.4.7 A, B, probe D, E) 

and the psbI-cemA-atpH tricistronic transcripts (arrow 5 in Figures 3.4.7 A, B, probe D, E) 

together with the psbI monocistronic transcripts (arrow 7 in Figure 3.4.7 A, B, probe C) were 

undetectable in the clr24 mutant. The atpA-psbI dicistronic transcript (arrow 3 in Figure 3.4.7 

A, B, probe A, B) and the atpA-psbI-cemA tricistronic transcript (arrow 2 in Figure 3.4.7 A, B, 

probe B, D) were slightly reduced as compared to the wild-type. On the contrary, the 

accumulation of transcripts without psbI, such as atpA (arrow 4, Figure 3.4.7 B, probe A, B) 

and atpH (transcript 8, Figure 3.4.7 B, probe E) monocistronic transcripts were increased 

significantly. Taken together, the processing of the entire atpA-psbI-cemA-atpH transcript is 

affected in the clr24 mutant. The absence of mature psbI (monocistronic) and cemA 

(dicistronic) transcripts might lead to the PSII deficient phenotype in the clr24 mutant.  
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3.5 Characterization of Arabidopsis thaliana AtRAP-1 mutant 

According to BLAST results, the AtRAP protein (At2g31890) is the only member of the OPR 

family found in A. thaliana what makes the elucidation of its function particularly interesting 

(compare section 1.3.2.3). 

3.5.1 Description of the AtRAP protein in Arabidopsis thaliana 

AtRAP consists of 671 amino acids, of which the N-terminal 78 aa are predicted by ChloroP 

to be a plastid targeting sequence (Figure 3.5.1 A). The mature protein is calculated to have a 

molecular weight of 70 kDa. Four OPR repeats are identified which are, like OPR repeats 

from C. reinhardtii, predicted to form two α - helices (Figure 3.5.1 A, B).  
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Figure 3.5.1 Features of the A. thaliana AtRAP protein. 

(A) Schematic (upper panel) and amino acid sequence (lower panel) of the protein structure of AtRAP. The 

plastid transit sequence predicted by ChloroP is shown as a dashed box. The OPR repeats obtained by alignment 

with the OPR protein consensus sequence are shown as real line boxes. The RAP domain is shown as a longer 

dashed box. Helices predicted by Jpred (www.compbio.dundee.ac.uk/www.jpred) are marked with straight lines 

below the sequence. 

(B) Multiple sequence alignment between OPR consensus sequence and four predicted AtRAP OPR repeats was 

manually defined and illustrated by Genedoc. Black boxes indicate conserved amino acids in all repeats, dark 

and light gray boxes indicate conserved amino acids in 80 or 60%, respectively, of the aligned residues. 
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Additionally, a so-called RAP domain, often seen at the C-terminus of OPR proteins (A. 

Bohne, personal communication) is found at aa positions 608-668 (Figure 3.5.1 A). This RAP 

domain (RNA-binding domain abundant in Apicomplexans) is reported to be particularly 

abundant in apicomplexans and might mediate a range of cellular functions through a 

potential interaction with RNA (Lee and Hong, 2004). 

3.5.2 Growth characteristics and photosynthetic performance of the AtRAP mutant 

Two mutant alleles were identified for AtRAP by screening the T-DNA Express database, of 

which one has a T-DNA insertion at the 5’ UTR, the other one inside the third exon (Figure 

3.5.2 A). Homozygous mutants were obtained from the T3 generation and controlled by PCR  
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Figure 3.5.2 Location of insertion in AtRAP mutant alleles and mutant phenotypes. 

(A) Schematic gene structure of AtRAP. Exons are shown as black boxes and introns as gray lines. The sites of 

T-DNA insertions are depicted for both of the mutants (AtRAP-1, SAIL_1223_C10; AtRAP-2, SAIL_1225_B10). 

Primes used for detecting homozygous mutants are indicated by arrows. 

(B) PCR reactions for detecting homozygous T-DNA insertion mutants. The gene specific primers used are 

shown in (A), P1, P2 and P3 are corresponding to ara-101b-fw, 31890-fw and 31890-rev respectively, which are 

listed in section 2.1.7. DNA molecular marker was labeled on the left side. 

(C) Growth phenotype of two independent insertion mutant lines. AtRAP-1, AtRAP-2, and corresponding wild-

type (Col-0) grown for three or six weeks, respectively, under long day conditions in the green house. QY-max 

values indicated on top were measured by using 3-week-old plants. 
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for homozygosity, as shown in Figure 3.5.2 B. Both mutant alleles for AtRAP display a 

reduction in leave size and show pale-green pigmentation, when grown in the greenhouse 

with long-day illumination (16h light, 8h dark). The photosynthetic activity is affected in both 

of the mutants, as indicated by lower QY-max values as compared to the wild-type (Figure 

3.5.2 C). After 6 weeks growing, mature leaves of AtRAP mutants started to turn green like 

the wild-type, but retained the growth retardation phenotype. Even though siliques from both 

of T-DNA lines have smaller sizes, seeds could be obtained from homozygous plants (Figure 

3.5.2 C). 

3.5.3 Phenotypic characterization of Arabidopsis thaliana AtRAP-1 mutants 

The accumulation of core proteins from photosynthetic complexes was investigated in the 

AtRAP-1 mutant along with the wild-type. Since both mutant lines, AtRAP-1 and AtRAP-2, 

possess identical growth phenotypes, further analyses were all applied on AtRAP-1. To 

investigate the accumulation of PSII, PSI, and the RuBisCo complex, representative proteins, 

including the chloroplast encoded D1, D2, PsaA and RbcL, as well as nucleus-encoded LHCII 

proteins, were detected by immunoblot analysis or Coomassie staining (Figure 3.5.3). 

Comparing with wild-type plants, 3-week-old AtRAP-1 mutants have dramatically reduced 

amounts of all chloroplast encoded proteins (Figure 3.5.3), which could lead directly to a 

growth retardation. However, the reduction level of the D1, D2 and PsaA proteins becomes 

less severe after 6 weeks of growth, which also corresponds to the slightly restored phenotype 

for the 6-week-old mutants. Interestingly, no alteration of protein accumulation compared to 

the wild-type was observed in AtRAP-1 for the nucleus encoded LHCII.  

 

 

Figure 3.5.3 Accumulation of abundant chloroplast proteins. 30 µg total protein extracts of 3-week-old and 

6-week-old plants from wild-type (Col-0) and AtRAP-1 plants were separated on a 12% SDS-PAGE gel. 

Antibodies against PSI core subunit PsaA, PSII core subunit D1, D2, and LHCII were applied to detect 

respective proteins. The RbcL protein was detected by Coomassie staining of the gel.   
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In order to investigate if defects in the assembly of chloroplast complexes are responsible for 

the observed reduction of protein accumulation, an analysis of thylakoid proteins from 3-

week-old wild-type and AtRAP-1 plants was performed via blue native PAGE (Figure 3.5.4).  

 

               A                                                              B 

 

               C 

 

Figure 3.5.4 Analysis of thylakoid membrane complex assembly in the wild-type and the AtRAP-1 mutant 

(A) Thylakoids from wild-type and the AtRAP-1 mutant were solubilized with 1.5% (w/v) β-DM. The extracts 

were then fractionated by 4.5%-14% BN-PAGE. Bands detected were identified by comparison with specific 

protein complexes according to previously published profiles (Granvogl et al., 2006; Schwenkert et al., 2006; 

Peng et al., 2008): PSI-NDH supercomplex (PSI-NDH; I), PSII supercomplexes (PSII super; II and III), PSI 

monomers and PSII dimers (PSI monomer and PSII dimer; IV), PSII monomers (PSII monomer; V), multimeric 

LHCII (LHCII multi; VI), CP43-less PSII monomers (CP43-PSII; VII), trimeric LHCII (LHCII trimer; VIII). 

(B) 2D BN/SDS-PAGE separation of thylakoid protein complexes. Individual lanes from BN-PAGE gels as 

described in (A) were separated in the presence of 30% urea by electrophoresis on 15% polyacrylamide gels, and 

visualized by silver staining. The identity of relevant proteins is indicated by arrows. 

(C) Detection of PSII complexes by immunoblot analysis of 2D BN/SDS gels as in (B) with antibodies against 

D2 and LHCII. The positions of PSII complexes (PSII supercomplexes; PSII dimers; PSII monomers and CP43-

PSII, CP43-less PSII monomers are indicated).   
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As shown in Figure 3.5.4 A and B, all photosynthetic complexes could be detected in the 

AtRAP-1 mutant even though particularly the first dimensional gel (Figure 3.5.4 A) showed a 

reduction of higher molecular weight complexes like PSI-NDH or PSII supercomplexes. 

However, the second dimensional gel revealed that all mutant thylakoid membrane complexes 

were assembled normally, as no obvious differences compared to the wild-type were detected 

(Figure 3.5.4 B).  

This observation was confirmed further by the immunoblot analysis on the second dimension 

gel (Figure 3.5.4 C). The D2 antibody was applied to detect the PSII complexes, whereas 

LHCII was used as a loading control. All functional PSII complexes are assembled properly, 

but are decreased in accumulation, at this confirming the steady state protein levels detected 

in the one dimensional immunoblot analysis (Figure 3.5.3).  

Since the reduced accumulation of chloroplast proteins is not caused by assembly defects of 

photosynthetic complexes indicated by blue native PAGE (Figure 3.5.4), the translation of 

chloroplast encoded proteins might be affected. To test this, in vivo pulse labeling 

experiments of thylakoid proteins were carried out on 3-week-old wild-type and AtRAP-1 

plants. As shown in Figure 3.5.5, a significant reduction in the synthesis rate of D1, D2, CP43 

and CP47 proteins could be observed, which together compose the PSII monomer (Figure 

3.4.5). Interestingly, α/β subunits of ATPase synthesis is not affected, rather has increased in 

the AtRAP-1 mutant. It is a possible that translational regulation of ATPase is somehow 

different from that of other abundant chloroplast encoded proteins, like D1, D2, CP43, CP47 

detected also by in vivo labeling. 

 

Figure 3.5.5 In vivo labeling of 3-

week-old wild-type and AtRAP-1 

plants. 3 weeks-old plants were used for 

in vivo labeling studies. Leaves from 

Col-0 and AtRAP-1 were labeled with 
35

S-methionine for 30 min. 

Cycloheximide was used to inhibit 

cytosolic translation. Thylakoids extracts 

from labeled leaves were separated on 

tricine-SDS-PAGE. Major proteins (D1, 

D2, CP43, CP47, and ATPase α/β) from 

photosynthetic complexes are indicated 

by arrows. 
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In order to determine the reason for reduced translation rates of chloroplast encoded proteins 

in the AtRAP-1 mutant, the accumulation of psbA and rbcL transcripts, was investigated via 

RNA gel blot analyses using RNA from both 3-week-old and 6-week-old plants of AtRAP 

mutant and wild-type. As compared to wild-type, no analyzed transcript showed a different 

accumulation, especially in the 3-week-old AtRAP-1 mutants, which possesses a severe 

phenotype (Figure 3.5.6). Taken together all these results, it is obvious that the reduction in 

the translation rate of chloroplast encoded proteins is due to a chloroplast translation defect in 

AtRAP-1 mutants. Interestingly, in the RNA gel blot analysis, EtBr staining of rRNAs, which 

was used as the loading control, showed obvious differences in the accumulation of the 

plastidial 16S rRNA (Figure 3.4.6). However, after 6 weeks growing, the amount of 16S 

rRNA accumulated to wild-type levels. The same phenomenon of reduced 16S rRNA 

accumulation was also observed in the second T-DNA line AtRAP-2 (data not shown). As 16S 

rRNA is required for chloroplast translation these results are in agreement with reduced 

protein accumulation and synthesis (Figure 3.5.3, Figure 3.5.4 and Figure 3.5.5), and explain 

the virescent growth-retarded phenotype of AtRAP mutants.  

 

 

Figure 3.5.6 Accumulation of abundant chloroplast transcripts in AtRAP-1 mutants. Total RNA was 

extracted from 3-week-old and 6-week-old plants (Col-0 and AtRAP-1) grown in the green house. 5 μg of total 

RNA of each line were separated on a 1% denaturing agarose gel and transferred to Hybond-N
+
membranes. 

Probes of  psbA, and rbcL generated by PCR and labeled with digoxigenin were hybridized for the determination 

of transcript levels. EtBr staining of the gel was used as a loading control. 

 

 

3.5.4 The processing of 16S rRNA is affected in the AtRAP-1 mutant 

The A. thaliana chloroplast rrn operon consists of genes for 16S (rrn16), 23S (rrn23), 4.5S 

(rrn4.5) and 5S (rrn5) rRNAs and tRNA genes for Ile (trnI), Ala (trnA) (Figure 3.5.7 A, Leal-

Klevezas et al., 2000; Strittmatter and Kössel, 1984). Processing sites within the rrn operon 
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occur at different positions, shown by vertical arrows in Figure 3.5.7 A. The processing 

process produces precursors of 16S, 5S, and a 23S-4.5S dicistronic intermediate, as well as 

tRNA precursors. In order to investigate the processing and accumulation of 16S rRNA in 

particular and of the rrn operon in general, different probes were generated by PCR for RNA 

gel blot analyses. Among them, probe A overlaps two promoter regions,  PC (-141 nt) and P2 

(-117 nt), as well as a processing site (-30 nt), described by Lerbs-Mache (2000); probe C 

binds to the region before the first processing site, detecting the 16S rRNA precursor; Probes 

B, E, D, F and G bind to 16S rRNA, 23S rRNA, 4.5S rRNA, and 5S rRNA respectively, 

detecting both mature rRNAs and their precursors. The processing of the 23S rRNA  

 

 

 

 

Figure 3.5.7 Accumulation of chloroplast rRNAs in wild-type and AtRAP-1 plants. 

A) The schematic representation of the A. thaliana chloroplast rrn operon is shown on the top. Black boxes 

indicate exons of rRNA as well as Ile-tRNA and Ala-tRNA genes. White boxes indicate introns. PC and P2 are 

promoters represented by curved arrows. Vertical arrows show the processing sites of the rrn operon. Positions 

of PCR-amplified probes are marked by grey lines under the operon and are indicated by letters (A-G).  

B) Northern blot analysis of 3-week-old and 6-week-old plants of wild-type and AtRAP-1 plants are shown. Total 

RNAs from wild-type and AtRAP-1 mutant were separated in 1% agarose gels, transferred to nylon membranes 

and hybridized with different probes marked with A, B, C, D, E, F, and G, detecting precursor and mature rRNAs. 

EtBr-stained gels of rRNA are used as loading control. 
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undergoes further complicated processing events leading to at least five different products 

(Beligni and Mayfield, 2008, Figure 3.5.7 B, probe E). However, none of the detected 

processing products appeared to be altered in abundance in AtRAP-1 as compared to the wild-

type. This is also confirmed by probe D only detecting the 23S intermediate with a size of 1 

knt. The results show that there are no changes in accumulation of most processed rRNA 

transcripts, except the 16S rRNA. The amount of mature 16S rRNA is clearly reduced in the 

3-week-old AtRAP-1 mutant, while a precursor form is accumulating (Figure 3.5.7, probe B). 

In addition, probe A detected two highly abundant precursors not seen in the wild-type which 

are slightly bigger than the mature 16S rRNA in the 3-week-old mutant plants. However, the 

probe C binding to the 3’ end of 16S rRNA precursor, only detects one strong precursor. The 

processing of 16S rRNA becomes like the wild-type after 6 weeks, within which, no change 

was observed between the wild-type and the mutant. Taken together the RNA gel blot results, 

it is concluded that the 16S rRNA processing is affected in the early developmental stage of 

chloroplasts in the AtRAP-1 mutant, and this defect can be restored after 6 weeks of growth. 

 

 



4 DISCUSSION            84 

4 DISCUSSION 

4.1 Forward genetic approaches applied on the model organism Chlamydomonas 

reinhardtii 

Recent years have seen the development of a molecular toolkit for C. reinhardtii. Generation 

of tagged insertional mutations by nuclear transformation has facilitated the rapid 

identification of mutant alleles (Grossman et al., 2003). Meanwhile the availability of 

plasmids, cosmids and bacterial artificial chromosome (BAC) libraries made the rescue of 

nuclear mutations possible (Lefebvre and Silflow, 1999).  

This study focused on the identification of mutated genes which were generated by random 

insertion of antibiotic resistance markers into the nuclear genome of C. reinhardtii. At this, for 

5 out of 16 provided mutants possessing a PSII phenotype the corresponding gene could be 

identified (section 3.2). However, even though the mutagenesis methods and downstream 

applications for gene identifications have clearly been improved during the last years, the 

identification of the nuclear mutation responsible for the PSII phenotype was not always 

possible. In some cases, it was observed that the antibiotic resistance marker was not linked to 

the PSII phenotype or the marker could not be detected in the mutant genome at all (table 

3.2.1). Main reasons for that were multiple insertions of the mutagenic agent, insertions of 

truncated markers, and deletions or rearrangements occurring during the transformation 

procedure which hamper or obviate the application of techniques used. However, as in C. 

reinhardtii, gene-targeted mutagenesis, e.g. by homologous recombination, is not possible to 

date, random insertional mutagenesis in combination with PCR based downstream 

applications for the identification of the disrupted genes is still a powerful tool to elucidate 

protein functions. 

Classic forward genetic approaches for gene cloning include plasmid rescue and map-based 

techniques, where the latter technique worked successfully for the identification of a 

disruption of the OHP2 gene in the 101a mutant (section 3.3.1). A modified PCR based 

approach, “inverse PCR”, was effectively used for several PSII mutants and identified 

mutations in genes encoding a putative transcription factor (mutant 45a), a speract/scavenger 

receptor domain protein (mutant 42b), as well as CLR24, a member of the OPR repeat protein 

family (mutant 101b, section 3.2.3). In order to rescue identified mutations, two independent 

complementation methods were used. The transformation of OHP2 cDNA under control of 

the PsaD promoter together with paromomycin resistance gene (aphVIII) successfully 
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complemented the 101a (ohp2) phenotype. The cDNA complementation used provides an 

additional selection method for positive transformants based on an introduced resistance gene 

besides phenotype rescue. However, the C. reinhardtii genome exhibiting a high GC rich 

content often causes difficulties to amplify the full length cDNA. In a second approach, the 

transformation of a BAC clone containing the CLR24 genomic sequence restored the CLR24 

function in the 101b (clr24) mutant. Nevertheless, the usage of BAC clones requires the 

availability of a BAC library which offers a complete coverage of the C. reinhardtii genome. 

A second disadvantage is a lack of eukaryotic markers which allow a selection for positive 

transformants if the restoration of the phenotype is not immediately seen. Nowadays, some 

novel shuttle markers, like aadA and aphVIII, were used for modifying BACs with antibiotic 

resistances, which allow a broader usage of BAC clone transformation (Meslet-Cladiere and 

Vallon, 2011). 

In order to further optimize the described forward genetic approach for C. reinhardtii in the 

future, great efforts are needed for (I) more efficient transformation methods to avoid multiple 

insertion, or insertion of truncated vectors (II) optimized map-based cloning, with more 

molecular markers placed on the linkage map and higher quality sequence information in 

online databases, which still have vacuities on the mating type and highly repetitive regions; 

(III) BAC library covering complete C. reinhardtii genome and modified BAC DNA to 

facilitate the screening of transformants. Although online databases provide more accurate C. 

reinhardtii genome information, which  also make reverse genetic approaches, like antisense 

and RNA interference technologies, possible, the numerous advantages of forward genetic 

approaches cannot be overlooked and will provide itself a bright future.  

The following chapters will focus on a detailed discussion of the ohp2 and clr24 mutants as 

well as the functions of the proteins encoded by the disrupted genes identified in course of the 

forward genetic screen used in this study.  

4.2 The Chlamydomonas reinhardtii OHP2 protein is involved in the accumulation of 

the PSII reaction center protein D1 

By applying a mapped-based strategy, the OHP2 gene was found to cause the PSII phenotype 

in the mutant 101a (section 3.3.1). Subsequent molecular and biochemical analyses revealed 

the OHP2 protein to be specifically involved in the accumulation of the D1 protein (section 

3.3.4). At this, normal psbA mRNA levels but no detectable D1 protein synthesis in pulse 

labeling experiments suggested a role of OHP2 either in the translation process of the psbA 

mRNA or in stabilization of the D1 protein (sections 3.1, section 3.3.4). 
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The OHP2 protein from C. reinhardtii belongs to the early light induced proteins (Elips) super 

protein family, which includes distant relatives of LHC protein family with conserved 

chlorophyll binding residues (Adamska et al., 2001). A multiple sequence alignment of OHP2 

homologues from various photosynthetic organisms ranging from cyanobacteria to land plants 

shows a high conservation of the primary protein structure (Figure 3.3.5). This suggests that 

the one-helix Elip present in ancient cyanobacteria might be a progenitor of plants and algal 

antenna proteins. Since the more recently evolved antenna LHC proteins function as the light 

harvesting system, the Elips might have different functions (Montane and Kloppstech, 2000). 

The A. thaliana OHP2 protein has already been characterized. It is present in thylakoid 

membranes with induced accumulation by light stress of both OHP2 transcript and protein 

levels (Andersson et al., 2003). Its co-localization with PSI and sensitivity to light stress 

proposed that OHP2 protein could prevent or lower light stress-induced damage, and help PSI 

to be resistant to photoinhibition. Another hypothesis about Elip’s functions suggested that 

they might also protect PSII under light stress via binding free chlorophyll molecules and 

preventing formation of free radicals and/or stocking excitation energy (Montane and 

Kloppstech, 2000).  

In contrast to what was reported for A. thaliana, this study does not provide any evidence for 

OHP2 from C. reinhardtii to be associated with PSI complexes. Considering the putative 

chlorophyll binding activity of OHP2 as indicated by the occurrence of many highly 

conserved amino acid residues within the proposed chlorophyll binding region (Figure 3.3.4) 

and its specific effect on the PSII protein D1, several functions of OHP2 are imaginable. In 

barley, it was described that chlorophyll regulates the accumulation of the D1 protein by 

increasing the protein stability (Kim et al., 1994). It was additionally proposed that the 

binding of co-factors to D1 is facilitated by an observed pausing of ribosomes at specific sites 

during translation of membrane-bound psbA mRNA. Furthermore, He and Vermaas (1998) 

could show that chlorophyll a availability controls D1 biosynthesis and D1 precursor 

processing in Synechocystis. As D1 is described to be co-translationally inserted into the 

thylakoid membrane (Zhang et al., 1999, 2000), and OHP2 is a membrane localized protein 

(Irene Meindl, unpublished data), these data indicate that OHP2 in C. reinhardtii as a putative 

chlorophyll carrier protein might be involved in the transfer of chlorophyll to newly 

synthesized or nascent D1 proteins (Figure 4.1). The possible lack of chlorophyll 

incorporation into D1 in the ohp2 mutant might affect D1 synthesis directly or destabilize 

readily synthesized D1 proteins. Taking into account that Mullet et al. (1990) described a co-

translational binding of chlorophyll a produced in illuminated plants to stabilize D1 nascent 
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polypeptides, the above hypothesized role of OHP2 during D1 synthesis seems to be more 

likely. 

 

 

 

 

Figure 4.1 Hypothesized working model for the C. reinhardtii OHP2 protein 

The membrane located OHP2 protein could bind to chlorophyll a and transfer it to the nascent D1 protein by 

which it is stabilized. 

 

 

 

The specific effect of OHP2 on D1 synthesis seems surprising, as many other thylakoid 

membrane proteins require chlorophyll co-factors, but it might be explained by the extremely 

high turnover rates of the D1 protein. Particularly under higher light conditions the D1 protein, 

but not other photosystem subunits, is photo-damaged and needs to be replaced by the so-

called repair cycle (Kato and Sakamoto, 2009). However, a direct interaction of OHP2 and the 

D1 protein in C. reinhardtii as well as the predicted chlorophyll binding activity of OHP2 

remains to be shown. Also, a possible protective function of OHP2 for PSII during light stress 

has to be elucidated in the future. 

Another potential function of OHP2 in psbA translation, e.g. as a component of the translation 

initiation complex and/or psbA mRNA binding protein (compare section 1.3.1.2.2), can also 

not be excluded but is highly unlikely, considering the relation to chlorophyll binding proteins 

and a lack of putative RNA binding domains within this small 11 kDa-protein. However, e. g. 

polysome loading experiments and RNA binding assays would be required to exclude this 

possibility. 
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4.3 The Chlamydomonas reinhardtii CLR24 protein is involved in PSII dimer 

formation 

The second C. reinhardtii mutant investigated in more detail in course of this study, revealed 

an insertion in the CLR24 gene encoding a member of the OPR repeat protein family (section 

3.4). Phenotypical and biochemical analyses of the clr24 mutant showed that the PSII activity 

is affected which is likely to be caused by the inability of PSII dimer formation (section 3.4.3). 

By detecting transcript accumulations of several chloroplast-encoded low molecular weight 

PSII subunits, the mature psbI mRNA was found to be missing in the clr24 mutant (section 

3.4.4.1, Figure 3.4.6).  

Unlike vascular plants, for which most chloroplast genes are organized into polycistronic 

transcription units, most of the transcripts in C. reinhardtii are transcribed as monocistronic. 

However, the atpA gene cluster including the affected psbI gene is one of the special cases 

including four co-transcribed genes. One gene expression working model for the atpA cluster 

was set up in a previous study, which involves three sites of transcription initiation, up to 

three sites of transcript 5’ processing and four sites of transcription termination or 3’ 

processing, indicated by deletion mutants and mapping experiments (Drapier et al., 1998). 

Detailed Northern blot experiments of polycistronic atpA-psbI-cemA-atpH transcripts verified 

that the processing of the entire transcript is affected in the clr24 mutant, which leads to an 

increased accumulation of mature monocistronic atpA and atpH, and undetectable amounts of 

mature monocistronic psbI, tricistronic psbI-cemA-atpH as well as dicistronic psbI-cemA, 

which is the only mature form of cemA mRNA (section 3.4.4.2, Figure 3.4.7). All 

informations obtained, point to an affected PSII activity caused by altered processing of the 

atpA-psbI-cemA-atpH polycistronic transcript, more precisely a lack of psbI and/or cemA 

messages.  

In C. reinhardtii △psbI mutants as well as nuclear mutants, which were found to lack cemA 

transcripts via forward genetic screening have been described. Whereas in higher plants, psbI 

is co-transcribed with psbK, in C. reinhardtii it is located downstream of atpA (Figure 3.4.7 

A). As seen for the clr24 mutant (Figure 3.1.1, Table 3.2.1), the C. reinhardtii △psbI mutant 

in which the psbI gene was deleted by an aadA cassette reveals a decreased accumulation of 

PSII subunits and accordingly, reduced PSII activity as indicated by chlorophyll fluorescence 

measurements (Künstner et al., 1995). Additionally, the △psbI mutant revealed a slight 

growth under photoautotrophic conditions in lower light (less than 100 µE/m
2
/s) which was 

also observed for the clr24 mutant (Figure 3.4.2), but not under high light (600 µE/m
2
/s), 
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demonstrating its light sensitive phenotype. Unfortunately, there is no further characterization 

of this △psbI mutant in C. reinhardtii to clarify its precise function for maintaining PSII 

performance. However, tobacco △psbI mutants obtained by a transplastomic knock-out 

approach also can grow photoautotrophically and are sensitive to high light. Here it was 

described that, in correlation with the observed phenotype in clr24 (section 3.4.3), PsbI is 

required for PSII dimer stabilization. Additionally, PsbI was postulated to be involved in 

forward electron transport, as well as efficient phosphorylation of PSII-RC proteins. The final 

conclusion focuses on the point that PsbI is required for the stability of higher order 

complexes of PSII and proper functions of PSII in higher plants (Schwenkert et al., 2006). 

The latest study on PsbI was performed in thermophilic cyanobacteria (Kawakami et al., 

2011a). The PSII dimer stabilization was also found to be affected in cyanobacteria △psbI 

mutants, but the difference between the wild-type and mutant is less severe than in C. 

reinhardtii and higher plants. One of the explanations is that there exists a more sophisticated 

collaboration among various subunits during PSII dimer formation in eukaryotes, which leads 

to mechanisms that are more complex and guarantee a higher level of regulation between the 

chloroplast and the nucleus.  

Taken together, the data suggest the missing psbI mRNA in the clr24 mutant to be responsible 

for the observed effect on PSII dimer formation. However, it cannot be totally excluded that 

there are still trace amounts of PsbI protein translated from polycistronic atpA-psbI-cemA and 

atpA-psbI-cemA-atpH transcripts, since no evidence showed the PsbI protein only to be 

transcribed from monocistronic transcripts. Nevertheless, the post-transcriptional regulation 

of psbI mRNA is affected in the clr24 mutant, which is likely to be the direct cause of reduced 

PSII dimer formation and PSII activity. In addition, more precise growth test of the clr24 

mutant under stress light condition and investigations of the electron transport ability should 

be in the work plan, in order to better understand the phenotype of the clr24 mutant as well as 

the function of C. reinhardtii PsbI protein. 

However, the clr24 mutant also revealed a lack of cemA mRNA. The CemA (Chloroplast 

Envelop Membrane) protein, which was also named Ycf10 (hypothetical chloroplast open 

reading frame) due to its immuno-localization in the inner membrane of the pea chloroplast 

envelopes, is highly conserved in photosynthetic organisms (Price et al., 1995). The function 

of CemA was mainly analyzed in cyanobacteria and C. reinhardtii. △cemA mutants of both 

organisms show similar phenotypes, which indicate the possibility that CemA may have a role 

in CO2 assimilation, whereas it is independent of photosynthesis. A light sensitive phenotype 

was also observed for the mutant, therefore, CemA is suggested to be involved in a process 
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essential for adaptation of cells to high photosynthetic growth rate (Rolland et al., 1997). It is 

worth to mention that there still might be functional CemA protein in the clr24 mutant, since 

there is no evidence for CemA protein to only be translated from the dicistronic transcript. 

According to these data, it is unlikely that the lack of cemA mRNA in clr24 has a direct 

impact on the PSII complex formation and photosynthetic performance. However, the light-

sensitivity of the clr24 mutant might at least partially be caused by missing cemA mRNA. 

Given all the information above, the ability of CO2 assimilation, especially under 

photoinhibitory condition should be analyzed in the following work in order to better 

understand the phenotype of the clr24 mutant, as well as the translation mechanism of cemA 

mRNA.  

Besides psbI and cemA, altered transcript accumulations between wild-type and mutants were 

also observed for atpA and atpH, which encode the ATPase ɑ or CFo-III subunit, respectively. 

In the clr24 mutant, the accumulation of monocistronic atpA and atpH transcripts is increased 

(Figure 3.4.7 B). Previous investigations showed that the translation of the ATPase ɑ subunit 

is not significantly affected by altered levels of atpA transcripts (Drapier et al., 1992), 

therefore the unusual atpA accumulation could be a secondary effect, which does not affect 

the protein level of ATPase in the clr24 mutant. The function of AtpH in C. reinhardtii was 

characterized with the ac46 mutant, which is lacking monocistronic atpH mRNA, and the 

mutant is highly sensitive to light stress, but grows photoautotrophically in the low light as 

wild-type cells (Majeran et al., 2001). However, there is no study about the correlation 

between AtpH protein levels and the available amount of atpH transcripts. It is unclear if the 

accumulation of AtpH protein is also affected in clr24 mutant. 

The increased accumulation of mature atpA and atpH transcripts in clr24 might be explained 

by higher transcriptional rates trying to compensate for the lack of mature psbI and psbI-cemA 

mRNAs. This might be indicated by a slightly increased accumulation of the atpA-psbI-cemA-

atpH polycistronic transcript. However, the increase of this message is less than would be 

expected from the increase of atpA and atpH transcripts, which might indicate also a 

destabilization of the polycistronic transcript or an altered usage of promoters within this gene 

cluster. Taking atpH as an example, the monocistronic atpH might be produced either by 

transcription from its own promoter, or by processing from longer transcripts initiated from 

atpA or psbI proximal promoters. The ratio of the atpH transcripts obtained from these two 

processes might be altered in the clr24 mutant, which needs further analysis. Also additional 

regulatory mechanisms involving transcript stabilizations cannot be excluded. The 
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investigation of transcriptional rates from each of the three promoters described could shed 

more light on this phenomenon. 

Previous research suggests that RNA-binding proteins, as well as RNA stem-loop structures 

play a pivotal role in determining transcript abundance (Herrin and Nickelsen, 2004; Rott et 

al., 1998). Interestingly, OPR proteins are predicted to have RNA binding activity and are 

described to be involved in RNA processing and stabilization processes (compare section 

1.3.2.3). Similar the OPR protein CLR24 might be involved in the posttranscriptional 

regulation of the atpA-psbI-cemA-atpH transcript, via direct or indirect interaction. According 

to the Northern results in Figure 3.4.7, most strikingly all transcripts which are initiated or 

processed upstream of psbI and therefore reveal the same 5’ end are not detectable in the 

clr24 mutant. This suggests a role of CLR24 in stabilization or processing of these transcripts 

by binding to their 5’regions (Figure 4.2). Interestingly a deletion of this region, including the 

 

 

 

 

Figure 4.2 Hypothesized working model for the C. reinhardtii CLR24 protein as an RNA stability factor. 

The atpA gene cluster is shown on the top with co-transcribed atpA, psbI, cemA and atpH messages. The three 

promoters are indicated by bent arrows. The CLR24 protein could interact with 5’ termini of psbI-cemA-atpH, 

psbI-cemA, and psbI transcripts, in order to protect them from degradation by exonucleases. In the clr24 mutant 

background, the absence of CLR24 leads instability of transcripts revealing psbI at their 5’ends.  
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psbI promoter and part of the psbI 5’UTR also leads to missing mature psbI transcripts 

(Drapier et al., 1992). This effect might clearly be influenced by missing regulatory cis-

elements, but might also indicate a deletion of the possible CLR24 binding site. These 

possibilities will be verified by further RNA binding experiments confirming the RNA 

binding capacity of CLR24 and by precise mapping of its binding site within the transcripts 

initiated or processed immediately upstream of the psbI message. 

Taken together, the data obtained in course of this study indicate a role of CLR24 as mRNA 

stabilization/processing factor required for the accumulation of all the three transcripts 

possessing psbI at 5’ termini. The absence of CLR24 causes the loss of mature psbI mRNA 

and most likely the loss of PsbI proteins leading to the effects observed in PSII dimer 

formation and reduced photosynthetic activity. 

4.4 The Arabidopsis thaliana AtRAP protein is involved in chloroplast 16S rRNA 

processing 

A single OPR protein, AtRAP, was identified in A. thaliana (section 3.5). Considering the 

important role of OPR protein functions in chloroplast RNA metabolism described previously 

and in this study (compare section 1.3.2.3 and 4.3), the elucidation of AtRAP’s function in A. 

thaliana was of particular interest also from an evolutionary point of view.  

AtRAP T-DNA insertion lines revealed growth retardation, a pale green phenotype, and 

reduced photosynthetic activity (section 3.5.2). Furthermore, the mutants exhibited normal 

levels of abundant chloroplast transcripts (Figure 3.5.6), whereas their translation and 

therefore accumulation of chloroplast encoded proteins was dramatically reduced in early 

growth stages (Figures 3.5.3 and 3.5.5). The observed translation defect of the chloroplast 

machinery is verified to correlate with unusual ribosome RNA processing. To be precise, the 

maturation of 16S rRNA is severly affected. While decreased levels of mature 16S rRNA were 

detected in AtRAP T-DNA lines, a larger precursor accumulated as compared to the wild-type 

(section 3.5.4, Figure 3.5.7). In terms of that, it is clearly indicated that the phenotype of 

AtRAP mutants described above is specifically caused by inefficient processing of the 

chloroplastic16S rRNA.  

4.4.1 Organisation and processing of the ribosomal RNA gene cluster in chloroplasts 

Similar to its eubacterial progenitor, chloroplast ribosomes are composed of two subunits,  

50S and 30S, which together form the translation machinery, the 70S ribosomes (Harris et al., 
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1994). Ribosomal subunits comprise more than 50 ribosomal proteins, together with four 

ribosomal RNAs, which are encoded in one gene cluster, functioning with the catalytic 

activity of the ribosome (Nissen et al., 2000). The 23S rRNAs are split into 23S and 4.5S in 

chloroplasts (compare Figure 3.5.7), and the latter shares high homology with the 3’ end of 

the bacterial 23S. Furthermore, the chloroplast 16S and 23S rRNAs are flanked by tRNAs 

specific for isoleucine and alanine, while a tRNA for arginine is encoded downstream of the 

5S rRNA (Strittmatter and Kössel, 1984). Unlike the multiple copy of rRNA operon in 

bacteria, there are only two rRNA operons in the chloroplast genome, which are located in the 

inverted repeats. However, in spite of vast evolutionary distance, the chloroplast rRNA gene 

cluster still resembles that of bacteria in terms of organization of coding sequences and co-

transcription of genes. 

Maturation of rRNA precursors performed by endo- and exoribonucleases, in a ribosome 

assembly-assisted manner, is an essential step for ribosome function. To date, most of the 

investigations on rRNA maturation mechanism are based on E. coli, which showed that 

RNase III, in concert with RNase E and G, is responsible for the endonucleolytic cleavages, 

while RNaseT performs the exonucleolytic 3’ trimming step (Davies et al., 2010). Some 

higher plant mutants with defects in ribosomal RNA processing were also under 

characterization, however, the precise rRNA processing mechanisms are still not clear. 

Ribonucleases were first considered as cleaving enzymes without sequence specificity 

(Stoppel and Meurer, 2012). However nowadays, increasing ribonucleases have been verified 

to display specificity for sequences or structures, which help regulate the transcript abundance 

according to environment changes (Pfalz et al., 2009; Stoppel et al., 2011). The precise 

regulatory role for ribonucleases has yet to be convincingly shown. It was also clarified that 

multiple ribonucleases are involved in the rRNA maturation process with overlapping 

functions and specificities. Several nucleus-encoded proteins, such as PPRs have been 

hypothesized to form high-molecular-weight complexes with ribonucleases (Stern et al., 

2010). Several nucleus encoded proteins have been described to be involved in chloroplast 

rRNA processing. Among the already known factors, only a few of them have predicted 

ribonuclease activity, and all of them are lacking clear mechanism explanations (Table 4.1; 

Bollenbach et al., 2005; Cheng and Deutscher, 2005; Kishine et al., 2004; Walter et al., 2002). 

The lack of several known factors leads to general defects in chloroplast rRNA processing, as 

described for RNR1, BPG2 and DCL, while other proteins have their specific targets, for 

instance, DCL is required for 23S-4.5S RNA processing, CSP41a & CSP41b for 23S rRNA 

processing, and PRBP for 23S rRNA maturation (compare table 4.1). The absence of these 
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proteins affects chloroplast development to various extents, for example with or without 

influence on chloroplast mRNA accumulation. There are more than 180 ribonucleases 

annotated in A. thaliana, but only 17 are predicted to localize in the chloroplast, which are 

also approved by biochemical analyses (Arraiano et al., 2010). All the information above 

suggests that during evolution from prokaryotes to higher plants, the ribonucleases obtained 

diverse functions, which make the rRNA processing in chloroplasts more complex to adapt to 

environmental changes. Probably the rRNA processing in chloroplasts requires different 

factors to co-operate together.  

 

Table 4.1 Characterized nucleus-encoded proteins involved in chloroplast ribosomal RNA processing 

 

Higher plants protein Mutant phenotype Function Reference 

WCO (Arabidopsis) 
albino cotyledons, green leaves; low levels of 

chloroplast mRNA, normal nuclear encoded mRNAs 
maturation of 16S rRNA (Yamamoto et al., 2000) 

HCF7 (Maize) 
yellow leaves, retarded growth; normal accumulation 

of chloroplast and nuclear encoded mRNAs 
maturation of 16S rRNA (Barkan, 1993) 

PNPase (Arabidopsis) - 
metabolism of all major 

classes of plastid RNAs 
(Walter et al., 2002) 

BPG2 (Arabidopsis) 

retarded growth; normal accumulation of chloroplast 

encoded mRNAs; abnormal accumulation of 

chloroplast rRNAs 

maturation of all 

chloroplast rRNAs 
(Komatsu et al., 2010) 

RNR1 (Arabidopsis) 
white cotyledons, pale green leaves; normal 

accumulation of chloroplast encoded mRNAs  

3’–5’ exoribonuclease 

involved in the maturation 

of 23S, 16S and 5S rRNAs 

(Bollenbach et al., 2005) 

DAL(Arabidopsis) 
yellow leaves; low accumulation of  nuclear and 

chloroplast encoded mRNAs 

maturation of all 

chloroplast rRNA 
(Bisanz et al., 2003) 

DCL(Tomato) 
defective chloroplast and leaf; normal accumulation 

of chloroplast and nuclear encoded mRNAs 

plastid ribosome assembly; 

23S-4.5S rRNA processing 
(Bellaoui et al., 2003) 

PRBP (Tobacco) 
yellow leaves; normal accumulation of chloroplast 

and nuclear encoded mRNAs 
maturation of 4.5S rRNA  (Park et al., 2011) 

CSP41a & b  

(Arabidopsis) 

double mutant is lethal, mutants with no CSP41b and 

greatly reduced levels of CSP41a show retardate 

growth; normal accumulation of other chloroplast 

rRNAs and mRNAs  

metabolism of 23S rRNA  (Beligni and Mayfield, 2008) 

 

 

There are several proteins (table 4.1) whose absence leads to specific processing defects on 

16S rRNA, which are similar to the phenotype observed for AtRAP. A A. thaliana mutant 

lacking the WCO (WHITECOTYLEDONS) protein could not grow photoautotrophically in 

the early growing stage and showed an inefficient processing of 16S rRNA (Yamamoto et al., 

2000). However, in later stages the mutant’s phenotype turns to be like the wild-type. In 

addition, the absence of WCO also causes reduced transcription levels of chloroplast encoded 

genes, which is not observed in the AtRAP mutant (Figure 3.5.6). Another protein is HCF7 in 

maize, which is one of the earliest characterized proteins involved in ribosomal RNA 

processing. The absence of HCF7 protein in maize leads to a similar phenotype as seen for 



4 DISCUSSION            95 

AtRAP, such as retarded growth and reduced accumulation of chloroplast encoded proteins 

while mRNA levels remained unaltered. It is hypothesized that WCO is a counterpart of 

HCF7 in A. thaliana due to their similar function (Yamamoto et al., 2000). This assumption 

could be supplemented by AtRAP. However, the gene causing the mutation in WCO is not 

identified yet, but was approximately mapped to the top of chromosome 1. According to that, 

the mutation in WCO is not identical with AtRAP, as this gene is located to chromosome 2. 

Due to almost identical phenotypes of WCO and AtRAP, one might assume though, that the 

protein causing the WCO phenotype and AtRAP act together in the described16S processing 

events. Once the gene in WCO is identified, it would be interesting to investigate a potential 

interaction of these proteins. 

4.4.2 How is AtRAP involved in chloroplast 16S rRNA maturation? 

The processing sites for cleavage of pre-16S rRNA from the 7.4 kb rRNA operon have 

already been characterized by 5’ end and 3’ end mapping in A. thaliana, but the involved 

endonuclease(s) are unknown to date (Stoppel and Meurer, 2012, Figure 4.3). Northern blot 

results in the present work show this primary cleavage is normal in AtRAP mutants, which 

accumulate certain amount of pre-16S rRNA, followed by an abnormal maturation process via 

endonucleases on the 5’ end and potentially exonucleolytic 3’ end trimming. Several 3’ to 5’ 

exoribonucleases have been reported for rRNA processing, such as RNR1 and PNPase, but no 

5’ to 3’ endonuclease has been characterized (Bollenbach et al., 2005; Yehudai-Resheff et al., 

2001).  

Presented Northern blot data with different probes suggest that the maturation of pre-16S 

rRNA might be affected at both 5’ end and 3’ end in the AtRAP-1 mutant. Based on the 

working mechanisms of rRNA processing in bacteria, there could be several hypotheses for 

the function of AtRAP: (1) AtRAP is a ribonuclease by itself, working on 5’ and 3’ end of 

pre-16S RNA, in this case, AtRAP is supposed to have nuclease activity as well as specific 

RNA targeting function; (2) AtRAP, which is predicted to have RNA binding ability could 

assist or facilitate the targeting of certain ribonucleases to pre-16S rRNA to fulfill the 

processing; (3) AtRAP is required for ribosome assembly, which has already been proved 

being necessary for rRNA maturation (Holloway and Herrin, 1998). 

The first hypothesis is supported by the occurrence of a RAP domain at the C-terminus of the 

AtRAP protein. This domain is also designated as restriction_endonuclease_like region 

(DUF559) and described in many bacterial endonucleases. However, if this domain has 

indeed endonucleolytic activity in AtRAP remains to be shown. 
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The second possibility is supported by recent primer extention analyses which revealed an 

accumulation of 16S premature transcripts starting at P2 and the 5’end processing site as well 

as an accumulation of transcript ends between P2 and the mature transcript, which have not 

been described yet but are also detected to a lesser extent in the wild-type (Laura Kleinknecht, 

unpublished data). These results indicate that the processing occurs in the AtRAP-1 mutant, 

but less efficiently. Furthermore, recently small RNAs (16-28 nt non-coding RNA) located in 

chloroplast genome were indicated to be footprints of RNA-binding proteins, such as PPR 

proteins, playing roles during RNA maturation processes (Ruwe and Schmitz-Linneweber, 

2012). This study also revealed several small RNAs in the region of the 16S rRNA. Using 

these footprints, a comparison of nuclease-protected regions within the 16S rRNA region in 

the AtRAP mutant and the wild-type indicate that the binding site of AtRAP is at the 5’end of 

the premature 16S rRNA sequence around P2 promoter (Laura Kleinknecht, unpublished 

data).  

However, as processing of the 16S pre-transcript still occurs, it is unlikely that the 

ribonucleolytic activity itself is missing in the AtRAP mutant which favors the second 

hypothesis over the first one. There are also no evidences to support the third hypothesis. 

Further experiments including a detailed analysis of ribosome assembly in AtRAP mutants 

would be required, by which a potential function of AtRAP in efficient ribosome assembly 

could be clarified. 

Taken together, these data indicate that AtRAP might guide ribonucleases to their site of 

action at the 5’end of the premature 16S rRNA or increases their efficiency especially in early 

growth stages when the chloroplasts need high translation levels for development (Figure 4.3). 

One might speculate that binding of AtRAP to the 5’end of the 16S rRNA precursor changes 

its secondary structure which facilitates the binding of proteins involved in the nucleolytic 

events, at this enhancing the efficiency of 16S maturation. In contrast, in the AtRAP mutant 

the processing events are less efficient and 16S precursors accumulate (Figure 4.3). The 

affected processing of 16S rRNA causes inefficient ribosome assembly and therefore 

inefficient chloroplast translation, which explains the mutant’s phenotype.  

As mentioned above, the deficient phenotype of AtRAP is only present in the early stage of 

plant development, which is also observed for other 16S processing mutants, such as the wco 

mutant. One explanation is that the requirement of AtRAP changes during plant development. 

It might be expressed at high levels only in the early chloroplast development to increase the 

assembly of functional ribosomes or its function might be taken over by other proteins. 

Another explanation is that the mature 16S rRNA is highly stable and accumulates to 
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sufficient amounts during development which makes AtRAP more dispensable in later stages 

(Harris et al., 1994).  

 

 

 

Figure 4.3 Hypothesized working model for the AtRAP protein. The map of pre-16S rRNA is shown in the 

figure, with processing site depicted as straight arrows. In the wild-type (left), AtRAP could assist a 

processosome consisting of certain ribonucleases and potential auxiliary factors to bind to premature 16S rRNA 

and cleavage the precursor at processing site. The processing becomes inefficient in the AtRAP mutant (right), as 

indicated by curved arrows and dashed outlines, which leads to the accumulation of premature 16S rRNAs. 
 

 

 

This hypothesis needs confirmation by further experiments, such as an analysis of the 

expression levels of AtRAP transcripts during plant development, detailed RNA protection 

experiments, as well as in vivo and in vitro RNA-binding experiments. At this, it would be 

interesting to determine the functions of the proposed RNA-binding domains of AtRAP, both 

the RAP domain and the OPR repeats. Furthermore, the generation of specific antibodies 

against AtRAP and other proteins involved in 16S rRNA processing could identify possible 

interaction partners and elucidate potentially formed higher molecular weight complexes 

which may be acting as a “processosome” for the maturation of this important chloroplast 

rRNA. 
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4.4.3 AtRAP - a broader view 

The OPR family consists of more than 100 members in the green alga C. reinhardtii, whereas 

in higher plants, like A. thaliana, only a single OPR protein could be identified (compare 

section 1.3.2.3). This points to a slow expansion of this protein family in higher plants, in 

contrast to Chlorophytes. However, the appearance is reversed looking at other repeat proteins 

in these groups: The PPR proteins, which have also been described to play important roles in 

organellar RNA metabolism exhibit more than 450 members in higher plants, whereas the 

nuclear genome of C. reinhardtii encodes only 11 PPR proteins (section 1.3.2.2). It might 

therefore be assumed that in higher plants PPR proteins take over the functions fulfilled by 

OPR proteins in Chlorophyta. 

Having a closer look at the single OPR encoded by nuclear genome of diverse Streptophyta, it 

is indicated that all these proteins have the same evolutionary origin. As shown in an 

alignment of selected OPR representatives from higher plants all these proteins reveal a high 

conservation, especially at the C-termini containing the predicted RAP domain/ 

Restriction_endonuclease_like region (Figure 4.3). At this, it is tempting to speculate that 

these OPR proteins have a similar function in 16S rRNA metabolism described here for 

AtRAP. However, if and how these OPR proteins in other organisms than A. thaliana are 

involved in this process remains to be elucidated.  

 

Figure 4.3 Sequence alignment of AtRAP homologues in higher plants. By Blast search, AtRAP homologues 

in Arabidopsis (Arabidopsis thaliana, At2g31890, GI: 817747), Moss (Physcomitrella patens, GI: 168040935), 

Grape (Vitis vinifera, GI: 225434251), Poplar (Populus trichocarpa, GI: 224117838), Rice (Oryza sativa 

Japonica, GI: 115453599), Brachypodium (Brachypodium distachyon, GI: 357161383), Glycine (Glycine max, 

GI: 356506291) and Ricinus (Ricinus communis, GI: 255585295) were obtained from NCBI 

(www.ncbi.nlm.nih.gov).  The multiple sequence alignment was performed by using ClustalW (Thompson et al., 

2002) and illustrated by Genedoc (http://www.psc.edu/biomed/genedoc). Black boxes indicate strictly conserved 

amino acids, and gray boxes closely related ones. The conserved RAP domain/ Restriction_endonuclease_like 

region is labeled by a black box. 
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Finally, the AtRAP protein becomes interesting in a completely different context. The A. 

thaliana AtRAP mRNA was found to be a specific target of Pseudomonas syringae – 

mediated induction of AtlsiRNA-1, which is one of the novel classes of endogenous siRNA 

(Katiyar-Agarwal et al., 2007). This by bacterial infection or specific growth conditions 

induced AtlsiRNA employs a unique mechanism to degrade AtRAP mRNA. Accordingly, 

AtRAP was speculated to act as a negative regulator which peformes a role in disease 

resistance, which is supported by enhanced resistance to Pseudomonas syringae infections in 

the AtRAP-1 mutant (Katiyar-Agarwal et al., 2007).  

Considering the here identified function of AtRAP in chloroplast16S rRNA maturation and 

therefore in chloroplast translation one might assume that Pseudomonas-infected plant cells 

protect themselves by down regulating chloroplast translation via a siRNA-based mechanism. 

This would subsequently reduce the supply of bacteria with nutrients and limit their further 

spread. Therefore, it would be interesting to investigate if the level of mature 16S rRNA in A. 

thaliana wild-types upon Pseudomonas infection are similarily to AtRAP reduced.  

Taken together, data obtained for AtRAP in course of this study likely provide the starting 

point of further important investigations on its role in pathogen defence and the function of its 

homologues in other Streptophytes. 
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6 ANNEX 

Sequencing result of inverse PCR product from mutant 45a, 42b and 101b 

Vector sequences are indicated by italic letters. 

mutant Sequencing results of PCR products from different digestion 

PstI NheI 

45a CTGCAGCCGCCGTCGCCCACCAGGCGTCCGAAGTCG

CCCACGTCCCAAATCTCCGTCTCCTCGCCGTGGTTGA

CGCACTTGctcgctgaggcttgacatgattggtgcgtatgtttgtatgaagctac

aggactgatttggcgggctatgagggcgggggaagctctggaagggccgcgatgg

ggcgcgcggcgtccagaagggccatacggcccgctggcggcacccatccggtata

aaagcccgcgaccccgaacggtgacctccactttcagcgacaaacagcacttatac

atacgcgactattctgccgctatacataaccactcagcttagttaanatcccatttttact

tgcgagggggggcg 

AGAACGCGATACCGGGTCAAGGAATCAACATGA

ATGCTTGTTCGCATGGCTGCTTGCGTGCGCTGACT

GACAACGTTAGTTCCGCTGACTGCCGCAGCCAAA

AGGCCCTGCGTCCCGCTGACAAACAAACGCCTTG

TGCTCCACTGACTT  

42b GATACCGCCGCTGCAAGCAATTCGGGAGTCAAGGCA

TTGGAAAACGGTCATTGGAGGCAGGGCGTGTGTGAC

TGTGTGCCAAGGGAACGGAGCGTAAGGAATGATTAG

CACAATAGACGCGAGTGTGCGTGTGCCTTGACTGAG

CGGCCTGCTTGACGACTGGCGCCTGTGGGCTCCCTGA

ATCACGCACATGTACATTTGCACACGGGACCCCATCC

CTTGTCTACCCATCCCTTGTGCTCTGACTGCTCTCTAC

CACGCATGCACGCGACTTAGACGCGGCCACTCACCC

CCACAGCCCGGCCCGGTTGTCGTTCATCACGGCGCCG

CCATCCANTATGATGT 

GATACCGCCGCTGCAAGCAATTCGGGAGTCAAG

GCATTGGAAAACGGTCATTGGAGGCAGGGCGTG

TGTGACTGTGTGCCAAGGGAACGGAGCGTAAGG

AATGATTAGCACAATAGACGCGAGTGTGCGTGTG

CCTTGACTGAGCGGCCTGCTTGACGACTGGCGCC

Tgcttaagatcccatcaagcttgcatgccgggcgcgccagaaggagcgcag

ccaaaccaggatgatgtttgatggggtatttgagcacttgcaacccttatccgg

aagccccctggcccacaaaggctaggcgccaatgcaagcagttcgcangna

gcccctggagcggtgccctcctgataaaccggccagggggcctatgttctttac

ttttttacaaganaantcnctcaacatcttaaaatggccnggngagtcgacna

nnaancccgg 

101a TTGAGCGGGTGATGCTGCCGTCATAAGGTGACCTGG

GTCGCTCCCCGTCTCTTGGCGTTGCCCAGGACGTACC

CCGGCCGTTTTCTGTGCTCCACAGGACCCGTCTCCCT

CCACTCCCAACCCAAAGGGCGCTTATCCTATGTATGA

ACCTCACTCCGCGCTTATAGTCCGCACACGCACACAA

ACAAGCACACGTCACGCAGTCCACATGCGCTCGCAC

CGTACACGCACACGCAGTCCACACGCACACACACGC

ACACGCAGTCCCCACCTGCTCCTGGTACTGCGCCAGC

ATGGCCTTCAGGTTCGCCGCCTCGCCCTCCGCCGCCG

CCTTCTCCTGCGCGGGTAGAGAACAGGGATGGCATG

GACACGCGAAACATCAGCGGTGCAAGTCGGGCTCCG

ATATCGTCAGTACAGGCAGTGGTGCGATGCGAACTG

TACATACATACGGTATACATCTACAAACCCCCCAAG

AGAAGTGCAAATGTTGTTGGCTTTACTGCTATCCACG

TTGCAACCTCCCTCCTCTGCCTCGCCTATAACACACG

GCTACGTCGCCTGCCCCTCACGCCTACATCGGCCCCC

AACCCACCTGCAGGCTCCGGACCTGAGGAGGCGGGC

GGGAGCGGGGGGCGAGAGGAGGCGGGAGGCAACAG

TCAAGGCCGGTCAGTGCAGTGAGTGGCGAGAAGGCA

GGTGTGACTGTACACGGCCAGCATCCGGGAGCAGTG

GCGCTCGGGGCGGCAGGGACGG 

TTGAGCGGGTGATGCTGCCGTCATAAGGTGACCT

GGGTCGCTCCCCGTCTCTTGGCGTTGCCCAGGAC

GTACCCCGGCCGTTTTCTGTGCTCCACAGGACCC

GTCTCCCTCCACTCCCAACCCAAAGGGCGCTTAT

CCTATGTATGAACCTCACTCCGCGCTTATAGTCC

GCACACGCACACAAACAAGCACACGTCACGCAG

TCCACATGCGCTCGCACCGTACACGCACACGCAG

TCCACACGCACACACACGCACACGCAGTCCCCAC

CTGCTCCTGGTACTGCGCCAGCATGGCCTTCAGG

TTCGCCGCCTCGCCCTCCGCCGCCGCCTTCTCCTG

CGCGGGTAGAGAACAGGGATGGCATGGACACGC

GAAACATCAGCGGTGCAAGTCGGGCTCCGATATC

GTCAGTACAGGCAGTGGTGCGATGCGAACTGTAC

ATACATACGGTATACATCTACAAACCCCCCAAGA

GAAGTGCAAATGTTGTTGGCTTTACTGCTATCCA

CGTTGCAACCTCCC 

101b GAGCGGGTNATGGCGATGTTGGCGCGCTCGCATCAT

TGCGTGTAGAGCGGTCGTGCAGCCCGTGGCAAGCCC

GCCGAGCCCTGGCTAGCGGTACCGCCTGCTTTTAGCT

ACAGCTGGCCCAGCAGCGAATCATGCTCCTCAAGTG

AAACACCCCTCCTTACACCGGCCCCGCTTCTCGTTAG

GTGCTGTGGTCAGTGGCCTACCACAGCCACTCCTGCC

CGGAGCTGCTGGACGCAGCCGCGCCCGCCATCGCCT

CGCGCCTGGGCCGCTTCTGCCCCTGGGACGCATCCGT

GAGCGGGTNATGGCGATGTTGGCGCGCTCGCATC

ATTGCGTGTAGAGCGGTCGTGCAGCCCGTGGCAA

GCCCGCCGAGCCCTGGCTAGCgctagcttaagatcccatcaa

gcttgcatgccgggcgcgccagaaggagcgcagccaaaccaggatgatgttt

gatggggtatttgagcacttgcaacccttatccggaagccccctggcccacaa

aggctaggcgccaatgcaagcagttcgcatgcagcccctggagcggtgccct

cctgataaaccggccagggggcctatgttctttacttttttacaagagaagtcac

tcaacatcttaaaatggccaggtgagtcgacgagcaagcccggcggatcag
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GGTGGCGTGGGCCTACGCCAAGCTGGACCACCCGCA

CCGCGACCTGTTCGAGTCGCTGCAGagcgtgcagcaacagcc

cggccaacagcaaatcacaagcagctggcttttcatgccgctaattgccgacgcgct

taagatcccatcaagcttgcatgccgggcgcgccagaaggagcgcagccaaacca

ggatgatgtttgatggggtatttgagcacttgcaacccttatccggaagccccctggcc

cacaaaggctaggcgccaatgcaagcagttcgcatgcagcccctggagcggtgcc

ctcctgataaaccggccagggggcctatgttctttacttttttacaagagaagtcactca

acatcnnnaaatggccaggtgagtcgacgagcaagcccgnnggatcangcagcg

ngcttngnantttgacttgcaa 

gcagcgtgcttgcanatttgaccttgca 
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