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Summary

Searching sequence databases and building 3D models for proteins are important tasks

for biologists. When the structure of a query protein is given, its function can be in-

ferred. However, experimental methods for structure prediction are both expensive and

time consuming. Fully automatic homology modeling refers to building a 3D model for

a query sequence from an alignment to related homologous proteins with known struc-

ture (templates) by a computer. Current prediction servers can provide accurate models

within a few hours to days. Our group has developed HHpred, which is one of the top

performing structure prediction servers in the field.

In general, homology based structure modeling consists of four steps: (1) finding homol-

ogous templates in a database, (2) selecting and (3) aligning templates to the query, (4)

building a 3D model based on the alignment.

In part one of this thesis, we will present improvements of step (2) and (4). Specifically,

homology modeling has been shown to work best when multiple templates are selected

instead of only a single one. Yet, current servers are using rather ad-hoc approaches to

combine information from multiple templates. We provide a rigorous statistical frame-

work for multi-template homology modeling. Given an alignment, we employ Mod-

eller to calculate the most probable structure for a query. The 3D model is obtained

by optimally satisfying spatial restraints derived from the alignment and expressed as

probability density functions. We find that the query’s atomic distance restraints can

be accurately described by two-component Gaussian mixtures. Moreover, we derive sta-

tistical weights to quantify the redundancy among related templates. This allows us to

apply the standard rules of probability theory to combine restraints from several tem-

plates. Together with a heuristic template selection strategy, we have implemented this

approach within HHpred and could significantly improve model quality. Furthermore,

we took part in CASP, a community wide competition for structure prediction, where

we were ranked first in template based modeling and, at the same time, were more than

450 times faster than all other top servers.

Homology modeling heavily relies on detecting and correctly aligning templates to the
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query sequence (step (1) and (3) from above). But remote homologies are difficult to

detect and hard to align on a pure sequence level. Hence, modern tools are based on

profiles instead of sequences. A profile summarizes the evolutionary history of a given

sequence and consists of position specific amino acid probabilities for each residue. In

addition to the similarity score between profile columns, most methods use extra terms

that compare 1D structural properties such as secondary structure or solvent accessibil-

ity. These can be predicted from local profile windows.

In the second part of this thesis, we develop a new score that is independent of any prede-

fined structural property. For this purpose, we learn a library of 32 profile patterns that

are most conserved in alignments of remotely homologous, structurally aligned proteins.

Each so called “context state” in the library consists of a 13-residue sequence profile.

We integrate the new context score into our Hmm-Hmm alignment tool HHsearch and

improve especially the sensitivity and precision of difficult pairwise alignments signifi-

cantly.

Taken together, we introduced probabilistic methods to improve all four main steps in

homology based structure prediction.
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1. Introduction to homology detection and

modeling

1.1. Pairwise sequence alignment

A central concept in biology is that new organisms such as plants or animals evolve

from already existing ones. This also holds on a molecular level, where proteins can be

traced back to their ancestors. In the course of time, however, proteins had to adapt

to changing environmental conditions. Thus their amino acid sequences were subject

to mutations. Depending on the time scale and selective pressures, these mutations

accumulated. In the end, proteins for which a common ancestor can be inferred are said

to be homologous. Often, homologous proteins vary considerably in sequence but share

most of their characteristic properties such as function and structure. Consequently,

sequence homology is of major interest for biologists, because it allows the investigation

of functions and structures of new and uncharacterized proteins.

In order to detect homologous proteins, computational methods have been developed.

A so-called alignment is a way to identify similar regions in two sequences that originate

from evolutionary relationships between the proteins. Each residue in one sequence is

paired with either a similar residue in the other sequence or with a gap. Since numerous

such pairings are possible, a best one with respect to some quality score has to be found.

It is assumed that a sequence gets mutated into any of its successor sequences by a series

of substitutions. To assess their score, substitution matrices have been generated. They

describe rates of mutation of each amino acid into another. Such a matrix reflects that

in homologous proteins mostly physico-chemically similar amino acids are substituted.

Computational biology has come up with algorithms that compute the highest scoring

alignment given a substitution matrix.

More formally, given two sequences q = q1 . . . qn and t = t1 . . . tm with qi, tj ∈ Σ and

Σ̄ = Σ ∪ {−}, a global alignment between q and t is a pair (q̄, t̄) ∈ Σ̄ × Σ̄ with |q̄| = |t̄|
and (q̄i, t̄i) 6= (−,−) for all i = 1, . . . , |q̄|. For instance, if Σ is the alphabet of amino

acids, Figure 1.1 depicts an alignment for q = AGTPDR and t = APERL.
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A G T P D R −
A − − P E R L

Figure 1.1.: Pairwise alignment of q = AGTPDR and t = APERL.

Given a substitution matrix S, each entry S(a, b) estimates the rate of change from a

to b, where a, b ∈ Σ. Furthermore, pairs containing a gap are scored with a gap penalty

function g(a,−) or g(−, a). Mostly, it is defined so that opening a gap is quite expensive

whereas extending an existing gap increases the cost linearly in its length. In the example

above, the first gap in column 2 is a ’gap opening’ whereas the second gap in column 3

is an extension of the previous one.

The Needleman-Wunsch algorithm (Needleman and Wunsch, 1970) computes a global

alignment between q and t with maximal score by dynamic programming as follows:

a n × m matrix D is filled successively where D(i, j) holds the optimal score for an

alignment between q1...i and t1...j . Extending this sub-alignment is possible in three

ways: either qi+1 matches tj+1 or qi+1 is aligned to a gap in t or tj+1 is aligned to a gap

in q; see Figure 1.2 for the match case.

q1...i qi+1

t1...j tj+1

Figure 1.2.: Extending the sub-alignment between q1...i and t1...j with a match.

The optimal extended alignment is then found by maximizing the scores over all three

possibilities:

D(i+ 1, j + 1) = max


D(i, j) + S(qi+1, tj+1),

D(i, j + 1) + g(qi+1,−),

D(i+ 1, j) + g(−, tj+1).

(1.1)

Starting in the upper left corner of D, all cells are filled according to equation (1.1), see

also Figure 1.3. In the end, D(n,m) contains the score of the optimal global alignment.

To find the actual alignment, a backtrace is carried out. Here, one starts at the cell in

the lower right, D(n,m), and determines the cell that maximized D(n,m) by reversing

equation (1.1). This procedure is continued until D(1, 1) is reached.
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D

0 m

q

t

n

0

i+ 1

j + 1

D(i+ 1, j + 1)

D(i, j + 1) + g(qi+1,−)
D(i, j) + S(qi+1, tj+1)

D(i+ 1, j)
+g(−, tj+1)

Figure 1.3.: Filling the dynamic programming matrix D: this is a graphical representa-
tion of eq. (1.1) and shows the three different options to fill in D(i+1, j+1).

Global alignments assume that q and t are similar along their whole sequences. Yet, when

for instance q is a multiple domain protein whereas t is not, aligning these sequences

globally seems counter-intuitive. Likewise, remote homologs that share only parts of

their sequences are not supposed to be completely alignable. In these cases, a local

alignment makes more sense. Smith and Waterman (Smith and Waterman, 1981) found

that by including zero as a fourth option into equation (1.1), local alignments can be

calculated analogously:

D(i+ 1, j + 1) = max



0,

D(i, j) + S(qi+1, tj+1),

D(i, j + 1) + g(qi+1,−),

D(i+ 1, j) + g(−, tj+1).

(1.2)

Now, the backtrace no longer starts at D(n,m) but at the cell with the highest value in

D.

Concerning the complexity of both the global and local sequence-sequence alignment

algorithms, the entire D matrix has to be filled. Backtracing can be prepared along the

way resulting in a total number of steps of O(nm).
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sequence MSA profile

Figure 1.4.: A single sequence is extended to a multiple sequence alignment (Msa) by
searching homologs in a database. The Msa is then converted into a se-
quence profile (right).

1.2. Profile alignments

As outlined in section 1.1, any protein sequence has numerous homologs which share

characteristic properties and which, taken together, form a family of proteins. In addi-

tion to pure sequence information, such a family summarizes evolutionary information.

Specifically, when certain amino acids are of crucial importance for a protein, they will

be strongly conserved in all members of the family. Moreover, several consecutive posi-

tions may exhibit a characteristic composition of amino acids.

In order to exploit the extra information contained in protein families, large sequence

databases are searched. All hits are combined into a multiple sequence alignment (Msa),

i.e. an extension of the pairwise sequence alignment described in the previous chapter

for more than two proteins. Subsequently, the Msa is converted into a more compact

sequence profile by calculating the frequencies of each amino acid at each position, see

Figure 1.4. As indicated in the profile on the right in Figure 1.4, it provides for each

sequence residue a position specific distribution over all 20 amino acids. A single se-

quence can be regarded as a special profile where each position has frequency one for

its amino acid. Obviously, this constitutes a strong constraint and the extended profile

is much more expressive. Methods based solely on sequence suffer from the inability to

detect and correctly align remote homologs because there is not enough information in

the bare sequences. Here, profiles help out and the most sensitive and accurate align-

ment tools rely on comparing profiles instead of single sequences. Probably the most

prominent example for the advantage of profiles is the upgrade of Blast (Basic Local

Alignment Search Tool, Altschul et al. (1990)) to Psi-Blast (Position-Specific Iterative

Blast, Altschul et al. (1997)). Whereas the first one is a heuristic to speed up the
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Figure 1.5.: Workflow of Psi-Blast: first, a query sequence is searched against a
database by performing pairwise alignments with a BLOSUM substitution
matrix. Next, all accepted hits are merged into a profile. This profile is
then used in the next iteration to refine the substitution matrix. That way,
it becomes more likely to detect remote homologs.

calculation of pairwise sequence-sequence alignments, the latter outperforms Blast in

both sensitivity and precision by iteratively building up a query profile, see Figure 1.5.

In particular, a given query sequence is searched against a database using a BLOSUM

substitution matrix. All accepted hits are then combined into a profile. In the next

round, this profile is used to refine the substitution matrix, which makes it more likely

to detect more remote homologs. In contrast to a substitution matrix such as BLOSUM

that has been trained on a large number of alignments from various families, a sequence

profile is much more specific as it summarizes information from previous rounds, i.e. it

involves mainly sequences from the query family.

Even if Psi-Blast increased the power of homology detection tools considerably, there

is still room for improvements. A natural extension is to replace sequences with profiles

also on the database side. Today, virtually all of the most sensitive and accurate remote

homology detection methods are fundamentally based on profile-profile comparison.

1.3. HMM-HMM alignment

Enriching a single sequence to a sequence profile is one of the main sources of success

in remote homology detection. The extension of Blast (Boratyn et al. (2013)) to Psi-
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Blast (Altschul et al. (1997)) marked the beginning of the common use of profiles. A

next step led to profile-profile alignment tools (Ohsen et al. (2003); Wang and Dun-

brack (2004); Wu and Zhang (2008)), which were shown to outperform single sequence

based methods. Finally, a sequence profile can be encoded as a Hidden Markov Model

(Profile-Hmm, Eddy (1998)), which provides a statistical framework for the amino acid

frequencies in the columns of the profile and additionally contains position specific in-

sertion and deletion probabilities (Eddy (1998)). Söding (2005) introduced Hmm-Hmm

comparison and thereby raised the power of remote homology detection to the current

state of the art. The next section briefly describes how to compare two Hmms and

introduces some of the alignment features used throughout this thesis.

1.3.1. Log-sum-of-odds score

Given two Hmms q and t of length Lq and Lt we follow Mückstein et al. (2002), and

express the probability for an alignment A as:

P (A) =
eβS(A)

Z
, (1.3)

where S(A) is the score for the alignment A between q and t, β = 1/kT (T = temper-

ature, k = Boltzmann constant) is assumed to be one, and Z is the partition function:

Z =
∑
A
eβS(A). (1.4)

Z serves as a normalization factor and thus runs over all alignments. S(A) is the score

of the alignment. Ideally, comparing homologous sequences results in consistently higher

scores than for non-homologs. Given an Hmm, a log-odds score can be defined which

assesses how much more likely a sequence x1, . . . , xL is emitted by the Hmm than by a

simple null model:

SLO = log
P (x1, . . . , xL|emission on path)

P (x1, . . . , xL|nullmodel)
.

Söding proposed a generalization for Hmm-Hmm comparison:

SLSO = log
∑

x1,...,xL

P (x1, . . . , xL|co-emission on path)

P (x1, . . . , xL|nullmodel)
. (1.5)
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This Log-Sum-of-Odds (LSO) score is a natural extension of the Log-Odds score as can

be seen when one Hmm encodes only a single sequence and thus the sum reduces to a

single term. Writing out equation (1.5) more concretely results in:

SLSO =
∑

k:XkYk=MM

Saa(qi(k), tj(k)) + logPtr, (1.6)

where Ptr is the product of all transition probabilities for the path through q and t and

the sum runs over all match-match states. Herein, Saa(qi, tj) is the column score:

Saa(qi, tj) = log
20∑
a=1

qi(a) tj(a)

f(a)
. (1.7)

qi(a) and tj(a) denote the probability of amino acid a in column i and j in the Hmms q

and t, respectively. f(a) is the background probability of amino acid a which serves as

a weighting factor so that rare amino acids get a higher weight and columns with only

background frequencies will cancel out giving a score of log(1) = 0.

1.3.2. Posterior probabilities

In order to assess the local alignment quality between residue i in q and j in t, we aim to

calculate the posterior probability for the pair state match-match (M q
i ,M

t
j ) to be part

of an alignment between q and t:

P (M q
i �M

t
j |q, t). (1.8)

Therefore, all alignments having pair state (M q
i ,M

t
j ) must be considered. In this regard,

two auxiliary functions are defined:

FMM (i, j) =
∑
A∈Fi,j

eβS(A) (1.9)

and

BMM (i, j) =
∑
A∈Bi,j

eβS(A). (1.10)

Fi,j is the set of all alignments between q1...i and t1...j ending in the pair state (M q
i ,M

t
j )

and similarly, Bi,j is the set of all alignments between qi+1...Lq and tj+1...Lt starting after

the pair state (M q
i ,M

t
j ). Typically, FMM is called the Forward and BMM the Backward
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partition function.

Combining all (local) alignments that end in (M q
i ,M

t
j ) with all that start in (M q

i ,M
t
j )

yields the posterior:

P (M q
i �M

t
j |q, t) =

FMM (i, j)×BMM (i, j)

Z
. (1.11)

The partition function for local Hmm-Hmm comparison, Z, is expressible as:

Z = 1 +
∑
i,j

FMM (i, j), (1.12)

where the number one at the beginning comes from the empty alignment.

1.3.3. Alignment between two pairs

The posterior probability as described in section 1.3.2 considers a single pair of residues

i and j. A further extension will be needed in section 3.2.1, where two pairs (i, j) and

(k, l), i < k, j < l, are taken into account (see also Figure 1.6):

P (M q
i �M

t
j , M

q
k �M

t
l |q, t). (1.13)

Due to the computational complexity of calculating eq. (1.13) exactly, we approximate

q

t

i k

j l

Figure 1.6.: Aligning two pairs of residues: (i, j) and (k, l). Calculating posterior prob-
abilities for all pairs is time-consuming, so we use the approximation in eq.
(1.14)

it as:

P (M q
i �M

t
j , M

q
k �M

t
l |q, t) ≈

{
min{P (M q

i �M t
j ), P (M q

k �M
t
l |q, t)} if k − i = l − j

P (M q
i �M t

j ) · P (M q
k �M

t
l |q, t) otherwise.

(1.14)
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Figure 1.7.: (a) The bold ar-
rows represent an alignment
of a sequence to a profile
Hmm. Each column in the
Hmm contains a match state
M, a delete state D and an
insert state I. (b) Alignment
of two Hmms with a path
through the Hmms (bold ar-
rows) corresponding to a se-
quence co-emitted by both
Hmms. (c) Allowed tran-
sitions between pair states.
(Figure taken from Söding
(2005))

I.e. when (i, j) and (k, l) are on the same diagonal in the dynamic programming matrix,

we take the minimum, and otherwise the positions are assumed to be independent and

can be multiplied.

1.3.4. Pairwise HMM alignment

The structure of a profile Hmm is depicted in Figure 1.7. Each column in the profile

gets associated with a match state M , a delete state D and an insert state I. Both

match states and insert states can emit amino acids whereas delete states can not.

Consequently, there are five state pairs: MM, MI, IM, DG and GD. Gaps are treated as

in sequence-sequence alignments. Finding the highest scoring path through two Hmms

can again be accomplished by dynamic programming similar to Needleman-Wunsch.

However, the number of state pairs is increased to five and therefore it is necessary to
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fill up five matrices as follows:

SMM (i,j) = Saa(qi,tj)+max



SMM (i−1,j−1) + log(qi−1(MM)tj−1(MM))

SMI(i−1,j−1) + log(qi−1(MM)tj−1(IM))

SIM (i−1,j−1) + log(qi−1(IM)tj−1(MM))

SDG(i−1,j−1) + log(qi−1(DM)tj−1(MM))

SGD(i−1,j−1) + log(qi−1(MM)tj−1(DM))

(1.15)

SMI(i, j) = max

SMM (i− 1, j) + log(qi−1(MM)tj(MI))

SMI(i− 1, j) + log(qi−1(MM)tj(II))
(1.16)

SDG(i, j) = max

SMM (i− 1, j) + log(qi−1(MD))

SDB(i− 1, j) + log(qi−1(DD)).
(1.17)

Here, qi(XX
′) and tj(Y Y

′) denote the transition probabilities to go from state X or Y ∈
{M, I,D} in column i or j to a state X ′ or Y ′ ∈ {M, I,D}. As for the Smith-Waterman

algorithm, by adding a zero as a sixth option in equation (1.15), a local alignment can

be calculated. Again, the optimal alignment can be constructed by backtracing from

the cell with the highest score.

1.3.5. HHsearch

Söding (2005) has implemented a pairwise Hmm-Hmm alignment tool called HHsearch.

Both the query and all database templates are encoded by Hidden Markov Models and

their alignment is calculated as outlined in the previous section. In addition to com-

paring amino acid frequencies by the column score (equation (1.7)), HHsearch also

scores secondary structure. If DSSP states are missing, PsiPred is employed to predict

secondary structure.

To further refine the alignment quality, HHsearch exploits the finding of Pei and Gr-

ishin (2001). They observed that homologous sequences often share clusters of similar

regions, i.e. ranges of consecutive columns. Having determined an optimal scoring

alignment path, HHsearch corrects for these clusters by calculating the correlation of

consecutive match-match states. Specifically, if the l-th state is MM and i(l), j(l) are
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the corresponding columns in q and t, then the autocorrelation function is defined as:

g(d) =

L−d∑
l=1

Sl · Sl+d, (1.18)

where Sl is the column score for state l, and d is a fixed sequence separation value.

Homologous sequences are expected to exhibit positive values of g(d) for low ds. Conse-

quently, the final alignment score is adjusted by the correlation score:

Scorr = wcorr

4∑
d=1

g(d). (1.19)

wcorr has been trained on a small test set of 317× 317 pairwise alignments.

Like most alignment tools, HHsearch includes an offset parameter into its scoring

function. It is added to the column score Saa and was found to be slightly negative

(−0.1). Presumably, it prevents long but non-homologous alignments from accumulating

small scores.

When a profile is quite sparse, some columns might get assigned a frequency of zero

for certain amino acids. Obviously, such extreme values originate from an inadequate

sampling of sequences in the Msa. For instance, the database might be biased towards

certain protein families. To compensate for such effects, HHsearch adds pseudocounts

to the profiles. Depending on the profile’s diversity, the amount of pseudocounts gets

adapted. See Angermüller et al. (2012) for more details.

1.4. Alignment features

To assess the quality of an alignment, HHsearch provides the user with several output

values. Table 1.1 gives an overview of some important alignment features that will be

used throughout this thesis.
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Table 1.1.: Alignment features: the probability, raw score, ss score and similarity are
calculated by HHsearch.

Feature Description

Probability The Probability of a template to be a true positive: For

the probability of being a true positive, the secondary struc-

ture score in column SS is taken into account, together with

the raw score. True positives are defined to be either glob-

ally homologous or they are at least homologous in parts,

and thereby locally similar in structure. More precisely, the

latter criterion demands that the MAXSUB score between

query and hit is at least 0.1. In almost all cases the struc-

tural similarity will we be due to a global or local homology

between query and template.

Sum of posteriors The sum of all posterior probabilities along the alignment A

between query q and template t, i.e.

SoP =
∑

(i,j)∈A

P (qi � tj |q, t),

where the posterior is calculated as in section 1.3.2. Since

SoP is heavily length dependent, it is usually divided by the

query length |q|.
Raw score The raw score is what comes out of the (Viterbi) Hmm-Hmm

alignment excluding the secondary structure score. Infor-

mally speaking, it is the sum over the similarities of aligned

profile columns minus the gap penalties.

SS score The secondary structure score. This score tells how well the

PsiPred-predicted (3-state) or actual DSSP-determined (8-

state) secondary structure sequences agree with each other.

PsiPred confidence values are used in the scoring, low con-

fidences get less statistical weight.

Similarity The Similarity is the arithmetic mean of the substitution

scores between the aligned residue pairs from the query and

template.
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Figure 1.8.: Effective number of sequences: the lower profile is generated from the upper
profile by reducing the effective number of sequences from 7.9 to 3. After
the filtering, the lower profile is much more sparse and many columns are
dominated by a single amino acid.

1.4.1. Effective number of sequences

The effective number of sequences at column i of a multiple alignment is calculated on

the subalignment Mi formed by all sequences with a residue in column i and by all

columns with at most 10% terminal gaps in these sequences. A terminal gap is a gap

that lies either to the left or to the right of the entire sequence. For each column j of

Mi we calculate amino acid frequencies p(j, a), using the Henikoff sequence weighting

scheme. Then the number of effective sequences is:

N(i) = exp

− 1

Li

∑
j∈Mi

20∑
a=1

p(j, a) · log p(j, a)

 . (1.20)

Here, Li is the number of columns in Mi.

We measure the amount of homology information in an alignment by its effective number

of sequences. Higher numbers mean more diverse alignments and profiles, see Figure 1.8.
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1.4.2. TMscore

The wealth of structural data available today requires automatic processing pipelines.

In structure prediction, models can be produced easily by fully automated servers. Eval-

uating the quality of these models by hand is quite labour-intensive and thus a range of

scores has been devised to carry out the task. Simply calculating the root mean square

deviation is disadvantageous because outliers are penalized heavily even if the overall fold

is correct. Ideally, a score should be independent of the query length and differentiate

between a random and a statistically significant prediction. Zhang and Skolnick (2005b)

have proposed the template modeling score (TMscore) which has been designed to be

both length independent and strongly correlated to full length models. Based on the

Levitt-Gerstein score (Levitt and Gerstein, 1998), the TMscore is defined as:

TMscore = max

 1

Ltarget

Lali∑
i=1

1

1 +
(

di
d0(Ltarget

)2

 . (1.21)

Here, Ltarget is the length of the target protein, Lali is the number of aligned residues,

di is the distance between the i-th pair of aligned residues and

d0(Ltarget) = 1.24 3
√
Ltarget − 15− 1.8

is a length dependent normalization factor and can be interpreted as the mean distance

between an aligned pair of residues in randomly related proteins of length Ltarget. The

maximization is with respect to all superpositions of the target and template protein.

TMalign (Zhang and Skolnick, 2005b) is a tool that finds an alignment between two

structures such that their TMscore is maximized. In subsequent sections we will take

TMalign alignments as a gold-standard reference.

1.5. Homology modeling

It is known that protein structure is more conserved than its sequence. Especially in

the twilight zone and below, homologous protein sequences have accumulated so many

substitutions that it is often difficult to detect their similarity on sequence level while

their structures retain their fold. Due to physical constraints in the structure space

(Laskowski et al., 1993), there are fewer distinct folds than sequences, i.e. the sequence

space is much larger than the structure space.
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Illergard et al. (2009) investigated the mapping between sequence and structure in a set

of structurally aligned protein domains. They found that structure is three to ten times

more conserved than sequence in protein cores irrespective of the measure of structural

change.

Homology modeling makes use of this structural conservation of homologous proteins. It

refers to constructing a 3D model for a query sequence (target) from an alignment of this

query to templates with known structures. The size of databases like PDB and SCOP

is steadily increasing and most of the fold space is already covered (Zhang and Skolnick,

2005a). As a consequence, homology modeling is by far the most successful approach to

structure prediction. Its success is reflected by the fact that all top-performing servers

in the Critical Assessment of protein Structure Prediction (CASP, Moult et al. (2014))

rely on homology modeling and outperform all ab-initio methods.





Part I.

Homology modeling





2. HHpred and structure prediction

2.1. Overview

As homology modeling has proven to return reliable models and the number of solved

protein structures steadily increases, numerous groups have developed their own predic-

tion pipeline. Even if the basic workflow is often similar and consists of (1) building a

database of proteins with known structures, (2) searching the database for homologous

templates, (3) aligning the query to some selected templates and (4) making a 3D model

from this alignment, the details in each step differ considerably from group to group.

Depending on the group’s background knowledge and field of expertise, they focus on

the alignment step, refinement, template selection or other topics like model selection.

Alternatively, meta-servers have become popular. They consist of a number of individual

servers and combine their predictions into a consensus model.

In our group, we have set up a fully automatic structure prediction server called HH-

pred. Its core components consist of our sensitive and accurate alignment tools HH-

blits and HHsearch (Remmert et al., 2012; Söding, 2005). In particular, we build

database MSAs with HHblits and search against this database with HHsearch (steps

(1) and (2) from above). Template selection will be described in section 3.2.3 in detail.

Finally, a 3D model is calculated from the alignment (step (4)) with Modeller. In the

next sections, we will give a short introduction into Modeller and outline the HHpred

pipeline.

2.2. Modeller

Modeller (Sali and Blundell (1993)) is a protein structure modeling program that

takes as input an alignment between a query sequence and a set of templates with

known structure, and automatically calculates a 3D model for the query.

To build such a model, Modeller first extracts spatial restraints according to the

alignment, second renders each restraint into a mathematical form and third runs an

optimization schedule to optimally satisfy all restraints (see Figure 2.1). Even if homol-
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Figure 2.1.: Modeller
flowchart: 1) Mod-
eller needs as input
an alignment between
the query and one (or
several) templates with
known structure, 2)
Based on the alignment
and the template struc-
tures, a list of spatial
restraints is extracted,
3) The final model is
generated by satisfying
all spatial restraints as
well as possible, i.e. by
calculating the most
probable model.

ogous proteins often have similar structure (section 1.5), the quality and reliability of

an alignment can vary significantly. To account for these uncertainties, each restraint

is specified by a probability density function (pdf). For example, the distance between

two given Cα atoms in the query is supposed to be similar to the corresponding distance

in the templates and will be modeled by Gaussian distributions (see Figure 2.2). If a

sufficient number of distance restraints is specified, the 3D structure of a protein is well

determined. Modeller assumes all constraints to be independent of each other and the

joint probability function for a query is thus approximated by multiplying all individual

pdfs:

P (query structure | templates, alignment) =
∏
i

pdfi (2.1)

This overall product involves besides template derived distance restraints also bond

length-, dihedral- and angle potentials to ensure chemically valid structures.

In an optimization step, Modeller determines the best query structure by maximizing

the joint probability in eq. (2.1), or, equivalently, minimizing its negative logarithm.
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Figure 2.2.: Probability density functions (pdfs) for distance restraints: the alignment
at query positions i and j is quite confident (dark turquois) whereas at k
and l it is uncertain (light turquois). Therefore, the pdf for the distance
between the query residues L and G gets peaked an has its maximum at the
template distance dSG and the pdf for the distance between F and Y gets
flat and centered at dY N .

By default, Modeller implements the following flowchart of comparative modeling: In

a first step, an initial structure is generated by averaging the coordinates of all template

structures. Then, a long list of restraints, e.g. Cα-Cα distances, is extracted from the

alignment and the template structures. Each restraint is specified by its corresponding

pdf as mentioned above. Stereochemical restraints ensure a valid chemical conformation

of the model (e.g. valid bond-lengths and angle potentials) and are added to the list.

Finally, an optimization schedule is executed to find a model structure that maximizes

the objective function or, equivalently, that satisfies the list of restraints as well as pos-

sible.

In contrast to template derived distance restraints, bond-length distributions are very

sharply peaked to ensure they are strictly kept. Distance restraints, in turn, are subdi-

vided into four classes according to their atom types: Cα-Cα backbone, N-O backbone,

side chain-main chain, side chain-side chain.

Thanks to its modular setup, it is straightforward to extend Modeller or replace any

default restraints by customized ones.

Whereas template independent restraints are indispensable for fine tuning the model

conformation, template derived distance restraints make up the majority of restraints

and mostly define the structural characteristics of a target protein structure, i.e. its

overall fold. Consequently, their accurate modeling is crucial for model quality.
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2.3. HHpred pipeline

The flowchart in Figure 2.3 gives a schematic overview of the HHpred pipeline as

implemented for the CASP9 and CASP10 competitions.

In the following, we present only a summary of the pipeline without going into all details.

We will provide references to sections later in this thesis whenever appropriate.

Starting with an amino acid sequence, HHblits builds a multiple sequence alignment

for the query. HHsearch (Söding, 2005) then scans the PDB (filtered to 70% pairwise

sequence identity) for homologous sequences (templates) and returns a list of templates

together with their alignments to the query. A pre-selection of these is then iteratively

filtered to identify the ones which are most similar to the query (see Hildebrand et al.

(2009) for details). We use the heuristic template selection scheme presented in section

3.2.3 to identify a set of hits for modeling. Next, Modeller’s default distance restraints

are replaced by the two-component mixtures of Gaussians from section 3.2.1. Finally,

we start Modeller to build three models in parallel. Each model gets an energy value

by Modeller and the structure with minimal energy is finally submitted.

Apart from generating very accurate models, we intended to provide a server which –

in contrast to most of the top-performing competitors – had a preferably low median

running time. Consequently, we omitted any time consuming additional de novo or loop

modeling protocols and refinement steps.

2.4. CASP

Protein structure prediction has a long tradition in bioinformatics. Thus, over the years,

a large number of servers for building three-dimensional (3D) models has been developed.

In order to objectively test and assess their performance, a community-wide, double-

blind experiment takes place every second year.

2.4.1. Overview

The idea is to provide all participating groups with amino acid sequences (targets) whose

structures have been solved experimentally but have not yet been published. All groups

are then challenged to predict their 3D structures by either running their automatic

prediction pipeline or by manual editing. Subsequently, all final models are sent back

to the organizers. In the end, all predictions are assessed by comparing them to the

gold standard, i.e. the experimental structures. In the end, rankings (e.g. by group or

best overall model) can be generated by assessing all predictions according to different
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TBM FM total

CASP9 118 29 147
CASP10 111 15 126

Table 2.1.: CASP9/CASP10 number of targets in Template Based Modeling (TBM) cat-
egory versus Free Modeling (FM).

quality measures.

All targets are subdivided into two categories: template based (TBM) and free modeling

(FM), depending on whether there existed a suitable template in current databases

before the target structures became public, or not. Typically, the number of template

free targets is considerably lower than template based targets. As present-day databases

are continuously growing, this trend will probably continue. Yet, sensitive and accurate

alignment tools are becoming increasingly important to identify the best homologous

templates in the vast set of candidates.

In the next section, we briefly summarize HHpred’s performance in the last two CASP

experiments.

2.4.2. Results and Discussion

During CASP9 (CASP10), structures for targets with a total of 147 (126) domains had

to be predicted. Most of them fell into the TBM category, see Table 2.1. Tables 2.2

and 2.3 show the top 10 performers in CASP9 (79 servers in total) and CASP10 (69

servers in total) as officially ranked on the CASP website. HHpredA, HHpredB and

HHpredC ran the same pipeline except of a small bug in HHpredC. We had intended

to integrate extra structural scores into HHpred but were hindered by time constraints.

Yet, in CASP10 these new scores were implemented in HHpred-thread by our then Mas-

ter student Markus Meier.

In both CASP9 and CASP10 HHpred was ranked among the top ten servers. A closer

look at the mean runtime reveals that HHpred was more than 450 times faster than all

other high scored servers.

HHpred’s main field of application is in TBM because it lacks any de novo modeling

functionality and is completely relying on template information. When removing all FM

targets from Tables 2.2 and 2.3, we get the results in Tables 2.4 and 2.5. In CASP9,

HHpred could even win the TBM category. However, most of the top performing servers

are quite on par with each other and no single server could clearly outperform all com-
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petitors. The only exception is in terms of runtime: here, HHpred is unrivaled.

Table 2.2.: Official CASP9 results for the top 10 servers (TBM and FM targets). The
table is sorted with respect to the sum Z-score column. Runtime is given in
mean minutes per target.

CASP9 TBM + FM results

rank server dom
sum

Z-score

avg

Z-score

avg

GDT-TS
time [min]

1 QUARK 147 115.788 0.788 62.675 3358.736

2 Zhang-Server 147 113.242 0.77 62.765 3347.378

3 RaptorX-MSA 147 103.27 0.703 61.774 3586.239

4 RaptorX 147 103.01 0.701 61.731 3587.406

5 RaptorX-Boost 147 99.845 0.679 61.453 3587.241

6 HHpredB 147 93.104 0.633 59.528 4.334

7 HHpredA 147 93.104 0.633 59.528 4.405

8 HHpredC 147 91.821 0.625 59.361 4.398

9 Seok-server 147 89.542 0.609 60.158 3735.85

10 MULTICOM-CLUSTER 147 88.944 0.605 59.987 1030.446

Table 2.3.: Official CASP10 results for the top 10 servers (TBM and FM targets). The
table is sorted with respect to the sum Z-score column. Runtime is given in
mean minutes per target.

CASP10 TBM + FM results

rank server dom
sum

Z-score

avg

Z-score

avg

GDT-TS
time [min]

1 Zhang-Server 126 111.874 0.888 60.601 2457.093

2 QUARK 126 105.531 0.838 60.204 2462.948

3 BAKER-ROSETTA 126 87.787 0.697 57.542 2977.735

4 RaptorX-ZY 126 85.964 0.682 58.43 4250.788

5 RaptorX 126 82.911 0.658 58.055 3606.894

6 TASSER-VMT 126 82.016 0.651 57.382 3307.054

7 PMS 126 78.113 0.62 57.559 4378.698

8 HHpred-thread 124 77.339 0.624 58.402 11.766

9 HHpredA 126 76.748 0.609 57.563 6.486

10 HHpredAQ 126 75.904 0.602 57.295 6.635
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Table 2.4.: Official CASP9 results for the top 10 servers in the TBM category. The table
is sorted with respect to the sum Z-score column. Runtime is given in mean
minutes per target.

CASP9 TBM results

rank server dom
sum

Z-score

avg

Z-score

avg

GDT-TS
time [min]

1 HHpredA 118 87.577 0.742 69.164 4.706

2 HHpredB 118 87.577 0.742 69.164 4.854

3 Zhang-Server 118 86.737 0.735 70.684 3304.536

4 HHpredC 118 86.294 0.731 68.957 4.949

5 QUARK 118 84.157 0.713 70.251 3324.657

6 RaptorX-MSA 118 83.927 0.711 70.199 3553.134

7 RaptorX 118 83.256 0.706 70.087 3549.116

8 RaptorX-Boost 118 81.559 0.691 69.822 3552.941

9 Seok-server 118 76.990 0.652 68.857 3718.563

10 MULTICOM-CLUSTER 118 68.990 0.585 849.689 849.689

Table 2.5.: Official CASP10 results for the top 10 servers in the TBM category. The
table is sorted with respect to the sum Z-score column. Runtime is given in
mean minutes per target.

CASP10 TBM results

rank server dom
sum

Z-score

avg

Z-score

avg

GDT-TS
time [min]

1 Zhang-Server 111 92.057 0.829 65.536 2393.143

2 QUARK 111 89.207 0.804 65.171 2393.881

3 BAKER-ROSETTASERVER 111 80.144 0.722 62.482 2976.484

4 RaptorX-ZY 111 78.842 0.710 63.562 4225.730

5 RaptorX 111 75.422 0.679 63.120 3531.615

6 TASSER-VMT 111 69.048 0.622 62.168 3236.028

7 HHpredA 111 68.757 0.619 62.799 6.498

8 HHpredAQ 111 67.513 0.608 62.466 7.079

9 PMS 111 67.218 0.606 62.422 4378.698

10 HHpred-thread 110 66.699 0.606 63.272 11.766

Figure 2.4 summarizes the performance of all modeling servers in both CASP9 and

CASP10. The HHpred servers are colored in red and all other top performers using
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HHsearch in green. Employing the new distance restraints of section 3.2.1 in CASP10

increased the cumulative GDT-TS score by 3% (default: 57.50, new restraints: 59.33).
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Figure 2.4.: CASP9 and CASP10 results for all servers in the TBM category. HHpred
is in red, in green are all other servers that use HHsearch.
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hhblits

hhsearch

1 Hit 2cf2_A Pfabz synth ... 96%
2 Hit 1u1z_A (3R)-hydrox ... 95%
...  

filtering

hhsearch

hitlist

selection

1 Hit 2cf2_A Pfabz synth ... 96%
2 Hit 2cf2_A Pfabz synth ... 98% 
(filtered) 
3 Hit 1u1z_A (3R)-hydrox ... 95%
4 Hit 1u1z_A (3R)-hydrox ... 92% 
(filtered)
...  

2 Hit 1u1z_A (3R)-hydrox ... 95%
 

2 Hit 1u1z_A (3R)-hydrox ... 95%
5 Hit 2gll FabZ, (3R)-hy ... 92%
...
 

new restraints

MODELLER

multi-template 
selection

Figure 2.3.: HHpred flowchart: starting from an amino acid sequence, a profile is built
with HHblits. Next, HHsearch scans the PDB70 for templates. After
filtering and template selection we generate the final alignment between the
query and a selection of templates. Based on this alignment, we compute
our new distance restraints. Finally, we start Modeller – extended by our
new restraints – and calculate a 3D model.





3. Mixture Gaussian distance restraints

3.1. Introduction

Homology modeling methods build a three-dimensional (3D) model for a query sequence

based on an alignment to template proteins of known structure. A wide range of ap-

plications such as function determination, interaction prediction and drug screening is

opened up when a suitable 3D structure is available.

By taking advantage of the fact that evolutionarily related proteins share similar struc-

ture, homology modeling is the most accurate approach to structure prediction. De novo

methods still cannot provide reliable models, especially for larger proteins. Even though

there is some remarkable progress in the field (Marks et al. (2012); Nugent and Jones

(2012)), all top performers in the Critical Assessment of Structure Prediction (CASP)

heavily rely on template information (Kinch et al. (2011); Mariani et al. (2011)). Nowa-

days databases such as PDB or SCOP contain a multitude of solved protein structures

(Berman, 2008; Lo Conte et al., 2000) and cover most of the fold space (Zhang and

Skolnick (2005a)). But it is still challenging to identify and align templates correctly

(Peng and Xu (2011)).

Xu (2005) proposed a neural network (NN) for picking a suitable template. Most of the

successful prediction servers, however, perform multi-template modeling. Larsson et al.

(2008) provided a study in which they assessed the effect of multiple templates on model

quality and concluded that most of the gains are due to increased coverage.

To our knowledge, no theoretically well founded strategy for multi-template protein ho-

mology modeling has been developed so far, which contrasts its wide spread use in virtu-

ally every successful prediction pipeline. Contrary to single template selection, picking

multiple templates is fundamentally complicated by complex dependencies between all

selected structures. Accordingly, current methods are mostly based on heuristics (Cheng,

2008; Fernandez-Fuentes et al., 2007; Peng and Xu, 2011). Some methods (Wang et al.

(2010); Zhang (2008)) rather build a set of models based on several different template

lists and then post-select a final model according to some quality measure (Zhang and

Skolnick (2004)). Consequently, multi-template selection is still a problem to be solved
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by more sophisticated methods. Template selection is, however, less critical when the

structure modeling tool can properly deal with multiple templates.

Different approaches to combine several templates of been implemented: ModSeg/EN-

CAD (Levitt, 1996) copies template coordinates and bridges gaps by short fragments

that match the framework of the target structure. SWISS-MODEL (Schwede et al.,

2003) generates a core model by averaging template backbone atom positions and uses

constraint space programming to fill gaps. Both methods decrease deviations in protein

structure geometry by steepest descent energy minimization. Modeller was the first

program to dispense with crude heuristics by resorting to a statistical approach. In this

context, Modeller maximizes a probability density function such that a list of (spatial)

restraints is satisfied as well as possible (section 2.2). Even if it achieved similar results

in benchmarks (Dalton and Jackson (2007); Wallner and Elofsson (2005)), Modeller

performed marginally better than the others, and furthermore, its coherent underlying

statistical model is flexible and easily extensible.

Several extensions of the default Modeller pipeline exist already. Most of them are

concerned with refined energy functions (Joo et al. (2009)) or loop modeling (Fiser et al.

(2000)). One of its principal elements, the template dependent distance restraints, has

been unchanged so far and we are not aware of any further developments. This is in

contrast to the fact that nearly two thirds of the top 20 CASP performers are relying on

Modeller (CAS (2010)). All these would profit from a more accurate model building

tool.

In this work, we provide a solid statistical framework for multi-template modeling. First,

we examine Modeller’s distance restraints and replace them by mixtures of two Gaus-

sians that allow a comprehensive treatment of multiple templates. Second, we introduce

statistical template weights to correct for redundancies within the templates and com-

bine them with our new restraints. Finally, we introduce a new strategy for multiple

template selection.

We assessed all these steps on a benchmark set and refer to section 2.4, where we report

about how these methods (implemented within our webserver HHpred) performed in

two recent CASP competitions.
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3.2. Methods

3.2.1. Alignment features

When a given query q is searched with HHsearch against a database of templates t,

each pairwise alignment A(q, t) is characterized by a number of features to assess its

quality. Every aligned pair of residues (i, j) in A gets a posterior probability P (i � j|q, t)
(P (i � j) for short) of being correctly aligned. Furthermore, we define

sumProbs :=
∑

(i,j)∈A(q,t)

P (i � j|q, t). (3.1)

The posterior can also be extended to two pairs (i, j), (k, l): P (i � j, k � l) (see sec-

tion 1.3.3). In addition, there are global features, such as the probability of homology

Phom(t), the raw score, similarity and secondary structure score (ss-score) (see Table

1.1). Alignment greediness is controlled by the ’mact’ parameter which is a posterior

probability threshold for the maximum accuracy re-alignment (Durbin et al., 1998).

Structure Modeling

Modeller is used for comparative modeling of 3D protein structures by satisfaction

of spatial restraints. It takes as input an alignment between a query sequence and a

number of templates with known structure. In a next step, it generates a list of spatial

restraints based on the alignment. Each restraint is expressed as a probability density

function (pdf) and acts on e.g. Cα-Cα distances or dihedral angles. To satisfy all spatial

restraints as well as possible, Modeller maximizes the product of all restraint pdfs and

thereby calculates the most probable model. See section 2.2 for more details.

Default distance restraints

Most restraints act on distances between two atoms (e.g. the distance between any two

backbone Cα atoms, Cα-Cα). We denote by d the distance between two atoms in the

query and by dt the corresponding distance in template t according to the alignment.

Sali and Blundell (1993) built 3D models based on a set of pairwise training alignments

and then calculated their distance differences d − dt. Here, d is taken from the query’s

PDB entry. To find the distribution of d − dt, they inspected histograms of d − dt.

These histograms demonstrated that Gaussians with a mean of zero and a standard

deviation that is dependent on the alignment quality can approximate the distributions.

The functional form of the standard deviation had four variables: 1) the distance in the
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template, 2) the fractional sequence identity of the two aligned sequences, 3) the average

solvent accessibility of the two aligned residues and 4) the average distance from a gap.

New distance restraints

Sali and Blundell (1993) aligned homologous proteins based on their 3D structure in the

training set to find the distribution of d− dt. In practice, however, the query structure

is unknown. Hence, we used sequence profile alignments to generate distance differ-

ence histograms and omitted any structural information on the query side. Moreover,

since spatial distances are restricted to be positive, we modeled logarithmized distances

log(d)− log(dt). Figure 3.1 shows four histograms of log(d)− log(dt) together with their

fits. Here, all models were built based on pairwise Hmm-Hmm alignments, i.e. only

sequence and no structural information is used.

Figures 3.1 A to C all depict Cα-Cα distance differences. However, the quality of the

alignments underlying the 3D models differs in each case: in A, it is low as reflected by

both a low similarity and posterior probability. B and C are based on medium and high

quality alignments, respectively. D differs from A only in the atom types involved and

has a similar shape.

Taken together, these histograms suggest that distance distributions have not only one

but two components: one that describes the main peak and a second that becomes more

pronounced as the alignment quality drops. Consequently, we model distance distribu-

tions as mixtures of two Gaussians with feature dependent parameters (Figure 3.2 and

eq. (3.2)). In the following, we refer to the second, newly introduced component as the

background.

w(Θ) N(log(d)|µ(Θ), σ(Θ))︸ ︷︷ ︸
correct

+ (1− w(Θ)) N(log(d)|µbg(Λ), σbg(Λ))︸ ︷︷ ︸
background

(3.2)

All parameters of the mixtures are assumed to be functions of variables that describe

the alignment quality: the means (µ, µbg), standard deviations (σ, σbg) and the weight

(w) depend on Θ = (dt, pp(i � j, k � l), similarity) and Λ = (pp(i � j, k � l), similarity),

respectively. See section 3.2.1 for a detailed explanation of the features.

The weight w can be regarded as a prior probability that a specific atomic distance

in a template will also be adopted in the query structure. Such a weighting ensures

that locally unreliable alignments will have an increased background component leading

to a softer distance restraint. Badly aligned residues are unlikely to provide confident

distance information for the query, so the restraint should become flat, i.e. dominated
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Figure 3.1.: Empirical distance distributions and their MDN fits: in A,B and C, distance
differences between two Cα atoms around 9Å are plotted. The alignment
quality – measured by the posterior probability and similarity – increases
from A to C. When it is low, a single Gaussian can no longer fit the his-
tograms accurately since a second (background) component becomes visible
(sub-figures A and D). The same effect can be observed for other types of
atoms, e.g. N-O as shown in figure D.
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by the background component. Similarly, a larger standard deviation σ(Θ) comes in

hand with a low alignment quality, making the distribution wider and vice versa.
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Figure 3.2.: A new distance restraint is modeled as mixture of two Gaussians. The
first component with mean µ and standard deviation σ describes distances
derived from correct alignments whereas the second component with mean
µbg and standard deviation σbg models the background distribution resulting
from erroneous alignments. Both components are weighted by w and 1−w =
wbg, respectively.

Mixture density networks

To fit the feature dependent mixtures of Gaussians in eq.(3.2) we resort to mixture

density networks (MDN) (Bishop (1994)). A MDN is a special kind of neural network

that determines the parameters in a mixture of Gaussians as a function of given input

features by a maximum likelihood approach. Figure 3.3 illustrates the MDN setup for

the new distance restraints in eq.(3.2). As input features we use the spatial distance in

the template dt, the alignment posterior probability of two pairs of residues being aligned
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correctly and the sequence similarity. To make the background parameters independent

of dt, connections between these nodes are removed.

Figure 3.3.: Mixture density network for distance restraints: the network gets as input
the template distance, the posterior probability for the aligned residue pairs
and the sequence similarity, and calculates means, standard deviations and
weights for mixture of Gaussians. The background parameters (µbg, σbg) are
not connected to the input feature dt (no path from the hidden layers in the
black box to background outputs) to make the background independent of
the template distance.

Modeller fits its single component distance distributions by specifying feature depen-

dent standard deviations with a multi-parametric polynomial and subsequently doing a

least-squares minimization.

Combination of multiple templates

In multi-template modeling, several restraints can act on a given distance. To construct

a combined distance restraint P (d|·) from two known structures t1, t2 with distances d1

and d2 between equivalent atoms (i.e. in aligned residues), Modeller adds up both

single restraints P (d|d1) and P (d|d2) linearly:

P (d|d1, d2, s1, s2) = α(s1) P (d|d1) + α(s2) P (d|d2), (3.3)
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where s1, s2 are the average residue neighborhood differences in the first and second align-

ment, respectively, and α(s1), α(s2) are the corresponding weights. Such a weighted sum

can be extended to any number of templates. A simple parametric model is employed

for α(s1), α(s2) and it is fit based on a procedure described in (Sali and Blundell (1993)).

Yet, such a sum corresponds to a one-hot encoding of a combined restraint, where only

a single template can generate a distance.

The two component distance restraints allow for a different and consistent way to com-

bine multiple templates. Here, the background component will turn out to be of major

importance. Specifically, a combined distance restraint for a distance d in the query

given two templates t1 and t2 with their alignments A1, A2 to the query and the corre-

sponding distances d1, d2 in t1 and t2, respectively, follows from applying Bayes’ formula

twice:

P (d|d1, A1; d2, A2) =
P (d1, d2|d,A1, A2)P (d|A1, A2)

P (d1, d2|A1, A2)

P (d|d1, A1; d2, A2)

P (d|A1, A2)
≈ P (d1|d,A1)

P (d1|A1)
· P (d2|d,A2)

P (d2|A2)

=
P (d|d1, A1)

P (d|A1)
· P (d|d2, A2)

P (d|A2)

(3.4)

Here, the second equation is only an approximation since it requires independence of

the templates given the query. Equation (3.4) can easily be extended to more than two

templates.

In chapter 3.2.2, the assumption of independence will be corrected for by introducing

template specific weights.

P (dk|d,Ak), k ∈ {1, . . . , |T |} in the numerator of eq. (3.4) are modeled by the two

component mixtures given in eq. (3.2). P (dk|Ak) corresponds to the background com-

ponent in P (dk|d,Ak). Dividing by the background has two effects: first, it prevents

the background to become dominant when the individual background components of

all P (d|dk, Ak) are multiplied. Second, the negative logarithm of Modeller’s default

distance restraints is quadratic in d. i.e. unsatisfiable restraints can lead to arbitrar-

ily high values during optimization. Dividing by the background avoids this quadratic

increase as the logarithm of P (d|dk,Ak)
P (d|Ak) has flat tails. Similarly, when a distance in the

query drastically differs from the one in the template, there is no information about

query distance. This lack of information is also reasonably reflected by flat tails.

Combining two component distance restraints as in eq.3.4 dissolves contradictory re-

straints and reinforces consistent restraints. Let us assume we are given two contradic-
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tory distance restraints for the same pair of atoms but from two different templates:

the first is supposed to be derived from badly aligned residues and has a pronounced

background component, whereas the second is more confident. Figure 3.4 illustrates this

situation for both Modeller’s default restraints (A and B) and the two component

Gaussians (C and D). The background component of the unconfident restraint (Figure

3.4 C, green) is more pronounced, which makes the confident restraint (blue) dominating

the combined restraint as given by eq. 3.4 (Figure 3.4 D).
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Figure 3.4.: Combining distance restraints: given two restraints (in green and blue) for
the same query distance but derived from two different templates, Mod-
eller combines them by a weighted sum (A → B) whereas the new re-
straints are multiplied (C → D). Due to the more pronounced background
component in green, sub-figure C, the more confident blue distribution will
dominate the resulting restraint in sub-figure D.

On the other hand, when both restraints peak at the same distance, multiplication will

reinforce the resulting restraint by making it more narrow and leading to a sharper

distribution. Such a sharper restraint conforms with the distance information provided

by the templates.
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3.2.2. Template weighting

As already mentioned in section 3.2.1, the new distance restraints framework assumes

templates to be independent of each other. In a simple case with three templates where

two of them are closely related to each other whereas the third is more distantly related,

this independence assumption is already violated (see Figure 3.5). Giving all three

q

t1 t2 t3

Figure 3.5.: Evolutionary relationship between a query q and three templates t1, t2, t3.
t1 and t2 are closely related to each other and should be down-weighted with
respect to t3.

templates the same weight ignores the dependencies given by the tree (Altschul et al.,

1989). We correct for the violation of the independence assumption by giving each

template an individual weight. We first construct a tree and root it at the query. The

goal is to connect all leave nodes directly to the query and let the weights assess their

direct influence on the query.

Therefore, we define a basic reconstruction step that transforms a given subtree with an

internal node into an equivalent one where all leaves are directly dependent on the root

by finding appropriate weights, see Figure 3.6. This basic transformation is then applied

iteratively as shown in Figure 3.7.

To construct the initial tree, we use a neural network similar to the one in section 3.2.3

and predict the structural similarity between two sequences tk and tl (or q) and then fill

the pairwise distance matrix:

dist(tk, tl) = − log(pred. TMscore(tk, tl)) (3.5)

UPGMA clustering based on this matrix returns a tree T which is subsequently re-

arranged so that the query q becomes the root. T encodes both the relation of the

templates to the query and the relations among the templates. Let d0 be the (spatial)

distance between a given pair of residues in the query and d1, . . . , dn the corresponding

distances in the templates. Each leaf gets a weight wk, k = 1, . . . , n, with w0 = 1 for

the root. The probability of dk → dl (that a specific distance in tk, dk, becomes dl in
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time τl) along an edge in T is assumed to undergo diffusive behaviour and is therefore

modeled as:

P (dk → dl|T ) ∝ exp

(
−(dk − dl)2

τl

)wl
, (3.6)

where the time τl is proportional to the edge length between k and l in the UPGMA

tree. The weight wl controls the peakedness of the distribution and will represent the

influence of the template on the root of the current tree.

In the basic transformation step in Figure 3.6, all leaf nodes (templates) become directly

dependent on q and the new weights approximate their direct influence on the query (see

Figure 3.6).

d0
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τ1

· · · dn

τn
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d1

τ 0
+
τ 1

· · · dn

τ
0

+
τ
n

T T ′

[w1] [wn] [w′1] [w′n]

Figure 3.6.: Illustration of restructuring a given tree T with an unknown internal node
d (left) into one where d1, . . . , dn directly depend on d0 (right). This is done
by integrating over d and finding appropriate weight w′1, . . . , w

′
n so that

both trees describe the same distribution. τ1, . . . τn correspond to distances
coming from UPGMA clustering.

Formally, we want to get rid of the inner node d by integrating over all values of d and

defining new weights w′1, . . . , w
′
n such that the distribution P (d0|d1, . . . , dn;w1, . . . , wn)

represented by T (Figure 3.6, left) is the same as the one represented by T ′:

P (d0|d1, . . . , dn;w′1, . . . , w
′
n) (Figure 3.6, right). When the conditional distributions

(given by the tree edges) are Gaussian, an analytical solution exists for the new tem-

plate weights w′1, . . . , w
′
n, which ensures that the tree before and after the transformation

model the same distribution (see section 3.2.2).

Starting from an arbitrary UPGMA tree, this basic transformation is applied iteratively

n−1-times on sub-trees as shown in Figure 3.7. At each step, one inner node is removed

and the procedure continues until all template leaves are directly connected to the query.

Since the final weights are supposed to represent the influence of tk on q, we adapt

distance distributions from the corresponding template tk as follows: P (d|dk, Ak)w
final
k .
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Intuitively, weights less than 1 widen the distribution and vice versa.
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Figure 3.7.: Iterative restructuring of a tree. In each step, the basic transformation from
Figure 3.6 is applied to an appropriate subtree (colored in blue). Weights
and edge labels get updated until all templates are directly connected to the
root.

Details of template weight calculation

In the following, we describe how to calculate template weights given a tree that specifies

the evolutionary relations between a query and templates and among all templates. We

are interested in the distance between a given pair residues in the query, d0, given the

corresponding template distances d1, . . . , dn. We assign a weight wi, i = 1, . . . , n (w0 = 1

for the query) to each template. This weight will represent the influence of the template

on the query. We model the distribution of d0 given in Figure 3.6 on the left as follows:

P (d0|d1, . . . , dn, w1, . . . , wn)

P (d0)
=

∫
P (d0|d,w0)

P (d0)
P (d|d1, . . . , dn, w1, . . . , wn)dd, (3.7)
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where

P (d|d1, . . . , dn, w1, . . . , wn) =
P (d1, . . . , dn|d,w1, . . . , wn)P (d)

P (d|d1, . . . , dn)

=
P (d1|d,w1)

P (d1)
· . . . · P (dn|d,wn)

P (dn)
P (d).

(3.8)

As mentioned in section 3.2.2, we assume a diffusive behaviour with variance proportional

to time τi:

P (di|d,wi)
P (di)

∝
d,di

exp

(
−wi(d− di)

2

τi

)
∀ i = 0, . . . , n. (3.9)

The times τi are given by the UPGMA clustering. Then (3.7) becomes with respect to

d0:

P (d0|d1, . . . , dn, w1, . . . , wn)

P (d0)
∝
∫

exp

(
−

n∑
i=0

wi
τi

(d− di)2

)
dd. (3.10)

The argument in the exponent can be rewritten as a quadratic expression of d:

−

(
n∑
i=0

wi
τi

)
︸ ︷︷ ︸

1
τmin

d2+2

(
n∑
i=0

wi
τi
di

)
d−

n∑
i=0

wi
τi
d2
i = − 1

τmin

(
d2 − 2

(
n∑
i=0

uidi

)
d+

n∑
i=0

uid
2
i

)
,

(3.11)

where we defined:

ui :=
wi/τi∑n
i′=0

wi′
τi′

=
τmin

τi
wi. (3.12)

Completing the square in (3.11) gives:

− 1

τmin

(d− n∑
i=0

uidi

)2

−

(
n∑
i=0

uidi

)2

+
n∑
i=0

uid
2
i

 . (3.13)

When integrating over d (eq.(3.10)), the factor

exp

− 1

τmin

 n∑
i=0

uid
2
i −

(
n∑
i=0

uidi

)2
 (3.14)
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can be pulled out of the integral (since it is independent of d). Therefore:

P (d0|d1, . . . , dn, w1, . . . , wn)

P (d0)
∝
d0

exp

− 1

τmin

 n∑
i=0

uid
2
i −

(
n∑
i=1

uidi

)2
(3.15)

!∝
d0

exp

(
−

n∑
i=1

w′i
τ0 + τi

(d0 − di)2

)
(3.16)

Here, the last step introduced new weights w′i so that the template distances d1, . . . , dn

become directly dependent on the query distance d0. Now, an expression for w′i, i =

1, . . . , n must be found:

n∑
i=0

uid
2
i −

(
n∑
i=0

uidi

)2

= τmin

n∑
i=1

w′i
τ0 + τi

(d0 − di)2 + const(d0). (3.17)

We collect terms with equal powers of d0:

(u0−u2
0)d2

0−

(
2u0

n∑
i=1

uidi

)
d0 =

(
τmin

n∑
i=1

w′i
τ0 + τi

)
d2

0−

(
2τmin

n∑
i=1

w′i
τ0 + τi

di

)
d0+const(d0).

(3.18)

Equating coefficients leads to:

u0(1− u0) =

n∑
i=1

υi

n∑
i=1

uidi =
1

u0

n∑
i=1

υidi,

(3.19)

where υi := τmin
τ0+τi

w′i. Solving for w′i for all i = 1, . . . , n leads to:

w′i =
1
τ0

+ 1
τi

1
τmin

wiw0. (3.20)

3.2.3. Template selection

Single template selection

By default, HHsearch returns a list of query-template alignments which is sorted with

respect to Phom (see HHsuite user guide, Söding et al. (2013)). However, further

features may help to better characterize the best template for modeling. We trained
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a neural network to predict the model quality measured by TMscore (Zhang and

Skolnick, 2005b) based on three alignment features: score, sumProbs/L, ss-score. Given

these predictions, the top ranked template is selected as in (Hildebrand et al., 2009).

Multiple templates selection: CASP9 strategy

The complex interdependencies between several templates have prevented a theoretically

solid approach to solve the problem of finding the best template selection. We propose a

heuristic selection strategy which combines coverage and local alignment quality. More-

over, we also take into account previously selected templates.

Starting with a set of accepted templates T (containing only the top ranked hit from

section 3.2.3 at the beginning), we calculate for each template t in the hit-list L the score

S(t) (eq. 3.21), see Figure 3.8. We assess the local alignment quality at query position

i by multiplying P (i � j) with Phom, and calculate the score of t based on the alignment

to the query q, A(q, t) and all preselected templates in T as follows:

S(t) =
∑

(i,j)∈A(q,t)

[ exp(α(Phom(t)P (i � j)︸ ︷︷ ︸
local quality of t at i

− Pmax(i)︸ ︷︷ ︸
coverage at i

))− β ], (3.21)

where Pmax(i) is the maximum of Phom(t)P (i � j) over all templates in T :

Pmax(i) = maxt∈T { Phom(t)P (i � j) }. (3.22)

The Pmax(i) quantify the current coverage of residue i as given by all templates in T .

Thus, the exponent in 3.21 measures t’s additional contribution at position i compared

to all templates that are already in T . α and β are tuning parameters which influence

the greediness.

Among all templates with S(t) > 0, we select the one with the highest S(t), update

Pmax and add it to set of selected templates, T . This process is iterated until no template

in L has a score S(t) > 0. By considering both alignment quality and coverage, we seek

to ensure the approach works for both single- and multi-domain proteins.

Integrating structural information by filtering out templates with a pairwise TMscore

below a given threshold could not improve the model quality.
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query

selected templates T

template list L

...

Figure 3.8.: Selection of multiple templates: the first template t1 is selected by the NN
in section 3.2.3. For each template in the template list L (lower dashed
box) its score S(t) is calculated (formula 3.21). Then the maximal scoring
template (here: t4) is accepted and added to T if its score is positive. This
process is iterated until there is no more template with a score S(t) > 0.

3.3. Results

3.3.1. Benchmark sets

For benchmarking, we generated three different sets: a test-, training- and optimizing-

set. To simulate conditions as given during CASP, we composed the sets such that they

resembled CASP queries in difficulty as measured by their sequence identity to the best

template. Analysing 108 CASP7 queries, we got the sequence identity bins in Figure

3.9, which served as a reference distribution in the three sets.
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Figure 3.9.: Sequence identity of 108 CASP7 targets to their best template in the PDB.

We filtered the PDB (May 2010) down to 20% sequence identity and a minimal E-Value
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of 0.1. For all sequences in the resulting PDB20E01, we built sequence profiles with our

sensitive, iterative multiple sequence alignment tool HHblits (Remmert et al. (2012))

using standard parameters (but with three search iterations against the uniprot to get

sufficiently diverse profiles as necessary for CASP to detect even remote homologs).

Next, we trained Hidden Markov Models (Hmms) from these profiles, which served as

input to HHsearch. Each query q was searched against the PDB70 resulting in a tem-

plate list of database hits, tlist(q). A test-, training- and optimization-set were extracted

based on the queries in PDB20E01 and their corresponding template lists as follows: for

each set (test/training/optimization), we defined sequence identity bins according to the

CASP sequence identity distribution (Figure 3.9). Each bin had a size equal to its frac-

tion of queries times the set size. We randomly sampled a query q from PDB20E01 and

determined its structurally most similar template t in tlist(q) according to TMalign.

Next, we checked t’s sequence identity idseq to the query. q was then randomly put into

one of the three sets (test/training/optimization) if the following two conditions were

met: first, it has not been sampled before and second, the idseq bin in the respective set

was not yet filled up. In that way we generated a test- and training-set each of size 1000

and an optimization-set with 500 queries.

3.3.2. Template selection

Single template neural network

To select the first template based on multiple alignment features, we used the network

in section 3.2.3. For training, we built up to ten 3D models for every query in the

training set based the top ranked pairwise alignments in its tlist(q). This left us with

9.000 models, generated with Modeller. We superposed models with their native

PDB structures via TMscore. To learn the network parameters we ran a standard

back-propagation procedure. In order to avoid local optima, training was started from

several random initializations, which all turned out to be nearly equivalent in terms of

their performance on the test-set. The correlation between the network predictions and

true TMscores was 0.89. In summary, this led to an increase of the mean TMscore

compared with selecting the best ranked hit in the template list of 1.43% (TMscore:

0.684 versus 0.694, GDT-TS: 0.612 versus 0.621), Figure 3.10.
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Figure 3.10.: Single template selection neural network: compared with using the best
ranked hit in the hit-list, the single template NN increases the overall model
quality (points above the diagonal). TMIDmax is the sequence identity of
the query to the best template in its hit-list.

Multiple templates selection

Choosing multiple templates increases both the coverage and the probability to detect a

correct template. However, a higher number of templates leads to accumulation of noise

and wrong templates which decreases the model quality. As described in section 3.2.3,

the CASP9 template selection heuristic has two tuning parameters: α and β. They

were optimized on a grid α ∈ {0.9, 0.95, 1, 1.05, 1.1}, β ∈ {0.8, 0.9, 1, 1.1, 1.2} using all

sequences in the optimization set as queries. For each parameter combination, templates

were selected according to the score in formula (3.21). The alignments between the query

and all templates were then supplied to Modeller and 3D structures were generated.

We found α = 0.95 and β = 1 to maximize the cumulative TMscore of all models.
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In the test-set, this strategy selected on average 4.6 templates per query, resulting in a

mean coverage of 94% of all residues. Figure 3.11 depicts histograms which show the

dependency of the number of templates on the sequence identity. In both single and

multiple domain targets, the number of selected templates was quite comparable across

all ranges.
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Figure 3.11.: Mean number of templates selected by the multi-template selection heuris-
tic (y-axis) with a sequence identity as given on the x-axis. The number of
targets in each sequence identity bin is denoted in white at its bottom.

3.3.3. Mixture density network

As training data for the mixture density networks for two-component distance restraints

(section 3.2.1), we used the 3D models generated for the single template selection network

in section 3.3.2. All network input feature values (i.e. similarity, posterior probabilities

and distances) were extracted from the alignments and template structures. We fitted

distributions of log(d) − log(dt) with mixtures of two Gaussians. Modeller includes

four different classes of distances depending on the atom types involved: between two

Cα atoms (Cα–Cα), N-O atoms, side chain – main chain and side chain – side chain.

So we generated four sets of training data with 3 million (Cα–Cα and N–O), 1 million

(SC–MC) and 300k (SC–SC) training cases.

Optimizing the log-likelihood of the MDN was done by conjugate gradient ascent until
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convergence was reached. Bad local minima were avoided by starting from different

random initializations. Figure 3.1 depicts representative binned histograms of log(d) −
log(dt) with overlaid MDN fits and demonstrates the feature dependency of the main

and background component.

3.3.4. Distance restraints

In the following, we compare the effect of the new distance restraints on the model

quality. To make this comparison independent of the input alignments, we selected and

aligned templates with the heuristic in section 3.2.3 and used these fixed alignments to

generate the different kinds of restraints to be tested in Modeller.

Modeller’s default distance restraints

We followed Modeller’s (version 9.10) default schedule and constructed distance re-

straints as in equation (3.3). Averaging the TMscores of all models in the test set

resulted in a mean values of 0.714. Thus, Modeller profited from multi-template

information and could increase the single template neural network score by 2.79%.

Two-component distance restraints

We removed all of Modeller’s default template based distance restraints and plugged

in our new two component mixtures of Gaussians instead. The optimization schedule

was kept unchanged. In sum, we got a slight improvement in model quality compared

with Modeller’s default setting in section 3.3.4: the mean TMscore of all models

was increased from 0.714 to 0.7195 (GDT-TS: 0.648 to 0.653).

Two-component distance restraints with template weights

By introducing template weights by the tree based method in section 3.2.2 the mean

TMscore could be increased from 0.7195 to 0.725 (GDT-TS: 0.653 to 0.660). For cal-

culating the weights, it is important to have an accurate estimation of pairwise distances

between the query and all templates (and among the templates). Since the neural net-

work for single template selection in section 3.2.3 has proven to provide solid estimates of

the TMscore (correlation of 0.89), we again employed a very similar network which was

trained on the same data (some additional features were included). Figure 3.12 shows

a scatter plot to compare our new and weighted distance restraints with Modeller’s

default ones.
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Taken together, single template selection can be improved by neural network based TM-

score predictions. Selecting more than one template increases model quality further.

Replacing Modeller’s distance restraints by two component mixtures of Gaussian in

combination with template specific weights provides a probabilistic approach to multi-

template modeling that helps to build better models. For a summary of all results, see

Table 3.1.

single-template multi-template

first hit NN
Modeller

default (MD)
New restraints

New restraints
+ weights

TMscore 0.684 0.695 0.714 0.719 0.725
Improvement
wrt ’first hit’

0% 1.43% 4.25% 5.06% 5.87%

P-value
1.67e-4
wrt first

<2.2e-16
wrt NN

7.58e-4
wrt MD

4.21e-12
wrt MD

Table 3.1.: Model quality (mean TMscore) for single- and multi-template homology
modeling with Modeller in different settings. In total, the mean TMscore
can be improved by 5.87%. Using two component mixtures of Gaussians
instead of Modeller’s default restraints yields 1.5%. P-values are calculated
based on paired t-tests.

3.4. Discussion

Modeller is one of the most popular tools for homology modeling (nearly 7.000 cita-

tions). Whereas there have been publications to improve Modeller’s energy function

or loop modeling protocol (Fiser et al., 2000; Joo et al., 2009), to our knowledge, multi-

template modeling by satisfaction of spatial restraints has not been advanced since its

introduction. Modeling distance restraints with two-component mixtures of Gaussians

is a statistically solid approach that fits well into Modeller’s probabilistic framework.

However, the actual performance gain was quite modest on our benchmark. Since the

modeling pipeline is quite complex and it is difficult to follow what is happening inside

Modeller’s internals (e.g. the optimization schedule), we might have integrated the

new restraints in a suboptimal way. Irrespective of that, the baseline seems to be quite

high. A lot of effort has already been put in for years to advance homology modeling

and all top CASP performers are scoring close to each other.

Obviously, distance restraints are highly dependent on the input alignments: as they get

more reliable better models will emerge. Profile or Hmm alignment tools such as HH-
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Figure 3.12.: TMscores of Modeller versus new restraint + template weight models:
easy targets (measured in terms of sequence identity) mainly appear in the
upper right corner. Most points are located around the diagonal with some
advantage for models built based on the new distance restraints. TMIDmax
is the sequence identity of the query to the best template in its hit-list.

search provide very sensitive and precise sequence alignments. Correctly identifying

and aligning the structurally most similar template in a database and copying its coordi-

nates onto the query is in most cases better than using multiple templates (Zhang, 2009).

However, without structural information on the query side, it is currently impossible to

produce such alignments. Multi-template modeling instead aims at building consensus

restraints by extracting information from different homologous structures without hav-

ing to know which single one is the best. Our new restraints were constructed such that

contradictory information from several templates can be resolved in a coherent way.

However, the selected templates might rarely cause severe contradictions that have to

be resolved: either because all templates agree on the distance or because one obviously
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best template outvotes the others. In order to test that hypothesis, we modified the tem-

plate selection as follows. For each query in the test set, we constructed three different

template selections which consisted of (a) two good templates which were supplemented

by (b) one or (c) two additional bad templates as follows: the template lists for each

query were sorted with respect to the predicted TMscore as calculated by the neural

network in section 3.2.3. Then the top ranked template was selected. Next, we went

down the sorted list and added the first hit which had a TMscore > 0.5 as the second

good template (a). Conversely, for the bad templates, we went up the sorted list starting

from the bottom and added one (b) and two templates (c) which had a TMscore < 0.3.

Thus we ended up with three different template selections for each query q in test set.

(b) and (c) were the ones including bad templates to test the ability of the restraints

to correctly cope with harsh inconsistencies. Model quality measurements are shown

in Table 3.2: In summary, the new restraints are especially advantageous when outliers

good templates bad templates old restraints new restraints

2 0 0.713 0.723
2 1 0.705 0.721
2 2 0.695 0.716

Table 3.2.: Mean TMscores of 1000 models built with different templates: two good
templates selected with the neural network and zero, one or two additional
bad templates. The new restraints are less negatively affected by bad tem-
plates.

are present. In practice, however, the effect is considerably less pronounced due to the

reasons mentioned above.

A future project might interweave alignment and model generation by sampling them

in turn from appropriate conditional distributions and thus combining sequence and

structure information in a more consistent way.
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Homology detection





4. Structural properties

4.1. Overview

When tracing the history of alignment tools, one of the most significant improvements

came from the extension of a single sequence to a profile. Such a profile contains in-

formation not only about a single sequence but about the protein family this sequence

belongs to, i.e. its evolutionary history. Thus, evolutionary related proteins are grouped

together. During evolution, all residues in a protein are exposed to various selective

pressures. It is obviously difficult to deduce these effects from a single sequence, whereas

a profile encodes them in form of a pattern. For instance, Figure 4.1 shows both a

sequence and its corresponding profile on top. The column marked by the dark blue

arrow on the left encodes a well conserved alanine suggesting its functional importance.

On the other side, the alanine below the light blue arrow on the right has often been

replaced by other amino acids during evolution and is much less conserved.

Figure 4.1.: A sequence with its profile on top. Two alanine residues are marked by
arrows. The left one (dark blue) is well conserved whereas the right one has
often been substituted by other amino acids. This extra information can
not be inferred from the bare sequence.
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Including more information also comes at a price, however: first, whereas the statistical

significance of ungapped pairwise sequence-sequence alignments can be calculated an-

alytically, this is no longer possible for profile alignments. Second, the computational

burden of profile alignments is higher. Yet, both of these drawbacks can be neglected in

most practical applications: Hidden Markov Models (Hmms), trained from Msas, pro-

vide a theoretically solid framework and steady increase in computational power enables

low running times. Due to the success of replacing single sequences with profiles, all

current highly sensitive pairwise alignment tools heavily rely on them. In CASP, where

it is of fundamental importance to have a sensitive and accurate alignment, all top per-

formers employ profile based methods (Casp, 2012). Yet, there are different approaches

to exploit profile information. Many different scores have been proposed to measure

the similarity between two profile columns (see Ye et al. (2011) for an overview). In

order to increase their performance, most tools extend their scoring function to include

additional 1D structural properties (Söding and Remmert, 2011). Definitely the most

prominent among these extra scores is secondary structure. It has been recognized to

improve both alignment quality and precision.

4.1.1. General approaches to extend pairwise profile alignments

Even if the sequence profile is the most important input for any highly sensitive pairwise

alignment algorithm, especially low homology detection profits from additional orthog-

onal information. For instance, a sequence profile can be sparse due to the lack of

homologous sequences in a database or the inability of a multiple sequence alignment

tool to detect remote (super-) family members. Apart from defining and refining exist-

ing profile-profile scores (Edgar and Sjölander, 2004) and experimenting with schemes to

enrich the profile by pseudocounts (Biegert and Söding, 2009), some groups have started

to integrate a bunch of additional terms into their scoring function. The SP, SP-4,

SP-5 suite and SPARK-X come up with angle and fragment based potential functions

(Faraggi et al., 2011; Song et al., 2007; Zhang et al., 2008). Xu and Xu (2000) designed

a contact potential function and Muster (Zhang and Skolnick, 2005a) includes struc-

ture fragment profiles. Because of highly complex interactions between (pure) sequence

scores and profile-derived structure scores, they must be reasonably combined. In the

simplest case, the structural scores are orthogonal to both the profile score and each

other, and can simply be added up. To allow, however, for more flexibility, Ma et al.

(2012) made use of conditional neural fields. Ohlson et al. (2006) resort to neural net-

works to construct a nonlinear scoring function.
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Like profile-profile scores, structural scores are local, meaning that different alignment

positions are scored independently of each other. Pairwise interactions, however, capture

non-local interactions but are computationally more intensive. In Ma et al. (2013), the

authors integrate a global potential term and find a slight improvement in alignment

quality.

4.1.2. Secondary structure

Biochemical analysis of naturally occurring proteins has revealed a set of recurring spatial

patterns in their three-dimensional structures. Even though there is no unique definition

of these patterns, the most popular one comes up with three distinct classes:

• alpha helix (H)

• beta sheet (E)

• random coil (C)

Figure 4.2.: X-ray structure of a hydrolase from Bacillus anthracis (pdb code 3OOS).
Left: secondary structure coloring (helix (red), sheet (yellow), coiled
(green)), right: solvent accessibility coloring (accessible (green), buried
(blue)).

Figure 4.2 visualizes each of them. As the complexity of spatial structures might suggest,

this three class partitioning is only a very crude representation of reality. Consequently,

various more refined alphabets have been devised. Amongst them, the most prominent

is the DSSP (Kabsch and Sander, 1983) which is an eight class extension of the classical
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three states. Having a more detailed alphabet has pros and cons: they provide a more

fine-grained description of secondary structure, but their prediction get more compli-

cated.

Secondary structure is a spatial, function generating characteristic of a protein and thus

it is generally more conserved than the amino acid sequence. Different amino acids have

a natural propensity to come up in a given secondary structure element. For instance,

methionine, alanine, leucine, glutamate and lysine (MALEK) prefer to adopt helical con-

formations. Even more distinct, each profile column favours another secondary structure

state depending on the composition of amino acids at the current position. Beyond that,

considering context information extends predictability of secondary structure because

neighboring profile columns provide important information about the current position.

4.1.3. Further 1D structural properties

In the structure prediction community, secondary structure is considered as one of the

most important feature apart from sequence (or profile). Nevertheless, a couple of other

1D structural properties has been defined and investigated. Among others, solvent acces-

sibility, torsion angle potentials, contact density, structural environment and information

from chemical shifts were scored (e.g. SP5, SPARK-X, RAPTOR, Muster). Further-

more, three states secondary structure alphabets have been refined to better describe

backbone conformations and burial states (Karchin et al., 2004). All of these 1D proper-

ties aim at capturing a specific structural characteristic of a protein. However, actually

all of them are calculated based on sequence (profile) information, mostly via machine

learning techniques such as support vector machines and neural networks. Thus, these

features are all derived from sequence profiles differing only in the structural property

that they have been associated with during training. In most cases, (local) profile win-

dows of a specific width D serve as input and a structural feature of interest is taken

as output for some supervised learning algorithm. Neural networks, for instance, are

flexible enough to establish a mapping between the input and output and can thereby

provide a mapping from profiles to structures (if over-training has been taken care of).

When structural features strongly correlate with each other, as is the case for three and

eight class secondary structure prediction, these interdependencies should be taken into

account by the alignment scoring function. For this reason, to optimally integrate a

new (structural) property into an alignment tool, the scoring function must be designed

carefully.
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4.2. Prediction Tools

As already indicated in the previous chapter, the performance of virtually every predic-

tion tool is depending on the input sequence profile. As the relation between profiles

and a specific 1D structural property is often quite complex, the corresponding mapping

function will usually be complex as well. Neural networks have proven to be sufficiently

versatile and powerful. In addition, conditional neural fields (Wang et al., 2011), support

vector machines (Hua and Sun, 2001) and regression techniques have been implemented

(Pan, 2001).

In the next sections we will shortly explain three approaches to profile based 1D struc-

tural property prediction. The first one, the well-known PsiPred, is a neural network

for three class secondary structure prediction. In a next step, Predict-2nd extends

PsiPred by learning various other structural features. Yet, all training data is required

to be labeled, i.e. the structural 1D states have to be predefined (by human expert

knowledge) based on solved structures. In order to overcome this limitation, we describe

a more general approach by Ohlson et al. (2006) who stick to an unsupervised learning

procedure called self organizing maps (SOMs) to derive an alignment score.

4.2.1. PSIPRED

PsiPred (Jones, 1999) is a well known secondary structure prediction tool and is one of

the first programs to employ Psi-Blast-generated position specific scoring matrices as

input. As outlined in sections 4.1.2, 4.1.3 and 4.2, it heavily relies on input from Msas.

In short, the workflow is as follows:

1. generation of a sequence profile by Psi-Blast

2. prediction of secondary structure with a neural network that takes the sequence

profile as input

3. filtering of the predictions of step 2 with a second neural network

4. output of final secondary structure prediction together with position specific con-

fidence
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Figure 4.3.: Psipred flowchart: starting with a sequence profile, two feed-forward neural
networks are operating consecutively and finally return a probability for each
of the three secondary structure states: helix, sheet and random coil.

Figure 4.3 depicts the method. In order to optimally map local profile windows of width

15 onto their structural state, two successive feed-forward neural networks are operating

consecutively. Here, the second network refines outputs from the first one. Altogether,

about 27.000 parameters allow a non-linear adaptation of the network to the training

data. Finally, each residue has a probability for helix, sheet and coil, respectively.

Despite its methodological simplicity, PsiPred still ranks among the top secondary

structure prediction tools available. Nevertheless, it is obvious to investigate further

structural properties by defining extended alphabets as described in the next section.

4.2.2. Predict-2nd

As mentioned in section 4.1.2, the classification of local structural elements into helix,

sheet and random coil is by no means the only one possible. Refined so-called backbone

and burial state alphabets have been defined (Karchin et al., 2004). Backbone alphabets

focus on different structural features (DSSP and STRIDE) by subdividing a given state,

e.g. beta sheets. DSSP is an eight state alphabet consisting of E (beta strand), H (alpha
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helix), T (turn), S (bend), G (3-10 helix), B (short beta bridge), C (random coil) and I

(pi helix). Furthermore, str, str2, str3 extend DSSP by manually splitting up the E state

into six, seven and eight letters. They are motivated by the observation that parallel

and anti-parallel beta sheets have distinct patterns of hydrophobic and polar residues.

Burial alphabets attempt to express whether a residue is on the surface or in the interior

of a protein. Karchin et al. (2004) have listed a whole series of them, most of which

differ only in minor details.

Katzman et al. (2008) have developed a corresponding prediction tool called Predict-

2nd. Similar to PsiPred, it is a neural network which takes Msas as input. In addition

to PsiPred, they extend their network in several respects: 1) instead of predicting three

state secondary structure, they allow for a range of different alphabets of variable size,

2) the number of hidden layers is extended to three, 3) regarding the objective function

they switched from an alphabet size dependent measure (Qn, which is the percentage

of correct predictions in the whole sequence) to a more size-independent number called

’bits-saved’:

bits-saved =
1

n

n∑
i=1

log2

P̂i(ci)

P0(ci)
,

where ci, i = 1, . . . , n, is the correct state at position i, P0 is the background probability

and P̂i the predicted probability of ci.

Figure 4.4.: Predict-2nd flowchart: starting with a multiple alignment, Predict-2nd
calculates position specific probabilities for each letter in a given structural
alphabet.
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Like PsiPred, Predict-2nd takes only sequence profile information as input and re-

turns for each residue the corresponding probabilities of each letter in the respective

alphabet. Due to the network’s complexity (three hidden layers and about 6.000 pa-

rameters), it is necessary to perform several training runs each starting from a different

random initialization.

Even if various alphabets have been defined, they all rely on predefined structural states

and are based on human expert knowledge. A more data driven approach that requires

less prior information is presented in the following section.

4.2.3. SOM based method

Both PsiPred and Predict-2nd need predefined structural states. Therefore, training

these networks requires the availability of labeled training data. But even if many

different 1D structural properties have been defined, it is unclear whether all information

in the local profiles windows is exploited. Ohlson et al. (2006) resorted to an unsupervised

learning strategy to get rid of specific 1D structural properties. In particular, they

construct a self organizing map (SOM) (Kohonen, 1982) and use it for scoring.

A SOM is a special type of neural network that is trained in an unsupervised way using a

neighborhood function that preserves topological properties of the input space. Here, the

input space consists of a (training) set of n training profile windows T = (X1, . . . ,Xn),

each having 20 rows, i.e. one for each amino acid, and D columns. As neighborhood

function, the authors used the Euclidean distance. The SOM is then generated by

Algorithm 1. In the end, the map consists of a grid, where each grid position p gets

assigned a 20 × D-dimensional vector Zp. The values of all vectors will be learned by

Algorithm 1 so that vectors next to each other in the grid are likely to share similar

properties.

For prediction, any 20×D profile window Y can be mapped onto a SOM grid position

pY by finding the SOM position p that minimizes the distance between Y and Zp:

pY = argminp{||Y ,Zp|| ∀ grid positions p in SOM}.

Provided with two SOM positions pX and pY for a query and template residue, it is

assumed that similar local profiles X and Y cause pX and pY to be mapped close to

each other in the grid and giving a high score. Ohlson et al. (2006) trained a neural

network with pY and pY as input and the alignment score as output.

According to the authors, the inclusion of the SOM positions helped in some limited

degree to better find remote homologs on fold level. Even though secondary structure
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Algorithm 1: SOM profile window clustering

Data: Training profile windows T = (X1, . . . ,Xn)
Result: profile window SOM
Initialization: a grid of dimension (5× 6× 7) is generated where at each grid position p
a 20×D-dimensional, randomly initialized vector Zp is stored.;
for 10 epochs do

for each training profile window Xi, i = 1, . . . , n do

1. Find closest grid vector, Zclosest, to point Xi according
to Euclidean distance;

2. Zclosest ← Zclosest + α · (Xi − vclosest);

3. update neighbors of Zclosest within radius r in the same way
but by a smaller amount;

reduce r and training rate α;

appears to be the most accessible and beneficial pattern encoded in sequence profiles,

there is a small amount of extra information captured by their SOMs.

Despite of the generality of this approach, it has certain drawbacks: First, SOMs measure

the similarity of profiles in terms of their Euclidean distance, which seems to be an

unnatural measure for amino acid profiles. Second, a given profile is mapped onto only

a single SOM position, corresponding to a hard assignment and ignoring noise in the

data. Third, the training lacks any information about which profiles were aligned in the

training set since only single profile windows are clustered. Fourth, the scoring of the

SOM positions by the neural network lacks a background reference, i.e. these absolute

SOM positions pX and pY lack a possibility to discriminate signal from noise.

4.3. PPAS

In a comparative assessment of 20 sequence alignment tools, Yan et al. (2013) concluded

that profile-profile tools considerably outperform methods relying on sequence-profile

information only. For benchmarking our new method in section 5.1, we tested existing

profile-profile alignment software. Even if many of them have been developed, most are

useless in practice because of their very limited flexibility (e.g. fixed template databases,

missing tools to generate input features).

PPAS (Yan et al., 2013) is part of the I-TASSER package that was developed in Yang
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Zhang’s lab. Its scoring function is defined as:

SPPAS(i, j) =
20∑
a=1

Fq(i, a)Lt(a, j) + C · δ(ssq(i), sst(j)) + shift,

where the sum runs over all 20 amino acids, Fq(i, a) is the query sequence frequency pro-

file and Lt(a, j) is the template log-odds profile, δ is the Kronecker function and C is an

optimized weight. By default, both the query and template profiles are based on three it-

erations of Psi-Blast against the ’non-redundant’ nr database. Secondary structure on

the query side is predicted by PSSpred, an in-house tool. PPAS implements a position

specific gap scheme, where no gaps are allowed inside secondary structure regions. An

extension of PPAS incorporates profiles derived from a set of structural fragments that

have similar spatial depth as the fragment at j-th position of the template. Yet, there

is no tool available in the I-TASSER-package that allows constructing these profiles.

In (Yan et al., 2013), PPAS is benchmarked against HHsearch and found to have

better (medium targets) or equal (hard targets) performance. Interestingly, the same

benchmark shows that PPAS is ranked only slightly behind Muster, which is an ex-

tension of PPAS. It adds backbone-angle potential scores, depth profiles and solvent

accessibility.
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5.1. Introduction

Top-performing methods for fold recognition and protein structure prediction are based

on the pairwise alignment of query and template sequence profiles (Elofsson, 2002; Yan

et al., 2013). They use the same dynamic programming algorithms as methods for pair-

wise sequence alignment, but they replace the substitution matrix score with a score

that quantifies the similarity between sequence profile columns (e.g. the Euclidean dis-

tance or the scalar product). The power of these profile-profile alignment methods lies

in leveraging the evolutionary information in the multiple sequence alignments (Msas)

that the sequence profiles were trained with.

Most top-performing structure prediction tools add to the profile column similarity score

a secondary structure score which measures the similarity between the predicted sec-

ondary structure of the query protein and the known secondary structure of the tem-

plate proteins. Such scores have been shown to improve the sensitivity for detecting

remote homologs and the quality of the resulting alignments (Karplus et al., 2003; Xu

and Xu, 2000). In order to maximize the information gain and therefore the improve-

ments in alignment quality, various finer-grained alphabets of backbone structure states

have been developed – together with tools to predict these states (Karchin et al., 2004,

2003; Katzman et al., 2008).

In addition to secondary structure, a number of other 1D structural properties are em-

ployed for improving sequence alignments in the twilight and midnight zone, such as

solvent accessibility (Liu et al., 2007), residue coordination numbers (Karchin et al.,

2004; Peng and Xu, 2010; Wu and Zhang, 2008), backbone dihedral torsion angles, 1D

environmental fitness scores (Peng and Xu, 2009; Teichert et al., 2010). In all cases,

the discretized 1D structural property of each position in the query is predicted from a

local sequence profile window of 13 to 15 positions, and the similarity between predicted

and actual 1D properties of the aligned query and template positions is scored in the

alignment.

Most current pairwise profile-profile alignment tools integrate several of these 1D struc-
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tural scores into their alignment algorithm. Muster (Wu and Zhang, 2008) is a thread-

ing program that extends its profile score by secondary structure, solvent accessibility,

fragment depth profiles (Liu et al., 2007) and torsion angle potentials. Similarly, the Zhou

lab has developed a series of alignment tools called SP2,SP3,SP4, SP5 and SPARKS-X

(Yang et al., 2011) each of which expands the previous one by another 1D property.

Interestingly, the latest implementation, SPARKS-X, got rid of the structure-derived

sequence profiles that had been shown profitable in SP3 and its successors. A possible

reason for a decline in performance in such multi-component scoring functions is their

suboptimal combination. In most implementations, all scores are considered to be inde-

pendent and get added up using constant weights. Such an assumption obviously ignores

the complex interdependencies between various individual scores. Ma et al. (2012) was

the first to provide a theoretically solid framework to non-linearly combine any scores by

employing conditional random fields (Lafferty et al., 2001) and a gradient tree boosting

algorithm (Peng and Xu, 2009).

Whereas these 1D scores are limited to searching for templates with known structure,

one can get independent of structural information by comparing 1D predictions with 1D

predictions. Surprisingly, this works almost as well (Przybylski and Rost, 2004; Söding,

2005). We believe the reason is that these similarity scores reward the conservation of

certain amino acid patterns in the local sequence context that the predictor associates

with its conserved 1D property. In other words, the conservation of a 1D structural

property leads to the conservation of local patterns of amino acid properties that is

characteristic for this 1D property, and the conservation of these patterns is scored

indirectly by comparing predicted 1D properties with each other.

Since the relationship of patterns to properties is “many to few”, e.g. many quite

different patterns are all characteristic for alpha helix states, more information might be

extracted by learning and comparing conserved patterns directly, independent of what

actual structural properties they are associated with. This is the approach we follow in

this study. We cut out profile window pairs from structurally aligned pairwise training

alignments and learn the set of the 32 best-conserved patterns in these homologous

pairs using the Expectation Maximization algorithm. With these patterns which we

call “context states”, we define a score that helps to discriminate homologous from

non-homologous positions by analyzing the conservation of patterns between the aligned

positions. We show that the new context similarity score improves the alignment quality

and fold recognition sensitivity of our pairwise alignment tools HHsearch and HHalign

(Söding, 2005) and that this in turn results in better 3D homology models.
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5.2. Methods

5.2.1. General approach and notation

We start from a large training set of N aligned profile window pairs of D = 2d+ 1 = 13

columns. The alignments are obtained from structural alignments of the full-length pro-

tein domains from the SCOP database (see section 5.4.1). We seek to automatically

identify the maximally conserved patterns (“context states”) irrespective of any pre-

defined structural or functional properties. The conserved patterns are represented by

sequence profiles of length D.

We call the N aligned training profiles Xn = Xn(i − d, ·), . . . , Xn(i + d, ·) and Yn =

Yn(j − d, ·), . . . , Yn(j + d, ·), n ∈ {1, . . . , N}. Here, Xn(i, a) is the number of effective

counts of amino acid a at position i in one training profile and position i is aligned to

position j in the aligned profile. The effective counts are defined in the following way:

Let pXn(i, a) be standard sequence profile built for sequence X, i.e., the probability of

amino acid a occurring at position i in the Msa for X. The effective counts are defined as

Xn(i, a) = pXn(i, a)N eff
Xn

(i) and analogously Yn(j, a) := pYn(j, a)N eff
Yn

(j). Here, N eff
Xn

(i)

(abbreviated “Neff” in the following) is the number of effective sequences at position i

as defined in the section 1.4.1.

Each of the K conserved patterns (= context states) is parameterized by a sequence

profile pk. pk is a D× 20 matrix with pk(j, a) being the occurrence probability of amino

acid a ∈ {1, . . . , 20} at profile column j ∈ {−d, . . . , d}. Each context state has a mixture

weight αk. We abbreviate the model parameters by θk = (pk, αk) and Θ = (θ1, . . . ,θK).

5.2.2. Generative model

We want to find parameters Θ that maximize the likelihood function

L(Θ) = P ((X1,Y1), . . . , (XN ,YN )|Θ) =
N∏
n=1

P (Xn,Yn|Θ). (5.1)

All training samples are supposed to be independent of each other so that the likelihood

can be decomposed into a product. We use a mixture model for P (Xn,Yn|Θ) as shown

in Fig. 5.1. The hidden variable zn ∈ {1, . . . ,K} indicates the index of the context state

that gave rise to (Xn,Yn):

N∏
n=1

P (Xn,Yn|Θ) =

N∏
n=1

K∑
k=1

P (Xn,Yn, zn = k|θk). (5.2)
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Figure 5.1.: Generative graphical model: Each of the N training profile pairs (Xn , Yn)
is generated by a mixture distribution with K components, the “context
states”. The hidden variables zn encode the context state that gave rise
to the n’th training sample (Xn , Yn). Each of the D columns in these
count profiles is modeled by a multinomial distribution over the 20 amino
acids with parameters pk. The context states have mixture weights αk(k =
1, . . . ,K).

Since our model assumes conditional independence of Xn and Yn given the hidden

context state zn, it follows that

N∏
n=1

P (Xn,Yn|Θ) =
N∏
n=1

K∑
k=1

P (Xn|pk)P (Yn|pk)P (zn = k|αk). (5.3)

We model P (Xn|pk), the probability to observe counts Xn(j, a) of amino acid a =

1, . . . , 20 in column j = −d, . . . , d, using a multinomial distribution for each column j,

P (Xn|pk) =
d∏

j=−d

(
Γ(N eff

Xn
(j) + 1)∏20

a=1 Γ(Xn(j, a) + 1)

20∏
a=1

pk(j, a)Xn(j,a)

)wj
, (5.4)

and analogously for P (Yn|pk). Since the effective counts Xn(j, a) can assume values

outside the natural numbers, we replaced factorials x! with Gamma functions Γ(x+ 1).

The pk are discrete probability distributions and need to satisfy

20∑
a=1

pk(j, a) = 1, for k = 1, . . . ,K and j = −d, . . . , d. (5.5)

We assign a weight wj to each column in eq. (5.9). The weights are parameterized as

wj = wcenter β
|j|, so that central columns contribute more than flanking columns when



5.2 Methods 69

β < 1. The context state prior probabilities p(zn|αk) are simply the mixture weights,

P (zn = k|αk) = αk, with
K∑
k=1

αk = 1. (5.6)

5.2.3. EM algorithm

To find the K context states, we maximize the likelihood of generating the pairs of

aligned training profiles, given in eq (5.1). This can be achieved efficiently with the

Expectation Maximization (EM) algorithm (Dempster et al., 1977). To account for the

constraints in (5.5) and (5.6), we use the method of Lagrange multipliers to analytically

perform the optimization in the M-step.

We find the K = 32 context states by maximizing the probability of the training data.

More precisely, the optimization problem to solve is:

Θ∗ = argmax
Θ

P (T |Θ). (5.7)

Here, P (T |Θ) was factorized as follows (eq ):

N∏
n=1

K∑
k=1

P (Xn|pk)P (Yn|pk)P (zn = k|αk), (5.8)

where z = (z1, . . . , zN ) were hidden variables with zn ∈ {1, . . . ,K}.
Furthermore we modeled P (Xn|pk) and P (Yn|pk) using multinomial distributions:

P (Xn|pk) =

d∏
j=−d

(
Γ(N eff

Xn
(j) + 1)∏20

a=1 Γ(Xn(j, a) + 1)

20∏
a=1

pk(j, a)Xn(j,a)

)wj
(5.9)

and we had to satisfy the following constraints:

20∑
a=1

pk(j, a) = 1, ∀k = 1, . . .K, j = −d, . . . , d. (5.10)

and

P (zn = k|αk) = αk,
K∑
k=1

αk = 1. (5.11)
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5.3. EM algorithm

The EM-algorithm can be used to maximize the log-likelihood:

logP (T |Θ) =

N∑
n=1

log

K∑
k=1

P (Xn,Yn, zn = k|θk). (5.12)

As there is a sum inside the logarithm, this expression can not be maximized analytically.

Instead, the EM algorithm iterates the following three steps:

First, we define the (complete data) log-likelihood:

Lc(Θ) :=

N∑
n=1

logP (Xn,Yn, zn|Θ). (5.13)

Since the zn are hidden, Lc(Θ) is estimated as the following expectation under the

posterior distribution of the zn (E-step):

Q(Θ|Θ̃) = Ez|T ,Θ̃[Lc(Θ)] = Ez|T ,Θ̃

[
N∑
n=1

logP (Xn,Yn, zn|Θ)

]
, zn ∈ {1, . . . ,K}. (5.14)

Here, Θ̃ are given estimates of Θ from the previous iteration. They are needed to

calculate the posteriors of the zn.

Second, Q(Θ|Θ̃) is maximized over Θ (M-step):

Θ∗ = argmax
Θ

Q(Θ|Θ̃). (5.15)

Since the logarithm now acts directly on P (Xn,Yn, zn|Θ) in Q(Θ|Θ̃), the M-step will

have a closed form solution. Subsequently, Θ̃ is updated:

Θ̃← Θ∗. (5.16)

Third, the E-step and M-step are iterated until convergence or a given maximum number

of times.

Let us now specify the E-step further. Exploiting the linearity of the expectation oper-
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ator, eq (5.14) becomes:

Q(Θ|Θ̃) =
N∑
n=1

Ez|T ,Θ̃ [logP (Xn,Yn, zn|Θ)]

=
N∑
n=1

K∑
zn=1

P (zn|Xn,Yn, Θ̃) logP (Xn,Yn, zn|Θ).

(5.17)

Due to the fact that the posteriors of the zn are conditioned on Θ̃, which is known from

the previous iteration, it can easily be calculated with Bayes’ Theorem:

P (zn|Xn,Yn, Θ̃) =
P (Xn,Yn|zn, Θ̃)P (zn|Θ̃)∑
zn
P (Xn,Yn|zn, Θ̃)P (zn|Θ̃)

. (5.18)

Here, the first term in the numerator decomposes to:

P (Xn,Yn|zn, Θ̃) = P (Xn|zn, Θ̃)P (Yn|zn, Θ̃), (5.19)

whereas the second term in the denominator in (5.18) is:

P (zn = k|Θ̃) = α̃k. (5.20)

Taken together, the posterior probability in (5.18) results in:

P (zn = k|Xn,Yn, Θ̃) ∝ α̃k
d∏

j=−d

(
Γ(N eff

Xn
(j) + 1)∏20

a=1 Γ(Xn(j, a) + 1)

20∏
a=1

p̃k(j, a)Xn(j,a)

)wj
×

d∏
j=−d

(
Γ(N eff

Yn
(j) + 1)∏20

a=1 Γ(Xn(j, a) + 1)

20∏
a=1

p̃k(j, a)Yn(j,a)

)wj

∝ α̃k
d∏

j=−d

(
20∏
a=1

p̃k(j, a)Xn(j,a)+Yn(j,a)

)wj
.

(5.21)
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Starting from here, we can work out the expectation Q(Θ|Θ̃):

Q(Θ|Θ̃) =
N∑
n=1

Ez|T ,Θ̃ [logP (Xn,Yn, zn|Θ)]

=

N∑
n=1

d∑
j=−d

wj

(
log Γ(N eff

Xn
(j) + 1) + log Γ(N eff

Yn(j) + 1)−
20∑
a=1

log Γ(Xn(j, a) + 1)

−
20∑
a=1

log Γ(Yn(j, a) + 1) +
20∑
a=1

Xn(j, a)Ez|T ,Θ̃[log pzn(j, a)]

+
20∑
a=1

Yn(j, a)Ez|T ,Θ̃[log pzn(j, a)]

)
+

N∑
n=1

Ez|T ,Θ̃[logαzn ].

(5.22)

Writing out the expectations yields:

Ez|T ,Θ̃[log pzn(j, a)] =

K∑
k=1

P (zn = k|Xn,Yn, Θ̃) log pk(j, a) (5.23)

and

Ez|T ,Θ̃[logαzn ] =

K∑
k=1

P (zn = k|Xn,Yn, Θ̃) logαk. (5.24)

Since αk and pk(j, a) describe distributions, they are constrained to satisfy:

K∑
k=1

αk = 1 and
20∑
a=1

pk(j, a) = 1 ∀k, j. (5.25)

Having set up the E-step, we now turn to the M-step, i.e. the maximization of Q(Θ|Θ̃)

with respect to the constraints in (5.25). To find an analytical solution, we introduce

Lagrange multipliers λ, µkj ∈ R, one for each constraint. According to the Lagrange

formalism, one has:

∂Q
∂αk

=

N∑
n=1

P (zn|Xn,Yn, Θ̃)

αk
− λ ∂

∂αk

(
K∑
k=1

αk − 1

)
= 0 (5.26)
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and

∂Q
∂pk(j, a)

=

N∑
n=1

wj (Xn(j, a) + Yn(j, a))P (zn = k|Xn,Yn, Θ̃)

pk(j, a)

− µkj ·
∂

∂pk(j, a)

(
20∑
a=1

pk(j, a)− 1

)
= 0.

(5.27)

Finally, composing (5.26), (5.27) and (5.25), one ends up in the following M-step formu-

las:

αk =

∑N
n=1 P (zn = k|Xn,Yn, Θ̃)∑K

k′=1

∑N
n=1 P (zn = k′|Xn,Yn, Θ̃)

pk(j, a) =

∑N
n=1 P (zn = k|Xn,Yn, Θ̃)(Xn(j, a) + Yn(j, a))∑20

b=1

∑N
n=1 P (zn = k|Xn,Yn, Θ̃)(Xn(j, b) + Yn(j, b))

.

(5.28)

A closer look at the update equations in (5.28) reveals that the state priors αk are

basically the normalized sums of state posteriors. On the other hand, pk(j, a), the

multinomial parameters describing the profile distributions can be seen as weighted (and

normalized) sums of the state posteriors, where the weights are given by the amino acid

counts in the training profile window pairs. I.e. assuming, there is a bunch of training

profile pairs in the dataset T , which has a conserved cysteine at their central position

j = 0 and there is one context state k which favours such profiles (meaning it has a high

posterior), then pk(0, cysteine) will become even more pronounced resulting in a state

with a dominant cysteine column at its center.

Furthermore, since the zn are described probabilistically by their posterior distributions,

this approach is also referred to as soft clustering.

5.3.1. Scoring functions

Context states score

We define the context score for position i in profile X and position j in profile Y as a

log-odds score,

Sctx(Xi,Yj) = log

(
P (Xi,Yj |Θ)

P (Xi|Θ)P (Yj |Θ)

)
, (5.29)
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i.e., the logarithm of the ratio of probability

P (Xi,Yj |Θ) =
K∑
k=1

P (Xi|zn=k,θk)P (Yi|zn=k,θk)αk (5.30)

for Xi and Yj to have been generated together from the same context state, divided by

the probability P (Xi|Θ)P (Yj |Θ) for Xi and Yj to have been generated independently

of each other. By applying Bayes’ Theorem twice,

P (Xi|zn,Θ) =
P (zn|Xi,Θ)P (Xi|Θ)

P (zn|Θ)
, (5.31)

this expression can be transformed into the following form,

Sctx(Xi,Yj) = log
∑
zn

P (zn|Xi,Θ)P (zn|Yj ,Θ)

P (zn|Θ)
. (5.32)

Note the analogy to the log-sum-of-odds scoring function for profile-profile alignment

that was derived in (Söding, 2005),

Saa(pX(i), pY (j)) = log

20∑
a=1

pX(i, a) pY (j, a)

f(a)
. (5.33)

Here, the amino acid a is analogous to our context state k. The nominators describe

the probability for the two profile columns i and j to co-emit amino acid a, or for the

two profile contexts to emit context state zn = k, respectively. f(a), the background

frequency of amino acid a, is analogous to αk. Multiplying by 1/f(a) (or 1/αk) corrects

for the fact that frequent amino acids match by chance more frequently than rare ones.

In our context similarity score, however, we compare sequence contexts by comparing

count profiles of D columns instead of single profile columns.

Finally, the total score is a linear combination of profile column score, context states

score, and HHsearch’s standard 3-state secondary structure score based on PSIPRED

predictions Söding (2005):

Stotal(i, j) = (1− wctx)Saa(pX(i), pY (j)) + wctx Sctx(Xi,Yj)

+ wss Sss(i, j). (5.34)

Since the context states score is based on a window of size D = 13, the weight of the

score should be adapted for two reasons:
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1. when calculating the score at consecutive positions i and i+ 1, there is an overlap

of D − 1 positions, i.e. redundancy.

2. calculating the score involves D columns in contrast to the column-column amino-

acid score which considers only a single column.

Thus, the default scoring scheme:

Stotal = Saa + wctxSctx (5.35)

is adapted to corrected for both effects. We assume that in a context state of width D

the central column has the highest weight of one and it drops to the sides:

Supposing the decay is exponential, then the area A in blue is:

A = 1 + 2β
1− βd

1− β
, d = bD/2c. (5.36)

We assume the redundancy to be a linear function of A:

r(A) = 1 +
1−A
D − 1

. (5.37)

This is a linearly decreasing line with r(A) = 1 for only one column. We finally correct

the weights of Saa and Sctx as follows:(
1− wctx

wcenterA
r(A)

)
Saa +

wctx

wcenterA
Sctx. (5.38)

The denominator wcenterA corrects for the area, r(A) corrects for overlaps. Given context

states of only one column, D = 1, then r(A) = 1, A = 1 which looks reasonable.
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str alphabet score

Apart from secondary structure, we tested a fine-grained structural alphabet str, which

was explicitly developed to improve the alignment quality in difficult cases for remote

homology detection and homology modeling and which performed well in several CASP

competitions (Karchin et al., 2003). It is an enhanced version of the DSSP alphabet

(Kabsch and Sander, 1983) which subdivides the E-letter (β−strand) into six cases

according to properties of a residue’s relationship to its strand partners. We applied

the improved four-layer neural networks of (Katzman et al., 2008) and determined for

all query and template residues the probabilities for each of the 13 letters in the str

alphabet.

We denote pstr
X (i, s) as the probability for letter s ∈ {1, . . . , 13} at position i of profile X

and similarly pstr
Y (j, s) for the Y . The str structural score Sstr is defined as a log-sum-

of-odds score in analogy to eqs.(5.32,5.33):

Sstr(i, j) =
13∑
s=1

pstr
X (i, s) pstr

Y (j, s)

pstr
bg (s)

, (5.39)

where pstr
bg is the background probability for str state s in a large set of proteins. This

str score was added to the total score with its own optimized weight.

5.3.2. Data sets

First, we filtered the SCOP (V1.75, Lo Conte et al., 2000) to obtain a set with a maximum

pairwise sequence identity of 20% and enriched each SCOP20 sequence by generating

a multiple sequence alignment with our iterative Hmm-Hmm searching tool hhblits

(Remmert et al., 2012) (2 iterations against uniprot20 with standard parameters). Then

each Msa was converted into an Hmm via hhmake (Söding et al., 2013) with standard

parameters. Finally, the dataset was divided into two sets by assigning the members

of every fifth fold into a smaller set Strain (1492 domains) and the rest into a set Stest

(5426 domains). Query and templates for the training and optimization set are then

sampled from Strain, whereas test alignments are sampled from Stest. This procedure is

important to ensure that none of the sequences in the test sets are homologous to any

of the sequences in the training and optimization sets.
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5.3.3. Parameter optimization

Since the time to compute the context score is proportional with K, we need to keep

K low in order not to significantly slow down HHsearch. The improvements between

K = 128 and K = 32 were moderate, so we chose K = 32. As D = 13 for the window

width was found to perform well in various related applications (e.g. Biegert and Söding,

2009) we chose the same value without further optimization.

We needed to optimize the parameters wcenter and β describing the weights wj in

section 5.2.2 and the weight wctx of the context score in eq. (5.34). We found that

we could get better results by using separate parameter sets for training the context

states library (wtr
center, β

tr) (where no weight wctx is needed) and for the alignment stage

(wal
center, β

al, wctx). Since systematic testing of wtr
center and βtr requires to generate a con-

text library for each setting and furthermore the performance then depends on the other

parameters, these were also adapted from (Biegert and Söding, 2009) (wtr
center = 1.3 and

βtr = 0.85), so that the left and rightmost columns in a context profile get a weight

wj=−6 = wj=6 = 0.49. We checked libraries with lower wtr
center = 0.2 and 0.5, but this

led to flatter context states and a drop in performance.

To optimize the alignment algorithm parameters, we performed a grid search for wal
center ∈

{0.2, 0.25, 0.5, 1} and wctx ∈ {0.8, 0.9, 1, 1.1, 1.2} and measured the average of alignment

sensitivity and precision on 1000 pairwise alignments where query and template were

sampled from Strain. We obtained best results for wal
center = 0.2 and wctx = 1. Surpris-

ingly, wal
center turned out to be clearly smaller than 1 so that the context states become

flatter during scoring.

We optimized the parameters (wctx, w
al
center, corr) specifically for the ROC5 homology de-

tection benchmark by maximizing the area under the ROC5 curve, using the same con-

text state library as in the alignment quality benchmarks. We used all sequences in Stest.

In addition to wctx and wal
center, the parameter corr from HHsearch was reoptimized.

Differing from the setting for alignment quality, we arrived at wctx = 0.6, wal
center = 0.4

and corr = 0.2. The optimization of the secondary structure score weight and the str

alphabet weight were done on the same set and yielded wss = 0.25, wstr = 0.12.

5.4. Results

5.4.1. Training

We sampled up to 10 pairs of proteins in Strain and accepted if their tmalign score was

between 0.5 and 0.85. If a window of width D = 13 centered at a structurally aligned
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residue pair had at least 9 pairs within a distance of five angstroms in the structural

alignment, the window was selected as a training sample and the D columns in the two

corresponding count profiles were cut out. This procedure returned 141.508 training

profile window pairs from 2987 pairwise alignments. Subsequently, these training pairs

were filtered by calculating the mean column score Saa (equation (5.33)) over all D = 13

columns and we rejected the trivial cases with Saa > 1.5 (46.839 samples). At the

beginning of training, we initialized the context states library randomly and ran 25 EM

iterations. Different initializations led to quite similar log-likelihood values and libraries

so that the training appears to be very robust.

A graphical visualization of the context states library is given in Figure 5.2.

5.4.2. Alignment quality

Alignments of high quality are important for many applications such as homology mod-

eling and phylogenetic reconstructions. To differentiate between hard and easier cases,

we created two sets of pairwise alignments: first, we randomly sampled 6000 query-

template pairs from Stest under the condition that both query and template were in

the same SCOP superfamily but in a different family (“hard set”). Furthermore, their

tmalign score (Zhang and Skolnick, 2005b) had to be in the range between 0.5 and 0.85.

The second set (“easier set”) consists of 3000 pairwise alignments sampled from Stest

where both query and template had to be in the same SCOP family and their tmalign

score was restricted to lie between 0.6 and 0.95. The mean tmalign score of the align-

ments in the hard set was 0.61, while it was 0.72 in the easier set.

Whereas structural similarity reflects evolutionary divergence, the difficulty for an Hmm-

Hmm alignment algorithm also depends strongly on the amount of evolutionary infor-

mation available in the two profile Hmms. Even structurally quite similar pairs can be

difficult to align when their profile Hmms were only trained on thin Msas with few ho-

mologous proteins. Vice versa, even very remote homologs can often be reliably aligned

when their profile Hmms were trained on thick, diverse Msas.

To test the influence of the context similarity score on the amount of evolutionary in-

formation available in the profile Hmms, we created variant test sets of Hmms trained

on Msas with low diversity. These reflect better the diversity of Msas encountered in

practice than the typically rich and diverse Msas from sequences in the SCOP, which

mostly belong to large, very well studied protein families. To this end, we reduced the

number of effective sequences (Neff) of the Msas to a maximum value of 3 by using

hhfilter (Remmert et al., 2012) with the -neff 3 option. This command removes the
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sequences that are most diverged from the Msa’s master sequence until the target Neff

value is reached. Neff quantifies the diversity (or amount of evolutionary information)

in an Msa (section 1.4.1). It is 1 for a single sequence and can reach at most 20. In

summary, we have created four different test sets: hardNeff def, hardNeff low, easierNeff def

and easierNeff low.

We measured the alignment accuracy in terms of residue-based sensitivity and precision,

where sensitivity = TP/(TP + FN) and precision = TP/(TP + FP ). A true positive

(TP) is a pair of residues that is aligned correctly, i.e., occurs in the reference alignment

by tmalign (Zhang and Skolnick, 2005b). Similarly, a false positive (FP) is a residue

pair occurring in the test alignment but not in the reference alignment. A false negative

(FN) is a pair that is occurs in the reference alignment but not in the test alignment.

All alignments were generated in global alignment mode using HHalign with option

-mact 0.

We evaluated six different score combinations on each of the four benchmark sets (Tables

5.1–5.4: (1) the baseline version (“profile”) that uses only the column score Saa (eq 5.33)

and no secondary structure score, (2) the secondary structure score based on PSIPRED

predictions (Jones, 1999) for the first and 3D structure-based DSSP assignments for the

second sequence of each pair (“ss”) (Söding, 2005), (3) the secondary structure score

based only on PSIPRED predictions for both sequences (“sspred”) (Söding, 2005), (4)

the sum of the score in (3) and the score based on the predictions of the 13-state str

alphabet (eq. 5.39) (“ss+str”) that was optimized for its positive impact on alignment

quality (Karchin et al., 2003), (5) the context similarity score (5.32) (“ctx”), and (6) the

sum of the score in (3) and the context similarity score (eq. 5.32) (“ss + ctx”). Versions

(1) to (3) are already part of the hh-suite software, whereas scores (4) to (6) were added

to the code of HHsearch and HHalign in this work.

Tables 5.1 and 5.2 show the results of the alignment benchmark for the hard test set with

default diversity and with low diversity Msas, respectively. As pointed out before, the

score “sspred” that makes use of only predicted secondary structure performs almost as

well as the score “ss” that requires the actual secondary structure of one of the aligned

proteins, for high and low diversity Msas. When combined with the secondary structure

score based on DSSP, both the “str” alphabet-based score (“ss+str”) and the context

similarity score (“ss+ctx”) lead to additional improvements, but these are clearly more

pronounced for the “ss+ctx” score, which achieves the highest sensitivity and precision

on high and low diversity Msas. All three secondary structure classes profited to a

similar degree from the additional scoring terms.

Interestingly, the improvements owing to the secondary structure scoring and to the
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hard set - default Neff: hardNeff def

profile sspred ss ss + str ctx ss + ctx

PSIPRED • • • •
str •
ctx • •

DSSP • • •
sens 0.435 0.464 0.471 0.478 0.464 0.488
prec 0.400 0.430 0.439 0.445 0.423 0.451

sens h 0.456 0.481 0.487 0.491 0.489 0.503
prec h 0.424 0.452 0.461 0.467 0.449 0.473
sens e 0.467 0.501 0.515 0.524 0.494 0.532
prec e 0.471 0.505 0.521 0.530 0.495 0.535
sens c 0.372 0.395 0.401 0.406 0.394 0.414
prec c 0.321 0.342 0.348 0.352 0.337 0.357

Table 5.1.: Residue-bases alignment sensitivity and precision of six versions of HHalign
on 6000 pairwise alignments in the hard set with default diversity Msas (av-
erage Neff 6.55). The upper part summarizes which information is used
by each versions (PSIPRED predictions, 13-state str prediction (Katzman
et al., 2008), the new context score, and the 7-state DSSP secondary struc-
ture assignments from the known 3D structure. The lower part gives the
overall sensitivity and precision, below subdivided into helix (h) extended
beta strand (e), and coil (c) residues, as assigned by DSSP.

context score are much stronger for low-diversity Msas than for high-diversity ones

(improvement of “ss+ctx” over “ss” of 3.6%/2.7% (sens/prec) for high-diversity Msas

and of 11.5%/9.2% (sens/prec) for low-diversity Msas). While the secondary structure

score relying only on predictions (“sspred”) performs similarly to the context similarity

score for high-diversity Msas, the new context score is clearly superior for low-diversity

Msas.

On the easier dataset, secondary structure was still beneficial but the relative improve-

ments in sensitivity/precision declined from +3.6%/ + 2.7% for more distantly related

pairs to +1.3%/+ 1.1% for the easier cases. In contrast to the hard cases, the str -based

score and the context scoring led to only minor gains.

But as for the hard set of protein pairs, when Msa diversity was low, str and in particular

the context score again yielded significant improvements (Table 5.4) over the secondary

structure score alone (sensitivity/precision gain: +1% and +0.9% for str and +4.8% and

+3.9% for ctx, respectively). In summary, our new context similarity score consistently

improved the alignment quality when combined with the standard secondary structure

scoring in HHsearch. In the cases in which no secondary structure is available, the
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hard set - low Neff: hardNeff low

profile sspred ss ss + str ctx ss + ctx

PSIPRED • • • •
str •
ctx • •

DSSP • • •
sens 0.305 0.350 0.364 0.372 0.393 0.406
prec 0.288 0.331 0.346 0.354 0.363 0.378

sens h 0.318 0.367 0.377 0.384 0.412 0.420
prec h 0.303 0.350 0.364 0.371 0.386 0.399
sens e 0.324 0.371 0.393 0.402 0.412 0.434
prec e 0.338 0.387 0.409 0.418 0.420 0.443
sens c 0.267 0.303 0.315 0.322 0.340 0.350
prec c 0.234 0.266 0.278 0.283 0.291 0.302

Table 5.2.: Residue-bases alignment sensitivity and precision as shown in Table 5.1) but
on the hard set with low diversity Msas (averaged Neff 2.85).

easier set - default Neff: easierNeff def

profile sspred ss ss + str ctx ss + ctx

PSIPRED • • • •
str •
ctx • •

DSSP • • •
sens 0.639 0.653 0.658 0.661 0.658 0.667
prec 0.611 0.625 0.632 0.635 0.627 0.639

Table 5.3.: Residue-based alignment sensitivity and precision based on 3000 pairwise
alignments in the easier benchmark set.

context score (“ctx”) also consistently improves alignment quality in comparison with

the other purely sequence-based score (“sspred”). The extent of the improvements is

greater the more difficult the alignment is: the more diverged the two proteins are and

the lower the diversity of the Msas is that their profile Hmms were trained on.

5.4.3. Comparison with the profile alignment tool PPAS

Next, we wanted to compare HHsearch/HHalign with other profile-profile alignment

tools. Although many profile-profile alignment methods have been developed by the

protein structure prediction community, we found that these methods were not designed

to run independently of their protein structure prediction pipeline and could not be run
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easier set - low Neff: easierNeff low

profile sspred ss ss + str ctx ss + ctx

PSIPRED • • • •
str •
ctx • •

DSSP • • •
sens 0.532 0.564 0.573 0.578 0.572 0.601
prec 0.518 0.549 0.559 0.564 0.548 0.581

Table 5.4.: Sensitivity and precision of 3000 pairwise alignments as in Table 5.3 for low-
diversity Msas.

on user-supplied Msas or sequence profiles. Since our goal here is to compare alignment

methods and not methods to generate sequence profiles, we could not benchmark these

tools. Finally, we found that PPAS, a profile-profile alignment tool developed in the

lab of Yang Zhang, could be modified to run on user defined database profiles. Hence

we compared the context state version of HHalign with PPAS. Its developers found

that it gave equal or better results than HHsearch on a benchmark with hard and

medium targets (Yan et al., 2013) and performed only slightly worse than Muster from

the same group (Wu and Zhang, 2008), an extension of PPAS that includes several 1D

structure-based scores. Unfortunately, we were not able to benchmark Muster as it

could only search through precomputed template profiles and it was impossible to create

the template-side 1D structure profiles etc. oneself.

Since PPAS requires profiles in PSI-BLAST format, we converted our template Msas

into PSI-BLAST format by calling blastpgp with the -C option and a dummy database

containing a single sequence only. Yet for the query we had to keep the dependency on

the PSI-BLAST output, because PPAS needs to parse it directly. For the default Neff

benchmarks (easierNeff def,hardNeff def), we ran PPAS with three PSI-BLAST iterations,

and used the default Msas from Stest for HHalign. For the low Neff benchmarks

(easierNeff low, hardNeff low), we reduced the number of iterations to two, the minimum

valid value for PPAS to run. This resulted in an average diversity of Neff = 5.9 for the

easy set and 5.67 for the hard set which is clearly above our filtered low Neff Msas (Neff

= 2.84). Thus, we converted these query PSI-BLAST alignments into a format readable

by HHalign, ensuring that PPAS and HHalign received the same input.

We compared PPAS with two versions of HHalign: version (3) with secondary struc-

ture scoring based on PSIPRED and DSSP and version (6) that additionally includes

the context score. Bot versions exceeded PPAS’s sensitivity and precision by 14− 17%
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hard set

default Neff low Neff

PPAS HHalign PPAS HHalign
ss ss+ctx ss ss+ctx

sens 0.415 0.471 0.488 0.392 0.425 0.454
prec 0.388 0.439 0.451 0.370 0.401 0.423

Table 5.5.: Sensitivity and precision of 6000 pairwise alignments in the hard benchmark
set. PPAS makes use of predicted and DSSP secondary structure. It is
compared with HHalign with secondary structure and context score.

easier set

default Neff low Neff

PPAS HHalign PPAS HHalign
ss ss+ctx ss ss+ctx

sens 0.607 0.658 0.667 0.599 0.630 0.647
prec 0.585 0.632 0.639 0.581 0.610 0.623

Table 5.6.: Sensitivity and precision of 3000 pairwise alignments in the easier benchmark
set.

on the hard set and 7 − 10% on the easier set. Surprisingly, HHsearch even without

secondary structure information outperformed PPAS (data not shown).

5.4.4. Application to homology modeling

A critical step in homology modeling is the generation of accurate alignments between

the query and template sequences. From the Msa of the query and template sequences

and the template structures, a three dimensional model for the query protein is built.

To test the impact of the improved alignment quality, we built homology models from

the query-template alignments generated by the three tool versions described in the

previous subsection. We used MODELLER (Sali and Blundell, 1993) to construct the

3D structural models, the most widely used tool for homology modeling. MODELLER is

based on a maximum likelihood approach to optimize the fit of the 3D structure to a list

of distance restraint probability functions, extracted from the query-template alignment

in combination with the template structures. The results of the homology modeling

benchmark are shown in Table 5.7.

As expected, the better alignments lead to better homology models: The context score

in HHalign improved models on the hard set on high diversity Msas by 10.2% (default

Neff) and 9.9% (low Neff) over PPAS models and on the easier set by 6.4% (default Neff)
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set Neff PPAS HHalign
ss ss+ctx

hard default 0.458 0.495 0.505 (+2.0%)
medium 0.444 0.468 0.488 (+4.2%)

easier default 0.610 0.644 0.649 (+0.8%)
medium 0.604 0.628 0.640 (+1.9%)

Table 5.7.: Mean TMscores of 3D homology models built based on the pairwise query-
template alignments from the three profile-profile alignment methods. Meth-
ods are tested on the same hard and easy set of query-template protein pairs
as in the previous section. A diverse and medium diversity set of Msas was
built from the query and template sequences using three and two iterations
of PSI-BLAST, respectively.

and 5.9% (low Neff). Again, the more more difficult the query-template alignments, the

larger were the improvements due to the context similarity score.

5.4.5. Remote homology detection

When searching large databases like the PDB, numerous hits are typically found. Yet,

in practice, often only of few of them are of interest. For homology modeling, for

instance, it suffices to detect 1 to 5 suitable homologous templates. Consequently, it is

important to rank homologous proteins on top. We therefore analyze the sensitivity for

remote homology detection using a ROC5 plot. For each query protein, one computes

the ROC5 value, that is the area under the ROC curve up to the fifth false positive.

The ROC5 plot shows the fraction of queries for which the ROC5 value is above the

threshold on the x-axis. An overall number that summarizes the performance on the

ROC5 benchmark is the area under the ROC5 curve.

We performed an all-against-all search with HHsearch in local alignment mode (the

standard setting for template searches in our HHpred structure prediction server) on

the proteins in Stest. We defined members belonging to the same superfamily as true

positives (TPs) and those of different folds as false positives (FPs). Pairs with both

proteins within the four- to eight-bladed β−propellers (SCOP fold IDs b.66 - b.70) were

treated as unknown, and the same for Rossmann-like folds (c.2 − c.5, c.30, c.66, c.78,

c.79, c.111) and all low resolution protein (i.∗), as they are known to be homologous

despite being classified into different folds in SCOP. The ROC5 analysis in Figure 5.3

shows that adding secondary structure (“ss”) increases the (area under the ROC5 curve

(AUC) from 0.583 to 0.609 (4.4%). str and ctx scoring give moderate improvements to
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Figure 5.3.: ROC5 plot: Fraction of query Hmms whose ROC5 value is above the value
on the x-axis. The ROC5 value for a query is the average sensitivity in a
query-specific ROC plot up to the fifth false positive match.

0.625 and 0.641 (2.6% and 5.2% compared to “ss”), respectively.

5.5. Discussion

Context-specific pseudocounts Evolutionary constraints on the amino acids at each

position of a given protein restrict their substitutions. Every single amino acid with its

physico-chemical properties interacts with its environment in a characteristic way. These

interactions highly dependent on the local structural and sequence context. For instance,

a cysteine that is part of a zinc finger requires another cysteine in its neighborhood. In

(Angermüller et al., 2012; Biegert and Söding, 2009), we exploited this concept to learn

(in a generative maximum likelihood approach) a set of 4000 patterns best describing a

diverse and large set of training sequence profiles. Using these, we could enrich sequences

and sequence profiles with context-specific pseudocounts. This approach is implemented

in all hh-suite programs since version 2.0.15. Hence, the improvements observed here

come on top of those already reported for context-specific pseudocounts.

The difference between the previous approach and the one taken here is the degree to

which we demand conservation of patterns. In (Angermüller et al., 2012; Biegert and

Söding, 2009), conservation needed to be just good enough to leave a clear pattern in
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the training profiles built from relatively closely related sequences. Here, in contrast, we

use pairs of remotely homologous proteins and structural alignments, which are more

reliable than Hmm-Hmm alignments at low sequence similarities, to find patterns that

are highly conserved across large evolutionary distances (corresponding to the SCOP

superfamily level).

1D structural properties In contrast to secondary structure similarity scores and similar

scores based on the conservation of 1D structural properties, we take an unsupervised

approach of learning the conserved patterns. Hence we do not need to know what par-

ticular property led to the conservation of the patterns we learn. The resulting context

score is quite complementary to the secondary structure similarity score. Therefore,

while we have not succeeded in capturing all possible conserved patterns in our 32-state

library, we have manifestly learned conserved patterns whose information cannot be

reduced to a 3-state or even 13-state alphabet of local backbone geometries.

Other unsupervised approaches Two approaches also take an unsupervised approach for

learning local patterns to improve alignments. Ohlson et al. (2006) employ a self orga-

nizing map (SOM) to learn sequence profiles. They assigned SOM states to each local

profile window in the two proteins to be aligned. To score aligned positions, they trained

a neural network that took as input a profile-profile score, secondary structure values

and grid coordinates of the aligned SOM states. Improvements due to the SOM states

were small. Ma et al. (2012) and Ma et al. (2013) developed a non-linear extension of

conditional random fields which includes as features the local sequence profile neighbor-

hood. They reported substantial improvements in alignment quality, but unfortunately

we could not compare their method to ours because it was not designed to accept user

defined alignments.

Failed approach 1: discriminative learning We trained the context states library by

maximizing the likelihood in equation (5.1). However, what we really would like to

maximize is the discriminatory effect of the resulting score in eq. (5.32). We therefore

put much effort into maximizing an objective function that equalled the sum of scores

of positive training samples minus the sum of scores for negative training samples. Yet,

this function is no longer a likelihood, precluding use of the EM algorithm. Moreover,

it proved to be very prone to degenerate solutions unless we carefully enforced the

restraint that the probability in the denominator in eq. (5.32) is equal to the average

probability of that context state over all training states, which in turn allowed only

for small learning rates. In addition, a more flexible target function also requires a

significantly larger amount of training data to outplay a generative approach (Ng and

Jordan, 2001; Angermüller et al., 2012).
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Failed approach 2: transitions between context states Our model in section 5.2.2 assumes

that both profile windows to be aligned stem from the same context state. We can drop

this assumption by allowing transitions between context states k and k′ and learning the

matrix of transition probabilities P (k′|k). Then, the score is

Ssmat
cs (Xn,Yn) =

log

(
K∑
k=1

P (zn = k|Xn)

P (zn = k)

K∑
k′=1

P (zn = k′|Yn)P (k′|k)

)
. (5.40)

Inspecting the matrix revealed it being diagonal dominant as expected and some moder-

ate substitution probabilities for similar states. In summary, though, alignment quality

and sensitivity did not improve. We assume that K = 32 states are not yet fine-grained

enough to necessitate substitutions and the effect of allowing transitions might become

more important only for larger K.

Conclusion The new context score helps most in the difficult cases: (1) when little

evolutionary information is contained in the Hmms to be aligned, and (2) when proteins

are only remotely related. In the first case, integrating the sparse evolutionary informa-

tion vertically within an Msa leads to only little noise suppression (i.e. the distinction

of correct from incorrect alignments). Therefore we profit most from pulling together

information horizontally along the Msas. In the second case it makes sense to focus on

the features that are best conserved among remote homologs, which is what our context

score was trained to do.
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