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Zusammenfassung

Das Gebiet der Nichtgleichgewichtsdynamik stark korrelierter Quantensysteme bein-
haltet eine Vielzahl interessanter Fragestellungen, erweist sich dabei allerdings oft-
mals als schwer zugänglich für gängige numerische und analytische mathematische
Methoden. In den letzten Jahren hat sich durch die experimentelle Realisierung
gut kontrollierbarer quantenmechanischer Systeme die Möglichkeit eröffnet, Exper-
imente als Quantensimulatoren für das Verhalten komplexer Vielteilchensysteme zu
benutzen. Ultrakalte Atome in optischen Gittern eignen sich hervorragend als Sim-
ulatoren für simple Festkörpersysteme, da sich sämtliche Parameter der zugrunde
liegenden Hamiltonoperatoren präzise kontrollieren lassen und der Zustand der Sys-
teme mit einer Vielzahl an Messmethoden untersucht werden kann.

In unseren Experimenten realisieren wir Bose-Hubbard Systeme durch ultrakalte
39K Atome in blau verstimmten optischen Gittern. Zusätzliche optische Dipolpoten-
ziale und magnetische Feshbach-Resonanzen erlauben es uns dabei, die Parameter
der Systeme zu jedem Zeitpunkt beliebig zu variieren. Dadurch sind die von uns
erzeugten Systeme in besonderem Maße dazu geeignet, Nichtgleichgewichtseffekte
zu untersuchen. Unser Hauptaugenmerk liegt auf der Untersuchung der Expan-
sionsdynamik wechselwirkender Atome in homogenen Gittern. Wir beginnen un-
sere Experimente mit einem Anfangszustand im tiefen Gitter, der aus lokalisierten
Atomen auf maximal einfach besetzten Gitterplätzen besteht. Durch gleichzeitiges
schnelles Verringern der Gittertiefe und der externen Potenziale werden die Atome
in ein homogenes Gitter entlassen und die Zeitentwicklung ihrer Dichteverteilung
wird durch Absorptionsabbildungen festgehalten.

Es zeigt sich, dass sowohl die Wechselwirkung zwischen den Atomen als auch die
Dimensionalität der Gitter einen starken Einfluss auf die Dynamik haben. In allen
integrablen Grenzfällen des Bose-Hubbard Modells verhalten sich die Atome bal-
listisch und expandieren mit hoher Geschwindigkeit, doch sobald sich das System
außerhalb der integrablen Regime befindet verringert sich die Expansionsgeschwind-
igkeit drastisch. Diese verringerte Geschwindigkeit geht einher mit der Ausbil-
dung charakteristischer bimodaler Dichteverteilungen, die auf eine diffusive Dy-
namik schließen lassen. Für stark wechselwirkende Systeme können wir einen di-
mensionalitätsabhängigen Übergang zwischen ballistischer Dynamik im 1D hard-
core-regime und diffusiver Dynamik im 2D Fall beobachten sowie eine starke Ver-
ringerung der Expansionsgeschwindigkeit, wenn der Anfangszustand des Systems
mehrfach besetzte Gitterplätze enthält. Des Weiteren beobachten wir die Erzeu-
gung solcher Mehrfachbesetzungen nach dem Entlassen der Atome, deren schnelle
Entwicklung auf eine lokale Relaxationsdynamik hin zu quasistationären Werten
deuten lässt.

Als Letztes untersuchen wir die Entwicklung der Quasiimpulsverteilung stark
wechselwirkender expandierender Atome, die laut theoretischer Vorhersagen eine
vorübergehende Quasikondensation zeigen sollen, bei der sich scharfe lokale Maxima



in der Quasiimpulsverteilung bei endlichen Quasiimpulsen bilden. Wir beobachten
die Entstehung nicht-thermischer Quasiimpulsverteilungen die Maxima an den vor-
hergesagten Positionen zeigen. Allerdings sind die von uns beobachteten Maxima
wesentlich breiter als die vorhergesagten und wir diskutieren eine Reihe möglicher
Erklärungen für diese Verbreiterung sowie Vorschläge zur Verbesserung zukünftiger
Experimente.
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Abstract

The field of non-equilibrium dynamics of strongly correlated quantum systems en-
compasses some of the most interesting questions about quantum mechanical be-
havior, but is particularly challenging for established numerical methods. However,
recent advances in the experimental control over certain quantum mechanical sys-
tems have paved the way towards the quantum simulation of dynamics previously
beyond the reach of theoretical investigations. Among the most successful candi-
dates for the implementation of quantum simulators are ultracold atoms in optical
lattices, which combine an excellent control over the Hamiltonians governing their
evolution with a multitude of methods to measure a diverse range of observables.

In our experiments, we use ultracold 39K atoms in blue-detuned optical lattices
to implement Bose-Hubbard systems. Employing optical dipole potentials to ad-
just the external confinement as well as Feshbach resonances to change the inter-
action strength between the atoms, we are able to control all parameters of the
Bose-Hubbard Hamiltonian individually and in real-time, which makes our setup
particularly well suited to investigate the time evolution of non-equilibrium systems
in a wide range of parameter regimes. Our main experimental results are concerned
with the expansion dynamics in homogeneous Hubbard systems. We create initial
states of localized atoms in a deep lattice, described by a product of Fock states with
no more than one atom per lattice site. These atoms are released into homogeneous
lattices by simultaneous quantum quenches in the external confinement as well as
the tunneling coupling along the expansion directions.

We find that both dimensionality and interaction strength crucially influence the
non-equilibrium dynamics. While the atoms expand ballistically in all integrable lim-
its of the Bose-Hubbard model, deviations from these limits dramatically suppress
the expansion and lead to the appearance of almost bimodal cloud shapes, indicating
diffusive dynamics in the center surrounded by ballistic wings. For strongly interact-
ing bosons, we observe a dimensional crossover of the dynamics from ballistic in the
one-dimensional hard-core case to diffusive in two dimensions, as well as a strong
suppression of the expansion dynamics upon introducing higher occupancies into
the initial state. Furthermore, we investigate the fast relaxation of the system after
the sudden quenches and observe a buildup of higher occupancies on a timescale of
less than a tunneling time, indicative of local relaxation to quasi-equilibrium values.

Finally, we also study the evolution of the quasimomentum distribution of expand-
ing 1D hard-core bosons, which is predicted to acquire sharp peaks at finite quasi-
momenta while the system undergoes a transient dynamical quasi-condensation. We
do observe the formation of a non-thermal quasimomentum distribution with peaks
at the correct quasimomenta. However, these peaks are much broader than those
predicted by theory. Thus, we discuss multiple possible effects that could hinder the
formation or detection of quasi-condensation, as well as methods to experimentally
investigate and mitigate these issues.
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Chapter 1

Introduction

Quantum mechanics provides an elegant formalism to describe the behavior of
atoms, electrons and all constituents of matter on atomic length scales. Unfor-
tunately, the beauty and simplicity that is inherent to this theory is in general
accompanied by the absolute unfeasibility of calculating exact time evolutions. As
the Hilbert space of a quantum many-body system grows exponentially with the
number of its constituents, obtaining analytic or numerically exact solutions can
become virtually impossible already for small systems.

One solution to this problem was famously pointed out by Richard P. Feynman
already in 1982 [1]: In order to accurately calculate the properties of a certain
quantum-mechanical system, one can try to find another quantum system that is
both easier to control and experimentally more accessible and use it as a quantum
simulator. The realization of a universal quantum simulator, as envisaged by Feyn-
man, that can be used to emulate arbitrary Hamiltonians, remains challenging [2].
Nevertheless, recent progresses in various areas of experimental quantum physics
have shown that it is indeed possible to recreate certain Hamiltonians with a high
degree of precision and conduct well controlled simulations of quantum dynamics
[3–7].

A promising candidate for the realization of a quantum simulator are ultracold
atoms [4]. The idea is to realize Hubbard models with atoms in an optical lattice
in order to simulate fundamental aspects of the dynamics of solid-state systems.
The groundbreaking experimental realization of the first Bose-Einstein condensates
(BEC), almost 20 years ago [8–10], paved the way for this line of physics. Early ex-
periments confirmed long-predicted properties of BEC, such as macroscopic phases
revealed in matter-wave interference experiments [11, 12], the existence of superflu-
idity and vortices [13–15], and the validity of the predictions of Bogoliubov theory
[16, 17].

In order to reach the regime of strong correlations, where the systems cannot be
described in simple mean field approximations and interactions between the atoms
play a crucial role, it was suggested in 1998 by Jaksch et al. [18] to use optical lattices
to implement the Bose-Hubbard Hamiltonian [19]. In a hallmark experiment in 2002,
this technique was used to observe a quantum phase transition between a superfluid
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Chapter 1 Introduction

(SF) and a Mott insulating (MI) state of bosons in three dimensional optical lattices
[20].

Since then, a multitude of experiments have contributed to the extraordinary
growth of the field of ultracold atoms in optical lattices and extended the tools
available for controlling such systems and detecting their properties. The SF-MI
transition was realized for bosons in lower dimensional systems [21, 22] and MI states
were also observed for two-component Fermi gases in lattices [23, 24]. The flexibility
of optical lattice setups was used to recreate other simple quantum mechanical
models, like the Tonks-Girardeau gas [25, 26], and to extend the Hubbard model
with the addition of superlattices [27–29] or the creation of triangular and hexagonal
lattice geometries [30, 31].

The first observation of Feshbach resonances [32, 33] in ultracold atoms [34] opened
up an additional method of changing the system parameters, by allowing to control
the interaction strength between atoms using homogeneous magnetic fields [35].
In continuous systems of ultracold fermions, this allowed for the first creation of
ultracold molecules [36], Bose-Einstein condensation of molecules [37–39] and the
observation of superfluidity in the crossover between the BEC and the Bardeen-
Cooper-Schrieffer (BCS) regime [40–42]. For bosons in the continuum, Feshbach
resonances have been used to, e.g., create squeezed states [43] or to observe the long
predicted Efimov resonances [44–46]. In Hubbard systems, Feshbach resonances
allow for an independent control over the on-site interaction strength and lead to,
e.g., the realization of tunable Mott Insulator states [47] and Mott insulators at
attractive interactions [48].

A wide array of methods for the detection of many-body states in optical lattices
has been developed over the years. Absorption and phase contrast imaging [49]
can be used to detect in-situ density distributions [50], momentum distributions in
time-of-flight [51] and noise correlations [52, 53]. Other notable methods include
spectroscopic techniques (see, e.g., [21, 54, 55]) or the use of an electron beam as a
scanning microscope [56]. Recently, it has become possible to optically detect atoms
in lattices with single-site resolution [57, 58] and to manipulate many body states
in the lattice on a single atom level [59], which opened up a whole new range of
possible experiments [4].

While a large body of experimental work has been concerned with the investi-
gation of the equilibrium states in optical lattices, fewer studies exist to date that
experimentally investigate the non-equilibrium and relaxation dynamics of ultra-
cold atoms. The non-equilibrium dynamics of closed quantum systems has become
a topic of renewed interest in recent years, due to the experimental realization of
quantum systems with a high degree of controllability [60]. Simple effective models,
such as the Hubbard model [61], were originally derived to qualitatively understand
the fundamental aspects of much more complex solid state systems. Nowadays, such
models can be faithfully recreated in experiments, e.g., with ultracold atoms in opti-
cal lattices [62], and the theoretical analysis of these systems can be complemented
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by directly measuring their equilibrium properties and time evolution. A prominent
example of non-equilibrium dynamics was studied in the context of Tonks-Girardeau
gases in 1D systems [63]. Here, two clouds of atoms were observed to collide repeat-
edly with each other without showing signs of thermalization, a behavior that is
directly related to the integrability of the system. Actual relaxation dynamics were
observed in experiments investigating the evolution of 1D condensates after being
split in two [64], which were later shown to exhibit fast pre-thermalization dynam-
ics [65]. The influence of optical lattice potentials on transport phenomena was
investigated in [66, 67] and recently, optical potentials have been used to study the
transport dynamics of fermions in 2D channels [68, 69]. In Hubbard systems, non-
equilibrium dynamics were studied, e.g., in the form of transport phenomena [70,
71], dynamics after quenches from the MI to the SF regime [72] and the relaxation
of density waves in optical superlattices [73].

On the theoretical side, non-equilibrium dynamics in the Hubbard model have
been studied extensively, especially using time-dependent density-matrix renormalization-
group methods (t-DMRG) [74–76] for 1D systems as well as exact diagonalization
methods for small or integrable systems (see, e.g., [77]). Among many investigated
topics are the dynamics after quantum quenches [78–82] , transport properties [83–
86], and the important role of non-integrability in the ability of a system to thermal-
ize [77, 87–89] (see chapter 3.4 for more details). Despite the broad progress that
has been achieved on the theoretical side, the efficient simulation of non-equilibrium
dynamics remains challenging and stresses the importance of developing novel ap-
proaches, such as quantum simulators.

In this thesis, we show how Hubbard Hamiltonians can be implemented using
ultracold atoms. In particular, we focus on experiments investigating the non-
equilibrium dynamics of ultracold atoms in optical lattices in the context of their
expansion dynamics. The recent advances in controlling and manipulating the inter-
nal states of the atoms and their interactions as well as the possibility to individually
change lattice depths and external potentials provide us with a full control over all
parameters of the system. We present results for expanding fermions and bosons
in varying lattice geometries and with varying interaction strength and observe the
dynamics of density distributions in real space and momentum space as well as
the evolution of higher occupancies in the lattice. Our main findings include the
observation of a crossover between ballistic and diffusive dynamics depending on di-
mensionality and interactions, fast local relaxation of the higher occupancies in the
lattice, and first steps towards the observation of quasi-condensation of expanding
hard-core bosons.

Outline of this Thesis

In chapter 2, we summarize the fundamental properties of atoms in periodic poten-
tials, introduce the Bose-Hubbard Hamiltonian and discuss its equilibrium states in
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Chapter 1 Introduction

different parameter regimes as well as the SF-MI phase transition between them.
Chapter 3 provides a brief introduction into the equilibration dynamics of closed

quantum systems. In the first part, we elaborate on the intricacies that arise when
translating concepts like thermalization, ergodicity and integrability into the quan-
tum regime and discuss recent advances in the theoretical description and experi-
mental observation of relaxation dynamics in quantum systems. The second part
is devoted to relaxation dynamics in the Bose-Hubbard model, focusing on the role
of its integrable limits as well as on theoretical results on its time evolution after
quantum quenches.

In chapter 4, we present the experimental setup used to create Bose-Einstein
condensates of 39K. This includes a brief description of the magneto-optical traps,
sympathetic evaporative cooling of 87Rb and 39K in magnetic quadrupole traps and
optical dipole traps, as well as the available Feshbach resonances to manipulate the
inter- and intra-species interactions. This is followed by a description of the optical
lattice setup in chapter 5, where we discuss the properties of the lattices, methods
to accurately calibrate them, and how to minimize light induced losses. We then
introduce some methods for the detection of density and momentum distributions of
the prepared many-body states and present results on the observation of equilibrium
states in the lattice. These include the SF-MI transition of 39K, driven by the
manipulation of both the tunneling and the interaction strength, and the creation
of thermodynamically stable states with negative absolute temperature.

Chapter 6 sets the scope for the main experimental results of this work, the ex-
pansion dynamics of atoms in homogeneous lattices. We present our scheme for
the preparation of the initial states of the experiments and the expansion dynamics
expected for non-interacting atoms. After describing the experimental optimization
of the homogeneity of our lattice potentials and the desired properties of the initial
state, we introduce the fundamental quantities used in the analysis of our experi-
ments throughout the rest of the thesis and show the agreement between theory and
experiment for the expansion dynamics of non-interacting atoms.

While the main focus of this thesis lies on the expansion dynamics of bosons,
results obtained with a two-component Fermi gas in earlier experiments [71] already
showed some of the key characteristics of interacting atoms expanding in 2D and 3D
homogeneous lattices. These results are presented in chapter 7, where we start by
describing the experiment and investigating the behavior of free fermions, which is
in excellent agreement with theoretical predictions. The main result of this chapter
is the observed onset of diffusive dynamics when interactions are introduced into the
system: These lead to the appearance of characteristic bimodal density distributions
and can be qualitatively reproduced by a semi-classical Boltzmann equation. In
addition, we find the dynamics to be invariant under a change of the sign of the
interaction, a direct consequence of the symmetries of the Hubbard Hamiltonian
and the initial state.

In chapter 8, we present the main experimental results of this thesis, the investi-
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gation of multiple aspects of the expansion dynamics of interacting bosons in homo-
geneous lattices. We find the expansion dynamics to be analogous to the fermionic
results when the atoms move in a 2D lattice geometry. In 1D lattices, however, the
behavior of strongly interacting atoms is markedly different. Due to the approach
of an integrable limit for hard-core bosons in 1D, we find ballistic dynamics when
the interactions are strong and a minimum of the expansion velocity at intermediate
interactions, in very good agreement with t-DMRG calculations. The flexibility of
tuning the tunneling along individual axes allows us to investigate the dynamics in
the crossover between 1D and 2D, and we can observe how breaking the integra-
bility by introducing tunneling along a second axis continuously drives the system
towards diffusive dynamics. Furthermore, we investigate the formation of double
occupancies during the expansion, which happens on a timescale that is consistent
with fast local relaxation in the system and well reproduced by t-DMRG calcula-
tions. Finally, we also investigate the effects of double occupancies introduced into
the initial state, which not only break the integrability of strongly interacting atoms
in 1D but already alter the dynamics significantly even for small interactions.

After being mainly concerned with the evolution of density distributions in chap-
ters 7 and 8, we turn our attention to the evolution of the momentum distribution
of systems of strongly interacting expanding bosons in chapter 9. For appropri-
ate initial conditions, such systems are expected to undergo a quasi condensation
during the expansion [90], signaled by the development of sharp peaks in their mo-
mentum distribution. We do observe the onset of such effects, however, the peaks
remain much broader than predicted by theory. Thus, we devote a large part of
this chapter to the analysis of experimental effects that could limit the formation of
quasi-condensates and our ability to detect them.

In chapter 10, we summarize our results and provide a brief outlook on future
experiments.
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Chapter 2

Ultracold Atoms and the Hubbard
Model

In this chapter, we give a brief introduction into the fundamental properties of
quantum systems in periodic potentials, especially those relevant in the context of
ultracold atoms in optical lattices. As these have already been treated in a multitude
of publications, we try to limit the discussion to the aspects most relevant in the
context of this thesis. Parts of this chapter closely follow the treatments in [91] and
[92], a more thorough introduction to the concepts discussed in this chapter can be
found in, e.g., [62] and references therein.

First, we discuss the properties of single particles in periodic potentials to establish
the concepts of Bloch waves and the band structure, Wannier states, and the tight
binding limit. As quantum mechanics in periodic potentials lies at the heart of
modern solid state theory, these concepts have been established already in the early
days of quantum mechanics and can be found in any modern textbook on solid state
physics (see, e.g., [93, 94]).

We then introduce the Bose-Hubbard Hamiltonian [19, 61], which is particularly
suited to describe the behavior of ultracold atoms in optical lattices [18], and discuss
its superfluid and Mott insulating limits as well as the quantum phase transition
between them in homogeneous and inhomogeneous systems.

2.1 Quantum Mechanics in Periodic Potentials

We will start by discussing a simple realization of a quantum mechanical system in
a periodic potential, limiting ourselves for now to the non-interacting 1D case. For
non-interacting systems, the essential properties are captured in the single-particle
behavior, so we can investigate the Schrödinger equation for a particle of mass m in
a periodic potential

ĤΨ(n)
q (x) = E(n)

q Ψ(n)
q with Ĥ = − ~2

2m

∂2

∂x2
+ V (x), (2.1)

where V (x) has the periodicity d, i.e. V (x) = V (x+ d).

7



Chapter 2 Ultracold Atoms and the Hubbard Model

2.1.1 Bloch Waves and Band Structure

According to the Bloch theorem, the solutions to this Schrödinger equation, the so-
called Bloch waves, can be expressed as the product of a plane wave and a periodic
function u

(n)
q (x) = u

(n)
q (x+ d) as

Ψ(n)
q (x) = eiqxu(n)q (x). (2.2)

Here, we already introduce the two fundamental quantum numbers, the quasimo-
mentum q and the band index n, which will be discussed in more detail below.
Substituting eq. 2.2 into eq. 2.1 results in an eigenvalue problem for the u

(n)
q (x) of

the form

Ĥu(n)q (x) =

(
~2

2m

(
−i

∂

∂x
+ q

)2

+ V (x)

)
u(n)q (x) = E(n)

q u(n)q (x). (2.3)

Both the potential V (x) and the functions u
(n)
q (x) are periodic in x with the same

periodicity d, and they can thus be expanded as discrete Fourier sums

V (x) =
∑
µ

Vµe
i2µkx and u(n)q (x) =

∑
ν

c(n,q)ν ei2νkx, (2.4)

with k = π/d and ν, µ ∈ Z. With these substitutions, the kinetic energy term
becomes

~2

2m

(
−i

∂

∂x
+ q

)2

u(n)q (x) =
∑
ν

~2(q + 2kν)2

2m
c(n,q)ν ei2kνx (2.5)

and the potential energy term becomes

V (x)u(n)q (x) =
∑
µ

∑
ν

Vµe
i2(µ+ν)kxc(n,q)ν . (2.6)

Assuming a sinusoidal periodic potential, typical for optical lattice potentials (see
chapter 5.1), of the form

V (x) = −Vx cos2(kx) = −Vx
4

(
ei2kx + e−i2kx + 2)

)
(2.7)

shows that only three terms of the Fourier sum in eq. 2.4 are nonzero, namely
V−1 = V1 = −Vx/4 and V0 = −Vx/2, and we can rewrite the Schrödinger equation
2.3 as ∑

ν

Hν,ν′ · c(n,q)ν = E(n)
q c(n,q)ν , (2.8)
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2.1 Quantum Mechanics in Periodic Potentials

with

Hν,ν′ =


(q/k + 2ν)2Er for |ν − ν ′| = 0

−Vx/4 for |ν − ν ′| = 1

0 for |ν − ν ′| > 1

(2.9)

where we have set V0 to zero, as it just provides a constant energy offset. Er =
~2k2/(2m) is called the recoil energy, and is a convenient unit when dealing with
optical lattices (see chapter 5). This Hamiltonian is the matrix representation of Ĥ
in eq. 2.3 in the plane wave basis basis {|ν〉}, where 〈x|ν〉 = ei2kνx. While it can
not be solved analytically [95], its eigenstates can easily be calculated numerically
by truncating the Hamiltonian for large |ν|.

The wavefunctions Ψ
(n)
q (x) corresponding to quasimomenta q and q′ which differ

by exactly one reciprocal lattice vector q′ = q + 2k are identical, and we can thus
restrict the analysis of the single particle states in the lattice to quasimomenta
within the first Brillouin zone, q ∈ [−π/d, π/d]. For a certain q, the eigenvalues E

(n)
q

then represent the eigenenergies in the energy bands indicated by the index n. The
corresponding Bloch waves are given by the c

(n,q)
ν through equations 2.4 and 2.2.

2
4
6
8

10
12
14

Vx = 0 Er Vx = 2 Er Vx = 4 Er Vx = 10 Er Vx = 20 Er

E
 (E

r)

q (k)-1 1 q (k)-1 1 q (k)-1 1 q (k)-1 1 q (k)-1 1

Figure 2.1: Structure of the eigenenergy bands of eq. 2.8 for a sinusoidal lattice
with varying depth Vx, reduced to the first Brillouin zone.

In figure 2.1, we plot the band structure for the four lowest bands at varying
lattice depths Vx, calculated by truncating eq. 2.8 at |ν| ≤ 6. For Vx = 0, the band
structure corresponds to the free particle dispersion relation, reduced to the first
Brillouin zone. For increasing Vx, an energy gap opens at the edges of the Brillouin
zone, and the structure of the eigenenergies separates into distinct energy bands.
These bands become narrower in energy for larger Vx and the energy gap between
them increases.

2.1.2 Wannier States

A Bloch wave with a fixed quasimomentum q describes a completely delocalized
single-particle wavefunction, essentially providing a description of the dynamics in

9



Chapter 2 Ultracold Atoms and the Hubbard Model

momentum space. In situations where one wants to describe localized states in a
lattice, it is often more convenient to use a representation in real space, which can
be obtained by a transformation into the so called Wannier basis.

The Wannier function of a particle localized to site i at position xi in the nth

energy band is given by

wn(x− xi) =
1√
N

∑
q

eiqxiΨ(n)
q (x), (2.10)

where the sum runs over all possible quasimomenta q within the first Brillouin zone
and N is the number of lattice sites. For a finite N , the possible quasimomenta q
are discrete and spaced equidistantly over the first Brillouin zone. In the limit of
infinitely large lattices, q becomes continuous and the summation is replaced by an
integral over the first Brillouin zone. A Bloch wave can in turn be represented in
the Wannier basis as

Ψ(n)
q =

1√
N

∑
i

eiqxiwn(x− xi). (2.11)

(a) Wannier functions w1(x) in the lowest
bands of lattices with varying poten-
tial depth Vx. The dashed black line
depicts the shape of the lattice poten-
tial.

(b) Probability amplitudes |w1(x)|2 of the
Wannier functions shown in fig. 2.2a,
limited to x > 0 and truncated to
|w1(x)|2 < 0.01 to highlight the over-
lap with neighboring lattice sites.

Figure 2.2

In the limit of sufficiently deep lattice potentials and low energies, we can restrict
the description of a particle to the lowest band and omit the index n, i.e., w1(x−xi) ≡
w(x − xi). In figure 2.2a, we show the Wannier functions of the lowest band for
varying lattice depth Vx. The x-axis is given in units of the lattice constant d and the
dashed black line shows the shape of the lattice potential. For small Vx, the Wannier
functions extend well into the potential barriers between the lattice wells. As Vx is
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2.1 Quantum Mechanics in Periodic Potentials

increased, the peak around x = 0 becomes narrower and the Wannier state becomes
more localized to a single lattice site, as it becomes energetically unfavorable to
have a large overlap with the potential barriers. This effect is highlighted in figure
2.2b, which shows the probability amplitude |w1(x)|2 for the Wannier functions of
fig. 2.2a. Here, we can clearly see how the side lobes of the Wannier functions are
strongly suppressed for deep lattices.

Representing a single particle wave function Ψ(x) in the Wannier basis in the
lowest band,

Ψ(x) =
∑
i

ciw(x− id), (2.12)

we can rewrite the Hamiltonian in second quantization as

Ĥ = −
∑
i,j

Ji,j ĉ
†
i ĉj +

∑
i

Eiĉ
†
i ĉi, (2.13)

where ĉ†i and ĉi are the creation and annihilation operators for a particle in a Wannier
function on site i, Ei is the on-site energy of a single particle on site i, given by the
lattice potential, and Ji,j is the tunneling matrix element between sites i and j. It
can be calculated by determining the wavefunction overlap between the Wannier
functions on site i and site j as

Ji,j = −
∫ ∞
−∞

w∗(x− xi)
(
− ~2

2m

∂2

∂x2
+ V (x)

)
w(x− xj)dx. (2.14)

In the lowest energy band, the value of the nearest neighbor tunneling matrix
element J = Ji,i+1 is directly related to the band width of the lowest band, given by

J = (E
(1)
q=π/d − E

(1)
q=0)/4 [96].

2.1.3 The Tight-Binding Limit

As it can be seen from the Wannier functions shown in figure 2.2b, for sufficiently
deep lattices, the overlap of a Wannier function on a site i with that on a site j
becomes negligible for |i− j| > 1. In this case, we can assume all Ji,j to vanish for
|i− j| > 1 and restrict the description of the system to nearest neighbor tunneling.
This approximation is called the tight-binding limit, and is generally assumed to be
valid for lattice depths exceeding 5Er [18]. The Hamiltonian of eq. 2.13 can then
be further simplified by noting that J = Ji,i+1 is independent of i, and the on-site
energy Ei is constant and can be neglected, resulting in

Ĥ = −J
∑
〈i,j〉

ĉ†i ĉj, (2.15)
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Chapter 2 Ultracold Atoms and the Hubbard Model

where the summation index 〈i, j〉 runs over all nearest neighbor sites.
By applying this Hamiltonian to the Bloch waves of eq. 2.11, the single particle

dispersion relation in the tight-binding can be determined as

εq = −2J cos(qd). (2.16)

Thus, in the lowest band, the kinetic energy of a single particle is bounded to values
between −2J and 2J . Furthermore, the cosine form of the dispersion relation leads
to a characteristic shape of the group velocity of a single particle

vg =
1

~
∂εq
∂q

=
2d

τ
sin (qd), (2.17)

where τ = ~/J . A particle has the maximum absolute group velocity 2d/τ at mo-
menta q = ±π/(2d) and a group velocity of zero at q = 0 as well as at q = ±π/d.
These simple relations are sufficient to predict the dynamics of the density distribu-
tion of non-interacting atoms evolving freely in homogeneous lattice, which we will
investigate in more detail in chapter 6 and can easily be extended to incorporate
external potentials (see chapter 6.3.1 and 9.5.3).

2.2 The Bose-Hubbard Model

The Hubbard Hamiltonian was originally derived by J. Hubbard in its fermionic
form as a simple approximation for the description of electrons in narrow bands
[61]. The implementation of a corresponding bosonic version, the Bose-Hubbard
model [19], using ultracold bosonic atoms in optical lattices was proposed in 1998
by Jaksch et. al. [18]. This proposal was realized in [20] and has laid the foundation
to an ever growing field of research, the simulation of condensed matter systems
with ultracold atoms in optical lattices [62].

The Bose-Hubbard Hamiltonian for atoms in the lowest band of an optical lattice
can be written as

H = −J
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

Vext(ri)n̂i. (2.18)

Here, b̂†i and b̂i are the creation and annihilation operators for a boson on site i,

obeying the usual bosonic commutation relation [b̂i, b̂
†
j] = δi,j, and n̂i = b̂†i b̂i is the

number operator on site i. In the first term, which describes the tunneling between
lattice sites, the sum over 〈i, j〉 runs over all nearest neighboring sites and J is the
tunneling coupling between the lattice sites. The second term describes the on-site
interaction, with the interaction strength U , where the sum runs over all lattice sites.
The third term includes effects of external global potentials Vext(ri) that depend on
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2.2 The Bose-Hubbard Model

the position ri of the lattice sites.

The tunneling matrix element is determined from the overlap of the Wannier func-
tions on adjacent sites as given in eq. 2.14. The on-site interaction U is calculated
from the interaction energy of two Wannier functions on the same site as

U =
4π~as
m

∫ ∞
−∞
|w1(x)|4 dx, (2.19)

where as is the s-wave scattering length. Note that this is only an approximation, as
the presence of more than one atom on a lattice site modifies the shape of the wave-
function and can lead to deviations, especially at large as and for large occupation
numbers [97].

2.2.1 Phases of the Bose-Hubbard Model

For simplicity, we will first investigate the Bose-Hubbard Hamiltonian in a 3D lat-
tice without external global potentials, which only consists of the tunneling and
interaction terms

Ĥ = −J
∑
〈i,j〉

b̂†i b̂j +
U

2

L∑
i=1

n̂i(n̂i − 1). (2.20)

The behavior of a system described by this Hamiltonian can be characterized by
three parameters, the tunneling matrix element J , the on-site interaction U and the
average filling factor n which is given by the number of atoms N and the number of
available lattice sites L as n = N/L.

The Superfluid U/J→ 0 Limit

In the limit of large tunneling J and vanishing interactions U , the tunneling term
in the Bose-Hubbard Hamiltonian dominates and the atoms delocalize over the
complete lattice. The ground state of this system is a superfluid state where all
atoms occupy the lowest energy mode of q = 0. For N particles on L lattice sites,
it is given by

|ΨSF〉 =

(
1√
L

L∑
i=1

b̂†i

)N

|0〉 . (2.21)

In the limit of large lattices and atom numbers, this state can be approximated by
a product of coherent states [62]

|ΨSF〉 ≈
L∏
i=1

|αi〉 , (2.22)
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Chapter 2 Ultracold Atoms and the Hubbard Model

where the coherent states are the eigenstates of the destruction operator

b̂i |αi〉 = αi |αi〉 (2.23)

and can be expressed as a superposition of Fock states |n〉i [98]

|αi〉 = e−|αi|
2/2

∞∑
n=0

αni√
n!
|n〉i . (2.24)

The average atom number on a site i for this state is given by n = 〈n̂i〉 = N/L
and the atom number fluctuations follow a Poissonian statistics, with a variance of
σ2 = n.

The Mott Insulating U/J→∞ Limit

In the limit of strong interactions, small tunneling, and commensurate fillings, i.e.
n ∈ N, the ground state of the system is called Mott insulating, and behaves very
differently from the superfluid state discussed above. The tunneling term in the
Hamiltonian can be neglected and the atoms localize to individual lattice sites. In-
stead of representing the system using coherent states, the many-body wavefunction
can now be expressed in terms of local Fock states

|ΨF〉 =
∏
i

1√
ηi!

(
b̂†i

)ηi
|0〉 , (2.25)

where the ηi give the occupation number, or number of atoms, on an individual
lattice site i. In the Mott insulating regime, the mean occupation is again 〈ni〉 = n,
but the fluctuations completely vanish, σ2 = 0, and ηi = n for all sites i.

Phase Transitions and External Potentials

For a system at finite U/J and at n = 1, the superfluid limit is connected to the
Mott insulating limit via a quantum phase transition that occurs at a critical ratio
(U/J)c. While the simple wavefunctions mentioned above are only valid in the
limits U/J = 0 and U/J →∞, the characteristics of these phases persist up to the
transition point. As this transition is driven by quantum fluctuations, it even occurs
at T = 0, and the Bose-Hubbard model provides one of the simplest implementations
of a system which exhibits a quantum phase transition that can not be mapped onto
previously studied classical phase transitions [99].

In a mean field approximation, the quantum critical point (U/J)c is determined
to be [19, 100–102]

(U/J)c = 5.8z, (2.26)
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where z is the number of nearest neighbors, depending on the lattice geometry.
However, in low dimensional systems, the actual value for (U/J)c differs signifi-
cantly from this prediction. More precise values have been determined using nu-
merical techniques like exact diagonalization, density-matrix renormalization group
(DMRG) methods and Quantum Monte Carlo simulations. For a mean atom num-
ber of n = 1, (U/J)c ≈ 3.4 in 1D [103–105], (U/J)c ≈ 16.9 in 2D [106], and in 3D,
(U/J)c ≈ 29.4 [107].

Note that technically, the phase transition from a superfluid to a Mott insulating
state in homogeneous systems only appears when n ∈ N. As an example, take a
mean density of n + ε, where ε � 1. Even in the limit of U/J → ∞, the small
fraction of additional atoms will reside on top of a n = 1 Mott insulator and form
a superfluid, lowering its kinetic energy by delocalizing over many lattice sites [62].
Thus, The complete system can never be fully Mott insulating. This situation,
however, is usually mitigated in experimental realizations by the presence of an
overall harmonic confinement.

We can write the Bose-Hubbard model with the inclusion of an external potential
as

H = −J
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

(εi − µ0)n̂i. (2.27)

Here, we have introduced the chemical potential µ0, which can be used to control the
number of atoms in the system in a grand-canonical ensemble. The single particle
energy εi is given by the external potential Vext(ri), where ri is the position of site i.
In practice, the density distribution of an inhomogeneous system can be calculated
using a local density approximation, where the density on site i is determined from
the local chemical potential µ = µ0−εi. In a mean field approximation, the boundary
between the superfluid and the Mott insulating regime is given by [102](

J

U

)
c

=
1

z

(n− µ
U

)(1− n+ µ
U

)

1 + µ
U

. (2.28)

On the left side of figure 2.3, we show the behavior of (J/U)c with changing µ.
The shaded areas at small J/U are the Mott insulating regimes with the respective
atom number n per site indicated, while the area at larger J/U shows the superfluid
regime. A system with a given J/U will exhibit local chemical potentials µ that lie
on vertical lines in the plot up to a maximum value µmax

For a system at small J/U where a vertical line does not intersect the Mott
insulating lobes, the density of the system varies slowly over its extension. At inter-
mediate J/U (dashed line b), however, the system is composed of a Mott insulating
shell structure, where the shells are separated by superfluid regions. A visualiza-
tion of such a density distribution for a 2D system is shown on the right side of
fig. 2.3 (label b). Such wedding cake structures of regions that are flat in density,
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Figure 2.3: Left: Phase Diagram of the Bose-Hubbard model with an external
potential. The solid black line is the boundary between the superfluid
and the Mott insulating phase. Right: Schematic visualization of the
density distribution in a 2D lattice with harmonic confinement and
J/U as indicated by the dashed lines in the phase diagram.

interspersed by superfluid regions, occur as soon as J/U is smaller than the critical
(J/U)c at n = 1. For very small J/U (line a), the superfluid regions become smaller
and smaller, leading to steep transitions between regions with integer numbers of n,
as shown in the center of fig. 2.3. The formation of such shell structures was first
observed in [108] and has recently been imaged directly, using fluorescence imaging
with single site resolution [58, 109]. In chapter 5.3.1, we present the observation of
the superfluid to Mott insulator transition using 39K in an optical lattice, where we
can tune U and J individually.
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Chapter 3

Integrability and Thermalization in
Closed Quantum Systems

Statistical mechanics is one of the pillars of modern physics. It demonstrates beau-
tifully how the microscopic properties of the constituents of large systems are intrin-
sically related to macroscopically observable quantities like temperature, pressure
etc. The extension of the classical statistical mechanics to the quantum regime,
where the prediction of such extraordinary states as Bose-Einstein condensates re-
sults from first principles about the exchange characteristics of individual atoms,
proved equally fruitful in connecting microscopic behavior with macroscopic observ-
ables.

At the heart of statistical mechanics lies the postulate of equal a priori probabil-
ities, which states that a macroscopic system in thermodynamic equilibrium can be
found with equal probability in any microscopic state that satisfies the macroscopic
conditions of the system. For a closed system with a fixed total energy between
E and E + δE, the macroscopic behavior can be determined by averaging over the
microcanonical ensemble that includes all microscopic states with an energy in this
range. For the description of a system that is weakly coupled to a bath with which it
can exchange energy, the canonical ensemble is used in which the temperature of the
system in thermal equilibrium is determined by the temperature of the bath. If the
system can exchange energy as well as particles with the bath, it can be described
by a grand-canonical ensemble with a temperature T and a chemical potential µ
that determines the average number of particles in the system.

These ensembles can not always be applied directly to quantum-mechanical sys-
tems. For a closed system, there is no exchange with a bath and thus only the
microcanonical ensemble can be suitable to describe the full system. Especially
after a quantum quench in the parameters of the Hamiltonian, however, a quantum-
mechanical system could be in a superposition of multiple eigenstates with a large
variation of eigenenergies, and the microcanonical ensemble could not be applied.
When investigating the thermalization of closed systems, one approach is to parti-
tion the system into small subsystems, which can exchange energy and particles. In
thermal equilibrium, all other subsystems then act as a bath for the investigated sub-
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system, however, the coupling in this case is much stronger than the weak coupling
usually assumed in statistical mechanics.

The validity of the postulate of equal a priori probabilities is the foundation of the
description of systems in terms of these ensembles, and the most fundamental ques-
tion regarding the thermodynamical behavior of closed systems is thus: under what
conditions does a system that starts in a given initial state relax towards thermody-
namic equilibrium, where the postulate of equal a priori probabilities holds and its
macroscopic properties are defined by the predictions of statistical mechanics? And
if these conditions are not met, will the system still show some form of relaxation
dynamics and what defines the final state of a system in which the postulate does
not hold?

In this chapter, we try to elaborate on these questions and on how they are rel-
evant in our experimental situation. First, we will briefly discuss the question of
thermalization in classical physics. We then turn to quantum mechanical systems
and elaborate on the notion of integrability, ergodicity, and the meaning of thermal-
ization in terms of the eigenstate thermalization hypothesis (ETH) [110, 111]. For
integrable systems, we also introduce the description of relaxed states in terms of the
generalized Gibbs ensemble (GGE) [87]. After discussing recent advances in the the-
oretical description and experimental observation of relaxation and thermalization
in closed quantum systems in general, we focus on the Bose-Hubbard Hamiltonian
and discuss its integrable and non-integrable parameter regimes as well as recent
results on its relaxation dynamics.

3.1 Classical Thermalization

The key to understanding thermalization in isolated classical systems lies in the
effects that cause a system to behave ergodically. Ergodicity implies that a closed
system of particles with a given total energy E will, over time, explore the full phase
space on a fixed energy surface. For sufficiently long times, the probabilities of the
system to be in any microscopic state at a given energy will then become equal and
general thermodynamic relations can be derived.

As a simple gedankenexperiment, one can think of a large number N of particles
released into a box of volume V with perfectly reflecting walls. All these particles
start with the same initial velocity vin but at different coordinates rin, such that
the total energy of this system is given by E = Nm/2|vin|2, where m is the mass of
the particles. Let us first assume these particles to be non-interacting. In this case,
there is no possibility of exchanging momentum with other particles and each particle
will retain the absolute value of its velocity throughout all times. Accordingly, the
multitude of allowed states that have the same E but varying individual velocities
is not accessible during the evolution and the assumption of equal probabilities is
invalid, leading to a distinctively non-thermal behavior of this system.
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If we now add interactions to the system, e.g., in the form of a hard sphere
potential with radius a

Vint(ri,j) =

{
∞ for ri,j ≤ a

0 for ri,j > a
, (3.1)

where ri,j is the distance between two particles, the dynamics change drastically. The
particles can now collide with each other and redistribute their momentum. This
system is known to be fully chaotic and will explore the full phase space on a constant
energy surface for any value of E [111, 112]. Note that, if the initial conditions are
perfectly well defined, two separate realizations of such a gedankenexperiment will in
principle still result in the exact same state after a fixed evolution time. If, however,
we allow for a small spread in the initial conditions or measure at different times, the
system will be equally likely in any possible microstate with energy E and fulfill the
postuale of equal a priori probabilities. After a short evolution time, independently
of its initial state, the system will be in full agreement with the predictions of
classical statistical mechanics.

3.1.1 Integrability and Chaos

The two examples above highlight the central question about the ability of a classical
system to thermalize: Under what conditions does a system behave ergodically?

Clearly, a system of non-interacting particles, as discussed above, does not behave
ergodically. This is related to the notion of integrability of a system in the sense
of Liouville (see, e.g., [113]). If a system with s degrees of freedom, occupying
a 2s-dimensional phase-space, possesses s independent integrals of motion, it is
considered integrable. The solutions of the equations of motion then display a
periodic motion in phase space, rendering the system non-ergodic. Such a system
will thus only explore a very small region of the available phase-space and will not
thermalize.

Conversely, for a system that exhibits full dynamical chaos, the motion on any
constant energy surface in phase space is ergodic (see, e.g., [114]). This is the case
for the interacting system described above and in general also for most interacting
many-body systems. However, for a given system, ergodicity is not at all trivial to
prove.

The mere presence of interactions or, more generally, a nonlinearity in a system
is not sufficient to result in ergodic behavior. This was famously observed in the
Fermi-Pasta-Ulam experiment [115–117], which led to the realization that a lot
of non-linear equations can be solved exactly and that ergodic behavior can even
depend on the initial conditions (see [118] and references therein). Another notable
contribution to the limitations of establishing ergodicity for a classical system comes
from the theory of Kolmogorov, Arnold, and Moser [119–121] (KAM theory), which
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shows that many-body systems that are only weakly disturbed by a nonlinearity will
exhibit quasi-periodic tori in phase space and thus in general behave non-ergodic.

A thorough treatment of the theoretical work on classical ergodicity and thermal-
ization is beyond the scope of this thesis. The examples above shall mainly serve
as a reminder that the connection between the microscopic dynamics of a system
and its thermal behavior still pose open problems even in the classical regime and
remain a topic of active research (see, e.g., [122]).

3.2 Thermalization in Closed Quantum Systems

3.2.1 Quantum Ergodicity

Extending the notion of ergodicity to the quantum mechanical case is not at all
straightforward. A first attempt was given in von Neumann’s seminal paper on
quantum ergodicity [123], restated in a more modern notation in [124]:

For a Hamiltonian H with eigenenergies Eα and corresponding eigenvectors |Φα〉,
the micro-canonical density matrix ρ̂mc at energy E is defined as

ρ̂mc =
1

D

∑
α:Eα∈[E,E+δE]

|Φα〉 〈Φα| , (3.2)

where D is the number of eigenstates with energies between E and E + δE. Let
|Ψ0〉 be a generic initial state sufficiently narrow in energy that can be written as

|Ψ0〉 =
∑

α:Eα∈[E,E+δE]

cα |Φα〉 . (3.3)

The closest analogon to classical ergodicity would now be to require that the time
average over the density matrix of the time evolved state |Ψt〉 fulfills

|Ψt〉 〈Ψt| = ρ̂mc. (3.4)

However, assuming that the Hamiltonian is non-degenerate, we can easily calculate
the time average as

|Ψt〉 〈Ψt| =
∑
α,β

e(−i(Eα−Eβ)t/~)cαc
∗
β |Φα〉 〈Φβ| =

∑
α

|cα|2 |Φα〉 〈Φα| , (3.5)

with α, β : Eα, Eβ ∈ [E,E+δE]. Thus, if ergodicity was defined by eq. 3.4, it would
be required that |cα|2 = 1/D for all α, which is only satisfied for a very specific class
of initial states and thus almost never realized. Von Neumann already realized that,
in order to define ergodicity as a foundation of quantum statistical mechanics, one
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can not look at the evolution of the state itself but rather at the observables of
interest.

A definition of quantum ergodicity that is nowadays widely agreed upon [60, 77,
110, 125] was suggested in [126] as

〈〈Ψt|A|Ψt〉〉t =
1

D

∑
α

〈Φα|A|Φα〉 ≡ 〈A〉mc (E0). (3.6)

In words, a system is ergodic in an observable A, if the time average of the expec-
tation value of A is equal to its microcanonical ensemble average. This raises the
question what kind of observables are relevant for the characterization of systems as
ergodic. Obviously, observables like the occupation of individual energy eigenstates
are stationary in closed quantum systems and will never show thermalization, so it
would be certainly too much to require eq. 3.6 to hold for all possible observables.
In general, local observables like densities or short range correlation functions and
macroscopic observables that are based on local observables, such as the magneti-
zation of spin chains or global density distributions of cold atoms are investigated
in the context of thermalization in closed quantum systems. Such observables are
commonly referred to as natural observables of the system.

From an experimentalist’s point of view, it is reasonable to consider those observ-
ables that can be directly measured. In ultracold quantum gases experiments, these
are predominantly density distributions n(r), but also the behavior of short range
correlations has been studied extensively [73, 78, 79].

3.2.2 Thermodynamic Universality

Assuming that we are looking at an observable A that does thermalize, expressed
in the energy eigenbasis of the systems Hamiltonian, we can directly see from eqns.
3.5 and 3.6 that ∑

α

|cα|2Aα,α =
1

D

∑
α

Eα∈[E,E+δE]

Aα,α. (3.7)

This is a central equation in the discussion of thermodynamical behavior of quan-
tum mechanical systems as it directly encompasses the thermodynamical universal-
ity: The left hand side depends directly on the microscopic details of the individual
quantum states via the coefficients cα while the right hand side depends only on the
total energy E of the system.

For a quantum system obeying eq. 3.7, there are three possible explanations for
this universality [77]. The first two explanations rely on assumptions about the typ-
ical initial states: First, for physically interesting initial conditions, the fluctuations
of the Aα,α as well as those of the |cα|2 for different eigenstates are large but uncor-
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related. Any initial state then gives an unbiased sampling over the distribution of
the Aα,α, which leads to eq. 3.7. Second, the eigenstate occupation numbers |cα|2
hardly fluctuate at all for physically interesting initial states (that are sufficiently
narrow in energy). This immediately gives eq. 3.7 but requires that all |cα|2 ≈ 1/D,
which is a rather strong constraint on the possible initial states. While thermody-
namic universality of systems can be explained under the two assumptions above,
both rely on properties of the |cα|2 in non-integrable systems. Thus, thermalization
would depend on the choice of the initial state, and it would always be possible to
engineer special states that do not thermalize.

The third possible explanation circumvents this problem. It is based on assump-
tions about the behavior of the eigenstate expectation values Aα,α as a function of
energy Eα and is commonly referred to as the eigenstate thermalization hypothesis
(ETH) [111].

3.2.3 Eigenstate Thermalization Hypothesis

It was first suggested in [126] that in systems which show thermalization, certain
observables expressed in the eigenbasis of the Hamiltonian behave as if they were
Gaussian random variables. This was elaborated on by Deutsch and Srednicki [110,
111], resulting in the eigenstate thermalization hypothesis which can be expressed in
the following way: In a large interacting many-body system, the expectation values
of a natural observable on an eigenstate |Φα〉, Aα,α, are given by a smooth function
of the eigenenergy Eα, and are thus essentially constant in the narrow energy range
[E,E+δE]. In this case, eq. 3.7 holds for all initial states that are narrow in energy.

The ETH can also be expressed as

Aα,α = 〈A〉mc , (3.8)

which highlights a remarkable property of systems that adhere to the ETH: The
knowledge of a single eigenstate of the system is sufficient to compute the micro-
canonical averages of observables.

There is no general theoretical argument for the validity of the ETH, but for
specific systems, it has been shown to hold. In [110], it was shown to be valid for
an integrable Hamiltonian perturbed by a real, symmetric matrix with elements
chosen from a random Gaussian ensemble. Furthermore, it was shown to be valid
for certain quantum systems with chaotic classical counterparts [111, 127]. A very
thorough analysis of the ETH is given in [77] for a system of bosons released into
a 2D lattice and compared to an integrable system of hard-core bosons on a 1D
lattice, where the ETH is not satisfied. In that work, it was also shown that the
distribution of the |cα|2 in the investigated system fluctuates strongly, ruling out
the assumption that |cα|2 ≈ 1/D. These examples, combined with other results (see
[77] and references therein) make a strong case for the assumption that the ETH is
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the fundamental mechanism for thermalization in general isolated quantum systems,
however, a formal proof remains elusive.

3.3 Quantum Integrability

After discussing thermalization in the context of closed quantum systems, a re-
maining question is: Under what circumstances can we expect quantum mechanical
systems to behave ergodically and show such thermalization? As in the classical
case, this question involves the concept of integrability, which, in the quantum me-
chanical case, can not be defined as straightforwardly as its classical counterpart.
Any quantum-mechanical system in a finite-dimensional Hilbert space that is gov-
erned by an arbitrary Hermitian Hamiltonian can easily be shown to fulfill criteria
rather similar to those demanded for classical integrability. Even though it might be
computationally unfeasible, any Hermitian Hamiltonian can be diagonalized, lead-
ing to a set of orthonormal eigenvectors |Φα〉 to energy eigenvalues Eα. Every initial
state of the system can be expressed in this eigenbasis as

|Ψin〉 =
∑
α

cα |Φα〉 . (3.9)

From the Schrödinger equation

i~
d

dt
|Φα〉 = H |Φα〉 = Eα |Φα〉 (3.10)

follows the simple time evolution for the state |Ψ(t)〉, starting from the initial state
|Ψin〉, as

|Ψ(t)〉 =
∑
α

cα exp

(
− i
~
Eα

)
Φα. (3.11)

For a Hamiltonian that is defined on a Hilbert space of dimension DH , we can
thus immediately find a set of DH conserved quantities, e.g., the set of projectors
onto the eigenstates Pα = |Φα〉 〈Φα|. Following this simple argument, one would
have to consider every quantum mechanical system that is governed by a Hermitian
Hamiltonian as being fully integrable. This is not a practical point of view, as
we certainly expect strong differences in the behavior of, e.g., non-interacting and
interacting quantum systems.

The above argument, however, can be incorporated into a second definition of
integrability by requiring that the system can be solved exactly and the full set
of eigenstates can indeed be constructed explicitly [128]. Further definitions of
quantum integrability that have been discussed in the literature rely on demanding
that the scattering supported by a system is non-diffractive [129] or that its energy
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level statistics is Poissonian [130]. An overview over various attempts at defining
quantum integrability and the problems associated with them can be found in [128],
a full discussion of the advantages and disadvantages of certain definitions is beyond
the scope of this thesis. In general, there is no universally agreed upon way of
defining quantum integrability, and definitions are usually suited to specific kinds of
problems.

For our purposes, it shall suffice to note that all free theories can be considered
integrable. In these cases, it is usually trivial to achieve exact diagonalization of
the Hamiltonian via a Fourier transformation and the integrals of motion can be
directly constructed from the operators representing the occupation of the Fourier
modes [128]. In general, integrable models are characterized by the existence of
many non-trivial integrals of motion that significantly influence their dynamics.

A notable example of an integrable interacting system are hard-core bosons in 1D
optical lattices. As discussed below (sect. 3.4.2), they can be mapped onto a system
of free fermions, which is completely integrable. Consequently, the system also
possesses many non-trivial integrals of motion and will not show thermalization.
Relaxation dynamics in this system can nevertheless be observed, but they will
generally result in non-thermal equilibration states (see sect. 3.5.1).

3.3.1 Equilibrium States of Integrable Quantum Systems

Concerning integrable systems that possess many non-trivial integrals of motion, a
general question to ask is whether such systems will show some kind of equilibration
during the evolution from a given initial state that is not an eigenstate of the Hamil-
tonian. If so, the next question is what kind of equilibrium state will be reached, as
it generally will not be the state expected from the predictions of typical statistical
mechanics for ergodic systems.

An intuition of how relaxation dynamics can arise in integrable systems comes
from the investigation of quantum quenches, sudden changes to a parameter of the
Hamiltonian, e.g., the interaction strength (see, e.g., [78, 131, 132]). One can typi-
cally observe relaxation dynamics in these systems, even when they are completely
integrable in the sense discussed above, but the resulting states can in general not be
described by a microcanonical ensemble. The key to understanding such dynamics
lies in considering only small subsystems of a large quantum system after a quench.
For such small subsystems, one can then regard the rest of a system as a reservoir
that allows the subsystems to locally equilibrate with respect to each other [133].
In contrast to usual statistical mechanics with a weak coupling, the reservoirs here
are strongly coupled to the system. In order to predict the final states after such
relaxation, the constraints imposed by the integrability of the system have to be
taken into account.

A conjecture about the equilibration states of generic quantum systems con-
strained by a given set of integrals of motion {Îm} is that, during an evolution
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starting in a specific initial state, the system should maximize its entropy S while
obeying the constraints. This results in a many-body density matrix of the form

ρ̂ = Z−1 exp

(
−
∑
m

λmÎm

)
, (3.12)

first introduced in [134], which is now mostly referred to as the generalized Gibbs
ensemble (GGE) [87]. Here, the λm are the Lagrange multipliers, their values are
determined by the initial 〈Im〉.

In [87], it was shown that the momentum distribution of the relaxed state of
a system of hard-core bosons in the 1D Hubbard model can be described by the
GGE. The validity of the GGE in this case was shown to be the consequence of a
generalized eigenstate thermalization hypothesis [135].

While there is no formal proof that establishes the validity of the GGE in general
for integrable systems, recent studies reveal a broad range of systems in which the
predictions of the GGE are valid: the GGE was shown to be valid for, e.g., local
observables in free bosonic and fermionic theories [133, 136], local observables after
a magnetic field quench in the transverse field Ising chain [137], simple correlation
functions after an interaction quench in the Luttinger model [138], momentum dis-
tribution functions at small momenta in the Lieb-Liniger model [139], and many
more (see, e.g. , [140–142] and references in [143])

3.3.2 Breaking of Integrability and Relaxation Dynamics

As a general statement about the presence of full thermalization in closed quantum
systems, we can conclude that it does not occur in fully integrable systems, while
most macroscopic many-body systems with interactions can be expected to show
thermalization and are likely to agree with the ETH. A remaining question that has
not found a definitive answer to date is, how far from integrability a system needs
to be in order to exhibit thermal behavior. This is closely related to a second open
question regarding the time-scales on which a system relaxes towards an equilibrium
state, be it thermal or determined by the generalized Gibbs ensemble.

Multiple recent publications deal with these question in various systems. In [78],
the behavior of 1D and 2D Hubbard systems after a quench from the superfluid to
the Mott insulating phase is investigated theoretically, showing a strong dependence
of the equilibration on the final interaction strengths. An interaction quench in
Hubbard models is also investigated in [81, 82], showing that the relaxation exhibits a
prethermalization on a fast time scale followed by a slow relaxation towards thermal
equilibrium. Ref. [144] shows the relaxation of different initial states of fermions on
1D lattices with next-nearest neighbor interaction towards a common non-thermal
final state. In [88], the effect of weakly breaking the integrability of a system of hard-
core bosons on a 1D lattice is investigated by introducing a next-nearest neighbor

25



Chapter 3 Integrability and Thermalization in Closed Quantum Systems

tunneling and interaction. It is shown that the system is continuously driven further
away from thermodynamic predictions, the closer it comes to being integrable.

On the experimental side, there has been a lot of progress using ultracold atoms
to investigate the thermalization behavior of quantum systems. The absence of
thermalization in integrable systems is convincingly demonstrated in the “Quantum
Newtons Cradle” experiment [63], where collisions of two clouds of bosons close to
the Tonks-Girardeau regime (see sect. 3.4.2) where observed on long time scales,
with no indication of thermalization.

Recently, an experiment investigating the relaxation of density waves in optical
lattices that was suggested in [79, 80] was realized using 87Rb in an optical super-
lattice [73]. The relaxation is observed for the quasi-local densities and currents,
which are shown to retain information about the initial state of the system, as well
as nearest neighbor correlators, which relax to values compatible with thermody-
namical predictions.

Another line of experiments [64, 65, 145] investigates relaxation dynamics by
coherently splitting a 1D Bose gas into two phase coherent gases and then observing
the decay of phase coherence between the two clouds over time. The fast decay
observed in [64] for completely decoupled 1D gases was shown in [65] to be an
instance of prethermalization dynamics. The thermal correlations induced during
this prethermalization stage were shown to emerge locally and spread in a light-cone
like fashion throughout the system [145].

There are numerous other experiments using ultracold gases as well as solid state
systems to investigate the non-equilibrium dynamics and thermalization properties
of closed quantum systems. For a more detailed overview over a wide range of
experiments, please refer to [60].

3.4 Integrability in the Bose-Hubbard Hamiltonian

The system we are mainly concerned with in this thesis is that of bosons in homo-
geneous optical lattices. As discussed in chapter 2, in the absence of external global
potentials, this system can be described by the Bose-Hubbard Hamiltonian of the
form

H = −J
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1), (3.13)

with tunneling J , bosonic creation and annihilation operators b̂†i and b̂i on site i,

on-site interaction U and the on-site number operators n̂i = b̂†i b̂i. While it is in
general non-integrable [62], two integrable limits exist, namely the non-interacting
limit and the limit of infinitely strong interactions in 1D.

26



3.4 Integrability in the Bose-Hubbard Hamiltonian

3.4.1 The Non-Interacting Limit

In the non-interacting limit, the term describing the interaction energy in the sys-
tem vanishes and we are left with the Bose-Hubbard Hamiltonian for free particles
in a lattice. As discussed, this Hamiltonian can be easily diagonalized using a ba-
sis transformation into Fourier space, which results in an eigenstate basis of Bloch
waves with quasimomenta q. Due to the absence of interactions, the dynamics of
any given initial state is then simply given by the sum over the evolution of all indi-
vidual Bloch waves. Thus, non-interacting atoms in any dimensionality constitute
a completely integrable system and we do not expect any form of global relaxation
or thermalization to be present.

Quantum quenches in this model can only affect the tunneling J . This does not
alter the eigenstates of the system but only the eigenenergies, leaving the overall
dynamics identical except for a change in timescales. As we will see in chapter 6,
dynamics in this system can be investigated by, e.g., confining atoms to few sites
and then releasing them into a larger lattice. These dynamics, however, can always
be understood in terms of ballistic single particles and do not pose any unanswered
questions.

3.4.2 The |U/J| → ∞ Limit

The more interesting limit of the Bose-Hubbard Hamiltonian is that of infinite in-
teractions, |U | → ∞. The behavior now depends strongly on the initial state of the
system. Let us assume that ni = 2 on a single site i. This would, in the case of
U → −∞, constitute a bound object of infinitely large binding energy. In the case
U → +∞, the two atoms would form a repulsively bound pair [146]. As the rest of
the system can neither provide the energy necessary to break up such a pair in the
U < 0 case, nor take up the energy released in the dissolving of a pair in the U > 0
case, in both situations a doubly occupied site is a stable object. Dynamically, this
object behaves completely static at |U | → ∞. At finite U/J , the two atoms can
only move to a neighboring site in a second order process where both atoms tunnel
simultaneously in order to conserve their interaction energy. The effective hopping
matrix element for such a process is proportional to J2/U [27], which becomes zero
in the limit |U/J | → ∞. The same holds for any sites with occupation ni > 2.
Thus, an initial state that consists solely of sites with ni = 2 in the |U/J | → ∞
limit would constitute a rather uninteresting system from the dynamical perspec-
tive. A system consisting of a mixture of sites ni = 1 and ni = 2 can exhibit some
interesting dynamics. The different mobility of singly and doubly occupied sites can
lead to quantum distillation effects in expanding states, where doubly occupied sites
accumulate in the center while singly occupied sites leave the system [83, 147].

Regarding the integrability of Bose-Hubbard systems, the most peculiar conse-
quences arise from the effects of large interactions on an initial state with all ni ≤ 1.
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In this case, the wavefunction of the system can never have a contribution from
ni > 1, due to the energetic constraints. Thus, even though |U | is infinitely large,
the system does not contain any interaction energy as ni(ni−1) is always zero. This
reduces the Hamiltonian again to that of free particles in a lattice but imposes an ad-
ditional constraint on the hopping term. The strong interaction acts as an effective
Pauli blocking that prevents two bosons from occupying the same lattice site. Even
though we can not simply substitute the bosonic creation and annihilation operators
by the fermionic ones, as the particles still obey the bosonic commutation relations,
the system does nevertheless exhibit a characteristically fermionic behavior.

Bose-Fermi Mapping

The connection between hard-core bosons and fermions was first realized by Gi-
rardeau [148] for impenetrable bosons in 1D (without additional lattices). Take a
system of bosons in a 1D geometry with arbitrary interactions. The only constraint
on the form of the interactions is that is must posses an impenetrable nature, i.e., the
probability of finding two bosons at a distance smaller than the hard-core diameter
a must vanish:

Ψ(x1, . . . , xN) = 0 if |xi − xj| ≤ a, 1 ≤ i, j ≤ N, (3.14)

where x1 . . . xN are the coordinates of the N particles. It can then be shown that
if the bosonic wave function ΨB is a solution to the Schrödinger equation of the
system, the fermionic wave function ΨF given by

ΨB = ΨF ·
∏
i>j

sgn (xi − xj) (3.15)

is also a solution. This establishes a one-to-one mapping between impenetrable
bosons and free fermions in 1D geometries that has profound consequences for certain
observables. In particular, quantities like the density distributions or density-density
correlations behave in exactly the same way as those of a system of free fermions.
Also the energy spectrum and the chemical potential are exactly the same in both
cases. There are, however, profound differences in non-diagonal quantities like the
momentum distribution [149] and the one-particle reduced density matrix [150].

The possibility of creating such systems with ultracold atoms was first pointed
out in [151], making use of the increased scattering between atoms in the presence of
a strong transverse confinement. First experimental realizations of Tonks-Girardeau
gases were produced with the help of optical lattices [25, 63] to supply the transverse
confinement (and to increase the effective mass of the atoms in [25]). The experi-
ments in [63] are of particular interest regarding the question of thermalization in
these systems. In repeated collisions of two clouds of impenetrable bosons, no signs
of damping or relaxation towards a thermal equilibrium could be observed. This can
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be seen as a direct consequence of the existence of a mapping onto free fermions. As
discussed in sect. 3.3, free systems are integrable and do not equilibrate to thermal
states. In a theoretical study, this behavior was confirmed under conditions similar
to the experimental ones. Here, it was shown that a momentum distribution con-
sisting of distinct peaks will preserve these peaks throughout all times [87]. There
is, however, some initial relaxation that leads to a broadening of the peaks in mo-
mentum space consistent with predictions of the GGE, but on a scale that is below
the experimental resolution in [63].

Hard-Core Bosons in 1D Lattices

The same kind of one-to-one mapping to free fermions can be constructed for a
system of impenetrable bosons in 1D lattices. Such a system can be described by
the standard Bose-Hubbard Hamiltonian for free particles

H = −J
∑
〈i,j〉

b̂†i b̂j, (3.16)

where b̂†i and b̂i obey the usual bosonic commutation relations and the additional
on-site constraints

b̂†2i = b̂2i = 0 and {b̂i, b̂†i} = 1. (3.17)

The additional constraints ensure the hard-core behavior of the bosons by requiring
a maximum population of one atom per lattice site. In order to rewrite the Hamil-
tonian with fermionic creation and annihilation operators, one can use a Jordan-
Wigner transform [152] of the form [153]

b̂†i = f̂ †i

i−1∏
β=1

e−iπf̂
†
β f̂β , b̂i =

i−1∏
β=1

eiπf̂
†
β f̂β f̂i. (3.18)

Here, f̂ †i and f̂i are the fermionic creation and annihilation operators of the Hamil-
tonian for non-interacting fermions

HF = −J
∑
〈i,j〉

f̂ †i f̂j. (3.19)

From eq. 3.18 we can directly see that the density distribution of the bosonic
representation is exactly the same as that of the fermionic representation:

n̂bi = b̂†i b̂i = f̂ †i f̂i = nfi . (3.20)

Thus, when investigating the non-equilibrium evolution of the density distribution
of bosons in 1D lattices (see chapter 8.2) with strong interactions, its evolution is
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indistinguishable from that of free fermions. Note that we do not specify the nature
of the interaction between the bosons. It is easy to see that infinitely strong on-site
repulsion leads to the conditions of eq. 3.17. However, in a system with infinitely
attractive on-site interactions, U → −∞, the formation of doubly occupied sites is
equally forbidden by energetic constraints. Thus, when starting from an initial state
with singly occupied sites in the limit of |U | → ∞, the expected dynamics are the
same, regardless of the sign of the interaction.

It is clear that the limit of |U | → ∞ can experimentally never be fully achieved.
However, this is not necessary in order to observe the fermionization of a system
of bosons in 1D. The criterion for the applicability of the mapping from hard-core
bosons to free fermions is the suppression of the formation of doubly occupied sites.
The energy of such a doubly occupied site is proportional to U . Thus, as long as U is
large compared to the kinetic energies available in the system, the formation of dou-
ble occupancies will be strongly suppressed and can be neglected. The bandwidth of
the lowest band in the 1D Bose-Hubbard model is 4J , which is the maximum energy
a single particle can possibly release or take up in a collision with other particles.
For interaction strengths in the range of U/J = 20, which are easily achievable in
our experiments, the formation of a single double occupancy would thus require at
least a 5-body process in order to guarantee the conservation of energy. This shows
that already at U/J = 20, an approximation in terms of a hard-core behavior of 1D
lattice bosons is well justified.

3.5 Relaxation Dynamics in the Bose-Hubbard Model

3.5.1 Relaxation in the Integrable Regimes

While a non-interacting system of Bosons will not show global thermalization, one
can still expect to observe relaxation dynamics when looking at local observables
(see sect. 3.3.1). This is demonstrated in [133], where the evolution of a system of
bosons after a quench in U from the Mott insulating regime to U = 0 is investigated.
It is shown that the state on a single site, obtained by tracing out the rest of the
system, evolves towards a state that maximizes the local entropy. In chapter 8.4.1,
we experimentally investigate the formation of sites with occupation ni > 1 after a
quantum quench in U/J and find a very fast relaxation dynamics for non-interacting
as well as interacting atoms.

The dynamics in the |U | → ∞ regime can also exhibit relaxation that can be ob-
served by investigating the momentum distribution. As mentioned above, a system
of hard-core bosons in 1D can be mapped onto a system of free fermions. Naturally,
the quasimomentum distribution of free fermions in a 1D Hubbard system is con-
served and provides as many conserved quantities as there are lattice sites in the
system. However, expressing these conserved quantities in the terms of the bosonic
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operators b̂†i and b̂i reveals that they become non-trivial many-body operators in
the bosonic representation [87] and can indeed exhibit relaxation dynamics towards
equilibrium states.

In [90], the evolution of an initial Fock state of hard-core bosons released into a
homogeneous 1D lattice is investigated. During this evolution, the density distri-
bution of the bosons behaves exactly as it is expected for free particles, as a direct
consequence of the bose-fermi mapping. The quasimomentum distribution nq, which
is initially flat over the first Brillouin zone, shows a much more interesting behav-
ior. Dynamically, nq acquires strong peaks at finite quasimomenta q = ±π/(2d),
reflecting a quasi-condensation occurring in this system. This is a transient be-
havior, the peaks in nq decay in the long time limit and nq approaches its initial
shape again as the density becomes lower and lower during the expansion. This
quasi-condensation effect is investigated experimentally in chapter 9, where we also
discuss the theoretical predictions in more detail.

A second study investigates the expansion dynamics of the ground state of hard-
core bosons in a 1D lattice with an external confinement and a low characteristic
density [154]. The quasimomentum distribution of this system before expanding is
characterized by a strong peak around q = 0. Shortly after the expansion is initiated
by removing the confinement, this strong peak disappears and during the course of
the expansion, nq becomes broader and broader and approaches the quasimomentum
distribution of free fermions in the limit of long expansion durations.

The two studies discussed above already show that, even though the system of
hard-core bosons can be mapped to a fully integrable system of free fermions, a lot of
interesting dynamics in momentum space can be observed. However, these dynamics
are investigated in the distinctly non-equilibrium situation of an expanding system
without boundaries, where no long term equilibration can take place.

The relaxation of a system of hard-core bosons towards an equilibrium state in
a bounded system is investigated in [87]. Here, the expansion of a ground state of
hard-core bosons in a 1D lattice is investigated after releasing them from a small box
potential. At the beginning of the numerical experiment, the small box is replaced by
a larger box and the evolution of the momentum distribution of the hard-core bosons
is recorded over time. In this evolution, relaxation dynamics can be clearly observed
and after a short period of changes, a new equilibrium distribution is reached. This
equilibrium distribution shows very good agreement with the predictions of the GGE
that takes the constraints imposed by the integrability of the system into account,
as discussed in section 3.3.1.

A similar study was conducted with the inclusion of an additional confining or
anti-confining potential after a quench in the tunneling J from zero to a finite value.
In this setting, the system is also observed to equilibrate towards GGE predictions,
which can have positive as well as negative effective temperatures, depending on the
nature of the external potential [89].
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Chapter 3 Integrability and Thermalization in Closed Quantum Systems

3.5.2 Relaxation in the non-integrable Bose-Hubbard Model

Thermalization in the 2D Hubbard Model

In 2D and 3D lattices, a mapping from hard-core bosons to free fermions is not
possible and these systems do not become integrable even in the limit of U →∞. In
a theoretical study of the dynamics of hard-core bosons released into a 2D lattice,
it was convincingly demonstrated that such a system does not only relax to an
equilibrium state, but that the expectation values of observables like the momentum
distribution in this state are with a high accuracy predicted by a microcanonical
ensemble [77].

The evolution of bosons in 2D lattices after a quench in the interaction strength
is investigated using exact diagonalization in [78]. In a 2D Bose-Hubbard system,
the interaction U is suddenly increased, bringing the system from the superfluid into
the Mott insulating regime. A fast relaxation of the next-neighbor correlations to
an equilibrium state is observed in the following evolution. However, the final state
of this relaxation is only found to agree with thermodynamic predictions for small
final U while for large U � J , the final state bears a strong memory of the initial
conditions. The absence of full thermalization is attributed to the large gap deep in
the Mott insulating regime that restricts the equilibration between quasi-particles
due to energetic constraints. Note, however, that higher order processes might still
induce thermalization on longer timescales that are not accessible in the calculations
and the state observed in [78] could be an example of pre-thermalization [155].

The dynamics of 2D Bose-Hubbard systems are experimentally investigated in
chapter 8 in the context of expansions in homogeneous lattices. In these experi-
ments, we find dynamics that appear distinctly diffusive, indicating fast local relax-
ation processes to be present already at small interactions. We furthermore study
the transition from 1D systems to 2D systems and observe how the breaking of
integrability via additional degrees of freedom drives the system from ballistic to
diffusive dynamics. Similar studies were also recently conducted using time depen-
dent density matrix renormalization group calculations for hard-core bosons on two
leg ladders [86], which showed a qualitatively similar behavior to the experimental
results.

Thermalization in the 1D Hubbard Model

While the 2D (and 3D) Hubbard models are generally non-integrable for finite U , the
1D Hubbard model constitutes a special case due to the integrable limit at U →∞.
The effects of approaching the integrable limit are studied in [88] by introducing
next-nearest neighbor hopping and interaction terms into the 1D Bose-Hubbard
Hamiltonian for hard-core bosons, which break the integrability of the system. For
a strong breaking of integrability, the expectation values of few body observables
relax quickly to thermal values. By decreasing the integrability breaking, it can then
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be seen that the predictions of statistical mechanics become continuously worse the
closer the system comes to integrability.

The interaction quenches in [78], as discussed above for 2D systems, are also inves-
tigated in 1D Bose-Hubbard models in the same publication, using t-DMRG meth-
ods. They show a qualitatively similar behavior, with two distinct non-equilibrium
regimes depending on the final interaction strength. For small final U , the systems
relax to thermal states, while for U � J , the relaxed states show a distinctly non-
thermal behavior. In the 1D case, this agrees well with the observations of [88] that
the predictions of statistical mechanics become less applicable the closer a system
comes to integrability. However, this study was again limited to rather small evolu-
tion times and the observations could also indicate fast pre-thermalization, followed
by a much slower regular thermalization.

A study of the relaxation dynamics of a density wave in the non-integrable 1D
Bose-Hubbard systems that is suggested in [79, 80] is conducted experimentally in
[73]. Here, a patterned initial density distribution is created using an optical su-
perlattice setup. After the preparation, the lattice potential is transformed into
a single-wavelength lattice in a rapid quench and the evolution of various observ-
ables like quasi-local densities, currents, and coherences is monitored. The system
shows a fast relaxation of all observed quantities, in good agreement with theoreti-
cal predictions. The only non-trivial equilibrium value, that of the nearest neighbor
correlators, is observed to agree well with thermodynamic predictions, supporting
the assumption of thermalization in this system.

In chapter 8, we experimentally investigate the effects of integrability breaking on
the expansion dynamics in the homogeneous 1D Bose-Hubbard model by changing
the interaction strength as well as the dimensionality of the system.
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Chapter 4

Experimental Setup - Making
Quantum Degenerate Gases

In this chapter, we present the experimental setup used to create ultracold quantum
gases and the employed cooling techniques to reach quantum degeneracy. Most of
these techniques have by now become standard tools in atomic physics and are not
described in full detail, but can be found in textbooks about experimental physics
with cold atoms, e.g., [156]. A more thorough treatment of the experimental details
can be found in [92, 157, 158].

The cooling of the atoms is conducted in three distinct steps. In the first step, hot
87Rb and 39K atoms are trapped and cooled using a magneto-optical trap (MOT)
[156, 159]. After pumping the atoms into magnetically trappable states, they are
magnetically transported into a second vacuum chamber where forced evaporation
in an optically plugged magnetic quadrupole trap takes place. Finally, the atoms are
transferred into optical dipole traps. Further evaporative cooling is conducted where
we employ a Feshbach resonances between 87Rb and 39K for sympathetic cooling,
as well as an intra-species Feshbach resonance for 39K in the final cooling step, until
we obtain Bose-Einstein condensates in the optical dipole traps.

The structure of this chapter follows the experimental procedure. We first describe
the vacuum chamber and the MOT. Then we discuss magnetic trapping of neutral
atoms and methods for forced evaporative cooling. Finally, we briefly introduce
optical dipole potentials and our dipole trap setup, before investigating the relevant
inter- and intra-species Feshbach resonances.

4.1 Vacuum System and Atom Sources

The vacuum system consists of two separate main chambers, connected by a differen-
tial pumping stage as shown in fig. 4.1. The Rb and K atoms used in our experiments
are introduced into the system by heating the Alvatec dispensers, which are thin
metal tubes filled with alloys that contain Rb and K and release it through a small
slit facing towards the MOT chamber when they are heated by an electrical cur-
rent. Additionally, we use light emitting diodes with a wavelength centered around
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MOT Chamber

Dispensers for Rb and K

Magnetic Transport
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Figure 4.1: Cross sectional view of the vacuum system, including the most impor-
tant magnetic field coils. The coordinate system used throughout this
thesis is shown in the lower left corner.

365 nm (UV LEDs) for light induced desorption of atoms [160] stuck to the walls
and windows of the MOT chamber, which increases the background pressure of the
alkali atoms.

In the MOT chamber, shown on the left side, the measured background pressure
ranges from approximately 1 · 10−9 mbar to 1 · 10−8 mbar. Within this range, the
pressure increases when the dispensers are heated and the UV LEDs are turned on
during the first seconds to release hot atomic Rb and K and decreases during the
rest of the experimental cycle. Note that due to the unknown composition of the
background gas that determines a correction factor for the measured pressure, the
actual background pressure could be well below these values.

The MOT chamber is connected to the experimental chamber via a differential
pumping stage of 70 mm length with an inner diameter of 8 mm, which allows to
keep a constant pressure gradient between the two chambers while both are being
pumped using ion pumps. In the experimental chamber, which is connected to the
glass cell in which the final stage of the experiment takes place, the pressure is below
1 · 10−11 mbar.

4.2 Magneto-Optical Trapping and Cooling

Magneto-optical trapping of atoms relies on a combination of the dissipative forces of
near-resonant light in combination with magnetic fields [161, 162]. The laser beams
used for the magneto-optical trap are red-detuned relative to the atomic transition
lines, which leads to an increased scattering between atoms and photons that are
propagating in opposite directions due to the Doppler effect and slows down the
atoms. A magnetic quadrupole field is used to introduce a position dependence of
the scattering cross section via the Zeeman shift. By carefully choosing the right
polarization of the laser beams, atoms displaced from the center of the quadrupole
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4.2 Magneto-Optical Trapping and Cooling

field absorb light predominantly from those laser beams that push them back towards
the center of the field, which results in an effective spatial confinement. For more
details on magneto-optical trapping, refer to, e.g., [156].

We use the D2 transitions of 87Rb and 39K for magneto-optical cooling and trap-
ping. Due to the similar structure of both atoms, the hyperfine level structure of the
transition lines is qualitatively the same, but differs in the energy splitting between
the separate levels, as shown in fig. 4.2.
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Figure 4.2: Hyperfine structure of the D2 lines of 87Rb and 39K and the transitions
used in our experiments. All data taken from [163, 164].

In the case of 87Rb, we use the closed transition from the |52S1/2, F = 2〉 to the
|52P3/2, F

′ = 3〉 states as the main cooling line, indicated by the red arrow labeled
“Cooling” in fig. 4.2. The term “closed” refers to the fact that, due to the selection
rules for the quantum numbers in optical dipole transitions, an atom that is excited
into the |52P3/2, F

′ = 3〉 state can only decay back into the |52S1/2, F = 2〉 state.
In the case of off-resonant excitations into the |52P3/2, F

′ = 2〉 manifold, however,
atoms can decay to the |52S1/2, F = 1〉 ground state and leave the cooling cycle. In
order to pump them back into the |52S1/2, F = 2〉 state, the ”Repumping” laser (see
fig. 4.2) is slightly red detuned to the |52S1/2, F = 1〉 → |52P3/2, F

′ = 2〉 transition.
This scheme is in principle also valid for the cooling of 39K, however, due to the
significantly smaller level splitting between the hyperfine sublevels of the |42P3/2〉
state of 39K, the roles of the cooling light and the repumping light are not as clearly
defined. As can be seen in fig. 4.2, the splitting between the |42P3/2, F

′ = 3〉 and
the |42P3/2, F

′ = 2〉 states is only 21.1 MHz. The typical detunings ∆ that are nec-
essary to achieve efficient Doppler cooling of atoms, are on the same scale (in our
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experiment, ∆ ranges from ∆ ≈ −40 MHz to ∆ ≈ −20 MHz). Thus, the assumption
of a closed transition |42S1/2, F = 2〉 → |42P3/2, F = 3〉 is by no means valid in this
situation. Conversely, the amount of atoms decaying into the |42S1/2, F = 1〉 state
is significantly larger for 39K than for 87Rb and a much higher intensity of the re-
pumping light is needed. As a second consequence, the distinction between cooling
and repumping light is rather arbitrary, since both beams need to be red-detuned to
their respective transition frequencies in order to provide sufficient Doppler cooling,
and the detuning is in general larger than the hyperfine splitting of the excited state.

In our experiment, we observe the magneto-optical cooling and trapping of 39K
to be less efficient than that of 87Rb. One reason for this difference is the smaller
hyperfine splitting of the |42P3/2〉 state for 39K, which necessitates the use of more
repumping light. A second reason could be a larger partial pressure of 87Rb in the
MOT chamber due to its higher vapor pressure at room temperature [165]. In order
to trap and cool enough 39K atoms, the duration of the MOT for 39K is typically on
the order of 10 s, while the light for the 87Rb MOT is only switched on during the
last few seconds, which is long enough to load a sufficient amount of 87Rb atoms.

4.2.1 Laser Setup for 87Rb

The laser setup that provides the frequency stabilized light for the magneto-optical
trap for 87Rb consists of three laser. One of the lasers, the reference and imaging
laser, is stabilized to a Doppler free absorption spectroscopy [166]. This laser is
not used for the MOT, but provides some of the resonant light used in the spin-
polarization phase (see below) and the imaging of 87Rb in later stages of the exper-
iment. The laser that provides the cooling light is a tapered amplifier laser, seeded
by a diode laser, that produces an output power on the order 1 W, while the re-
pumping laser is a diode laser with an output power on the order of 50 mW. Both
these lasers are frequency stabilized by overlapping a small portion of their light
with separate beams from the reference laser and detecting the combined light on
photo diodes. This allows to detect the frequency difference between the lasers as a
beating signal of the measured intensity, which can be used as a feedback signal for
the lock electronics.

4.2.2 Laser Setup for 39K

We employ a similar frequency stabilization scheme for the 39K laser setup. In this
case, a dedicated reference laser, whose only purpose is to provide a reference signal,
is stabilized to a Doppler free absorption spectroscopy. The light for the MOT is
provided by two tapered amplified lasers, with output powers on the order of 1W
each, which are stabilized to the reference laser as described above. The light used
for imaging 39K as well as some of the light used in the spin-polarization sequence
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is provided by a third laser, a diode laser with an output power on the order of
50 mW, which is also stabilized to the reference laser.

4.3 Magnetic Transport and Evaporation in a
Plugged Quadrupole Trap

4.3.1 Magnetic Trapping and Spin Polarization

In order to magnetically trap both 87Rb and 39K, the atoms need to be in a low field
seeking state, i.e. a state whose energy increases when the magnetic field increases.
In the |2S1/2〉 states of these atoms, both the |F = 1〉 and the |F = 2〉 hyperfine states
exhibit Zeeman sublevels which are magnetically trappable. For weak magnetic
fields, the change of potential energy due to the field is given by:

Emag = gFmFµB|B(r)|, (4.1)

where the gF is the Landé g-factor for the hyperfine state F , mF the Zeeman sublevel,
µB is Bohr’s magneton and B denotes the magnetic field. For dEmag/dB > 0, the
atoms can be trapped in a local minimum of a magnetic field. Such a local minimum
can be easily created by superimposing the magnetic fields created by two coils with
counter-propagating currents (anti-Helmholtz configuration) [167].

In our experiments, we magnetically trap both the 87Rb atoms as well as the 39K
atoms in the |2S1/2, F = 1,mF = −1〉 states. In order to transfer the atoms into
these states after the cooling in the MOT and a short optical molasses phase [156],
we use a spin polarization sequence that is similar for both 87Rb and 39K. We apply
a homogeneous magnetic field along the vertical axis, to ensure a fixed quantization
axis for atomic transitions, and shine in circularly polarized light along this direction.
The light is resonant to the |2S1/2, F = 1〉 → |52P3/2, F

′ = 1〉 transition and the
polarization is chosen so that m′F = mF − 1, which drives the population into the
states with smaller mF . As it is possible that atoms start in, or decay into, the
|2S1/2, F = 2〉 states, a second laser is used that is resonant to the |2S1/2, F = 2〉 →
|2P3/2, F

′ = 2〉 transition. This laser is left on for a slightly longer time at the end
of the spin polarization sequence, which ensures that all population ends up in the
|2S1/2, F = 1〉 states. While we can not transfer atoms with 100% efficiency into the
|F = 1,mF = −1〉 state, atoms in states with mF = 0 or +1 are not magnetically
trappable and do not remain in the system.

4.3.2 Magnetic Transport

After the spin polarization sequence, the current in the coils above and below the
MOT chamber is turned on rapidly in an anti-Helmholtz configuration, which creates
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the magnetic quadrupole field used for the trapping. The atoms are then transported
through the differential pumping stage by moving the magnetic minimum in space
using the fields created by multiple pairs of coils along the transport path. By
carefully manipulating the currents in these overlapping coils, the atoms can be
transported smoothly around the corner and into the glass cell, where they are
finally trapped in the magnetic field created by the quadrupole coils (see fig. 4.1).
For more details about this transport process, please refer to [91, 92].

4.3.3 Evaporative and Sympathetic Cooling

The effect of evaporative cooling is often illustrated by envisioning a steaming pot
of coffee. Here, the hottest molecules transition from the liquid phase into the
gaseous phase, which allows them to leave the system. The remaining molecules
rethermalize by colliding with each other. As the molecules that leave the system
have an energy higher than the average energy of all particles, the temperature after
rethermalization is lower than the initial temperature. This example illustrates the
two mechanisms that need to be present in order to efficiently cool atoms using
evaporation, namely interactions to ensure thermalization and a way to remove
the particles with the largest energies from the system. Evaporation as a means of
cooling trapped atoms was first suggested and realized in the context of magnetically
trapped hydrogen [168, 169] and has been used in every experiment that reached
quantum degenerate regimes with neutral atoms to date.

In our setup, it is much easier to trap large amounts of 87Rb atoms and their
number at the beginning of the evaporative cooling phase is typically more than a
factor of 100 larger than the number of 39K atoms. However, we want to conduct
our experiments in optical lattices using ultracold 39K and thus have to make sure
that we retain the largest amount of 39K possible during evaporative cooling. We
thus rely on sympathetic cooling, where we mainly evaporate 87Rb atoms and rely
on thermalization between 87Rb and 39K to cool the 39K atoms, a technique that
has already been shown to work reliably with 87Rb and 39K in other experiments
[170, 171].

4.3.4 Forced Evaporation in a Magnetic Trap

For evaporative cooling in trapping potentials with a finite depth, as it is the case for
optical dipole traps (see section 4.4), any particle can leave the trapping potential
as soon as it has an energy that is larger than the potential depth. The situation is
different for atoms trapped in magnetic quadrupole fields. At typical field strengths
required to produce a dense cloud of atoms, the potential depth can be thought
of as being effectively infinity and atoms can not simply leave the trap when they
have a large energy. Instead, a mechanism for forced evaporation is introduced
that allows to selectively remove atoms with large energies from the system. This
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Figure 4.3: a): Zeeman splitting of the F = 1 and F = 2 hyperfine states of 87Rb
and 39K. The red arrow indicates the RF transition that can be used
for evaporative cooling and the blue arrow the MW transition, which,
in addition to being sensitive to the B-field, is also species selective.
b): Schematic depiction of the spatially varying resonance frequency
for MW transitions at two different times t during the evaporation
(dashed arrows). The gray arrow shows the transition frequency at
B = 0.

is done by introducing electromagnetic radiation that drives transitions between
the trapped and untrapped (dEmag/dB < 0) internal states of the atoms. The
resonance frequency of these transitions depends on the magnetic field strength
and by choosing appropriate frequencies, we can selectively remove atoms from the
trap a certain positions in the field. This method is commonly referred to as radio
frequency (RF)-evaporation and was first demonstrated in [172]. It was used in all
the early realizations of Bose-Einstein condensates of ultracold atoms [8–10] and is
still used in the vast majority of experiments dealing with ultracold quantum gases
to date.

For 87Rb, there are two possible types of transitions that can be used to selectively
transfer atoms into magnetically untrapped states and thus force their evaporation.
In figure 4.3a, we show the splitting of the Zeeman sublevels at a fixed magnetic field
for the F = 1 ground state of 39K and 87Rb as well as the splitting of the respective
F = 2 hyperfine states. The different signs of Emag/dB in the F = 1 and F = 2 are
determined by gF , which is −1/2 in the F = 1 state and +1/2 in the F = 2 state.
One possibility would be to drive a transition from the |F = 1,mF = −1〉 state to
the |F = 1,mF = 0〉 state (red arrow), using a radio frequency field with a frequency
of νRF = 1/(2h)µB|B(r)|, where B(r) is the field at a distance r from the center of
the trap. While this transition would allow to selectively remove atoms from the
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trap at positions with a certain B-field value, the Zeeman splitting is the same for
87Rb and 39K, and we would thus evaporate both kinds of atoms indiscriminately.
As discussed above, we are interested in evaporating only the 87Rb atoms, and it
is possible to do so by making use of the different hyperfine splitting between the
|F = 1,mF = −1〉 and |F = 2,mF = −2〉 states of the two atoms. When driving a
transition between these two hyperfine states for 87Rb (blue arrow), the transition
frequency is given by νMW,Rb = −3/(2h)µB|B(r)|+6.83 GHz, while for 39K, it would
be νMW,K = −3/(2h)µB|B(r)| + 462 MHz. This allows for selectively evaporating
87Rb atoms with a certain potential energy (given by their position in the B-field),
without driving transitions for the 39K atoms, which remain in the |F = 1,mF = −1〉
state throughout the evaporation.

The evaporation itself is conducted by introducing microwave (MW) radiation
into the system with a time dependent frequency νMW = ν1,2 − ∆ν(t). ν1,2 is the
transition frequency between the two hyperfine states without an external magnetic
field, given by ν1,2 = 6.834682 GHz [173] and ∆ν(t) is the time dependent detuning
that determines the magnetic field value B, at which the transition is resonant.
At the beginning of the evaporation (t = 0), we start with a large detuning, and
transitions are driven at large magnetic field, far away from the center of the trap
(see figure 4.3b). During the course of approximately 9 s of evaporation, ∆ν(t) is
slowly decreased and the point where transitions occur moves towards positions
where the atoms have lower potential energy, leading to colder and colder atoms
being left in the center of the trap.

After evaporative cooling in the quadrupole trap, we typical obtain on the order
of a few 106 87Rb atoms and about 1 · 106 39K atoms at temperatures of a few µK.

4.3.5 Plugged Quadrupole Trap

In order for the atoms to stay trapped in a magnetic quadrupole potential, it is
necessary that their magnetic moment adiabatically follows the magnetic field vector.
This is given as long as the rate of change of the magnetic field direction Φ satisfies
[49]

dΦ

dt
< Emag/~ ≡ ωL. (4.2)

If this condition is violated, however, the atoms can undergo spin-flips, so called
“Majorana flops” [174] into untrapped magnetic states and are lost from the trap
[167]. In a purely magnetic quadrupole potential, condition 4.2 is always violated in
the center of the trap, where the B-field is zero but increases linearly in all directions
[175]. The Majorana losses become particularly important when the atoms reach
low temperatures, and the density becomes large in the center of the trap. In our
experiment, we circumvent these losses by adding an additional repulsive potential
in the center of the magnetic quadrupole field. This is done by shining a tightly
focused blue-detuned laser beam (wavelength λp ≈ 760 nm) through the center of the
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trap, as first demonstrated in [10], which creates a local potential energy maximum
(see next section) and prevents atoms from entering the region of low magnetic field.

4.4 Optical Dipole Traps

4.4.1 Optical Dipole Potentials

We can not only use dissipative forces introduced by near resonant light to trap
atoms, but also the conservative forces exerted on neutral atoms by light that is far
detuned to the atomic transition. These forces arise from the interaction between
the light and the light-induced dipole moments of the neutral atoms. The possibility
of using such optical dipole forces for the manipulation of neutral atoms was already
suggested in [176, 177] and in [178], it was first experimentally demonstrated that
they can be used to trap neutral atoms. Since then, optical dipole potentials have
become a standard tool for the trapping and manipulation of neutral atoms [156,
179].

In a semi-classical oscillator model, the potential created by a laser beam with
frequency ωD that is detuned by ∆ = ωD−ω0 from the atomic transition frequency
ω0 of a two-level atom is given by [179]

Vdip(r) ≈ 3πc2

2ω3
0

Γ

∆
I(r), (4.3)

where c is the speed of light, Γ is the natural linewidth of the atomic transition, and
I(r) is the light intensity at position r. The residual scattering rate for absorption
processes is given by

Γsc ≈
3πc2

2~ω3
0

(
Γ

∆

)2

I(r). (4.4)

The optical dipole potential is thus proportional to the intensity I(r) and inversely
proportional to the detuning ∆. The residual scattering rate, which causes a heating
of the atoms in the dipole potential due to a momentum transfer between the photons
and the atoms in the absorption and spontaneous emission processes involved, is
also proportional to I(r), but inversely proportional to ∆2. In order to minimize the
heating rates it is thus favorable to work at detunings that are as large as possible.
However, as also the intensity of the laser has to be increased at larger detunings, in
order to reach sufficient potential depths, the choice of suitable lasers is limited. In
our experiments, we use two lasers with a wavelength λD ≈ 1064 nm and a combined
output power of approximately 46 W to create the optical dipole potentials used for
trapping the atoms.

For alkaline atoms like 87Rb and 39K, there are typically two transition lines with
optical frequencies in the near-infrared regime. For 87Rb, the D2 line, which is
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used for the magneto optical cooling, corresponds to light with a wavelength of
λRb
D2 ≈ 780.2 nm [180] while the D1 line of the transition from the 52S1/2 to the

52P1/2 state corresponds to a wavelength of λRb
D1 ≈ 795.0 nm [181]. The situation is

similar for 39K, where λKD2 ≈ 766.7 nm and λKD1 ≈ 770.1 nm [182]. For wavelengths
of our optical dipole traps around λD ≈ 1064 nm, this results in slightly different
contributions from the two lines and eq. 4.3 has to be extended to incorporate the
two transitions. The hyperfine splitting of the two lines themselves, however, is
small enough so that the detuning can be assumed as constant and the individual
transitions between the various hyperfine states can be summed up into a common
transition linewidth Γ. The contributions of the two fine-structure lines can then be
summed into a combined potential as [179]

Vdip(r) =
1− PgFmF

3
VDip,D1 +

2 + PgFmF

3
VDip,D2, (4.5)

Where VDip,D1 and VDip,D2 are the dipole potentials of eq. 4.3 for the parameters
of the D1 and D2 line, respectively. P is a polarization factor that is 0 for linear
polarization and ±1 for σ± polarization, respectively.

4.4.2 Gaussian Beams as Dipole Traps

For red-detuned beams, i.e., ∆ < 0, the Potential created by a laser beam is at-
tractive and the potential energy of the atoms decreases with increasing intensity
I(r). Thus, atoms can be trapped in local maxima of the light intensity, which can
in principle already be created by a single focused laser beam. The intensity profile
of a focused laser beam, propagating along the x direction, is given by

Ix(r) =
2P

πwy(x)wz(x)
e

(
− 2y2

w2
y(x)
− 2z2

w2
z(x)

)
, (4.6)

where P is the total power of light in the beam, and wy and wz are the radii of the
beams, defined as the distance from the beam axis where the intensity drops to 1/e2

of the intensity on the axis.

For a Gaussian beam, wy,z vary along the propagation direction x as

wy,z(x) = w0;y,z

√
1 +

(
x

Ry,z

)
. (4.7)

w0;y,z are the beam radii in the focus of the beam, i.e., the smallest radii the beam
reaches along the respective direction during its propagation, and are referred to as
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Figure 4.4: a) Intensity distribution at z = 0 of a Gaussian beam propagating
along x with beam waist w0,y = 150µm and λD = 1064 nm. b) The
same intensity distribution as in a), but the x-axis is scaled by a factor
of 100.

the beam waists. Ry,z are the so-called Rayleigh lengths, given by

Ry,z =
πw2

0;y,z

λD
, (4.8)

which determines how quickly the beam diverges after reaching its smallest exten-
sion.

Figure 4.4a shows the intensity distribution at z = 0 of a Gaussian beam with
beam waist w0,y = 150µm and wavelength λD = 1064nm. While the Gaussian shape
of the beam along the y-direction can be clearly observed, the intensity decay along
the x-direction becomes only visible when rescaling the x-axis by a factor of 100
(fig. 4.4b).

We can use a Taylor expansion around the point of largest intensity to approximate
the potential created by the beam as

Vx(r) ≈ V0,x

(
1− 1

2

(
x

Ry

)2

− 1

2

(
x

Rz

)2

− 2

(
y

w0,y

)2

− 2

(
z

w0,z

)2
)
. (4.9)

This results in trapping frequencies for atoms of mass m given by

ωx =

√
V0
m

(
1

R2
y

+
1

R2
z

)
, (4.10)

ωy,z =

√
4V0

mw2
0;y,z

. (4.11)

As the Rayleigh length is typically much larger than the beam waists (see fig. 4.4),
a single gaussian beam provides a much smaller confinement along its propagation
axis. In order to create trapping potentials that are more isotropic, multiple beams
can be overlapped to create combined optical dipole potentials.
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Figure 4.5: Schematic layout of the three optical dipole trap beams with their
beam waists indicated by the labels.

4.4.3 Crossed Optical Dipole Trap

In our experiment, we use a dipole trap configuration that consists of three laser
beams propagating along mutually orthogonal axes. The individual focal points of
these beams meet at one point in space, where the combined optical dipole potential
of the three beams creates the confinement used for trapping the 87Rb and 39K
atoms after the evaporative cooling in the magnetic quadrupole trap. In order
to prevent inteference between two beams originating from the same laser, their
polarizations are chosen to be linear and mutually orthogonal and a frequency offset
of approximately 160 MHz is introduced using acousto-optical modulators.

The beams propagating along the horizontal (x, y) axes both have beam waists of
approximately 30µm along the vertical (z) and 300µm along the horizontal axes.
The beam propagating along the z direction is cylindrically symmetric with a beam
waist of approximately 150µm. The layout of these beams is shown schematically
in figure 4.5. The small beam waists along the vertical axis create a large trap
frequency along this direction, which minimizes the differential gravitational sag
introduced due to the different masses of 87Rb and 39K atoms [92]. The beam waist
of the vertical dipole trap beam is chosen to be identical to the beam waists of
the optical lattice beams, in order to be able to compensate the global potentials
caused by the lattice, which is necessary for the creation of homogeneous systems
(see chapters 5.1.2 and 6.3.1).

The atoms are transferred from the magnetic quadrupole trap into the dipole
trap by simultaneously increasing the laser intensities of the dipole trap beams and
reducing the currents in the anti-Helmholtz coils. A homogeneous magnetic field
along the vertical axis is simultaneously ramped up which shifts the point of zero
field along the plug beam and out of the trap region and we can turn off the plug
laser beam once the atoms are confined by the dipole trap. This field also serves as
a quantization axis for the atoms in order to preserve the spin polarization.

After loading the atoms into a deep optical dipole trap, we transfer all atoms from
the |F = 1,mF = −1〉 state into the |F = 1,mF = 1〉 state using an adiabatic RF
sweep, which, due to the identical level splitting between the magnetic sublevels,
works simultaneously for 87Rb and 39K. We then reduce the trap depth over a time
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span of approximately 4 s, which results in evaporative cooling. Due to the influence
of the gravitation potential, the trap depths is lowest along the direction of gravity,
and atoms are predominantly expelled from the trap in this direction. This also
facilitates the desired sympathetic cooling in the final stages of the evaporation
where we aim to predominantly evaporate the 87Rb atoms. As the mass of 87Rb is
more than twice as large as that of 39K, for low enough dipole trap intensities the
larger gravitational force on 87Rb significantly increases its evaporation [92].

4.5 Feshbach Resonances of 87Rb and 39K

During the evaporative cooling in the dipole trap, it is useful to be able to control the
interaction strength between the atoms in order to ensure a fast thermalization while
preventing losses due to three-body collisions. The interaction between atoms in the
low energy limit, where only s-wave collisions are relevant, can be characterized by
the s-wave scattering length as that determines the scattering amplitude (see, e.g.,
[183]), and the scattering cross section between the atoms is proportional to a2s. In
the Bose-Hubbard model, the interaction parameter U is directly proportional to as
(see eq. 2.19) and for as < 0, there is an attractive interaction between two atoms,
leading to a decrease in energy when multiple atoms occupy the same lattice site,
while for as > 0, the interaction is repulsive.

In certain cases, it is possible to change the scattering length between two atoms by
modifying the energy of the last bound states supported by the interaction potential.
This possibility was first noted in [32, 33], and the resulting resonances that can be
observed in the scattering length are generally referred to as Feshbach resonances. In
the context of ultracold atoms, the possibility of tuning the scattering length using
homogeneous magnetic fields [35], which was first observed in [34], is of particular
importance and has become a standard tool in many-body physics with cold atoms
[184].

In the presence of a Feshbach resonance, the scattering length is given phenomeno-
logically as a function of the magnetic field B as [185]

as(B) = abg ·
(

1− ∆B

B −B0

)
, (4.12)

where abg is the unperturbed background scattering length, far away from the Fes-
hbach resonance, B0 is the resonance position, where the scattering length diverges,
and ∆B is the width of the resonance, given by the difference in B between the
B0 and the point where as(B) = 0. For more details on Feshbach resonances in
ultracold atomic gases, see, e.g., [184, 185].

Figure 4.6a shows such a Feshbach resonance for scattering between a 87Rb atom
in the |52S1/2, F = 1,mF = 1〉 and a 39K atom, also in the |42S1/2, F = 1,mF = 1〉
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(b) Qualitative measurement of B0 by ob-
serving the three-body losses at vary-
ing magnetic fields.

Figure 4.6: Inter-species Feshbach resonance for 87Rb and 39K in the absolute
ground state.

state, using the parameters predicted in [186]. The resonance position is at B0 =
318± 3 G, ∆B = 7.6 G and abg = 28.7± 0.5 a0, where a0 is Bohr’s radius. In figure
4.6b, we show a qualitative measurement of the resonance position. The measure-
ment is conducted using 87Rb and 39K in an optical dipole trap. The magnetic field
B is ramped to various values and then kept constant for a few ms. As the rate
of inelastic three-body collisions at large scattering lengths scales with a4s [187], the
position of the Feshbach resonance is indicated by strongly enhanced losses that are
observed in our measurement by monitoring the number of 39K atoms left after the
hold time. The vertical dashed line indicates the prediction of B0 = 318 G, which
agrees well with the position of the observe loss resonance.

During the major part of the evaporation, the magnetic field is set to B ≈ 314 G,
which results in an inter-species scattering length between 87Rb and 39K of as ≈
100 a0, sufficiently large to ensure a fast thermalization of the two species while low
enough to prevent excessive three-body losses.

At the later stages of the evaporation, most of the 87Rb has left the trap, while
the number of 39K atoms stays approximately constant, due to the smaller gravita-
tional sag that prevents their evaporation. At this point, it becomes necessary to
change the magnetic field in order to adjust the intra-species scattering length of 39K.
The background scattering length between 39K atoms in the absolute ground state
(|42S1/2, F = 1,mF = 1〉) is as = −29.3(0) a0 [188], resulting in an overall attractive
mean field interaction that would lead to a collapse of a 39K condensate above a crit-
ical density [189–191]. In order to prevent this collapse, we can use an intra-species
Feshbach resonance for 39K at 402.5(3) G that has a width of ∆B = −52.1(1) G [46].
Figure 4.7a shows the behavior of as for varying B around the Feshbach resonance

48



4.6 Bose-Einstein Condensates of 39K
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Figure 4.7: Intra-species Feshbach resonance for 39K in the absolute ground state.

and figure 4.7b shows a measurement similar to that shown in figure 4.6b, but in
this case without 87Rb present in the experiment. The loss resonance again shows a
good qualitative agreement with the position of the Feshbach resonance, indicated
by the dashed vertical line.

We typically conduct the final part of the evaporative cooling at a magnetic field
of B ≈ 395.5 G, which corresponds to an intra-species scattering length for 39K of
as ≈ 189 a0.

4.6 Bose-Einstein Condensates of 39K

After the full evaporation cycle, which takes about 30 s, we can create Bose-Einstein
condensates of 39K in the optical dipole trap that contain typically on the order
of 105 atoms with no thermal component visible in absorption images after time-
of-flight (TOF, see chapter 5.2.1 for details about the imaging process). As an
example, we show images of condensates of 39K released from an optical dipole trap
with trap frequencies ωx ≈ ωy ≈ 10 Hz and ωz ≈ 140 Hz, imaged using absorption
imaging after 16 ms TOF. The shape of the cloud after the expansion during TOF
shows the characteristic inversion of the shape of the initial density distribution
expected for Bose-Einstein Condensates. The dipole trap from which the atoms are
released has a much larger trap frequency along the vertical direction, leading to an
increased curvature of the initial wavefunction and thus a much broader momentum
distribution along this axis. Before releasing the atoms from the dipole trap, the
interaction was changed using the 39K intra-species Feshbach resonance. The effects
of increasing repulsive interactions can be observed in the broadening of the cloud
for large as, as the increased mean-field energy of the atoms is converted into kinetic
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Figure 4.8: Bose-Einstein condensates of about 105 39K atoms after 16 ms TOF,
released from an optical dipole trap with trap frequencies ωx ≈ ωy ≈
10 Hz and ωz ≈ 140 Hz at varying scattering length as.

energy during an expansion.
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Chapter 5

Ultracold Atoms in Optical Lattices

In this chapter, we discuss how to use optical lattices in experiments with ultracold
atoms to realize the Bose-Hubbard Hamiltonian and how we can independently
control all of its parameters. We review the properties of the lattice potentials and
methods to properly calibrate them, as well as global potentials created by the lattice
beams. We also briefly discuss loss mechanism introduced by the lattice light and
methods to minimize these losses. Furthermore, we describe various methods for
the detection and characterization of the many-body states in the lattice that rely
on directly imaging atomic density distributions using resonant light. Most of the
techniques described in this chapter have become standard tools for the manipulation
and detection of cold atoms in recent years [62] and we will only discuss the most
fundamental aspects relevant in our work. For a more detailed discussion of the
techniques employed in our experiment, please refer to [92, 157].

The final part of this chapter briefly presents some results on equilibrium states
of 39K that can be created in our setup. Here, we first discuss the observation of
the superfluid to Mott insulator transition, driven by changing the lattice depth as
well as the interaction strength between the atoms. Finally, we also present our
results on the creation of equilibrium states with negative absolute temperatures
[192], which relies on the possibility to tune all parameters of the Bose-Hubbard
Hamiltonian individually and highlights the flexibility of our experimental setup.

5.1 Optical Lattices

The optical lattices in our experiment are created by retro-reflecting linearly po-
larized laser beams with a wavelength λl ≈ 740 nm created by a titanium-sapphire
laser. To create an optical lattice along one axis, a collimated beam is focused onto
the atoms, recollimated upon exiting the experimental chamber and finally focused
onto a retro reflecting mirror. By focusing the beam onto the retro-reflecting mirror,
the propagation of the beam is inverted and the returning beam has approximately
the same beam waist as the incoming beam when it reaches the atoms again. To
create a three dimensional optical lattice, beams are sent in along all three spatial
directions with Gaussian beam waists of approximately 150µm.
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5.1.1 Lattice Potentials

The superposition of two counter-propagating running waves, traveling along the x
and −x directions, creates a standing wave with an intensity distribution

I1D(x, y, z) = Ixe
−2 y

2+z2

w2
x cos2(kx), (5.1)

where k = 2π/λl. The maximum intensity (for a perfectly reflecting retro-mirror and
no losses during the beam propagation) is given by Ix = 4I0, where I0 is the intensity
of the incoming beam. The term exp(−2(y2+z2)/w2

x) describes the Gaussian shaped
intensity distribution of the beam perpendicular to the propagation direction (see
chapter 4.4.2). Here, we assume the Rayleigh length to be much larger than wx so
that we can assume wx to be constant over the extension of the cloud of atoms.
Superimposing three standing waves along three perpendicular directions then leads
to a 3D periodic potential of the form

Ṽ3D(r) = Ṽxe
−2 y

2+z2

w2
x cos2(kx) + Ṽye

−2x
2+z2

w2
y cos2(ky) + Ṽze

−2x
2+y2

w2
z cos2(kz), (5.2)

where the potential depths Ṽx,y,z can be determined from the intensity of the light as
discussed in chapter 4.4.1. Cross interference between lattice beams along perpen-
dicular axes is avoided by adjusting the polarization of the individual laser beams
to be linear along mutually orthogonal directions. Furthermore, a frequency dif-
ference between the three laser beams on the order of tens of MHz is introduced
using acousto-optical modulators (AOMs). Any residual cross interference between
the beams, caused by imperfections in the polarization, thus oscillates with a large
frequency and averages out on the dynamical time scales relevant for atoms in the
optical lattice.

The potential depth Ṽx,y,z along the different directions is determined from the
intensities of the laser beams along the respective directions and the detuning of
the lasers with respect to the atomic transitions, as discussed in chapter 4.4. We
typically state the potential in units of the recoil energy Er = ~2k2/(2m), where
m is the atomic mass. In cases where we want to refer to the specific Er of one
of the atomic species, EK

r refers to the recoil energy for 39K and ERb
r to that for

87Rb. As we are only dealing with blue-detuned lattices in the scope of this thesis,
we can assume all Ṽx,y,z to be positive. The Wannier states in such a lattice are
thus centered around the nodes of the standing-wave potential, where the intensity
is minimal.

The geometry of the created lattices is determined by the ratio of the individ-
ual potential depths Ṽx,y,z. In particular, it is possible to create effectively 1D and
2D lattice geometries by choosing some intensities very large to suppress tunneling
along certain directions. This is demonstrated in figure 5.1, which shows the po-
tential energy isosurfaces of lattices with varying intensities along the three spatial
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directions.
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Figure 5.1: Isosurfaces of lattice potentials for varying depths Vx,y,z of the individ-
ual lattice axes.

For Vx = Vy = Vz, the lattice structure is that of a 3D cubic crystal, where the
atoms can tunnel equally along all three directions. If the intensity is now strongly
increased along one direction (here: Vx = Vy < Vz), the tunneling is inhibited along
this direction and the system effectively decouples into a stack of 2D lattices. If
two lattices are very strong compared to the third (Vx < Vy = Vz), only tunneling
along one direction is relevant and the system is further decoupled into an array of
individual 1D systems. If all three beams have the same, but very large, intensity,
tunneling is suppressed along all directions. The system then has the same cubic
crystal structure as in the 3D case, but all individual wells are decoupled and no
tunneling dynamics take places. Note that the difference between the 3D configu-
ration and the effectively “0D” configuration in figure 5.1 is only the time scale for
tunneling in the lattice. But as this time scale can be made large compared to the
duration of the experiments, we can regard the tunneling dynamics as essentially
frozen out.

In the experimental realization, the intensity of the incoming and the retro-
reflected beams are not exactly equal. Due to reflection and absorption by optical
elements in the beam path as well as a sub-unity reflectivity of the retro mirror, the
incoming intensity Iin is always slightly higher than the retro-reflected intensity Ire,
which decreases the contrast of the sinusoidal lattice potential.

With Rx = Ire,x/Iin,x, the intensity distribution of a single lattice beam pair along,
e.g., x is then given by

V (x, y, z) =
Vx
4
e
−2 y

2+z2

w2
x

(
1 +Rx − 2

√
Rx + 4

√
Rx cos2(kx)

)
. (5.3)

Thus, the lattice depth relevant for the tunneling dynamics of atoms in our ex-
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periments is given by
Vx =

√
RxṼx. (5.4)

5.1.2 Global Potentials

Not only is the effective depth of the sinusoidal potential reduced when Rx < 1, but
the potential also does not vanish anymore in the nodes of the standing wave. At
the points where cos2(kx) = 0, e.g. x = π/(2k), the overall potential along y and z
is given by

V (y, z) =
Vx
4
e
−2 y

2+z2

w2
x

(
1 +Rx − 2

√
Rx

)
(5.5)

and results in an overall anti-confining Gaussian potential along the y- and z-
direction. Note that for large R . 1, this anti-confining potential is much weaker
than the corresponding confining potential for red-detuned lattices, where the po-
sitions of the atoms inside the wells are centered around the points of maximum
intensity.

We can use a harmonic approximation to obtain an effective trap frequency of this
global potential along the axes perpendicular to the propagation direction, which is
given by

ω2
y,z =

4

m

(−Ṽx(1 +Rx − 2
√
Rx)

w2
x

. (5.6)

In the blue-detuned case, where Ṽx > 0, ω2
y,z is smaller than zero and the trap

frequencies ωy,z are imaginary, describing overall anti-confining potentials.

The varying lattice depth perpendicular to the propagation direction leads to an
additional effective global potential. This can be seen by approximating a lattice
well locally with a harmonic potential and calculating the total energy of the ground-
state wavefunction. In a harmonic approximation, the trap frequency for an atom
of mass m in a sinusoidal potential of the form V (x) = Vx cos2(kx) is given by

ω2
latt = |Vx|

2k2

m
. (5.7)

The spatial variation of the lattice depth along the perpendicular direction now de-
creases the local trap frequencies further away from the center of the beam according
to eq. 5.1 as

ω2
latt(y, z) = e

−2 y
2+z2

w2
x |Vx|

2k2

m
(5.8)

and thus leads to a variation of the ground state energy of

Egs =
1

2
~ωlatt ⇒ Egs(y, z) =

1

2
~e−

y2+z2

w2
x

√
|Vx|

2k2

m
, (5.9)
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which results in a second effectively anti-confining potential. In a harmonic approx-
imation, this potential has an effective trap frequency of

ω2
y,z = − 2

mω2
z

√
|Vx|Er. (5.10)

This potential is always anti-confining, as the depth of the potential wells always
decreases further away from the center of the beam, independent of the detuning of
the lattice.

For blue-detuned lattices and reasonable values of Rx, the dominant contribution
to the anti-confining global potential is given by eq. 5.10, while eq. 5.6 contributes
only very little. For a 3D lattice configuration, the potential along each axes is given
by the sum of the global potentials created by the two lattices perpendicular to that
axes.

In order to create homogeneous lattice potentials, the overall anti-confining po-
tential created by the blue-detuned lattice beams has to be compensated. In our
experiment, this is achieved using the red-detuned dipole trap beams, which are
carefully aligned to overlap with the lattice beams. However, as the shapes of the
dipole trap beams propagating along the two horizontal directions do not match the
shape of our lattice beams, we can only use the dipole trap beam along the vertical
axis for a compensation on large scales. As this beam does not create any significant
confinement along its propagation direction, compensation in our setup is thus only
possible along the horizontal plane. In chapter 6.3.1, we describe the optimization
of the homogeneity of the lattice for our expansion experiments in more detail.

5.1.3 Calibration of Lattice Depth

While it is in principle possible to measure the properties of the lattice laser beams
accurately, reflection losses as well as the optimal alignment of the beams are hard
to determine from direct measurements, and it is not easy to infer the precise lattice
depths from the beam intensities. Fortunately, as it is so often the case in experi-
ments dealing with ultracold atoms, we can use the atoms themselves as a probe to
determine the depth of the lattice at a given laser intensity.

Frequency Modulation Spectroscopy

For deep lattices, the Bloch bands become very narrow in energy while the energy
gap between them becomes large (compare figure 2.1) and we can measure this
band gap using a type of parametric excitation spectroscopy [193]. In our case, the
frequency of the lattice laser ωl is weakly modulated using an AOM, such that ωl(t) =
ωl(0)+∆ω sin(νmodt), where ∆ω is typically on the order of a few MHz. As the retro-
mirror in our setup constitutes a fixed point in space for the first node of the optical
lattice, a changing ωl leads to a time dependence in the position of the potential wells,
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which amounts to a sinusoidal shaking along the lattice direction (see figure 5.2a).
When hνmod is equal to the energy difference between the first and the second Bloch
band, hνmod = E

(2)
q − E(1)

q , the atoms are resonantly excited into the higher band.
We detect these atoms in time-of-flight imaging using a band mapping technique (cf.
5.2.3). Figure 5.2 shows such a measurement, where we plot the amount of atoms

x0(t) = x0(0) + δx ⋅sin(2πνmod⋅t)

a)

b)

Figure 5.2: a) Sketch of the effects of frequency modulation on the position of
the lattice wells. b) Number of 87Rb atoms in the second band for
varying modulation frequencies νh. The solid line is a Gaussian peak
fit function to the observed resonance. The dark gray area indicates
the combined bandwidths of the first and second band at a lattice
depth Vx = 27.1ERb

r , the light gray area the experimental uncertainty.

in the upper band over the modulation frequency νh. We can observe a resonance
around 75.6(1.3) kHz, which corresponds to a lattice depth Vx = 27.1(8)ERb

r . The
dark gray shaded area indicates the combined bandwidths of the first and second
band, given by the difference of the band gaps at quasimomenta q = 0 and q =
π/d. A second broadening of the transition results from the finite extension of the
atomic cloud within the slightly inhomogeneous lattice. The overall experimental
error, given by the width of the Gaussian peak fit function used to determine νh,
is indicated by the light gray shaded area. This method is only suitable for deep
lattices, typically for lattice depths Vx > 20Er, where the interband distance is large
compared to the bandwidth. For lower lattice depths, the bandwidth increases and
at Vx = 5Er, the difference between the band gaps at q = 0 and at q = π/d is
approximately half as large as the band gap itself at q = 0, rendering this method
very inaccurate for small lattice depths.

56



5.1 Optical Lattices

Lattice Diffraction

For lower lattice depths, we can use a method that relies on the diffraction of the
atoms in a pulsed lattice to determine the lattice depth [194]. We start such mea-
surements with a Bose-Einstein condensate of 87Rb in an optical dipole trap and
then rapidly switch on the lattice for a brief duration on the order of tens of µs.
This leads to a projection of the ground state wavefunction of the BEC, which can
be written as a plane wave state |φ(t = 0)〉 = |q0〉 with a momentum q0 = 0, onto

the Bloch states |Ψ(n)
q0 〉

|φ(t = 0)〉 =
∞∑
n=1

|Ψ(n)
q0
〉 〈Ψ(n)

q0
|q0〉 . (5.11)

A Bloch wave in band n with momentum q can be written in the plane wave basis
as

|Ψ(n)
q 〉 =

∞∑
µ=−∞

a(n,q)µ ei(q+2kµ)x (5.12)

(see eq. 2.2 and 2.4) and thus, the projection 〈Ψ(n)
q0 |q0〉 = (a

(n,q0)
0 )∗. From this, we

can deduce that the time evolution after the projection onto the basis of Bloch waves
becomes

|φ(t)〉 =
∞∑
n=1

(a
(n,q0)
0 )∗e−iE

(n)
q0

t/~ |Ψ(n)
q0
〉 . (5.13)

By switching off the lattice after an evolution time tB, the wavefunction is pro-
jected back onto the free-space momentum states, given by the plane wave basis
states |q0 + 2kµ〉. The time evolution leads to an oscillation of the relative oc-
cupation of the plane wave basis states, which can be detected experimentally in
time-of-flight (TOF) imaging (see section 5.2.3). Due to the symmetry of the initial
state with q0 = 0, only states with the same symmetry can be populated, which lie
in bands with odd indices n.

Figure 5.3 shows the oscillation between population in the first and third band,
observed in TOF imaging as distinct peaks. The oscillation frequency is given by
the energy difference between the q = 0 states in the first and the third Bloch band,
νR = (E

(3
0 ) − E

(1)
0 )/h. In the case shown here, νR is determined from a simple

sinusoidal fit to be 48.6(3) kHz, which corresponds to a lattice depth of 6.63(8)ERb
r .

Note that for lattice depths larger than 8Er, the population in Bloch bands with
n ≥ 5 becomes significant and the oscillation dynamics become more complicated,
leading to deviations in the observed frequencies from the simple assumption above.
However, using the diffraction method for low lattice intensities and the frequency
modulation method for high lattice intensities, we can obtain a calibration of the
lattice depth with respect to the laser intensity for the full range of accessible lattice
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Figure 5.3: Oscillation between population in the n = 1 and n = 3 Bloch bands,
induced by applying the lattice with a fixed intensity onto a BEC of
87Rb for a duration τB.

depths.

5.1.4 Light-Assisted Collisions

The interaction between the light of the lattice and the atoms can lead to losses due
to the absorption of photons. For a single atom on a lattice site, the absorption of
lattice light photons is strongly suppressed due to the large detuning between the
frequency of the lattice light and the resonance frequencies of the atomic transitions
for 87Rb and 39K. However, when two atoms are situated on the same lattice site,
the presence of the lattice photons can additionally lead to light-assisted collisions.
We will only sketch the most fundamental concepts relevant to minimize the losses
induced by light-assisted collisions in this section. A more thorough analysis can
be found in, e.g., [195] and detailed experimental observations of the properties of
light-assisted collisions in blue-detuned optical lattices are presented in [196].

The interaction between two atoms and a light field can lead to an excitation of
the atoms into molecular states consisting of one excited atom and one ground state
atom. Figure 5.4a shows a sketch of the fundamental process and the general shape
of the molecular potentials involved.

For red-detuned light, the excitation can only happen into a bound molecular
state. Such an excited molecule typically decays into lower lying vibrational levels,
which are typically untrapped, resulting in a loss of the atoms [195]. However, due
to the discrete energy spectrum of the bound states of the molecular potential, this
process is strongly suppressed as long as the frequency of the lattice light is not
resonant to a transition into a bound state.

The situation is different for blue-detuned light, where the relevant excited molec-
ular potential is of a repulsive nature and does not support bound states. In this
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(b) Number of remaining atoms after
holding 39K in the lattice for a fixed
duration at variable lattice wavelength
λl. The maxima indicate that the
wavefunction overlap between |Ψg〉
and |Ψe〉 is small at the correspond-
ing Condon points and losses are min-
imized. The inset shows a finer scan
of the first maximum.

Figure 5.4

case, the accessible excited states form a continuum and excitations are possible for
all light frequencies. Atoms excited into such a state will be repelled by each other
and gain kinetic energy before decaying back into the ground state, which leads to
a loss of both atoms [195].

The rate of excitation from the ground state into the excited state is proportional
to the Franck-Condon factor (FC), which is given by the overlap of the ground state
wavefunction |Ψg(R)〉 and the excited state wavefunction |Ψe(R)〉, where R is the
internuclear distance, as

FC ∝ |〈Ψg(R)|Ψe(R)〉|2 . (5.14)

For a given detuning of the light, there exist certain internuclear distances RC (see
fig. 5.4a) where the energy of a photon is equal to the potential energy difference
between the ground and the excited molecular potentials, called the Condon points.
The region around these Condon points typically gives the largest contribution to
FC. We can move RC by changing the detuning of the lattice light and as the
wavefunctions of the molecular ground states oscillate strongly for small R, we can
find a point where the wavefunction has a node and the overlap is minimized. This
effect can be used to minimize the effects of light-assisted collisions by measuring
loss rates while varying the lattice wavelength.

Results for this kind of optimization for 39K are shown in fig. 5.4. We hold the 39K
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atoms in the lattice and record the number of remaining atoms after a fixed hold
time before changing the wavelength of the lattice and repeating the measurement.
We vary the wavelength over a range of several nm and observe multiple minima
and maxima of the number of remaining atoms. The points where the most atoms
remain corresponds to an Rc where the overlap between |Ψg〉 and |Ψe〉 is minimal
and excitations into unbound molecular states are suppressed. The inset of fig.
5.4 shows a finer scan of the region around the first peak. From this finer scan,
we determine λl = 736.6 nm to be a good choice for the lattice wavelength when
working with 39K. Note that for a different species of atoms, the optimal wavelength
will vary. For experiments using the fermionic 40K, which are described briefly in
chapter 7, the lattice wavelength was chosen to be 738 nm [196]

5.2 Detecting Density and Momentum Distributions

For the detection of the atoms in our experiments, we rely on direct imaging tech-
niques using resonant light. The imaging is either conducted while the atoms are
still trapped inside the optical potentials (in-situ), which provides information about
their density distribution, or after a free time-of-flight (TOF) evolution after switch-
ing off the external potentials, which provides information about their momentum
distribution.

5.2.1 Absorption Imaging

The most widely used and conceptually simplest method of investigating the density
distribution of atoms in the optical lattice or after TOF is that of absorption imaging
[49]. A collimated beam of light, resonant with an atomic transition, impedes on
the cloud of atoms and the density dependent absorption is recorded on a camera.

For a beam of light with a low intensity I0 before entering the cloud, the change
of intensity while propagating through a medium of density n(z) is given by

dI(z)

dz
= −n(z)σ0I(z), (5.15)

where σ0 is the scattering cross section for the atomic transition, given by

σ0 =
~ωaΓa
2Isat

, (5.16)

with the atomic transition frequency ωa, the atomic transition linewidth Γa and
the saturation intensity Isat. Isat is the intensity at which the scattering cross sec-
tion drops to 50% of its value at I → 0 and incorporates details about the atomic
dipole transitions (see, e.g., [197] for a more detailed discussion on light-atom interac-
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tions). For 87Rb, using σ+ polarized light resonant to the |52S1/2, F = 2,mF = 2〉 →
|52P3/2, F

′ = 3,mF ′ = 3〉 transition, the saturation intensity is Isat = 16.69(2)W/m2

[164], while the same transition for 39K has a saturation intensity of approximately
17.5W/m2 [163]. Varying the polarization of the imaging light can lead to strongly
varying saturation intensities when additional hyperfine states can participate in
the transition. Experimentally, the saturation intensity for a given (and possibly
unknown) polarization can be determined by investigating the intensity dependence
of the scattering cross section for large imaging intensities [198, 199].

The density distribution of atoms is determined by taking two images consecu-
tively, one with the atoms present (resulting in an intensity distribution I(x, y) on
the camera) and a second at a later time without any atoms (I0(x, y)). At each coor-
dinate (x, y) of the image, we can then determine the local column density of atoms
ncol(x, y) =

∫
n(x, y, z)dz by integrating eq. 5.15 along the imaging (z) direction:

ncol(x, y) = − 1

σ0
ln

(
I(x, y)

I0(x, y)

)
. (5.17)

On the camera chip, we do not measure actual intensities, but the integrated
intensity over one pixel. The area of one pixel corresponds to a an area element A
in the focal plane that is given by the magnification of the imaging system. With
this information, we can calculate the number of atoms at a given position as

N(x, y) = −A
σ0

ln

(
I(x, y)

I0(x, y)

)
. (5.18)

5.2.2 In-Situ Imaging

We can use absorption imaging to directly determine the density distribution of
atoms in the optical lattice. We typically use the vertical axis as the imaging axis
for in-situ measurements, as our cloud has a smaller extension along the vertical
direction due to the elliptical shape of our dipole trap beams (cf. chapter 4.4),
which makes it easier to obtain unsaturated images. Furthermore, in this thesis we
are mostly interested in the dynamics of atoms along the horizontal directions of
the lattice, so imaging along the vertical direction is the natural choice as imaging
along a horizontal direction would lead to the loss of information about dynamics
along this axis.

Recently, it has become possible to image the density distribution of atoms in
optical lattices with such a high resolution that the number of atoms on individual
sites of 2D lattices can be detected [57, 58]. These experiments rely on fluorescence
imaging with high numerical aperture optics, and necessitate the use of Doppler
cooling during the imaging to gather enough fluorescence light without altering
the distribution of atoms in the lattice. In our experimental setup, we are not
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able to resolve individual lattice sites, as the resolution of our imaging system is
on the order of about 3µm, and thus significantly larger than the lattice spacing
of d = 368.3 nm. Furthermore, even though we use a highly elliptical dipole trap
configuration before loading atoms into our lattices, we always populate many layers
of the lattice along the vertical direction, which are averaged when imaging along
this direction. Nevertheless, we can use in-situ imaging to get information about
the overall density distribution in the lattice, which we use heavily in chapter 8
to investigate the expansion dynamics of interacting bosons in 1D and 2D lattice
geometries.

The exponential scaling of the absorption with the density in eq. 5.15 can cause
problems when imaging clouds with very high densities, e.g., large Bose-Einstein
condensates. When the transmitted intensity becomes exponentially small and can
not be distinguished from the background noise, we can not obtain information
about the density distribution anymore. In these cases, imaging techniques like
phase contrast imaging [49] can be used, which do not use resonant light but rely
on the refractive index of the atoms for detuned imaging light. While we do not
rely on the use of phase-contrast imaging in this thesis, we do have the option of
using it to investigate states with large densities in our experiment. Details on the
experimental realization of phase contrast imaging can be found in [157].

5.2.3 Time-of-Flight Measurements

Allowing the atoms to freely evolve for a certain time tTOF before taking an absorp-
tion image gives insight into the momentum distribution of the state. This method
is commonly referred to as time-of-flight imaging, and has been used extensively
in the context of ultracold atoms, e.g., in the first observations of Bose-Einstein
condensation [8, 10].

To initiate the TOF, all confining potentials are instantaneously switched off and
the atoms begin to fall downwards under the influence of gravity. If no additional
potentials are present and interactions between the atoms can be neglected, the
cloud of atoms evolves according to its initial momentum distribution. In the limit
of very large tTOF, the initial density distribution of the cloud can be neglected, and
the density distribution observed on the TOF images is directly proportional to the
momentum distribution of the atoms. For shorter tTOF, the initial density distribu-
tion has to be taken into account. A more detailed description of the reconstruction
of momentum distributions from TOF images is given in chapter 9.3, for a thorough
analysis of how to determine coherence properties from TOF images, refer to [200].

Detecting Coherence

When switching off the lattices abruptly before the time-of-flight evolution begins,
the Bloch waves in the lattice are projected onto free space momenta, as discussed in
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section 5.1.3. In the case of a superfluid state in the lattice, which macroscopically
occupies the Bloch state with q = 0, this leads to the appearance of narrow peaks
in the density observed after TOF, where the spacing between the peaks is given by
2~k. Conversely, when the atoms are in a Mott insulating state, being effectively
localized in real space and thus occupying many Bloch waves with different momenta,
the density distribution after TOF will not show any sharp features, but will instead
be given by a broad peak, the so called Wannier background. This has been used
in [20] to investigate the superfluid to Mott insulator transition of 87Rb in a 3D
optical lattice and has become a standard tool to investigate the coherence of atoms
in optical lattices (see, e.g., [97, 201, 202]).
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a) Coherent state in TOF, lattice
switched off instantaneously

b) Incoherent state in TOF after
band mapping

Figure 5.5: a) Coherent state in TOF, released by switching off the lattice. b)
Incoherent state in TOF that occupies the complete first Brillouin
zone, released using a band mapping technique.

In figure 5.5a, we show the density distribution after 12 ms TOF of 39K in a
superfluid state, released from a 3D lattice potential with a lattice depth of 10Er
along all axes. We can clearly observe the central peak of atoms with momentum
p = 0 and the higher order lattice peaks.

Band Mapping

A second method for the investigation of momentum distributions of atoms in optical
lattice is the so called band mapping technique. In this case, the lattice is not
switched off instantaneously but rather gradually lowered on a time scale that is
fast compared to the many-body dynamics in the lattice, in order to preserve the
quasimomentum distribution of the state under investigation, but slow enough to be
adiabatic with respect to transitions between the Bloch bands [51, 203]. Under these
circumstances, the Bloch waves are adiabatically transformed into the corresponding
free space plane waves. The quasimomenta of the atoms are preserved and an
atom in the lowest Bloch band with quasimomentum q is mapped onto a free space
momentum p = ~q. Atoms in higher Bloch bands are mapped to free space momenta
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in the respective higher Brillouin zones , and the occupation of these Brillouin zones
can be observed in the TOF images.

Figure 5.5a shows a state of 39K in a 2D lattice with a momentum distribution
that completely occupies the first Brillouin zone. In this case, the lattice intensity
is ramped down within 500µs from a lattice depth of (10, 10, 20)Er along (x, y, z),
before the free evolution in TOF starts.

5.3 Equilibrium States in the Bose-Hubbard Model

Using blue-detuned laser beams to create lattice potentials of varying depths and
being able to compensate the resulting anti-confining potentials with the addition
of red-detuned dipole trap beams, we can independently control the tunneling J
and the external confinement of the Bose-Hubbard Hamiltonian. Using 39K in the
|52S1/2, F = 1,mF = 1〉 ground state, we can then employ the intra-species Fesh-
bach resonance discussed in chapter 4.5 to change the on-site interaction U between
the atoms. This allows us to independently modify all relevant parameters of the
Bose-Hubbard Hamiltonian. Being able to adjust the tunneling of the individual
lattice axes independently as well as the individual axes of the dipole traps, we can
even control the dynamics along all axes separately, and have full control over the
Hamiltonian

H = −
∑
µ

Jµ ∑
〈i,j〉µ

b̂†i b̂j

+
U

2

∑
i

n̂i(n̂i − 1) +
∑
µ

∑
i

Vext,µ(ri)n̂i, (5.19)

where µ indicates the three spatial axes, Jµ the tunneling matrix elements and the
summation index 〈i, j〉µ runs over all nearest neighbor sites along axis µ. Vext,µ(ri)
are the contributions from the global potentials along each axis to the total potential
at the position ri of site i.

This flexibility allows us to study all aspects of the equilibrium states as well as
the dynamics in the Bose-Hubbard model. The main scope of this thesis lies on
the investigation of expansion dynamics, which will be discussed extensively in the
following chapters. In the remainder of this chapter, we will give a brief overview
over studies concerning equilibrium states of the system. First, we will demonstrate
the effects of changing U and J on the coherence properties of ground states in the
lattice, which are indicative of the superfluid to Mott insulator transition. Second,
we will show more exotic equilibrium states that are supported in this model, namely
states with negative absolute temperatures, which are the only thermodynamically
stable states of the attractive Bose-Hubbard model.
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5.3.1 Superfluid - Mott Insulator Transition of 39K

As discussed in chapter 2.2.1, the Bose-Hubbard model exhibits a quantum phase
transition from a superfluid (SF) to a Mott insulating (MI) phase. The transition
point depends on the ratio between the tunneling J and the interaction U as well as
on the external confinement, which sets the local chemical potential in the lattice.
This phase transition has first been observed for 87Rb in optical lattices [20]. As there
are no practical intra-species Feshbach resonances available for 87Rb, the scattering
length was fixed in these experiments, and the SF-MI transition was driven by
varying the lattice intensities, thus mainly changing the tunneling coupling J . Using
experiments with single site resolution [57, 58], it recently became possible to directly
image the formation of the wedding cake structure of Mott insulator domains with
varying occupation numbers [58, 109].

In figure 5.6, we show TOF images of 39K atoms released from 3D lattices at
varying lattice depths and varying interaction strengths, given in terms of the intra-
species scattering length as. We can clearly observe the loss of coherence in the
system for increasing interactions as well as increasing lattice depth. The black line
shows the prediction for (U/J)c ≈ 29.4, which marks the SF-MI transition in 3D
for a filling of n = 1 [107]. Even though the system, being harmonically trapped by
optical dipole traps in addition to the lattice potentials, does not exhibit a constant
density of n = 1 atom per lattice site, the line does qualitatively separate the graph
into a region of coherent states with high visibility peaks after TOF and a region of
low visibility, which indicates incoherent, localized states.

5.3.2 Negative Temperature States

Being able to choose the magnitude as well as the sign of all parameters in the Bose-
Hubbard Hamiltonian allows for the creation of equilibrium states with negative
absolute temperatures. Here, we will only briefly discuss the fundamental concepts
involved as well as some of the experimental results obtained. For a more detailed
treatment, please refer to [192] and the PhD thesis of S. Braun [204].

The possibility for the creation of stable states with negative temperature depends
on the presence of an upper bound on the energy per particle E/N , where E is the
total energy of the system [205, 206]. If such an upper bound exists, the absolute
temperature, defined as

1/T =
∂S

∂E
, (5.20)

where S is the Boltzmann entropy, becomes negative as the system approaches this
upper bound and all constituents of the system start to occupy the highest possible
energy states, leading to a decreasing entropy with increasing energy.

This effect is sketched in figure 5.7 for the occupation of states with quasimomen-
tum q and corresponding kinetic energy Eq in the tight binding dispersion relation
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Figure 5.6: SF-MI transition of 39K (see text).

of a 1D optical lattice. For simplicity, we use the canonical ensemble for distin-
guishable particles, and the populations are thus given by the canonical Boltzmann
distribution at temperature T . For positive T close to T = 0, only the lowest en-
ergy states at q = 0 are occupied, resulting in a state with low entropy. As T is
increased, higher momenta become occupied and at T = ∞, all energy states are
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T → 0+ T > 0 T = ± ∞ T < 0 T → 0-

E
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Figure 5.7: Sketch of the occupation of quasimomentum states at varying temper-
ature T for a non-interacting system of distinguishable particles. The
area of the circles represents the occupation.

occupied evenly, resulting in a maximum entropy. A further increase in total en-
ergy now leads to a population inversion and the entropy decreases for increasing
E, resulting in negative temperatures.

Negative temperatures have so far been realized only in systems of localized spins
[207–209], where the position of the spins was stationary. In our setup, we can create
the first negative temperature system with motional degrees of freedom. We follow
the proposals of [210, 211] and first load a BEC of 39K into an optical lattice at
repulsive interactions U > 0 with a harmonic confinement present (V > 0). Deep
in the Mott insulating regime, these parameters can be inverted so that U < 0 and
the global potential is anti-confining (V < 0). If the state in the deep lattice, where
tunneling is negligible, does not contain any sites with more than one atom, the
entropy generation during this parameter change is only very small [211] as a state
of localized particles on singly occupied sites at |U/J | → ∞ is an eigenstate of the
Hamiltonian both at U and −U . We then decrease the lattice intensities again to
bring the system back to the superfluid regime. Depending on the parameters of
the final Hamiltonian, we obtain states with finite positive temperatures for U > 0
and V > 0 and states with finite negative temperatures for U < 0 and V < 0.

In figure 5.8, we show the momentum distribution of two states in TOF imaging,
revealing the changes introduced to the momentum distribution of the system when
the parameters of the Hamiltonian are changed. For the density distribution shown
on the left side, the final U and V are positive, resulting in a state with small
positive temperature T . The peaks in momentum space are observed at p = 0 and
the corresponding higher lattice momenta (see section 5.2.3), as expected for a state
with a momentum distribution that is centered around q = 0. On the right side, we
show the final state after inverting U and V . The peaks in momentum space are
now situated at momenta at the edge of the Brillouin zone (qx = ±π/d, qy = ±π/d),
corresponding to a macroscopic occupation of the highest kinetic energy states, as
expected for a state with negative temperature.

We were able to show that the created negative temperature states had approxi-
mately the same absolute value of temperature |T | as the positive temperature states
and were stable on the same time scales, as long as the external anti-confinement
after the inversion was adapted to match the magnitude of the initial confining
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Figure 5.8: Momentum distribution of a positive temperature state (left) and a
negative temperature state (right) after 7 ms TOF. Both images are
averages over 20 experimental realizations. The contour plots below
show the 2D tight-binding dispersion relation, where momenta with
large occupation are highlighted by a stronger saturation of the colors.
The white squares indicate the first Brillouin zone. Figure reprinted
from [192].

potential [192].

5.4 Summary

In this chapter, we have shown how to realize the Bose-Hubbard Model using ultra-
cold atoms in optical lattices and fundamental aspects regarding additional global
potentials created by the lattices as well as the minimization of light-assisted col-
lisions have been addressed. We have further discussed observables that can be
measured using absorption imaging, namely the in-situ density distributions and
momentum distributions using TOF methods. Finally, we briefly reported on using
the flexibility of our realization of the Bose-Hubbard Model to create various equi-
librium states, by observing the SF-MI transition as well as negative temperature
states in the lattice.

After establishing the fundamental requirements for the investigation of physics
in the Hubbard model, the following part of this thesis will be devoted to studying
non-equilibrium dynamics of ultracold atoms in homogeneous optical lattices.
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Chapter 6

Expansion Dynamics of
Noninteracting Bosons in Optical
Lattices

In this chapter, we first sketch an experimental procedure employed to induce ex-
pansion dynamics of ultracold atoms in optical lattices. This sets the scope of the
main experimental work in this thesis. We then discuss the dynamics expected for
free bosons in homogeneous lattices and the necessary optimization of the experi-
mental system to ensure the creation of suitable initial states and lattice geometries.
This includes a study of the influence of external potentials on the dynamics as well
as an investigation of higher occupancies in the system. Finally, we discuss suitable
quantitative measures for the investigation of the dynamics, along with experimental
results for the expansion of non-interacting bosons in homogeneous lattices.

Condensate in
dipole trap

Initial state in
deep lattice with

external con�nement

Expansion in
homogeneous

lattice

Figure 6.1: Schematic of the measurement sequence for the expansion dynamics
of atoms in homogeneous lattices. Starting with a condensate in an
optical dipole trap, the lattice is ramped up to create an initial state of
dephased, singly occupied sites. In a simultaneous quench of U/J and
the trapping potential, the expansion into the homogeneous lattice is
then initiated.

To outline the scope of this discussion, we show the envisaged experimental setup
in fig. 6.1. We first load a Bose-Einstein condensate of 39K atoms from an optical
dipole trap into a deep optical lattice potential in order to create a large Mott
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insulating core with n = 1 in the center of the cloud. Our main goal is to ensure
that each lattice site is only occupied by at most one atom, as the presence of higher
occupancies can severely alter the expansion dynamics (see chapter 8.4). In the deep
lattice, where J is very small, any residual potential leads to a dephasing between the
different lattice sites, which localizes all atoms to individual sites [97], leading to a
completely flat quasimomentum distribution nq = const. over the first Brillouin zone
(BZ). This is the initial state for our expansion measurements, which are initiated by
lowering the lattice depth along the expansion directions and compensating external
potentials to make the lattices as homogeneous as possible.

6.1 Preparation of the Initial State and Start of the
Expansion

Horizontal lattice (Y)

Horizontal lattice (X)

Horizontal trap frequency
along expansion direction

lattice
loading

dephasing expansion

9ms 20ms expansion time

0Er

33Er 33Er

0Er

33Er
8E  to 33Er r

0Er

33Er

8Er

350a0

0-165a  to 165a0

2π∙52Hz
0Hz

Scattering Length

Vertical Lattice (Z)

Figure 6.2: Sketch of the experimental sequence for the creation of the initial states
and the initiation of the expansion.

We start the experiments with Bose-Einstein condensates of 39K containing on
the order of 105 atoms in the |42S1/2, F = 1,mF = 1〉 state in an optical dipole
trap with trap frequencies ωx ≈ ωy ≈ 52 Hz and ωz ≈ 120 Hz. For details on
the preparation of condensates of 39K, please refer to chapter 4. Figure 6.2 gives an
overview of the changes in the significant parameters of the system during the initial
state preparation. The condensate is prepared at a magnetic field of B ≈ 398.4 G,
which corresponds to a scattering length as of approximately 350 a0, set by the intra-
species Feshbach resonance at 402.5(3) G [46] (see chapter 4.5 for more details). This
strongly repulsive interaction is chosen in order to prevent the formation of higher
occupancies in the lattice. The optical lattices are then ramped up to a depth of
20Er within 8 ms. For experiments with 39K, we use a lattice with a wavelength of
λ = 736.6 nm (see chapter 5.1.4), which yields a lattice constant d = λ/2 = 368.3 nm.
For some of the experiments performed, the atoms are kept in the 20Er deep lattice,
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while for other experiments, we additionally ramp up the lattice within 1 ms to a
depth of 33Er along all directions. The tunneling time τD in the deep lattice is
6.8 ms in the 20Er case and 58 ms in the 33Er case. The atoms are held in the
deep lattice in combination with the harmonic potential for a dephasing time of
20 ms, during which all residual correlations between the atoms are lost and they
become effectively localized to individual lattice sites [97]. We designed the ramps
to generate as few double occupancies in the system as possible to ensure that the
initial state can indeed be described by mixture of products of local Fock states,
where the individual terms have the form

|Ψinitial〉 =
∏
i

1√
ηi!

(
b̂†i

)ηi
|0〉 , (6.1)

with an occupation ηi ∈ {0, 1} on each site i. For more details on the detection
of double occupancies and the optimization of the loading procedure, refer to sec-
tion 6.3.2. During the dephasing period, the magnetic field is changed to set the
scattering length to values between −165 a0 and + 165 a0. Due to the suppressed
tunneling, the changing interaction does not influence the density distribution of the
state after the preparation procedure.

x

z

y

Jx  > Jy = Jz Jx  = Jy > Jz

1D 2D

Figure 6.3: Potential energy isosurfaces of a 1D lattice configuration (left) and a
2D lattice configuration (right).

After changing the scattering length, the expansion is initiated. This is done by
ramping down the intensity of the lattice beams within 150µs to increase J and
allow tunneling. Depending on the geometry we want to investigate, we either ramp
down only the lattice along the x-direction to a depth Vx = 8Er, which creates a
geometry of 1D tubes with a weaker lattice along the tubes, or both the x- and
the y-lattices, to allow tunneling in 2D lattice planes. Note that it is also possible
to operate in a crossover regime between 1D and 2D by choosing values for the
tunneling Jx < Jy < Jz. The z-lattice is always kept at a high depth to inhibit
tunneling along the vertical direction. The resulting lattice geometries are shown
in terms of their potential energy isosurfaces in figure 6.3. Simultaneously with the
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lattice intensities, the dipole trap beams along the x- and y-direction are turned off
by linearly ramping down their intensities in 150µs. The atoms are now supported
against gravity only by the strong lattice potential along the z-direction. The small
tunneling amplitude Jd ≈ h × 2.7 Hz in a 33Er deep lattice in combination with
the effects of gravity lead to Bloch oscillations with an amplitude of approximately
11 nm, which is much smaller than the lattice constant d, confining the atoms to
individual lattice planes. The dipole trap beam along the z-direction, which creates
a confinement along the horizontal axes, is at the same time adjusted to an intensity
that precisely compensates the overall anti-confining potential of the blue-detuned
lattices in order to create a homogeneous lattice system (see section 6.3.1).

We investigate the expansion dynamics in these homogeneous lattices by allowing
the atoms to evolve for a certain time tE and then image their density distribution
using in-situ absorption imaging along the z-direction (see chapter 5.2.1). This
procedure is repeated multiple times for varying tE to determine the complete time
evolution of the atomic density.

6.2 Dynamics of Non-Interacting Atoms in
Homogeneous Lattices

In order to investigate the expansion dynamics of atoms in optical lattices, it is in-
structive to first consider the example of non-interacting atoms in one dimensional
(1D) homogeneous lattices. As discussed in chapter 3.4.1, the dynamics of non-
interacting atoms reduce to single particle dynamics, as the Hamiltonian can be
decomposed into a sum of single-particle Hamiltonians which can be solved individ-
ually. In the ideal experimental situation, the dynamics are generally described by
the Bose-Hubbard Hamiltonian without interactions and external potentials, given
by

H = −J
∑
〈i,j〉

b̂†i b̂j. (6.2)

The single particle dynamics can now be calculated by assuming an initial wave-
function, in our case that of a completely localized particle, and calculating its evo-
lution over time. A measurement of the particle density in the lattice would then
project the wavefunction onto a position in real space, revealing that the dynamics in
the lattice can be seen as an example of a continuous quantum walk [212, 213]. This
allows for a simple interpretation of eq. 6.2, where the tunneling J gives a timescale
for tunneling events in the lattice, the tunneling time τ = ~/J . In a classical random
walk, where the dynamics result from a succession of individual tunneling events,
one would expect the distance |r(tE) − r(0)| of the atom from its initial position
r(0) to scale with the square root of the evolution time tE, |r − r0| ∝

√
tE. But
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due to the quantum nature of the random walk, the atom tunnels simultaneously
in all directions, as given by the spreading of the wavefunction over time, and the
distance instead scales linearly with tE [59, 214].

In order to extract the dynamics of several localized particles in the lattice, instead
of calculating the evolution of the individual wavefunctions it is sufficient to turn
to a semi-classical description, using the effective dispersion relation of atoms in
optical lattices in the tight-binding limit. According to chapter 2.1.3, the dispersion
relation for a single particle with momentum q is given by

εq = −2J cos (qd) (6.3)

(see top panel of figure 6.4a) and the corresponding group velocity is given by

vg (q) =
1

~
∂εq
∂q

=
2d

τ
sin (qd) (6.4)

(see bottom panel of fig. 6.4a). We can then simply calculate the trajectories of many
atoms in the lattice, starting at positions within the extension of the initial state
with quasimomenta q according to their initial quasimomentum distribution nq, and
sum up the trajectories to get the evolution of the overall density distribution.

The sinusoidal shape of the group velocity as a function of quasimomentum has
direct consequences for the dynamics of atoms in a lattice. Our given initial state
consists of singly occupied lattice sites with completely localized particles that are
released into a homogeneous lattice. For localized atoms, all quasimomentum states
are occupied equally, corresponding to an evenly filled first Brillouin zone. Calcu-
lating the group velocity distribution of this state shows that the number of atoms
with high positive or negative velocities is much larger than the number of atoms
with vanishing velocities. This is due to the fact that the bounded group velocity
has a vanishing derivative with respect to q at the largest velocities, leading to a
higher number of states.

The lower panel of fig. 6.4a shows the group velocity distribution of a uniformly oc-
cupied Brillouin zone. The colors indicate different velocity classes, showing clearly
the dominance of high velocity states (red circles) compared to the low velocity
states (blue circles). To show this effect more clearly, we can calculate the distribu-
tion of group velocities, nvg , for a given quasimomentum distribution nq. In the top
panel of fig. 6.4b, we show two distinct nq, one that is completely flat over the first
Brillouin zone (solid line) and one that is peaked around q = 0 (dashed line). In
the panel below, we plot the corresponding nvg . While nvg has a rather broad peak
around vg = 0 if nq is peaked around zero (dashed line), in the case of nq = const.,
nvg shows two narrow peaks at the maximum absolute group velocities vg = ±2d/τ
(solid line).

Given these calculated group velocities, we can now easily determine how the
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v g 
(d

/τ
)

(a) Top panel: Dispersion relation in the
optical lattice. Bottom panel: Group
velocity in the optical lattice. Points
indicate states equally spaced in quasi-
momentum space. The colors indicate
different velocity classes.

(b) Top panel: Quasimomentum distribu-
tions with nq = const. (solid line)
and nq peaked around q = 0 (dashed
line). Bottom panel: The correspond-
ing group velocity distributions nvg .

Figure 6.4

evolution of the real space density distribution of a given initial state of atoms in a
homogeneous lattice looks like. We do this for a state of atoms that initially evenly
occupies the range in position x ∈ [−30, 30]d and show the results in fig. 6.5, where
each horizontal line corresponds to the 1D density distribution at evolution time tE.
Panel (a) shows the evolution for nq = const. (solid line in the top panel of fig. 6.4b).
The effect of the peaks in nvg are immediately obvious from the two distinct lobes of
high density traveling outwards with maximum group velocity vmax

g = 2d/τ . These
are the expansion dynamics we expect for non-interacting atoms in our experiments.
Panel (b) shows the evolution for the nq peaked around q = 0 (dashed line in the
top panel of fig. 6.4b). In this case there is only one peak visible in the density
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Figure 6.5: Evolution of the density distribution during the expansion for (a):
nq = const and (b): nq peaked around q = 0 (see top panel of fig.
6.4b. The initial density distributions are constant over the central 60
sites.
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distribution centered around x = 0 and the overall evolution is much slower.

As the evolution along different lattice axes decouples for non-interacting atoms,
the expansion in a 2D or 3D lattice geometry is simply given by the superposition
of the 1D dynamics along all expansion directions.

6.3 Optimizing the Expansion

6.3.1 Homogeneity

The goal of these measurements is to investigate the expansion dynamics of bosons
in a homogeneous Hubbard system. In our setup, the blue-detuned lattice beams al-
ways create an anti-confining potential perpendicular to their propagation direction
(cf. chapter 5.1.2). In order to compensate these anti-confining potentials on large
scales, we have to employ red-detuned dipole trap beams with similar beam waists.
As outlined in chapter 4.4, the dipole trap beams along the x- and y-direction have a
highly elliptical shape and their beam waists differ greatly from those of the lattice
beams. Thus they cannot be used for the compensation. The dipole trap beam
along the z-direction, however, is circular and has approximately the same beam
waist as the lattice beams. Since this vertical dipole trap beam creates a significant
confinement only along the two horizontal directions, we are not able to create a
homogeneous potential along all spatial directions. This is not a problem in our
experiments, since we only investigate the expansion dynamics in 1D and 2D and
choose the expansion directions to be along the x-direction in 1D and along the
x- and y-directions in the 2D case, disregarding any dynamics along the vertical
direction.

The approximate beam waists of the lattice beams and the z-dipole trap beam
are given in table 6.1. Note that we specify two waists for each beam, along the
two axes perpendicular to the propagation direction, as the beams are not perfectly
symmetric. All Gaussian waists are close to 150µm and by adjusting their over-
lap carefully, the anti-confining nature of the lattice beams can be approximately
compensated by the confining dipole trap potential along the horizontal directions.
Note, however, that there are deviations in the beam waists on the order of about 10
percent, which can cause residual potentials especially further away from the center
of the system.

In order to optimize the homogeneity of the lattice system, we need to optimize
the relative alignment of the beams. The procedure relies on monitoring the dis-
placement of the clouds that is induced by the confining and anti-confining potentials
of the beams, using in-situ absorption imaging.

A second optimization has to be conducted to find the correct intensity of the
z-dipole beam. For too strong dipole trap intensities Id, there is an overall confining
potential present, as shown on the left side of figure 6.6, which leads to a decreasing

75



Chapter 6 Expansion Dynamics of Noninteracting Bosons in Optical Lattices

Beam wx wy wz
x-lattice – 149.1µm 148.6µm
y-lattice 149.3µm – 144.6µm
z-lattice 163.5µm 155.8µm –
z-dipole 152.7µm 147.0µm –

Table 6.1: Approximate Gaussian waists (wx, wy, wz) along (x, y, z), respectively,
of the lattice and dipole trap beams that are present during the expan-
sion measurements.

confining anti-confininghomogeneous

Figure 6.6: Visualization of a 2D lattice with additional harmonic confinement
(left), optimally compensated external potentials (center) and overall
anti-confinement (right).

quasimomentum q of the expanding atoms while traveling outwards, effectively re-
ducing the expansion velocity of the cloud. For a too small Id, the anti-confinement
created by the blue-detuned lattice beams is not fully compensated and results in an
overall anti-confining potential (right side of figure 6.6), which leads to an increasing
q of the expanding atoms but also to a reduction of the expansion velocity.

The effects of the confining and anti-confining global potentials lead to changes in
the quasimomentum distribution nq(tE) over time and could in principle decrease as
well as increase the observed expansion velocities. However, in an expansion starting
in a state with nq(0) = const, there are two reasons why global potentials generally
lead to slower expansions. First, atoms in a lattice cannot be accelerated indefinitely.
Increasing the quasimomentum of an atom to a value q = π/d will result in a
Bragg reflection that maps its quasimomentum to −π/d, which is the fundamental
mechanism for Bloch oscillations in optical lattices [215, 216]. Second, the group
velocity has a local maximum at quasimomenta q = π/ (2d) (see figure 6.4a). Atoms
with these quasimomenta are the ones that travel fastest in real space and will thus
be the atoms to experience the strongest effects of residual potentials. Any change
in q for these atoms, be it positive or negative, will result in a decreasing group
velocity. To investigate this effect, we look at the 1D Bose-Hubbard Hamiltonian

76



6.3 Optimizing the Expansion

with an additional harmonic potential

H = −J
∑
〈i,j〉

b̂†i b̂j +
∑
i

ω2

2
(i− i0)2 d2, (6.5)

where i0 is the index of the site in the center of the harmonic potential with trap
frequency ω (given in units of J−1/2) and d is the lattice constant. To incorporate
anti-trapping potentials, ω can be chosen to be purely imaginary, resulting in a
negative sign for the second term in eq. 6.5.

ω = 0.03 J
1/2 ω = 0 ω = 0.03 i J

1/2

Density nq Density nq Density nq

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Density; nq (a.u.)0 1

ω = 0.03 J
1/2 ω = 0 ω = 0.03 i J

1/2

Figure 6.7: (a),(c),(e): Evolution of the 1D density distribution during the ex-
pansion, calculated from eq. 6.5 for various ω, stated in units of J1/2.
Imaginary values for ω result in anti-confining potentials. The initial
states have a constant density for x ∈ [−30d, 30d] and a constant nq in
the first BZ. (b),(d),(f): Quasimomentum distribution nq during the
same evolutions. (g),(h),(i): Evolution of the rescaled radius R̃(tE),
calculated from the evolution of the density distribution in (a),(c),(e),
respectively.

In figure 6.7, we show the effects of such harmonic potentials on the evolution
of atoms in optical lattices. We calculate trajectories of individual atoms starting
from an initial state with a constant density in the range of x ∈ [−30d, 30d] and
constant nq in the first Brillouin zone, as described in section 6.2. Figs. 6.7c and
d show the evolution of the density distribution and of nq, respectively, without
any additional potentials present. The density distribution shows the typical bal-

77



Chapter 6 Expansion Dynamics of Noninteracting Bosons in Optical Lattices

listic behavior already shown in fig. 6.5(a), while nq stays constant throughout the
complete evolution.

As a measure of the size of the cloud, we calculate the rescaled radius R̃(tE) =√
R2(tE)−R2(0), where R2(tE) = 1/N

∑
n (xn(tE))2, N is the number of atoms and

xn(tE) is the distance of the n-th atom from the center of the harmonic potential
1. For more details on this quantity and the determination of cloud sizes in general,
please refer to section 6.4.2. Without external forces, R̃(tE) increases linearly with
time, as shown in fig. 6.7h.

The effects of a confining potential on the 1D density nx(tE) and on nq(tE) can
be observed in figs. 6.7a and b. The trajectories of the fastest atoms are visibly
bent inwards as a direct consequence of the confining potential that decreases their
quasimomentum, leading to lower velocities. This effect can be observed even more
clearly in the evolution of the quasimomentum distribution, which exhibits a strong
redistribution of momentum towards smaller |q| during the first 45 τ of the evolution.
The effects on the expansion velocity can be seen in fig. 6.7g, where the initially linear
increase of R̃(tE) is slowed down for large tE and for tE & 50τ , R̃(tE) even starts to
decrease over time.

The changes in nq during an expansion in the anti-confining potential (fig. 6.7f,
ω = 0.03iJ1/2) are exactly the opposite as in the confining case. During the evolu-
tion, nq increases at large |q| and decreases around q = 0. However, the effect on the
evolution of the density distribution is exactly the same in both cases, due to the
high symmetry of the group velocity relation (see fig. 6.4a). This is also reflected in
the evolution of R̃(tE), which is exactly the same in figs. 6.7g and 6.7i.

As a side remark, it should be noted that for even stronger harmonic confinements
or longer expansion durations, the atoms complete several oscillation periods. With-
out the lattice potential, such oscillations in a purely harmonic geometry would lead
to a rephasing of the atomic trajectories and a completely periodic oscillation pat-
tern of the density distribution. In the optical lattice, this behavior is modified
by the cosine dispersion relation that introduces an amplitude dependence of the
oscillation frequency, leading to a rapid dephasing of the individual trajectories.

The fact that the evolution of the density distribution only depends on the
strength of the global potential but not on its sign allows for an easy method of
optimizing the homogeneity of the system. We conduct an expansion measurement
up to a long expansion duration tE > 40τ and record the size of the clouds, which
is determined assuming a function of the form

n(x) = A exp

(
−(x− x0)2

2σ2
x

)
(6.6)

1Here, we treat the atoms in a semi-classical continuum approximation and their position is not
discretized. For the investigation of dynamics in the actual Hubbard Hamiltonian, R̃(tE) is
redefined in a discrete version in eq. 6.9.
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for the atomic density integrated along the y-direction and using a least-squares
fitting algorithm to determine the best value for the Gaussian waist σx. As both
confining as well as anti-confining potentials decrease the final size of the cloud,
maximizing σx with respect to the intensity of the optical dipole trap beam results
in the most homogeneous lattice potentials. Figure 6.8 shows such an optimization
measurement for a 1D expansion along x in a lattice with depths (8, 20, 20)Er along
(x, y, z), respectively.

ωx,y (Hz)

C
lo

ud
 w
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st

Figure 6.8: Gaussian waist σx of the clouds after an expansion for tE = 54 τ in a
lattice of depth (8, 20, 20)Er along (x, y, z), respectively, for varying
intensities of the z-dipole trap. The dipole trap intensity is given as
the bare trap frequency ωx,y that the beam would create along the
horizontal directions if no other potentials were present. The solid line
is a Gaussian fit to the data. The maximum in σx indicates the best
homogeneity along the expansion direction.

Here, the intensity of the dipole trap beam is given as the bare harmonic trap
frequency it would create without other potentials present. For a bare trap frequency
of ωx,y ≈ 43 Hz, the anti-confinement of the lattice beams is optimally compensated
and the cloud reaches its largest extension after the expansion.

6.3.2 Double Occupancies

A second concern is the presence of sites with an occupation of more than one
atom (higher occupancies) in the initial state. For non-interacting atoms, these
higher occupations do not behave differently from singly occupied sites. As soon
as interactions are present, however, the dynamics of sites with initial ηi > 1 are
different from those of singly occupied sites. The difference between the dynamics is
especially strong for large interactions, where doubly occupied sites are essentially
stable objects that slow down the dynamics. For a complete discussion of the effects
of higher occupancies in the initial state, see chapter 8.4.4.
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(b) Many sites with ηi > 1. The inset
highlights the data at small times.

Figure 6.9: Decay of atom number under the influence of a near-resonant light
pulse of duration tp for states with different amounts of sites with
ηi > 1. The light is approximately 110 MHz red-detuned to the high-
field imaging transition (see text).

6.3.3 Imaging Double Occupancies

In order to determine the amount of doubly and higher occupied sites in the lattice,
we first freeze out the on-site number distribution by ramping up the lattice in 50µs
to a depth of 33.0(5) Er along all three axes. In the deep lattice, where tunneling is
strongly suppressed (tunneling time τd = ~/Jd ≈ 58 ms), we set the magnetic field
within 10 ms to a fixed value of B ≈ 400 G, where the scattering length is large.
This freezing out and the decoherence due to differences in the on-site energies
leads to a projection of the wavefunction in the lattice onto a mixture of products
of local Fock states, as discussed in section 6.1 in the context of the initial state
preparation. Each local Fock state is defined by its occupation number ηi (see eq.
6.1). The strongly repulsive interaction between the atoms further stabilizes the
sites with higher occupancy in the deep lattice, due to the energy offset between
sites with different ηi.

We then apply a near-resonant light pulse with a duration tp of a few µs. On
multiply occupied sites, this near-resonant light pulse gives rise to a fast two-body
loss process caused by light-assisted inelastic scattering of atoms [58, 109, 217, 218].
This loss acts as a parity projection of the on-site atom number ηi and results in
the loss of all atoms for even atom numbers and the loss of all but one atom for odd
atom numbers.

In fig. 6.9, we present two typical decay curves of the total atom number in
the presence of the near-resonant light for varying pulse durations. Figure 6.9a
shows the decay for a state that contains only a negligible fraction of sites with
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Figure 6.10: Ratio between the loss rate caused by off resonant scattering (τs) and
by light assisted collisions (τh) for a varying detuning of the laser
relative to the high-field imaging transition.

ηi > 1. In this case, the evolution of the atom number follows a simple exponential
decay which is caused by off-resonant scattering of photons. If there is, however, a
significant fraction of sites with a higher occupancy present, the decay curves look
qualitatively different, as shown in fig. 6.9b. In this case, there is a very fast decay
present during the first few microseconds in addition to the slower loss caused by
off-resonant scattering. The inset of fig. 6.9b shows a close-up of the fast part of
the decay, which clearly exhibits a time-constant much shorter than the slower part.
We use the sum of two exponential decay functions as a model

N(tp) =
1

Ntotal

(
Nh exp

(
− tp
τh

)
+Ns exp

(
− tp
τs

))
, (6.7)

where τh is the fast decay constant associated with the higher occupancies, τs is the
slow decay time associated with off-resonant excitations and Ntotal = Nh + Ns is
the total atom number before the pulse. This fit function is plotted as the green
line in figure 6.9b, with decay times τh = 7.6(1.2)µs and τs = 355(36)µs. As we
are only interested in the losses on sites with ηi > 1, it is desirable that the decay
caused by light-assisted collisions is much faster than the decay due to off-resonant
excitations. We investigate the ratio of the two time constants τs and τh for various
detunings and find an optimal ratio approximately 110 MHz red-detuned relative to
the high-field imaging transition from the

∣∣42S1/2,mI = +3/2,mJ = −1/2
〉

state to
the

∣∣42P3/2,mI = +3/2,mJ = −3/2
〉

state (see figure 6.10).

We extract a measure of the higher occupancy by comparing the number of atoms
with (Npulse) and without (Ntotal) a near-resonant light pulse with a duration of
tpulse = 50µs. In the presence of the near-resonant pulses, the parity projection
on multiply occupied sites has taken place and only atoms on singly occupied sites
as well as the remaining atoms from sites with ηi = 3, 5, . . . are left in the system.
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Figure 6.11: Higher occupancy fh after loading the lattice for varying initial ver-
tical trap frequencies ωz. The blue data was taken at a scattering
length as = 100 a0, the green data at as = 300 a0. The error bars are
the standard deviation of the mean value of four measurements per
point.

The measured atom number Npulse is extrapolated to a pulse duration of 0µs using
the measured slow decay time: Npar = Npulse exp (tp/τs). We then calculate an
approximate measure of the fraction of atoms on multiply occupied sites

fh = (Ntotal −Npar) /Ntotal. (6.8)

Note that, strictly speaking, fh is only a lower bound on the fraction of atoms on
multiply occupied lattice sites, because Npar also contains one atom per site with
ηi = 3, 5, . . . . While being exact for singly and doubly occupied sites, the measured
fractions will be systematically too low whenever a significant amount of sites with
ηi ≥ 3 is present in the system. However, sites with an occupation of ηi ≥ 3 are
dynamically formed only in the weakly interacting regime, and even at U/J = 0,
the difference between fh and the real fraction of atoms on sites with ηi > 1 is small
(see chapter 8.4.1).

6.3.4 Optimizing the Amount of Double Occupancies

The amount of double (and higher) occupancies in the initial state depends strongly
on the interaction strength while loading the lattice as well as on the density of
the condensate before ramping up the lattices. This can be seen in figure 6.11,
which shows the higher occupancy fh in the initial state depending on the initial
trap frequency along the vertical axis before ramping up the lattice. One curve
was taken at a scattering length as = 100 a0 (blue circles), while the other curve
was taken at as = 300 a0 (green circles). In both curves, we can observe that
fh increases with increasing initial trap frequencies, highlighting the influence of a
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higher initial density on fh. Comparing the two curves, it can also be seen that a
stronger repulsive interaction between the atoms leads to a suppression of higher
occupancies. This effect is directly related to the higher interaction energy of a
doubly occupied site at increasing U . For an adiabatic loading, the atoms stay in
the lowest energy state and thus avoid forming doubly occupied sites. Note that if
the interaction was attractive, as < 0, the formation of pairs would be energetically
favorable. For fermions, attractive interactions were observed to lead to a strongly
increased number of double occupancies in the system [219]. For bosons, attractive
interactions can lead to a collapse of the BEC before loading the lattice [190, 191].

In the daily routine of conducting experiments, we do not directly measure the
amount of double occupancies in the system to ensure their absence in the initial
state. Instead, we rely on the fact that the presence of higher occupancies strongly
suppresses the expansion dynamics of strongly interacting atoms (see chapter 8.4.4).
We can thus simply determine the expansion velocity at large U/J to check whether
fluctuations in the initial atom number or beam alignments might have increased
the number of higher occupancies in the initial state.

6.4 Recording the Expansion Dynamics

6.4.1 Imaging Density Distributions

To record the expansion dynamics, we use in-situ imaging along the vertical (z)
axis. Since the expansion dynamics in our experiments take place along the two
horizontal axes, the evolution of the density distribution over time along these axes
can be monitored simultaneously when imaging along the third, vertical axis.

Typical images of an evolution during the experiment are shown in fig. 6.12. The
top row shows the column density of non-interacting atoms in a 1D lattice of depth
(8, 33, 33)Er along (x, y, z), respectively. The second row shows non-interacting
atoms in a 2D lattice of depth (8, 8, 33)Er. In the second row, we can clearly see the
limitations of the approximation of having a homogeneous lattice. For expansion
durations tE larger than 40 τ , the square shape expected for non-interacting atoms
becomes distorted due to residual potentials. We can also observe the tendency of
the cloud to become “pillow shaped”, i.e. the density distribution in the corners
of the square shape tends to extend slightly further than at the edges. This is
due to the finite size of the lattice beams. Perpendicular to the lattice axis, the
lattice beams exhibit a Gaussian shaped intensity profile, with decreasing intensity
at points further away from the beam axis (see chapter 5.1.2). This decreasing
intensity leads to a decreasing lattice depth away from the axis, causing a faster
absolute expansion velocity.
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Figure 6.12: In-situ density distributions (Top two rows) during the expansion in
an (8,33,33)Er lattice (1D) and an (8,8,33)Er lattice (2D) and the
corresponding line density profiles (bottom two rows), obtained by
integrating along the y-direction.

84



6.4 Recording the Expansion Dynamics

6.4.2 Extracting Cloud Sizes

In order to compare the expansion dynamics for varying parameters, we want to
extract a measure for the size of the clouds from the density profiles. To do so, we
first integrate the density distributions along one axis to obtain line density profiles
nx(tE). In the cases of expansions in one dimension, where the expansion takes place
along the x-axis, we integrate along the y-axis of the distributions. In the 2D case,
the expansion takes place along both axes and we can freely choose which axis to
integrate over. Since we want to compare the expansion velocities in the 1D and
2D cases, we choose to also integrate along the y-axis. Such line density profiles,
extracted from the absorption images shown in the two upper rows of fig. 6.12, are
shown in the two lower rows of fig. 6.12.

In the following, we discuss two different measures for the cloud size that can
be used to determine expansion velocities. The first measure is that of the half-
width-at-half-maximum (HWHM) of the clouds, which is a reliable quantity when
working with experimental data. The second measure is the rescaled cloud radius
R̃, which is more sensitive to the detailed shape of the density profiles and will be
used when investigating calculated density profiles, but can not be applied directly
to our experimentally observed density distributions due to its sensitivity to imaging
noise.

The Half-Width-at-Half-Maximum

To determine the evolution of the HWHM during the expansion, we use the following
procedure: for each line density profile, we determine the maximum density nmax.
Starting from the outer edges of the profiles, we then move inwards in both directions
and determine the positions where the density first reaches nmax/2, using linear
interpolation between the points. Half of the distance between these two positions
is recorded as the HWHM of the cloud. Figure 6.13a shows some of the line density
profiles of an expansion series in one dimension with an interaction U/J = 0 at
various expansion durations tE. The points where nx reaches nmax/2 are indicated
by the dashed lines.

The HWHM has the disadvantage of being insensitive to the detailed shape of the
cloud. However, since it is not a priori clear how the shape of the cloud will evolve
during expansion experiments with varying interactions, any measure that relies on
explicit assumptions about the cloud shape would not be suitable.

The Rescaled Radius R̃

The ideal measure for the cloud size would be that of the rescaled radius

R̃(tE) =
√
R2(tE)−R2(0), (6.9)
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(a) Line density profiles nx after various
expansion durations. The positions
where nx = nmax/2 are indicated by
the dashed lines. Half of the distance
between the dashed lines is recorded
as the HWHM of the cloud.
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Figure 6.13

where R2(tE) in a 1D lattice is given by

R2 (tE) =
1

N

L∑
i=1

〈n̂i〉 (tE) · (i− i0)2 d2. (6.10)

The sum runs over all L sites, 〈n̂i〉 is the expectation value (or measured value) of
the atomic density on site i, i0 is the center of the initial state and N is the total
atom number. R̃(tE) has the advantage that it takes the full shape of the cloud into
account by explicitly including the density at each lattice site.

The rescaled cloud radius R̃(tE) is a widely used measure to extract cloud sizes
of calculated density distributions and to investigate their dynamics. However, it is
not well suited for experimental data, due to the presence of noise at large distance.
Any noise will be weighted with the square of the distance from the cloud center
(see eq. 6.13), and thus will in general not average out for large distances.

In fig. 6.13b, we demonstrate this problem for an assumed Gaussian shaped den-
sity distribution (only one half of the distribution is shown). The top panel shows
two density distributions, one with a simple Gaussian shape (green) and one with
additional random noise added to it (blue). In the lower panel, the result of the
summation R2

L =
∑L

i=1 〈n̂i〉 i2 is shown for varying limits L. For the density dis-
tribution without noise, the value of R2

L becomes independent of L at large L and
can be associated with the true value of R2. This is possible because the density
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distribution decays to zero for large i. For the density distribution with additional
noise (blue), this is not the case. R2

L fluctuates strongly for large L, even though
the random noise is centered around 〈n̂i〉 = 0, due to the fact that it is weighted
with the square of the distance |i− i0|.

Thus, R̃(tE) is not suited for the analysis of experimental data. One can overcome
this limitation by first fitting a peak function to the data that is guaranteed to
approach zero for large i and then calculating R̃(tE) from these fit functions. This,
however, only works if we have a pre-existing knowledge about the evolution of the
shape of the density distribution during the expansion. For non-interacting atoms,
this method is used in chapter 7.2 to verify that their expansion velocity agrees
with theoretical predictions, but in the more general case of interacting atoms it is
not easily applicable and requires a model for the expected cloud shapes. We will,
however, use R̃(tE) when investigating the evolution of calculated density profiles
in chapter 8, as it is more sensitive to the exact shapes of the distributions than the
HWHM.

6.4.3 Extracting Expansion Velocities

The Radius Expansion Velocity vr

As discussed above, the rescaled radius R(tE) can be used to investigate the dy-
namics of calculated density distributions. We can then define the radius expansion
velocity vr as

vr(tE) =
dR̃(tE)

dtE
. (6.11)

For non-interacting atoms, vr is equal to a more intuitive quantity, namely the
average velocity

vav(tE) =

√√√√ 1

N~
∑
q

(
∂εq
∂q

)2

nq(tE), (6.12)

with the one-particle dispersion relation εq = −2J cos (qd). This quantity is simply
the average over the group velocity at a certain q, weighted by the respective density
in quasimomentum space. For non-interacting atoms, vav(tE) is constant over time
because no redistribution in nq(tE) takes place during the evolution and its value
can be directly calculated from the initial quasimomentum distribution. In the case
of nq(0) = const. in the first Brillouin zone and an expansion in 1D, it is given by
vav =

√
2(d/τ).

Comparing vr and vav allows for some further insight into the expansion dynamics.
In the non-interacting case, vr is always equal to the average velocity vav. For inter-
acting atoms, however, this relation is in general not satisfied. Even if nq(tE) were
to stay constant during the evolution, the fact that scattering events can exchange
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the momenta of two atoms while leaving nq unchanged can lead to a significantly
different evolution of R̃(tE), and hence to a different vr, than predicted by the aver-
age velocity vav. Thus, deviations between vr and vav are an indication of the effects
of scattering on the evolution dynamics of interacting atoms, which will be discussed
in further detail in chapter 8.4.3. Very large differences between vr and vav arise
in the hard-core boson regime in 1D, where quasi-condensation leads to a strong
increase in vav which is not reflected in the evolution of the density distribution (see
chapter 9).

Note that we can generalize the definition of R̃(tE) to dimensions higher than one
by defining

R2 (tE) =
1

N

N∑
i=1

〈n̂i〉 (tE) |ri − r0|2 , (6.13)

where |ri − r0| is the distance between site i and the center of the initial state. R̃(tE)
is again defined as

√
R2(tE)−R2(0) and, in the non-interacting case, we expect it

to behave as
R̃(tE) = vrtE. (6.14)

The radius expansion velocity for our given initial state of completely localized atoms
is then given as

vr =
√

2D
d

τ
, (6.15)

where D is the dimensionality of the investigated system.

The Core Expansion Velocity vc

For the experimental data, we determine the cloud size using the HWHM, as R(tE)
cannot be determined reliably due to the noise on the images. To extract the core
expansion velocities vc, we apply linear fits to the time evolution of the HWHM. For
non-interacting atoms, where the dynamics during an expansion are dominated by
the atoms with the largest group velocities (see section 6.2), we expect the expansion
velocity of the HWHM to be given by vc = 2d/τ .

Figure 6.14 shows the time evolution of the HWHM extracted from the data partly
shown in fig. 6.13a with the linear fit plotted as the solid line. We use an equation
of the form

HWHM(tE) = r0 + vctE, (6.16)

where r0 is a second, free parameter. The fitted velocity is vc = 2.20(5)d/τ , where
the error is given by the standard deviation of the fit. The residual deviation from
the theoretically predicted value of vc = 2d/τ can be accounted for by noting that
we observe long term fluctuations in the lattice depths on the order of 5% over
several days. These fluctuations are most likely caused by small thermal drifts in
the beam alignment. We do not specify these fluctuations as statistical errors in our
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Figure 6.14: Time evolution of the HWHM during an expansion in one dimension
at U/J=0. The solid line is a linear fit to the data with a fit range
indicated by the dashed lines.

measurements, as they are in general highly correlated for measurements taken on
the same day, but they add an overall uncertainty in the absolute value of the lattice
depth. Taking this into account, the agreement between our experiments and the
theoretical prediction is very good.

The linear fit is not applied to the complete data set, but instead within a certain
fit range. Points at times shorter than the fit range are left out, as well as points at
times larger than the fit range. The reasons for this are as follows: for times larger
than the fit range, the atoms with the highest group velocities will already reach
the outskirts of the lattice potential, where the assumption of homogeneity is not
valid anymore. This is due to residual global potentials caused by slight mismatches
between the beam sizes of the lattice beams and the dipole trap beams as well as
due to the fact that the lattice depth is given by the local intensity of the lattice
beams. Since these beams have an overall Gaussian shaped intensity distribution,
the lattice will be less deep the further away the atoms are from the center of
the beam. For short expansion durations, the cloud shape is not determined by
the evolution dynamics, but rather by the initial cloud shape given by the initial
confining potential. This convolution with the initial size leads to a slower evolution
of the HWHM during the first tunneling times. For the investigation of R̃(tE), this
initial size effect is mitigated by subtracting R2(0) in eq. 6.9. The evolution of the
HWHM does not in general follow the same square-root behavior as R(tE), and a
subtraction of the initial size cannot be done as easily.

Figure 6.15 demonstrates the effects of an initial state with a finite extension
Rc(0), given by the initial HWHM of the atom cloud, on the evolution of the density
distribution during the expansion. The top row shows the density distributions,
calculated as described in section 6.2, for initial states of localized atoms with a
varying initial extension. For very small initial states, the characteristic density
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Figure 6.15: Top row: Calculated density profiles for states with varying initial
radius Rc(0). Bottom row: Evolution of the extracted HWHM (solid
blue lines). For comparison, the dashed lines show an evolution
HWHM(tE) = vctE with vc = 2d/τ .

maxima, traveling outwards with a velocity of 2d/τ , form immediately as narrow
peaks. For larger initial states, these maxima become broader and are formed only
after the initial high density core has dissolved, but are moving with the same high
velocity.

This behavior can be investigated more quantitatively by extracting the evolution
of the HWHM of the calculated density distributions, which is plotted in the bottom
row (blue lines) for each initial Rc(0). For comparison, the dashed line in each
plot shows an expansion starting at zero with the maximum velocity vc = 2d/τ .
The evolution of the HWHM is consistent with a simple linear scaling with Rc(0).
The HWHM stays approximately constant until tE ≈ τRc(0)/(2d), then evolves
faster than 2d/τ for a few tunneling times before approaching the asymptotic core
expansion velocity of vc = 2d/τ . The HWHM at large tE is then approximately
Rc(0)/2 larger than that observed in an expansion with Rc(0) = 0.

6.5 Summary

In this chapter, we have shown that it is indeed possible to use ultracold atoms in
optical lattices to investigate expansion dynamics in homogeneous 1D and 2D Bose-
Hubbard systems. We can create initial states that are products of local Fock states
with all ηi ∈ {0, 1}, release them into the lattice and investigate the evolution of the
density distribution over time. The global external potentials can be compensated
by additional dipole trap beams, and the expansion dynamics are in good agreement
with the theoretical expectations for non-interacting atoms. We have furthermore
introduced the HWHM and the core expansion velocity vc as appropriate measures
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for the quantitative analysis of the dynamics, which we will use in the following
chapters to investigate the expansion of interacting fermions (chapter 7) and bosons
(chapter 8).
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Chapter 7

Expansion Dynamics of Fermions in
the Hubbard Model

The main focus of this thesis is on the dynamics of ultracold bosons in optical
lattices. However, results obtained earlier on the dynamics of a two-component
Fermi gas in homogeneous lattices [71] are very instructive in comparison to later
results for the bosonic case. In this chapter, we first briefly discuss the experimental
procedure used to investigate the expansion dynamics of interacting fermions in the
Fermi-Hubbard model. A more detailed description of the experimental procedures
and results can be found in [71, 196]. The creation of the ultracold Fermi gases is
discussed extensively in [92] and will be omitted here.

We then investigate the behavior of non-interacting fermions during expansions
in the lattice, which is shown to be directly analogous to that of the non-interacting
bosons discussed in chapter 6. This is a direct consequence of the initial states of
both systems consisting of completely localized atoms.

Finally, we turn to the dynamics of interacting fermions in 2D lattices and find a
strong reduction of expansion velocities with increasing interaction strength accom-
panied by the appearance of strongly bimodal density distributions. This behavior
is completely symmetric with respect to the sign of the interaction, as a consequence
of a dynamical symmetry of the Hubbard Hamiltonian. In a collaboration with the
group of Prof. Achim Rosch, a semi-classical theory based on a Boltzmann equa-
tion in relaxation time approximation was developed that successfully describes the
behavior of interacting atoms in terms of diffusive dynamics.

7.1 Initial State and Experimental Sequence

The preparation of the initial state is analogous to the procedure described in chapter
6.1 for the expansion experiments with bosons. However, instead of preparing a state
of localized atoms with no doubly occupied sites, we create a two component band
insulator state consisting of one fermion of each component per lattice site.

The spin states used are the |F = 9/2,mF = −9/2〉 and the |F = 9/2,mF = −7/2〉
states of 40K in an equal mixture with a total of N ≈ 1−1.5×105 atoms. The initial
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Figure 7.1: Sketch of the experimental sequence for the preparation of the initial
states and the expansion measurements. Figure reprinted from [71].

temperature T of the cloud of Fermions before loading it into the optical lattice,
given in units of the Fermi temperature TF , is T = 0.13(2)TF .

Figure 7.1 shows a sketch of the employed experimental sequence for the initial
state preparation and the expansion measurements. Starting in an optical dipole
trap, the trap frequency is first increased to approximately 2π × 100 Hz along the
horizontal (x, y) directions and 2π×400 Hz along the vertical (z) direction to increase
the density of the cloud of atoms. Then, the intensity of the blue-detuned lattice
beams with a wavelength λ = 738 nm1 is linearly increased over 56 ms to a depth of
8Er along all directions. In a second ramp of only 200µs duration, the lattice depth
is further increased to 20Er. The atoms are kept in this deep 3D lattice, combined
with a strong harmonic potential, for 40 ms to induce a complete dephasing of all
lattice sites with respect to each other [97] and effectively localize the atoms. During
the hold time in the deep lattice, the interaction between the two species of fermions
is adjusted using a Feshbach resonance located at B0 = 202.1 G [220]. While loading
the lattice, the field is at B = 209.1 G, corresponding to vanishing interactions. For
the expansion measurements, the field is changed to values between 206 G and 260 G,
corresponding to scattering lengths in the range of −400 a0 to +150 a0. Due to the
suppressed tunneling in the deep lattice, the state after this preparation procedure
has a well defined density distribution, independent of the final interaction between
the atoms. This ensures that the following expansion measurements always start
from the same initial state.

The expansion dynamics are initiated by a simultaneous quench in the lattice
depth and the external confining potential. The lattice depth is ramped down lin-
early within 200µs to values between 4Er and 15Er and the intensities of the dipole
trap beams are simultaneously adjusted to compensate the anti-confinement induced
by the lattice beams (see 6.3.1). The expansion then takes place in a homogeneous

1A slightly different wavelength compared to the experiments with 39K is used to minimize the
light induced losses (see chapter 5.1.4)
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lattice, governed by the Fermi-Hubbard Hamiltonian

ĤFH = −J
∑
〈i,j〉σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓, (7.1)

where J denotes the tunneling, U the on-site interaction between the two species,
and i and j are site indices. 〈i, j〉 indicates a summation over nearest neighbors
and the index σ ∈ {↑, ↓} denotes the two different species of fermions. ĉ†iσ and ĉiσ
are the creation and annihilation operators for a fermion of species σ at site i while
n̂iσ = ĉ†iσ ĉiσ is the density of species σ on site i. In the following discussion, τ refers
to the tunneling time ~/J , while d is the lattice constant, given by λ/2.

For the data shown in figures 7.2, 7.3, and 7.4, the expansion takes place in a
3D lattice geometry. Note that due to the gravitational potential, the dynamics
along the vertical axis are influenced by the acceleration due to gravity and Bloch
oscillations in addition to the expansion dynamics [221]. As the vertical axis is also
our imaging axis, we always average along this direction when taking experimental
data and expect no qualitative differences to be visible in our results. However,
For the data that is quantitatively compared to theoretical predictions (shown in
figure 7.7), the experiment is conducted in a 2D geometry. In this case only the
two lattice axes along the x- and y-direction are ramped down at the start of the
expansion, while the vertical lattice is kept at a depth of 20Er to inhibit tunneling
along this direction. In these case, we use J2D to denote the tunneling along the x-
and y-directions and neglect tunneling along the z-direction.

7.2 Noninteracting Fermions in 2D

Figure 7.2 shows the evolution of the fermions in the 3D lattice at U = 0. Completely
analogous to the evolution of noninteracting bosons in 2D (see fig. 6.12), we can
observe how the round shape of the initial density distribution is changed into the
characteristic square shape given by a ballistic expansion with the group velocity
distribution of the initial state. Both in the bosonic expansions (see chapter 6.2) and
in this case of expanding fermions, the initial state consists of completely localized
atoms, with a quasimomentum distribution nq that is flat over the first Brillouin
zone. Without interactions, nq remains constant throughout the complete evolution
in the lattice and the density distribution after a given expansion time tE is simply
given by the sum over all expanded single particle wave-functions. As the evolution
of these single-particle wavefunctions is identical in the bosonic and the fermionic
case, the density distributions necessarily look the same for non-interacting particles
starting from identical initial states, regardless of the bosonic or fermionic nature of
the system.

For long expansion durations (tE > 50 τ), the two characteristic effects that limit
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Figure 7.2: Column density profiles of expanding fermions in a 3D, 8Er deep lattice
for U = 0, imaged along the z-direction. The evolution time tE is
indicated in each density plot. Figure adapted from [196] with kind
permission of the author.

the accessible time scales of the expansion measurements become visible. In the
density plot for tE = 66 τ , we can observe the characteristic pillow shape of the
cloud of atoms, where the evolution appears to be faster along the diagonals than
along the main axes. This is due to the finite size of the lattice beams, as discussed in
chapter 6.4.1. In the plot for tE = 146 τ , another experimental limitation becomes
obvious. Due to slight mismatches in the beam waists of the dipole trap beams
and the lattice beams, as well as misalignments of these beams, the overall global
potential can never be made completely flat. The residual inhomogeneities lead to
a distortion of the cloud shape for large expansion durations. For a quantitative
analysis of the evolution, we thus only use the data for tE . 45 τ .

To confirm that the evolution of non-interacting fermions indeed follows the
quantum-mechanical predictions, we determine the radius R of the clouds. As dis-
cussed in chapter 6.4.2, this cannot be done straightforwardly from the measured
data, due to experimental noise. In this case, a 2D gaussian fit function is used, from
which the radius can be extracted (see [196] for more details). The total evolution is
then fitted with a function R̃(tE) =

√
R(tE)−R(0) = vrtE to determine the radius

expansion velocity vr (see chapter 6.4.2 for more details).

In fig. 7.3, we plot vr of non-interacting expansions for various lattice depths.
As expected, the expansion velocity is directly proportional to the tunneling J and
agrees with the quantum-mechanical prediction of eq. 6.15, shown as the black line.
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Figure 7.3: Expansion velocity vr for various lattice depths (circles). Fit errors
are comparable to the size of the data points. The black line is the
quantum-mechanical prediction. Figure reprinted from [71].
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Figure 7.4: Column density profiles of fermions in a 3D, 8Er deep lattice after an
expansion for tE = 45.5 τ at various interactions U/J . Figure adapted
from [71].

7.3 Interaction Effects

The observed dynamics of the expanding fermions change dramatically when inter-
actions are introduced into the system. This can be seen in fig. 7.4, which shows the
density distribution after an expansion for tE ≈ 45.5 τ for various interactions U/J
in a 3D lattice with a depth of 8Er. The density distribution for U/J = 0 shows the
aforementioned square shape of ballistically expanding, free particles. For increasing
|U/J |, the dynamics gradually change to an almost bimodal expansion. Already at
a moderate |U/J | ≈ 3, a significant amount of atoms remains in the center of the
distribution and retains the round shape of the initial state while only a few atoms
are visible in a square shaped ballistic background.

This behavior is directly related to the breaking of integrability in this system.
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While it is integrable in the non-interacting case (see chapter 3.4), a system of
interacting fermions in 2D or 3D is non-integrable and can thermalize. The frequent
collisions occurring in the high density region of the cloud then drive the system to
an approximate local thermal equilibrium [77, 222], leading to diffusive dynamics.
As the diffusion equations governing these dynamics are rotationally invariant, the
main portion of the cloud keeps its round initial shape.

In the outer parts of the cloud, the density becomes so low that scattering events
between two particles become very rare. Here, the assumption of local thermaliza-
tion breaks down and the particles behave ballistically again, as their mean free path
becomes larger than the cloud size. This leads to the square shaped background that
is always present in fig. 7.4.

Interestingly, the onset of the bimodal evolution dynamics is independent of the
sign of U . At first glance, this seems counterintuitive, as repulsive interactions
increase the total energy of the initial state while attractive interactions reduce it.
One could thus näıvely expect faster dynamics in the repulsive case. However, due to
the high symmetry of the dispersion relation in the lattice, combined with a highly
symmetric initial state, it can be shown that the behavior has to be exactly equal
for positive and negative U .

7.3.1 U ↔ −U Symmetry

The apparent symmetry of the expansion velocities for various interactions with
respect to a transformation U → −U observed in fig. 7.4 reflects a fundamental
dynamical symmetry of the Hubbard Hamiltonian for certain initial states and ob-
servables. If both the initial state as well as the observable in question are invariant
under time reversal, the dynamics of the observable remain unchanged by the trans-
formation H → −H. In the homogeneous case, the Hamiltonian consists only of
the kinetic term and the interaction term:

H = Hkin +Hint, Hkin ∝ J, Hint ∝ U. (7.2)

From this, we can infer that a time inversion of the system, achieved by inverting
the sign of the Hamiltonian, is equivalent to exchanging the signs of U and J :

H → −H ⇔ J → −J and U → −U. (7.3)

Thus, if the evolution is also invariant under the transformation J → −J , it nec-
essarily follows that it has to be invariant under the transformation U → −U . Due
to the bipartite nature of the lattice and the resulting symmetry of the dispersion re-
lation in the tight binding approximation, εq = −2

∑
m cos(qmd) (here, the sum runs

over the spatial dimensions), changing the sign of the tunneling J can be expressed
by shifting all momenta q → q + (π, π, π)/d. Thus, if the initial state |Ψinit〉 and
the observable are invariant under time reversal as well as under the transformation
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q→ q+(π, π, π)/d, it follows that the evolution of the observable is invariant under
a transformation U → −U .

A rigorous proof of this dynamical symmetry can be found in [71] and [196]. Note
that the proof does not rely on the fermionic nature of the system and can thus be
directly applied to bosonic systems as well, which will be relevant in chapter 8.
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Figure 7.5: Visualization of the effects of the transformations q → −q (a) and
q → q + π/d (b) on the quasimomentum distribution of a state with
nq = const. Each plot shows the group velocities of quasimomentum
states spaced evenly in q. The color of the circles indicates where a
point in q of the initial distributions is mapped to. For states with
nq = const., no net redistribution of momentum takes place under the
two transformations.

The initial state of our experiment is always one with completely localized atoms,
resulting in a quasimomentum distribution nq that is constant over the first Brillouin
zone. This implies that nq is symmetric about q = 0. For such a distribution,
the condition of time-reversal symmetry is always fulfilled, as the transformation
t → −t can be represented by exchanging all momenta q → −q. For distributions
symmetric about q = 0, this transformation does not change the overall distribution
of momenta. The effect of such a transformation on the initial state with nq = const.
is visualized in fig. 7.5 (a), where each circle represents one state in momentum space.
While the transformation changes the position of each point in momentum space,
the overall distribution stays constant and results in exactly the same time evolution.

The second requirement of symmetry with respect to the transformation q →
q + (π, π, π)/d is also fulfilled for the initial states of fully localized atoms. Figure
7.5(b) shows the effect of such a transformation on the aforementioned initial state.
Again, even though each individual state is shifted in q, due to the high symmetry
of the global initial state no net change to the quasimomentum distribution takes
place.

The observable we are concerned with in this and the next chapter is the atomic
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density n̂i(t) = ĉ†i↑ĉi↑ + ĉ†i↓ĉi↓. This observable neither depends on q nor on t and
thus also fulfills the conditions stated above.

Note that another important observable, namely the quasimomentum distribution
nq, does not fulfill the criteria for the dynamical symmetry. As nq depends explicitly
on q, it is in general not invariant under either of the two discussed transformations.
Considering the limit of long evolution times for our given initial state for positive
and negative U , it can be seen straightforwardly that different quasimomentum
distributions have to emerge. In the case of U < 0, the initial band insulator state
has a negative interaction energy Eint. For long evolution times, however, all doubly
occupied lattice sites will dissolve and Eint → 0. As the total energy of the system
is conserved, this must be accompanied by a reduction in kinetic energy which leads
to an accumulation of density in quasimomentum space around q = 0. For U > 0,
however, the initially positive Eint has exactly the opposite effect. In the long time
limit, this energy is converted into an increased kinetic energy, which results in
an accumulation in quasimomentum space around q = π. It is only due to the
symmetry of the group velocity relation in the lattice that these two states result in
the same evolution of the density distributions in real space.

7.3.2 Diffusive Dynamics from the Boltzmann Equation

The description of the observed dynamics of interacting fermions in terms of diffusive
dynamics was developed in collaboration with the group of Prof. Achim Rosch [71].

When speaking about diffusion, one usually considers the motion of a particle
inside a medium. In these cases, diffusion constants, which in general are inversely
proportional to the density of the medium, are usually assumed to be constant
during the evolution of the particle. In our experiment, however, we are looking
at an entirely different situation. For a two-component fermi gas, one species acts
as the scattering medium for the other species, and in a non-equilibrium situation
changes in the density of either species modify the diffusion constant for the other.
It is thus necessary to explicitly include the dependence of the diffusion constant on
the density D = D(n) into the diffusion equation of the form:

δtn = ∇D(n)∇n. (7.4)

Here, we assume the evolution for the densities nσ of the individual species to be
equal, so we can describe the evolution in terms of the total density n = n↑ + n↓.
The asymptotic behavior of D(n) for small n can be understood by considering that
D is proportional to the time τsc between scattering events, which is proportional to
1/n for small densities. Thus, D(n) diverges as 1/n for small densities. This makes
eq. 7.4 a highly singular superfast diffusion equation, leading to curious, but rather
unphysical consequences [71, 223]. Far away from the center of the cloud, how-
ever, such a hydrodynamical approach breaks down and the expansion is no longer
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7.4 Core Expansion Velocities

governed by the diffusion equation but by the dynamics in the low density tails.
Here, the atoms scatter so rarely that their dynamics become completely ballistic
again, with a maximum group velocity of vg = 2d/τ along each spatial dimension.
This crossover from diffusive to ballistic dynamics regularizes the singular diffusion
equation and re-establishes a physically meaningful behavior.

To describe the dynamics in the diffusive regime as well as in the ballistic tails, a
semi-classical Boltzmann equation in relaxation time approximation of the form

δtfq + vq∇rfq + F(r)∇qfq = − 1

τ(n)

(
fq − f 0

q(n)
)

(7.5)

can be used, where n is a vector (n, e) consisting of the density n(r, t) and the local
energy e(r, t). The equation describes the time evolution of the semi-classical mo-
mentum distribution fq(r, t) as a function of time t and position r under the influence
of a force F. The transport scattering time τ(n), which describes the relaxation of
the system towards an equilibrium momentum distribution f 0

q, is determined from
a microscopic calculation of the diffusion constant for small interactions (see sup-
plementary information to [71]). Results of numerical simulations based on eq. 7.5
are shown in fig. 7.6.

 U/J2D=0  U/J2D=1.2  U/J2D=2.2  U/J2D=4.2

Figure 7.6: Density profiles from numerical simulations of the Boltzmann equation
(eq. 7.5) in 2D for various interactions U/J2D at tE = 45.5 τ . The
calculations were performed by S. Mandt and the figure is adapted
from [71].

The profiles resulting from the numerical simulations capture the qualitative fea-
tures of the expanding fermions very well. The square shape of ballistically ex-
panding atoms at U/J2D = 0 already develops a round high density core region for
small interactions (U/J2D = 1.2). For increasing interaction strength, the dynamics
become completely dominated by the high density region and only very few atoms
leave the core and enter the ballistic low density regions.

7.4 Core Expansion Velocities

In order to investigate the effects of increasing interaction strengths more quanti-
tatively and allow for a more detailed comparison, we extract expansion velocities
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Chapter 7 Expansion Dynamics of Fermions in the Hubbard Model

from the density profiles. While fitting a 2D Gaussian function to the distributions
works reasonably well for the profiles of non-interacting atoms, it becomes rather
arbitrary for the cloud shapes observed for interacting atoms. This is due to the
bimodal nature of the profiles with a high density peak and low density ballistic
wings, which cannot be captured by a simple 2D Gaussian peak. As discussed in
chapter 6.4.2, extracting the radius R directly from the measured density profiles
is not possible, due to the strong susceptibility of this quantity on imaging noise
far away from the center of the cloud. Thus we choose the core width Rc, given by
the HWHM of the cloud, as a robust measure for the cloud size (see 6.4.2). This
quantity is very sensitive to the shape of the cloud. Without a strong central core
present, the HWHM tracks the evolution of the ballistic atoms but for a significant
fraction of atoms in a central core, it tracks the evolution of this high density region.

The expansion velocities vc in this case are extracted by fitting the evolution of
Rc with a function Rc(tE) =

√
Rc(0)2 + v2c t

2
E, where R0 and vc are free parameters.

The resulting core expansion velocities for expansions in 2D lattice geometries at
varying lattice depths J2D and interaction strengths U/J2D are shown in fig. 7.7 as
circles. The lattice depth along the x- and y-direction is indicated by the color of
the circles.
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Figure 7.7: Core expansion velocities vc vs. interaction U/J2D for expanding
fermions in 2D lattices with varying lattice depth (indicated by the
color of the circles). The red line is the result of 2D numerical sim-
ulations of eq. 7.5. The numerical simulations were performed by S.
Mandt [71], the figure is adapted from [196] with kind permission of
the author

As expected, all data points for different lattice depths fall on one curve, when
the units are chosen as the natural units of the Hamiltonian (eq. 7.1), which only
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depends on U and J2D. For small values of |U/J2D|, vc is large and agrees with the
maximum group velocity possible in a lattice, vmax

g = 2d/τ . As soon as the interac-
tion strengths is increased, however, vc is drastically reduced. Such a reduction is
naturally expected for large |U/J2D| > 8, where the interaction energy of a doubly
occupied site is on the order of the band-width and the dissolution of these double
occupancies becomes energetically suppressed. However, we observe that vc already
drops to zero at |U/J2D| ≈ 3, reflecting the significant qualitative change in the
dynamics already observed in the density profiles shown in fig. 7.4. For even larger
|U/J2D|, the core starts to shrink over time, leading to negative values for vc. This
can be interpreted as an essential freezing of the dynamics of the core, which only
dissolves by emitting particles. As Rc follows the evolution of the edges of the core,
this leads to a decreasing Rc over time and results in negative values for vc.

The evolution of vc with changing |U/J2D| is captured very well by the results
obtained from numerical simulations of the Boltzmann equation (eq. 7.5) shown as
the red line in fig. 7.7. Both the fast decay of vc as well as the negative expansion
velocities can be observed. The full quantum dynamics is certainly more complex
than the description in terms of a semi-classical Boltzmann equation, including, e.g.,
the formation of long distance entanglement in the system [81, 224] and the existence
of (repulsively) bound pairs [146]. However, the good agreement between the semi-
classical model and our experiments are a clear indication that the interpretation
of the dynamics in terms of local thermalization and diffusion does indeed give an
adequate description of the main features observed in our experiments.

7.5 Summary

In this chapter, we investigated the dynamics of interacting fermions in optical lat-
tices. We showed that the possibility of creating homogeneous lattice potentials in
our experiment provides a versatile setup for studies on the non-equilibrium dynam-
ics of quantum systems. As a main conclusion, we established that the dynamics of
fermions in 2D lattices can be well described by a theory based on diffusive dynamics
in a Boltzmann equation. This supports the notion that the effects of local relax-
ation and thermalization play a significant role in 2D Hubbard systems, which we
also investigate in the next chapter in the context of the Bose-Hubbard Hamiltonian.
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Chapter 8

Expansion Dynamics of Interacting
Bosons in Optical Lattices

In this chapter, we investigate the dynamics of interacting bosons during expansions
in homogeneous Hubbard systems in one and two dimensions. We start by investi-
gating the dynamics of bosons in 2D, due to the conceptual similarity to expanding
fermions in 2D, discussed in chapter 7. We find that bosons also behave diffusively
when interactions are introduced into the system and exhibit bimodal density dis-
tributions that closely resemble those observed in the fermionic expansions.

We then focus on the dynamics in one dimensional systems. At large interactions,
we find strong deviations from the diffusion present in higher dimensional systems.
These deviations are shown to be a direct consequence of the system approaching
the integrable limit, where it can be mapped onto a system of free fermions (see
chapter 3.4.2).

At intermediate interaction strengths in 1D, where the integrability of the system
is broken, we find a pronounced minimum of the expansion velocity accompanied by
bimodal density distributions reminiscent of the diffusive dynamics observed in the
2D case. This behavior is in good agreement with time-dependent density matrix
renormalization group (t-DMRG) calculations that were carried out by Stephan
Langer et al. [225].

The high flexibility of the optical lattice setup allows us to investigate the dynam-
ics not only in 1D and 2D, but also in the crossover regime between these two limits.
Breaking the integrability of 1D hard-core bosons by increasing the tunneling along
a second axes is found to continuously drive the system towards diffusive dynamics.

We further investigate the role of dynamically formed doubly (and higher) occu-
pied sites, and find a fast relaxation dynamics taking place after the quenches in
U/J . The effects of changes in the quasimomentum distribution introduced during
this relaxation are shown to be small compared to the observed reduction of expan-
sion velocities, and we conclude that scattering processes during the expansion are
mainly responsible for slowing down the expansion.

Lastly, we investigate how changes to the initial state of the system change the
dynamics by introducing higher occupancies during the initial state preparation.
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Chapter 8 Expansion Dynamics of Interacting Bosons in Optical Lattices

We find that these higher occupancies can significantly slow down the dynamics,
especially in the strongly interacting limit.

8.1 Expanding Bosons in 2D

8.1.1 Initial State Preparation and Optimization

The goal is to study the expansion of an initial n = 1 Mott insulator, prepared
using the sequence presented in chapter 6.1. In short, initial states of localized
bosons confined to the center of an optical lattice are created, and the expansion
is initiated by a simultaneous quench in J and the harmonic confinement. We
take special care to avoid any higher occupancies in the initial state (see chapter
6.3.2), except for the experiments discussed in the last part of this chapter, where
we explicitly investigate their effects on the dynamics. The atoms are held in a deep
lattice for 20 ms before the expansion is initiated, leading to a complete dephasing of
the wave functions on individual lattice sites and ensuring an initial quasimomentum
distribution nq(tE = 0) that is flat over the first Brillouin zone. During this hold
time, the interaction is set to the desired values using a homogeneous magnetic field
at field strengths in the vicinity of the 39K intra-species Feshbach resonance (see
chapter 4.5). The intensity of the dipole trap beam which ensures the homogeneity
of the lattice system is optimized with respect to the expansion along the x-direction
as described in chapter 6.3.1. Due to slight asymmetries in the alignment and size
of the lattice beams, it is not always possible to optimally compensate the global
potential along both expansion directions, which can be seen in fig. 8.1.

The width of the cloud along the x-direction (blue circles) and along the y-
direction (red circles) is shown for varying intensities of the dipole beam along the
z-direction. The intensity of the dipole trap is given as the effective trap frequency
that would be created along the horizontal axes if no other potentials were present.
The width of the cloud has maxima at two different dipole trap intensities for the
two different axes, indicating slightly different anti-confining potentials along these
two axes. In order to compare our results for expansions in 2D to those for expan-
sions in 1D, we ensure that the potential is as homogeneous as possible along the
x-direction, and accept a small overall anti-confining potential along the other.

8.1.2 Expansion Dynamics and Interaction Effects

In figure 8.2, we show the density distributions during the evolution in the homo-
geneous lattice for various interactions U/J and expansion durations tE. Note that
throughout this chapter, J denotes the tunneling matrix element along the inves-
tigated expansion directions. In the 2D cases, J = Jx = Jy while in the 1D cases
discussed below, J = Jx and tunneling along y is neglected.
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Figure 8.1: Gaussian waists σx and σy of the non-interacting cloud after an ex-
pansion for 54 τ in a lattice of depth (8, 8, 20)Er along (x, y, z), re-
spectively, for varying intensities of the z-dipole trap. The dipole trap
intensity is given as the bare trap frequency ωz that would be cre-
ated by the beam if no other potentials were present. The position
of the peaks indicate optimal homogeneity for expansions along the
respective axes.

The density distributions at U/J = 0 show the typical square symmetry of the
first Brillouin zone, as expected for ballistic expansions starting from a state of com-
pletely localized atoms (see 6.4.1). Starting from a round shape given by the har-
monic confinement during the creation of the initial state, the whole cloud expands
according to the group velocity distribution of the single-particle wave functions
(see chapter 6.2). At intermediate expansion durations (tE = 14τ and tE = 22τ),
the square shape becomes already recognizable, but the convolution with the initial
shape is easily seen in the rounded off corners.

By increasing the interaction strength to U/J = 0.5, we can already observe a
qualitative change in the evolution of the density distribution. For large expansion
durations, there is a region of higher density in the center of the trap, which evolves
more slowly than the fast ballistic atoms in the square shaped background.

Already at U/J = 1, the higher density region in the center becomes dominant
at large tE and clearly exhibits the round shape of the initial distribution. At even
larger U/J , it becomes very hard to make out the faint background of fast atoms
around the stable high density core region.

This formation of a high density core that is stable on the observable time scales
already for moderate interaction strengths is directly analogous to the behavior ob-
served in the expansions of a two-component Fermi gas (see chapter 7.3). Since both
expansions start from an initial state with a quasimomentum distribution nq(tE = 0)
that is completely flat in the first Brillouin zone, this qualitative similarity is not
surprising. There is no reason why the diffusive dynamics observed in the fermionic
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Figure 8.2: Absorption images of the in-situ density distributions during expan-
sions in 2D for various interactions U/J and expansion durations tE.

case should not take place in the bosonic case. Quantitative differences, however,
could arise from from differences in the initial states and scattering properties, which
we will discuss below.

In the top row of fig. 8.3, we show the evolution of the line density profiles nx(tE)
of the expanding bosons for various interaction strengths, obtained by integrating
along the y-direction (see chapter 6.4.2). This highlights the drastic differences
between non-interacting and interacting atoms and the stability of the high density
core already for moderate interaction strengths (U/J = ±2). From these profiles,
we can extract the core expansion velocity vc of the expanding atoms by determining
the HWHM for all expansion durations tE. These are plotted in the bottom row
of fig. 8.3 along with linear fits applied to intermediate tE used to determine vc
(see sect. 6.4.2). The effect of the stable high density core is clearly visible in the
evolution of the HWHM. While it increases linearly with increasing tE in the non-
interacting case, there is hardly any evolution at all in the interacting cases. As
the HWHM is very sensitive to large densities, a stable high density core with a
peak density nmax that sits atop a background of atoms with densities smaller than
nmax/2 will completely dominate the evolution of the HWHM, and the few atoms
with high velocities that can be observed as a faint background in the line density
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Figure 8.3: Top Row: Evolution of line densities nx(tE) during expansions in 2D at
various interactions U/J . Bottom row: corresponding evolution of the
extracted HWHM (circles) and linear fits to extract the core expansion
velocity vc (solid lines).

evolutions (top row of fig. 8.3) are not taken into account.
To investigate the effects of interactions on the dynamics more quantitatively, we

plot vc over U/J in fig. 8.4 for expansions in a 2D lattice with depths (8, 8, 33)Er
along the (x, y, z) directions.
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Figure 8.4: Core expansion velocity vc along the x-direction over interaction U/J
for expanding bosons in a 2D lattice at depth (8, 8, 33)Er along
(x, y, z). Black lines are guides to the eye. The error bars are the
standard deviation of the linear fits used to determine vc.

The first thing to observe is the invariance of vc under a sign change of U . As
discussed in sect. 7.3.1, the time evolution of an observable in a homogeneous lattice
is invariant under the transformation U → −U if the observable as well as the
initial state are invariant under time-reversal and under a boost of all quasimomenta
q→ q+(π/d, π/d, π/d). The observable in this case is again the density distribution
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n(r), which neither depends explicitly on the time nor on the quasimomentum.
The initial state for the bosonic expansions is very similar to the fermionic case.
In the same way as discussed for the fermions, the quasimomentum distribution
nq of the atoms is flat over the first Brillouin zone due to their localization to
individual lattice sites. Thus, the initial state is invariant under the transformation
q → q + (π/d, π/d, π/d) as well as under the transformation q → −q and fulfills
the conditions for the dynamical U ↔ −U symmetry.

Second, there is a very strong reduction in the expansion velocity already at small
values of U/J . The overall shape of the curve is very similar to the changes of vc
in the fermionic case (figure 7.7). This behavior, together with the characteristic
bimodal cloud shapes shown in fig. 8.2, is a clear indication of the onset of diffusive
dynamics also in the bosonic case as soon as interactions are turned on in the system.

A remaining discrepancy in the behavior of vc with changing U between the
fermionic case and the bosons in 2D is the fact that for the fermions, vc becomes
slightly negative for large U , which is not the case for the bosons. However, there
are a few differences between the two situations that could potentially lead to this
observed discrepancy: First, the fact that only inter-species scattering is allowed in
the fermionic case, while there is only one component with intra-species interactions
present in the bosonic case, reduces the amount of potential scattering partners
in the fermionic case. However, this effect could be compensated by the fact that
the fermionic expansion starts from an initial state with a density that is a factor
of 2 higher than the bosonic one. Second, the fermionic initial state consists of a
band-insulator of doubly occupied sites (i.e., one atom of each species on a lattice
site). Double occupancies carry an interaction energy of U , and thereby change the
total energy of the expanding system. The interaction energy can be transformed
into kinetic energy during the expansion, as the doubly occupied sites dissolve, and
influence the dynamics. Such an effect is not present in the bosonic case, where the
absence of double occupancies in the initial state ensures that the total energy of
the initial state is always the same and independent of U . Third, in the limit of
large |U |, the formation of double occupancies is strongly suppressed due to ener-
getic constraints. The exact opposite is true in the fermionic case, where the double
occupancies of the initial state become very stable for large interactions [146] and,
due to their lower effective tunneling matrix element [27], exhibit only very slow
dynamics. This can even lead to additional quantum distillation effects [83] that
further inhibit the expansion of the core. While this effect only becomes relevant for
large |U |, where an expansion is neither observed in the fermionic nor in the bosonic
case, it could explain why we observe a shrinking core at large |U/J | in the fermionic
case, while we observe minimal, but always positive core expansion velocities in the
bosonic case.
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8.2 Expanding Bosons in 1D

8.2 Expanding Bosons in 1D

We now turn to investigating the expansion dynamics of interacting bosons in one
dimensional systems. As we have discussed in chapter 3.4.2, reducing the dimen-
sionality of a system can strongly restrict the degrees of freedom available to its
constituents and significantly change both its dynamical and equilibrium properties.
In the limit of hard-core interactions, the 1D Bose-Hubbard model even becomes
integrable, leading to the appearance of many integrals of motion that constrain the
allowed relaxation dynamics as well as the evolution of its density distribution.
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Figure 8.5: Top Row: Evolution of line densities nx(tE) during expansions in 1D at
various interactions U/J . Bottom row: corresponding evolution of the
extracted HWHM (circles) and linear fits to extract the core expansion
velocity vc (solid lines).

In the top row of fig. 8.5, we show the evolution of the line density profiles nx(tE)
during expansion measurements for various interaction strengths U/J in a 1D lattice
configuration with lattice depths (8, 33, 33)Er along (x, y, z), respectively. These
line density profiles are again obtained by integrating the in-situ column densities,
obtained by absorption imaging, along the y-direction. In these density plots, we
can already see qualitative differences compared to the evolution of nx(tE) in the
2D case (fig. 8.2).

In the non-interacting case (U/J = 0), the evolution of nx(tE) behaves exactly
as predicted. Each atomic wavefunction expands ballistically according to its initial
group velocity distribution, as discussed in chapter 6.2. For U/J = 0, the evolution
of these profiles in 1D is exactly the same as in 2D, as the dynamics along the x-
and y-directions are completely decoupled. Integrating along the y-direction, as it
is done to obtain nx(tE), results in the exact same dynamics, regardless of whether
an expansion takes place along the y-axis.

In the case of intermediate interaction strengths (U/J = ±3), we can observe a
bimodal behavior that is qualitatively similar to that of the 2D profiles, namely a
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Chapter 8 Expansion Dynamics of Interacting Bosons in Optical Lattices

slowly evolving central region of higher density atop a low density background of
atoms with high velocity. However, this central core is not as stable as in the 2D
case, and slowly disappears over the course of the expansion.

In the strongly interacting limit (U/J = ±20), the behavior of the 1D systems is
very different from that of 2D systems. While in 2D, the stability of the high density
core increases with increasing interactions, in the 1D case, the evolution becomes
fully ballistic again, showing the characteristic shape expected for free atoms (see
chapter 6.2). Note that there is indeed a region of slightly higher central density
visible also in the strongly interacting case. However, this excess density in the
center is most likely caused by a small fraction of higher occupancies in the initial
state, the effect of which is discussed in section 8.4.4.

In the bottom row of fig. 8.5, we show the evolution of the HWHMs that were
extracted from the line density profiles. The qualitative features discussed above
manifest themselves in a significantly reduced expansion velocity for the U/J = ±3
cases, where the central region of higher density dominates the evolution. The
reduction, however, is not as strong as in the 2D case, where vc essentially becomes
zero already around U/J±2. For stronger interactions, the evolution of the HWHM
becomes much faster again in the 1D case, due to the absence of the high density
core which allows the evolution of the HWHM to be dominated by the ballistic wings
of the cloud.
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Figure 8.6: Core expansion velocity vc (along x-direction) as a function of interac-
tion U/J for expanding bosons in an (8, 33, 33)Er lattice (blue circles)
and in an (8, 8, 33)Er lattice (green circles). Solid lines are guides to
the eye. The error bars are the standard deviations of the linear fits
used to determine vc.

In fig. 8.6, we show the extracted core expansion velocities vc for a range of
interaction strengths in the 1D case (blue circles) and the 2D case (green circles).
As a first observation, we note that the U ↔ −U symmetry also holds in the 1D
case. As both the initial state and the observable (i.e., the density distribution) are
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the same in 1D as they are in 2D, the conditions for this symmetry are also fulfilled
and the dynamics is expected to be invariant under a transformation U → −U .

The core expansion velocity in the 1D case at U = 0 is consistent with the max-
imum group velocity in the lattice of vg = 2d/τ (see chapter 6.4.2). For increasing
interactions, vc then decreases and reaches a minimum value between |U/J | = 3 and
|U/J | = 4, before increasing again for even stronger interactions and reaching val-
ues consistent with 2d/τ for |U/J | > 10. This increase in the expansion velocity for
large U is a direct consequence of the mapping of hard-core bosons in 1D onto free
fermions. In the limit of |U/J | → ∞, the density distribution of a state of bosons
in 1D evolves in exactly the same way as that of free, single component fermions,
leading to the same vc in our experiments (see chapter 3.4.2). This constitutes the
first direct observation of a strongly interacting system exhibiting ballistic trans-
port dynamics due to the approach of an integrable limit (see [226, 227] and [86]
and references therein).

A more complex regime is that of intermediate interaction strengths, where the
system is far away from the integrable limits. We will limit the following discussion
to the case U > 0, but all results directly carry over to the U < 0 case, due to the
aforementioned U ↔ −U symmetry.

We can compare our experimental results to time-dependent density matrix renor-
malization group (t-DMRG) [74–76] calculations. These calculations were carried
out by S. Langer et al. [225].

U/J=0 U/J=4 U/J=20

E
xp

an
si

on
 ti

m
e 

t E
 (τ

)

Ex
pe

rim
en

t
t-

D
M

RG

Position (d)

Li
ne

 d
en

si
ty

 (a
.u

.)

60

30

0

1

0

-100 0 1008

4

0-20 0 20

-100 0 100 -100 0 100

-20 0 20 -20 0 20

Figure 8.7: Top row: Experimental evolution of line densities nx(tE) during expan-
sions in 1D for various interactions (each line is individually normal-
ized). Bottom row: Corresponding t-DMRG calculations for N = 8
atoms, plotted using cubic interpolation between the sites.

In fig. 8.7, we compare the results of t-DMRG calculations with our experimental
results. The top row shows the evolution of the line density profiles for various
U/J as in the top row of fig. 8.5. The bottom row shows the results of t-DMRG
calculations carried out with an initial state of N = 8 atoms.
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In the non-interacting (U/J = 0) and strongly interacting (U/J = 20) cases,
the t-DMRG profiles exhibit the two peaks traveling with maximum group velocity
vg = 2d/τ that result from the flat nq of the initial state (see chapter 6.4.2). In the
non-interacting case, these peaks can be observed clearly, but are weaker than in the
t-DMRG calculations. In the strongly interacting case, there is an additional peak
in the center of the cloud. This peak is most likely caused by few higher occupancies
in our initial state which we discuss in sect. 8.4.4. The qualitative change of the
evolution of the line density when departing from the integrable limit at U/J = 0
and close to the integrable limit at U/J = 20, however, can be seen very clearly
both in the t-DMRG calculations and in the experimental data. Instead of the fast
ballistic dynamics, there is a high density core present throughout the complete
expansion.

Note that the length scales and the time scales differ greatly between the experi-
mental and the numerical data. As discussed in chapter 6.4.3, in the non-interacting
case, larger sizes of the initial state lead to a linearly increasing time until the trav-
eling peaks can be observed. The width of these traveling peaks also scales linearly
with the initial size while their velocity is independent of it. Thus, by scaling the
temporal and spatial axes accordingly, we expect the density profiles of experiment
and theory to agree with each other. This is also the case for the strongly interacting
atoms in 1D, where the density of the system behaves like that of non-interacting
particles. The agreement in the intermediate interaction regime, however, is not a
priori clear, as the evolution under the influence of scattering between atoms could
depend non-linearly on the extension of the initial state. As we will see in the fol-
lowing discussion, the agreement between t-DMRG results and experiments turns
out to be very good, which indicates that in 1D, the linear scaling also holds at least
approximately in the regime of intermediately strong interactions.

We can extract the core expansion velocity from the profiles of the t-DMRG
calculations in the same way as for the experimental data. Note that in some of
the calculated profiles, the HWHM is not uniquely defined, as the density between
the two fast moving peaks drops to very small values. In these cases, we define the
HWHM as half the distance between the two outermost points where nx = nmax/2,
which results in the expected large vc in the U = 0 and U → ∞ cases. In fig.
8.8a, we plot the vc extracted from t-DMRG calculations with N = 10 atoms (green
triangles) together with the experimentally observed vc (blue circles). The solid
line is a guide to the eye for the experimental data. The qualitative behavior of
the decrease and increase of vc for increasing U/J is very well reproduced by the
t-DMRG calculations. The largest expansion velocities are reached in the non-
interacting and strongly interacting limits, with a strong minimum of vc between
U/J = 3 and U/J = 4. Note that the calculated HWHM for fig. 8.8a suffer from
rather large finite size effects of the calculations, given that they are done for rather
small atom numbers. Another quantity that is less sensitive to finite size effects
when investigating the evolution of the calculated line density profiles is the radius
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imental data of atoms expanding in
1D (blue circles) and t-DMRG calcula-
tions with N = 10 atoms in 1D (green
triangles). The solid line is a guide to
the eye for the experimental data.
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Figure 8.8

expansion velocity

vr(tE) =
dR̃(tE)

dtE
=

d

dtE

√
R2(tE)−R2(0), (8.1)

with R2(tE) given by

R2 (tE) =
1

N

L∑
i=1

〈n̂i〉 (tE) (i− i0)2 d2 (8.2)

(see chapter 6.4.2 for details). This quantity is more robust against finite size effects,
as R2(tE) takes the full shape of the density distribution into account instead of
relying on the position of two distinct values of nx. By determining vr for various
N , it can also be extrapolated to infinite particle numbers [225].

In fig. 8.8b, we show the extracted vr from the t-DMRG calculations extrapolated
to infinite particle numbers for varying U/J . The error bars stem from the uncer-
tainty in the extrapolation. For U/J = 0, vr has a direct physical interpretation, as
it is equal to the average velocity

vav(tE) =

√√√√ 1

N~
∑
k

(
∂εq
∂q

)2

nq(tE), (8.3)
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with the tight-binding dispersion relation εq (see chapter 6).
With an nq(tE = 0) that is flat over the first Brillouin zone, as given in the

experimental realization, the average velocity is vav =
√

2d/τ . This value is indicated
by the dashed line, which intersects with the calculated vr at U/J = 0. For large
U/J , vr approaches this value again and almost reaches it at U/J = 20, indicating
that the system is already very close to the hard-core boson regime where it can be
mapped to a system of free fermions that also expands with vr =

√
2(d/τ). Note that

in the strongly interacting limit, the relation vr = vav does not hold, because nq(tE)
can be significantly altered in this case while leaving nx(tE) unchanged. This effect,
which can give rise to quasi-condensation in 1D, is discussed in detail in chapter 9.

The evolution of vr with changing U/J shows a very similar behavior to that of
vc. vr reaches its maximum value for U/J = 0 and U/J →∞ and has a pronounced
minimum around U/J ≈ 3. Starting from the hard-core limit, we can qualitatively
understand the appearance of a minimum in vc and vr by considering the formation
of doubly (and higher) occupied sites during the expansion. At U/J � 4, their
formation is energetically suppressed but at smaller U/J , the system can maximize
its local entropy through the formation of higher occupancies. At U/J > 4, doubly
occupied sites (doublons) in 1D can be seen as metastable objects [146] that prop-
agate with an effective hopping matrix element on the order of J2/U [27]. Thus,
there are two counteracting processes influencing the expansion velocity. On the one
hand, for decreasing U/J , more doublons are formed that slow down the expansion
dynamics. On the other hand, decreasing U/J mitigates the effects of the doublons
on the dynamics, as they become less stable and J2/U increases. In the limit of
U/J → 0, the maximum amount of doublons can be formed, but they do not affect
the dynamics at all, as there is no interaction energy associated with them. The
effects of doublons in the system as well as the local relaxation leading to their
formation are discussed in more detail in section 8.4. A second effect of the possi-
bility of forming higher occupancies in the system is the increase in phase space for
scattering. In the hard-core limit, the formation of doublons is fully suppressed but
for smaller U/J , the possibility of creating higher occupancies increases the phase
space available for scattering. At U/J → 0, however, the scattering cross section
completely vanishes. Thus, the effect of scattering events becomes maximal at some
U/J where the formation of doublons is possible and the scattering cross section is
finite.

As the expansion velocity is large in the integrable limits of U/J = 0 and
U/J → ∞ and the effects present at intermediate values of U/J can only decrease
the expansion velocity, there has to be a minimum in vc at finite U/J . This min-
imum turns out to be close to the critical (U/J)c ≈ 3.4 for the superfluid to Mott
insulator transition in 1D [104]. The formation of higher occupancies as well as the
redistribution of momentum in collisions rely on a local relaxation of the system
towards a quasi-equilibrium after the quantum quench in U/J , and the behavior is
thus consistent with other studies of quantum quenches, which observe the fastest
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time scales for relaxation at the critical point [73, 79].

8.3 Expansion Dynamics in the Crossover Between
1D and 2D

After investigating the dynamics of expanding atoms in purely 1D and 2D systems,
we can make use of the high flexibility of the experimental setup to investigate the
effects of the dimensionality in even more detail. By controlling the intensities of
the lattice laser beams along the x- and y-direction, we can continuously tune the
system from 1D through an intermediate regime towards 2D. To do so, we keep the
lattice along the x-direction at a constant depth of 8Er, which gives Jx/~ = 1.8 kHz,
and change the tunneling along the y-direction, denoted by Jy. The quantitative
analysis of expansion velocities is again conducted for the line density profiles nx(tE).
Thus, Jx sets the dynamical time scales for the expansion and the tunneling time
τ is given by ~/Jx. The z-lattice is always kept at large intensities to suppress any
dynamics along the vertical direction.

Due to the asymmetry of the lattice intensities in all cases where Jx 6= Jy, it
is not possible to compensate the overall anti-confinement along both the x- and
y-direction. As we are investigating the evolution of the HWHM of the clouds along
the x-direction, we choose to adjust the intensity of the z-dipole beam for an optimal
homogeneity along x. Only in the 2D configuration, where the lattice beams along
x and y have approximately the same intensities, is it possible to compensate the
anti-confining potentials along both axes, up to small imperfections caused by slight
asymmetries in the beam sizes and their alignment (see section 8.1.1).

In fig. 8.9, we show the in-situ column density of the atoms after an expansion
for tE ≈ 36 τ , obtained by imaging along the z-direction. The expansion takes place
in lattice configurations characterized by the dimensionality ratio χ = Jy/Jx. For
χ = 1, the system is in a purely two-dimensional configuration. The lower the values
of χ are, the stronger the reduction of tunneling along the y-direction is, and for
χ→ 0, the system approaches the purely 1D regime.

In the top row, we show the densities after an expansion at a small value of
U/Jx = 0.5. The changing dimensionality in this case mainly changes the extension
of the cloud along the y-direction, due to the increasing tunneling for larger χ.
Additionally, we can observe that the distribution becomes slightly more peaked in
the center for larger χ, indicating an increasing tendency towards diffusive dynamics
in the system. This effect is much more visible in the case of U/Jx = 3. For this
interaction, we already observe a central peak close to the 1D regime (χ = 0.08), but
with increasing χ, this peak becomes more and more dominant and in the purely 2D
case, the fast atoms at the edges of the cloud are hardly visible at all anymore. The
strongest effect can be observed in the strongly interacting limit (U/Jx = 20). Close
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Figure 8.9: Column density of atoms after an expansion for tE ≈ 36 τ in lattices
with varying dimensionality χ = Jy/Jx at varying interaction U/Jx

to the 1D regime, the resulting cloud shapes are very flat along x, indicating that
the system is close to the integrable regime of 1D hard-core bosons. For increasing
χ, this flat shape becomes strongly peaked and more and more symmetric. Already
at χ = 0.5, there is hardly any dynamics observable along the x-axis anymore and
the system appears to behave purely diffusively.

From the evolution of the density distribution in these varying geometries, we
can again extract the core expansion velocities vc, which are plotted in fig. 8.10a
over U/Jx during the expansion. The colors of the circles indicate the respective
geometry of the system, ranging from purely 1D (χ = 0.01, black circles) to purely
2D (χ = 1.0, red circles). The solid lines are guides to the eye. At U/Jx = 0, all
curves start at approximately the same large vc ≈ 2d/τ that necessarily arises for
non-interacting atoms starting from the same initial state with a flat nq. For all
χ, the core expansion velocity then decreases with increasing U/Jx. This decrease
becomes stronger with increasing χ, highlighting the role that increasing degrees of
freedom play in the formation of the high density cores.

For U/Jx > 4, the velocities for χ < 0.5 increase again with increasing interactions.
In the 1D case (χ = 0.01), this was shown to be directly related to the approach of an
integrable regime at χ→ 0 and U/Jx →∞. It is very interesting that this behavior
persists even for dimensionality ratios up to χ = 0.26, but with strongly reduced vc
at large U/Jx. This shows the counteracting nature of increasing U/Jx and χ. While
increasing U/Jx brings the system closer towards the hard-core regime, where the
formation of higher occupancies is inhibited and the degrees of freedom are reduced,
the increase of χ brings the system closer towards the 2D regime, where it does not
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(a) Core expansion velocity vc over inter-
action U/Jx for various dimensionali-
ties χ = Jy/Jx. Solid lines are guides
to the eye and error bars show the
standard deviation of the linear fits
used to determine vc.

Dimensionality ratio χ

x x x

x x

(b) Normalized core expansion velocity
ṽc = vc (χ) /vc (χ = 0.01) over dimen-
sionality χ for various interactions
U/Jx. Solid lines are guides to the eye,
error bars are determined from the er-
rors in fig. 8.10a.

Figure 8.10

become integrable even for U/Jx → ∞. For χ ≥ 0.5, the expansion velocity does
not increase anymore with increasing U/Jx, which we confirmed for interactions up
to U/J = 60 in the 2D case.

In order to investigate the effect of changing χ more closely, it is instructive to
plot the behavior of vc with changing χ for different values of U/Jx. However, as vc
is already strongly dependent on U/Jx even in the case of χ = 0.01, we show the
normalized core expansion velocity

ṽc(χ) = vc(χ)/vc(χ = 0.01) (8.4)

in fig. 8.10b. This quantity shows the relative change of vc when going from a 1D
towards a 2D system. The interaction is indicated by the different colors of the
circles, the solid lines are guides to the eye. For U/Jx = 0, there is, as expected, no
significant change in vc when crossing over from 1D to 2D. Already at U/Jx = 1,
however, we can observe a strong effect of the changing dimensionality resulting
in decreasing ṽc. This effect, as expected, becomes even stronger with increasing
interactions. One peculiar aspect is that while the curves for U/Jx = 3 and U/Jx = 6
show a quite fast decay of ṽc with χ, the decay at U/Jx = 20 occurs for larger χ.
A potential reason for this is that at large U/Jx, the system is still influenced by
the proximity to the hard-core boson regime even at significant tunneling along the
second axis, delaying the formation of diffusive high density cores.

A similar crossover between 1D and 2D systems is investigated numerically, using
t-DMRG, in a recent publication [86] and compared to our experimental results.
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Figure 8.11: (a): Density distribution in t-DMRG calculations of 8 hard-core
bosons on ladders for different tunneling ratios χ = J⊥/Jx. (b): Com-
parison between experimentally measured vc in the 1D-2D crossover
(yellow diamonds) and those extracted from t-DMRG calculations of
12 hard-core bosons on ladders (blue squares). χ = Jy/Jx in the ex-
periment and χ = J⊥/Jx in the calculations. Inset: radius expansion
velocity vr for the same t-DMRG data. Figures adapted from [86]
with kind permission of the author.

In this work, two 1D systems with tunneling Jx in the hard-core boson regime are
coupled to each other via a perpendicular tunneling J⊥, and the effects of changing
J⊥/Jx, which is analogous to χ = Jy/Jx in our experiment, on the core expansion
velocity are investigated.

Figure 8.11a (reprinted from [86]) shows the density distribution during expan-
sions for three different values of χ = J⊥/Jx. The case χ = 0 is a simple 1D expan-
sion of hard-core bosons, as already discussed in section 8.2, and shows the typical
peaks traveling with large velocity. This behavior changes when χ is increased to
0.5. Now, instead of two traveling peaks, there is a region of larger density in the
center of the system that dissolves slowly. For χ = 1, the evolution exhibits a high
density peak in the center of the cloud that, while decreasing in magnitude, is stable
over the whole expansion duration. This behavior is qualitatively similar to the
experimentally observed effects, where increased tunneling along the perpendicular
direction leads to the formation of high density central cores. There are, however,
quantitative differences which can be investigated by extracting the core expansion
velocities vc from the numerically calculated profiles and comparing them to the
experimental results. This is done in figure 8.11b, which shows the vc of 12 hard-
core bosons on a ladder with varying χ (gray squares) in comparison to the vc of
expanding bosons in the experiments at U/Jx = 20. While the limits of small χ and
large χ agree very well, the experimental data shows a much smoother transition
between the two limits, while the numerical results indicate a rather sharp drop in
vc around χ = 0.5. There are a few explanations for this discrepancy: First and
foremost, a ladder system is not the same as a full 2D system and we should expect
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the dynamics to be different. Second, the measure vc is not particularly well suited
for the investigation of the theoretical data, due to finite size effects and third, we
always average over multiple systems of varying initial sizes in the experiment, given
by the initial shape of the cloud before loading the lattice, which can be responsible
for smearing out otherwise sharp features in the dynamical behavior. The inset of
figure 8.11b shows the evolution of the radius expansion velocity vr for the theoreti-
cal data, which captures changes in the evolution of the density distribution in more
detail. Here, it can be clearly observed that as soon as χ > 0, the expansion veloc-
ity decreases smoothly due to the breaking of the integrability of the system. We
can conclude that the essential effects of breaking the integrability of a 1D system
of hard-core bosons by allowing tunneling along a second direction can already be
captured in a simple ladder system. Thus, the decrease in expansion velocity and
the appearance of high density cores does not depend on an actual expansion along
a second direction, but mainly on the additional degrees of freedom that allow for
more complex relaxation dynamics.

8.4 Effects of Double Occupancies

In this section, we discuss the role of sites with occupancy ηi > 1 (higher occu-
pancies). In our experiments, we detect the higher occupancy in the system after
freezing out the distribution by rapidly increasing the lattice depth (see chapter
6.3.3). This freezing out leads to a dephasing of the wavefunctions on different
sites and effectively localizes the atoms, resulting in a projection onto a mixture of
products of local Fock states, where the individual terms have the form

|ΨF 〉 =
∏
i

1√
ηi!

(
b̂†i

)ηi
|0〉 . (8.5)

Thus, when talking about multiply occupied sites in the experimental context, we
refer to all sites i where ηi > 1 after the projection onto |ΨF 〉 that happens during
our measurement process.

We first investigate the formation of these higher occupancies during the expansion
from initial states with all initial ηi = 0 or 1, which proves to be an indication
of fast relaxation dynamics after a quench in U/J . We also investigate, how the
presence of higher occupancies in the initial state influences the dynamics during
the expansion. This is particularly interesting for the expansions in one dimension
at strong interactions, where the presence of higher occupancies breaks the near-
integrability of the system and can be expected to significantly alter the dynamics.

121



Chapter 8 Expansion Dynamics of Interacting Bosons in Optical Lattices

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30 U/J=0
U/J=4
U/J=10
U/J=20

H
ig

he
r o

cc
up

an
cy

 f h

Expansion time tE (τ)
initial
state

(a) Higher occupancy fh during expan-
sions in 1D for various interactions
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(b) Higher occupancy fh after an expan-
sion for tE = 18 τ versus interaction
U/J during the expansion. Error bars
show the standard deviation of aver-
aging four data points, the solid line
is a guide to the eye.

Figure 8.12

8.4.1 Formation of Higher Occupancies

We measure the amount of higher occupancies in the system as outlined in chapter
6.3.3, by relying on the parity projection induced by near-resonant light pulses. As
discussed, the measure fh for the higher occupancies in the system does not give a
completely accurate value for the ratio of atoms on sites with an occupation ηi > 1,
due to the nature of the parity projection, but still serves as a good approximation
in the experimentally relevant cases.

In fig. 8.12a, we show the evolution of the higher occupancy fh during the first
tunneling time τ of expansions in a 1D lattice. The initial state is created as de-
scribed in chapter 6.1, and the lattice depth during the expansion is (8, 33, 33)Er
along (x, y, z), respectively. For the points labeled “initial state”, the measurement
of fh is performed directly after the dephasing period in the deep lattice. For the
points at tE = 0, the quench to small J that initiates the expansion is performed,
but then directly succeeded by the second quench in J to freeze out the distribution
for the determination of fh. The time scale on which the higher occupancy forms
and saturates in the system is very fast compared to the time scales of the expansion
measurements. Already after approximately half of a tunneling time τ , the amount
of double occupancies in the non-interacting and weakly interacting cases reaches a
plateau. This short time scale indicates that the formation of higher occupancies in
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Figure 8.13: Buildup of higher occupancy fh (dashed lines) and νh (solid lines,
see text) for various interactions U/J in t-DMRG calculations with
N = 10 atoms and Nb = N . The evolution is initiated by a quench
to finite J , starting from an initial state of singly occupied sites. The
calculations were conducted by S. Langer et al. [225].

the system is a purely local relaxation effect, and could indicate prethermalization,
as observed in other systems [65, 81, 82, 145]. In the strongly interacting cases
U/J = 10 and U/J = 20, no significant increase of fh beyond the experimental
uncertainty is observed.

After this fast initial relaxation to a local equilibrium state, the amount of higher
occupancies decays only very slowly. In the asymptotic limit of very long expansion
durations, however, the amount of higher occupancies is expected to decay to zero
along with the average density. Figure 8.12b shows the higher occupancy fh, mea-
sured after an expansion duration of tE = 18 τ . While we can observe a reduction
of fh on the order of 30% at U/J = 0 and U/J = 4, this is a much slower process
than the initial fast relaxation.

To further establish that the formation of double occupancies is a local relaxation
process, we investigate the evolution of higher occupancies in t-DMRG calculations
of the dynamics of N = 10 atoms on ten lattice sites, with all initial ηi = 1, in a ho-
mogeneous lattice after quenching from U/J =∞ to a finite U/J . These calculations
were performed by S. Langer et al. [225]. Figure 8.13a shows the evolution dur-
ing an expansion in a homogeneous lattice for various interaction strengths. Here,
the solid lines show the actual fraction of atoms on sites with higher occupancy,
νh, while the dashed lines show the experimentally observable quantity fh, which
reflects the inaccuracies introduced by remaining atoms after a parity measurement
on sites with odd atom number.
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Numerically, νh is determined as

νh =
1

N

∑
i

Nb∑
m=2

m 〈n̂m,i〉 , (8.6)

where N is the total number of atoms and 〈n̂m,i〉 measures the probability of finding
m bosons on site i. Nb is a numerical cutoff for the maximum number of bosons per
site that is introduced in the numerics for computational efficiency. For interactions
U/J > 2, Nb = 3 as contributions from sites with ni > 3 are negligible. For
interactions U/J ≤ 2, fluctuations in the particle number per site are larger and
Nb = N . To take the inaccuracies after the parity projection into account that
are introduced by the remaining atoms on sites with odd particle numbers, fh is
numerically determined as

fh =
1

N

∑
i

(2 〈n̂2,i〉+ 2 〈n̂3,i〉+ 4 〈n̂4,i〉+ . . .). (8.7)

Note that in figures 8.13a and 8.13b, the difference between νh and fh is only sig-
nificant for the smaller interactions. For larger U/J , the formation of sites with
〈n̂m,i〉 > 0 is strongly suppressed for m ≥ 3, and fh ≈ νh.

The time scale, on which the higher occupancies form in figure 8.13a agrees very
well with our experimental observations, even though the system sizes differ greatly.
However, the value for the maximum fh reached in the calculations does not match
the observations. In the experiment, the measured values for fh are consistently
lower than those obtained from t-DMRG, reaching approximately half the predicted
values. The main reason for this discrepancy is the existence of sites with ηi =
0 in our initial states. There are always regions with empty lattice sites at the
outer edges of the cloud, and we can not rule out that we might also produce a
significant fraction of empty lattice sites in the center of the cloud, as our main
concern when preparing the initial states is to prevent the formation of double
occupancies. Since the expected local relaxation dynamics are dominated by atoms
tunneling to neighboring sites, any empty lattice site will result in the creation of
fewer sites with ηi > 1.

In order to further establish that the fast creation of higher occupancies is due to
local relaxation processes, while the long term evolution is governed by the global
expansion dynamics, we compare the dynamics during an expansion with that of
atoms after a quench in U/J without expansion. This is shown in figure 8.13b,
where U/J is quenched to the same values as in figure 8.13a, but a box-potential
is left on, which confines the atoms to their initially occupied ten lattice sites. The
fast relaxation time scale remains the same in this case, but the slight long term
decay of νh and fh vanishes and the number of higher occupancies remains constant
after the relaxation. The fraction of atoms on multiply occupied sites is similar in
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both cases, which corroborates the notion that the formation of higher occupancies
is a purely local process and not a consequence of the expansion.

8.4.2 Evolution of Dynamically Formed Higher Occupancies

In our experimental set up, we can not determine the exact distribution of sites
with occupancies ηi > 1. We can neither differentiate between atoms on sites with
ηi = 2 and atoms on sites with ηi > 2 nor determine their position precisely, due
to the limited resolution of our imaging system. We can, however, investigate the
distribution of higher occupancies in the system using t-DMRG results obtained by
S. Langer et al. [225].
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Figure 8.14: t-DMRG calculations of the evolution of line densities nx(tE) (top
row, (a)-(f)), of double occupancies 〈n̂2,i〉 (middle row, (g)-(l)) and
of triple occupancies 〈n̂3,i〉 (bottom row, (m)-(r)). The calculations
were conducted by S. Langer et al. [225] for the sudden expansion in
a 1D lattice at various interactions U/J , starting from a product of
local Fock states of N = 8 bosons with one boson per site.

Figure 8.14 shows the evolution of the density distribution as well as the evolution
of higher occupancies for N = 8 bosons expanding from an initial Fock state with
ηi = 1 on the central eight lattice sites. The panels (a)-(f) (top row) show the density
〈n̂i(tE)〉, panels (g)-(l) (middle row) the doublon density 〈n̂2,i(tE)〉 and panels (m)-
(r) (bottom row) the density of triple occupancy 〈n̂3,i(tE)〉

The density of multiply occupied sites is zero for all initial states and for the com-
plete time evolution in the case of U/J =∞, where their formation is energetically
forbidden. In all cases with U/J < ∞, there is a dynamical generation of multiply
occupied sites. This net production (resulting in the increase of νh and fh observed
in figure 8.13) results from initial relaxation dynamics following the quench in U/J ,
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because the initial state is not the ground state for any finite U/J . This is a notable
difference to expansions starting from a system that is already in thermal equilib-
rium (compare [85, 90, 154]), where the non-trivial time evolution is only induced
by the quench in the external trapping potential.

As already seen in fig. 8.13a and 8.13b, the main contribution to fh is given by the
doubly occupied sites, while triple occupancy 〈n̂3,i〉 is only visible for interactions
U/J ≤ 4 and is always significantly smaller than the double occupancy 〈n̂2,i〉.

Figure 8.14 demonstrates, how the dynamics of higher occupancies in the system
is governed by the interaction. For U/J = 0, the evolution of 〈n̂2,i〉 and 〈n̂3i〉
follows immediately from the overall density distribution 〈n̂i〉. When the interaction
is increased, a slowing down of the evolution of 〈n̂2,i〉 and 〈n̂3i〉 can be observed.
At large U/J , the tunneling an isolated doubly occupancy becomes a second order
process, with an effective hopping matrix element that is ∝ J2/U [27] and this
effect is reflected in the tunneling speed of higher occupancies at U/J > 4. At
U/J = 20, we can also observe the effect of quantum distillation [83]. The doubly
occupied sites move towards the center of the cloud and stay there for the whole
duration of the simulation. For bosons in the strongly repulsive regime, there is
even an additional attractive interaction between doubly occupied sites that further
increases the stability of such a core of doubly occupied sites [147, 228].

8.4.3 Energetic Effects of the Formation of Higher Occupancies

For an initial state with all ηi ≤ 1, the interaction energy, given by

Eint =
U

2

∑
i

〈n̂i (n̂i − 1)〉, (8.8)

vanishes. Except in the cases of U = 0, where the atoms do not interact, and
U/J →∞, where the formation of higher occupancies is energetically forbidden, the
local relaxation after a quench in U/J leads to a buildup of higher occupancies (see
previous section) and thus to a conversion of kinetic energy to interaction energy.
This change of the kinetic energy is necessarily reflected in a changing quasimo-
mentum distribution nq(tE), which is shown in figure 8.15 for t-DMRG calculations
of N = 10 bosons on 1D lattices after a quench in U/J . The calculations were
performed by S. Langer et al. [225].

Panels (a) and (b) show the evolution of nq(tE) during an expansion and during
the relaxation in a box potential at U/J = 0. There is a shift of the weight of the
density in quasimomentum space towards small values of q on a time scale tE ≈ 0.5 τ ,
consistent with the time scale for the formation of higher occupancy in the system
that leads to a decreasing kinetic energy. For negative values of U , the interaction
energy actually decreases while higher occupancies are formed. In panel (c), we show
the evolution of nq(tE) under the same conditions as in (b), but with U/J = −1.
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Figure 8.15: Evolution of the quasimomentum distribution nq(tE) from t-DMRG
calculations forN = 10 particles in various relaxation scenarios, start-
ing from an initial product of Fock states with all ηi = 1. a) Expan-
sion at U/J = 1 in a homogeneous lattice. b) Relaxation at U/J = 1
in a lattice with additional box potential, restricting the evolution to
the initial 10 sites. c) Relaxation as in b), but with U/J = −1. The
t-DMRG calculations were conducted by S. Langer et al. [225].

As expected, in this case the kinetic energy increases during the relaxation and the
weight of the distributions shifts to larger q. This evolution of the quasimomentum
distribution can have an effect on the expansion dynamics of atoms in a lattice, as
their instantaneous group velocity directly depends on q. However, the effect is not
very large, which can already be seen by observing that the main redistribution of
weight in nq(tE) takes place between large values of |q| and very small ones. Around
the points of largest group velocity, at q = π/(2d), the density nq(tE) changes only
very little. Since vg(q = 0) = vg(q = ±π/d) = 0, redistributing density between
these points does not alter the average velocity vav.

In fig. 8.16, we show the average velocities vav calculated from nq(tE) at time tE =
τ for expanding atoms (blue circles) and atoms after relaxation in a box potential
(green circles), extracted from t-DMRG calculations conducted by S. Langer et al.
[225]. In both cases, vav decreases with increasing interaction up to a value of U/J ≈
4 and increases again for larger values. This qualitatively reflects the behavior
observed in the experiment, where we also find a minimum of the expansion velocities
in this region of interaction strengths. However, the effect on vav is much weaker
than the actual reduction of vr, indicated by the red circles. In the limit of non-
interacting particles, vr and vav are necessarily equal, but for interaction strengths
on the order of U/J ≈ 4, vr is much lower than vav. This is another clear indication
that collisions during the expansion, in which further momentum exchange between
individual atoms take place, are mainly responsible for the decrease in expansion
velocity at intermediate interaction strengths, and energetic effects play only a minor
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Figure 8.16: t-DMRG results (N = 10) for the radius expansion velocity vr and
the average velocity vav at varying interaction strengths U/J . Blue
circles: vav for an expansion in a homogeneous 1D lattice. Green cir-
cles: vav during a relaxation in a box potential, limiting the evolution
to the initially occupied 10 sites. Red circles: vr of expanding atoms
in homogeneous 1D lattices. All calculations started from an initial
product of Fock states with one boson per site and were conducted
by S. Langer et al. [225].

role.
The increase of vav above

√
2d/τ marks the onset of quasi-condensation in the

system, where an accumulation in nq around q = π/(2d) occurs during the expansion
of strongly interacting atoms in 1D. This effect is investigated in more detail in
chapter 9.

8.4.4 Effects of Higher Occupancies in the Initial State

In order to investigate the effect of sites with ηi > 1 that are already present in the
initial state, we change the preparation procedure. Instead of loading the lattice from
low density clouds at a strongly repulsive interaction, we reduce the initial scattering
length and increase the dipole trap frequencies during the loading (see chapter 6.3.4).
The dephasing in the deep lattice remains effective in this preparation, and the
resulting initial states of the expansion can still be described as products of local
Fock states, but with randomly distributed sites with a higher occupancy ηi > 1.

In the top row of figure 8.17, we show the density distribution during expansion
series in 1D lattices at an interaction of U/J = 10 for various initial values of
fh. To extract the fh values, we start with the prepared initial states, in this case
in a lattice of depth (20, 20, 20)Er, and immediately increase the lattice depth to
image the amount of higher occupancies as outlined in section 6.3.3. The lowest
value, fh ≈ 0.02, is a value that is, within the margin of error, consistent with
no double occupancies. In this case, the initial state is prepared in the same way
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Figure 8.17: Top row: Experimental evolution of the line density distribution
nx(tE) during expansions in 1D at U/J = 10 with varying higher
occupancy fh in the initial states. Bottom row: Evolution of the
HWHM extracted from the density profiles.

as those states associated with a negligible fraction of higher occupancies of the
measurements described above. For all other values of fh, we adapt the preparation
to deliberately create larger amounts of higher occupancies.

In general, the addition of higher occupancies to a system of 1D hard-core bosons
breaks its integrability, as it invalidates the assumption of hard-core interactions,
which is fundamental to the mapping onto free fermions. Thus, we certainly expect
significant changes in the dynamics of the system at large U/J . Dynamically, the
main characteristics of higher occupancies at large U/J , as already discussed in 8.4.2,
are their lower effective tunneling matrix elements, resulting in a slower expansion.
This is reflected in the evolution of the density distributions over time. While
nx(tE) becomes rather flat in the case of no higher occupancies in the initial state
(fh ≈ 0.02), a central core of higher density remains in the center of trap for larger
Amounts of higher occupancies. In the lower panel of 8.17, we show the HWHM
extracted from these density profiles. Even though there are some fast ballistic atoms
present in the expansions, the evolution of the HWHM slows down drastically with
added higher occupancies and comes to a complete stop for large initial fh. The
reason for this is that the HWHM is dominated by the central core of higher density,
which remains essentially stable at large U/J .

In figure 8.18, we summarize the effects of larger fh in the initial state for atoms
expanding in one dimension at various interaction strengths. At U/J = 0, the ex-
pansion velocity is not significantly affected by an increase in the amount of higher
occupancies. Since the addition of sites with ηi > 1 in the initial state does not alter
the quasimomentum distribution of the atoms after the dephasing, it remains flat
over the first Brillouin zone. Without interactions, each single particle wave func-
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Figure 8.18: Core expansion velocity vc in 1D when changing the higher occupancy
fh of the initial states (circles). The interaction U/J is indicated by
the color of the circles. Vertical error bars are the standard deviation
of the fits used to determine vc, horizontal error bars the standard
deviation of averaging 16 measurements. Red triangles are results
from t-DMRG calculations with N = 10 atoms. Solid lines are guides
to the eye.

tion then evolves independently of the others according to its initial group velocity
distribution, regardless of the amount of atoms on a given site.

For U/J = 10, the effect of higher occupancies is very strong. In the limit of
fh → 0, the atoms expand almost as fast as in the non-interacting case as they
are already close to the hard-core boson regime. As soon as higher occupancies are
introduced into the system, the assumption of hard-core bosons becomes invalid, as
double or higher occupancies are forbidden in the hard-core regime and break the
integrability of the system (see chapter 3.4.2). Without the additional (approximate)
integrals of motion introduced by being close to the HCB regime, the system has
more degrees of freedom for local relaxation, which can drive the system towards
diffusive behavior and slow down the dynamics. Additionally, the stability of higher
occupancies at large U/J along with their lower effective tunneling matrix element
∝ J2/U contributes to the stability of the central high density region. Another effect
of double occupancies at large U/J is an effectively attractive interaction between
the doubly occupied sites [147, 228], which again increases the stability of a region
of high density in the center of the cloud.

Already for intermediately strong interactions (U/J = 4), we observe a strong
effect of higher occupancies in the initial state. The core expansion velocity here
is already lower than that of non-interacting and strongly interacting atoms when
there are only negligible amounts of higher occupancies present, due to the reasons
outlined in section 8.2. As fh is increased, the expansion velocity further decreases
and reaches the same values as in the case of U/J = 10, consistent with vc = 0.
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8.4 Effects of Double Occupancies

This is surprising, given that the initial fh introduced by the different preparation
procedure is similar to the fh that is dynamically created during the expansion,
when starting from an initial state without higher occupancies. However, due to
the sensitivity of the HWHM to the amount of atoms in higher density regions
for bimodal cloud shapes, a small increase in atoms behaving diffusively instead of
ballistically can already have a strong effect on vc. Even for weak interactions at
U/J = 1, a significant effect of the higher occupancy can be observed.

tE (τ) tE (τ)

(a) (b)

(c) (d)

Figure 8.19: Evolution of the radius R̃ and the HWHM for U/J = 4 and U/J = 10
in t-DMRG calculations of N = 10 bosons conducted by S. Langer
et al. [225]. For the blue circles, fh = 0 in the initial state, while for
the green circles, fh = 0.2. For fh 6= 0, the evolution is obtained by
averaging over all possible distributions of sites with ηi = 2 in the
initial states. The dashed lines in the lower plots show the fits used
to determine vc.

To investigate this effect, we can again turn to t-DMRG calculations, conducted
by S. Langer et al. [225]. For the results in the case fh > 0, the evolution of nx(tE)
is averaged over all realizations of initial states with the given fh. The resulting
vc for two different initial fh are also shown in figure 8.18 as the red triangles. In
figure 8.19, we compare the evolution of the radius R̃(tE) to that of the HWHM for
expansions without and with higher occupancies in the initial state.

The panels (a) and (b) show the evolution of R̃(tE) for U/J = 10 (a) and U/J = 4
(b) for fh = 0.0 (blue data) and fh = 0.2 (green data). The calculation were
performed with N = 10 atoms. For the data at fh = 0.2, averages were performed
over all initial distributions with one site at ηi = 2 and all other occupied sites at
ηi = 1. The presence of higher occupancies is visible in the evolution of R̃(tE),
but the effect is not very strong. This is due to the fact that the evolution of
R̃(tE) is dominated by the fast moving ballistic tails, which are largely unaffected
by the presence of few doubly occupied site. The evolution of the HWHM reveals
a much stronger effect of the higher occupancies. For fh = 0, the HWHM stays
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flat for the first tunneling times but then proceeds to evolve linearly in time, as we
have observed before. In the cases with fh = 0.2, however, there is no expansion
visible at all and for U/J = 10, the HWHM even decreases over time. This strong
effect is due to the high sensitivity of the HWHM to a maximum in the atomic
density. A stable doublon surrounded by a low density background of fast atoms
can completely dominate the evolution of the HWHM as soon as the background
density drops below half the density at the position of the doublon.

8.5 Summary

In this chapter, we have shown how ultracold atoms in optical lattices can be used
to investigate expansion dynamics in the Bose-Hubbard model for a wide range
of parameters. The ability to tune the interaction between atoms using Feshbach
resonances allowed for the direct observation of the onset of diffusive dynamics in
2D lattices, as well as for the observation of a dynamical symmetry between positive
and negative U . The versatility of changing the lattice depth along individual axes
made it possible to observe a second integrable regime in the 1D Bose-Hubbard
Hamiltonian at large U , in addition to the non-interacting limit. In the regime
of intermediate interactions, we found significantly slower dynamics of the density
distributions and fast relaxation dynamics of the number of higher occupancies and
of the quasimomentum distribution. By continuously transforming the system from
the 1D regime into a 2D system, we could directly observe the effects of breaking the
integrability of the Hamiltonian, that lead to local relaxation and diffusive dynamics.

In general, we found the fastest expansions in the integrable limits, namely the
non-interacting limits in 1D and 2D and the strongly interacting limit in 1D. Any
deviation from these limits, introduced by changing the interaction, the geometry,
or the initial state, lead to a strong reduction of the expansion velocities and the ap-
pearance of bimodal cloud shapes that where interpreted as signaling the emergence
of diffusive dynamics in the central regions of the clouds.
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Chapter 9

Dynamics in Momentum Space

In this chapter, we investigate the dynamics of the quasimomentum distribution
nq(tE) of strongly interacting atoms during expansions in homogeneous lattices.
First, we discuss the theoretical predictions for expanding hard-core bosons in
1D, which are shown to undergo a dynamical quasi-condensation. This quasi-
condensation is signaled by the development of sharp peaks in nq(tE) of the ex-
panding atoms around quasimomenta q = ±π/(2d). We show experimental results,
where we observe the formation of distinct peaks in the momentum distribution
of strongly interacting atoms in time-of-flight (TOF) imaging. We then develop a
method to reconstruct the approximate quasimomentum distribution nq(tE) of the
atoms during their evolution in the lattice and find that an accumulation of popu-
lation indeed takes place around q = ±π/(2d). However, the peaks we observe in
nq(tE) are much broader than those predicted by theory, and we devote the final part
of this chapter to a detailed discussion of experimental effects that can obscure and
prevent the formation of quasi condensates and give suggestions for improvements
to the experiment.

9.1 Quasi-Condensation during Expansion

Due to the exact mapping from 1D hard-core bosons (HCB) to free fermions [148],
quantities like the total energy, the density distribution and density-density cor-
relations are the same for both kinds of systems [154, 229]. This is not the case
for quantities like the momentum distribution function nq(tE) [149, 153] and the
so-called natural orbits [230], which can show very different behavior in the two
systems.

9.1.1 Hard-Core Bosons in 1D

Very interesting features that differ strongly from the behavior of non-interacting
fermions arise in the context of hard-core bosons expanding from initially confined
states into a homogeneous 1D lattice. For a system of HCB confined to the center
of a lattice at rather low densities, the ground state quasimomentum distribution
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is peaked around q = 0. In such a system, an expansion of the atoms, initiated by
the removal of the external confinement, results in a fermionization of nq(tE) which
approaches the nq(tE) of free fermions over time [154]. Quite the contrary effect can
be observed for HCB that are initially described by a product of local Fock states
with one atom per lattice site. In this case, nq(tE = 0) is initially completely flat in
the first Brillouin zone (BZ) and thus identical to the quasimomentum distribution
of free fermions in the same initial state. During an expansion, it can then be
observed that nq(tE) acquires sharp peaks at momenta q = ±π/(2d), which signal
a quasi-condensation of the atoms into the lowest natural orbits [90, 229].
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Figure 9.1: Evolution of density (a) and quasimomentum (b) profiles of N=300
HCB expanding in a 1D lattice at different evolution times tE. Fig-
ure reprinted from [90] with kind permission of the author. The axis
labeling has been adapted to match the conventions of this thesis.

Figure 9.1 shows the results of exact diagonalization calculations conducted by M.
Rigol and A. Muramatsu [90] for the evolution of 300 HCB in a homogeneous lattice,
starting from an initial Fock state with one atom per site. Figure 9.1a shows the
evolution of the density distribution. This evolution has been discussed extensively
in chapter 8 and shows the typical peaks given by the group velocity distribution
for a state with nq(tE = 0) = const. in the first BZ. Figure 9.1b shows the evolution
of nq(tE). It starts out completely flat at tE = 0 (magenta triangles) but already at
tE = 50 τ (red circles), sharp peaks have formed around q = ±π/(2d) that further
increase in height for tE = 100 τ (green crosses) and then slightly decrease for
tE = 150 τ (blue inverted triangles). For very long expansion durations, these peaks
vanish completely and nq approaches the initial flat distribution.

It was shown that the occupation λ0 of the lowest natural orbit, which determines
the peak height in momentum space, increases with the expansion duration as λ0 =
1.38

√
t/τ , independent of the number of atoms N in the initial state [90]. The

maximum occupation of λ0 scales with
√
N and thus the time tm at which the

maximum occupation is reached, depends linearly on N as tm = 0.32Nτ .
A quantity that is well-suited to analyze the formation of peaks in nq is the average
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velocity

vav(tE) =

√√√√ 1

N~
∑
q

(
δεq
δq

)2

nq(tE), (9.1)

as discussed in chapter 6.4.2. For an nq that is constant in the first BZ, the average
velocity is

√
2d/τ . If all density in momentum space accumulated at q = ±π/(2d),

where the group velocity is maximal, vav would be given by vav = 2d/τ . Any
observed increase in vav to values larger than

√
2d/τ is thus an indication of re-

distribution in nq(tE) towards large group velocities and a first sign of the onset
of quasi-condensation. Figure 9.2a shows the evolution of vav for initial states with
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Figure 9.2

varying N , obtained from exact diagonalization calculations conducted by S. Langer
[231]. In all cases, the initial average velocity is vav(tE = 0) =

√
2d/τ , which then

increases to values on the order of vav ≈ 1.67d/τ . The time scale for this increase,
as discussed above, depends on the number of atoms in the initial state. In fig.
9.2b, we plot the time at which vav is maximal for the different N (blue circles),
which coincides with the time tm of maximum occupation of λ0. The dashed line
shows the linear behavior of tm. The fact that tm depends on N has an effect on our
experiment, as we always average over multiple realizations with varying N , which
is discussed in section 9.5.1.
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9.1.2 Quasi-Condensation at Finite U/J

As the hard-core bosons limit is only reached at U/J → ∞, it is necessary to
investigate whether the aforementioned effects persist also for finite U/J that can
be reached in experimental realizations. This was done in [232] using t-DMRG
calculations (for finite U/J , the mapping to free fermions is not valid anymore and
the system cannot be diagonalized as easily). It was shown that for large U/J > 40,
nx(tE) and nq(tE) are almost identical to those of real HCB. The peak height in
nq(tE) is slightly reduced for finite U/J . At U/J = 20, which is the interaction
strength used in our experiments, the reduction amounts to approximately 5%.
Interestingly, the formation of peaks in nq(tE) persists for even much lower values
of U/J , but with further decreasing peak amplitudes. At finite U/J , also the peak
positions shift towards lower values of |q| [232]. At U/J = 20, the peaks in nq(tE)
appear at |q| ≈ 0.95π/(2d), while at U/J = 6, they are shifted down to |q| ≈
0.83π/(2d). This effect can easily be understood by considering the conservation
of energy in the system. At finite U/J , a system released from a Fock state of
singly occupied sites dynamically generates higher occupancies, which increase its
interaction energy (cf. chapter 8.4). This increased interaction energy has to be
compensated by a decrease in kinetic energy, which results in a shift of the peaks in
nq(tE) towards lower values of |q|.

9.1.3 Quasi-Condensation in Higher Dimensions

Calculations were also performed for systems with tunneling along two lattice axes
within a Gutzwiller mean-field approximation [233]. Here, it was observed that by
increasing the tunneling along a second axis, the positions of the peaks in nq(tE)
were shifted towards larger values of |q|. The Gutzwiller approximation reproduces
the exact diagonalization results of the 1D case when no tunneling is present along
the second axis. In the case of equal tunneling along both axes, it predicts quasi-
condensation analogous to that in 1D, but into many different momentum modes
lying on a rotated square in the first BZ. We do not observe such effects in our
experiments. As discussed in chapter 8.1.2, the expansion in 2D at large U/J be-
comes purely diffusive, with a high density core region and very few atoms in the
ballistic wings. These observed bimodal density distributions disagree with the
predictions of [233] and we do not observe any signs for quasi-condensation in mo-
mentum space. As the validity of the Gutzwiller approximation cannot be taken for
granted in the investigated system [233], our experimental results suggest that such
a quasi-condensation does not occur in 2D. There are, however, some experimental
imperfections present in our system (see section 9.5) and it is not clear how sensitive
the theoretically predicted effects are to these imperfections. Thus, we cannot com-
pletely rule out that quasi-condensation in 2D may occur, but the observed diffusive
nature of the expansion dynamics is a strong argument against it.
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9.2 Experimental Procedure

9.2.1 Initial State and Expansion

The preparation of the initial states for the measurements discussed in this section is
identical to that for the experiments investigating expansion velocities of Bosons in
1D lattices, discussed in chapters 6 and 8. A detailed description of the optimization
of the expansion can be found in chapter 6.3. As we are mainly concerned with the
dynamics of bosons close to the hard-core regime, we again take special care to
avoid the formation of higher occupancies in the initial state. We prepare the initial
state in a lattice of depth (20Er, 20Er, 20Er) along the (x, y, z)-axes, respectively.
The expansion in 1D is then initiated by linearly ramping down the intensity of the
lattice beam along the x-axis within 150µs to reach a final lattice depth of 8Er along
this axis, while the other two lattice axes remain at a depth of 20Er. The intensity
of the dipole trap beam along the z-direction, which provides confinement along the
x- and y-axes, is simultaneously adjusted to compensate the anti-confinement along
the expansion direction (x-axis) that is caused by the blue-detuned lattice beams.
The main difference to the experiments of chapters 6, 7 and 8, which are concerned
with the expansion dynamics of density distributions, is the imaging technique.
To observe quasi-condensation, we have to gain insight into the evolution of the
quasimomentum distribution of the atoms during the expansion.

9.3 TOF Measurements of Momentum Distributions

In order to investigate the evolution of the quasimomentum distribution during the
expansion, we use time-of-flight imaging after a band-mapping procedure. For the
band-mapping, instead of switching off the lattice instantaneously, we lower the
intensity of the lattice beams linearly over a time of 50µs, which leads to a mapping
of quasimomenta onto momenta in real space (see chapter 5.2.3). We then switch
off the optical dipole trap and the magnetic field and let the atoms drop down under
the influence of gravity for a time tTOF before taking an absorption image using the
imaging system along the y-direction.

Figure 9.3 shows the density distribution after TOF when releasing the atoms
after expanding in the 1D lattice at U/J = 20 for durations of tE = 0 τ (fig. 9.3(a))
and tE ≈ 36 τ (fig. 9.3(b)). The TOF duration for these images is tTOF = 8 ms.
We can clearly observe qualitative differences between the distributions after a long
evolution in the lattice and those directly after the quench in U/J that initiates
the expansion. To see the qualitative changes in the momentum distribution more
clearly, we sum the images along the z-axis to obtain line density profiles shown
in fig. 9.3(c). While the profile at tE = 0 τ (green line), where no expansion has
taken place, does not show any sharp features, the profile after tE ≈ 36 τ (blue line)

137



Chapter 9 Dynamics in Momentum Space

(a)

(b)

(c)

tE = 0 τ
tE = 36.2 τ

tE = 0 τ

tE = 36.2 τ

D
en

si
ty

 (a
.u

.)

0

1

x

z

Figure 9.3: (a),(b): Density distribution in TOF imaging with tTOF = 8 ms after
no expansion (a) and after an expansion for tE = 36.2 τ (b), both at
U/J = 20. (c): Line density plots obtained by integrating along the
vertical (z) axis for both density profiles. The x-axis denotes pixels on
the camera.

exhibits two distinct peaks. These peaks indicate that a redistribution in nq(tE) has
indeed taken place during the expansion and that there are two distinct values for
q, around which density in momentum space has accumulated.

To illustrate this accumulation of density in momentum space during the expan-
sion, we show the line density profiles after various expansion durations in fig. 9.4.

Figure 9.4: Density profiles after tTOF = 8 ms for varying expansion durations tE
at U/J = 20. Each profile is obtained by averaging images from two
experimental realizations and integrating along the z-direction. All
profiles are individually normalized and the x-axis denotes pixels on
the camera.

Starting from the left panel, after a short expansion of tE ≈ 3.6 τ , where only one
broad peak is visible in the density profile, we can observe how two peaks emerge
and become stronger for longer expansion durations. Already at tE ≈ 18.1 τ , they
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are quite pronounced and reach their highest visibility around tE ≈ 27.2 τ . They
remain clearly visible even for long expansion durations.

Figure 9.5: Density profiles with tTOF = 15 ms after expanding for tE ≈ 18.1 τ at
varying interaction U/J . The profiles are obtained as in fig. 9.4. All
profiles are individually normalized and the x-axis denotes pixels on
the camera.

As a further indication that these peaks are indeed signs of the expected behavior
for HCB, we show in fig. 9.5 how the structure of the TOF profiles changes with
changing interaction during the expansion. In this case, the expansion duration
is always tE ≈ 18 τ and the TOF duration is tTOF = 15 ms. We expect a much
weaker accumulation of quasimomentum for weakly interacting atoms and indeed,
the TOF profiles remain rather flat for interactions U/J = 3.5 and U/J = 10.6. At
U/J = 14.1, two peaks emerge at the edges of the flat distribution which become
more pronounced for even stronger interactions.

In the following, we will investigate the formation of these peaks more closely
to extract more information about the actual quasimomentum distribution of the
atoms during expansions in 1D.

9.4 Extracting Momentum Profiles from TOF Images

The evolution of the atoms during TOF is, in the ideal case, completely determined
by their initial momentum, but the resulting density distribution after a time tTOF

is always given by a convolution of the initial density distribution and the evolution
during TOF. In the limit of infinitely large tTOF, the effect of the in-situ density
distribution on the distribution after TOF becomes negligible. However, in our
experiments we are limited to a maximum tTOF of about 16 ms. This limitation is
partly due to constraints in the optical setup, which could be overcome by changing
some of the beam paths, but mainly due to the dilution that takes place during TOF.
While expanding, the density at each point of the image becomes lower, reducing
the signal-to-noise ratio on the camera. This effect can already be observed in
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the comparison of the profiles obtained after tTOF = 8 ms shown in fig. 9.4 and
those after tTOF = 15 ms (fig. 9.5), which show a much stronger noise. Despite this
limitation, we can extract additional information about the momentum distribution
by recording images after several different tTOF.

9.4.1 Calibrating the TOF Imaging

In order to be able to equate positions on the camera after a given tTOF with ini-
tial momenta, we need to calibrate the relation between the two. In principle, the
information where an atom with momentum p (corresponding to a quasimomentum
q = p/~ before band-mapping) should arrive after a given tTOF can be deduced
directly from the magnification of the imaging system and the initial position of
the atom. However, this only works under ideal conditions. In the experiment,
additional effects can influence the behavior of the atoms during TOF. First, it is
possible that the imaging axis is not directly perpendicular to the directions of grav-
ity and of the lattice beam along which we want to determine the quasimomentum.
Second, since the atoms are released from a state at strong interactions, there is
a significant magnetic field present before the TOF is initiated, used to set the in-
teractions via a Feshbach resonance (see chapter 4.5). Ideally, this magnetic field
should be homogeneous and there should be no forces exerted on the atoms in its
presence. However, switching off a strong magnetic field can induce eddy currents
in nearby metal parts, which in turn create inhomogeneous magnetic fields that can
exert forces on the atoms.

In order to measure the relationship between the position after TOF and the initial
quasimomentum, we measure the evolution of atoms during TOF after subjecting a
Bose-Einstein condensate to a very short (on the order of a few µs) pulse of the lattice
at large lattice intensities. This leads to Raman-Nath diffraction from the lattice,
creating groups of atoms traveling with momenta 0,±2~k,±4~k, where k = π/d is
the lattice momentum, that show up as distinct peaks during TOF.
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Figure 9.6: Bragg peaks after a short lattice pulse and 7 ms TOF, imaged along
the y-direction.

Figure 9.6 shows a typical picture of these peaks after a short lattice pulse and
TOF imaging with tTOF = 7 ms. We apply a fit function to these peaks, consisting of
the sum of five Gaussian peaks, and use a least-squares fitting algorithm to extract
their positions.
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9.4 Extracting Momentum Profiles from TOF Images

(a) Positions of Bragg peaks on the cam-
era during TOF. The central peak is
identified with a momentum p = 0,
the others with the respective higher
order lattice momenta.
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(b) Distance between the −2~k peak and
the +2~k peak in pixels on the camera
during TOF. The solid line is given by
eq. 9.2 with parameters obtained by a
least-squares fitting method.

Figure 9.7: Calibration of the distance traveled by Bragg peaks during TOF

In figure 9.7a, we plot the evolution of the position of these Bragg peaks during
TOF. We identify the central peak with the atoms at momentum p = 0, while the
peaks to the left and right of the central peaks are identified with the higher order
momenta. The evolution does not show the linear dependence of the position on tTOF

that is expected for an ideal free evolution with constant momenta, which indicates
that there are indeed additional effects present during TOF. For our measurements,
we are mainly concerned with the evolution of momenta in the first Brillouin zone,
as we apply the aforementioned band-mapping procedure to a state that occupies
only the lowest band in the lattice. Thus, we use the evolution of the distance D4~k
between the two peaks corresponding to +2~k and −2~k to calibrate the relation
between position x on the camera and momentum p in the TOF measurements.
Figure 9.7b shows this evolution during TOF, and we can fit it with a function

D4~k(tTOF) = a+ b
√
tTOF − c, (9.2)

where a is an initial distance that corrects for effects during the first 6 ms of TOF and
b and c are two more parameters, determined by the least-squares fitting routine, to
approximately describe the evolution of the Bragg peaks during TOF. The result of
this fitting is shown as the solid line in fig. 9.7.

9.4.2 Calculating the Evolution During TOF

Equation 9.2 describes the distance traveled by an atom with a hypothetical mo-
mentum of p = 4~k, corresponding to an initial q = 4π/d. Assuming a linear
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scaling of this distance with the quasimomentum of an atom at a fixed tTOF, we can
then derive a function that maps an atom starting at the initial position xin with a
quasimomentum q to a final position xf (q, tTOF, xin):

xf (q, tTOF, xin) = xin + fTOF (q, tTOF) (9.3)

= xin +
qd

4π

(
a+ b

√
tTOF − c

)
(9.4)

Note that in the simplest case of a perfect band-mapping procedure, ideal imaging
conditions, and no forces acting on the atoms during TOF, the function fTOF (q, tTOF)
would simply be given as

fTOF(q, tTOF) =
~q
m
tTOF, (9.5)

where m is the atomic mass. In our experimental case, however, we clearly observe
deviations from this linear behavior and use the function of eq. 9.4.

Inverting eq. 9.4 gives a mapping that describes from what position in the initial
state atoms with a given quasimomentum q arrive at a final position xf after time
tTOF:

xin(q, tTOF, xf ) = xf − fTOF(q, tTOF). (9.6)

The total density nf arriving at a point xf after tTOF is then given by the sum over
the initial density at all possible starting points nin(xin(q, tTOF, xf )), weighted with
the density in momentum space nq at quasimomenta q. For simplicity, we assume
that nq is the same over the full extension of the cloud.

nf (xf , t = tTOF) =
∑
q

nin (xin (q, tTOF, xf )) · nq(q) (9.7)

=
∑
q

nin (xf − fTOF (q, tTOF)) · nq(q). (9.8)

In fig. 9.8, we show exemplary evolutions of the density distribution during TOF
for various initial quasimomentum distributions, calculated using eq. 9.8 with the
simple fTOF of eq. 9.5. We always start these calculations with a Gaussian shaped
initial density distribution of the form:

nin(x) = e
−x2

2σ2x , (9.9)

where σx is 10µm and then calculate the density distributions after various times
tTOF, which are shown in the density plots (bottom row of fig. 9.8). The assumed
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nq for the respective evolutions are shown in the panels above.
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Figure 9.8: Evolution of the line density observed in TOF imaging for various
initial nq. The upper row shows the nq used for the calculation of the
evolution of the line density during TOF shown in the lower row.

The left column shows the evolution of a state with an nq that is peaked around
q = 0. Releasing this state results in a slow spreading of the atomic cloud during
TOF, caused by the spread in momentum space of the initial state. The center
column shows the evolution of a state with an nq that is completely flat over the
first Brillouin zone, which is the case for a state of completely localized atoms. In
this case, the density distribution during TOF becomes completely flat and the
velocity of the edges of this distribution is equal to the maximum possible velocity
after band-mapping, vmax = ~k/m. The initial shape of the cloud will in this case
only change the steepness of the edges of the final distribution.

A more interesting evolution results from initial nq that include extra features. In
the right column of fig. 9.8, we show the TOF evolution of an initial state with a
quasimomentum distribution that has two peaks around q = ±π/(2d). This initial
quasimomentum distribution leads to the formation of two distinct peaks evolving in
opposite directions during TOF. The width of these peaks is given by a convolution
of the width of the initial density distribution in real space and the width of the
peaks in nq, which causes a spreading over time during the free evolution in TOF.
For true quasi-condensation, we expect the peaks in momentum space to be very
narrow (see section 9.1).

9.4.3 Determining Momentum Distributions from TOF
Evolutions

Our goal is to extract an approximate quasimomentum distribution for states of
strongly interacting atoms during the expansion in the 1D lattice geometry. We let
the atoms expand in a 1D lattice with a lattice depth of (8, 20, 20)Er along (x, y, z)
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at U/J = 20 for a given expansion duration tE and then initiate the TOF procedure.
The atoms proceed to fall down and after various tTOF, we image the atoms along
the y-direction and extract line density profiles by integrating along the z-direction.
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Figure 9.9: Line density profiles during TOF for various expansion durations
tE, averaged over multiple realizations, individually normalized and
shifted to a common center.

In fig. 9.9, we show the evolution of the density distributions during TOF after
various expansion durations tE. Each horizontal line shows the line density at the
indicated tTOF, which is averaged over multiple experimental realizations. For the
short tTOF = 6 ms, 7 ms, and 8 ms, we average over two images, for tTOF = 10 ms,
we average over three images and for tTOF = 12 and 15 ms, we use four or five
images. Again, we clearly see how an increasing evolution time in the lattice leads
to the formation of two peaks. At tE = 0 τ and tE = 3.6 τ , we do not observe
any distinct features in the density distributions during TOF. At tE = 10.9 τ , we
can notice the first hint of two distinct peaks with a lower density in the center.
For tE = 18.1 τ , we can already clearly observe the two peaks traveling in opposite
directions at tTOF = 6 ms, and the signal becomes even stronger for larger tE.

We can now use the method outlined in sect. 9.4.2 to calculate the evolution
during TOF of an assumed nq(tE) and compare it to the experimental results. For
these calculations, we use the independently measured in-situ densities nx(tE) as the
initial density distributions nin (xin) in eq. 9.8. We then employ a least-squares fitting
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procedure to optimize the free parameters of our assumed nq(tE). This heavily relies
on the model used to approximate an initial quasimomentum distribution. Here, we
will limit the discussion to a rather simple model that allows to easily identify key
characteristics of the momentum distribution. In section 9.5.4, we will present a
more general method that yields similar results. As we expect nq(tE) to develop two
distinct peaks, we start with a simple trial function of the form

nq = Ac exp
(
−q2/(2σ2

c )
)

+ Ad

(
σ2
d

σ2
d + (q − qd)2

+
σ2
d

σ2
d + (q + qd)2

)
, (9.10)

with q ∈ [−π/d, π/d], i.e., limited to the first Brillouin zone.

This function describes a momentum distribution consisting of a Gaussian peak
centered around q = 0 with a standard deviation σc, which can in principle be very
broad and thus also describe a flat momentum distribution. The weight of this peak
is given by Ac. To this, we add two Lorentzian peaks, displaced by variable ±qd,
where σd defines the width of the peaks and Ad is their amplitude. These peaks can
describe the accumulation of density in quasimomentum space at specific points in
the Brillouin zone that have the same distance from the center of the Brillouin zone,
but are displaced in opposite directions.

In fig. 9.10, we show the experimental density distributions during TOF (top
row) for various evolution times in the lattice tE, along with the simulated density
distributions for the parameters of eq. 9.10 that result in the best matches between
experiment and simulation (center row). In the lower row of fig. 9.10, we show
nq(tE) for the fitted parameters. The three dashed lines are the individual terms
of eq. 9.10, i.e. the broad central peak and the two displaced peaks. Note that we
only take into account the distributions after large tTOF for the fitting procedures.
Taking smaller tTOF into account results in an increase of the fitted qd towards large
values of |q|, which is an indication for imperfections in our band-mapping and TOF
imaging procedure that we address in section 9.5.4.

While at tE = 0, nq(tE) is given by a very broad function that is peaked at the
center, at tE = 10.9 τ , two distinct peaks of nq(tE) have formed around q = ±π/(2d),
as expected during quasi-condensation. These peaks become even more pronounced
after tE = 18.1 τ . The peaks persist for longer tE, but they remain rather broad
compared to the expected sharp peaks indicative of quasi-condensation.

To investigate the behavior of the peaks in nq more closely, we first plot their
displacement qd over expansion duration tE in figure 9.11a. For tE & 10 τ , which
is the time at which two distinct peaks can first be observed, their displacement is
close to the predicted value of qd = π/(2d).

From the fitted quasimomentum distributions, we can calculate the average veloc-
ity vav (eq. 9.1), which we plot over tE in figure 9.11b. We see that during the first
part of the expansion, vav shows the behavior expected during quasi-condensation,
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Figure 9.10: Top Row: Experimental TOF line density profiles for various expan-
sion durations for tTOF = 10 ms, 12 ms and 15 ms, all line densities
individually normalized. Middle Row: Simulated TOF profiles af-
ter obtaining the best parameters for nq from least squares fitting.
Bottom Row: The fitted quasimomentum profiles. The dashed lines
show the three contributing peaks of eq. 9.10 and the solid line shows
nq, which is the sum of the three peaks. Note that the fits result in
very large widths for the central peak, which then corresponds to a
flat background.
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(a) Evolution of the displacement qd of the
additional peaks in eq. 9.10 during the
expansion.
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(b) Evolution of vav, calculated from the
fitted nq of fig. 9.11b, during the ex-
pansion.

Figure 9.11
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as discussed in section 9.1. At tE = 0, vav is close to vav =
√

2d/τ , the average ve-
locity of a state in 1D that has a completely flat quasimomentum distribution. Even
though the fitted nq for this state (see fig. 9.10) is not completely flat, the symme-
try of the group velocity distribution (see fig. 6.4a) ensures that vav does not differ
significantly from

√
2d/τ . For increasing expansion durations, vav then increases,

reaching a maximum of vav ≈ 1.5d/τ , which is about 6% larger than
√

2d/τ . This is
directly related to the accumulation of nq around |q| = ±π/(2d), where the absolute
group velocity is largest. For even larger expansion durations, however, vav stops to
increase and remains significantly lower than the values of vav ≈ 1.67d/τ predicted
by the calculations shown in fig. 9.2a.

9.5 Effects Limiting the Formation and Detection of
Quasi-Condensates

As discussed in the previous section, we do observe an accumulation in nq(tE) around
q = ±π/(2d), in agreement with theoretical predictions. However, the peaks forming
in nq(tE) during the expansion are much broader than those expected for quasi-
condensation of hard-core bosons in 1D, and the increase of vav is not as strong as
expected.

The theoretical predictions discussed in section 9.1 are given in the context of a
single defect-free 1D chain of hard-core bosons evolving in a perfectly homogeneous
1D lattice. This is naturally quite far from the experimental situation we encounter,
which involves averaging over multiple tubes, imperfect initial states and residual
global potentials. In the following, we discuss the effects of these imperfections in
the experimental situation, as well as ways to circumvent them and to improve the
experiments.

9.5.1 Averaging of 1D Systems with Varying Atom Numbers

The theoretical predictions for quasi-condensation of hard-core bosons discussed in
section 9.1 are mainly concerned with the evolution of an initial state consisting of a
fixed number of atoms N expanding in a 1D tube. In our experiment, the realizable
systems are quite different from this situation.

Even if the initial state created before the dephasing period in the deep lattice
were a perfect and pure Mott insulator, it would nevertheless consist of a multitude
of 1D tubes with chains of atoms of varying length lt. As an example, figure 9.12a
shows a visualization of the chain lengths in an ellipsoidal density distribution.
In this case, we assumed that the number of atoms per site is ηi = 1 for every
site within an ellipsoid with half axes of length (5µm, 5µm, 2µm) along (x, y, z),
respectively. The outermost tubes of the state can contain only very few atoms,
while the most central tubes in this example can contain up to 27 atoms. Note
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(a) Visualization of chains of atoms in an
exemplary ellipsoidal density distribu-
tion with half-axes (5µm, 5µm, 2µm).
The chain lengths are rounded off to
integer numbers of sites.

Chain length lt (d)

(b) The total number of atoms in chains
with a given length lt for an ex-
perimentally more realistic ellipsoidal
density distribution with half-axes
(10µm, 10µm, 5µm).

Figure 9.12

that in such ellipsoidal states, the number of tubes Nlt of length lt is approximately
proportional to lt (aside from finite size effects and rounding to integer numbers of
lt, which becomes important in small systems).

In the experimental TOF images, we measure the averaged momentum distribu-
tion for all atoms from tubes with varying lt. Thus, it is instructive to investigate the
total number of atoms in chains of length lt, given by Nlt · lt, which is approximately
proportional to l2t . We show this quantity in fig. 9.12b for an experimentally more
realistic assumption of a state with half-axes (10µm, 10µm, 5µm) along (x, y, z),
respectively. The quadratic dependence on lt can be observed, although there are
strong fluctuations present stemming from finite size effects. Due to this quadratic
behavior, the dynamics in momentum space that can be observed in TOF images
are dominated by atoms in chains of length lt & 30, while atoms in shorter chains
contribute only very little.

As discussed in sect. 9.1, the formation time of the quasi-condensate in a tube
depends approximately linearly on the length of the chain of atoms in this tube. For
every single chain with a given lt, there is a point in time at which the occupation
of the lowest natural orbit is maximal and the peaks in nq(tE) are the narrowest. If
we now include the evolution of tubes with fewer and more atoms, this will lead to
a broadening of the peaks at the given time, because of the differing time scales for
the formation of the quasi-condensates. To investigate this effect, we average over
calculated quasimomentum profiles for the expansion of HCB with varying atom
numbers in the initial state. The evolution of the quasimomentum profiles was
calculated by S. Langer [231] using exact diagonalization. We use the occupation of
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(b) The quasimomentum profiles nq for a
state with 42 atoms after tE = 13.75 τ
(gray solid line) and for the averaged
case at tE = 13.25 τ (black dotted
line).

Figure 9.13

tubes with length lt, as shown in fig. 9.12b, as weights in the averaging and calculate
vav for every time step. The evolution of vav for the averaged quasimomentum
profiles is shown in fig. 9.13a in comparison to that of a state with a fixed lt = 42,
which corresponds to the average tube length of the ellipsoidal density distribution
with half axes (10µm, 10µm, 5µm) along (x, y, z), respectively, when weighted by
the number of atoms per tube. Note that only the evolution of quasimomentum
distributions for atom numbers N ≤ 50 was calculated. For the averaging of the
quasimomentum profiles, we thus introduce a cutoff at N = 50 and discard the
contributions of the tubes with lt > 50.

There are two main effects of the averaging over varying tube lengths. The first
effect is a slight reduction of the maximum vav that is reached during the expansion.
While for a single tube with a fixed atom number, the average velocity reaches
values between vav = 1.66 d/τ and vav = 1.67 d/τ for atom numbers N > 10 in the
initial state, vav does not exceed 1.65 d/τ for the averaged momentum profiles. The
reason for this effect can be observed in fig. 9.13b, where we compare the shape of
the averaged quasimomentum profile with that of atoms in a single tube with an
initial lt = 42. The profiles plotted are taken at the respective times tE where the
maximum vav is reached. We can observe that the peaks in the averaged profile
are slightly lower than in the state with lt = 42. Conversely, nq is slightly higher
around q = 0 for the averaged state. As the group velocity vg is maximal around
q = ±π/(2d) and minimal around q = 0 (and q = ±π/d), this results in a slightly
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Figure 9.14: Quasimomentum distribution nq of initial products of Fock states
with mean density n after an expansion for tE = 10 τ , calculated
using exact diagonalization. All nq are normalized individually. For
n < 1, 70 configurations of randomly distributed holes were included
in the initial states, and the resulting nq averaged. Figure adapted
from [231] with kind permission of the author.

lower vav for the averaged profiles.

It is nevertheless quite remarkable how well the shapes of the two profiles agree.
This shows that the averaging over tubes with varying length should not be a limiting
factor for the observation of quasi-condensation in HCB systems. Even though
the height of the peaks in momentum space is slightly reduced after averaging,
the peaks still remain very narrow. The second effect that can be observed is a
slight broadening of the maximum in vav with respect to tE in the averaged case,
compared to the case of lt = 42. This broadening, however, should only facilitate
the observation of the peaks in nq, as it increases the time span of high visibility.

9.5.2 Effects of Holes and Higher Occupancies in the Initial
State

The theoretical calculations published to date on quasi-condensation of 1D hard-
core bosons all assume an initial state of a chain of singly occupied lattice sites
with no empty sites in between. In the experiment, there are always regions of
lower density with empty lattice sites at the outer edges of the cloud, but as our
greatest concern is to prevent the formation of higher occupancies when loading the
lattice, it is certainly possible that we also produce a significant fraction of empty
lattice sites even closer to the center. To investigate the effects of holes in the initial
state, calculations using exact diagonalization were conducted by L. Vidmar [231]
for various configurations of holes in the initial states.
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Figure 9.14 shows the results of calculations for a varying number N of atoms
initially in a product of local Fock states, expanding from a box of size LB = 20 d
into a homogeneous lattice. The initial density n is given by n = N/LB. For n < 1,
multiple calculations were performed with the position of the empty sites in the
initial states chosen randomly according to a probability distribution that mimics
the assumed distribution of holes in the experimental situation [231]. The three
lines are the resulting quasimomentum distributions nq after an expansion duration
tE = 10 τ . There is a clear tendency of decreasing peak height and increasing width
as more holes are introduced into the initial state. With 20% holes in the initial
state, the height of the peaks is almost reduced to half of the height in the n = 1 case.
Such effects could certainly be present in our experiments and inhibit the formation
of sharp peaks in nq. In future experiments, we should thus pay close attention to
creating initial Mott insulators that contain as few holes as possible, which could be
assessed by monitoring the peaks in momentum space while optimizing the loading
procedure.

The investigation of doubly occupied sites in the initial state is more complex,
as the presence of these doublons breaks the integrability of the system and the
exact diagonalization method cannot be applied anymore. In this case, one has to
resort again to t-DMRG calculations, which are limited to smaller system sizes. In
[234], the formation of peaks in nq during expansions was investigated for N = 10
atoms with varying admixtures of holes and doubly occupied sites, starting from
initial products of Fock states. At U/J = 20, the presence of such defects was found
to slightly shift the position of the peaks, but did not significantly reduce their
visibility. However, finite size effects might play a larger role for these calculations
and we should also make sure that there are as few double occupancies as possible
in the initial state of future experiments. A more extensive numerical analysis of the
combined effects of holes and doubly occupied sites in the initial state is currently
being conducted [231].

9.5.3 Effects of Global Potentials

In chapter 6.3.1, we discuss the effects of uncompensated global potentials on the
expansion velocity and our method of optimizing the homogeneity of the system.
We are able to reach a homogeneity that is good enough to observe undisturbed
dynamics of the density distributions for non-interacting and strongly interacting
atoms in agreement with the theoretical predictions. The presence of a global har-
monic potential, however, does not only affect the expansion velocity but also the
evolution of the quasimomentum distribution, and for states with a flat initial nq
in the first Brillouin zone, it is quite possible that these changes are significant in
nq(tE) without strongly altering the overall evolution of the density distribution.

To show the effects of additional potentials on nq(tE) in more detail, we again
investigate the dynamics of non-interacting atoms in a Hubbard Hamiltonian of the
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form

H = −J
∑
〈i,j〉

b̂†i b̂j +
∑
i

ω2

2
(i− i0)2 d2n̂i, (9.11)

where i0 is the index of the site in the center of the harmonic potential with trap
frequency ω (given in units of J1/2). As discussed in chapter 6.3.1, to calculate
the evolution of atoms in such a system we use our knowledge about the dispersion
relation of atoms in a lattice potential in the tight binding regime, which is given by

εq = −2J cos (qd), (9.12)

and the resulting group velocity relation

vg (q) =
1

~
∂εq
∂q

= 2
d

τ
sin (qd). (9.13)

From these relations, we can obtain simple differential equations for the evolution of
single atoms under the influence of external potentials and solve them numerically
(see also chapter 6.2).

Effects of Harmonic Potentials

We have already shown in sect. 6.3.1 that for strong enough external potentials, the
expansion velocity of the in-situ density distribution in the lattice can be strongly
reduced. As we experimentally optimize the intensity of the dipole trap beams
to maximize the cloud size after large expansion durations tE, we do not expect
such strong harmonic confinements to be present. In order to demonstrate the
effects of the harmonic confinement on the evolution of nq(tE), we thus choose a
harmonic confinement that is small enough to leave the evolution of the HWHM of
the cloud largely unperturbed. In figure 9.15, we demonstrate the effects of a small
harmonic confinement on the evolution of atoms in a 1D lattice. Here, we assume
all atoms to be initially localized on a single lattice site and their quasimomentum
to be completely flat within the first Brillouin zone and zero elsewhere. Panel a)
shows the unperturbed (ω = 0) time evolution of the line density nx(tE) of such an
initial state, dominated by the fast ballistic atoms with group velocities vg = 2d/τ .
Panel b) shows an evolution of the same initial state, but with an added harmonic
confinement of ω = 0.03J1/2. The difference between the evolutions can only be
observed for large tE, where a slight inward bending of the trajectories of the fastest
atoms takes place. The effect of this bending on our experimental observable, the
HWHM of the clouds, is shown in panel c). We plot the HWHM of the evolution
without external potential as the dashed gray line and that of the evolution with
ω = 0.03J1/2 as the solid black line. A significant deviation of the HWHM can
only be observed for tE > 30τ . In such an expansion, harmonic confinements on
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Figure 9.15: a): Evolution of the line density nx(tE) of atoms starting at x = 0
with nq(tE = 0) = const for q ∈ [−π/d, π/d] and no external con-
finement present (ω = 0). b): The same evolution as in a), but with
a harmonic confinement of ω = 0.03J1/2 present. c): The evolu-
tion of the HWHM for the expansion without confinement and with
confinement.

the order of ω . 0.03J1/2 would thus not be easily detected by investigating the
HWHM of the clouds, but they could still have strong effects on the evolution of
the momentum distributions.

During quasi-condensation, we expect that the quasimomentum distribution nq(tE)
acquires sharp peaks at quasimomenta q = ±π/(2d). Thus, we first investigate how
the presence of the harmonic potential affects the evolution of an initial state that
exhibits sharp peaks in nq(tE). We again choose the initial position of all atoms to
be at x = 0, but this time, the initial nq is given by

nq(tE = 0) = e
− (x−π/(2d))2

2(π/(10d))2 + e
− (x+π/(2d))2

2(π/(10d))2 . (9.14)

This distribution has two distinct peaks at q = ±π/(2d), shown as the dashed line in
fig. 9.16e). Without any additional potentials present, the evolution of the density
distribution nx(tE) now consists only of two density lobes, traveling with maximum
velocity 2d/τ in opposite directions, as shown in fig. 9.16 a). During the evolution,
a small broadening of the two lobes takes place, determined by the width of the
two peaks in nq. The peaks in nq themselves, however, do not change during the
evolution, shown in fig. 9.16 c), as there are no forces acting on the atoms.

When an additional harmonic potential with ω = 0.03J1/2 is added, we can al-
ready observe some changes in the time evolution of nx(tE), as shown in fig. 9.16 b).
The trajectories of the atoms again bend inwards for large tE and the broadening
of the traveling density lobes is more severe than without the external potential. A
much stronger effect, however, can be observed in the evolution of nq(tE) (fig. 9.16
d). As expected for a confining potential, the absolute value of the peak position is
reduced during the expansion, since a state with an nq peaked around q = π/(2d)
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Figure 9.16: a),b): Evolution of the line density nx(tE) during an expansion of
atoms starting at x = 0 with nq(tE = 0) given by eq. 9.14 for ω = 0
and ω = 0.03J1/2. c),d): Evolution of the quasimomentum distri-
bution nq(tE) for the same parameters. e): Comparison between
nq(tE = 0) (dashed line) and nq(tE = 40 τ) (solid line)

has a large group velocity and travels in the direction of increasing potential, which
results in a decreasing quasimomentum. The magnitude of this effect is very large,
and after tE ≈ 40τ , the peak position in quasimomentum space has been shifted
almost to q = 0.

The same effect, but with an opposite sign, can be observed for anti-confining
potentials, where the peaks are shifted towards larger values of |q|. This is shown in
fig. 9.17 for ω = 0.03iJ1/2. The evolution of the density distribution (fig. 9.17a) is
identical to the evolution in the case ω = 0.03J1/2 (fig. 9.16b), due to the symmetry
of the group velocity relation. The evolution of nq(tE), shown in fig. 9.17b, is
also analogous to the ω = 0.03J1/2 case, but with an opposite sign. Due to the
anti-confining nature, the peaks are now shifted towards larger values of |q| and
after tE = 40 τ , they reach q = ±π/d. Note that for even longer evolution times, the
position of the peaks in nq would increase even further in |q|. As the quasimomentum
is limited to the first Brillouin zone, the atoms would then be reflected, ±q → ∓q,
and then continue their evolution, oscillating in the lattice.

In both cases (ω = 0.03J1/2 and ω = 0.03iJ1/2), the peaks do not only move in
momentum space, but even become slightly narrower during the evolution. This
effect, however, is caused by the focusing nature of the harmonic potential in com-
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Figure 9.17: a) Evolution of the line density nx(tE) during an expansion of atoms
starting at x = 0 with nq(tE = 0) given by eq. 9.14 for ω = 0.03iJ1/2.
b): Evolution of the quasimomentum distribution nq(tE) for the same
parameters. c): Comparison between nq(tE = 0) (dashed line) and
nq(tE = 40 τ) (solid line)

bination with the very small spatial extension of the initial state. It cannot be
expected to occur under realistic experimental conditions with larger initial states,
as we will discuss in the next section.

Effects on Expanded Distributions

In the examples above, we discuss the effects of global harmonic confining and anti-
confining potentials on states that have strongly peaked momentum distributions.
This leads to shifts in the peak position in quasi-momentum space, but also to an
overall narrowing of the peaks. The main reason for this narrowing is the fact that
these states were considered to be originating from a very small region in real space,
which facilitates the focusing due to harmonic potentials. In the following, we will
consider realistic states that are expected to be present during the expansion in our
experiments.

In fig. 9.18, we discuss the evolution of the density distribution of an initial state
with a constant density in the region x ∈ [−30d, 30d] and no atoms outside of this
region. This corresponds to the typical HWHM of the initial states used in the
experiment. Here, the initial quasimomentum distribution nq(tE = 0) of the atoms
is again assumed to be constant over the first Brillouin zone.

Figure 9.18a shows the evolution of the line density nx(tE) during the expansion
without an additional harmonic potential, which has already been discussed exten-
sively in chapter 6. Figure 9.18b shows the same evolution, but with an external
harmonic confinement of ω = 0.015J1/2. The changes of nx(tE) when adding the
harmonic confinement are indeed almost negligible. A very slight bending of the
outermost flanks of the expanding distribution can be observed in the density pro-
files, which leads to a vary small reduction of the HWHM after long evolution times.
This becomes more clear by comparing the evolution of the HWHM directly in figure
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Figure 9.18: a) Evolution of the line density nx(tE) during an expansion of atoms
with nx(tE = 0) = const. for x ∈ [−30d, 30d] and nq(tE = 0) = const.
for q ∈ [−π/d, π/d]. b): Same as a), but with an additional harmonic
potential with ω = 0.015J1/2. c): The evolution of the HWHM
for the expansion without confinement (dashed gray line) and with
confinement (solid black line)

9.18c. The gray dashed line shows the HWHM without an external potential, the
black solid line those with the harmonic potential present. Both curves lie almost
exactly on top of each other and only for very large tE > 50 τ can we observe that
the HWHM is indeed slightly smaller when the confinement is present. Thus, such
a small harmonic confinement would certainly go undetected in our experimental
optimization.
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Figure 9.19: Evolution of the momentum distribution of the initial state of fig.
9.18 under the influence of an external harmonic potential with ω =
0.015J1/2.

Even though we do not observe any obvious deviations in comparison to the free
case when looking at the density distributions, we can nevertheless observe a clear
effect when investigating the evolution of the momentum distribution. This is shown
in fig. 9.19 for the same initial conditions and external potential. The effect of the
harmonic potential can be seen in the redistribution of nq from higher absolute
values of q towards the center of the Brillouin zone. The fact that the evolution of
the HWHM of the density distribution is not affected strongly by this redistribution
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in quasimomentum space can be explained by considering that the highest absolute
group velocities are associated with quasimomenta q = ±π/(2d). Even though nq
decreases strongly at q = π/d and increases at q = 0, both these points are anyway
associated with vg = 0. Thus, in the time span investigated here, the changes in nq
cause only small changes in the average velocity, as nq at q = π/(2d) is not strongly
affected by the redistribution.

Since we are interested in the effects of the confinement on the signatures of
quasi-condensation, we repeat this calculation for a state similar to those that would
be expected after quasi-condensation has happened in the experiment. We expect
strong peaks in nq to be visible after an evolution time of tE ≈ 20 τ , after which
our experimental systems typically reach a HWHM of ≈ 50d. Thus, we assume an
initial state that, for the sake of simplicity, has a flat density distribution in the range
x ∈ [−50d, 50d] and no atoms outside of this region. The initial quasimomentum
distribution, however, is now again assumed to be strongly peaked around q =
±π/(2d) according to eq. 9.14 (dashed line in fig. 9.20c).
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Figure 9.20: Evolution of the line density nx(tE) during an expansion of atoms
starting with nx(tE = 0) = const. for x ∈ [−50d, 50d] with nq(tE = 0)
given by eq. 9.14 for ω = 0.015J1/2. b): Evolution of the quasimo-
mentum distribution nq(tE) for the same parameters. c): Comparison
between nq(tE = 0) (dashed line) and nq(tE = 40 τ) (solid line).

Figure 9.20a shows the evolution of the density distribution for such an initial
state. Due to the distinct peaks of nq, instead of the spreading observed in regular
expansions, the evolution is now clearly separated into a left-moving and a right-
moving portion, both moving with maximum group velocity vg. Note that such an
evolution is certainly not what we expect to occur in the experiment. The reason
for this is that, while nq is indeed expected to become strongly peaked during the
formation of quasi-condensates, there will always be scattering processes that lead
to an exchange of momentum between two particles and can thus transfer an atom
from the left-moving portion of the cloud to the right moving. These scattering
processes cannot be taken into account in our simple model calculation, but we
can nevertheless use it to estimate what kinds of effects can be expected for the
evolution of the quasimomentum distribution. The evolution of nq(tE) during the
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expansion is shown in fig. 9.20b. Starting with two peaks at q = ±π/2, there are two
clear effects of the external harmonic potential. First, the center of the peaks shifts
again to smaller values of |q| during the evolution, as already observed in fig. 9.16.
Second, the fact that we started from a broad initial state mitigates the otherwise
focusing nature of the harmonic potential. As atoms starting at different positions
experience the effects of the harmonic potential with varying strength, the influence
of the potential leads to an overall broadening of the peaks in momentum space.

To show this broadening more clearly, we show the initial momentum profile
nq(tE = 0) as the dashed gray line in fig. 9.20c and the final nq(tE = 40τ) as the
solid black line. The effect is indeed quite strong, the peak heights are reduced
by more than a factor of two while the width of the peaks increases by a similar
amount.

This serves as an example of the strong effects global potentials can have on
the evolution in quasimomentum space. Experimentally, we use the evolution of
the HWHM as a measure for the homogeneity of our global potentials. However,
as we have seen in fig. 9.18, this measure is less precise than investigating the
evolution of the quasimomentum distribution. Note that the effects on the dynamics
during the actual formation of quasi-condensates are more intricate, since the peaks
in nq(tE) are not present in the initial state, as assumed in our examples, but
instead dynamically form during the evolution. Such an evolution is certainly more
complicated than what is presented in this section. However, the qualitative effects
that can arise from the presence of external potentials are shown to range from
shifts in the position of peaks in quasimomentum space to a broadening as well as
a narrowing of the peaks, while being undetected in observations of the HWHM of
the clouds.

A further investigation of these effects is needed to rule out such strong effects
on the evolution of nq(tE) during expansion measurements. This could easily be
done by varying the intensity and position of the dipole trap laser in expansion
measurements and investigating the effects this has on the peaks observed after
TOF.

9.5.4 Imperfect Band Mapping Procedure

As mentioned in sect. 9.4.3, the fitting of quasimomentum distributions to our TOF
data did not work very well, when taking the whole range of tTOF from 6 ms to 15 ms
into account. It is not entirely clear, what the exact reason for this is, but we do
observe that the fitted distributions tend to show excess weight at large q for large
values of tE and small values of tTOF, which indicates that the mapping of position
to quasimomentum is not completely accurate.

One effect that could possibly influence the behavior of the atoms during TOF is
an imperfect band mapping procedure. In order to faithfully convert all quasimo-
menta q into real momenta p = ~q, it is required to ramp down the lattice intensity
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Figure 9.21: Top row: Experimental TOF line density profiles for various expan-
sion durations. Middle row: Simulated TOF profiles after obtaining
the best parameters for nq from least squares fitting. Bottom row:
The fitted quasimomentum profiles.

slowly enough to adiabatically stay in the lowest band of the lattice during the
complete ramp [51, 203] but also fast enough so that the quasimomentum distribu-
tion cannot change significantly during this ramp. For strongly interacting atoms,
these two conditions are hard to fulfill at the same time. In our experiments, we
used a linear ramp of the lattice intensity over a time span of 50µs, which is rather
fast and could potentially lead to some atoms being promoted to the next higher
band during the band mapping. These atoms would then be mapped onto real mo-
menta p = ~(q ± 2π/d), and in TOF, would travel further than possible under the
assumption of perfect band mapping.

In order to investigate this effect, we can modify the fitting procedure of sect. 9.4.3.
Instead of limiting the real space momenta of the atoms after the band mapping
procedure to p ∈ [−~k, ~k], which corresponds to all atoms being adiabatically
transferred from the lowest band of the lattice, we allow for momenta in the range
of p ∈ [−2~k, 2~k]. This can accommodate for a slightly too fast band-mapping
procedure that promotes few atoms into higher bands.

In fig. 9.21, we show fit results for momentum distributions with this relaxed con-
straint on the possible momenta. In this case, we do not make an initial assumption
about the shape of nq, as we did in sect. 9.4.3. Instead, we simply use the value
of nq at thirty points in q, evenly spaced over the interval [−2π/d, 2π/d], as the
free parameters of the fitting algorithm, using a cubic interpolation between these
points. In the bottom row of fig. 9.21, we show the resulting fitted nq. The behav-
ior for nq to acquire two distinct peaks during the expansion is reproduced in this
case, without explicitly including them in the ansatz. We can also observe that the
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Figure 9.22

fitted momentum distributions indeed tend to extend slightly beyond ±π/d. This
supports our hypothesis of imperfections either during the band mapping or in our
TOF calibration of the camera.

However, in addition to a contribution to the nq at large quasimomenta, we also
observe that the developing peaks themselves are shifted to higher momenta for
large tE. This is shown in fig. 9.22a, where we extract the average distance |qmax|
of the two maxima of the distributions from the center of the Brillouin zone, where
qmax are the positions of the local maxima in momentum space. for small tE, the
distribution has not developed clearly distinguishable peaks, but after tE ≈ 10 τ , the
two peaks are distinguishable and their positions are close to |qmax| ≈ π/(2d). For
increasing tE, these positions also increase, and approach values of 3π/(4d) for large
tE. This is also reflected in the average velocities, calculated from the fitted nq and
shown in fig. 9.22b. The average velocity first increases with tE, while the peaks in
nq form around the points of large vg. For longer times, however, the displacement
of these peaks towards even larger values of q, where the group velocity is smaller,
results in an overall decreasing vav for large tE.

As discussed in sect. 9.5.3, it is physically possible to observe such a continued
shift in the peak positions under the influence of additional potentials acting on
the atoms during their expansion. However, we see this effect disappear when only
including data for large tTOF in the fitting routine which indicates that it is caused
by the experimental profiles after small tTOF. This can be seen by repeating the
above fitting procedure, but only taking data for tTOF = 10 ms, 12 ms and 15 ms into
account. We do not show the fitted profiles for this case, which look similar to the
ones shown in fig. 9.21, but the results for the evolution of |qmax| and vav are shown
in figs. 9.23a and 9.23b, respectively.

Here, the peak positions stay much longer in a range around q ≈ π/(2d) and only
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increase slightly for larger tE. Also the average velocity, while still showing a decay
for large tE, does not decrease as drastically as in the previous case.

We conclude that there are indeed some imperfections present in either the TOF
data or our calibration of the dynamics during TOF. This is reflected in the pres-
ence of momenta with absolute values |q| > k in the best fits for nq as well as in
the difference between fitted nq when taking data for different ranges of tTOF into
account. While an imperfect band mapping procedure can lead to the appearance
of atoms with too large momenta in TOF, it is not expected to lead to a broadening
and shifting of the observed peaks in momentum space. Spatially dependent field
gradients during the first few ms of TOF could, however, have adverse effects on the
sharpness of the observed peaks, as well as on their position. Our method of cali-
brating the relationship between quasimomentum q of an atom and its position after
TOF relied on Bragg pulses applied to a condensate in the center of the trap (see
sect. 9.4.2). Thus, inhomogeneous effects that have a stronger influence on atoms at
different positions can go unnoticed in this procedure and these effects should thus
be investigated more closely in future experiments.

9.6 Summary

In this chapter, we presented our experimental results towards the realization and
observation of quasi-condensation of strongly interacting atoms in 1D. We did indeed
observe an accumulation in nq around quasimomenta consistent with theoretical pre-
dictions. However, these peaks were much broader than the expected ones, and we
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discussed several sources of errors and deviations from the ideal case that could be
responsible for this. We showed that the averaging over individual experimental
realizations with varying atom numbers, as it always happens in our experiments,
only leads to a small broadening. While imperfections in the band mapping pro-
cedure or the calibration of the TOF imaging should have negligible effects on the
width of the observed peaks, spatially dependent magnetic field gradients during the
first ms of TOF could lead to a broadening and should be investigated more care-
fully. The most probable causes that inhibit the formation of quasi-condensates in
our experiments are uncompensated global potentials and empty sites in the initial
state. Both these aspects could be addressed in future experiments. The effects of
global potentials could easily be detected by varying the dipole trap properties and
monitoring the density distribution in TOF to detect changes in nq. The number of
holes in the initial state could be reduced by optimizing the initial state preparation
while monitoring TOF images.
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Chapter 10

Conclusions and Outlook

In this thesis, we have shown that ultracold atoms in optical lattices can be used as
a highly flexible model system to study the non-equilibrium dynamics of quantum
systems. Using blue detuned lattices along with magnetic Feshbach resonances
and additional dipole traps, we were able to control all parameters of the Hubbard
Hamiltonians independently and in real-time, which allowed us to conduct a series of
experiments on the expansion dynamics of ultracold atoms in homogeneous lattices.

One of the main investigated aspects was the influence of the dimensionality of
the systems on their expansion dynamics. We found clear indications of diffusive
dynamics for interacting fermions in 2D and 3D geometries, as well as for interacting
bosons in 2D. The diffusive behavior resulted in very small expansion velocities in
the regime of moderate to large interactions, combined with characteristic bimodal
density distributions consisting of a diffusive core and a ballistic background. In
1D, however, the behavior was found to be fundamentally different. Instead of
vanishing expansion velocities, we observed a minimum between |U/J | = 3 and
|U/J | = 4 and reincreasing velocities for larger interactions. This was found to be a
direct consequence of approaching the 1D hard-core boson limit, where the system
is integrable and can be mapped onto free fermions, leading to an identical behavior
of the density distributions of non-interacting and strongly interacting atoms. This
constitutes the first direct observation of a strongly interacting system exhibiting
ballistic transport dynamics due to the approach of an integrable limit (see [226,
227] and [86] and references therein). Our experimental results for 1D bosons were
found to be in excellent agreement with t-DMRG calculations.

Using the flexibility of tuning individual lattice axes independently and thereby
changing the ratio of tunneling along the two axes, we were able to map out the
crossover between 1D and 2D systems for a wide range of interactions and tunneling
ratios. This served as a demonstration of how increasing the degrees of freedom of
a system can slow down its expansion and highlighted the counter-acting effects of
strong interactions driving the system towards integrability when being close to the
1D regime, while driving it towards diffusive behavior close to the 2D regime.

Furthermore, we investigated the formation and evolution of higher occupancies
in the system, when starting from an initial state without higher occupancies. We
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found a fast local relaxation towards quasi-stationary amounts of higher occupancies
on the time scale of the tunneling time τ , consistent with the time scales observed
in t-DMRG calculations. Finally, we introduced higher occupancies already into the
initial state of the system and found that already at small interactions, these higher
occupancies significantly slowed down the expansion dynamics and brought them to
an almost complete stop in the strongly interacting regime.

The final part of this thesis was devoted to studying the evolution of the mo-
mentum distribution of strongly interacting atoms expanding from initial states
consisting of localized atoms. While we did not observe the sharp peaks in momen-
tum space predicted in [90, 233], we did observe the formation of a non-thermal
quasimomentum distribution with broad peaks around quasimomenta predicted by
theory. We discussed multiple possible effects that could hinder the formation or de-
tection of quasi-condensation in our experiments, as well as methods to investigate
and mitigate these issues experimentally.

Outlook

The field of non-equilibrium dynamics in quantum systems offers a broad range of
uncharted territory and cold atoms in optical lattices provide a great tool for its
investigation.

Regarding the expansion dynamics, there are many more interesting situations
that can be investigated in our setup. The initial state of the expanding fermions
investigated in chapter 7 was that of a band insulator with one fermion of each
species per lattice site. For a better comparison of their expansion dynamics to
the bosonic case, it would be interesting to investigate expansion dynamics in 1D
of interacting fermions starting in a Mott insulator ground state. According to
[85], such an initial state should always result in the same fast expansion velocities,
independent of the interaction. If a dephasing procedure like the one used in our
experiments is applied, however, an interaction dependence of the expansion velocity
similar to the bosonic case should emerge [86], even though the system is integrable
for all U . This would also allow for the observation of the 1D-2D crossover between
ballistic and diffusive dynamics in the fermionic case.

By making small changes to the experimental setup, we should be able to reach
a higher resolution when imaging the in-situ density distributions in the lattice.
Starting expansion measurements with initial states that contain a large fraction
of doubly occupied sites, this increased resolution could allow for an observation of
quantum distillation effects in the lattice for bosons [147, 228] as well as for fermions
[83]: An expansion of such initial states at large interactions is expected to lead to
a contracting core of double occupancies while atoms on singly occupied sites leave
the system, effectively reducing the overall entropy of the atoms in the center of the
lattice.

A quantitative theoretical analysis of the expansion dynamics in 2D is computa-
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tionally very challenging, but the analysis of ladder systems using t-DMRG already
showed that they can qualitatively reproduce aspects of the dynamics in 2D [86].
In our experiment, we are currently setting up a bichromatic superlattice along one
of the lattice axes, which will allow for the creation of arrays of decoupled ladder
systems with tunable coupling between the individual legs of the ladders [235]. In
future experiments, we could use this setup as a simple model system to study inte-
grability breaking and directly compare the experiments to theoretical predictions.

So far, we have not been able to observe clear indications of quasi-condensation
of expanding strongly interacting atoms. However, we already discussed multiple
sources of errors that could be responsible for preventing the formation of quasi-
condensates and obscuring our measurements. In future experiments, these could be
investigated in more detail by directly measuring the effects of different initial state
preparation schemes, optimized potential compensation, and imaging techniques
on the appearance of peaks in momentum space, which would hopefully lead to
the observation of clear signs of quasi-condensation. Another interesting situation
to investigate would be the expansion of strongly interacting atoms starting from
their ground state at low filling factors. Here, measurements of their momentum
distribution should reveal the dynamical fermionization predicted in [154].

In an ideal realization of expansions in homogeneous lattices, the atoms can tunnel
outwards indefinitely and their density vanishes for long expansion durations. Thus,
although we do observe fast local relaxation dynamics, we cannot investigate long-
term relaxation and thermalization dynamics on global scales in these systems. By
inducing a quantum quench in the tunneling and interaction strength of the system
without changing the harmonic confinement, however, we could directly study long-
term relaxation dynamics. Using Bose-Fermi mixtures or patterned initial density
distributions, and measuring the evolution of densities, higher occupancies or mo-
mentum distributions, this would provide an interesting approach to studying how
relaxation and thermalization depends on dimensionality and interaction strength.
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