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"Falls Gott die Welt geschaffen hat, war seine Hauptsorge sicher nicht, sie so zu
machen, dass wir sie verstehen kénnen."

Albert Einstein
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Zusammenfassung

Elliptische Galaxien sind die groften und schwersten, gravitativ gebundenen Ster-
nensysteme im heutigen Universum und beinhalten ein groflen Teil an dunkler Materie
innerhalb der sichtbaren, stellaren Komponente. In unserem aktuellen kosmologischen
Modell wachsen die Strukturen hierarchisch und elliptische Galaxien bilden sich erst
spat. Seit kurzem ist es moglich die Vorgidnger heutiger elliptischer Galaxien bei einer
Rotverschiebung von z ~ 2 — 3 direkt zu beobachten. Diese waren schon damals
sehr schwer, aber sie scheinen um einen Faktor 4-5 kleiner zu sein und ihre projizierte
Dichteverteilung ist weniger konzentriert, was man anhand eines sogenannten kleinen
‘Sersic index” von n ~ 2 — 4 sehen kann. Die stellaren Populationen ihrer heutigen
Ebenbilder deuten darauf hin, daf die Entwicklung der kompakten elliptischen Galax-
ien nicht auf dissipative Prozesse und die Entstehung neuer Sterne zuriickzufiihren
ist. Das Ziel dieser Arbeit ist es die Entwicklung kompakter elliptischer Galaxien mit
der Hilfe von mehr als 80 dissipationslosen (stoffreien) Verschmelzungssimulationen
(Merger) zu erklaren. Dafiir verwenden wir verschieden anféngliche Masseverhalt-
nisse von 1:1 (Major Merger), 1:5 und 1:10 (Minor Merger). Die Virialgleichungen
zeigen, dafl Minor Merger zu einer schnelleren Entwicklung fiihren als Major Merger.
Wir erzeugen akkurate Anfangsbedingungen, die die Eigenschaften von elliptischen
Galaxien darstellen. Unsere Galaxienmodelle sind sphérisch, isotrop und konnen ver-
schiedene stellare Dichteverteilungen annehmen. Optional kénnen sich die Galaxien in
einem massiven Halo aus dunkler Materie befinden. Es zeigt sich, daf all unsere Mod-
elle im dynamischen Gleichgewicht sind. Betrachtet man die Entwicklung von Major
Mergern, sieht man, daf sie proportional mit der Masse wachsen (r. o< M) und ihre
projizierten Dichteverteilungen bei allen Radien zunehmen, weshalb deren Sersic index
leicht von 4 auf 6 anwéchst. Hier ist der dominante dynamische Prozess die sogenannte
'violent relaxation’, die mehr dunkle Materie in das Zentrum mischt und dort das Ver-
héltnis zwischen dunkler und sichtbarer Materie, nach einer Merger Generation, um
einen Faktor ~ 1.2 erhoht. Der dynamische Prozess in Minor Mergern wird durch so-
genanntes ‘stripping’ beherrscht. Dabei wachsen die Galaxien stark mit zunehmender
Masse an (r, o< M=%1) und das Verhiltnis von dunkler zu sichtbarer Masse ist fiir die
doppelte stellare Masse um einen Faktor ~ 1.8 héher. Die projizierte Dichte wichst
hauptséchlich bei groferen Radien und man erhilt Sersic indizes von n ~ 8 — 10. Be-
merkenswerter Weise geben nur die Galaxienmodelle mit einem zusdtzlichen Halo aus
dunkler Materie iiberzeugende Ergebnisse fiir alle Minor Merger Szenarien. Das be-
deutet, dak dunkle Materie eine sehr wichtige Rolle bei der Entwicklungsgeschichte von
kompakten, massive Galaxien spielt. Zusammengefasst zeigen wir, dals dissipationslose
Minor Merger in der Lage sind, die Entwicklung von kompakten, elliptischen Galaxien
zu erkliren, da sie die Groke der Galaxien deutlich erhohen, mit zusdtzlicher Masse
hohere Verhédltnisse von dunkler zu sichtbarer Materie erzeugen und die Sersic Indizes
stark anwachsen lassen.



Summary

Early-type galaxies (ellipticals) are the largest and most massive gravitationally
bound stellar systems in the present Universe and contain a significant amount of dark
matter within their luminous component. Due to the currently favoured cosmologi-
cal model, where structures grow hierarchically, these systems assemble late. Recent
observations are able to detect directly the progenitors of present day ellipticals at red-
shifts of z ~ 2 — 3. These are already very massive but they seem to be more compact
by a factor 4-5 and have less concentrated surface density profiles, represented by a
small Sersic index n ~ 2 — 4. The stellar population of their present day counterparts
indicate, that their evolution cannot be driven by dissipation and star formation. The
primary goal of this thesis is to investigate a scenario for the evolution of compact, high
redshift spheroids using more than 80 dissipationless merger simulations with initial
mass ratios of 1:1 (equal-mass), 1:5 and 1:10. Virial expectations have indicated, that
minor mergers lead to a more rapid evolution than major mergers. We establish accu-
rate initial conditions, which adequately represent the properties of elliptical galaxies.
We setup spheroidal, isotropic galaxies with various density slopes for the stellar bulge,
which can optionally be embedded in a dark matter halo. All models are shown to be
dynamically stable. Regarding equal-mass mergers, we find that the spheroid’s sizes
grow proportional to the mass (r. o< M) and the surface densities grow at all radii,
indicated by a weak increase of the Sersic index from 4 to 6. Violent relaxation governs
the dynamical merging process and mixes more dark matter particles into the luminous
regime. Therefore, the central dark matter fraction increases by a factor of ~ 1.2 after
one generation of equal-mass mergers. In minor mergers, stripping of satellites is more
important. The size per added mass grows significantly (r. oc M=%*1) and the final
dark matter fractions increase by a factor of ~ 1.8, if the stellar mass is doubled. The
surface densities increase predominantly a larger radii, leading to large Sersic indices
of n ~ 8 — 10. Remarkably, only the galaxy models including a massive dark matter
halo give reasonable results for all minor merger scenarios. This indicates, that dark
matter plays a crucial role for the evolution history of compact early-type ellipticals.
Altogether we show, that dissipationless minor mergers are able to explain the subse-
quent evolution of compact early-type galaxies, as they very efficiently grow their sizes,
yield higher dark matter fractions for more massive galaxies and rapidly increase their
Sersic indices.
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CHAPTER 1

MOTIVATION

In the past decades significant understanding on the early evolution of the Universe
has been gained. Shortly after the Big Bang, we can observe primordial density and
temperature fluctuations in the cosmic microwave background, which are the starting
point of galaxy formation. These small density contrasts are the seeds for the first
agglomerations of dark matter, which grow to more massive halos, where the barionic
gas can cool and form stars and galaxies (White & Rees, 1978). In the current picture of
the ACDM model, the further evolution and growth of these first, gas-rich disk galaxies
is primarily dominated by merging (Toomre & Toomre, 1972). In their hypothesis,
Toomre (1977) coined the idea, that major disk mergers may result in intermediate
elliptical galaxies (Barnes, 1992; Naab & Burkert, 2003; Naab & Ostriker, 2009). Recent
observations have shown, that some of this early-type ellipticals are massive (M, ~
10" M), very compact (effective radii of R, ~ 1kpc) and quiescent at a redshift of
z ~ 2 — 3 (Daddi et al., 2005; Trujillo et al., 2006; Longhetti et al., 2007; Toft et al.,
2007; Zirm et al., 2007; Trujillo et al., 2007; Zirm et al., 2007; Buitrago et al., 2008;
van Dokkum et al., 2008; Cimatti et al., 2008; Franx et al., 2008; Saracco et al., 2009;
Damjanov et al., 2009; Bezanson et al., 2009).

One major problem of galaxy evolution stems from the fact, that such a population
does not exist in the present universe (Trujillo et al., 2009; Taylor et al., 2010). Instead,
present day ellipticals are much more extended and their effective radii are larger by
a factor of ~ 4 — 5. The most promising scenario to puff up a galaxy’s size are
dissipationless dry major and minor mergers, which are also expected in a cosmological
context (Khochfar & Silk, 2006; De Lucia et al., 2006; Guo & White, 2008; Hopkins
et al., 2010). As major mergers add a big amount of mass compared to, e.g. the effective
size growth or decrease in velocity dispersion, they cannot be the main evolutionary
path (White, 1978; Boylan-Kolchin et al., 2005; Nipoti et al., 2009a). Furthermore,
they are highly stochastic and some galaxies should have experienced no major merger
at all, and would therefore still be compact today. On the other hand, minor mergers
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can reduce the effective stellar densities, mildly reduce the velocity dispersions, and
rapidly increase the sizes by building up extended stellar envelopes, which grow inside-
out (Naab et al., 2009; Bezanson et al., 2009; Hopkins et al., 2010; Oser et al., 2010).
However, there are doubts whether this scenario works quantitatively (Nipoti et al.,
2003, 2009a) or if other physical process are required.

The best way to investigate the process of dissipationless encounters of two or more
galaxies are numerical N-body simulations. In recent years the computational power
has evolved and increased very quickly, allowing us to perform very high resolution sim-
ulations, which significantly reduce the impact of numerical artefacts. Therefore, they
are the best way to explore the difficult nature of mergers, which are highly non-linear
phenomena, implying strong potential fluctuations on very short timescales, which vi-
olently change the configurations of galaxies. Equipped with powerful numerical tools,
we can ask the interesting question, if the new particle distribution, established by a
galaxy encounter always gives some universal profile like an isothermal sphere for the
stellar component or an NFW-profile (Navarro et al., 1997) for the dark matter halo,
as is typically assumed for massive, present-day ellipticals.

A lot of work has already been done in order to push our knowledge of galaxy
formation and evolution, but there are still many interesting, open questions, which
we want to address in this thesis:

What processes influence the dynamics of coalescing galaxies?

Is dissipationless merging a viable mechanism to increase the sizes of compact
early-type ellipticals?

How does the structure change in either a minor or a major merger?

What is the main driver for the observed inside-out growth of high redshift ellip-
tical galaxies?

In Chapter 2 we start with a short summary of observations concerning the evolution
of elliptical galaxies and the previous numerical work before we give an overview of the
used N-body codes in Chapter 3. To investigate all the above questions, we develop a
program, which is able to create particle distributions of spherical, isotropic systems
and check them for stability in Chapter 4. Further, in Chapter 5, we take a closer
look at the dynamics of merging galaxies and the involved processes. Our first paper,
which will be submitted soon, mainly addressing the investigation of the dynamics and
the galaxy evolution is shown in Chapter 6. The effect on observables like the surface
density or surface brightness is summarized in Chapter 7, before we finally draw our
conclusions in Chapter 8.



CHAPTER 2

OBSERVATIONS

2.1 Elliptical Galaxies

Elliptical Galaxies are the most massive stellar systems in our universe and thought to
be the final stage of galaxy evolution. This results from the common picture of galaxy
formation and evolution, where structure in the universe grows hierarchically (White
& Rees, 1978; Davis et al., 1985). In the favored ACDM model (Komatsu et al., 2011),
the most massive early-type galaxiess are supposed to be formed in gas rich major
disk mergers at a redshift of z ~ 2 — 3 (Davis et al., 1985; Bournaud et al., 2011).
Early collisionless simulations of equal-mass disk mergers already showed, that they
nicely reproduce the principal structural properties of bright ellipticals (Toomre, 1977;
Negroponte & White, 1983; Barnes, 1992), which are slowly rotating systems with shal-
low central surface brightness profiles (Bender et al., 1989; Kormendy & Bender, 1996;
Kormendy et al., 2009; Lauer et al., 2005). Although the formation and evolution of
elliptical galaxies strongly depend on the different morphologies of the progenitors and
encounter geometries, they show a remarkable regularity in their structural properties.
The most famous ramification of this regularity is shown in the fundamental plane
of elliptical galaxies, which combines their half-light radii r., effective surface bright-
nesses I, and velocity dispersions o interior to r. (Djorgovski & Davis, 1987; Faber,
1987; Dressler et al., 1987; Djorgovski et al., 1988; Bender et al., 1992, 1993). It is
often explained as

R, = o"I", (2.1)

where observations yield the exponents a ~ 1.5 and b ~ —0.8, which differs from
simple virial expectations, where a = 2 and b = —1. The reason for this ’tilt’ of the
fundamental plane is currently not clear, and might be explained by variations in the
mass-to light ratio M, /L or an increase of the central dark matter fraction (Boylan-
Kolchin et al., 2005) combined with structural changes (e.g. Capelato et al. 1995;
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Figure 2.1: This figure shows the position of a compact early-type galaxy (black circle)
with respect to the most recent mass-size relations. Due to its extreme compactness, it
lies well below the high redshift estimation (red line).

Graham & Colless 1997; Pahre et al. 1998).
Furthermore, all elliptical galaxies are surprisingly well behaved and can all be
fitted remarkably well by the Sersic function (Sersic, 1968)

I(r) = I - 1070/ m 1), (2.2)

which is a generalization of the de Vaucouleurs r'/4 law. Of course, introducing an ad-
ditional parameter, the Sersic index n, improves the fit for a big variety of ellipticals,
but observational data also supports the idea, that the index n has a physical meaning.
For example, it well correlates with the effective radius r. and the total absolute mag-
nitude of elliptical galaxies (Caon et al., 1993; D’Onofrio et al., 1994; Graham et al.,
1996; Graham & Colless, 1997; Graham, 2001; Trujillo et al., 2001, 2002; Ferrarese
et al., 2006; Kormendy et al., 2009).

Despite the main body of regular early-type galaxies, recent observations have re-
vealed a population of very compact, massive (~ 10''M) and quiescent galaxies at
z~2 with sizes of about R, =~ lkpc (Daddi et al., 2005; Trujillo et al., 2006; Longhetti
et al., 2007; Toft et al., 2007; Zirm et al., 2007; Trujillo et al., 2007; Zirm et al., 2007;
Buitrago et al., 2008; van Dokkum et al., 2008; Cimatti et al., 2008; Franx et al.,
2008; Saracco et al., 2009; Damjanov et al., 2009; Bezanson et al., 2009). Figure 2.1
highlights the position of this population with respect to the most recent mass-size
relations (Shen et al., 2003; Bernardi, 2009; Guo & White, 2009; Nipoti et al., 2009a;
Auger et al., 2010; Williams et al., 2010). It indicates that present day ellipticals of



2.1 ELLIPTICAL GALAXIES 5

[ITTITII 8 O 1 O O (O = [ T T TTTTTITTITITIIT

1010
10°

108 &

¥ (Mg/kpc?)

107 &

108

1
TTIT

\__

sl bol]
L |

it

PR =X

0.8
0.6
0.4
0.2

GRS A LA ARE B AL
i
|

assembled mass

N L

5 10 50
radius (kpc) radius (kpc)

o
N
o
H
o
()]
o

Figure 2.2: The top panels show the observed evolution of the radial surface density of
early-type ellipticals from a redshift z ~ 2 (blue lines) to the present day (red lines). The
bottom panels depict the according mass assembly. Obviously, the central surface densities
are not affected and the galaxies grow inside out, by developing an outer extended envelope.
(Image courtesy of van Dokkum et al. 2010)

similar mass are larger by a factor of 4 - 5 (van der Wel et al., 2008) with at least an
order of magnitude lower effective densities and significantly lower velocity dispersions
than their high-redshift counterparts (van der Wel et al., 2005, 2008; Cappellari et al.,
2009; Cenarro & Trujillo, 2009; van Dokkum et al., 2009; van de Sande et al., 2011).
The measured small effective radii are most likely not caused by observational limita-
tions, although the low density material in the outer parts of distant galaxies is difficult
to detect (Hopkins et al. 2009a). Their clustering, number densities and core proper-
ties indicate that they are probably the progenitors of the most massive ellipticals and
Brightest Cluster Galaxies today (Hopkins et al., 2009a; Bezanson et al., 2009).

As this population of early-type galaxies was just found in the last decade, the pos-
sible evolution scenarios are under strong debate. However, in a cosmological context,
frequent dissipationless galaxy mergers are the most promising scenario to explain the
subsequent rapid size growth in the absence of significant additional dissipation and
star formation (Cole et al., 2000; Khochfar & Silk, 2006; De Lucia et al., 2006; Guo &
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White, 2008; Hopkins et al., 2010). Furthermore, observations and theoretical studies
of merger rates support the merger driven evolution, as galaxies undergo, on average,
about one major merger since redshift ~ 2 and significantly more minor mergers per
unit time (Bell et al., 2006b; Khochfar & Silk, 2006; Bell et al., 2006a; Genel et al.,
2008; Lotz et al., 2011). However, using virial estimations (Naab et al., 2009; Bezanson
et al., 2009) and the fact that not all galaxies had a major merger since a redshift of
z = 2, major mergers are not efficient enough to explain such a high size evolution. But
they do happen and early theoretical work has shown, that they have a big influence
on the structure of spheroidal galaxies (see next section for a summary).

Anyway, recent full cosmological simulations (Khochfar & Silk, 2006; Naab et al.,
2009; Oser et al., 2010) and observations (van Dokkum et al., 2010; Williams et al.,
2011) pointed out the importance of numerous minor mergers for the assembly of mas-
sive galaxies, whose dissipative formation phase is followed by a second phase domi-
nated by stellar accretion (predominantly minor mergers) onto the galaxy. Additionally,
minor mergers are particularly efficient in reducing the effective stellar densities, mildly
reducing the velocity dispersions, and rapidly increasing the sizes, building up extended
stellar envelopes (Naab et al., 2009; Bezanson et al., 2009; Hopkins et al., 2010; Oser
et al., 2010, 2011). The latter is also in very good agreement with recent observations
of van Dokkum et al. (2010), which indicate, that the central surface densities of early-
type galaxies do not change from a redshift of z ~ 2, but todays counterparts have
assembled a huge amount of mass in the outer parts (r > 5kpc, see also Fig. 2.2).

Although many recent theoretical and observational results indicate, that dissipa-
tional minor mergers efficiently boost the size growth of elliptical galaxies, it is yet
not clear, if this scenario works quantitatively. Nipoti et al. (2003, 2009a) argue, that
dissipationless mergers go in the right direction, but are by far not efficient enough
to overcome the big size discrepancy between compact early-types and present day
ellipticals. Furthermore, in the first paper (Nipoti et al., 2003) they conclude, that the
remnants of multiple mergers neither follow the Faber-Jackson relation (Faber & Jack-
son, 1976) nor the Kormendy relation (Kormendy, 1977). In the more recent papers
(Nipoti et al., 2009b,a) they additionally find that their results introduce a large scatter
in the scaling relations of the fundamental plane. The ’tightness’ of the fundamental
plane sets stringent limitations, so that at maximum 50% of todays ellipticals can have
assembled via dry merging (Nipoti et al., 2009a).

Obviously, it is still controversial, if dissipationless mergers are the main evolution-
ary path for elliptical galaxies. Given the still growing amount of observational data
for the high-redshift universe, it is desirable to fill the gap regarding the theoretical
background. In this thesis, we want to contribute to the discussion, if dissipational
mergers are the driving force, with respect to the evolution of elliptical galaxies or
if we need some combinations with other possible scenarios like AGN feedback (Fan
et al., 2010).
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2.2 History of merger simulations

In this section we give a small overview of the previous work in the field of merger
simulations of spheroidal, isotropic galaxy models. As the power of computers increased
very fast since the pioneering work in the late 70’s, the resolution of the first simulations
was really poor, compared to recent ones. Nevertheless, most of the many interesting
results are still robust.

2.2.1 First simulations of spherical galaxy mergers

Starting in the late 70’s White (1978) made the first N-body simulations of spherical
equal-mass mergers, by using only 250 softened particles for each progenitor galaxy (see
also Fig. 2.3). One result was, that whenever two galaxies overlap significantly at the
pericenter, tidal interactions, mainly dynamical friction, lead to a rapid final coales-
cence. The final remnants suffer from mean field relaxation (violent relaxation), which
widens the energy distribution of the binding energies (see Fig. 2.4) and indicates a
break in homology. This results in an extended envelope accompanied by a higher cen-
tral concentration of the final galaxy. Furthermore a strong mixing between "halo’ and
central particles occurs during the relaxation process (see also Villumsen 1982), which
weakens population gradients during an equal-mass merger (see also White 1980). By
a closer investigation of the merger dynamics of radial (head-on) orbits, both progen-
itor galaxies experience a strong inward impulse during the first overlap, as the mass
interior to their position increases immediately. This results in a central contraction
relative to the equilibrium configuration, which is followed by a bounce of the particles,
when the galaxies separate again and leave the ’deep’ potential well. Consequently the
outer parts of the galaxies expand and acquire a big amount of the orbital energy (see
also van Albada & van Gorkom 1977; Miller & Smith 1980; Villumsen 1982).

In the following work, White (1979) found out, that the density and velocity struc-
ture of merger remnants only weakly depend on the initial distribution of the progenitor
galaxy and the orbit. The velocity dispersion stays nearly isotropic and the radial den-
sity profiles have power-law form ~ =3, which can reasonably well be fitted by a de
Vaucoulers surface brightness profile (de Vaucouleurs, 1948).

2.2.2 Early high resolution simulations

Miller & Smith (1980) performed similar simulation, but he was the first, using a very
high resolution of nearly 100000 particles. They confirmed the contraction, which oc-
curs just after the closest approach, and find that the initial diameter of the progenitor
galaxies decreases by a factor of two, before some particles get lost or build up an
extended envelope, in the direction of motion, during the subsequent expansion. Re-
garding the distribution of binding energies and angular momenta, they also evolve
non homologous during the merger event and the escaping particles carry away a large
fraction of angular momentum. Furthermore, Miller & Smith (1980) looked at the
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15

Figure 2.3: This shows one of the first head-on collisions of spherical galaxies from White
(1978). Already with this very poor resolution, each galaxies consists of 250 particles, he
found very interesting results, regarding the merger dynamics and structural changes of the
final remnant.
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Figure 2.4: |In this picture of White (1978) we can already see the effect of violent
relaxation, which widens the initial energy distribution (top panel), produces escaping par-
ticles (particles with negative energies, bottom panel) and implies a significant amount of
mixing, indicated by the width of the bars (see White (1978) for details).
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orbits of single particles, during the phase of contraction, and find that all particles are
affected as they show a kink in the orbital motion. Finally, due to an energy transfer
from the orbit to the galaxies, all remnants puff up and are more loosely bound.

2.2.3 The first unequal mass mergers

Villumsen (1982) was the first who made simulations of both, equal-mass encounters
and unequal-mass encounters with mass ratio 1:2. He also claims, that the mixing
of the two galaxies is very efficient in the case of equal-mass mergers, which weakens
radial metallicity or color gradients, but in the case of unequal-mass mergers this
scenario is no longer valid. Because the small in-falling galaxy is less tightly bound
it becomes disrupted at an early stage of the merger, and its core would not merge
with the one of the host. Especially after the first close encounter, when the particles
bounce out of the total combined potential the smaller galaxy explodes and its particles
either get lost or assemble in the outer envelope of the bigger host galaxy. Therefore
unequal-mass mergers do not weaken the radial gradients, but even might build up
a color gradient from the center (older host stars) to the outer parts (blue accreted
stars). Furthermore, the remnants of equal-mass mergers either can be prolate, oblate
or triaxial, which strongly depends on the orbits angular momentum but all have an
anisotropic velocity distribution and their density profiles remains a Hubble profile
(~ r73), which contradicts Lynden-Bell (1967) theory of violent relaxation, which
would lead to an isothermal sphere (~ r~?2).

2.2.4 Multiple galaxy mergers

Farouki et al. (1983) was the first who simulated higher merger generations with a
direct N-body code, starting from a King model. Their particle resolution was lower
than some of the previous work, but by a clever sampling for higher generations, the
1000 particles are enough to give interesting results. Assuming energy conservation and
homology, they find simple analytic relations for the evolution of equal-mass mergers,

o=const, RocM, p,ox M2, (2.3)

to which they compared their simulation results. Thereby, they find, that the half-mass
radius lies exactly on the relation of Eq. 2.3 but the fraction of the half-mass radius to
the radius including 10% of the mass Ry, /Ry increases with each generation, although
it should stay constant, assuming homology arguments (see also Fig. 2.5). Due to
the break of homology, they also find a developing low surface brightness envelope in
excess of a de Vaucouleurs 7'/* law (de Vaucouleurs, 1948). Consequently they find the
same core contraction scenario for the remnant as White (1978), which incorporates an
increasing central velocity dispersion 0. As log o increases linearly with log M, Farouki
et al. (1983) correctly argue, that successive mergers establish a scale-free relation
between these properties. By fitting the evolution of the velocity dispersion, they get
an exponent n = 4 — 5 for M o ¢", which nicely agrees with the observed Faber
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Figure 2.5: This picture of Farouki et al. (1983) indicates nicely the break of homology
due to multiple equal-mass mergers. We can see, although the half-mass radius (R}, top
panel) evolves as expected from simple virial expectations, the central densities (middle
panel) do not. This is due to a relative contraction of the central regions, as the mass

radius including 10% (Ryo) of the total mass increases much less than the half-mass radius
and the ratio R,/ Rio grows with each generation.
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& Jackson (1976) relation L oc o, considering a constant mass-to-light ratio M/L.
Furthermore, the velocity dispersion seems to stay isotropic only in the innermost
regions, whereas it gets radially biased (to ~ 50%) in the outer parts of the remnant,
where a low density envelope has developed.

2.2.5 The work of Nipoti et al.

In Nipoti et al. (2003) they performed hierarchies of equal-mass and unequal-mass
mergers. In the end, the final remnants are triaxial systems with axis ratios 0.5 <
c¢/a < 0.7 and 0.7 < b/a < 0.8, where a,b and ¢ are the major, intermediate and
minor axis. By fitting Sersic profiles (Sersic, 1968) to every remnant, they get an
increasing Sersic index with increasing mass in accordance with observations, where
the more massive ellipticals usually have higher Sersic indices. The velocity dispersion
increases with mass and does not stay constant as given by virial expectations for
equal-mass mergers. Nipoti et al. (2003) show, that the increase of the velocity can be
accounted by the escaping mass, which occurs for each merger generation. However,
the half-mass radius evolves like the virial expectations. Traditionally, so far, merger
simulations involving a dark matter component have just investigated disk encounters
(Gonzalez-Garcia & van Albada, 2005), thus Nipoti et al. (2003) are among the first who
used two-component models for spherical galaxy mergers. Nevertheless, they conclude,
that bulges embedded in a dark matter halo, do not give a significant modification in
their results. Investigating observable relations, like the fundamental plane and two of
its projections (Faber & Jackson 1976- and Kormendy 1977-relation), they find, that
although the fundamental plane is well reproduced for their merger hierarchies, the
two projections are not.

In a more recent paper Nipoti et al. (2009b) compared a large set of collisionless
merger simulations (major and minor) with the fundamental mass plane, which is
given by lensing constraints. Thereby, they find that dry merging preserves the nearly
isothermal structure of their progenitors and moves galaxies along the mass-plane. But
it moves galaxies away from the mass-size and mass-velocity relation, in a way, that
the radius increases to rapidly, whereas the velocity dispersion does not. Additionally,
dry merging introduces a large amount of scatter in these relations, which sets further
constraints on the assembly history and the dark matter fraction within the effective
radius increases only because of the rapid size growth and stays constant within a fixed
radius. Finally, they conclude that present day early-type galaxies could not have
assembled more than 50% of their mass by dry merging.

For the following work, Nipoti et al. (2009a) uses the same simulations and scales
his progenitor host to be a compact early-type galaxy with an effective radius of R, =
0.9kpe, which can be observed at a redshift of z ~ 2 (van Dokkum et al., 2009).
Considering the different major and minor merger hierarchies of the previous paper
(Nipoti et al., 2009b), they show, that dry mergers can bring the compact early type
galaxies closer to the present scaling relations but quantitatively the process is not
efficient enough. Additionally, dry mergers introduce to much scatter to the very tight
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scaling relations, thus only 45% of the stellar mass of today’s early type galaxies can
be assembled due to this mechanism.

2.2.6 Highly resolved Major Mergers

Boylan-Kolchin et al. (2005) and Boylan-Kolchin et al. (2006) used highly resolved
major merger simulations of two-component models (stellar bulge+dark matter halo)
to show, that the fundamental plane is preserved and that the small tilt in the fun-
damental plane is due to an increasing central dark matter fraction. The latter result
is also in good agreement with recent observations which indicate, that stellar mass-
to-light ratios are relatively constant with mass and cannot account for the tilt in the
fundamental plane. They also pointed out, that the Faber & Jackson (1976) and the
mass-size relation strongly depend on the merger orbit, as in-falling galaxies suffer
much more from dynamical friction for orbits with high angular momentum, which
then yields a high energy transfer from the bulge to the halo. The higher the energy
transfer, the more compact is the final bulge and the higher becomes the velocity dis-
persion. On the other hand, by using mainly radial orbits, dissipationless merging is a
natural mechanism to change the slopes of the R — L and L — o-relation, which can be
observed in the brightest cluster galaxies.
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CHAPTER 3

NUMERICAL METHODS

3.1 Numerical N-Body codes

Many astronomical objects, such as galaxies, globular and galaxy clusters or especially
cosmological cold dark matter systems can be regarded as gravitational N-body sys-
tems. In all those systems, the extend of one single body is very small with respect
to the spatial distance to other bodies. Then, the interaction of each particle in a
gravitating system can simply be described by Newton’s law,

a; = —ZG?j(ri—rj), (3.1)

re.
gAY

where a; is the gravitational acceleration, r; and r; are the positions of particle ¢ and
J, respectively. The particles separation is given by r;; = |r; — r;|, m; is the mass of
particle j and G the gravitational constant.

Although this allows an accurate description of a dynamical system, the compu-
tational time for N particles increases proportionally to ~ N?2. Therefore, the direct
summation or 'Particle-Particle (PP) method’ (see also Hockney & Eastwood 1981)
is limited to particle numbers of N ~ 10°, which is much too small, compared with
recent high-resolution simulations with > 10" particles (e.g. the 'Millenium Simula-
tions’, Springel et al. 2005; Boylan-Kolchin et al. 2009). These simulations are carried
out with a different code architecture like a "hierarchical tree-code’, which reduces the
computational time to N log N. We use two codes for this thesis, VINE (Wetzstein
et al., 2009) and GADGET 3 (which is the updated version of GADGET 2, see Springel
2005), where the first uses a 'binary tree’ and the second an 'Oct tree’ (Barnes & Hut,
1986). Therefore, we first give a brief summary of the time integration, the force cal-
culation, and the choice of gravitational softening, which is very similar or equal for
both codes. Afterwards we show the differences of the two different tree structures.
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The equations of motion, according to Newton’s law (Eq. 3.1), are ordinary differ-
ential equations,

d]f'l'

— =V, 3.2
at " (3:2)
dVZ'

i = a,, (33)

where v; and r; are the velocity and the position of particle 7, respectively, and the
acceleration a; is given by Eq. 3.1.

Gravitational forces are long range forces, implying a large dynamical range. Con-
sequently, this affects the equations of motion in a way that they are highly non-linear
and cannot be solved analytically if the problem involves more than two bodies. There-
fore numerical simulations are the only way to study the formation and evolution of
collisionless multi-particle systems. In the numerical approach, the first-order differen-
tial Eqgs. 3.2 and 3.3 are replaced by linear differential equations and the positions r;
and velocities v; are evaluated at discrete time intervals.

Both codes, GADGET and VINE use the common ’leapfrog’ integrator to advance
the particles in time, but the form is slightly different. The explicit leapfrog scheme of
VINE is the so-called ’drift-kick-drift’ (DKD) method:

. 1

T = VAL (3.4)

Vit = v al A (3.5)
. 1

I'?-H — ri+1/2+§V?+1At?, (36)

where At is the particle’s time step from n to n + 1. In the 'kick-drift-kick’ method
used in GADGET, the scheme of the velocities and positions is opposite, in the sense
that the positions are updated each integer step and positions each half-integer step.
Comparing both schemes, the latter one seems to be slightly more accurate, regarding
error properties (Wetzstein et al., 2009).

In order to produce an accurate integration, time steps should be neither too large,
nor to small, because too large time steps can destroy the stability of a system and
too small time steps waste a huge amount of computational time. Therefore, both
codes assign each particle an individual time step, where VINE applies the method of
Hernquist & Katz (1989) and the scheme of GADGET is shown in Springel (2005).

3.1.1 Gravitational Softening

One drawback of numerical simulations of astrophysical systems is, that although the
underlying physical system like a galaxy with ~ 10! stars, in reality, is collisionless, it
is not in numerical simulations. In the latter case, one particle normally represents an



3.1 NUMERICAL N-BODY CODES 17

aggregate of a large particle number as a simulation is limited to the current hardware
(e.g. few times 107 particles). Therefore, the evolution time of a numerical system is
not smaller than the relaxation time (see also section 4.3) and cannot be treated as a
real collisionless system. To overcome this problem, the potential and forces between
particles have to be ’softened’ in some manner. In practice, the pure Newtonian 1/r
form of the gravitational potential (Eq. 3.1) and the associated numerical forces at
small separations have to be modified by a softening parameter.

There are two common types of gravitational softening in N-body codes, the so-
called "Plummer softening’ introduced by Aarseth (1963) and the ’Spline softening’. In
the first case, the density function of a single particle is defined as a Plummer sphere,
where the force on particle ¢ due to particle j at a distance r;; = |r; — r;| becomes

Gmimj I‘j —T;

F,=—- , (3.7)
7’12]- + €2 Tij
with the corresponding potential
Gm,;
o= " (3.8)

(ry; + 212

Here € is the so-called softening length. This implementation is easy and computation-
ally inexpensive, but it never converges completely to the exact Newtonian potential
(Eq. 3.1). This choice of softening yields significantly larger force errors compared to
the ’Spline softening’ (Dehnen, 2001), which we used in both codes.

In this approach, a particle gets smeared out to a finite size and the extended
density distribution of the particle is represented by a predefined softening kernel of
Monaghan & Lattanzio (1985):
1—-3024+30% if0<wv<1
i(Z —v)3 ifl<ov<?2 (3.9)

. .
710 otherwise

g
W(rij, hij) = -

14

v is the number of dimensions, v = r;;/h;; and o is the normalization with values
of 2/3,10/(77) and 1/7 in one, two and three dimensions, respectively and h;; =
2.8(¢; + €;)/2. Then the force is specified as,

fm(rij) = 4—7T/0 ’ w?p(u)du

. / "W (u, hyg)du, (3.10)
0

where the quantity p/m; is replaced by the kernel 1. Finally, the force and potential
are

F, — _m% (3.11)

B Gfmm]

Tz'j

(3.12)
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Note, that this formulation recovers the exact Newtonian equation for r;; > 2 - ¢;; and
the force between two particles decreases to zero as r;; — 0.

3.1.2 Binary Tree

The binary tree is constructed bottom-up, where the mutually nearest neighbor parti-
cles or particle pairs are replaced by a node. In a first step, imagine that each particle
searches for its nearest neighbor, where we require the neighbor to be mutual. Now,
consider a system with three particles. If particle B is the nearest neighbor of particle
A but the closest neighbor of particle B is C, then B and C are the mutual nearest
neighbors and get replaced by a node. The position of the node is its center of mass
and its mass is the sum of the particle masses. On the next step, the particles and
nodes are again grouped with their nearest neighbor particle or node. Further levels are
built accordingly until the last two nodes are combined to the root node and the tree
structure is complete. Essential for the construction of such a binary tree is an efficient
determination of the nearest neighbors of all particles or nodes for which no nearest
neighbor has yet been found. Crucial is also the subsequent combination of these new
neighbor pairs into new tree nodes which are then inserted on the next higher level
of the tree structure. As one can chose different opening criterions in VINE, we have
chosen the same one which is used in GADGET (see net section).

3.1.3 Oct Tree

The oct tree is constructed from top to bottom, as it starts with one initial major cell,
which includes all particles. This 'root’ cell gets split in 8 cubes of equal size, which
are, in the same way, subdivided in smaller subcubes. This process continues until
each cube contains only one particle, representing a ’leaf’ of the tree, or no particle.
A further characteristic of GADGET 3 is, that it only uses monopole terms for the
force calculations. Finally, regarding the force calculations on particle ¢, an acceptance
criterion decides whether the force due to a group of other particles at a certain distance
is accepted or the cells have to be split up in further cells, ultimately reaching single
particles, if appropriate. This criterion controls the introduced errors of the force
calculations and the computing time.
The simplest acceptance or so-called cell-opening criterion is usually defined as

l.
Rcm’t - EJ + €, (313)
where ¢ is the particles softening length and /; the size of the cell. The opening angle
0, ranging from zero to one, defines the minimum distance R.,.; at which a cell will be

accepted for the force calculation or not. GADGET 3 uses a slightly modified criterion

2
GMj( ! ) — aja% (3.14)

R2 Rcm’t

crit
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where M; is the mass of cell j and a?'? is the particles acceleration at the last time step.

i
The advantage of this modification is, that the cell-opening criterion now is adaptive
with respect to the system dynamics.
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CHAPTER 4

GALAXY MODELS

In this chapter, we describe a way to get stable initial conditions of spherical, isotropic
systems, which consist of either a single stellar component or a stellar component
embedded in a dark matter halo. One advantage of our program is, that the density
slope of the stellar component can be varied and is not fixed for both, a one- and a two-
component model. From observations we know, that surface brightness profiles of all
kinds of elliptical galaxies are well described by the RY*-law (de Vaucouleurs, 1948) or
the more general Sersic /™ function (Sersic, 1968). Both reproduce global quantities
like the effective radius, which is the radius of the isophote enclosing half the total light,
and the effective surface brightness. However the derivation of the deprojected three
dimensional density distribution and the gravitational potential, which is essential for
detailed galaxy modeling is not easily available. One way to overcome this problem
is to find analytic density profiles, which resemble in projection the observed surface
brightness profiles.

4.1 One-Component Models

The simplest realization of spherical, isotropic galaxies is to create a single sphere
of stellar particles. The first two analytic density profiles, resembling the R'/*-law,
have been proposed by Jaffe (1983) and Hernquist (1990). They have central stellar
densities proportional to r=2 and r~!, with central surface densities proportional to
R~ and In R™!, respectively. Dehnen (1993) and Tremaine et al. (1994) independently
derived a generalization of these two models,

(3—7)M a

A7 i (r+a)t’

p(r) = (4.1)

where a is a scaling radius, M the total mass of the system and ~ defines the slope
of the profile. The latter parameter can vary between 0 < v < 3, where v = 1 and
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v = 2 represent the Hernquist and Jaffe model, respectively. The top panel of Fig.
4.1 indicates density distributions of different 4’s for M = a = 1. The central density
diverges for all possible slopes except for v = 0, where the model resembles a core like
structure, i.e. the density becomes constant.

The potential corresponding to Eq. 4.1 is given by Poisson’s Equation

GM 1 r\*7
P = — 1-— f 2 4.2
= 2_7[ () ] or 7 2 (4.2)
with the special case of Jaffe’s profile (Jaffe, 1983),
GM r
Dy (1) = — % In T a for v = 2. (4.3)

The cumulative mass M (r), half-mass radius rq/2 and circular velocity v?(r) are,

MNﬁZM< T)%f (4.4)

r+a
rij2e = a(25 = 1)7 (4.5)
GMnr>=
2
/UCKY(T) = m (46)

Assuming a non-rotating, spherical symmetric system, the radial velocity dispersion is
determined by the Jeans equation

1d, — v2 dd
iy o) Yo %%
)+ 20— -, (47)

where G(r) =1 —v_g/ v2 gives the degree of anisotropy. Later, for simplicity, we only use
phase-space distribution functions (DF), which only depend on energy. This implies,
that the system has to be isotropic (3(r) = 0) and as pv? = 0 for r — oo we get

1 /oo do.,
v2 (r) = —— py——dr, 4.8

which can be solved numerically. In special cases, where 4+ is an integer, Eq. 4.8 has
an analytic solution. The radial velocity dispersions show different trends for different
density slopes (bottom panel, Fig. 4.1). For 2 < v < 3 the dispersion diverges towards
the center, whereas the models with 0 < 7 < 2 converge to zero at the center. In the
case of the v = 0- and Jaffe-model (v = 2) the central velocity dispersion becomes
constant and the latter case resembles a finite isothermal cusp.
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Figure 4.1: Top panel: Density distributions for different Dehnen-Models. For high ~'s
the profiles are very cuspy and for small ones they become very flat. In the extreme case of
~v =0 it becomes even constant in the center and resembles a core like structure. Bottom
panel: The corresponding radial velocity dispersions show different behavior for different
density slopes. Models with 2 < v < 3 have a diverging central velocity dispersion, whereas
those with 0 < v < 2 converge to zero. There are two special cases, the Jaffe model with
~ = 2, which has a finite isothermal cusp in the center and the v = 0 model which becomes
constant v2 = G'M/30a.
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With the density distribution (Eq. 4.1) and the radial velocity dispersion (Eq. 4.8)
it is already possible to create a spherical galaxy model, but it is more convenient to use
proper distribution functions to get stable initial conditions (Kazantzidis et al., 2004).
As we already know the density and the potential, the derivation of the corresponding
distribution function f(r,v) is straightforward. The density of our spherical, isotropic
models just depends on the total energy E, thus

= / FE)dv. (4.9)

Inverting this equation with a so called Abel transformation yields the Eddington
formula (Eddington, 1916; Binney & Tremaine, 2008), which gives the distribution
function for a spherical symmetric density distribution,

1
o= L]

A
/82 \Izod‘lﬂg‘l’\/zd‘l’xp:o, .

where the relative potential and binding energy &£ are defined, so that f > 0 for £ > 0
and f =0 for £ < 0. The second term on the right hand side of this equation vanishes
for any sensible behavior of W(r) and p(r) at large radii.

As not all one-component (and no two-component) models, have an analytic ex-
pression for p(¥) we have to transform the integrand of Eq. 4.10 to be a function of
radius r,

d2p dU\ 7 [dp*  [dU\ > dp]| d¥
Sl I A (e 4.11
dxlﬂd (dr) [drz (dr) ar? dr] a (4.11)

Together with Eqs. 4.1, 4.2 this always results in an analytical expression for the
integrand, even for more general - profiles (Dehnen, 1993),

4V [dg? (V) PV dp] av
dr dr? dr ) dr? dr dr
—2a? r+a +2 rt+a\ ta
(v =2)r(r+a)? T\ r 7
As consequence the integration limits of Eq. 4.10 also have to change, e.g. W(r) =0

corresponds to r = oo and ¥ (r) = &€ becomes r = a/[(1 — 8)7%2 —1].
Altogether the DF for the one-component v-models can be written as,

1 > —2a?
&) = \ﬂr?/ Wy (= Drr T ap

7(r%—a) +2(7’+a) 4
r r

LA
(€ —=W(r)

(4.12)
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which can be calculated directly by numerical integration. Alternatively, for all one-
component models except v = 2, one can use the general solution expressed by Hyper-
geometric Functions o Fi(a, b; ¢; d) (see Abramowitz & Stegun 1970), explicitly given in
Baes et al. (2005),

FE) = SV |-k (15 G- e ) +

473

+2(y = 3)21% (17 Sy (2- 7)5) -

+(7)2F1 (1, 4_—7; g; (2— 7)5)]. (4.13)

1 3 79 5

For all integer or half-integer values of (2 —v)™" (e.g. v=0,1,3, 1,7, 5), all terms of
Eq. 4.13 reduce to elementary functions and the distribution function has an analytic
solution (Dehnen, 1993). In the particular case of the Jaffe-model (Jaffe, 1983) (v = 2),
the distribution function can best be expressed in terms of the error function and Daw-
son’s integral. For our purpose, we always calculate the DF by numerical integration
with high accuracy, thus we get highly stable initial conditions (see section 4.3).

Once the DF has been calculated, we can start to create the particle distributions.
First we have to chose the slope of the density profile p(r) and a maximum radius
T'maz, Which should be large enough to enclose most of the total system mass. That
means, that the cut-off radius should at least be 100 times the scale radius a of the
system, which corresponds to the radius enclosing 97,98 and 99% of the total mass
for v = 0,1,2, respectively (see Eq. 4.4). After specifying the system parameters,
we can calculate the gravitational potential ®(r), before the particles can randomly be
sampled from the DF f(&). To establish a particle configuration, we use the acceptance-
rejection technique (Kuijken & Dubinski, 1994; Kazantzidis et al., 2004), which works
as follows. First we calculate a normalization constant, which is the maximum of the

system’s phase space
r2\ [ v?
const = {(?) (ﬁ) f(r,v)} , (4.14)
g max

where a is the system’s scale length and v, the escape velocity at the scale radius. Fur-
thermore, we draw a random number in the interval [0, 1] and if a particle’s normalized
position in phase space is smaller than this random number, it is accepted, otherwise
the particle is rejected and a new particle is sampled.

For simplicity, our initial condition program allows only density slopes 0 < v < 2,
but this range already covers most of the observed ranges of stellar density profiles.
With v = 0, we can create a very flat density distribution with an intrinsic core and
for v ~ 2, the model has a steep cusp, where the particles are very concentrated in
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the center. Before we test two one-component models with different density slopes for
their stability (Section 4.3.1) we illustrate how to create two-component models, where
a stellar bulge is embedded in a dark matter halo.

4.2 Two-Component Models

In Section 2.2, we have seen, that early merger simulations of one-component spheroidal
galaxies revealed very interesting results and this models can probably be a good ap-
proximation for mergers in centers of clusters, where the dark matter of the approaching
satellite galaxy gets stripped very early (Gonzalez-Garcia & van Albada, 2005). Nev-
ertheless, in the current accepted ACDM model, most of a galaxy’s mass resides in a
dark matter halo, surrounding the stellar bulge. Surprisingly, the dark matter halos
seem to have an universal profile, with an inner density slope of ! and an outer slope
of 773, which is perfectly described by the famous NFW-profile (Navarro et al., 1997)

1
X
p r(

T (4.15)

For simplicity, we chose a Hernquist profile (Hernquist, 1990) for the dark matter
distribution, as it is known to resemble the NF'W profile in the center and only deviates
at larger radii. Then, the density and potential of the halo are

Gum(r) = -2

Mdm Adm
2 r(r+ agm)?

Pam (1) = (4.16)

T+ agm’
where My, and ag,, are the mass and scale radius of the dark matter halo. In the
combined system the density distributions of the bulge and the halo are the same,
as if you regard the components separately, but the velocities are different. For two-
component models, the potential is the sum of the stellar and dark matter potential

Or(r) = Gam(r) + ¢du(r)

o GM )1 1 r e
N Qs 2—7v T+ a,

where we have introduced two dimensionless parameters y = My, /M, and = agp,/a..
With the total potential and the density distributions of each component we are able
to calculate the distribution functions for the dark matter halo and the stellar bulge.
To simplify the calculation of the distribution function, we make Eqs. 4.1,4.16 and
4.17 dimensionless:

Ha } , (4.17)

_T+ﬂa*

4 3 3 — 4

R (4.18)
4ral 2u8a

pin(r) = 7= pan(r) = % (4.19)
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s
T+ ﬂa*

(4.20)

~ B Qs B 1 1 r e
ol =g, or =5 |1 (+)

Together with Eq. 4.11 we can calculate the integrands of Eq. 4.10 for both com-
ponents. Unfortunately, in contrast to the one-component models, the change of the
upper integration limit ®(r) = £ has no analytical solution, so we have to use a nu-
merical minimization routine to solve this equation for r:

Ozé(r)—E:ﬁ [1— (Tia)zﬂ

Now the computation of the distribution functions for different bulge slopes em-
bedded in a Hernquist dark matter profile is straightforward. First, one has to use
Eq. 4.11 to get the derivatives of the densities (Eqs. 4.18, 4.19) and the potetnial
(Eq. 4.20), which then get plugged into the Eddington equation (4.10), which gets
integrated numerically.

Before sampling the particle distributions of the two components we have to chose
a scale length a, and a mass M, for the stellar bulge. The scale length and mass of
the halo are defined via 8 = agn/a. and p = My, /M,. For the choice of the cut-
off radii of both components, we have to fulfill the same criteria as before, i.e. they
should be large enough to enclose most of the component’s mass. After specifying the
system properties, the particle distribution is calculated with the acceptance-rejection
technique of the previous Section 4.1.

In the next sections, we show some realizations of one- and two-component models
and test their stability.

ja
r+ fa

E (4.21)

4.3 Stability Tests

Now we test, how the initial conditions of the previous two sections 4.2, 4.1 evolve with
time. Using the two N-body codes VINE and GADGET 3, we take different galaxy
models with varying density distributions for the bulge and different particle masses.

4.3.1 Bulge - Only Models

First we look at the one-component models, which represent a stellar bulge without
a dark matter component. As we can create different density slopes, we take two
examples, where one has a shallower core (v = 0.7) and the other has a steeper core
(v = 1.4) than the most popular one of Hernquist (1990). For simplicity, both models
have a scale radius of a, = 1.0, a total mass of M, = 1.0 and consist of N = 5-10°
particles. The maximum radii of the systems are 75, = 200, which are the radii
including 98.8 and 99.2% of the total mass for v = 0.7 and 1.4, respectively (see also
Eq. 4.4). The simulations were performed dimensionless such that the gravitational
constant is unity (G = 1) and the results can be scaled arbitrary to a preferred unit
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Figure 4.2: Top left panel: The initial (solid lines) radial density profiles stay constant
for both, the v = 0.7 (black) and the v = 1.4 (blue) model and resemble the analytic
profile (red dashed lines) for more than 200 dynamical times. Only inside two softening
length 2 - € (vertical dotted line) the final profiles (dashed-dotted lines) indicate a small
decrease, which is due to two-body relaxation. The vertical solid line indicates the scale
length of both models. Bottom left panel: Here we illustrate the radial velocity dispersions
for both models, which also stay constant over most of the radial range. Only inside 10%
of the scale radius, where two-body relaxation becomes prominent, it slightly deviates from
the analytical solution. Right panels: The mass radii (top) including 30% (dashed-dotted
lines), 50% (solid lines) and 80% (dashed line) of the total mass are perfectly constant for
both models and after one or two time steps, the system is in virial equilibrium (see bottom
right panel).
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system. As reference for all stability simulations we use the dynamical time ?4,,, which
can be regarded as the time a star needs to travel half across a system with a given

density. It is defined as
3
tayn = \| === 4.22
dy 16Gp ( )

where p is the mean density within the spherical half-mass radius of the system 15
(see also Binney & Tremaine 2008).

In the following we show the stability runs, performed with GADGET 3, but a
comparison run with VINE showed the same results. After testing several values, we
found the best softening length to be ¢ = 0.02, which gives a good balance between
accuracy and computational time.

In the top left panel of Fig. 4.2 we can see, that the density distributions of both,
the 7 = 0.7 (black lines) and v = 1.4 (blue lines) stay constant for more than 200
dynamical times tg,,. Only within two times the softening length e (vertical dotted
line) it slightly decreases, but as the force and potential calculations are not reliable
in this regions, we can say that the density distributions perfectly stay constant and
agree with the analytic density profiles (red dashed lines). Regarding the radial velocity
dispersions of both systems (bottom left panel) we can see that they also show only
marginal changes inside 10% of the scale length a, (vertical solid line). For the flatter
~v = 0.7 density distribution the central deviation is larger, as it contains a factor 5 less
particles within 0.1 - a, compared to the more centrally concentrated v = 1.4 model.
As two-body relaxation strongly depends on the particle numbers (see Section 5.1),
and is more efficient for lower particle numbers, shallower density distributions are
more affected. For a more detailed description of how two-body relaxation alters our
numerical simulations we refer to section 5.1.

The mass radii enclosing 30,50 and 80% of the total system mass are illustrated
in the top right panel of Fig. 4.2. Again they perfectly stay constant over the whole
simulation time ¢ = 200 - 4,,. In the last panel we can see that the initial galaxy is
not perfectly in virial equilibrium as n = 27/WW < 1.0, but very close. These small
deviation is a consequence of the truncation of the system at a radius of r,,, = 200,
which forces the total mass M into a smaller volume as expected. Consequently, the
total potential energy W of the system is slightly larger and the kinetic energy 7" needs
little time to adjust. Nevertheless, this effect is negligible, as it has no influence on the
densities, the velocity dispersions and the different mass radii and we can conclude,
that our scheme to create initial conditions of one-component models with different
density slopes yields very good results.

4.3.2 Bulge + Halo Models with Equal Mass Particles

In this section we focus on the stability of two-component models, where a stellar bulge
of the previous section is embedded in a more massive dark matter halo. Therefore we
first look at three particle configurations where the bulge and dark matter particles all
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Figure 4.3: The top panels illustrate the densities p(r) (left) and radial velocity disper-
sions o,.(r) (right) for a two-component model of two Hernquist spheres, where a stellar
bulge is embedded in a more massive dark matter halo. The total system consists of 10°
dark matter and 10 stellar particles (total particle number np = 1.1-10°) and has a bulge
mass of My, = 1.0 and a halo mass of Mg, = 10. Therefore, all particles have the
same mass and we take a force softening length ¢ = 0.02, which gives a good balance,
regarding stability and force accuracy. The scale length of the stellar system (vertical solid
line) is apuge = 1.0 and the scale radius of the halo is a4, = 11. Obviously, the inital
(solid lines) and final (dashed dotted lines) density (right panel) and velocity dispersion
(left panel) stay constant for 200 dynamical times. The middle and bottom panels show
the initial conditions for smaller spheroids with M,,;, = 2.2 and M,,;, = 1.1, scale radii of
Aputge = 0.8 and apupe = 0.5 and particle numbers of np = 2.2 - 10° and np = 1.1 - 10,
respectively. The ratios of the masses and scale radii are the same as in the top panel, i.e.
i = 10 and § = 11. As the particle masses stay the same, we use the same softening
which also results in stable initial conditions.
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Figure 4.4: This panel illustrates the virial coefficient 1 for the three models, with
1.1-10°%,2.2-10% and 1.1 - 10° particles. Obviously, they are initially not perfectly in virial
equilibrium as 7 < 1. This results from the truncation of the halo at 745 g ~ 50 - agm,
which causes a too high initial potential energy W compared to the kinetic energy 7.

have the same mass and the stellar bulges represent a Hernquist profile with v = 1. As
the particle masses do not change, we use a softening length of € = 0.02. Furthermore
we keep the ratios for the scale radii § = agy,/a. = 11 and masses u = My, /M, = 10
fixed. But all three models have different particle numbers, total masses and scale
radii.

The first, most massive, galaxy has a stellar mass of M, = 1.0 and consists of
np = 10° bulge and np = 10° dark matter particles. We chose a bulge scale length of
a, = 1.0 and the cut-off radii are ryy,, . = 200 and 745 g, = 500 for the bulge and the
halo, respectively.

In the top panels of Fig. 4.3, we can see the evolution of the radial density (left)
and the radial velocity dispersion (right) of the bulge and the halo. Obviously, the
initial conditions (black solid lines), as well as the final profiles after 200 dynamical
times (dashed dotted lines) agree perfectly with the analytic profiles (red solid lines)
over most of the radial range. Only in the innermost regions the velocity dispersions
of the bulge and the halo show some scatter, which again is due to the poor central
resolution accompanied by an enhanced two-body relaxation. Furthermore, one can
recognize, that the final velocity dispersion profiles are marginally shifted to higher
values and the virial coefficient 7 of the initial model is below unity (see solid line,
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Fig. 4.4). This stems from the rather small truncation radius of the halo at 50 - agy,,
which is the radius including 'only’ ~ 96% of the total halo mass. The explanation is
the same as for the one-component models, i.e. the total mass is enclosed in a smaller
radius, thus the total potential is initially higher and the velocities (or kinetic energy)
needs a little time to adjust. However, this effect is negligible, regarding the densities
and velocities. Looking at different mass radii, we also find that they perfectly stay
constant, after a very short phase of slight contraction of less than 3% for the bulge
and less than 5% for the bulge’s and halo’s half-mass radius, respectively. Of course,
one can overcome this contraction phase by using much larger cut-off radii for the
bulge, but first, the initial variations are very small for our choice and second, to get
a perfectly stable two-component model this radius has to be very large, which then
increases the computational costs.

In the middle and bottom panels of Fig. 4.3, the galaxies have a stellar mass of
M, = 0.2 and M, = 0.1 and consist of np = 2.2 -10°> and np = 1.1 - 10° particles,
respectively. For both models we chose a scale radius which would lie on the mass-size
relation of Fig. 2.1 in chapter 2, i.e. if we scale the previous galaxy to be a compact
early-type galaxy (black circle in this figure), than the galaxy with M, = 0.2 would lie
on the high redshift relation (red line of Fig. 2.1) for a scale radius of a, = 0.8 and
the least massive one for a scale radius of a, = 0.5. We keep the cut-off radii of the
massive galaxy, thus ry,,,. = 200 and 74y 4m = 500 for both models and the particle
masses also do not change, thus we can take the same softening length of € = 0.02 for
both components.

In Fig. 4.3 the densities and velocity distributions of these models (middle, bottom
panels) show very similar results with respect to the more massive, high resolution
model (top panels), i.e. the density and velocity profiles are constant over most of the
radial range. Especially, the model with M, = 0.2 evolves very close to the M, = 1.0
model, which is not surprising, as these two systems even have nearly the same scale
radii. Therefore, their contraction phase is almost identical, which is reflected in the
evolution of the virial coefficient (Fig. 4.4). In contrast, the model with M, = 0.1 has a
much smaller scale radius and the cut-off radius is 74y, gm ~ 90- a4, thus the truncation
radius is the radius containing already ~ 98% of the total halo mass. Therefore, the
initial virial coefficient is very close to unity (see also Fig. 4.4). One drawback of the
latter model is its comparable small resolution, hence there are only a few particles
in the central regions and two-body relaxation is most prominent for this model and
causes the relatively high deviations of the final profiles (dashed-dotted lines in the
bottom panels of Fig. 4.3) compared to the initial (solid lines) and analytic solutions
(red dashed lines).

However, all three models show a high degree of stability, especially in the most
relevant regions outside 10% of the bulge’s scale radii. If one wants to investigate the
very central regions, the resolution has to be very large, which then significantly in-
creases the computation time. Another way to reduce the effect of two-body relaxation
in the center would be a slightly larger softening length.
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4.3.3 ’Realistic’ Bulge + Halo Models

Finally we set up initial conditions for early-type galaxies at a redshift of z ~ 2, consid-
ering observed ratios of the scale radii and masses of the halo and bulge component. To
get a proper mass ratio p we looked at the most recent results of the Halo Occupation
Distribution (HOD) models, which determine the link between dark matter halos and
the luminous part of galaxies (Moster et al., 2010; Behroozi et al., 2010; Wake et al.,
2011). Assuming a luminous mass of M, = 10" M, the stellar to halo mass ratio of the
HOD framework yields values of M, /Mg, = [0.01,0.02] at redshift z ~ 2. Therefore we
chose the mean, M, /M, = 0.015, which then gives y = 66.7 corresponding to a dark
matter halo of My, = 6.67 - 10'2M,. Next we have to fix the sizes of both components
by chosing proper scale radii.

Applying the mass-size relation of Williams et al. (2010) for the redshift bin 1.5 <
z < 2.0,

logr. = 0.25 + 0.5(log(M, /M) — 11) [kpc] (4.23)

the effective radius of a 10 M, galaxy is R, = 1.8kpc (see also Fig. 2.1 in chapter 2),
which relates to the stellar scale radius a as
R,

— = (257 — 1)71[0.7549 — 0.004397 + 0.0032272 — 0.001827° £ 0.0007),  (4.24)

for all y—models (Dehnen, 1993). For our test models we chose two different density
slopes, with v = 1.0 and 1.5. Therefore Eq. 4.24 yields % = (1.815,1.276) and the
scale radii are a, = (1.0,1.41) for v = (1.0, 1.5), if we adopt a scaling of rs.,. = lkpc.
Together with the defined mass scale, where M,.,;. = 10" M, we get the following
velocity and time units:

Vseare = 656kms ™ tocate = 1.5 - 10%yr (4.25)

This scaling is chosen to describe an early-type galaxy at a redshift of z ~ 2, but as
the simulations are still dimensionless, one can also use a different scaling.

Regarding the size determination of the halo is a little bit more complicated, as we
do not use a NFW- but a Hernquist-profile which has a steeper slope at large radii.
Therefore we cannot apply the halo concentration ¢ (Bullock et al., 2001; Duffy et al.,
2008; Komatsu et al., 2011), which combines the virial radius r,; and the scale radius
aqm of the halo profile. Therefore we use a different approach, where we set the virial
radius of the system equal to the halo mass radius including 80% of the system’s total
mass Mgg, thus we can calculate the halo scale radius a4, of the system. To calculate
the virial radius 7., we set the virial density p(r,;.) to 200 times the critical density of
the universe p., which yields

4Mm’rG 1/
vir — 5 4.26
: (225[—](2)) (4.26)
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Here, M,;. is the virial mass, G is the gravitational constant and H(z) is the time
dependent Hubble parameter

H(Z) = HO[QA,O + Qk70(1 + 2)2 + Qmp(l + 2)3 + Qno(l + 2)4]1/2 (427)

with the current matter and radiation density €, /€2, o, the curvature of the universe
Q0 and the cosmological constant 2, o (see also Mo et al. 2010). In a flat universe
Q0 = 0 with vanishing radiation density 2, ~ 0 Eq. 4.27 reduces to

H(2) = Hy[Qn0 + Qo1 + 2)%]/2 (4.28)

and the Hubble parameter at redshift z = 2 is H(z = 2) = 207km s~'/Mpc. As the
stellar to dark matter mass in the HOD models is defined at the virial radius, we set
M, = M, + My, = 6.76 - 1012M,, and get a virial radius of 7,;, =~ 230kpc. Next
we have to use Eq. 4.4 to calculate the radius including 80% of the total mass of the
Hernquist halo rgg . With v = 1.0 and M(r) = 0.8 - M we get

T80,n = a(4 + \/%) (429)

and for rgy, = 7y the scale radius of the halo is agy, ~ 27. Finally, the ratio of the
scale radii are § = (27,19) for v = (1.0,1.5). But as we set 7,;, = 780, We have to
adopt another mass ratio y = 66.7/0.8 ~ 85, as p in the initial condition program gives
the stellar to halo mass ratio of the total system. Finally we chose very large cut-off
radii of 74y, = 200 - a, and 74y g = 100 - agy,, to limit the contraction effect.

For the stability simulations we use 1.1 - 10° particles for both realizations, which
results in more massive dark matter particles (mg, = 8.5 - m,). Therefore the force
softening has to be different, i.e. €z, = v/8.5¢,. Furthermore, using different particle
masses, two-body relaxation causes mass segregation (see Section 5.1), thus we addi-
tionally have to increase both softenings. Finally, we find e, = 0.1 yields very good
results and is still small compared to the effective radius (e, = 0.055 - R.).

In the top panels of Fig. 4.5 we illustrate the density profiles of the initial conditions
(black solid lines) for 7y = 1.0 (left) and v = 1.5 (right), which both stay constant. After
120 dynamical times (dashed dotted lines), the bulge and halo profiles are still in very
good agreement with the analytic Hernquist profile (red dashed line). Only inside 2 - ¢
the shallower v = 1.0 profile shows minor deviations due to two-body relaxation, which
causes the bulge and halo profile to get closer. In the bottom two panels we depict the
according evolution of the velocity dispersion profiles, which again show very promising
results, as the initial profiles nicely resemble the ones from the Jeans equations (Eq.
4.8) for each component. In the end, they again show only small deviations in the
inner parts, where the resolution is lowest and mass segregation, induced by two-body
relaxation, is most prominent. But especially the bulge profile is perfectly stable outside
40% of the scale radius.

In the next Fig. 4.6 we can see the evolution of the mass radii including 30, 50 and
80% of the total bulge (top) and halo (bottom) masses. Together with the effective
radius R, (top) and the gravitational radius r, (bottom), all radii are constant over the
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Figure 4.5: The top panels illustrate the densities p(r) for the v = 1.0 (left) and
v = 1.5 (right) model with realistic dark to stellar mass ratios. Outside two times the force
softening (e = 0.055 - R.) the densities of both the halo and the bulge resemble perfectly
the analytic profile after more than 120 dynamical times. The very small deviations in
the central regions are caused by two-body relaxation. The bottom panels illustrate the
corresponding radial velocity dispersion profiles, which stay constant over most of the radial
range. Only inside 40% the bulge scale radius a they are strongly affected by two-body

relaxation.
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whole simulation time. Only the innermost bulge radii (39, top panel) are affected and
as the v = 1.0 profile is shallower than the v = 1.5 profile, it has less particles in its
center and consequently gets slightly more influenced by numerical effects. Therefore its
r3o finally increases by 7%. However, we conclude that even the 'real’ galaxy models
are by far stable enough to yield reasonable galaxy models to be used for further
applications.
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CHAPTER b

KINEMATICS

In the following we want to give a little overview of the dynamical processes, one has
to deal with in numerical N-body simulations. All of them have different impact for
different merger scenarios and two-body relaxation strongly depends on the numerical
setup of the initial conditions and can be reduced by a clever choice of the gravitational
softening length. Dynamical friction and tidal stripping are the dominant processes in
minor mergers, whereas violent relaxation is very efficient for major mergers. Although
violent relaxation has a strong impact during the final merging process, it rapidly gets
dissolved by phase mixing. In contrast to two-body relaxation, all these mechansims are
physical and not artificial, thus we first illustrate the influence of two-body relaxation
with the help of an test simulation.

5.1 Two-Body relaxation

In the real universe, star and dark matter particles in galaxies, which consist of N =
10! stars, are essentially collisionless and feel no perturbation due to a close encounter.
However, simulations of isolated galaxies or galaxy mergers, the number of particles is
limited by the computational power. Therefore each simulation particle corresponds
to a conglomeration of real stars.

The relaxation time t¢,.,, denotes the time, when the velocity of one star has
changed of the same order as its initial velocity due to two-body encounters (see Bin-
ney & Tremaine (2008)). Another useful definition of relaxation time uses the change
of the mean square energy compared to the initial mean kinetic energy of a group of
particles (Chandrasekhar, 1942). The latter definition yields a relaxation time which
is half compared to the first definition.

To quantify the effect of two-body relaxation we chose the first approximation which



40 KINEMATICS OF MERGER SIMULATIONS

107E o
r ‘ |
106; scale 1engt]h§ : 4
: o E
L | _
10° = w .
’ B ]
E 104 np:1280]k
-

107

10! Y, ]

0.01 0.10 1.00 10.00 100.00
radius

Figure 5.1: The solid lines show the two-body relaxation times of a Hernquist sphere
with scale radius @ = 1 (dotted line) for an increasing number of particles (from bottom
to top the particle number increases by a factor of 2). From the lowest particle number
(N = 80000) to the highest one (N = 1.28 - 10°) the relaxation time at the spherical
half-mass radius (dashed line) increases by a factor of ~ 13. The red solid line indicates the
particle distribution (N = 160000) which we chose for further investigations and for some
of our merger simulations in the next sections. For this Hernquist sphere .., ~ 7100 at
the spherical half-mass radius.

yields,

0.1N
trelax = v—o tcross> 5.1
“TT I N (5.1)

where N is the particle number. The crossing time t.,...s = R/v strongly depends on the
particles distance R from the center. The velocity v corresponds to the typical velocity
of a particle at this radius, which can be approximated by the circular velocity. For
a better illustration we chose a one-component Hernquist model, which has a circular
velocity v. = VGMr/(r + a) (see Eq. 4.6). Assuming G = M = 1 the crossing time
becomes,

tcross - \/7_”(7” + CL), (52)

where a is the scale radius of the Hernquist sphere. Figure 5.1 shows the radial
dependence of the relaxation time for an increasing number of particles. From bottom
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Figure 5.2: This panel shows the evolution of the energy distribution N(¢) of an one-
component Hernquist sphere with N = 160k particles and G = M = a = 1. After a time
t = 2000 the most bound particles of the final profile (black dashed line) are 6% less strongly
bound compared to the initial profile (solid black line). The three narrow histograms show
the energy distribution for three different energy bins (red: —0.85 < € < —0.80, blue:
—0.50 < e < —0.45, green: —0.10 < € < —0.05), which all become a gaussian distribution
due to two-body encounters (cricles of the corresponding color). The gaussian fits (red,
green and blue dashed lines) indicate, that the inner most particles (red) are more affected
than the others, as the width o of the fitted curves are higher for this energy bin. The
vertical dashed and dotted lines indicate the initial and final mean binding energy of each
bin, respectively.
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to top, the number of particles gets doubled for each subsequent line and we can see,
that the relaxation time at the spherical half-mass radius r50 s, = (1 + \/§)a (see
Eq. 4.5) grows by a factor of ~ 13 if the particle number increases by a factor of 16.
To highlight the effect of two-body relaxation we chose the model with N = 160000
particles (red line) and let it evolve for 2000 timesteps with a very small softening
length of e = 0.01.

Figure 5.2 shows the differential energy distribution of the initial galaxy model
(solid black line) and the final one (dashed line) after ¢ = 2000 timesteps. We can see,
that the most bound particles at the left side of the distribution are finally less bound,
because two-body encounters, which especially take place in the central, high density
regions, lead to an equipartition of energies. Therefore, the most bound particles lose
some of their energy to less bound particles. Furthermore, if the particles in a spheroid
have different mass, the energy equipartition also leads to mass segregation, where the
more massive particles tend to transfer energy to the less massive ones. Consequently
the more massive particles sink towards the center and the lighter ones wander to
larger radii. Next we look at the narrow bins for different binding energies (red/blue
and green histograms in Fig. 5.2), which all evolve to Gaussians of different width o.
Again, the higher bound energy bins (red/blue histograms) get more broadened than
the weakly bound bin (green histogram).

There are two main ways to reduce the effect of two-body relaxation. First, as
already depicted in Fig. 5.1, an increasing number of particles significantly increases
the relaxation time, and second, a larger softening length also limits the amount of
scattering events. The drawback of the latter solution is, that one loses the information
within two softening length, as the results in these regions are no longer reliable.
However, in Section 4.3.3, we have already seen, that for galaxy models, consisting
of unequal mass particles, it is crucial to adopt higher softenings to prevent mass
segregation in the center. To quantify the effect of a larger softening length, we also
evolved the same Hernquist sphere of Fig. 5.2 with ¢ = 0.08, which yields a much weaker
broadening compared to the above simulation. The final width of the innermost bin is
only o1 = 0.057 and therefore the effect of two-body relaxation is reduced by 40%.

Additionally, Fig. 5.3 depicts the depletion of the most central regions, which
we could already see in Fig. 5.2. Due to equipartition of energy, caused by two-body
relaxation, the central particles get slightly less bound and the innermost density profile
becomes shallower.

5.2 Dynamical Friction & Tidal Stripping

Dynamical friction is a gravitational drag force, introduced by Chandrasekhar (1943).
If a heavy point mass is traveling through a uniform background mass distribution, it
attracts the surrounding particles and builds up an overdensity in its wake. This over-
density acts like a drag force onto the point mass, which consequently gets decelerated.
On the other hand this implies a energy transfer from the satellite to the surrounding
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Figure 5.3:

The black solid line and the black dashed-dotted line show the initial and

final radial density distribution respectively. As the most bound particles go to higher energy
the central density cusp within 10% of the scale length a (dotted line) gets depleted. The
red solid line depicts the analytic profile of the Hernquist sphere (Eq. 4.16).
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medium, as the energy of the combined system (satellite+background distribution) is
conserved.

The original dynamical friction formula of Chandrasekhar (1943), describing the
deceleration of infalling 'point masses’ is,

divf”“b = 47 G2 In(A) Mgt Prost(< Vorp) 22 (5.3)
L Vorb

where A is the Coulomb logarithm (Chandrasekhar, 1943; Binney & Tremaine, 2008),
Phost (< Vorp) 18 the background density of all particles with velocities smaller than the
orbital velocity v, of the satellite with mass M,,;. But this formula is based on three
‘unrealistic’ assumptions, that i) all particles and the satellite are point masses, ii)
there is no self-gravity for the particles in the wake and iii) the background particle
distribution is infinite, homogeneous and isotropic. However, by a more convenient
choice of the Coulomb logarithm A and restricting to minor mergers, where the satel-
lite’s mass is at maximum < 20% of the host galaxy, the dynamical friction force of
Chandrasekhar (1943) is a viable approximation. Furthermore, the dynamical friction
drag force Fy highly depends on the mass of the satellite M;, as Fy oc M2, In numer-
ical simulations, Boylan-Kolchin et al. (2008) has recently shown, that the mass loss of
an infalling satellite is not negligible and has to be taken into account.

One way to unbind the particles of the satellite galaxy is violent relaxation, dis-
cussed in the next section, and tidal stripping. A simplified method to explain tidal
stripping is the following. If a satellite galaxy with mass m is on a circular orbit around
a massive point mass M with a distance R, it experiences an acceleration GM/R. But,
as the satellite has a certain extension, the two boundaries at the farthest and the near-
est end to the point mass M notice a different acceleration. If this tidal acceleration
is higher than the binding energy of the lowest bound satellite particles, they can be
stripped and leave the satellite’s potential well (see also Mo et al. 2010). The radius,
at which this tidal acceleration exceeds the binding energy of the particles is called
tidal radius r;. So far, due to many idealized assumptions, there are only very crude
approximations to quantify r;.

5.3 Violent relaxation

In contrast to two-body relaxation, violent relaxation is a physical mechanism, which
was introduced by Lynden-Bell (1967). In a collisionless system, violent relaxation
efficiently redistributes the energy of single stars due to local fluctuations of the grav-
itational potential,

d& d
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dt dt
where £ is the energy per unit mass and ¢(z, vy, 2,t) is the gravitational potential of the
whole system. This effect occurs on very short timescales, e.g. less than the free-fall
time of the system (Bindoni & Secco, 2008).



5.3 VIOLENT RELAXATION 45

Although the theory of violent relaxation is not fully understood until now, we
know that it plays a very important role during the coalescence of two or more galaxies.
Therefore, we give a basic description of the original version of Lynden-Bell (1967) and
show some more recent, slighlty different approaches. In Section 6.4.1 we try to figure
out the effect of violent relaxation for numerical simulations.

5.3.1 Lynden-Bell’s approach

The most basic quantity in stellar dynamics is the fine-grained distribution function
(DF) or phase space density f(, ¥’,t), which specifies the number of stars within an
infinitesimal volume d®*Z d®¥ at time t. Furthermore, it is convenient to introduce a
coarse- grained distribution function F', which gives the average of the fine-grained DF
in a small volume A>Z A% Contrary to the fine-grained DF the coarse-grained one
depends on the particular choice of partitioning the phase-space in which the volume
elements A*Z A% are defined. Additionally, only the evolution of the fine-grained
DF can be described by the Boltzmann equation

af _of . 0f 909 of _

%ot V97 arow (5.5)

Introducing a change in particle energy as described above, rearranges the orbits
of stars and the system seeks for a new equilibrium configuration. Therefore we divide
the 6 dimensional phase space in a big number of 'coarse-grained’ macrocells n; with
equal volumes (Lynden-Bell, 1967). All these macrocells consist of a large number
v of even smaller microcells, where some of those are occupied by a phase element
of particles. The latter volume is that fine, that it can adequately describe the fine-
grained DF. Combining all macrocells results in a macrostate, which can be viewed
as a discretized realization of the coarse-grained DF F' of the system at time £. This

means that F(Z’, ¥',t), is defined as a discrete function on the ith macrocell

1 n;n
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(5.6)

where n is the number of particles in a phase element.

Now we calculate a functional W{n,}, which gives all possible combinations of
macrocells for a particular macrostate. Defining S = In W as an Boltzmann entropy,
the new statistical equilibrium state can be seen, as the macrostate, which maximizes
the entropy S under the constraints of energy and mass conservation. Including the
mass and energy constraints as Lagrange multipliers Ay, Ao, the maximization process
can be written as,

SInW — AN — A6 E =0, (5.7)

where £ = ). n;€; is the total conserved energy (e; is the mean energy of all particles
in the ith macrocell) and N = ) .n; is the total number of phase elements, which
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indicates mass conservation. Introducing n = == = f(Z', ' ,t) as the constant
phase space density inside each phase element and applying Stirling’s formula for big
numbers Eq. 5.6 becomes:

n; n
E = —|S=mazx — 2.8
‘S exp()\l + )\262-) +1 ( )
If we consider Ay = 3 o T~! as an inverse temperature and u = —\;/(3 as a chemical
potential, Eq. 5.8 yields
F = d (5.9)

exp[B(e; — p)] +17

which nearly resembles the Fermi-Dirac statistics of quantum mechanics.

After phase mixing (see next section 5.4), we are in the so-called non-degenerate
limit, i.e. F; <<n = f(7,7,t), and Eq. 5.9 tends to a Maxwell-Boltzmann distribu-
tion,

F; = nexp[—B(e; — p)] = Aexp(—fe), (5.10)

where A = nexp(fu). This implies, that the final equilibrium state approaches an
isothermal sphere. Unfortunately a physical system can never attain this state, as the
isothermal sphere has infinite total mass. Therefore real systems undergo an incomplete
relaxation process, which means, that violent relaxation stops very rapidly, as the
potential fluctuations die out through efficient phase mixing.

5.3.2 Other approaches

Since the pioneering work of Lynden-Bell (1967), there a many other authors, who
tried to improved the theory of violent relaxation. First of all, Shu (1978) argued, that
the occupation of microcells by phase elements introduces unnecessary complications.
He stresses the point, that stars can be seen as real particles in phase space and
not as infinitessimal parts of a continuum. Therefore, he occupies the microcells by
single star particles before he also maximizes the entropy to get the final equilibrium
state. As consequence his solution also leads to a combination of Maxwell-Boltzmann
distributions, but compared to Lynden-Bell, the velocity dispersions of each Maxwellian
component does not depend on the inverse of the phase-space volume, but on the inverse
of the particle mass.

On the other hand, both theories of Lynden-Bell and Shu imply mass segregation,
as their macrocells have different masses. As consequence, the more massive elements
migrate to the center, while the less massive once go to the outer parts of the system.
To solve this problem, Kull et al. (1997) divides the phase space in macrocells with
different volumes, but equal masses and finally the coarse-grained distribution function
again is a combination of Maxwellians, but now, all cells are characterized by the same
temperature.
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Figure 5.4: In the left panel, we can see the initial phase points at py, = 0, where f = F.
As the system evolves the phase points shear and the phase space volume gets thinner and
occupies a larger regions. As more and more ’air’ is mixed into the coarse-grained DF, it
decreases with time. The right panel depicts a very late stage of the system, where the
fine-grained DF f consists of infinitesimal thin lines. At this stage F' << f (see also Binney
& Tremaine (2008)).

Apart from these examples, there a many other authors, who tried to get a descrip-
tion of the final state of a collisionless relaxing system by using entropy arguments
(Nakamura, 2000; Stiavelli & Bertin, 1987). But recently Arad & Lynden-Bell (2005)
argued, that all of them have limitations and they additionally show that the statistical-
mechanical theories of violent relaxation are non-transitive. This non transitivity yields
two different results, if a system either undergoes one violent relaxation process at once
or two processes of comparable magnitude. Finally, Arad & Lynden-Bell (2005) con-
clude, that the already mentioned incompleteness of violent relaxation (see 5.3.1) is
the most important reason for these shortcomings. One way to overcome the problems
is to find a useful evolution equation for the coarse-grained DF.

Figure 5.4 shows a schematic realization of this scenario. The further evolution of
the system can be described by the collisionless Boltzmann equation, which implies
that the fine-grained DF f stays constant. Therefore the density of an infinitesimal
volume around a phase points does not change.

5.4 Phase Mixing

In the previous section we have shown that phase mixing is responsible for the incom-
plete violent relaxation as it rapidly decreases the amplitudes of the potential fluctu-
ations of, e.g. a merging event. Therefore the new equilibrium configuration after a
merger never can reach the state of maximum entropy, which would be an isothermal
sphere. On the other hand, it also increases the entropy of a system, as it decreases
the coarse grained DF F.

The easiest way to illustrate the effect of phase mixing is by considering a system of
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N pendulums, each of the same length L, though all of them have the same dynamical
properties. At the beginning, all of them have are swung back by an angle 0, n,
which all lie in a very small interval Af << ;. Now we define the fine-grained DF f for
this system, which is initially the same as the coarse-grained DF F'. If the pendulums
are released they all have a different angular velocity 6; with momenta Do, = 16;, i.e. the
pendulums with higher initial ; have lower momenta compared to those with smaller
initial angles.

A macroscopic observer just can look at a cell of finite size and then he calculates
the coarse-grained distribution in this cell. Initially f = F', but as the system evolves,
the phase-space volume winds up in to infinitesimal thin filaments (see Figs. 5.4).
Then the observer measures a much smaller phase-space density, because now, a lot
of phase-space around the measured phase point is not occupied but empty. Finally
the measured coarse-grained DF decreased a lot, compared to the initial value. This
decrease of F', as the pendulums get out of phase is called phase mixing.
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CHAPTER 0

RELAXATION AND STRIPPING: THE
EVOLUTION OF 5IZES AND DARK
MATTER FRACTIONS IN MAJOR
AND MINOR MERGERS OF
FELLIPTICAL GALAXIES

In this chapter we investigate collisionless major and minor mergers of
spheroidal galaxies in the context of recent observational insights on the struc-
ture of compact massive early-type galaxies at high redshift and their rapid
size evolution on cosmological timescales. The simulations are performed as a
series of mergers with mass-ratios of 1:1 and 1:10 for models representing pure
bulges as well as bulges embedded in dark matter halos. For major and minor
mergers, respectively, we identify and analyse two different processes, violent
ralaxation and stripping, leading to size evolution and a change of the dark
matter fraction. Violent relaxation - which is the dominant process for major
mergers but not important for minor mergers - scatters relatively more dark
matter particles than bulge particles to radii » < r.. Stripping in minor merg-
ers assembles satellite bulge particles at large radii in halo dominated regions
of the massive host. This effect strongly increases the size of the bulge into
regions with higher dark matter fractions. For a mass increase of a factor of
two, stripping in minor mergers increases the dark matter fraction within the
effective radius by 75 per cent whereas relaxation in one equal-mass merger
only leads to an increase of 25 percent. Compared to simple one-component
virial estimates, the size evolution in minor mergers of bulges embedded in
massive dark matter halos are very efficient. If such a two-component system
grows by minor mergers only its size growth, » o< M, will exceed the simple
theoretical limit of o = 2. Our results indicate that minor mergers of galaxies
embedded in massive dark matter halos provide an interesting mechanism for
a rapid size growth and the formation of massive elliptical systems with high
dark matter fractions and radially biased velocity dispersions at large radii.
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6.1 Introduction

Recent observations have revealed a population of very compact, massive (=~ 10 M)
and quiescent galaxies at z~2 with sizes of about ~ lkpc (Daddi et al., 2005; Trujillo
et al., 2006; Longhetti et al., 2007; Toft et al., 2007; Zirm et al., 2007; Trujillo et al.,
2007; Zirm et al., 2007; Buitrago et al., 2008; van Dokkum et al., 2008; Cimatti et al.,
2008; Franx et al., 2008; Saracco et al., 2009; Damjanov et al., 2009; Bezanson et al.,
2009). Elliptical galaxies of a similar mass today are larger by a factor of 4 - 5 (van
der Wel et al., 2008) with at least an order of magnitude lower effective densities and
significantly lower velocity dispersions than their high-redshift counterparts (van der
Wel et al., 2005, 2008; Cappellari et al., 2009; Cenarro & Trujillo, 2009; van Dokkum
et al., 2009; van de Sande et al., 2011). The measured small effective radii are most
likely not caused by observational limitations, although the low density material in the
outer parts of distant galaxies is difficult to detect (Hopkins et al. 2009a). Their clus-
tering properties, number densities and core properties indicate that they are probably
the progenitors of the most massive ellipticals and Brightest Cluster Galaxies (BCGs)
today (Hopkins et al., 2009a; Bezanson et al., 2009).

Possible formation scenarios for such compact massive galaxies at redshifts z ~
2 — 3 include gas-rich major disk mergers (Wuyts et al., 2010; Bournaud et al., 2011),
accretion of satellites and gas, giant cold gas flows directly feeding the central galaxy
in a cosmological setting (Keres et al., 2005; Naab et al., 2007, 2009; Joung et al., 2009;
Dekel et al., 2009; Keres et al., 2009; Oser et al., 2010) or a combination of all of these.
To explain the subsequent rapid size evolution different scenarios have been proposed
(Fan et al., 2008; Hopkins et al., 2010; Fan et al., 2010). Frequent dissipationless
minor and major mergers, which are also expected in a cosmological context, seem to
be the most promising (Khochfar & Silk, 2006; De Lucia et al., 2006; Guo & White,
2008; Hopkins et al., 2010). Minor mergers, in particular, can reduce the effective
stellar densities, mildly reduce the velocity dispersions, and rapidly increase the sizes,
building up extended stellar envelopes (Naab et al., 2009; Bezanson et al., 2009; Hopkins
et al., 2010; Oser et al., 2010, see however Nipoti et al., 2009a). Dissipationless major
mergers will contribute to mass growth, however, their impact on the evolution of stellar
densities, velocity dispersions and sizes is weaker (Boylan-Kolchin et al., 2005; Nipoti
et al., 2009a). Observations and theoretical work also provide evidence that early-
type galaxies undergo on average only one major merger since redshift ~ 2 (Bell et al.,
2006b; Khochfar & Silk, 2006; Bell et al., 2006a; Genel et al., 2008) which would not be
sufficient to explain the observed evolution (Bezanson et al., 2009). In addition, major
mergers are highly stochastic and some galaxies should have experienced no major
merger at all, and would therefore still be compact today. However, such a population
of galaxies has not been found yet (Trujillo et al., 2009; Taylor et al., 2010). Simulations
in a fully cosmological context support the importance of numerous minor mergers for
the assembly of massive galaxies. They might initially form at higher redshift during
an early phase of in-situ star formation in the galaxy followed by a second phase
dominated by stellar accretion (dominated by minor merging) onto the galaxy, driving



52 RELAXATION AND STRIPPING

the size evolution (Naab et al., 2009; Oser et al., 2010). Direct observational and
circumstantial evidence has been recently presented in support of the minor merger
scenario (van Dokkum et al., 2010; Trujillo et al., 2011).

Using the virial theorem, Naab et al. (2009) and Bezanson et al. (2009) presented
a very simple way to estimate how sizes, densities and velocity dispersions of one-
component collisionless systems evolve during mergers with different mass ratios. Ac-
cording to this simplified model assuming one-component systems on parabolic or-
bits, the accretion of loosely bound material (minor mergers) results in a significantly
stronger size increase than predicted for major mergers (Naab et al., 2009). With the
same approach Bezanson et al. (2009) found that eight successive mergers of mass ratio
1:10 can lead to a size increase of ~ 5, which corresponds to the observed difference
between old compact galaxies and today‘s massive ellipticals. Of course, this is only
valid for global system properties like the gravitational radii and total mean square
speeds. The simple model is not including violent relaxation effects like mass loss, oc-
curring during the encounter or non-homology effects which might change observable
quantities.

Early papers on the interactions of spheroidal galaxies already discussed many of
the above mentioned effects using N-body simulations of one-component spherical sys-
tems. White (1978, 1979), who carried out one of the first simulations of this kind,
already found that relaxation effects are very efficient in equal-mass encounters and
completely change the internal structure of the final remnants. First of all they contract
in the central regions and build up diffuse envelopes of stars (see also Miller & Smith
1980; Villumsen 1983; Farouki et al. 1983), which leads to a break of homology. Fur-
thermore, equal-mass mergers decrease population gradients due to the redistribution
of particles in strong mixing processes (White, 1980; Villumsen, 1983), which breaks
down in unequal-mass mergers, which even can enhance metallicity or color gradient
(Villumsen, 1983). Farouki et al. (1983) also showed, that their multiple equal-mass
mergers nicely recover the Faber-Jackson relation (Faber & Jackson 1976, see also Sec-
tion 2.2) and that the velocity dispersion gets radially biased in the outer regions of
the newly developed extended envelope. However, they all just used one-component
models and therefore could not investigate the influence of the most massive part of
a real galaxy, which is its dark matter halo. Naab & Trujillo (2006) and Hopkins
et al. (2009b) already showed, that more realistic galaxy models, where the bulge is
embedded in a dark matter halo, can change the size increase.

Although dissipationless minor mergers in general are able to increase sizes and de-
crease velocity dispersions, it is not clear if this scenario works quantitatively. Nipoti
et al. (2003), who are among the first using spherical two-component models, argued
that dry major and minor mergers alone cannot be the main mechanism for the evo-
lution of elliptical galaxies, because their simulated merger remnants did not follow
the Faber-Jackson (Faber & Jackson 1976) and Kormendy relations (Kormendy 1977),
although they stayed on the fundamental plane. Nipoti et al. (2009a) found that dry
major and minor mergers can bring compact early-type galaxies closer to the funda-
mental plane but the size increase was too weak for the assumed merger hierarchies.
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Furthermore, dissipationless major merging introduces a strong scatter in the scaling
relations, which are observationally very tight. Finally, Nipoti et al. (2009b) claim that
early-type galaxies assemble only 50% of their mass via dry merging from z~ 2 until
now and the expected size growth of a factor of ~ 5 is hardly reproduced. However,
especially in their minor merger sequences, they use very compact satellites, which
might underpredict the effective size growth.

There are two main questions we address in this chapter. First, using highly resolved
multiple equal-mass mergers, we investigate the impact of the massive dark matter
halo on the dynamics of the final systems. Does it affect the central regions and
can such mergers really change the central dark matter fraction, or is the increase
just an artefact of the increasing radius (Nipoti et al., 2009b). Second, we revisit,
whether dissipationless minor mergers are really too weak to fully account for the
observed evolution of compact early-type galaxies (Nipoti et al., 2003, 2009a) and the
implied size growth. Using more realistic two-component models, we are able to draw
conclusions about the change of internal structure for the galaxies in both merging
scenarios.

This chapter is organized as follows. First, in section 6.2 we give an overview of
our initial galaxy setup and the employed numerical methods, before we highlight the
virial predictions in section 6.3. In Section 6.4 and 6.5 we show the results for major
and minor mergers, respectively. Finally, we summarize and discuss our findings in
section 6.6.

6.2 Numerical Methods

6.2.1 Galaxy Models

For the initial galaxy models we assume spherical symmetric, isotropic Hernquist den-

sity profiles (Hernquist 1990) for both, the luminous and the dark matter (bulge+halo)

component,

M, Q;
pilr) = 21 r(r+ a;)%’

where p;, M; and a; are the density, the mass and the scale length of the respective

component ¢. The potential is

(6.1)

GM;
Bi(r) =~ (6.2)

with the gravitational constant G.

On the one hand the projected Hernquist profile is a reasonable approximation
of the RY/* law (de Vaucouleurs 1948) for the luminous component (its Sersic index
however is closer to n ~ 2.6, see Naab & Trujillo 2006). On the other hand it is a
good representation of the Navarro et al. (1997) profile for the dark matter compo-
nent. Therefore we consider the Hernquist density distribution a sufficiently realistic
description for the luminous and dark matter distributions of a typical elliptical galaxy.
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For simplicity, we assume isotropy of the velocity distribution to construct a stable
initial configuration, i.e. the bulge and halo component are in dynamical equilibrium.
We compute the distribution function (DF) f; for each component i, using Eddington’s
formula (Binney & Tremaine, 2008),

1 t/@:E(Fpi APy
\/gWQ =0 dqﬂT\/E—(DT’

where p; is the density profile of component i, E is the relative (positive) energy
and ®r is the total gravitational potential &7 = &,(+Py,). Solving distribution
functions is in general more complicated than using Jeans equations, but results in
more stable initial conditions (Kazantzidis et al., 2004). Only for a few models, e.g. the
one-component Hernquist sphere (Hernquist, 1990), the distribution function can be
computed analytically. For a two-component model (bulge+halo) we have to calculate
fi numerically. As there is no analytic expression for p;(®r) (see Eq. 6.3) we have to
transform the integrand of Eq. 6.3 to be a function of radius r,

d?p; ddr\ 2 [d2p;
Gl — (25T _
wr = (5) |
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dPz. dr?
dd\ 2D dp; | dPr
— dr. 4
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This procedure always results in an analytical expression for the integrand, even for
more general - profiles (Dehnen, 1993) with different slopes for the density distri-
bution. As a consequence, the integration limits also have to change, e.g. ®(r) = 0
becomes r = oo and ®(r) = E has to be solved (numerically) for the radius .

Once we have computed the DF we can randomly sample particles with radii smaller
than a given cut-off radius and random velocities, which are smaller than the maximum
escape velocity. Then the particle configuration for the galaxy is established using the
Neumann rejection method (see also Chapter 4).

The one component model is described by two parameters, the scale length a,
and the total mass M,. For the two component models, including dark matter, we
additionally introduce the dimensionless parameters p and 3 for the scale length of the
halo ag,, = (a, and its mass My, = uM,.

6.2.2 Model Parameters and Merger Orbits

For the total dark matter to stellar mass ratio we assume p = My, /M, = 10 and the
ratio of the scale radii is # = a4y, /a. = 11, for all simulations with two-component mod-
els. We perform a set of simulations for two different scenarios with M, = a, = 1.0.
In the major merger scenario we simulate equal-mass mergers of initially identical,
spherically symmetric one- or two-component models on zero energy orbits. The en-
counters have parabolic orbits with and without angular momentum (head-on). For
higher merger generations we duplicate the merger remnant after reaching dynamical
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Figure 6.1: Top panel: Radial density profile for a Hernquist distribution (160k particles).
The black solid line illustrates the initial profile (t=0) and the dashed-dotted line the final
profile (¢t = T ~ 100 X t4,, Where t4,, is the dynamical time at the spherical half-mass
radius). The analytical profile is indicated by the red dashed line. Inside 10% of the scale
length (vertical solid line) the system is affected (increase in dispersion and decrease in
density) by relaxation effects. However, overall, the system is dynamically stable for at
least 100 dynamical times. Bottom panel: Initial (solid line) and final (black dashed line)
radial velocity dispersion profile.
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equilibrium at the center and merge them again on orbits with the same energy but
different infall directions. In total, we simulate three generations of head-on equal-mass
mergers, and two generations with angular momentum (see also table 6.1).

In the minor merger scenario our simulation sequences start with an initial mass
ratio of 1:10, i.e. Mposr = 10M,,, and a stellar scale radius of the satellite of a, 54 = 1.0.
On the first glance this choice for the satellite’s scale radius seems very unrealistic
and does not agree with any observed mass-size relation (see Fig. 2.1), but recent
observations show that the sizes of less massive ellipticals converge at an effective
radius of . ~ 1kpc (Misgeld & Hilker, 2011). Therefore the satellite galaxies have the
same size as the compact early-type hosts, although they are an order of magnitude
less massive. For comparison, we made two sequences (with one- and two-component
models), of head-on minor mergers, where the satellite’s scale radii are half the host’s
scale radius a, .ot = 0.5, though the satellites lie on an extrapolation of the observed
mass-size relation of Williams et al. (2010) at z = 2 (see Fig. 2.1 and table 6.1).
The host galaxy for the next generation is the virialized end product of the previous
accretion event. This host is merged with a satellite identical to the first generation.
The mass ratio for this merger is now 1:11. We repeat this procedure until the host
galaxy has doubled its mass, i.e. 10 minor mergers. The final mass ratio of the merger
is 1:19. Again we simulate one- and two-component mergers with zero (head-on) and
non-zero angular momentum. As the mergers of the bulge+halo model with angular
momentum are computationally expensive we only simulate 6 generations.

For all head-on mergers we separate the centers by a distance d and assign them a
relative velocity v, = 21/GM,,/d, where My, is the total attracting mass of the host
galaxy within radius d. This velocity corresponds to an orbit with zero energy and
zero angular momentum, i.e. the galaxies will have a zero relative velocity at infinite
distance. The distance d is always large enough to obtain virialized remnants at the
end of each generation. As the merger remnants after the first generation will not be
spherical anymore, their mutual orientation is randomly assigned at the beginning of
each new merger event.

For the mergers with angular momentum we set the impact parameters to half of
the spherical half-mass radius of the host’s bulge and separate the galaxies far enough
so that the initial overlap is very small.

6.2.3 Simulations and Stability Tests

All simulations were performed with VINE (Wetzstein et al., 2009; Nelson et al., 2009),
an efficient parallelized tree-code. We use a spline softening kernel with a softening
length € = 0.02 for all runs. In general, the softening length depends on the particle
number (e.g. Merritt 1996; Dehnen 2001) and we found e = 0.02 to be the best value
looking at the balance between computational costs and stability of the models. For
the major merger simulations the seed galaxy consists of N, = 1.6 x 10° bulge particles
for the one-component (bulge only) model and N, = 2 x 10* for the two-component
model, which has an additional halo of Npy; = 2 x 10° particles of the same mass. For
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Figure 6.2: Top left panel: Radial density profile for the two-component realization
with 1100k particles. The bulge to halo mass ratio is 1:10. The solid black lines illustrate
the initial profiles (t=0) of the bulge and the halo and the dashed-dotted lines their final
profiles (£ > 60¢4,,). The analytic Hernquist profiles are indicated by the red dashed line.
Bottom left panel: Radial velocity dispersion of the total system (blue solid: initially, blue
dashed-dotted: final), the bulge and the halo separately. Inside 0.3a, the model is affected
by two-body relaxation, but overall it is stable. Right panels: Time evolution of the radii
enclosing 80%, 50%, 30% and 10% mass (black lines from top to bottom) of the bulge
(top panel) and halo (bottom panel). The red lines show the effective radius of the bulge
(upper panel) and the gravitational radius of the whole system (bottom panel). Except the
10% radius of the bulge, which shows a slight increase, all mass radii stay constant over
> 60 dynamical times.
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Run Gen.  Gugar Mup(%)  Miwn(%)
Blho 3 1.0 12.3 12.3
Blam 2 1.0 15.0 15.0
HB1ho 3 1.0 10.1 2.5
HBlam 2 1.0 8.8 2.0
B10hod 10 1.0 21.8 21.8
B10amd 10 1.0 20.9 20.9
B10hoc 10 0.5 21.7 21.7
HB10hod 10 1.0 35.6 20.4
HB10amd 6 1.0 19.5 7.9
HB10hoc 10 0.5 20.9 7.2

Table 6.1: This table gives the name of the hierarchy (1st column), the number of
generations (2nd), the initial scale radius of the satellite (3rd), the amount of unbound
mass of the total final remnant (4th) and the corresponding stellar mass loss (5th). The
name can be explained as followed; B/HB: bulge or halo+bulge, 1/10: major/minor merger,
am/ho: orbit with/without angular momentum. In the case of the minor merger scenarios,
c/d indicates wether we chose a compact or diffuse satellite.

the accretion scenario, the one- and two-component host galaxies both have N, = 10°
bulge particles and the latter has Npy, = 10° halo particles. The satellites have ten
times less particles for all components.

In Figure 6.1 we demonstrate the stability of the bulge only model with 160k par-
ticles by comparing the initial and final (100 dynamical times) density (top panel)
and radial velocity dispersion (bottom panel) as a function of radius to the analytical
solution of the Hernquist sphere. In general the model is very stable after the whole
simulation time, except in the innermost parts, where two-body relaxation becomes
important. At the highest densities, inside 10% of the scale radius the relaxation time
trelaz Of the model is very small. Consequently two-body encounters change the central
particle’s energy and deplete the high density regions. Looking at the initial and final
number of particles within 0.1a,, we find that half of the particles escape this region
and go to lower binding energies, which is in good agreement to the results of Section
4.3. However, at larger radii the models are very stable with a very good agreement,
with the analytical solution. The radii enclosing 30, 50 and 80 per cent of the stellar
mass stay perfectly constant.

The stability of the two-component system is demonstrated in Fig. 6.2. Our initial
model, constructed of two Hernquist spheres, is again very stable over a long simulation
period of more than 60 dynamical times. The density and the velocity dispersion do not
change significantly. Again the innermost regions of the bulge distribution are affected
by two-body relaxation as the particle number is similar to the former one-component
sphere. However, looking at the mass radii of the bulge and the halo we observe no
significant changes. The apparent contraction of the mass radii enclosing 80% or 50%
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is less than 5% for the halo and less than 2% for the bulge and is an artefact of the
cut-off radius (see Section 4.3). The gravitational radius and the effective radius which
we use in this paper stay constant.

Therefore we conclude that our results are not affected by two-body relaxation and
other numerical artifacts on the initial conditions.

6.3 Analytic Predictions

Naab et al. (2009) found a very simple prescription of how stellar systems evolve during
a merger event. This will be extended later on and therefore is reviewed briefly. Using
the virial theorem and assuming energy conservation we can approximate the ratios of
the initial to the final mean square speed (vf/f), gravitational radius rg;/; and density
pisy of a merging system. According to Binney & Tremaine (2008) the total energy of
a system is

1
1 1 GM?
= ——M;(v}) = —=—~, 6.5
2 <UZ> 2 Tg’z ( )

where F; and M; are the system’s initial total energy and mass. The gravitational
radius is defined as

e

rg,i VVZ )

(6.6)

with the total potential energy W;. Now we define F,, M,, r,, and (v?) as the energy,
mass, gravitational radius and mean square speed of the accreted system. Further-
more, 1 = M,/M; and € = (v?)/(v?) are the dimensionless mass and velocity fractions
respectively. By combining these assumptions with equation 6.5 we obtain

(v})  (1+ne)
RS 6.7)
Tg,f (1+ 77)2
R G (6:8)
pr _ (1+ne)?
pi (T+m)*’ (6:9)

for the ratios of the final to initial mean square speed, gravitational radius and density.
In the very simple case of an equal mass merger of two identical systems n = ¢ = 1,
r, is doubled (Eq. 6.8), (v?) stays constant (Eq. 6.7) and p decreases by a factor of 4
(Eq. 6.9). If we use equations 6.7-6.9 for a minor merger scenario, where (v?) << (v?)
and € << 1, the size of the final system can increase by a factor of ~ 4, as r oc M2
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Additionally, the final velocity dispersion and density are reduced by a factor of 2 and
32, respectively. These changes are quantitatively in good agreement with observations.

However, this simple, analytic model suffers from a number of limitations, apart
from the restrictions to parabolic orbits and collisionless systems. The effect of violent
relaxation (Lynden-Bell, 1967) in the rapidly changing potential during the merger will
scatter particles in the energy space, making some more bound and unbind others from
the system. Thus, energy is not perfectly conserved. Additionally, realistic spheroidal
galaxies are composed of two collisionless components, dark and luminous matter with
different spatial distributions, which are expected to react differently to a merger event.
In the following we investigate the effect of violent relaxation and dark matter for
spheroidal mergers with mass ratios of 1:1 and 1:10.

6.4 Major Mergers

In the case of equal-mass mergers, the effect of violent relaxation is very strong and
has a significant effect on the differential energy distributions of the remnants. The left
panel of Fig. 6.3 indicates, that the initial narrow distribution (black line) becomes
broader with each generation in a way that tightly bound particles get even more bound
and some weakly bound ones gain enough energy to escape the galactic potential. The
theoretical framework of violent relaxation is very complex and since the pioneering
work of Lynden-Bell (1967), there have been many approaches to develop a more viable
theory, which can describe the final equilibrium configuration of a violently relaxing
system (e.g. Shu 1978; Nakamura 2000). In the following, we briefly repeat the original
approach of Lynden-Bell (1967) (Section 5.3.1), before we discuss our results with
respect to another slightly different approach of Spergel & Hernquist (1992).

6.4.1 Violent relaxation

During the approach of two collisionless systems the total gravitational potential ®
varies with time, which leads to a non-conservation of energy of single particles,
(Lynden-Bell, 1967; Spergel & Hernquist, 1992)

de 0P
— = 6.10
dt ot ( )
where € is the energy per unit mass. In accordance with the time dependent virial
theorem,
1d?1
—— =2T+V 6.11
where I is the moment of inertia tensor, the galaxy will convert its total potential
energy V into kinetic energy T and back. In equilibrium, I/ =0so T'= —FE,V = 2F,
with £ =T + V being the total energy. Away from equilibrium the total energy F is
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Figure 6.3: Left panel: Energy distribution of the initial host galaxy and three generations
of head-on major mergers (Blho). The initial distribution (solid black line) is broadened by
each merger towards lower and higher (escapers) energies. Finally the most bound particles
have two times their initial binding energy. The mean energy of the total system stays
constant (vertical dashed lines). Right panel: Here we investigate the effect of violent
relaxation on the particles of one galaxy. The overall evolution is the same as in the left
panel, i.e. the final width is the same. Looking at three different energy bins at high (red,
—0.85 < ¢ < —0.81), intermediate (green, —0.55 < ¢ < —0.51) and low binding energies
(light blue, —0.1 < ¢ < —0.06), they show a different evolution. As the innermost and
the intermediate bin suffer more from violent relaxation, their final width is much broader
compared to the outermost bin. Additionally, due to the escaping particles, the latter bin
cannot be fitted by a gaussian, whereas the other two bins can be fitted by a gaussian with
a width of 0 = 0.14. The vertical lines indicate, that the mean of the most bound particle
is shifted to even higher binding energies (to the left) compared to the other two bins.
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constant, but 7" and V scatter about these values, which widens the differential energy
distribution N(E), where N(E) gives the number N of stars within an energy interval
E+dE.

This evolution is illustrated in the left panel of Fig. 6.3, where the energy distri-
bution N(e) becomes wider with each higher merger generation. Spergel & Hernquist
(1992) did similar simulations and find exactly the same results. Using the Ansatz
that violent relaxation can be approximated by scattering effects of single particles,
they find an analytic prediction of the final equilibrium configuration of an equal-mass
merger. Furthermore, they illustrate, that the probability function of the scattering
effects becomes gaussian. In the right panel of Fig. 6.3 we select three different parti-
cle bins, with low (—0.06 < E < —0.1), intermediate (—0.55 < E' < —0.51) and high
(—0.85 < E < —0.81) binding energies from the initial host galaxy. After the final
merger, these narrow bins are broadened significantly and the two innermost bins can
be perfectly fitted by a gaussian of width ¢ = 0.14. Due to escaping particles, the out-
ermost bin does not develop a gaussian shape. Furthermore, the vertical lines indicate,
that the mean energy of the innermost bin (red lines) is significantly shifted to higher
binding energies, whereas the mean energies of the intermediate and weakly bound par-
ticles only show a small shift to higher and lower binding energies, respectively. Further
investigation of the innermost energy bin indicates that, at the first close encounter, it
is shifted to higher binding energies (left panel Fig. 6.4, ¢ = 110 — 120) and broadened
by a factor of 3 (¢ = 0.2 — 0.6). This can be explained by a sudden deepening of the
potential, as each galaxy experiences a doubled mass in its center during their closest
approach (see also right panel of Fig. 6.4). Afterwards, the two galaxies separate and
the mean energy goes nearly back to its original value, without further broadening
(t = 130). During the second close encounter, this scenario is repeated, i.e. the highest
energy bin is shifted to even higher binding energies accompanied by a strong widening
(t = 130 — 140), before it oscillates back into a less bound state (t = 140 — 150). But
now, the particle bin resides at a slightly higher mean binding energy and does not go
back to its initial position. In the right panel of Fig. 6.4 we depict the evolution of the
mean potentials of the three energy bins shown in Fig. 6.3, which oscillate strongly for
the strong bound particles (red, green line). Additionally, for the innermost bin, the
energy shifts and broadening is obviously correlated to these potential fluctuations. On
the other hand, we can see, that these fluctuations vanish rapidly, due to phase mixing,
which results in a so called incomplete relaxation (Lynden-Bell, 1967; Shu, 1978).

Checking the effect of two-body relaxation for the isolated host during the same time
interval yields a much weaker effect (e.g. o = 0.02 — 0.03 between ¢t = 110 — 160). To
get a comparable broadening by two-body relaxation, we have to run the simulation
for more than 2000 time steps (see Section 5.1)

Therefore, we conclude, that violent relaxation yields a significant widening of single
energy bins, which results in a much broader differential energy distribution. As a
consequence, some of the weakly bound particles acquire positive binding energies and
can escape the remnants potential. On the other hand, violent relaxation offers new
energy states by deepening the total gravitational potential, into which the most bound
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Figure 6.4: Left panel: Time evolution for the energy distribution of the most bound
energy bin in Fig. 6.3 (red bin). The initial distribution at ¢ = 100 (0) is slightly broadened
to o110 = 0.02 (1) by two-body relaxation. At the first close encounter t ~ 120 (2) the
potential changes rapidly (see also right panel), the particles get shifted to higher binding
energies and the energy distribution widens to o159 = 0.06. As the two galaxies fly away
from each other, the potential increases and the particles go back to lower binding energies
(3) without further broadening of the distribution. During the second close encounter, this
scenario repeats, i.e. the distribution becomes broader when the mean energy is shifted
to a higher binding energy (4). After t = 150 (5) the central regions show only negligible
potential fluctuations and the particle distribution is slowly affected by two-body relaxation.
In the merger, the innermost energy bin is broadened from 0.02 — 0.1, while in isolation,
the same bin only is slightly affected by two-body relaxation (0 = 0.02 — 0.03) in the
same time interval. Right panel: The fluctuations of the mean potential of the three energy
bins in Fig. 6.3 are strongest in the central regions (red bin) and decrease for lower bound
particles (green/light blue bin, Fig. 6.3). For the outermost bin, the fluctuations are too
small to be visible in this panel.
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Figure 6.5: Top panel: Differential energy distribution for two-component initial con-
ditions (black) and after the first (blue), second (green), and third (red) generation. The
solid lines depict the distribution of all particles, the dashed lines of the bulge and the
dotted lines of the halo. In general, the evolution of the total system is similar to the
one-component system (left panel, Fig. 6.3). The mean binding energies of the remnants
(vertical dashed lines) stay constant. However, relatively more dark matter particles than
bulge particles are scattered to low energies (more bound), thereby increasing the central
dark matter fraction. Bottom panel: The central ratio of dark matter to bulge particles,
calculated for ten energy bins, increases with each generation. Finally, there are nearly as
many dark matter as bulge particles in the innermost bin. The small vertical lines at the
top of the panel indicate the energy of the 50% most bound bulge particles, which stays
constant after the first merger.
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particles are scattered. As result, they become even more tightly bound.

In the top panel of Fig. 6.5 we can see, that the overall energy distribution of
the same merger history of two-component models (solid lines) evolves the same as
for the one component models, i.e. the tightly bound particles go to states with even
higher binding energies and some low bound ones get unbound (positive energies). But
looking at the different components separately, we can see, that with each generation,
the number of dark matter particles in the highly bound regions increase more than
the number of bulge particles. This behavior can also be seen in the bottom panel
of Fig. 6.5, as the fraction of dark matter to bulge particles converges to one in the
central regions. As the energy of the 50% most bound bulge particles, indicated by
the small vertical lines at the top of this panel, only changes for the first generation,
this indicates that the structure of the system changes, which implies a 'real’ change
of the dark matter fraction. The fact, that more dark matter than bulge particles
wander to higher binding energies is illustrated in Fig. 6.6, where we take a closer look
at the remnant of the first merger generation. Overall, the amount of dark matter,
going to higher binding energies, is significantly larger for most of the ten energy bins,
especially for ¢ > —1.2, which is the region where the initial number of halo particles
equals the number of bulge particles (see top panel Fig. 6.5). Although there are only
very few dark matter particles in the initially most bound regions, a non-negligible
amount occupies the finally most bound state of the remnant.

Finally, we can say, that violent relaxation rearranges the distributions of dark and
luminous matter in energy space, which yields a higher dark matter fraction in the
center of the final system, which is not just an effect of the increasing mass radius.

6.4.2 Velocity dispersion

One crucial condition of violent relaxation is, that each merging system evolves to a
state of higher entropy. Ideally, if violent relaxation would be complete, the final state
of a relaxing system should be the maximum entropy state, the isothermal sphere. In
reality, phase mixing damps the potential fluctuations of a merger rapidly, and violent
relaxation is incomplete, which results in a final equilibrium distribution which does
not reach a maximum entropy state.

Nevertheless the left panel of Fig. 6.7 shows that the radial velocity dispersion of
the final remnant (red line) in the one-component merger scenario can well be fitted by
a Jaffe profile (Jaffe, 1983), which resembles the inner parts of the singular isothermal
sphere (Tremaine et al., 1994). In the case of two-component models (right panel Fig.
6.7) we get the same result, i.e. the total (solid line) and also the bulge profile (dotted
line) get close to a Jaffe profile. Spergel & Hernquist (1992) find the same trend for
only one generation of a head-on equal mass merger, which leads to the conclusion,
that although the maximum entropy state can never be reached, each major merger
event brings the final system closer to this state. Another proof, that the structure of
the systems changes is shown by the structure parameter ¢ in both panels of Fig. 6.7.
As the parameter changes and the final energy distribution of both merger hierarchies
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Figure 6.6: This panel shows, in which bins bulge and halo particles get scattered during
the first merger (black to blue line in Fig. 6.5). Initially, the binding energies ¢ < —2.0
are not occupied, which means that the bin left to this energy consists of particles, which
come from higher energies, highlighted by a the intermediate blue (halo) and red (bulge)
histograms with left pointing arrow. At energies ¢ > —2.0 there are also particles which
stay in its initial energy bin, which is depicted by the dark blue (halo) and dark red (bulge)
histograms with arrows pointing downwards. The light blue/red regions with the right
pointing arrows at the top right of the figure show all the halo/bulge particles which go
from higher to lower binding energies. All energy bins are normalized to each bins total
number of particles. Overall we can see, that in most of the final energy bins (especially at
e > —1.2), much more dark matter than bulge particles come from higher binding energies,
which is consistent with the increasing fraction of central dark matter particles (bottom
panel Fig. 6.5).
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Figure 6.7: Top left: Final radial velocity dispersions of the one-component merger
generations (Blho). The colors depict the different generations. The dashed-dotted line
indicates the velocity dispersion of a Jaffe profile, which has the same scale length and mass
as the last remnant. The latter profile resembles the inner parts of the singular isothermal
sphere which is a very good fit to our last merger remnant. As the structure parameters
¢ decreases with each generation homology is not preserved. Bottom left: Anisotropy
parameter (3 (eq. 6.12) against radius of three generations of one-component equal-mass
mergers. As (3 > 0 for higher generations the remnants become radially anisotropic over
the whole radial range. The half-mass radius 75, is the radius of the sphere, which includes
half of the bound system mass. Top right panel: Here we show the same as in the left
panel for the head-on two-component mergers (HB1ho). The bottom right panel depicts
the anisotropy parameter for the bulge. Here, r5o is the spherical half mass radii of the
total (top) and stellar (bottom) bound remnants.
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have a different shape (see above), homology is not preserved.

Furthermore, in the bottom panels of Fig. 6.7 we can see, that the initially isotropic
remnants become radially anisotropic over nearly the whole radial range. Already after
the first merger generation the anisotropy parameter (Binney & Tremaine, 2008)

03 + Ui

=1 . (6.12)

2
207

gets positive, which indicates radial anisotropy. But this result is not surprising, as we
only use orbits with very small or zero impact parameter. Consequently, most of the
material falls in radially, which then causes the velocity distribution to become radially
biased (see also Boylan-Kolchin & Ma 2004).

6.4.3 System Evolution

In Fig. 6.8 we compare the simple theoretical predictions for the gravitational radius
(Eq. 6.8), the density (Eq. 6.9) and the mean square speeds (Eq. 6.7) to the different
major merger scenarios.

The top panel shows the evolution of the mean square speeds of the one- and two-
component equal mass mergers with the total bound mass of the system. According to
Eq. 6.7 the mean square speed should remain unchanged (dashed line), but obviously it
increases with each generation. As a consequence, the growth of the total gravitational
radius (middle panel of Fig. 6.9) and the density decrease (bottom panel of Fig. 6.9)
is weaker than expected. The same trend was reported by Nipoti et al. (2003, 2009a)
who argued that the simple analytical prediction is only valid for an idealized case
without escaping particles. In the 4th column of table 6.1 we can see, that the amount
of unbound mass after the merger is not negligible and adds up to about 12, 15, 10
and 9% per cent of the total mass for the scenarios Blho, Blam, HBlho and HBlam
respectively. As the coalescence time for the one-component mergers with angular
momentum (Blam) is longer than for the head-on orbits, this hierarchy suffers most
from violent relaxation and has the largest amount of escaping particles. The same
effect can be seen for the two-component case, where two merger generations with
angular momentum have nearly as much mass loss as three generations of the head-on
counterparts (~ 9% compared to ~ 10%). Looking at the last column of table 6.1 we
can see, that nearly all escaping particles for the bulge-+halo models are from the halo,
as nearly no stellar mass gets lost (M, . < 3%).

Going back to the analytic predictions and taking the effect of escapers into account
(see also Nipoti et al., 2003) we can re-write the energy equation using the energy of
the bound final system £y and the energy of the escaping particles E,.,

E¢+ E.se = E; + E,. (6.13)
We assume that the escaping particles have essentially zero potential energy, so that
1
Eesc - +_Mesc<vggc>‘ (614)

2
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With o = M,s./M; as the ratio of mass, lost in escapers to initial mass and § =
(v2.)/(v?) as the ratio of the mean square speed of the escapers and the initial system,

we can now re-write equations 6.7 to 6.9 as

() (L+ne+ap)
W) " (rn-a) (6:15)
Tgf _ (1+n— )?
rei  (1+ne+aB) (6.16)
and
Pro_ (14 ne+ap)? (6.17)

pi (L4n—a)p

The dashed-dotted lines in Fig. 6.8 indicate that the updated analytic predictions are
in good agreement with our simulation results. The deviations are less than a few per
cent for the one- and two- component models, respectively.

The situation becomes more complicated, if we separate the velocities of the bulge
and the halo component (left panel of Fig. 6.9). The mean square speed of the bulge
(green squares) increases more (finally > 50%) with respect to the total system (black
squares), whereas the halo (blue squares) speed stays below the total. Here violent
relaxation and dynamical friction lead to an energy transfer from the bulge to the
halo, i.e. the final bulge is more tightly bound than the initial one (see also Boylan-
Kolchin et al. 2005 for a discussion of the effect of different orbits).

This effect can be estimated based on the ratio of dark and stellar matter. The
total kinetic energy of the system is

M (V2) + M (V) = Mot (Vi) (6.18)
With myo = m. + mgm and introducing A(v? ) = (v2)4,) — (vi,) We obtain,
Mo AW?) + Mg A3 ) =0 (6.19)
and the additional growth of the stellar mean square speeds is

o _mdm

A(2). (6.20)

dm

e

If we now add A{v?) to the mean square speed of the galaxy (v2,) we can consistently
predict the bulge dispersion (green solid line in the left panel of Fig. 6.9).

As violent relaxation scatters particles into states with higher binding energy, the
central region becomes slightly contracted relative to the totals system growth (de-
picted by the gravitational radius). In the right panel of Fig. 6.9 we show the radii
enclosing the 20, 50 and 80 % most bound particles normalized to the evolution of the
gravitational radius. The inner regions expand less and the outer regions more than
the gravitational radius. This effect is already described in White (1978, 1979) and
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Figure 6.9: Left panel: Here we compare the mean square speeds of the total system
(black squares), the halo (blue squares) and the bulge (green squares) for the simulations
of two-component models with head-on orbits (HB1ho). The more rapid increase of the
bulge velocities can be explained by an energy transfer from the halo to the bulge (green
solid line, see Eq. 6.20). In the central regions this effect is even more efficient, as the
mean square speeds within the spherical half-mass radius (corresponding triangles) of the
bulge increase more. The dashed green line indicates the expectation of Eq. 6.20 for the
central region and the green star depicts the mean effective velocity dispersion. Right panel:
Evolution of the radii enclosing the 20% (dashed), 50% (solid) and 80% (dashed-dotted)
most bound particles normalized to the evolution of the gravitational radius , r,, (same
colors as in Fig. 6.8). The inner regions expand less and the outer regions more than the
gravitational radius. All ratios are normalized to the initial values.
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also lead to a significant non-homology of the system (see also Boylan-Kolchin et al.
2005), as it evolves through successive mergers.

On the other hand, this high central density leads to higher central velocities (tri-
angles, left panel Fig. 6.9). If we now add A(v?) (Eq. 6.20) to (v2,) for the central
regions we again get a very good prediction for the central bulge velocity (green dotted
line).

Now we change focus from theoretical galaxy properties, like the gravitational ra-
dius, to directly observable galaxy properties like the line-of-sight velocity dispersion
0., the effective radius r. and the projected surface density .. We define r. as the
mean radius including half of the projected bound stellar mass along the three major
axis and o, Y. as the mean projected velocity dispersions and mean surface densi-
ties within r., respectively. The green stars in the top panel of Fig. 6.10 show, that
the effective velocity dispersion o2 for the two-component mergers with head-on orbits
(HB1ho) evolves similar to the central mean square speeds of the bulge (left panel
Fig. 6.9), with a final value a factor ~ 1.9 higher than initial. For the one-component
merger hierarchies, the central regions are also affected by the contraction effect and
the innermost mass radii grow less than the gravitational radius (right panel Fig. 6.9).
This effect is stronger for the scenario with angular momentum orbits, as the final
coalescence takes longer and therefore, o increases more compared to the head-on
case (top panel Fig. 6.10). That means that the amount of escaping particles, which
additionally leads to a contraction of the central regions (right panel Fig. 6.9), changes
o. of both systems, but for the two-component mergers there is an additional transfer
of kinetic energy from the halo to the bulge particles.

In contrast to the gravitational radii, the observable effective radii of one- and two-
component major mergers follow the simple analytic predictions Eq. 6.7-6.9, although
the dispersion does not. As r, oc M/o? we would expect smaller radii, similar to the
evolution of the gravitational radii in Fig. 6.8. Projection effects can be ruled out, as
the spherical half-mass radii of the bound remnants evolve similar to 7. and it cannot be
an effect of dark matter alone. As discussed in Nipoti et al. (2003) and Boylan-Kolchin
et al. (2005) and looking at the different evolution of different mass radii (right panel
Fig. 6.9), we also find, that the systems change their internal structure with each
merger generation. This effect of non-homology can be quantified by the structure
parameter ¢ which connects the stellar mass of the systems to its observed size and
velocity dispersion (see also Figs. 6.7),

op:

G Y
where we define M, as the bound bulge mass of the merger remnants, to get a compara-
ble value for ¢ of both merger hierarchies (see also Prugniel & Simien 1997; Nipoti et al.
2009b). A change in ¢ indicates that the merger remnants do not have a self-similar
structure. For the major mergers we find a continuous decrease of ¢ with each merger

generation (filled circles in Fig. 6.11). The decrease after one merger generation is
slightly stronger (factor of 1.8) for the models including dark matter (red and green

M,=c-

(6.21)
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Figure 6.10: Same as Fig. 6.8 but for ‘observable’ bulge properties like the effective
line-of-sight velocity dispersion (top panel), the projected spherical half-mass (effective)
radius (middle panel) and the effective surface density (bottom panel) versus the bound
stellar mass normalized to the initial stellar mass. The dashed lines indicate the simple
analytic predictions (Eqs. 6.7, 6.8, and 6.9) and the dotted line in the top panel is the
expectation for o2 (see also Fig. 6.9). Surprisingly, the observable values for the bulge sizes
(and therefore effective surface brightness) agree with the analytic prediction.
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Figure 6.11: The dark matter fraction (stars) within the spherical half-mass radius of
the bulge, fam = Mam/(Mam + M,.) of the two-component major mergers versus the bound
mass, normalized to the initial mass. The central dark matter fraction (r < r5g}) increases
by a factor of 1.5 after three generations for the head-on orbits (green). The filled circles
indicate the evolution of the structure parameter ¢ = GMyuge/(r.02). The parameter
decreases for one-component and two-component systems indicating a break in homology.

circles) compared to the bulge only model with radial orbits (factor of 1.5; black cir-
cles). This discrepancy can be explained by the increasing dark matter fraction (stars,
Fig. 6.11) within the spherical half-mass radius of the bulge+halo models. In section
6.4.1 we have already shown, that this is not just an effect of increasing radii (as argued
by Nipoti et al. 2009b). In the center, the amount of dark matter particles grows more
compared to bulge particles and we observe a real increase of central the dark matter
fraction. This is in good agreement to Boylan-Kolchin et al. (2005), who also finds
that, especially for equal-mass mergers on radial orbits, homology is not preserved and
the dark matter fraction increases.

Finally, looking at the scaling relations for the first remnant, we obtain reasonable
results compared to, e.g. Boylan-Kolchin et al. (2005), who looked at merger remnants
after one generation of equal-mass mergers. The first remnants of our equal-mass
merger scenario, gives a mass-size relation,

re o M, (6.22)
with a = 0.8 — 1.0 and a mass-velocity-dispersion relation,
M, < o?, (6.23)

with § = 3.3—5.1. Compared to observations (e.g. « = 0.56, Shen et al. 2003), our size
increase is too high. But as Boylan-Kolchin et al. (2005) already pointed out, radial



6.5 MINOR MERGERS 75

orbits yield an higher growth in size and velocity. As our orbits all have zero or very
small pericentric distances, this explains the discrepancies with the observations.

6.5 Minor Mergers

In this section we investigate the effect of minor mergers with initial mass-ratios of 1:10.
In contrast to major mergers, the theoretically predicted size increase per added mass
would be higher accompanied with a significant decrease of the velocity dispersions and
densities (Eq. 6.7-6.9).

In Figs. 6.12 and 6.13 we show the total energy distributions (solid lines) for a
sequence of head-on, one- (Bl0hoc) and two-component (HB10hod) minor mergers,
respectively. For both, nearly all escaping particles are from the satellites (red dashed-
dotted line in both figures), which indicates that violent relaxation only affects the
in-falling material and has a negligible effect on the distribution of the host particles.
As the satellites are less bound than the host galaxy we get a very high fraction of
unbound mass for the final remnants. Furthermore, we can see that almost no accreted
particles assemble at the central regions. The shift of the highest bound particles to
higher energies (right) in both scenarios is caused by two-body relaxation, which is
most effective in these high density regions (see Section 5.1). Combining this shift
with the effect, that most satellite particles assemble at low binding energies, we get
an increase of the mean binding energies. For the bulge only mergers, this decrease of
the mean energy can also be predicted analytically.

The potential energy for a Hernquist sphere is (Hernquist, 1990),

G

W:
6a ’

(6.24)

and according to the virial theorem the total energy of a system in equilibrium is

1 GM?
E=-W=- .
2W 12a

(6.25)

Additionally to the formerly defined mass ratio n = ]]\\/[/[‘? we define the ratio of the

2
accreted and initial scale radii as ¢ = ¢*. Assuming energy conservation for a zero

(3

energy orbit, the system’s final energy is:

M2 M2
Ej = BitEy=—p =t (6.26)
ME (M) ME
= -4 - i 6.27
,’72
— E(1+1) (6.28)

¢
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Figure 6.12: Differential energy distribution for the initial one-component system (black)
and two (purple), five (blue), eight (green), and 10 generations of 1:10 head-on mergers
(B10Ohoc). The red dashed-dotted line indicates the energy distribution of all accreted
material, which shows that nearly all escapers come from the satellites and nearly no particles
assemble at the center. In contrast to equal-mass mergers (left panel, Fig. 6.4) all bound
particles become less bound as the mean binding energy of the systems (vertical dashed
lines) decreases with each merger generation.

Furthermore we calculate the mean final energy ey,

, Py M 7
£ = & o EZ(l ™ ¢ ) — 12a; (1 + ¢ ) (6 29)
f M~ M, + M. M,(1+n) '

M, 1+ ([
= ——Z( C):—@( C) (6.30)
12a; \ 1 +1n I+n
Here we used the fact that for equal mass particles the total number of particles is
equivalent to the total mass M. In the case of an equal mass merger of two identical
systems 7 = ( = 1 and €y = ¢;, i.e. the mean energy of the system stays constant (see
also top panels Figs. 7.3, 7.5). But for the numerical setup of the first minor merger
generation B10hoc (B10hod), where 7 = 0.1 and ¢ = 0.5(1.0), the final mean energy is
ei/er = 0.92(0.93), in agreement with the simulations (Fig.6.12).

Taking a closer look on the energy distribution of the bulge of the scenario HB10hod
(dashed lines, top panel Fig. 6.13) we can directly see, that most stellar particles accrete
at energies € > —0.4, creating an overdensity of bulge particles. Consequently the ratio
of dark matter particles to bulge particles decreases for e > —0.4 (bottom panel of Fig.
6.13). In the latter panel we can also see, that this ratio stays constant for all particles
with € < —0.4 and as the binding energy of the 50% most bound particles go to higher
energies, the dark matter matter fraction increases (see also Fig.6.16).
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Figure 6.13: Top panel: Differential energy distribution for the initial two-component
system (black) and two (purple), five (blue), eight (green), and 10 generations of 1:10 merg-
ers (HB10hod). The red dashed-dotted line shows that all particles with positive binding
energies are from the satellites, which means that violent relaxation only unbinds satellite
particles and the energy distribution of the host stays unaffected. In contrast to equal-mass
mergers (Fig. 6.5) bound particles become less bound, due to two-body relaxation. As for
the one-component model, the mean binding energy of the system (vertical dashed lines)
decreases with each merger generation. Bottom panel: The relative fraction of dark matter
particles and stellar particles at low binding energies remains unchanged and decreases for
e > —0.4. The short vertical lines at the top of this panel indicate that the energy of the
50% most bound bulge particles gets shifted to higher lower binding energies.
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6.5.1 Velocity dispersion

Next we focus on the evolution of the velocity dispersion profiles (Fig. 6.14). Regarding
the differential energy distribution (Figs. 6.12, 6.13) we have seen, that violent relax-
ation has no big influence on the central regions of the host galaxies. In Fig. 6.14 we
can see, that this is also reflected in the radial velocity dispersion profiles o,.(r) of the
one- and two-component minor mergers. Especially in the case of the one-component
scenario (e.g. B10Ohod in the top left panel) o,.(r) keeps the initial Hernquist profile
(black dashed line) over the whole radial range. Checking the other one-component
scenarios, we also found, that even after 10 accretion events, the velocity profile does
not change. Furthermore, as 3(r) = 0 (bottom left panel Fig. 6.14) all remnants (solid
lines) stay perfectly isotropic. This picture changes, if we just look at the accreted
material, which approaches on radial orbits and thus shows growing radial anisotropy
B(r) > 0 with increasing radius. Again this effect is the same for all one-component
minor mergers, but it is slightly less pronounced in the case, where the satellite’s orbit
has some angular momentum.

The merger remnants of two-component models also indicate characteristics, which
are consistent with the evolution of their differential energy distribution (Fig. 6.13).
Therefore, the total velocity dispersion profile (solid lines in the right panel of Fig. 6.14)
and the one of the halo stay constant. But as we have already seen, a lot of stellar
particles create a bump in the energy distribution (dashed lines in Fig. 6.13), which gets
more and more prominent with each subsequent generation. These accreted particles
induce an increasing velocity dispersion at radii larger than the spherical half-mass
radius 750 (dotted lines, right panel Fig. 6.14). As the final coalescence of the stellar
component in the 2C scenario is on radial orbits, independent of the initial conditions
(see also Gonzalez-Garcia & van Albada (2005)), the anisotropy parameter gets radially
biased for all of our minor mergers (e.g. HB10hod, bottom right panel of Fig. 6.14).
This effect only occurs in the simulation including a dark matter halo, because then
the angular momentum of the in-falling satellite gets lost before the final merger due
to enhanced dynamical friction. Hence, most of the stellar particles approach on radial
orbits and get, during the final coalescence, stripped before reaching the center. If we
use the compact satellites, the overall trend does not change, but more material gets
closer to the center, as the particles are more tightly bound and suffer less from tidal
stripping.

6.5.2 System Evolution

The evolution of the total bound minor merger generations are depicted in the left
panels of Fig. 6.15. Obviously the mean square speeds (top panel) of all hierarchies
decrease with increasing mass. In all scenarios with diffuse satellites (black, blue,
green and red filled circles), the evolution is very close to the virial expectations of
Eqgs. 6.7-6.9 (dashed line), although the mass loss is significant especially for the two-
component models (red and green circles). In table 6.1 we can see that the fraction
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Figure 6.14: Top panel: The radial velocity dispersion for the head-on minor mergers of
one-component models (B10hoc) stays constant over most of the radial range. Only in the
very central regions, it increases slightly with each generation. The black dashed line is the
initial Hernquist profile and the red dashed-dotted line the velocity dispersion of all bound
accreted particles. Bottom panel: For the whole bound remnant, the velocity distribution
stays perfectly isotropic, as the anisotropy parameter [ stays zero. Looking at the accreted
material (red dashed-dotted line), it gets radially anisotropic with increasing radius. In both
panels the radius is normalized to the spherical half-mass radius of the bound system.
Top panel: The radial velocity dispersion of the total system (solid lines) for the head-on
minor mergers of two-component models (HB10hod) stays constant over the whole radial
range. The dispersion of the bulge system (dotted line) builds up a prominent bump which
comes from the accreted material, that gets stripped in the outer parts of the host system.
The radii are normalized to the spherical half-mass radius of the bulge. Bottom panel: The
anisotropy parameter of the bulge velocities gets radially biased at radii greater than the
spherical half-mass radii of the bulge.
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of escaping particles is up to 35% for HB10hod and more than 20% for the other
scenarios. Furthermore, regarding the 2C models, most of the escape fraction is due
to the dark matter particles. Going back to the evolution of (v?), we can see, that
the corrected prediction of Eq. 6.15 (dashed-dotted line), which includes the effect
of mass loss, perfectly fits the results (e.g. scenario B10hod). Using more compact
satellites the final decrease of velocities (orange and purple circles) is much weaker,
because they are more tightly bound. As they have half the scale radius of the diffuse
satellites, their binding energies and velocities are two times higher which then doubles
the velocity fraction € = (v2)/(v?) of Eqs. 6.7-6.9 and yields a smaller decrease. In
combination with the occurring mass loss, this explains the different evolution of the
mean square speeds. Nevertheless, in all scenarios the final mean square speeds of
the total systems are 10 — 30% lower compared to their initial host galaxies, which
is in good agreement to observations, that predict a mild decrease of the compact
early-type’s velocity dispersions.

The evolution of the gravitational radii (middle left panel of Fig. 6.15) of the six
hierarchies evolve according to the mean square speeds, which is not surprising as
ry o< 1/(v?) (see Eq. 6.5). In detail, this means, that the hierarchies with a diffuse
satellite show a size increase, which is consistent with the analytic predictions (dashed
line) and as the compact satellites are not able to efficiently decrease the velocities,
their gravitational radii grow only marginally. However, for all minor mergers the
maximum size growth is around a factor ~ 2.4, which is by far too weak to explain the
observed evolution of compact early-type galaxies. For completeness, the bottom left
panel illustrates, that the mean density within the gravitational evolves according to
the gravitational radius (p oc r,%).

In the right panels of Fig. 6.15 we illustrate the effective line-of-sight velocity
dispersion o, (top), the effective radius r. (middle) and the effective surface density of
all minor merger remnants. Obviously, the central regions show nearly no evolution
of 2, except the two bulge only scenarios with a diffuse satellite (B10amd, B10hod).
Before we explain the different results, we first look at the size evolution of the according
effective radii r. (middle panel) and the effective surface densities (bottom panel).
Surprisingly, the sizes of nearly all merger remnants grow significantly and for the
most efficient one (HB10hoc) the final size is a factor 4.5 higher, which is even much
higher than the virial expectation (Eq. 6.8). This strong evolution is also reflected in
the effective surface densities (bottom panel), which decrease at maximum by an order
of magnitude.

In the case of bulge only scenarios, the different evolutions of the central param-
eters can be explained by structural changes, measured by the structure parameter c
(Eq.6.21). In Fig. 6.16 the filled circles show, that the three one-component minor
mergers indicate different results. The B10hoc sequence evolves nearly self-similar, i.e.
it grows at all radii and finally does not change its initial shape (see also Fig. 6.12).
Consequently, the total system evolves the same as the central system and the increase
of the effective radius is very similar to the gravitational radius (left middle panel).
Furthermore, due to the escapers, the do not grow notably, thus the calculation of the
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Figure 6.15: Left panels: Evolution of the mean square speeds (top), the gravitational
radii (middle) and spherical densities within 7, (bottom) for all minor merger scenarios (see
table 6.1). The dashed lines in each panel are the idealized expectations of Eqgs. 6.7-6.9
for the all diffuse one-component scenarios and the black dashed-dotted line depicts the
corrected expectations of Egs. 6.15-6.17 for the minor merger scenario B10hod.

Right panels: The squared mean line of sight velocity dispersion (top), the mean effective
radius (middle) and the mean effective density (bottom) for the scenarios of the left panels.
In contrast to the total system, the central velocity dispersion shows nearly no decrease,
except for the hierarchy B10amd, but a very high size increase. Only B1Ohoc, with a
compact satellite stays below the idealized expectations (dashed line). Here, the x-axis
indicates the stellar masses of each remnant and not the total system masses.
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Figure 6.16: The left y-axis and the stars show an increasing dark matter fraction within
the spherical half-mass radius of the bulge for the two-component minor mergers. The right
y-axis together with the circles indicate a strong decrease of the structure parameter ¢ (eq.
6.21) for nearly all minor merger scenarios. Due to the high mass loss of some scenarios
we plot all values against the total system mass. Colors are the same as in Fig. 6.15.

effective line-of-sight velocity dispersion is restricted to the central parts, with high
velocities, and therefore stays constant. The further two bulge only scenarios, both
include weakly bound satellites, which already loose most of their material in the outer
regions of the host galaxy. Hence the latter ones build up an extended envelope, while
the centers stay unaffected, i.e. the structural properties of the remnants do change
(see also black and blue circles in Fig. 6.16). On the other hand, the development of
an extended envelope boosts the size growth of a system. As the the sequence B10amd
(blue circles) with an angular momentum orbit needs more time until the final coales-
cence, it suffers more from tidal stripping and builds up the most extended envelope
of all bulge only models, which then results in the highest size growth. This implies,
that the calculation of o, also includes particles outside the innermost regions, where
the velocities are lower and the velocity dispersion within the effective radius decreases
(see also top right panel Fig. 6.14).

Regarding the evolution of the bulge+halo scenarios we additionally have to deal
with the effect of dark matter, which also has a big influence on the evolution of the
observable properties. In the middle panel of Fig. 6.15 we can see, that all three
scenarios yield a significant size growth up to a factor of ~ 4.5 (HB10hoc), which is
the consequence of a developing extended envelope. In Fig. 6.17 we illustrate the
evolution of the surface density along the major axis. Obviously, most of the accreted
material settles down at larger radii » > 10 and does not reach the center, which
directly highlights the build up of the stellar envelope and the structural change of the
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Figure 6.17: Surface densities of the bulge along the major axis for the head-on minor
mergers of two-component models (HB10hod). The grey solid line indicates the initial host
surface density, which is the same as the final surface density of the host particles (black
dashed line). Most of the satellite’s material (dotted line) assembles at a radius > 10 and
increases the final profile (black solid line) especially in the outer parts, while the central
profile stays the same.

final remnant. As the final structure parameter is very similar for all two-component
minor mergers (green, red and purple circles in Fig. 6.16), they all follow the same
evolutionary path with respect to the size growth. In the case of scenario HB10hoc, the
satellite is a factor 2 ore bound, which induces two consequences, first, some particles
go slightly further to the host’s center and second, less mass is lost during the merger
process, which results in the most efficient size growth. So far, dark matter enhances
tidal stripping and leads to the build up of an extended envelope, regardless of which
orbit we use. But as the radius increases that rapidly, the effective radius goes into
regions which are more and more dark matter dominated, which finally results in a
highly increasing dark matter fraction (stars in Fig. 6.16). In the end the ratio of
initial to final dark matter mass within the spherical half-mass radius is a factor of
> 1.8 higher. But, contrary to the equal-mass mergers, this increase is just a result
of the size growth as the real fraction of bulge to halo particles do not change over
most of the energy space (see bottom panel Fig. 6.13). Additionally, the increasing
dark matter fraction within the half-mass radius keeps the velocities of stellar particles
constant out to a much larger radius compared to the bulge only models (see also top
right panel Fig. 6.14). Therefore the effective line-of-sight velocity dispersions in the
top right panel of Fig. 6.15 do not change.

Altogether, we can say that minor mergers are very efficient drivers for the size
growth of spheroidal galaxies. As dark matter enhances dynamical friction and tidal
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stripping, it enhances the effect and due to the finally high effective radii, the dark
matter fraction also grows by nearly a factor of 2 after 10 generations of minor mergers.

6.6 Summary & Discussion

We have performed numerical simulations of frequent major and minor mergers of
spherical, isotropic galaxy models, which consist of one- and two-component Hernquist
spheres. After testing the models for their stability we performed two and three gener-
ations of equal-mass mergers on orbits with and without angular momentum of either
one- or two-component models. The main results can be summarized as follows:

e During an equal-mass merger, violent relaxation plays an important role. First,
it leads to non-negligible amount of mass-loss and second, the differential energy
distribution goes to much higher binding energies.

e Violent relaxation and mixing leads to a 'real’ increase of the central dark matter
fraction, as more dark matter than stellar particles are mixed into the center.

e Due to phase mixing, violent relaxation vanishes rapidly and therefore never
reaches its final state of an isothermal sphere. But with each subsequent equal-
mass generation we get closer to the state of maximum entropy and the final
velocity dispersion profile can well be fitted by a Jaffe profile (Jaffe, 1983), which
resembles the inner parts of an isothermal sphere.

e All merger remnants get radially anisotropic velocities, as we only use radial or
close to radial orbits.

e This affects the merger remnants in a way, that the mean square speeds of the
total systems increase significantly and the size growth is less than expected from
theoretical predictions, which ignore escaping particles.

e As the central binding energies increase significantly, the central velocities and
the LOSVD increase even more compared to the total system.

e Including dark matter enhances dynamical friction which is able to transfer en-
ergy from the bulge to the surrounding halo and increases the central bulge
velocities even more than in the one-component scenario.

e Due to a strongly decreasing structure parameter, homology breaks and the effec-
tive radii of the remnants evolve exactly like the theoretical expectation (r. oo M).

In the case of minor mergers, the initial mass ratio is assumed to be 1:10 and we
used orbits with and without angular momentum. As initial satellite galaxies we take
two extreme cases, i.e. they are either very diffuse or very compact. The main results
for the minor mergers are:
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e Violent relaxation does not effect the overall differential energy distributions of
the host galaxy.

e Due to dynamical friction and tidal stripping the stellar particles develop a promi-
nent bump at low binding energies.

e The velocity dispersion of the bulge only (one-component) models do not change
their shape, keep their initial Hernquist profile and stay isotropic over the whole
radial range.

e For two-component accretions the final coalescence of the bulges always is on
radial orbits, the stellar velocities become radially anisotropic at radii approxi-
mately larger than the spherical half-mass radius

e Using diffuse satellites, the mean square speeds of the remnants decrease with
each subsequent generation, which is only limited by the high amount of mass-loss
and consequently the gravitational radii increase much less than expected.

e The head-on minor mergers of compact one-component models evolve nearly
homologous, i.e. the observable values like the line-of-sight velocity dispersion
and the effective radius evolve very close to those of the whole system.

e [n all other minor merger sequences, we observe a dramatic break of homology,
as the remnants build up an extended envelope of stars, while the central config-
uration stays constant.

e Therefore the effective radii increase rapidly up to a factor of 4.5, which is much
closer to virial expectations.

e The rapid size growth results in a significant increase of the dark matter fraction
within the spherical half-mass radius up to a factor of ~ 1.8.

e Due to the increasing dark matter fraction, the effective line-of-sight velocity
dispersions do not decrease but stay constant.

One important question which has to be solved for elliptical galaxies is, how the
compact early-types at a redshift z ~ 2 grow with time. As their stellar distribution
is already red without significant star formation, we used dry mergers to explain this
evolution. van Dokkum et al. (2010) finds a size-mass relation of r. o M?*%, which
indicates a size increase of a factor of 4 as the galaxy’s mass gets doubled since z ~ 2.
The resulting relation of our minor merger scenarios of two-component models is even
higher r, a M>%% up to a exponent of 2.4, which shows that dissipationless minor
mergers are a good way to solve this problem. However, Nipoti et al. (2009a) tried a
similar approach and find a much lower size increase in their simulations (r, oc M*%).
One reason for this big discrepancy is, that they calculated the exponent of the stellar
mass by averaging over all their merger hierarchies. As they have more major mergers
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than minor mergers, this of course lowers the size increase significantly. Additionally,
they use a steeper slope for the stellar density profile of the host and the satellite
galaxies, where the size increase can not be that efficient, as the accreted material
is more concentrated in the satellite’s center compared to our setup. Finally, their
satellites are even more compact than our satellites which lie on an extrapolation of
the z = 2 mass-size relation of Williams et al. (2010).

Furthermore we find that the dark matter fractions for our idealized simulations
agree well with previous work, where the dark matter fraction increases in dry mergers.
This changes the ratio of dynamical and stellar mass and might, e.g. help to explain
the tilt of the fundamental plane (Boylan-Kolchin et al., 2005). Of course, that is just
one possibility to explain the tilt and Grillo & Gobat (2010) suggest that it depends
more on M, /L, but it is not clear yet how strong the single contributions are. We also
agree with Nipoti et al. (2009a), that the increase of the dark matter fraction is more
efficient for minor mergers and for this scenario is dominated by the rapid size growth.
But in contrast to Nipoti et al. (2009a), we find that the central dark matter fraction of
equal-mass mergers illustrates a 'real’ change caused by violent relaxation and mixing.

Looking at the velocities at different radii, our minor merger results are not able
to explain recent observations of very high velocity dispersions at high redshift (van
Dokkum et al., 2009; van de Sande et al., 2011). Our results indicate, that we get a
decrease of the mean square speeds of the total system, but the observed line-of-sight
velocity dispersion hardly changes. This indicates, that simple dissipationless mergers
are not able to decrease the very high LOSVD of some compact early type galaxies (van
Dokkum et al., 2009). This problem might be solved, if we include some gas and AGN
feedback or use more realistic galaxy models, which have different orbital properties.

But altogether our work shows that dissipationless dry mergers are able to increase
the size of a compact early type galaxy. As we lie even above the observed predictions
a small amount of gas, which is known to lower the size growth (Covington et al., 2011;
Hopkins et al., 2008), would perhaps not be enough to destroy this scenario.
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CHAPTER [

SIZE AND PROFILE SHAPE
EVOLUTION OF MASSIVE
QUIESCENT GALAXIES

In this chapter, we focus on the evolution of the density structure and the
size evolution of compact early-type galaxies and try to understand the im-
portance of dark matter. We know that the sizes and mass distributions of
compact, quiescent, massive galaxies evolve rapidly from z ~ 2 — 3 to the
present. Many of the ~ 10! systems at high redshift have sizes of ~1kpc and
surface brightness profiles with Sersic indices < 4. At z = 0 elliptical galaxies
above 2 - 10! solar masses are more than a factor of 4 larger, indicating a size
evolution of r o« M“ with a > 2. They also have surface brigtness profiles
with ng, > 8. Within a hierarchical galaxy formation scenario this evolution
can be explained under two assumptions. The galaxies predominantly grow
by mergers with lower mass galaxies and the galaxies have to be embedded in
massive dark matter halos so that stars of merging satellites are stripped at
large radii increasing the profile shape parameter. We draw these conclusions
from idealized simulations of the growth of compact spheroidal galaxies - with
and without dark matter - by repeated collisionless mergers with mass ratios
of 1:1, 1:5, and 1:10. In simulations without dark matter the sizes evolve less
than the corresponding bulge+halo scenarios. If the galaxies are embedded
in dark matter halos the stars of the lower mass satellites are more efficiently
stripped at large radii resulting in a significantly faster size increase than ex-
pected from virial estimates. Repeated 1:5 mergers give o = 2.3 and after only
two merger generations the Sersic index has already increased to ng.,. > 8. For
an assumed mass increase of the observed galaxies of a factor of two since z
=2 we conclude that the presence of a massive dark matter halo around the
galaxies during their minor merger driven assembly is necessary to explain si-
multaneously their large present day sizes, r > 4 kpc and high Sersic indices,
Nger > 0.
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7.1 Introduction

In the currently favored cosmological ACDM model, the universe consists of 24% matter
and 76% dark energy (A), where only 4% of the total matter is in baryonic form (e.g.
Spergel et al. (2007)). The other 96% consist of cold dark matter, which has not been
detected directly, but has been most successfully applied to explain many observational
caveats like the rotation curves of spiral galaxies. On large scales the ACDM model,
shows very good agreement with observations of the cosmic microwave background and
the large scale structure of galaxies. In the context of the ACDM model, structure in
the universe forms bottom up (White & Rees, 1978; Davis et al., 1985), where the
first objects collapse at high redshifts due to fluctuations in the background density
field. These first objects merge and build up the dark matter halos of today’s observed
galaxies.

The baryons assemble in the potential wells of these dark matter halos and form
stars which build the observable parts of the universe. The brightest and most massive
objects are elliptical galaxies, which form at a redshift of z oc 2 — 3 in gas-rich major
disk mergers (Davis et al., 1985; Bournaud et al., 2011) and due to giant cold gas flows,
directly feeding the central galaxy (Keres et al., 2005; Naab et al., 2007, 2009; Joung
et al., 2009; Dekel et al., 2009; Keres et al., 2009; Oser et al., 2010). Their subsequent
evolution is not fully understood yet, as these ellipticals are a factor ~ 4-5 smaller than
their counterparts in the present day universe. On the other hand, they are already
quiescent, without star formation, and are only a factor of ~2 less massive (Daddi
et al., 2005; Trujillo et al., 2006; Longhetti et al., 2007; Toft et al., 2007; Zirm et al.,
2007; Trujillo et al., 2007; Zirm et al., 2007; Buitrago et al., 2008; van Dokkum et al.,
2008; Cimatti et al., 2008; Franx et al., 2008; Saracco et al., 2009; Damjanov et al.,
2009; Bezanson et al., 2009). In addition, they have very different surface brightness
profiles. In particular, the compact, high redshift ellipticals always have steep power
law cusps in their center whereas the more extended present day ellipticals have cored
profiles. This means, that fitting a Sersic profile to elliptical galaxies either results
in central extra light, where the central surface brightness is above the fitted profile
or in case of core ellipticals the profile predicts more light than the galaxy has. The
Sersic indices, which are a measurement of the profile’s curvature are ~4 for the cuspy
galaxies and ~8-10 for the core ellipticals. Furthermore, recent observations of strong
gravitational lensing in the SLACS sample (Koopmans et al., 2006; Bolton et al., 2008;
Gavazzi et al., 2007, 2008; Auger et al., 2009, 2010) have revealed an increasing central
dark matter fraction with stellar mass (Barnabé et al., 2011).

In this chapter, we investigate the evolution of elliptical galaxies with the aid of high-
resolution N-body simulations of idealized one- and two-component galaxy models.
With different initial mass ratios and a different choice of merger orbits we explore the
effect of frequent dissipationless galaxy mergers. In section 7.2 we give a short overview
of the galaxy properties and the simulation parameters. In Section 7.3 we present the
efficiency of dry mergers for the size growth of compact galaxies and in Section 7.4 we
look at the evolution of the surface densities and the mass assembly in multiple merger
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generations. In Section 7.5 we convert our surface densities to viable surface brightness
profiles and explore the evolution of the Sersic profile and in Sections 7.6 we illustrate
the change of dark matter fractions. Finally we draw our conclusions in Section 7.7.

7.2 Simulations

We extend a set of simulations of dissipationless mergers of spheroidal galaxies with
and without dark matter halos and with mass ratios of 1:10 and 1:1, presented in
Chapter 6, by a new set of simulations with an initial mass-ratio of 1:5. We refer to
Chapters 4 and 6 for the details of the generation of the stable initial conditions and
briefly summarize the simulations setup here. As initial galaxy models, we use isotropic,
spherical symmetric one- and two-component models which have a Hernquist density
profile (Hernquist, 1990) either for a bulge-only model (one-component, 1C) or a bulge
embedded in a Hernquist dark matter halo (two-component, 2C). For the latter case
we assume a dark matter to stellar mass ratio of My, /M, = 10 and the ratio of the
scale radii is agy/a. = 11 The host galaxies have a stellar mass of M, po+ = 1 and
a scale radius of a, pos¢ = 1.0. Our satellite galaxies are very diffuse and have for
both minor merger scenarios the same scale radius a, s, = 1.0 and are initially 5 or
10 times less massive. For a better comparison to observations we chose a mass scale
of M = 10" M, and a length scale of r = 0.55kpc, which yields v = 884kms~! and
t =6.12 x 10°yr. In Fig. 7.1 we can see the positions of our initial galaxies, compared
to the most recent, observed mass-size relations. Of course, as we want to investigate
the evolution of a compact early-type elliptical, our host galaxies (black filled circle)
are below the relation of Williams et al. (2010) at a redshift of z ~ 2 (red solid line)
and as the satellites are very diffuse (red and green filled circles), they are above an
extrapolation of this line. Therefore we also made comparison runs, where the satellites
would fall on the high redshift estimates (open circles), i.e. for the mass ratios of 1:5
and 1:10 the satellites have a, sqr = 0.8 X @y host aNd Ay 50t = 0.5 X @y post, TESPECtively.

In the case of equal-mass mergers we simulated two merger generations of both
galaxy models. The first generation was a parabolic merger of the galaxies represented
by the initial conditions. The second generation was a parabolic re-merger of the
duplicated, randomly oriented, first generation merger remnant, which was allowed
to dynamically relax at the center. The simulations were performed on orbits with
angular momentum and a pericentric distance of one-half the bulge’s spherical half-
mass radius of the progenitor remnants. Therefore the pericentric distances increase
with each merger generation.

The sequences of minor mergers with initial mass-ratios of 1:5 (1:10) were also
simulated with one- and two-component models. Initially, the mass-ratio was 1:5 (1:10)
and the galaxies were set on parabolic orbits. The randomly oriented merger remnants
of the first generations were then set on a parabolic orbit with the initial satellite galaxy
models and a mass-ratio of now 1:6 (1:11), and so on. We performed 6 generations of
1:10 mergers and 5 generations of 1:5 mergers using the diffuse satellites (Sat 1:5 (1:10),
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Figure 7.1:

The black lines show different observed mass-size relations of the present-

day universe. The thick solid lines are the estimates of Williams et al. (2010) for different
redshift bins. The corresponding dotted lines are the errors of the latter relations. The

filled circles give the position of our compact
the 1:5 (red) and 1:10 (green) minor merger
compact satellites, which would lie on an extr
line).

host (black) and the diffuse initial satellites of
hierarchies. The open circles show the more
apolation of the z = 2 mass-size relation (red
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see Fig. 7.1). For both scenarios, we set the pericentric distances to half the spherical
half-mass bulge radius of the massive progenitor galaxy. In the comparison runs, where
the satellites are more compact(cSat 1:5 (1:10), see Fig. 7.1) we computed 4 generations
for the bulge+halo models with the same orbits as before, i.e. the pericentric distances
are again the half-mass radii of the massive progenitor. In the bulge only scenario
with compact satellites we performed a full set of hierarchies, e.g. 5(10) generations
for the mass ratios of 1:5 (1:10). In the 1:10 scenario, we also add a hierarchy with
10 generations of head-on minor mergers using a compact two-component satellite (see
also Chapter 6).

Looking at the time-scales, we find for our choice of physical scaling, that the
longest set of simulations (the 1:10 bulge only) takes ~ 9Gyr, which is very close to
the lookback time of ~ 10Gyr (z = 2), but all other scenarios are completed in less
than ~ 7Gyr. As the 1:10 bulge only scenario has no dark matter halo, the in-falling
satellites suffer less from dynamical friction, and the final coalescence takes by far the
longest time.

7.3 Size Evolution

After the completion of every merger, we allow the central region of the remnant to
relax, before we compute the projected circular half-mass radii, r., along the three
principal axes and the bound stellar mass, M,. In Fig. 7.2 we show the evolution of
the mean value of the half-mass radius along the three principal axes as a function of
the bound stellar mass for 1:1 (blue), 1:5 (red), and 1:10 (green) merger hierarchies.
The black line shows the observed evolution, 7, ocM?*%, in the mass-size plane from
z &~ 2 to the present day (van Dokkum et al., 2010). The shaded area beyond this line
indicates the region, where the size growth per added mass is too small to explain the
evolution of compact early type galaxies.

Equal-mass mergers show an almost linear increase of size with mass, (see also Hilz
et al. 2011 in prep., Boylan-Kolchin et al. 2005; Bezanson et al. 2009; Nipoti et al.
2009b), independent of whether the stellar system is embedded in a dark matter halo
or not (blue solid and dashed lines). As discussed in Boylan-Kolchin et al. (2005),
in mergers with dark matter halos the in-falling galaxy suffers more from dynamical
friction in the massive dark matter halo of the companion galaxy, resulting in more
energy transfer from the bulge to the halo. This leads to a more tightly bound bulge
with a smaller size (blue solid line, Fig. 7.2) compared to the model without dark
matter (blue dashed line, Fig. 7.2). If we combine the results of both major mergers
this yields a mass-size relation of r, ocM%?! which is similar to the results of Boylan-
Kolchin et al. (2005), who found a smaller exponent (= 0.7) for orbits with high angular
momentum and an exponent of > 1 for pure radial orbits. Nevertheless, as the size
grows only linearly with mass, dissipationless major mergers cannot be the main drivers
for the subsequent size evolution of compact early-type galaxies.

As expected, from simple virial estimates (Naab et al., 2009; Bezanson et al., 2009),
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Figure 7.2: The projected spherical half-mass radius (the mean value along the three
principal axes) as a function of bound stellar mass for 1:1 (blue), 1:5 (red), and 1:10 (green)
mergers. The observed size growth is indicated by the solid black line (van Dokkum et al.,
2010). The size evolution of models in the grey shaded area is too weak to be consistent
with observations. All mergers of bulges embedded in massive dark matter halos and high
mass-ratios (1:5, 1:10, red and green solid/dashed-dotted lines) show a rapid enough size
evolution. The size evolution of the bulge-only models (short and long dashed lines) are
not efficient enough, except the 1:10 scenario with a diffuse satellite (green dashed line).
Additionally, we can see, that the accretion of compact satellites leads to less size growth
compared to the diffuse satellites, but for all bulge+halo scenarios it is still high enough with
r. oc M>*1 After ten generations of 1:10 head-on mergers with compact satellites (thin
solid line), the size increases by a factor of ~ 4.5, which is more than enough compared to
observations.
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the size evolution is stronger for bulge-only models with higher mass-ratios of 1:5 and
1:10. This is in good agreement with our simulations, as all red (1:5) and green (1:10)
dashed lines have a much larger size increase per added mass, compared to the equal-
mass mergers (blue lines). However, except the 1:10 mass ratio with a diffuse satellite
(green short dashed line), all minor mergers with bulge-only satellites are not efficient
enough to lie above the ’forbidden’, grey shaded area, which indicates a too weak size
growth, compared to observations (van Dokkum et al., 2010).

This picture improves for minor mergers of two-component models, where bulges
are embedded in a massive dark matter halos. For all mass-ratios (1:5 and 1:10) and
models, i.e. for diffuse (solid lines) as well for compact (dashed-dotted) satellites,
the size evolution is in excess to the observed evolution. In the case of 1:5 minor
mergers, with a less compact satellite (red solid line) and for the head-on hierarchy
with a compact satellite (thin green line), we get a mass-size relation of r, ocM*2® and
re M4 respectively. As all green lines lie very close to the latter scenario, we expect
the exponent for all 1:10 mergers to be similar and well above the observed relation
(black solid line). All these models are a viable mechanism for size evolution even
in more realistic scenarios, where dissipational effects would reduce the size growth
(Covington et al., 2011; Hopkins et al., 2008).

7.4 Evolution of Surface Density

Next we take a closer look at the surface densities of the merger remnants. In the first
and third panel of the left column in Fig. 7.3, the surface density of the equal-mass
mergers grows at all radii, i.e. the lines are shifted more or less parallel to higher
densities. This picture is the same for both major merger histories of one- (first left)
and two- (third left) component models. Correspondingly, the mass assembles at all
radii, which is depicted in the small panels beyond the respective surface densities.
This evolution scenario is contrary to the observations of van Dokkum et al. (2010)
(Fig. 2.2, Chapter 2), which show, that the compact early-type galaxies grow inside-
out, i.e. the central densities stay constant and most of the mass assembles at larger
radii, building up an extended envelope of stars.

The second column depicts the surface densities and mass assembly of the minor
mergers with an initial mass ratio of 1:5. For the bulge only models (top) with a
diffuse satellite (Sat 1:5 in Fig. 7.1), the surface density stays nearly constant out to a
radius of r &~ 1 — 2kpc and increases mainly in the outer parts. This behavior can also
be seen for the corresponding mass assembly. The solid lines in the last two panels
of the second column show that the same scenario is even more efficient using two-
component models. Due to the massive dark matter halo, most of the bulge particles
get stripped at larger radii and the central surface density stays unaffected. Therefore,
it just increases at radii r > 2 — 3kpc and most of the size growth is due to the build up
of a massive stellar envelope. The dotted line in these panels depict the four remnants,
where the satellites are more compact (cSat 1:5 in Fig. 7.1) and lie on the z ~ 2
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Figure 7.3: First row of panels: Surface densities for the bulge only models. For the
equal-mass mergers (left), they increase at all radii and for five generations (from black
to red) of minor mergers with an initial mass ratio of 1:5 (middle) they grow more in the
outer regions. For an initial mass ratio of 1:10 (right), we can see the same behavior,
i.e. after the second (blue), forth (green) and sixth (red) generation the surface density
slightly increases at large radii and stays constant in the center. The panels of the second
row show the mass assembly according to the surface densities of the top panels. Third
row: Surface densities of the corresponding two-component models. Again, for equal-mass
mergers (left), the surface density gets shifted parallel to higher values, but for a higher
initial mass ratio of 1:5 (1:10), we can clearly see, that the central surface densities stay
constant and a lot of particles assemble at radii larger than r > 2kpc (r > 4kpc), which
is very similar to the inside-out growth scenario of van Dokkum et al. (2010) (see also
Fig. 2.2 in Chapter 2). Regarding the according mass assembly of the bulge+halo models
(bottom row), it is even more obvious, that the galaxies grow inside-out. The dotted lines
for the 1:5 minor mergers indicate, that the accretion of a more compact satellite (cSat
1:5) yields the same results. But in the 1:10 scenario with compact satellites, more material
goes further towards the center and less material assembles at large radii. Nevertheless,
the central density also stays constant (for 7 < 2) and most of the accreted particles build
up an extended envelope.
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relation of Williams et al. (2010). Obviously, as the scale radii are very similar, the
results stay the same.

The six generations of minor mergers with an initial mass ratio of 1:10 are shown
in the last column of Fig. 7.3. In the case of bulge only models (top), the surface
density grows predominantly at larger radii, similar to the previous scenario, but now
the satellite is even less bound compared to the 1:5 case and therefore, it gets destroyed
rapidly, even without a dark matter halo. In the case of two-component minor mergers
of diffuse satellites (solid lines, third and forth panel) this effect becomes enhanced, as
the satellite first orbits through the massive dark matter halo, before it gets closer to
the host’s center. Then all the material gets stripped at very large radii and the surface
density stays constant out to a radius of » = 5kpc. Regarding the mass assembly, this
is even more obvious, as the central mass stays constant out to a radius of r ~ 10kpc.
Therefore, this scenario seems to be very efficient, as the outer surface density increases
significantly, although the total amount of added mass is 40% less than for the 1:5
hierarchy, where the initial host mass gets doubled. However, this evolution scenario
might be too extreme compared to observations (Fig. 2.2) and we can rule out the
very diffuse satellites at a redshift of z ~ 2.

This picture changes, if we use the more bound, compact satellite (cSat 1:10),
depicted with the dotted lines in the last two panels. As the scale length of this
satellite is two times smaller, it is much more bound and resists the drag force of the
host potential for a longer time. Consequently, more material gets closer to the central
regions, the remnant’s surface densities grow outside a radius of » > 2kpc and more
mass assembles at smaller radii. Regarding the according mass assembly (last panel),
it grows predominantly outside a radius of bkpc, which is also more consistent with
the observed evolution.

In Fig. 7.4 we show the evolution of a full set (10 generations) of two-component
minor mergers with a compact satellite (cSat 1:10, Fig. 7.1), but due to much lower
computation time, we took radial orbits. Comparing the surface densities of this se-
quence (solid lines, Fig. 7.4) with the four generations with angular momentum (dotted
lines, Fig. 7.3 and 7.4), they evolve nearly the same. The surface densities (top panel)
stay constant out to a radius of » ~ 2kpc and the high size growth of a factor of ~ 4.5
(see section 7.3) is driven by building up an extended envelope of luminous material.
The mass assembly also looks very promising, as most of the particles accrete at radii
larger than 5kpc. The results of this scenario are very similar to the 1:5 minor mergers
of two-component models, which nicely resemble the observations (van Dokkum et al.,
2010).

Altogether that means, that the mass assembly in minor mergers strongly depends
on the effect of dynamical friction and tidal stripping, which of course are much more
efficient for the two-component models, where the dark matter strips the particles of
the in-falling satellites at exactly the right regions of the initial host galaxy. As con-
sequence, nearly no material accretes in the central regions and therefore the central
surface density stays constant. Looking at the accretion of diffuse satellites in the 1:10
scenario, they seem to be too extreme and lose their material at too large radii. How-
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Figure 7.4: Top panel: Surface densities along the major axis for 10 generations of head-
on minor mergers with the compact bulge-+halo satellite cSat 1:10 (Fig. 7.1). The different
colors give the generation and the dotted lines highlight the compact minor mergers with
angular momentum of the last panel in Fig. 7.3. Bottom panel: Assembled mass plotted
against the radius, as in Fig. 7.3. As our pericentric distances are very small, both scenarios
show a very similar evolution, i.e. the more compact satellites go further to the center,
compared to the less bound satellites (Sat 1:10, Fig. 7.1), and the host assembles mass at
radii » > 5kpc.
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ever, for the other bulge-+halo models our results are in good agreement to observations,
where the compact early-type galaxies make up the central cores of today’s elliptical
(Hopkins et al., 2009a; Bezanson et al., 2009; van Dokkum et al., 2010; Szomoru et al.,
2011). Without a dark matter halo, the effect of dynamical friction is much weaker
and the minor mergers of bulge only systems give less promising results.

7.5 Profile Shape Evolution

For a long period, the surface brightness profiles of elliptical galaxies have been fitted
by the de Vaucouleurs r'/* profile (de Vaucouleurs, 1948). But more recent work shows,
that the curvature of the light profiles seems to be very important as it correlates to
other observed properties of elliptical galaxies, such as the effective radius r., the total
luminosity and the stellar mass (Caon et al., 1993; Nipoti et al., 2003; Naab & Trujillo,
2006; Kormendy et al., 2009). Therefore we use the Sersic '/ (Sersic, 1968) profile to
fit the surface brightness profiles of our simulations. The formula can be written as

I(r) = I, - 107bn(l/roV =1, (7.1)

where the three free parameters are half of the total luminosity ., the effective radius
r. and the so called Sersic index n, which gives the shape of the profile. The factor
b,, which only depends on n, is chosen such that the effective radius r. encloses half
of the total luminosity. For the expected range of Sersic indices, this factor can be
approximated by the relation b, = 0.868n — 0.142 (Caon et al., 1993). In the case of
n =4, Eq. 7.1 reduces to the de Vaucouleurs r/* law.

In order to get a better comparison to recent observations of elliptical galaxies (e.g.
Trujillo et al. 2004; Kormendy et al. 2009) we convert the projected surface densities
of section 7.4 to a V-band surface brightness. Assuming a constant mass-to-light ratio,
the radial luminosity profile can be written as

L(r) = %(r) - 10 Mv/25, (7.2)

where My = 7.1973 is the absolute magnitude of a star in the V-band at a distance
of 10pc, a stellar age of 10°yr and close to solar metallicity Z = 0.02 (see Bruzual &
Charlot 2003). X(r) is the projected surface density of the previous section and the
V-band magnitude can be calculated,

py(r) = —2.5-log L(r) + 21.5721, (7.3)

where 21.5721 is just a factor to convert surface density to mag/arcsec?. As we want
to fit py with a Sersic function we have to take the logarithm of Eq. 7.1 which yields

ulr) = =25log I(r) = pe + ca(r/re) " = 1], (7.4)

with ¢, =2.5-b, and p. = —2.5log I..
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Figure 7.5: Top panels: Surface brightness profiles ji1/(r) of the two-component major
(1:1) and minor merger (1:5) generations plotted against the radius. The black symbols
depict the initial Hernquist profile, the blue symbols the profile of the first remnant and
the red symbols the final profiles. The overplotted dashed lines in the corresponding colors
show the best fitting Sersic function, which yields an increasing Sersic index n with each
subsequent merger generation. The fitting range starts at 0.02 - r. (r. is the effective
radius of Fig. 7.2) and ends at either 10 - 7. or a limiting surface brightness of my, =
27mag/arcsec’, which results in residuals Ay < 0.2mag/arcsec” (small panels below).
As the profiles show an artificial core like structure (given by the initial conditions), the
residuals increase for very small radii and the fitted effective radii 7. f;; (thin lines at the
bottom) are smaller than 7. of Fig. 7.1 (according arrows). Bottom panels: The same as in
the four top panels, for the 1:10 minor merger with the diffuse satellite (Sat 1:10, left) and
for the full set of 10 generations with a compact satellite (cSat 1:10) and head-on orbits
(right). In the first case, the final surface brightness profile shows a prominent kink, which
results in an unrealistic high Sersic index n ~ 20 for the best fit. The minor mergers of
compact satellites, show more reasonable results, but the Sersic index saturates rapidly at
n ~ 7 — 8, which is due to the small amount of added mass for the final generations.



100 SIZE AND PROFILE SHAPE EVOLUTION

Figure 7.5 shows the Sersic fits to the surface brightness profiles of the equal-
mass mergers (1:1, top left), the 1:5 (top right) and 1:10 minor mergers with angular
momentum (bottom left) and the head-on scenario of Fig. 7.4 (bottom right). We
chose a fitting range, so that we get a good fit to the main parts of the profile (> 95%
along the major axis). If we start at 0.02 - r. and either go out to more than 10 - r,
or to a limiting surface brightness of my = 27 mag/arcsec 2, which is the limit of
recent observations (Trujillo et al., 2004; Kormendy et al., 2009), the residuals are very
small (Au < 0.2mag/arcsec?), except in the innermost regions, where the profiles have
a core like structure. Looking at the profiles of the initial Hernquist spheres (black
circles in all panels) we can see that we get a shape parameter of n = 3.9, which
almost resembles the de Vaucouleurs profile (n = 4). As expected, the Hernquist
sphere is a very good approximation of the de Vaucouleurs /* law over a large radial
range and has a core profile in the innermost region (see also Naab & Trujillo 2006).
Due to the core, the fitted Sersic profile overestimates the central surface brightness
which leads to a fitted effective radius r. f;; (narrow vertical lines at the bottom of
each surface brightness panel), which is slightly smaller compared to the ’real” effective
radius r, (corresponding arrows) of Fig. 7.1. This amount of "artificial extra-light’ from
the fitted profile accounts for the discrepancy between these two radii, for all shown
merger scenarios.

In the case of 1:1 mergers of two-component models (top left panel, Fig 7.5), we can
see that the profile shape barely changes for the remnants. Therefore, the Sersic index
shows only a small increase (see also black solid line, Fig. 7.6) compared to the added
stellar mass M,, which is not enough to explain the very high numbers, observers find
for large core elliptical galaxies (n ~ 10, see Caon et al. 1993; Kormendy et al. 2009).
This is a consequence of the violent merging process, where the material assembles at
all radii and the surface brightness gets shifted nearly parallel to higher values, but
does not significantly change the slope of the profile.

This picture changes dramatically if we go to higher initial mass ratios, where
the merging process becomes different. In minor mergers violent relaxation does not
affect the host galaxy (see Chapter 6), just the in-falling satellites. The latter one
instantaneous feels the deep potential well of the host at closest approach and suffers
strongly from rapid potential fluctuations. Furthermore dynamical friction and tidal
stripping get more prominent, as the satellites are more loosely bound than the host
galaxy and the tidal forces are strong enough to strip a big amount of the satellite’s
material (see also Section 5.2).

Therefore, in the case of minor mergers, most of the accreted material assembles at
larger radii of the galaxy and the central regions are hardly affected (see also section
7.4). Regarding the surface brightnesses of the 1:5 minor mergers (top right panel,
Fig. 7.5), this implies, that the curvature, measured by the Sersic index n, changes
rapidly with each further generation (see also red solid line, Fig. 7.6). Already after
the first generation with a mass increase of a factor of ~ 1.2 we get a Sersic index of
n > 7 and the final remnant has a slope of n = 9.5, which perfectly lies in the range of
observations (Caon et al., 1993; Kormendy et al., 2009). The corresponding bulge only
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Figure 7.6: Evolution of the Sersic indices for all merger generations of Fig. 7.3, except
the 1:10 scenario, which yields unrealistic fits (see bottom left, Fig. 7.5). As equal-mass
mergers do not significantly change the slopes of the surface brightness the Sersic index
after one generation is n ~ 5 — 6 (black lines). For the bulge+halo minor mergers with a
mass ratio of 1:5 (red solid line), the slope increases rapidly for the first two generations
before it converges to a final value of n ~ 9.5. The 1:10 head-on minor mergers with a
compact satellite (green solid line) show the same trend, i.e. an initial fast increase of n
for the first generations before it converges to a value of n ~ 7 — 8. For completness, the
dashed lines show the bulge only simulations, where the curvature for the minor mergers
stays below n = 8.
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scenario (red dashed line, Fig. 7.6) shows the same trend, and yields a final Sersic index
of n = 7.8, but the overall evolution is much more efficient with two-component models.
This again indicates, that the mass ratio and dark matter halo are very important, as
they increase the effect of dynamical friction and tidal stripping in a way, that the
accreted stellar mass assembles at the 'right’ regions of the host galaxy, and leads to
the observed profile shapes of core ellipticals.

If we further increase the initial mass ratio to 1:10 (bottom panels, Fig. 7.5), we can
see that the Sersic index gets unrealistic large (n > 20) for the scenario with the diffuse
satellite (left panel). As the satellite is only weakly bound, it looses all its mass at very
large radii, develops a kink at a radius of r &~ 4kpc and the best fitting Sersic profile
yields a very high curvature. This picture improves, if we take more bound satellites
(cSat 1:10). Then the mass assembles more smoothly outside a radius of r ~ 1.5kpc
but still produces an extended outer envelope (right panel, Fig. 7.5). Although the
evolution of the profiles look very reasonable, the Sersic index converges at a value of
n ~ 7 — 8 (solid green line, Fig. 7.6), which can be explained with the very high mass
ratio of the final generations (the last generation has a mass ratio of 1:19).

Altogether we can say that a massive dark matter halo enhances the effect of dy-
namical friction and tidal stripping. Considering satellites, which are not too weakly
bound, it is the main driver to accrete the luminous matter at the 'right’ regions. Then
we also get reasonable results for the evolution of the Sersic index of n ~ 8 — 10 (Fig.
7.6). In the case of equal-mass mergers the effect of violent relaxation and mixing is
more dominant and does not change the slope of the surface brightness profiles and we
only get a mild increase after one generation n ~ 5 — 6 (Fig. 7.6).

7.6 Dark Matter Fractions

In this section we compare the dark matter fractions of our simulations with recent
lensing observations, which predict an increasing dark matter fraction for more massive
early-type ellipticals (Barnabé et al., 2011). In Fig. 7.7 we illustrate the dark matter
fractions fg4,, for all bulge+halo simulations

Jam(r < 150) = Mg (1 < 750) /Mot (1 < 750), (7.5)

where r5y denotes the spherical half-mass radius of the stellar component and My,,,
M,,; are the halo and total masses within r59. Obviously, the dark matter fraction
increases rapidly with each subsequent minor merger generation regardless of which
mass ratio. This strong evolution with additional mass is a consequence of the rapid
size growth (Fig. 7.2, see also Section 6.5.2), which is in good agreement with (Nipoti
et al., 2009b), who finds similar results in his numerical simulations. As the evolution
of fam strongly correlates with the final radii of the merger remnants, the 1:5 scenario
with a more compact satellite (red dashed line), which indicates the weakest size growth
(Fig. 7.2), also has the lowest dark matter fractions of all minor merger scenarios. On
the other hand, all 1:10 bulge+halo scenarios grow rapidly with mass and therefore
have the highest and comparable evolutions for the dark matter fraction.
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Figure 7.7: Evolution of the dark matter fraction fy, within the spherical half-mass
radius 750 for all bulge+halo mergers of this chapter. Due to the highly increasing radii
(Fig. 7.2), the dark matter fractions grow significantly for all minor merger scenarios. As
the size increase of the 1:5 scenario with a compact satellite (red dashed line) is the least
efficient of, its dark matter fraction illustrates the lowest growth. For all 1:10 scenarios, f4.,
evolves very similar, as their sizes all grow by nearly the same amount (Fig. 7.2). The dark
matter fraction of the equal-mass mergers (black line) indicate only a marginal evolution,
which is due to the low size growth. However, as we have seen in Section 6.4.1, major
mergers really change the dark matter fraction, as the violent merging process mixes more
dark matter than stellar particles into the center.
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In the case of equal-mass mergers, this looks somewhat different, i.e. they only
show a very small increase of the dark matter fraction, compared to the added mass
(black line, Fig. 7.7). But as we already have seen in Section 6.4.1, the merging
process changes completely and the approaching galaxies suffer much more from violent
relaxation and mixing. Consequently, relatively more dark matter than stellar particles
get scattered to the central regions, which finally yields a real increase of the dark
matter fraction. This result is contrary to (Nipoti et al., 2009b), who argues that
regardless of the merging process, the dark matter fraction increases just due to the
size growth.

Going back to the observations of Barnabé et al. (2011), we can see, that our simpli-
fied minor merger hierarchies can reproduce the evolution of the dark matter fractions
of early-type ellipticals. Furthermore, our results are in quantitative good agreement
to their results using a Chabrier IMF (Chabrier, 2003). But as our simulations are
scale free, we can easily rescale the mass range of our remnants, thus they better fit
the results using a Salpeter IMF (Salpeter, 1955).

7.7 Discussion and Conclusion

We have performed a set of numerical merger simulations of galaxy models which
consist of either a one-component (bulge only) or a two-component (bulge+ dark matter
halo) Hernquist profile. Furthermore we used different initial mass ratios and orbits
with and without angular momentum to cover a large range of parameters. Our main
findings can be summarized as follows. Dry equal-mass mergers can not be the main
driver of galaxy evolution, because the remnants assemble mass at all radii and shift
the surface density nearly parallel to higher values. Therefore the slope of the surface
brightness profiles are hardly affected and the Sersic index does not exceed a value of
n ~ 6 after one generation (Fig. 7.6). Additionally the size growth per added mass is
limited to r, oc M99,

On the other hand, dissipationless minor mergers show very promising results. As
the satellites are loosely bound, they strongly suffer from dynamical friction and tidal
stripping. Therefore, depending on the mas ratio, most of the mass assembles at
larger radii and the remnants develop a extended envelope of stars. For an initial
mass ratio of 1:5, the central surface density/brightness stays constant, out to a radius
of r &~ 1.5kpc which is in good agreement to recent observations of high redshift
early-types (Szomoru et al., 2011) and the assumption, that the compact galaxies are
the cores of present day ellipticals (Hopkins et al., 2009a; Bezanson et al., 2009; van
Dokkum et al., 2010; Szomoru et al., 2011). Furthermore the fitted Sersic profiles
yield a curvature of n ~ 8 — 10, which lies in the range of most of the observed core
ellipticals (Caon et al., 1993; Kormendy et al., 2009). For a higher initial mass ratio,
the results highly depend on the properties of the satellite galaxies. If the satellites
are loosely bound (Sat 1:10, Fig. 7.1), they are destroyed rapidly in the case of more
realistic bulge+halo models and the host’s central surface density stays constant out
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to a radius of r = bSkpc. Additionally, the developing envelope of accreted particles
reveals a prominent kink, which results in an unrealistic high Sersic index of n ~ 20.
Using a compact, more bound, satellite (cSat 1:10, Fig. 7.1), the accreted mass gets
closer to the center and distributes more smoothly in the outer envelope, which then
yields reasonable Sersic indices of n ~ 7 — 8.

Regarding the size growth of the individual minor merger scenarios, we find that
all remnants, where the bulge is embedded in a massive dark matter halo, lie above
the grey shaded area of Fig. 7.2 and are viable drivers for the evolution of compact
early-type ellipticals. In the most promising cases, namely the 1:5 sequence with a
diffuse satellite and the 1:10 sequence with a compact satellite result in a mass-size
relation of 7, oc M%*3 and r, o< M?%5, respectively. On the other hand, for the bulge
only minor mergers, only the hierarchy with a mass ratio of 1:10 and a diffuse, weakly
bound satellite evolves in excess of the observed mass-size relation. The other scenarios
stay within the 'forbidden’ area and are by far not efficient enough to give a proper
size increase.

Furthermore, in Section 6, we have shown, that the merging history of our galaxy
models yield dark matter fractions, which are in good agreement to recent lensing
observations of the SLACS collaboration. Our minor merger remnants also indicate,
that the central dark matter fractions increase with the stellar mass of early-type
ellipticals.

Combining all the results we can say, that only the minor mergers including a dark
matter halo give reasonable results for the observed inside-out growth of the surface
densities and surface brightnesses. Furthermore, only the bulge+halo minor mergers
always yield a size growth in excess to the observed prediction of van Dokkum et al.
(2010) (see Fig. 2.2).

However, we use a very idealized scenario, without any gas or black hole physics.
But even the existence of a small amount of gas, which is known to reduce the size
growth (Covington et al., 2011; Hopkins et al., 2008), might not be efficient enough,
as we achieve very high growth rates in most of the minor merger scenarios. On the
other hand, the implementation of black holes might boost the "puff up’ scenario, as
black hole binaries are able to deplete the central galaxy regions from gas and stars
(Fan et al., 2008, 2010), and the observed core structure of the most massive present
ellipticals will get more prominent.
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CHAPTER 8

CONCLUSION & OUTLOOK

Recent observations have revealed a population of compact high redshift (z ~ 2 — 3)
early-type galaxies, which are a factor 4-5 smaller than their present day counterparts.
They are already very massive but have less concentrated surface density profiles,
represented by small Sersic indices of n ~ 4. Furthermore, the stellar populations of
their present day counterparts indicate, that dissipation and star formation cannot be
the main evolutionary mechanism. However, in the currently favoured cosmological
model, where structure grows hierarchically, dissipationless mergers are supposed to
be the main driver for the subsequent evolution of compact, high redshift early-type
galaxies. Therefore we employ a large set of more than 80 dissipationless merger
simulations, with a large avriety of orbits and initial agalxy models.

To achieve this, we first created an initial condition program, which covers a wide
range of different parameters (Chapter 4). In detail, this means, that we can either
chose galaxies consisting of just a stellar component or a more realistic two-component
model, where the stellar bulge is embedded in a more massive dark matter halo. The
dark matter halo is fixed to a Hernquist density distribution (Hernquist, 1990), but
the slope of the luminous part can vary between different 7-models (Dehnen, 1993;
Tremaine et al., 1994). Hence, one can adopt either a steep density slope v ~ 2, re-
sembling a cuspy extra-light galaxy, or a cored profile v = 0, which is observed for the
most massive ellipticals. First stability tests have shown, that the initial conditions
are very stable for one- and two-component galaxy models with different particle res-
olutions and density slopes but equal mass particles. We also created more ’realistic’
galaxy models using the most recent HOD models to get a viable dark to stellar mass
ratio of M, /My, ~ 0.015 (Moster et al., 2010; Wake et al., 2011) for a M, = 10" M,
galaxy at a redshift of 2 ~ 2. In addition, we assigned them a size corresponding to
the most recent mass-size relations of early-type ellipticals (Williams et al., 2010) at
this high redshift. In this setup, the dark matter particles have a much higher mass
than the stellar particles, and we have to use a much larger softening length compared
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to the equal-mass models. This stems from two-body relaxation in the central high
density regions, which additionally induces mass segregation for unequal mass parti-
cles (Chapter 5). Therefore, with a larger force softening length, we prevent the more
massive dark matter particles to sink to the center and kick out the less massive stellar
particles. The adopted softening length is still small compared to the effective galaxy
radius, so that the galaxies can be considered resolved and we obtain very stable results
for cosmologically motivated galaxy models.

Using our well tested initial conditions, we are able to investigate the dynamics
of the merging process with an unprecedented high accuracy and resolution. First we
focused on equal-mass mergers of either one- or two-component models and found, that
violent relaxation and mixing are the dominant processes, which significantly change
the structure of the merger remnant’s differential energy distribution (Section 6.4).
Strong potential fluctuations during the closest encounters offer new energy states with
higher binding energies and unbind a non-negligible amount of initial weakly bound
particles (see also White 1978). This evolution is the same for one- and two-component
models, but in the latter case we display another striking result in the galaxy’s center,
where the amount of dark matter particles increases with respect to the stellar particles
and we obtain a ’real’ increase of the central dark matter fraction. This is contrary
to the work of Nipoti et al. (2009b), who argues, that the increase of the dark matter
fraction is just an effect of the increasing galaxy size. However, we convincingly show,
that violent relaxation mixes more and more dark matter particles to higher binding
energies for each subsequent merger generation, which changes the ratio of stellar to
dark matter particles, especially in the central regions. Furthermore, the redistribution
of the particle’s energies causes the systems to seek for a new equilibrium configuration.
Therefore, the final velocity dispersion profiles of the equal-mass merger remnants can
nicely be fitted by a Jaffe profile (Jaffe, 1983), which is in good agreement to Spergel &
Hernquist (1992). Unfortunately, the structural changes and a transfer of energy from
the bulge to the halo increase the velocities of the merger remnants and consequently
limit the size growth. However, the mass-size (r, oc M2¥719) and the mass-velocity
relation (M, oc 023751 yields reasonable results compared to a previous study of
Boylan-Kolchin et al. (2005).

Looking at the minor merger scenarios with initial mass ratios of 1:10, we worked
out, that first of all, the dynamics is completely different and the host galaxy is not
affected by violent relaxation (Section 6.5). Therefore its central properties are con-
served and the velocity dispersion profiles of the total systems stay constant for both,
one- and two-component models. But as the satellites are loosely bound compared
to the host galaxies, they strongly suffer from tidal stripping and nearly no material
reaches the host’s center. The stripped material builds up an extended envelope of
stars, which significantly boosts the size growth. Due to an enhanced effect of dynam-
ical friction and tidal stripping in the dark matter halo of the bulge+halo model, this
mass assembly is very efficient, and we get a final size increase of more than a factor
of ~ 4.5, which is exactly in the observed range for the size growth of compact high
redshift ellipticals (Szomoru et al., 2011). Looking at the mass-size relations of all
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two-component scenarios with mass ratios of 1:5 and 1:10, we get r, oc M?3, which
is much steeper than the result of van Dokkum et al. (2010) (r. oc M?).

As minor mergers seem to be very good candidates for driving the evolution of
early-type ellipticals we extend the previous set of simulations by a sequence with an
initial mass ratio of 1:5, investigate in more detail the assembly history of the final
remnants, and want to figure out the importance of a dark matter halo (Chapter 7).
First of all, regarding the size evolution of the individual scenarios, we can see that only
the minor mergers with dark matter halo evolve as expected from observations. For
bulge only models, just one merger configuration with a very diffuse satellite galaxy
evolves in excess to the observed relation. Looking at the evolution of the surface
densities, recent observations reveal an inside-out growth with decreasing redshift (van
Dokkum et al., 2010; Szomoru et al., 2011). In detail this implies, that the central
regions of high redshift early types stay unaffected and build the cores of present day
ellipticals, while they assemble a lot of stellar mass at larger radii, building up an outer
envelope. Surprisingly, this is exactly what we find for the surface densities of our
minor merger remnants (Section 7.4). While the profiles of the equal-mass mergers
grow over the whole radial range, the central profiles of the minor merger scenarios
stay constant, as most of the satellite’s material gets stripped in the outer regions of
the host galaxy. Again, the scenarios with bulge+halo models yield more promising
results, as the extended massive dark matter halo enhances tidal effects and strips
the material at the 'right’ regions (r > 2kpc). Converting the surface densities of our
remnants to surface brightness profiles, Sersic fits indicate that for the first generations,
the Sersic index n increases most rapidly for the two-component minor mergers of both
mass ratios (1:5, 1:10). Although n converges to a value between n = 7 — 8 for the
1:10 sequence, the 1:5 sequence of bulge+halo models is the only scenario, where we
get a high Sersic index of n ~ 9 — 10, which is expected from observations. Finally, we
obtain an increasing dark matter fraction, which is consistent with recent observations
(Barnabeé et al., 2011) for all minor merger hierarchies and we can conclude, that the
existence of a dark matter halo is not just expected but is essential to get a viable
evolution scenario.

Altogether we can say, that we highlight a very promising scenario to close the gap
between the compact high redshift ellipticals and their more extended counterparts in
the present day Universe. To fortify our results, the next step would be to use more
realistic galaxy models, applying a contracted NFW-profile for the halo and extend the
galaxy by the potential of a supermassive black hole. Fan et al. (2008) showed, that
AGNs can also puff up galaxies and might even improve the results of the dissipationless
merger scenario. Regarding the dynamics of merging systems, it would be desireable
to investigate the impact of different orbital properties, to estimate the effect of, e.g.
hyperbolic or bound orbits with different impact parameters. Furthermore, we started
to look at the evolution of the very tight relation between a galaxy’s escape velocity
Vese and its metallicity (Scott et al., 2009).

Therefore we simply compute a particle’s escape velocity of the initial host and
satellite galaxy and assign to it the according metallicity. During each merger genera-
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compared to the equal-mass mergers.
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tion, the escape velocities of the particles change, but their metallicities stay constant,
thus we can evaluate the merger induced scatter in the v.,- metallicity relation. As
observations show a very tight correlation, we can approximate the contribution of mi-
nor or major mergers for the evolution of elliptical galaxies. The first results indicate,
that the v.s. — [Z/H]-relation for equal-mass mergers (top panel, Fig. 8.1) changes at
all radii and for all velocities, which stems from the strong mixing, induced by vio-
lent relaxation. Therefore, the scatter increases significantly and the overall relation
becomes very broad. On the other hand, a sequence of ten minor mergers with ini-
tial mass ratio of 1:10 (bottom panel, Fig. 8.1) introduces only a small scatter in the
Vese — |4/ H]-relation and has no influence on the central regions (with high velocities).
Furthermore, with each generation, the metallicity gradient becomes only weaker for
equal-mass mergers (Fig. 8.1), which is in good agreement with earlier predictions of
White (1978) and Villumsen (1982). Further details of this scenario have to be tested.
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