
Program Development by ProofTransformationLua Chiarabini
Dissertationan der Fakultät für Mathematik, Informatik und StatistikLudwig�Maximilians�UniversitätMünhenvorgelegt vonLua Chiarabini

Lua ChiarabiniProgram Development by Proof Transformation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ludwig-Maximilians-Universität München Dissertationen

https://core.ac.uk/display/216075882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation an der Fakultät für Mathematik, Informatik und Statistikder Ludwig-Maximilians-Universität Münhen1. Berihterstatter: Prof. Dr. Volker Heun2. Berihterstatter: Prof. Dr. Helmut Shwihtenberg3. Prüfer: Prof. Dr. Rolf Henniker4. Prüfer: Prof. Dr. Hans Jürgen OhlbahErsatzprüfer: Prof. Dr. Martin WirsingExterner Gutahter: Prof. Dr. Stefano Berardi (Università di Torino)

iv

With all its sinful doings, I must say, Con tutti i suoi peati, devo direThat Italy's a pleasant plae for me, Che l'Italia mi piae, he mi piaeWho love to see the Sun shine every day, Vedere il sole splendere ogni giorno,And vines (not nail'd to walls) from tree to tree E le viti non piantate su un muro,Festoon'd, muh like the bak sene of a play Ma abbarbiate ai tralii, fondiOr melodrame, whih people �ok to see D'opera dove la gente aorreWhen the �rst at is ended by a dane Quando una danza hiude il primo atto,In vineyards opied from the south of Frane. Tra vigne rosseggianti ome in Frania.I also like to dine on bea�as, Mi piae poi mangiare bea�hi,To see the Sun set, sure he'll rise to-morrow, Guardare il sole he tramonta, ertoNot through a misty morning twinkling weak as Che domani risorge e non opaoA drunken man's dead eye in maudlin sorrow, Come un ohio ubriao tra le nubi,But with all Heaven t'himself; that day will break as Ma in pieno ielo rinaserà il giorno,Beauteous as loudless, nor be fore'd to borrow Luente e senza nuvole, e non gon�oThat sort of farthing andlelight whih glimmers Di quel torvo luore di andelaWhen reeking London's smoky auldron simmers. Del fetido bollore londinese.I love the language, that soft bastard Latin, La lingua, poi, quel latino bastardoWhih melts like kisses from a female mouth, Morbido ome il baio di una donna,And sounds as if it should be writ on satin, Che vibra ome se sritto sul raso,With syllables whih breathe of the sweet South, Sillabe respiranti il mezzogiorno,And gentle liquids gliding all so pat in, Le liquide he sorrono gentili,That not a single aent seems unouth, Dove nessun aento suona rozzoLike our harsh northern whistling, grunting guttural, Come le gutturali nordihe, grugnitiWhih we're oblig's to hiss, and spit, and sputter all. O �shi he sputiamo, soppiettanti.I like the womens too (forgive my folly), In�ne (perdonate) amo le donne,From the rih peasant-heek of ruddy bronze, Le rihe guane ontadine bronzee,And large blak eyes that �ash on you a volley E gli ohi neri, e irradianti, e grandi,Of rays that say thousand things at one, Che ti diono tutto in un istante,To the high dama's brow, more melanholy, Le dame, la fronte malinonia,But lear, and with a wild and liquid glane, Ma hiara e dallo sguardo selvatio,Heart on her lips, and soul within her eyes, Cuore su labbra, sugli ohi l'anima,Soft as her lime, and sunny as her skies. Solare e dole ome il ielo e il lima.Da Beppo: A Venetian Story [Beppo: Una Storia Veneziana℄ di Lord Byron
v

vi

AbstratIn the last 20 years the formal approah to the development of software turnedout to be a ruial tehnique for the generation of orret programs.This idea has its theoretial base into the several semi-automati methods totransform a formal spei�ation that desribe the behavior of a program intoan e�etive exeutable piee of ode.One of this is the so-alled "program extration from proof". The idea is thatfrom an onstrutive proof of a formula "for eah x there exists y suh thatP(x,y)" we an automatially extrat a program "t" suh that the propertyP(x,t(x)) hold. In our days suh proofs are normally written by ad-ho tools(some of them are: COQ, ISABLLE, MINLOG, PX, AGDA, et...) alled"proof assistants".Even if today this tehnique is pretty well established, the "manipulation" ofproofs in order to develop performing programs did not reeived big attention.In this thesis we will develop several automati and semi-automati methodsin order to extrat e�ient ode from onstrutive proofs. Our �eld of applia-tion will be omputational biology, a researh �eld in whih the development ofe�ient programs is ruial. So our main goal will be to show how the manip-ulation of formal proofs, essentially studied by proof theorist, has a big e�etalso in pratial program generation.In den letzten 20 Jahren stellte sih der Einsatz formaler Methoden in der Soft-wareentwiklung als eine äuÿerst wihtige Tehnik zur Generierung korrekterProgrammen heraus.Die theoretishe Grundlage dieser Idee basiert auf mehreren semiautomatis-hen Methoden zur Umwandlung einer formalen Spezi�zierung, die das Verhal-ten eines Programms beshreibt, zu einem ausführlihen Codeblok.Eine dieser Methoden nennt sih "program extration from proof". Die Ideeist, dass wir von einem konstruktiven Beweis einer Formel �für jedes x ex-istiert ein y so dass P(x,y)� ein Programm �t� automatish extrahieren kann,in welhem die Eigenshaft P(x,t(x)) erfüllt ist. Heutzutage werden solhe Be-weise von ad ho Tools erzeugt (z.B.: COQ, ISABLLE, MINLOG, PX, AGDA,usw.), die �proof assistants� genannt werden.Obwohl sih diese Tehnik heutzutage gut etabliert hat, hat die �Manipula-tion� von Beweisen, mit den Ziel e�ziente Programme zu realisieren, keinegroÿe Beahtung gefunden. Innerhalb dieser Doktorarbeit werden wir ver-shiedene automatishe und semiautomatishe Methoden mit dem Ziel entwik-eln, Code von konstruktivenBeweisen zu extrahieren. Unser Anwendungsbereih wird die Bioinformatikvii

sein, ein Forshungsbereih für den die Entwiklung e�zienter Programmeentsheidend ist. Unser Ziel wird folglih sein zu zeigen, wie die Manipula-tion von formalen Beweisen - hauptsä hlih erforsht von Beweistheoretikern- eine groÿe Auswirkung auf die praktishe Programmgenerierung hat.

viii

AknowledgementsI wish to thank my advisors, Prof. Dr. Helmut Shwihtenberg and Prof.Dr.Volker Heun for the help and the guidane whih they have given to me duringall the period of my dotoral studies. Thanks also to my external advisorStefano Berardi for helping me during the orretions of the thesis. I wishto thank my olleagues Diana Ratiu, Stefan Shimanski, Freiri Barral, TrifonTrifonv, Bogomil Kovahahev, Basil Karàdais and Simon W. Ginzinger fortheir aademi and human support. I wish to thank Frau. Gerlinde Bah forthe help in �lling dozens of bureaurati douments and Franziska Shneiderfor the nie philosophial hats.I wish to thanks all the members of the �pataas� or �pizzas� Munihgroup: Antonio Marra�a, Giuseppe Marra�a, Giovanni Alunni, Simone Bren-ner, Mauro Improta, Martina Dreiÿig, Maro Favorito, Manuela Bianhi, RooMarvaso and Agostino Santisi. I passed with them wonderful moments. I thinkthat, without them, I would never ever had the power to live in Munih forso long time. They are and will remain my best friends. I wish also to thankall the friends in the Internationale Haus of Munih (one of the most exitingplae I ever had the hane to live) in partiular to Tonia Ludwig for her kind-ness. Thanks to the Genova's friends, among them David Burlando and LuanaNoselli for all the support they gave to me in the last �ve years.I wish to thank all my relatives: my grandmothers Frana and Iolanda,my ousins Franesa, Katy, Emanuele and Elisa, my unles Eugenio, Paolo,Roberto and my aunts Mara, Rosa and Serenella. A speial thought goes tomy grandparents Anselmo and Angelo, that left us too early.Finally, I wish to thank the most important persons in my life, the personswithout whom I would not be here today and that always supported me: mymother Loredana Grassellini and my father Valter Chiarabini, to whih thisthesis is dediated.
ix

x

Contents1 Introdution 11.1 Automati Program Development 11.2 Content of the Thesis . 41.3 Related Work . 92 Logial Foundations 112.1 Modi�ed Realizability for First Order Minimal Logi 112.1.1 Gödel's T . 112.1.2 Heyting Arithmeti . 112.1.3 Normalization of Proofs 152.1.4 Short Exursus in Program Extration from Proofs . . . 162.2 A First Example of Proof Transformation: How to Extrat Pro-grams with let . 192.3 Minlog . 213 Pruning 233.1 Introdution . 233.2 Pruning in Minlog . 263.2.1 Immediate Simpli�ation in Minlog 263.2.2 Dependenies Removal Transformation 273.2.3 Computing with Permutative Conversions 303.3 Case Study: The Bin Paking Problem 333.3.1 Experiment . 363.4 Conlusions . 374 Bounded Perfet Mathing Problem 394.1 Introdution and Motivation . 394.2 Bounded Perfet Mathing of a Complete Bipartite Graph . . . 414.2.1 Basi De�nitions . 414.2.2 Algorithms, Data Strutures and Automati ProgramSynthesis . 424.2.3 Problem Speialization: The Monge Inequality 464.3 Pruning at Work . 504.4 Conlusions . 53xi

Contents5 Generalizing Pruning 555.1 Introdution . 555.2 Proof Contexts . 555.3 Properties of the General Pruning Rule 565.4 Case Study . 586 String Alignment 616.1 Introdution . 616.1.1 The String Similarity Problem 626.1.2 List as Memory Paradigm 676.2 Conlusions . 737 Tail Reursion 757.1 Introdution . 757.2 Proof Manipulation . 767.2.1 Continuation Based Tail Reursion 777.2.2 Aumulator Based Tail Reursion 797.3 From Higher Order to First Order Computation 827.4 Case Study . 857.4.1 The MSS Problem . 867.4.2 Generation of a Continuation/Aumulator Based MSS-Program . 898 Beyond Primitive Reursion 918.1 Introdution . 918.1.1 Up Primitive Reursive Indution 918.1.2 Up Primitive Iterative Indution 928.1.3 Down Primitive Reursive Indution 938.1.4 Down Primitive Iterative Indution 958.2 Expressive Power . 968.2.1 Up Primitive Iteration in Terms of Up Primitive Reursion 968.2.2 Up primitive Reursion in Terms of Up Primitive Iteration 988.2.3 Up Primitive Reursion in Terms of Down Primitive Re-ursion . 998.2.4 Down Primitive Reursion in Terms of Up Primitive Re-ursion . 1018.2.5 Down Primitive Iteration in Terms of Down PrimitiveReursion . 1028.2.6 Down Primitive Reursion in Terms of Down PrimitiveIteration . 1038.2.7 Up Primitive Iteration in Terms of Down Primitive Iter-ation . 104xii

Contents8.2.8 Down Primitive Iteration in Terms up Primitive Iteration 1048.2.9 Summary and onlusion 1058.3 Primitive Reursion and Iteration with Aumulators 1058.3.1 Up Primitive Reursion with Aumulator 1058.3.2 Up Primitive Iteration with Aumulator 1068.3.3 Down Primitive Reursion with Aumulator 1068.3.4 Down Primitive Iteration with Aumulator 1078.3.5 Summary and Conlusion 1088.4 Case Study: The Fatorial Funtion 1089 Conlusions and Future Works 111Bibliography 113

xiii

Contents

xiv

1 Introdution1.1 Automati Program DevelopmentThe software life-yle [26℄ (Figure 1.1) is the our-days model for the produtionof software in the industrial world. The basi idea is the following: given aninput problem (most of the time spei�ed in natural language -as English-) onewrite a program that is assumed to solve the problem. Afterwards the programis tested on several inputs and modi�ed in ase errors pop up. After this step,the program is put in pratial use.
Problem

 Program written in a

 prog. language

 Program written in

 machine code

 Results

Testing

Executing

Compiling

Programming

Maintenance

Figure 1.1: A software life-yle model illustrating onventional software designThe main limit of this approah is that it an only on�rm the preseneof errors but not their absene. What we miss following this approah is theevidene of the orretness of the program. A better methodology for theprodution of orret software with respet to a given spei�ation, rely onderiving a program from a problem in several ontrolled steps as illustratedFigure 1.2.The step in Figure 1.2 an be in the following way resumed: 1

1 Introdution
Problem

 Formal specification

 Program written in

 a prog.language

 Results

Program
Verification

Compiling

Program Development

Formalization

Maintenance

 Program written in

 machine code

Executing

Figure 1.2: A software life-yle model illustrating onventional software design1. The problem of the ustomer is analyzed and a �rst informal spei�ationis produed.2. The formal spei�ation is translated in a more formal language (equa-tional for term rewriting, or Horn-lausal form for logi programming)3. From the formal spei�ation is derived a program that is provably or-ret, that is an be proven that the program meets the spei�ation (pro-gram veri�ation).4. The derived program an be ompiled and exeuted and the results anbe used to test the program.Essentially, there are two broad paradigms to ful�ll step number 3: the�proofs-as-programs�[2℄ and �synthesis by transformations� [8℄.
• In the proof-as-program paradigm a spei�ation is usually expressed byformulas that state the existene of an objet with a given property. Thusa onstrutive proof of the given spei�ation is produed and a programis extrated from the proofs. By the realizability method we an prove2

1.1 Automati Program Developmentthat the program so produed respets the given spei�ation (that isthe proved formula). Researh in this �eld fouses on the development ofstrong theorem provers and mehanisms for extrating algorithms fromproofs.
• In synthesis by transformations the algorithms are derived from the spe-i�ation by forward reasoning. The spei�ation is seen as exeutableand is transformed in a real program by a set of rewriting rules. Thisparadigm is partiularly well-suited for the synthesis of logi programssine a delarative formula an be viewed as exeutable program whih�only� has to be transformed into some restrited syntax like Horn logi.Our work onerned essentially the proof-as-program paradigm. Aordingto this paradigm we have the following orrespondenesformula ≡ data typeonstrutive proof of formulaA ≡ program of typeAThe basi idea in order to develop orret programs by the proof-as-programmethodology an be resumed in the followings steps:
• We assume that the programming problem is given in the form

∀x∃yA(x,y)

• One �nds (manually, or omputer-aided) a onstrutive formal proof ofthe formula ∀x∃yA(x, y).
• From the proof a program p is extrated (fully automatially) that prov-able meets the spei�ation, that is,

∀xA(x, p(x))is provableThere exist a number of systems supporting program extration from proofs(e.g. Agda1, Coq2, Minlog3, NuPrl4).From the end of the '80s a lot of researh foused on the development ofe�ient algorithms by the proof-as-programs paradigm. This was stimulatedby the fat that often the omputational ontent of elegant and short proofs is1http://unit.aist.go.jp/vs/Agda/2http://oq.inria.fr/3http://www.minlog-system.de/4http://www.s.ornell.edu/Info/Projets/NuPRL/nuprl.html 3

1 Introdutionpartiularly ine�ient. Consider for example the following statement:
For each natural number n there exists a natural y such that y = 2n.This sentene is simply provable by indution on n. In the base ase its enoughto set y = 1, in fat 1 = y = 20. Then if (by indution hypothesis) we knowthat y = 2n for some �xed n, to prove the sentene for n+ 1 its enough to toset y = y + y. In fat

y = y + y

= 2n + 2n

= 2n+1By the proof-as-program paradigm the omputational ontent of this proof isthe power of 2 funtion, EXP2, skethed in the following piee of ode:Algorithm 1 Proedure EXP2Input: 0 ≤ nOutput: 2nloopif n = 0 thenreturn 1elsereturn EXP2(n− 1) + EXP2(n− 1)end ifend loopUnfortunately the omputational omplexity of EXP2 is exponential in n.Historially the researh onerning the problem of extrating e�ient pro-grams from proofs foused both in tuning the extrated ode[12, 3, 7℄ (theoptimization phase take plae after the extration) and in tuning the prooffrom whih the ode is extrated[30, 29, 1℄ (the optimization phase take plaebefore the extration) Our work regarded this seond line of researh.1.2 Content of the ThesisThe originality of the present work regarded the development of a set of newproof-tehniques to transform proofs in order to develop e�ient programs. Inpartiular we investigated and developed the following proof-transformations:Pruning This tehnique has its theoretial bases in the proof theory work ofDag Prawitz [31℄ later on suessfully developed in the pioneer work of4

1.2 Content of the ThesisC.A. Goad [17℄. Pruning regards the eliminations of redundant ase dis-tintions in proofs. Consider for example the following simple statement:
Given a natural n there exists a natural y such that n ≤ yWe an prove this statement as follow. We assume n. There are twoases: n ≤ 1 or n 6≤ 1. Assume ip : n ≤ 1 then we set y = 1, and wehave the thesis by ip. Else (that is n 6≤ 1) we set y = n and we onludeby the re�exivity of the less-or-equal relation between naturals numbers.The omputational ontent of this proof is the following piee of ode:Algorithm 2Input: 0 ≤ nOutput: 0 ≤ y suh that: n ≤ yif n ≤ 1 thenreturn 1elsereturn nend ifOf ourse in the above proof the ase distintion over n is useless (we ouldfor example immediately onlude setting y = n). The pruning tehniqueis useful in deteting and simplifying this kind of redundanies. The mainidea on whih pruning is based is the following: if the left/right branh ofa ase distintion proof over A ∨B does not depend on the assumptions

A/B, then the entire ase distintion an be replaed by the left/rightbranh.In the example above, the left branh of the ase distintion refer to theassumption variable u : n ≤ 1, but the right branh does not depend onthe ondition n 6≤ 1. So applying the pruning rule, we an replae thease distintion by its right branh, obtaining a new proof from whihwe an extrat the identity funtion. We note as the simpli�ed extratedprogram is not only more e�ient (we don't perform a useless �if�) but ithanges also its omputational behavior.In the hapter 3 of this thesis we extensively revisit the pruning ideaand we apply it in simplifying some instantiations of the proof of the binpaking problem. In hapter 4 we develop a proof of the bounded perfetmathing problem and we simplify some instantiations of it with thepruning tehnique, showing on another not trivial example that pruninghas to be onsidered an essential tool in order to extrat e�ient programsfrom instantiated proofs. Finally in hapter 5 we prose an extension of5

1 Introdutionpruning.Dynami Programming The question that motivated this line of researh wasthe following: how it is possible to transform a proof into another proof,from whih it is possible to extrat a dynami program? We refer todynami programming as a programming tehnique where we evaluatea su�ient amount of data in advane so that the at eah iteration theprogram gets to reuse it instead of reomputing it eah time it is needed.Though at programming level this tehnique is pretty well known, it isnot so lear how to obtain the same result at proof level. In hapter 6of the thesis we developed (taking as a ase study the formalization ofthe similarity of DNA sequenes problem) a general method in order toextrat dynami programs from proof. The proposed method unfortu-nately is not general enough to be applied automatially to a large setof proofs (the automati transformation is not possible even at program-ming level). What we developed has to be onsidered more as a generalsheme that should instantiated ase by ase.In order to get an informal idea of the method (that will be formallypresented in hapter 6), let onsider the following example. Assume wewant to prove, for eah 0 ≤ n, the existene of a natural y suh that
y = Fib(n) with Fib(n) n-th Fibonai number, de�ned as usual:Fib(n) =

8

<

:

0 n = 0
1 n = 1Fib(n− 1) + Fib(n− 2) 2 ≤ nThis statement an be proved by (general) indution over n as follow: for

n = 0 we set y = 0, for n = 1 we set y = 1 and for 2 ≤ n, we apply theindution hypothesis
∀n(∀k.k < n→ ∃y.y = Fib(k))on n − 1 and n− 2 obtaining u1 = Fib(n− 1) and u2 = Fib(n− 2) andthus we have the thesis for y = u1 + u2. In Algorithm 3 is showed theomputational ontent of this proof.In Algorithm 3 the proedure �b has an exponential omputational om-plexity in n. The idea we propose in this thesis to tune this kind of proof(in order to extrat dynami programs) onsist in adding a set of new ax-ioms to manage a list of intermediate omputed results in order to avoidre-omputation. For example for the spei� ase of the Fibonai num-bers, an idea would be to introdue a new prediate MEM ⊆ N ×N ×N,where MEM(i, fi−1, fi) (for 1 ≤ i) means that fi−1 and fi are the i− 1-th6

1.2 Content of the ThesisAlgorithm 3 Proedure �bInput: 0 ≤ nOutput: Fib(n)loopif n = 0 thenreturn 0else if n = 1 thenreturn 1elsereturn �b(n− 1) + �b(n− 2)end ifend loopand i-th Fibonai number. The axioms required in this ase would beneessary to state formally that the value we store in fi−1 and fi areFibonai numbers. Then new thesis to prove require a little modi�a-tion: we have to show that for eah natural n there exists a natural ysuh that y = Fib(n) and that there exists two naturals w and z suhthat MEM(n,w, z). Later on, in the proof of the new thesis, we an avoidto instantiate twie the indution hypothesis (soure of the exponentialbehavior of �b) and we an refer to the indution hypothesis only oneand to the partial results stored in MEM. The omputational ontent ofthis proof is a linear time algorithm.Tail Reursion For a program to be tail reursive is a desired property thatguarantee a ertain level of e�ieny. In a tail reursive proedure thereursive all are done as last operation: this avoid, during the ompila-tion or interpretation task, the storage/reover (during the all/return ofthe proedure) of a big amount of data (the proedure-ontexts). One ofthe main tool to perform an automati transformation of a program intoa tail reursive one is the so alled CPS [33℄ [13℄ (Continuation PassingStyle) transformation.In the hapters 7 and 8 of the present thesis we investigated the relationbetween onstrutive proofs and tail reursion. In partiular, our studywas motivated by the following question: how it is possible to transform(possibly automatially) a proof by indution into another proof in suha way the ontent of the transformed proof is tail reursive?In the literature, one of the main referenes (that we will brie�y reviewlater) on this topis, is the Penny Anderson's Ph.D. thesis [1℄. Thoughthe approah desribed in the Anderson's thesis is extremely interesting,7

1 Introdutionthis is not ompletely automati but it require some user interation. Inthe present thesis we develop a method fully automati to obtain thesame result, based on a partiular simple idea.Let onsider for example the task to prove that for eah natural n thereexist a natural y suh that y = Fat(n) with Fat(n) the fatorial of nde�ned as follow :Fat(n) =

1 n = 0
n ∗ Fat(n− 1) 0 < nWe an prove this statement by indution on n. For n = 0 we set y = 1and assuming u = Fat(n) then we an build the fatorial of n+1 setting

y = n ∗ u. The ontent of this proof is the usual fatorial funtion inAlgorithm 4.Algorithm 4 Proedure fatInput: 0 ≤ nOutput: Fat(n)loopif n = 0 thenreturn 1elsereturn n ∗ fat(n− 1)end ifend loopThe proedure fat in Algorithm 4 is not tail reursive (in the else branhwe have to store the ontext (n ∗_)). An idea to tune fat is to shift theontrol of the exeution to another reursive proedure that will be tail-alled and use an aumulator parameter where the e�etive omputationof the fatorial numbers will take plae. At logial level this is done byproving an intermediate lemma, where we state that, given two naturals
n and m and the the fatorial for m, u = Fat(m), we are able to supplya natural y suh that y = Fat(n+m). The proof of this intermediatelemma is the heart of the transformation and it will be arefully presentedin hapter 8. Later on, we an instantiate the proof of this lemma on ageneri n and on 0 in order to obtain the proof of the fatorial of n. Inthis example, we worked with the fatorial of n but it is possible to applythe method to a generi prediate P (n).8

1.3 Related Work1.3 Related WorkWe an divide the literature in the �eld of the generation of e�ient programsby the usage of a proof assistants into two big bloks: methods that transforma program after the extration phase (I), and methods to transform a proof inorder extrat e�ient ode (II).(I)In [28℄, Nakoi Kobayashi propose a method to solve the �useless-variable elimi-nation� problem. This is one of the problems that a�et the ode automatiallyextrated from a proof. The proposed algorithm to solve the problem is a sur-prisingly simple extension of the usual type-reonstrution algorithm. Theproposed method has several attrative features. First, it is simple, so thatthe proof of the orretness is lear and the method an be easily extended todeal with a polymorphi language. Seond, it is e�ient: for a simply-typed
λ-alulus, it runs in time almost linear in the size of an input expression.In [3℄ Stefano Berardi presents a pruning method to simplify program ex-trated from proofs. The proposed method is based on the replaement of somesub-terms with dummy onstants. Berardi proves that the proposed methodpreserves observational behavior of a simply typed λ-term if it does not modifythe type nor the ontext (assignment of types to free variables) of the term.This result is used to de�ne a map Fl : simply typed λ-terms → simply typed
λ-terms removing redundant ode in funtional programs. In the paper areformally proved some properties of Fl interesting from a omputational view-point.In [12℄, Damiani and Giannini presents two type inferene systems for de-teting useless-ode in higher-order typed funtional programs. This work rep-resents an extension of the previously analyzed work of Berardi on pruning. Inthe paper it is proposed a useless-ode elimination algorithm whih is basedon a ombined use of these type inferene systems. The main appliation ofthe tehnique is the optimization of programs extrated from proofs in logialframeworks, but it an be used as well in the elimination of useless-ode deter-mined by program transformations.(II)In [17℄ Alan Goad introdue the use of the pruning for the development ofe�ient programs generated by formal proofs. The paper onerns: (1) the usesof this additional information in the automati transformation of algorithms,and in partiular, in the adaptation of algorithms to speial situations, and (2)e�ient methods for exeuting and transforming proofs. The proposed methodis later on tested on the implementation of the bin paking problem.In [1℄, Penny Anderson propose a solution to the problem of transforming9

1 Introdutiona proof in order to extrat a tail reursive funtion. The method is based onthe representation of derived logial rules in Elf, a logi programming languagethat gives an operational interpretation to the Edinburg Logial Framework.It results in delarative implementations with a general orretness propertythat is veri�ed automatially by the Elf type heking algorithm.In [30℄ Frank Pfenning presents an interesting proof transformation to ex-trat e�ient ode from proofs (this work onstitute the theoretial base of theAnderson's work [1℄). In his paper Pfenning extends the paradigm employedin systems like NuPrl where a program is developed and veri�ed through theproof of the spei�ation in a onstrutive type theory. The method is illus-trated on an extended example − a derivation of Warshall's algorithm for graphreahability. In the paper, the author, outline how the framework supports thede�nition, implementation, and use of abstrat data types.

10

2 Logial Foundations2.1 Modi�ed Realizability for First Order Minimal Logi2.1.1 Gödel's TTypes are built from base types N (Naturals) , L(ρ) (lists with elements oftype ρ) and B (booleans) by funtion (→) and pair (×) formation. The Termsof Gödel's T [39℄ are simply typed λ-alulus terms with pairs, projetions (πi)and onstants (onstrutors and reursive operators for the basi types)
Types ρ, σ ::= N |B |L(ρ) | ρ → σ | ρ × σ

Const c ::= 0N | SuN→N | ttB |�B | (:)L(ρ) | ::ρ→L(ρ)→L(ρ) |Rσ
N
|Rσ

L(ρ)|R
σ
B

Terms r, s, t ::= c |xρ|(λxρrσ)ρ→σ |(rρ→σsρ)σ |(π0tρ×σ)ρ| (π1tρ×σ)σ | (rρ, sσ)ρ×σThe expression (:) represents the empty list, and (a0 :: . . . :: an :) a list with
n+1 elements. We equip this alulus with the following usual onversion rulesfor the reursive operators, appliations and projetions:
RσN : σ → (N→ σ → σ)→ N→ σ RσL(ρ)

: σ → (ρ → L(ρ) → σ → σ) → L(ρ) → σ

(RσN b f) 0 7−→ b (Rσ
L(ρ) b f) [] 7−→ b

(RσN b f) (n+ 1) 7−→ f n ((RσN b f)n) (Rσ
L(ρ) b f) (a :: l) 7−→ f l ((Rσ

L(ρ) b f) l)

RσB : σ → σ → B→ σ π0(r, s) −→ r
(RσB r s)tt 7−→ r π1(r, s) −→ s
(RσB r s)� 7−→ s (λx.r)s −→ r[x := s]2.1.2 Heyting ArithmetiWe de�ne Heyting Arithmeti HAω for our language based on Gödel's T, whihis �nitely typed.Formulas: Atomi formulas (P~t~ρ) (P a prediate symbol, ~t, ~ρ lists of termsand types), A → B, ∀xρA, ∀nxρA, ∃xρA, ∃nxρA, A ∧ B. Given a term t oftype B we de�ne a speial kind of atomi formula, atom(t) that means `t = tt'.In partiular we have the atomi formula ⊥ := atom(�). We de�ne negation
¬A by A→ ⊥. In writing formulas we assume that ∀,∃,¬ bind more stronglythan ∧, and that in turn ∧ binds more strongly than →. 11

2 Logial FoundationsDerivations: By the Curry-Howard orrespondene it is onvenient to writederivations as terms: we de�ne λ-terms MA for natural dedution proofs inminimal logi of formulas A together with the set OA(M) of open assumptionsin M : (ass) uA, OA(u)={u}(∧+) (〈MA, NB〉A∧B), OA(〈M,N〉)=OA(M) ∪ OA(N)(∧−
0) (MA∧B0)A , OA(M0)=OA(M)(∧−
1) (NA∧B1)B , OA(N1)=OA(N)(→+) (λuAMB)A→B , OA(λuM)=OA(M)\{u}(→−) (MA→BNA)B , OA(MN)=OA(M) ∪ OA(N)(∀+) (λxρMA)∀x

ρA, OA(λxM)=OA(M)provided xρ 6∈ FV(B), for any uB ∈OA(M)(∀−) (M∀xρAtρ)A, OA(Mt)=OA(M)(∀n+) (λnxρMA)∀
nxρA, OA(λnxM)=OA(M)provided xρ 6∈ FV(B), for any uB ∈OA(M), and x 6∈ [[M]](∀n−) (M∀nxρAtρ)A, OA(Mt)=OA(M)To obtain intuitionisti logi we an use the additional ex-falso-quodlibedtrule:
∀~x(⊥ → P (~x)) (Efq)with P prediate symbol di�erent from ⊥. We will use two speials quanti�ers

∀n/∃n to indiate that there should be no omputational ontent [5℄[4℄. Thelogial meaning of the universal quanti�ers is unhanged. However, we haveto observe a speial variable ondition for ∀n+: the variable to be abstratedshould not be a omputational variable in the given proof, i.e. the extratedprogram of this proof should not depend on x.We will write proofs in form of proof-terms, as above, or as metarules
A1, . . . , An

R
Cto read as `from the assumptions A1, . . . , An, by the rules R we derive C. Here

R an be an introdution rule (∧+, →+, ∀+,∀n+) or an elimination rule (∧−
0 ,

∧−
1 , →−, ∀−, ∀n−).Usually we will omit type and formula indies in derivations if they areuniquely determined by the ontext or if they are not relevant. We use ∃ (withor without omputational ontent) and ∨ in our logi, if we allow the followingaxioms as onstant derivation terms:

∃+xρ,A : ∀xρ(A→ ∃xρA)12

2.1 Modi�ed Realizability for First Order Minimal Logi
∃−xρ,A,B : ∃xρA→ ∀xρ(A→ B)→ B with 6∈ FV (B)

(∃n)+xρ,A : ∀nxρ(A→ ∃nxρA)

(∃n)−xρ,A,B : ∃nxρA→ ∀nxρ(A→ B)→ B with 6∈ FV (B)The onstant ∃− followed by ∃+ elide themselves by the following (Elid) rule:
∃−(∃+ tρMA)∃x

ρA = λy∀x
ρA→B.y tρMAWe an de�ne ∨ from ∃ via:

A ∨ B , ∃pB.(p→ A) ∧ ((p→ ⊥)→ B)Here (for short) we wrote p for atom(p). The indution proof-terms assoiatedwith N,B and L(ρ) are:Indn,A(n) : A(0)→ (∀n.A(n)→ A(n+ 1))→ ∀nN.A(n)Indt,A(t) : A(tt)→ A(�)→ ∀tB.A(t)Indl,A(l) : A([])→ (∀a, l.A(l)→ A(a :: l))→ ∀lL(ρ).A(l)Finally we use the onstant derivation term (IFA),IFA : ∀pB(p → A) → ((p → ⊥) → A) → Ato perform ase distintion on boolean terms w.r.t. a formula A.Proof Abbreviations:For simpliity, we will use the following proof abbreviations:
∃+x,A t

|M

A[x/t]
∃+∃xAfor

∃+x,A t
→−

A[x/t]→ ∃xA

|M

A[x/t]
→−

∃xAand
∃−x,A,C

|M

∃xA

|N

∀x(A→ C)
∃−Cfor 13

2 Logial Foundations
∃−x,A,C

|M

∃xA
→−

∀x(A→ C)→ C

|N

∀x(A→ C)
→−

CGiven a goal formula C, the appliation of the ases proof tati on t generatethe following proof tree:IFC t

(t → C) → ((t → ff) → C) → C

|M

t → C

((t → ff) → C) → C

|N

(t → ff) → C

Cthat we will simply rewrite as:IFC t

|M

t → C

|N

(t → ff) → C (if)
CWe simulate ∨-introdution by

∃+x,C tt

|M

C[x/tt]
∨+

0
A ∨Bwith C[x/tt] ≡ (tt→ A) ∧ ((tt→ ff)→ B), and

∃+x,C ff

|M

C[x/ff]
∨+

1
A ∨Bwith C[x/ff] ≡ (ff → A) ∧ ((ff → ff) → B). Finally, by (if) we an mimi the

∨-elimination as follow:
IF p

(p → A) ∧ ((p → ff) → B)

p → A p

A

|M

C
p → C

(p → A) ∧ ((p → ff) → B)

((p → ff) → B) p → ff

B

|N

C

(p → ff) → C

C

((p → A) ∧ ((p → ff) → B)) → C

∀p((p → A) ∧ ((p → ff) → B)) → C14

2.1 Modi�ed Realizability for First Order Minimal Logi
∃−p,D,C

|Σ

A ∨ B _____________________
Cwill be shortly rewritten by

∃−p,D,C

|Σ

A ∨ B

|R

A

|M

C

|S

B

|N

C

|K

∀pD → C
∨−

Cwith D ≡ (p→ A) ∧ ((p→ ff)→ B).2.1.3 Normalization of ProofsA derivation in normal form does not make �detours�, or more preisely, itannot our that an elimination rule immediately follows an introdution rule.We now spell out in detail whih onversions we shall allow: this is done forderivations written in tree notation and also as derivation terms.2.1.3.1 Conversions
∧-conversions

|M

A

|N

B
∧+

A ∧B
∧−

0
A

7−→
|M

Aor written as a lambda-term
π0(〈M

A, NB〉) 7−→MA

|M

A

|N

B
∧+

A ∧B
∧−

1
B

7−→
|N

Bor written as a lambda-term
π1(〈M

A, NB〉) 7−→ NB 15

2 Logial Foundations
→-conversion

|M

B
→+
u

A→ B

|N

A
→−

B

7−→

|N

A

|M

Bor written as a derivation term
(λuAMB)NA 7−→M [uA/NA]

∀-conversion
|M

A
∀+

∀xA t
∀−

A[x/t]

7−→
|M ′

A[x/t]or written as a derivation term
(λxMA)∀xAt 7−→MA[x/t]

∀n-conversion
|M

A
∀n+

∀xA t
∀n−

A[x/t]

7−→
|M ′

A[x/t]or written as a derivation term
(λnxMA)∀

nxAt 7−→MA[x/t]2.1.3.2 Strong NormalizationNo matter in whih order we apply the onversion rules, they will always termi-nate and produe a derivation in �normal form�, where no further onversionsan be applied.Theorem 2.1.1 ([36℄). Every proof-term is strongly normalizing, that is everyredution sequene starting from a proof term M , terminates.2.1.4 Short Exursus in Program Extration from ProofsClearly proper existene proofs have omputational ontent. A well-known andnatural way to de�ne this onept is the notion of realizability, whih an be16

2.1 Modi�ed Realizability for First Order Minimal Logiseen as an inarnation of the Brouwer-Heyting-Kolmogorov interpretation ofproofs.2.1.4.1 Type of a FormulaWe indiate by τ (A) as the type of the term (or �program�) to be extratedfrom a proof of A. More preisely, to every formula A it is possible to assign anobjet τ (A) (a type or the �nulltype� symbol ε). In ase τ (A) = ε proofs of Ahave no omputational ontent; suh formulas A are alled Harrop formulas.
τ (P (~x)) =

αP ifP is a prediate variable with assignedαP
ε Otherwise

τ (∃xρA) =

ρ if τ (A) = ε
ρ× τ (A) Otherwise

τ (∀xρA) =

ε if τ (A) = ε
ρ→ τ (A) Otherwise

τ (∃nxρA) = τ (A)

τ (∀nxρA) = τ (A)

τ (A ∧B) =

8

<

:

τ (A) if τ (B) = ε
τ (B) if τ (A) = ε
τ (A)× τ (B) Otherwise

τ (A→ B) =

8

<

:

τ (B) if τ (A) = ε
ε if τ (B) = ε
τ (A)→ τ (B) Otherwise2.1.4.2 Extration MapFrom every derivation M of a omputationally meaningful formula A (that is,

τ (A) 6= ε) it is possible to de�ne its extrated program [[M]] of type τ (A)[24℄.If τ (A) = ε then [[M]] = ε.
[[uA]] = xAu (xAu uniquely assoiated with A)

[[λuAM]] =

[[M]] if τ (A) = ε

λx
τ(A)
u [[M]] Otherwise

[[MA→BNB]] =

[[M]] if τ (A) = ε
[[M]][[N]] Otherwise

[[〈MA, NB〉]] =

8

<

:

[[N]] if τ (A) = ε
[[M]] if τ (B) = ε
〈[[M]], [[N]]〉 Otherwise 17

2 Logial Foundations
[[MA∧Bi]] =

[[M]] if τ (A) = ε or τ (B) = ε
πi[[M]] if Otherwise

[[(λxρM)∀xA]] = λxρ[[M]]

[[M∀xAt]] = [[M]]t

[[(λxρM)∀
nxA]] = [[M]]

[[M∀nxAt]] = [[M]]Content of the proof onstants:
[[∃−xρ,A,B]] =

λxρfρ→τ(B).fx If τ (A) = ε

λxρ×τ(A)fρ→τ(A)→τ(B).f(π0x)(π1x) Otherwise
[[∃+xρ,A]] =

λxρx If τ (A) = ε

λxρyτ(A).〈x, y〉 Otherwise
[[(∃n)−xρ,A,B]] =

λxτ(B).x If τ (A) = ε

λxτ(A)fτ(A)→τ(B).fx Otherwise
[[(∃n)+xρ,A]] = λxτ(A)x

[[IFA]] = λbB, lτ(A), rτ(A).(if b l r) If τ (A) 6= ε

[[Indn,A(n)]] = RσN

[[Indl,A(l)]] = RσL(ρ)

[[Indt,A(t)]] = RσB2.1.4.3 Realize a FormulaCorretness of the extrated programs is guaranteed by the notion of modi�edrealizability. Intuitively, if t is the extrated program from the derivation M ofthe formula A equal to ∀x∃y.P (x, y) then for eah x the formula P (x, t(x)) isprovable orret (Soundness) i.e. t (modi�ed) realize A (written (tmrA))
rmrP (~t) = P (~t)

rmr (∃x.A) =

εmrA[x/r] if τ (A) = ε
π1rmrA[x/π0r] Otherwise

rmr (∀x.A) =

∀x.εmrA if τ (A) = ε
∀x.rxmrA Otherwise

rmr (∃nx.A) =

∃nx.εmrA if τ (A) = ε
∃nx.rmrA Otherwise18

2.2 A First Example of Proof Transformation: How to Extrat Programs with let
rmr (∀xn.A) =

∀nx.εmrA if τ (A) = ε
∀nx.rmrA Otherwise

rmr (A→ B) =

8

<

:

εmrA→ rmrB if τ (A) = ε
∀x.xmrA→ εmrB if τ (A) 6= ε = τ (B)
∀x.xmrA→ rxmrB Otherwise

rmr (A ∧ B) =

8

<

:

εmrA ∧ rmrB if τ (A) = ε
rmrA→ εmrB if τ (B) = ε
π0rmrA→ π1rmrB OtherwiseTheorem 2.1.2 (Soundness). Let M be a derivation of a formula A fromassumptions ui : Ai. Then we an �nd a derivation of the formula ([[M]] mr

A) from assumptions ūi : xui
mr Ai.Proof. By strutural indution on M ([36℄).2.2 A First Example of Proof Transformation: How to ExtratPrograms with letIn a proof it an happen that, to prove B, we need to prove an auxiliary formula

A:
|M

B
A→ B

|N

A
BThis reate a detour that, one normalized, redue to
|N

A

|M

BThat is |N , with end formula A, is substituted for all the open assumptions
uA in M . At programming level this onversion is represented by following
β-redution:

(λ xτ(A)[[M]]τ(B))[[N]]τ(A) −→β [[M]]τ(B)[xτ(A)/[[N]]τ(A)]with τ (A), τ (B) 6= ǫ. Clearly the piee of ode [[N]]τ(A) will be dupliated asmany times xτ(A) appear free in [[M]]τ(B). A way to reate more ompat odeis replae the original proof by: 19

2 Logial FoundationsId : (A→ B)→ A→ B

|M

B
A→ B

A→ B

|N

A
BWith Id the identity axiom. If Id is not animated [37℄, then it is onsidered as abak-box proof-term and is not involved in any simpli�ation. The ontent ofthe previous proof is:

(Idτ((A→B)→A→B) λxτ(A)[[M]]τ(B)) [[N]]τ(A)If we onsider a all-by-value evaluation strategy the argument of the applia-tion is evaluated �rst, and the previous program is printed aslet x [[N]] [[M]]with the obvious meaning: set x equal to [[N]], then exeute [[M]]. An interestingappliation of this program replaement is in the ontext of the proofs byindution. Consider the derivation:Indn,∀xρA(n)

|N

∀xρA(0)

|M

∀xρA(n+ 1)

∀xρA(n)→ ∀xρA(n+ 1)

∀n(∀xρA(n)→ ∀xρA(n+ 1))

∀n∀xρA(n)Assuming τ (A) 6= ǫ, the algorithmi ontent of the step ase is:
α ≡ λnλxρ→τ(A(n))[[M]]ρ→τ(A(n+1))Now suppose x appear several times inside [[M]] and eah time in the appliativeform (x tρ), for some t. This will produe severals exeutions of same ode whenthe term α is applied to a natural number and to a funtional term. To avoidthis phenomena we substitute the proof in step ase M by:Id : σ

|M

∀xρA(n + 1)

(A(n)[xρ/tρ] → ∀xρA(n + 1))

A(n)[xρ/tρ] → ∀xρA(n + 1)

[u : ∀xρA(n)] tρ

A(n)[xρ/tρ]

∀xρA(n + 1)

∀xρA(n) → ∀xρA(n + 1)

∀n(∀xρA(n) → ∀xρA(n + 1))20

2.3 Minlogwith σ ≡ (A(n)[xρ/tρ] → ∀xρA(n + 1)) → A(n)[xρ/tρ] → ∀xρA(n + 1). Theomputational ontent of the modi�ed step ase is:
λn, xρ→τ(A(n))(Idτ(σ) λxτ(A(n))[[M]]ρ→τ(A(n+1))) (xρ→τ(A(n)) t)τ(A(n))that is printed as

λn, x let y (x t) [[M]]that is, given a natural and a real proedure f (the reursive all), f is appliedon t, the returning value binded by y and [[M]] (where y may our) exeuted.2.3 MinlogMinlog is intended to reason about omputable funtionals, using minimallogi. It is an interative prover with the following features [36℄:
• Proofs are treated as �rst lass objets: they an be normalized and thenused for reading o� an instane if the proven formula is existential, orhanged for program development by proof transformation.
• To keep ontrol over the omplexity of extrated programs, we followKreisel's proposal and aim at a theory with a strong language and weakexistene axioms. It should be onservative over (a fragment of) arith-meti.
• Minlog is based on minimal rather than lassial or intuitionisti logi.This more general setting makes it possible to implement program ex-tration from lassial proofs, via a re�ned A-translation (f. [6℄).
• Constants are intended to denote omputable funtionals. Sine their(mathematially orret) domains are the Sott-Ershov partial ontinuousfuntionals, this is the intended range of the quanti�ers.
• Variables arry (simple) types, with free algebras as base types. Thelatter need not be �nitary (so we allow e.g. ountably branhing trees),and an be simultaneously generated. Type parameters (ML style) areallowed, but we keep the theory prediative and disallow type quanti�-ation. Also prediate variables are allowed, as plaeholders for formulas(or more preisely, omprehension terms).
• To simplify equational reasoning, the system identi�es terms with thesame normal form. A rih olletion of rewrite rules is provided, whihan be extended by the user. Deidable prediates are implemented viaboolean valued funtions, hene the rewrite mehanism applies to themas well. 21

2 Logial FoundationsNotation:In the Minlog proof assistant, extrated programs are presented in a textualstyle, that we brie�y desribe now along with the orrespondene with theabove mathematial notations: in programs produed by Minlog, tt and �are typeset #tt and #ff respetively; ρ × σ as (rho��sigma), L(ρ) as (listrho), λx.t is written as ([x℄t), (Rσ
N/B/L(ρ) b s) as (Re (nat/bool/list rho =>sigma) b s) and (π0/1e) as (left/right e).

22

3 Pruning3.1 IntrodutionIn this hapter we deal with an old idea �rst introdued by Christopher AlanGoad in the 1980s[17℄ alled Pruning. Pruning is �rst of all a proof transforma-tion to remove redundant (omputationally relevant or not) parts of a proof.But pruning is a also a program transformation: in the program extrated froma pruned proof redundant hunks of ode are dropped making use of a kind ofdependeny information whih does not appear in ordinary programs. For themost part, the redundanies removed by pruning are not to be found in proofsgenerated by people, however, proofs that result from automati proess tendto inlude suh redundanies. Thus the pruning transformation will not be ofmuh use when applied to proofs of algorithms as originally presented.The pruning transformation has its theoretial foundation in the work inproof theory of Dag Prawitz.Dag Prawitz[31℄ asserts that redundant appliation of (∨E) and (∃E) onsti-tute unneessary ompliation in proof, and an be easily removed. A naturaldedution proof in normal form and without suh redundanies is said to bein full -normal form . The rules to bring a derivation in full -normal form, theImmediate Simpli�ation rules [31, pag.254℄, are depited in Figure 3.1.Nine years later Goad showed that the appliation of the immediate sim-pli�ation rules (whih he alled pruning rules) to a proof whih has beenspeialized an lead to a very large inrease in the e�ieny of the extratedalgorithm. Pruning has the unusual quality that it modi�es the funtion om-puted by the expression to whih it is applied[17, pp 23,56℄ while preservingthe validity of an algorithm for the spei�ation embodied in the end formulaof the proof desribing the algorithm.The pruning protool developed by Goad is based on the following threesteps:Proof speialization : speialization of a subset of the input parameters of agiven proof.Dependeny removal transformation : replaement of all the open assumptions,the type an be derived from a ertain knowledge, by another proof ofthe same type. This knowledge will onsist in a set of formulas (types ofassumption variables) aumulated during a traversal of the proof tree.23

3 Pruning
|Σ

A ∨ B

|M

C

|N

C(i) (∨E)
C

−→
|M

C
No open assumptionin M is disharged by
(∨E)

|Σ

A ∨ B

|M

C

|N

C(ii) (∨E)
C

−→
|N

C
No open assumptionin N is disharged by
(∨E)

|M

∃xA

|N

C(iii) (∃E)
C

−→
|N

C
No open assumptionin N is disharged by
(∃E)Figure 3.1: Prawitz's Immediate Simpli�ation / Pruning rulesAppliation of the Immediate Simpli�ation /Pruning rules : simpli�ation of theproof tree with respet to a given set of pruning rules in order to eliminateall the ∨/∃ redundant inferenes.In this hapter, we present an implementation of pruning into the Minlogproof assistant. The adaptation is less obvious than what it appears at �rstview. Several new developments upon the existing work inlude:

• The demonstration how pruning is intimately related to (and dependson) the operation of permuting a proof [41, pag. 180℄. Moreover we willshow the omputational bene�ts, in terms of elimination of redundantode, that the permutation operation indue on the extrated ode.
• The development in Minlog of a proof for the Bin Paking problem.After the pruning protool has been applied on suh proof we show theomputational bene�t on the extrated programs of this operation.To our knowledge, this is the �rst implementation of the pruning transformationin a modern proof assistant.Sine Goad's original thesis, the researh in this �eld has expanded in sev-eral diretions. Berardi[3℄ and Boerio[7℄, then later Damiani and Giannini[12℄developed a set of tehniques in order to eliminate useless ode in the programsextrated from proofs. Nogin[29℄ put a lot of e�ort in re-implementing manyNuPrl tatis in order to make them work more e�iently. Penny Anderson in24

3.1 Introdutionher Ph.D. thesis[1℄ used Frank Pfenning's[30℄ lemma insertion (user dependent)proof transformation in order to extrat tail reursive programs from proofs.Finally Chiarabini [9℄ generalized the Anderson's idea produing a ompletelyuser-independent proof transformation to obtain the same result.Before ending this introdutory setion, in order to show how pruning e�etsthe e�ieny of the extrated programs, we present the following,Example 3.1.1 (From Goad's thesis [17℄). Let A(x, y, z) ⊆ N ×N ×N suhthat A(x, y, z) ≡ (x + y ≤ z) ∧ (xy ≤ z). In order to prove that for eah pairof naturals x and y there exists z suh that A(x, y, z), we de�ne the followingaxioms:
• Ax1 ≡ ∀x, y((x ≤ 1)→ A(x, y, y + 1))

• Ax2 ≡ ∀x, y((y ≤ 1)→ A(x, y, x+ 1))

• Ax3 ≡ ∀x, y((x ≤ 1→ ⊥)→ (y ≤ 1→ ⊥)→ A(x, y, 2xy))Now we an proeed with the following proof P1:
|Σ

(y ≤ 1) ∨ (y � 1)

(Ax2 x y) uy≤1
2

A(x, y, x + 1)

∃zA(x, y, z)

(Ax3 x y) v
(x�1)

1

(y � 1) → A(x, y, 2xy) v
(y�1)

2

A(x, y, 2xy)

∃zA(x, y, z)

∃zA(x, y, z)

|Σ′

(x ≤ 1) ∨ (x � 1)

(Ax1 x y) ux≤1
1

A(x, y, y + 1)

∃zA(x, y, z) ∃zA(x, y, z)

∃zA(x, y, z)

∀y∃zA(x, y, z)

∀x, y∃zA(x, y, z)Where Σ, Σ′ are instantiations of the lemma ∀x, y(x ≤ y) ∨ (y ≤ x) whihstates the deidability of numerial inequality. The algorithmi ontent of thisproof is the following program P1:[x,y℄ [if (x<=1) (y+1)[if (y<=1) (x+1)2xy℄℄We speialize our proof setting y equal to �1� , that is, we substitute �1� foreah free ourrene of y in P1. The ondition (y ≤ 1) beomes true, andafter normalizing the instantiated proof, the inner ase distintion is simpli�edaording to the following proof redution rules
Σatom(tt)∨BMC NC → MC 25

3 Pruning
ΣA∨atom(tt) MC NC → NCobtaining the following proof P2:

|Σ

(x ≤ 1) ∨ (x � 1)

(Ax1 x 1) ux≤1
1

A(x, 1, 2)

∃zA(x, 1, z)

(Ax2 x 1) [1 ≤ 1]

A(x, 1, x + 1)

∃zA(x, 1, z)

∃zA(x, 1, z)

∀x∃zA(x, 1, z)Suh proof orrespond to the speialized onditional term P2:[x℄ [if (x<=1) 2 (x+1)℄The seond minor premise of the (∨E) inferene in the speialized proofabove does not depend on the assumption v(x�1)

1 and so the rule ii) of Table3.1 applies. We prune P2 obtaining the following simpli�ed proof P3:
(Ax2 x 1) [1 ≤ 1]

A(x, 1, x + 1)

∃zA(x, 1, z)

∀x∃zA(x, 1, z)from whih we extrat the following lambda abstration P3:[x℄ (x+1)The proofs P2 and P3 are di�erent derivations of the same formula ∀x∃zA(x,1, z)and they have di�erent omputational ontent: in fat meanwhile the program(P2 0) rewrites into 2, (P3 0) rewrites into 1.This shows that the appliation of pruning to a proof an lead to an inreasein the e�ieny of the extrated algorithm (in this ase it onsists in dishargingthe ase distintion) and that it modi�es the omputational behavior of the(omputational) ontent of the proof to whih it is applied.3.2 Pruning in Minlog3.2.1 Immediate Simpli�ation in MinlogAs we have seen in the previous hapter in our logi we perform ase distintionover a boolean term t by the appliation of the proof onstant IFA : ∀bB((b→
A) → ((b → ⊥) → A) → A) to t. Given a goal formula A, the appliation ofthe ases proof tati on t generates the following proof tree:IFA t

|M

t → A

|N

(t → ⊥) → A (if)
A26

3.2 Pruning in Minlogwhere M and N are the proofs the user will have to supply. The derivationrule (if) ould be seen as an (∨∃) inferene where the or formula to eliminate
A ∨B is just t∨¬t. In order to at on more general formulas than atom(t) weremember that in our system we adopted the following onvention

A ∨ B := ∃p(p→ A ∧ (p→ ⊥)→ B)So, if we need to prove C dispathing over the truth A or B we an proeedbuilding the following derivation:
IF p

(p → A) ∧ ((p → ⊥) → B)

p → A p

A

|M

B
p → B

(p → A) ∧ ((p → ⊥) → B)

((p → ⊥) → B) p → ⊥

B

|N

B

(p → ⊥) → B

B

((p → A) ∧ ((p → ⊥) → B)) → B

∀p((p → A) ∧ ((p → ⊥) → B)) → B

∃−
|Σ

A ∨ B _____________________
BClearly here the assumption p has to be read as �A holds� meanwhile p → ⊥as �B holds�. For this reason we adapted the pruning rules à la Goad (Fig-ure 3.1) to work on (if)-inferene patterns rather than general (∨∃)-inferenes,as depited in Figure (3.2). We an write suh rules also as onversion rulesbetween proof-terms as follow:

(IF t λut.MC λut→⊥.NC) −→ MC ut 6∈ FV(MC)

(IF t λut.MC λut→⊥.NC) −→ NC ut→⊥ 6∈ FV(NC)

(∃−x,A,C M∃xA λx, uA.NC) −→ NC uA 6∈ FV(NC)3.2.2 Dependenies Removal TransformationThe dependenies removal transformation improves the e�etiveness of pruning.This operation involves the replaement of ourrenes of assumption variables,when possible, by proofs of those assumptions from other available information.Consider for example the proof in Figure 3.3.In M both the assumptions ux≤1
3 and ux≤2

1 are ative, i.e. they an appearfree in M in order to prove C. On the other hand, we note that the type ofthe assumption u1 is logially implied by the type of u3. So we an reate the27

3 PruningIFC t

|M

C
t → C

|N

C

(t → ⊥) → C(i ')
C

−→
|M

C
ut is not free in
|MIFC t

|M

C
t → C

|N

C

(t → ⊥) → C(ii')
C

−→
|N

C
(ut→⊥) is not freein |N ,

∃−x,A,C

|M

∃xA

|N

∀x(A → C)(iii')
C

−→
|N

C
uA is not free in
|NFigure 3.2: Pruning rules for minimal logi.new proof

(AX : ∀x(x ≤ 1→ x ≤ 2)) x ux≤1
3of type (x ≤ 2) and substitute it for eah open assumption ux≤2

1 in M (withAX new axiom)In general we will have to fae the following problem: given a onditionalproof-term if-md of the form
(IF t λutMC λvt→⊥NC)and a knowledge KWN (list of axioms, assumption variables, . . .) how to simplifyif-md with respet to KWN? In order to solve this problem, we implemented aproedure named drt(dependeny removal transformation) shown in Algorithm1. In the present work we assume KWN to be a list of pairs (t, ut) with t linearinequality (in the sense that t involves an inequality in some linear funtion ofthe variables) and ut assumption variable of type t, assumed during the prooftree traversal plus, (eventually) some external knowledge supplied diretly bythe user.In Algorithm 1 the truth of the formulas (KNW ≻ t), to be red as `from theknowledge KNW it is possible to dedue the formula t', is deided by a proe-dure all to the Simplex Algorithm (we implemented in Minlog the simplexalgorithm reported in [38℄).A �nal remark regarding the termination of the proedure drt. Given aninput proof p the omputation of drt is driven by the indutive struture of p.If p is a basi proof (assumption variable or proof onstant) then drt stops (line28

3.2 Pruning in Minlog
Algorithm 5 drt(p,KNW = ((tn, u

tn
n) . . . (t1, u

t1
1))), for some 0 ≤ n, p inputproof, ti linear inequality and uti assumption variable assoiated with ti. Weindiate by M [uα/Nα] the substitution in M of all free ourrenes of theopen assumption u with N . We write AX∀~xt1→...→tn for the axiom AX of type

∀~x(t1 → . . . → tn) with ~x list of variables that our in t1, . . . , tn. Given alinear inequality t, we indiate with (KNW ≻ t) a boolean ondition that holdsif and only if t1 → . . .→ tn → t holds (eventually n = 0). Finally proof_onstris a generi proof onstrutor.1: if p is a proof-onstant, axiom or assumption variable then2: p3: else if p ≡ IF t (λutM) (λv(t→⊥)N) then4: let5: M ′ =6: if (KNW ≻ t) then7: let (M ′′ = drt(M,KNW)) inM ′′[ut/(AX∀~xt1→...→tn→t ~x ut1 . . . utn)]8: else9: drt(M, ((t, ut) :: KNW))10: end if11:12: N ′ =13: if (KNW ≻ (t→ ⊥)) then14: let (N ′′ = drt(N,KNW)) inN ′′[vt→⊥/(AX∀~xt1→...→tn→(t→⊥) ~xut1 . . . utn)]15: else16: drt(N, ((t→ ff), v(t→⊥)) :: KNW))17: end if18: in (IF t (λutM ′) (λv(t→⊥)N ′))19: else {that is p = (proof_onstr R1 . . . Rn)}20: let R′
1 = drt (R1,KNW), . . . , R′

n = drt (Rn,KNW) in
(proof_onstr R′

1 . . . R
′
n)21: end if

29

3 Pruning
IF (x ≤ 2)

|M

C →+

u
x≤2
1

x ≤ 2→ C

|N

C →+

u
x≤2→ff

2

(x ≤ 2→ ff)→ C
→−

C →+

u
x≤1
3

x ≤ 1→ CIF (x ≤ 1) ____________ |N ′

C →+

u
x≤1→ff

4

(x ≤ 1→ ff)→ C

CFigure 3.3:1,2 Algorithm 1). Otherwise, all the reursive alls in drt (lines 7, 9 14, 16,20 in Algorithm 1) are performed on struturally simpler proof than the inputproof p.3.2.3 Computing with Permutative ConversionsIt is not always possible to perform the dependenies removal transformationstep of the pruning protool. The ourrenes of partiular proof-patterns(example below) make suh transformation impossible. Consider the followingproof P :
IF t

|M

∃xA
t → ∃xA

|N

∃xA

(t → ⊥) → ∃xA

∃xA

IF x

|P

C
t → C

|Q

C

(t → ⊥) → C

C

∀x(A → C)
∃−x,A,C

CFor spae reasons, we indiate the appliation of the existential eliminationaxiom just by a label on the right hand side of the last inferene, and wedropped the labels→+ assoiated with the assumption-introdution inferenes.The problems that an arise from these kind of proof patterns are essentiallytwo: i) the ondition x is not omparable with any other boolean ondition ii)30

3.2 Pruning in Minlogfrom suh proof-patterns it may be possible to extrat ode with redundaniesthat are di�ult to eliminate.For example if we assume the proofs M,N, P and Q to be in normal form,then the entire derivation P is in normal form. On the other hand, assuming
A and C not an harrop-formulas, the algorithmi ontent of P is the redex:([x,q℄ (if x [[P]] [[Q]])) left(if t [[M]] [[N]]) right(if t [[M]] [[N]]) (3.1)Now onsider the following instantiation of (3.1) for generi terms e1,e2,e3and t: ([x,q℄ (if x (#tt, q) (#ff, e1)))left (if t<=2 (#tt, e2) (#ff, e3)) (3.2)right(if t<=2 (#tt, e2) (#ff, e3))Considering the additional onversion rule that map f(if t r s) to (if t fr fs),(if t #tt #ff) to t, and (a,(if t b s)) to (if t (a,b) (a,s)) then (3.2) re-dues to: (if t<=2 (if t<=2 (#tt, e2) (#tt, e3))(#ff, e1)) (3.3)The two nested and redundant if's on the ondition (t<=2) in the term abovehave no ounterpart at proof level, i.e. in P we don't �nd two nested asedistintions on the same ondition (t<=2) as we ould guess looking at theprogram (3.3). Moreover, the two nested and redundant ase distintions in(3.3) are a soure of ine�ieny. In order to overome these problems, weimplemented in Minlog the permutative onversion rule (in the proof-treestyle) in Figure 3.4 or written as a onversion rule between proof-terms:

α ≡ ∃−(IF t λutM∃xA λut→ffN∃xA)Z∀xA→C

=⇒ (3.4)IF t (λut∃−M∃xA Z∀xA→C) (λut→ff∃−N∃xA Z∀xA→C)This rule permutes an existential elimination inferene upwards over theminor premises of a ase distintion proof (for more details refer to [41, pp,180℄). We see now how partiular instanes of the onversion rule (3.4) helpus in simplifying proof pattern as P and solve the problems raised in points i)and ii) above.Let onsider the following speialization in α: assume M∃xA to be the proofterm (∃+ t RA)∃xA. We an rewrite α as:
∃−(IF t λut(∃+ tRA)∃xA λut→ffN∃xA)Z∀xA→CBy (3.4) it is onverted to:IF t (λut∃−(∃+ tRA)∃xA Z∀xA→C) (λut→ff∃−N∃xA Z∀xA→C) 31

3 Pruning
∃−x,A,C

IF∃xA t

|M

∃xA
t → ∃xA

|N

∃xA

(t → ⊥) → ∃xA

∃xA

|Z

∀x(A → C)

C

=⇒IFC t

∃−x,A,C

|M

∃xA

|Z

∀x(A → C)

C
t → C

∃−x,A,C

|N

∃xA

|Z

∀x(A → C)

C

(t → ⊥) → C

CFigure 3.4: Conversion rule to permute an IF followed by an ∃− axiom.and eliding the ∃−/∃+-axioms by (Elid), we obtain:
α′ ≡ IF t (λutZ∀xA→C t RA) (λut→ff∃−N∃xA Z∀xA→C)If we assume Z be the proof-term (λxB, uASC) with S ase distintion overthe ondition x (as in P) then a onsequene of the instantiation (Z t) in α′ ismaking expliit the term on whih the ase distintion S is performed, elimi-nating the problem raised in point i) above. We note that just the substitutionof (∃+ t R) for M in α would have no bene�t without the permutation rule(3.4). A similar study an be done for the seond minor premise of the asedistintion in α′, for a suitable N∃xA.Now we see here how the onversion rule (3.4) an help in simplifying redun-danies in the extrated ode. Let ξ be the following speialization of P fromwhih the proedure (3.2) ould be extrated (here we assume τ (C) = ǫ):
∃− (if (t ≤ 2) λu(t≤2) (∃+ tt (∃+ e2MC)∃yC)∃x,yC

λu(t≤2)→⊥(∃+ � (∃+ e3NC)∃yC)∃x,yC)

λx, q∃yC if x λux (∃+ tt q)∃x,yC
λux→⊥(∃+ � (∃+ e1RC)∃yC)∃x,yCNow let's permute ξ with (3.4):32

3.3 Case Study: The Bin Paking Problemif (t ≤ 2) λu(t≤2) ∃− (∃+ tt (∃+ e2MC)∃yC)∃x,yC

λx, q∃yC if x λux (∃+ tt q)∃x,yC
λux→⊥(∃+ � (∃+ e1RC)∃yC)∃x,yC

λu(t≤2)→⊥ ∃− (∃+ � (∃+ e3NC)∃yC)∃x,yC

λx, q∃yC if x λux (∃+ tt q)∃x,yC
λux→⊥(∃+ � (∃+ e1RC)∃yC)∃x,yCEliminating ∃−/∃+ by (Elid) we have:if (t ≤ 2) λu(t≤2)λutt (∃+ tt (∃+ e2MC)∃yC)∃x,yC

λu(t≤2)→⊥λu�→⊥ (∃+ � (∃+ e1RC)∃yC)∃x,yCAnd �nally, extrating the term from the last proof we obtain the simpli�edode:if t<=2 (#tt, e2) (#ff, e1)3.3 Case Study: The Bin Paking ProblemIn this setion we introdue the 1-dimensional Bin-Paking problem, as origi-nally formulated in [17℄.Given a list of boxes of dimensions expressed by the naturals p1, . . . , pn andbins of apaity expressed by the naturals b1, . . . , bm, �nd, if it exists, a validassignment of the boxes into the bins in suh a way that for eah bin the sumof the dimensions of the boxes assigned to it does not exeeds the apaity ofthe bin itself.We will indiate the input list of boxes by X, the list of bins by B, and theoutput assignment by A. We indiate the i-th element of l, the length of list
l and the list l �where the position i is dereased by a� respetively by l[i],
|l| and l[i/a]. The output assignment list A has this property: for eah natural
i, the i-th box has to be put in the bin A[i]. It follows that the list of boxesand assignments have to have the same length, that is, the equality (|X| = |A|)holds. Now we introdue some notation that will be useful for our proof. Forlists of naturals A and X and a natural i, we de�ne SUM to be the followingfuntion: SUM(A,X, i) =

X

j∈Q

X[j] with Q = {j|A[j] = i}We de�ne a prediate PACK that states under whih onditions a list of naturals
A an be onsidered a valid assignment for the list of boxes X and bins B, andthe additional prediate PACKB that states the existene of a valid assignmentfor the list of boxes X and bins B puls an additional onstraint on the bin the�rst box should be assoiated,PACK(A,X,B) ⇐⇒ (∀i.i < |A| → A[i] < |B|) ∧ 33

3 Pruning
(|X| = |A|) ∧

(∀i.i < |B| → SUM(A,X, i) ≤ B[i])PACKB(n,A,X,B) ⇐⇒ X 6= (:) ∧PACK(A,X,B) ∧

(|B| − n) ≤ A[0]The 1-dimensional bin paking problem an be formulated as a deision problemwhere, given an input element x, we have to state if there exists an y suh thata property P (x, y) holds or not. We an express this fat by the followingformula:
∀x(∃yP (x,y)) ∨ ((∃yP (x, y))→ ⊥)As already seen, in our system we express suh formulas as:

∀x∃p(p→ ∃yP (x, y)) ∧ ((p→ ⊥)→ ((∃yP (x, y))→ ⊥))that is, for eah input x there exists a boolean p suh that if p holds then we areable to supply a solution, else no solution exists. We will all (p→ ∃yP (x, y))and ((p → ⊥) → ((∃yP (x, y)) → ⊥)) the positive and negative part of theformula above. The proof-algorithm that we propose is a �rst-�t algorithmbeause, in the ourse of the searh, it attempts to plae a blok in the �rstbin in whih it �ts as its initial try.Theorem 3.3.1.
∀X,B∃p (p→ ∃APACK(A,X,B)) ∧

((p→ ⊥)→ (∃APACK(A,X,B))→ ⊥)Proof. By indution on X. Case X = (:). If there are no boxes to �t, thenfor eah list of bins B the empty list is a valid assignment. Case X = (a :: l).Assume the indution hypothesis (IH) and a generi list B of bins. In order toprove
∃p (p→ ∃APACK(A, (a :: l), B)) ∧

((p→ ff)→ (∃APACK(A, (a :: l), B))→ ⊥) (3.5)we prove the following assertion:
∀n. (n ≤ |B|)→ ∃p (p→ ∃A(PACKB(n,A, (a :: l), B)) ∧

((p→ ⊥)→ (∃APACKB(n,A, (a :: l), B))→ ⊥)(3.6)Obviously we an derive (3.5) instantiating (3.6) on |B|. To prove (3.6) we go34

3.3 Case Study: The Bin Paking Problemby indution on n. Case n = 0. We fail �nding a valid assignment for (a :: l)in B beause it should holds |B| ≤ A[0] and A[0] < |B|. Case n + 1. Assumethe nested indution hypothesis (NIH) and (n+ 1 ≤ |B|). We prove:
∃p (p→ ∃APACKB((n+ 1), A, (a :: l), B)) ∧

((p→ ff)→ (∃APACKB((n+ 1), A, (a :: l), B))→ ⊥) (3.7)Obviously if (n+ 1 ≤ |B|) then (n ≤ |B|). There are only two ases:
• (a ≤ B[|B| − (n+ 1)]): The dimension of the �rst box �ts in the bin inposition (|B| − (n+ 1)). So we hek if a valid assignment exists for thelist l into the list of bins B, where the position (|B| − (n+ 1)) (of B) isdereased by the quantity a. We instantiate (IH) on B[(|B|− (n+1))/a].So there exists a boolean p suh that:

(p→ ∃APACK(A, l, B[(|B| − (n+ 1))/a])) ∧ (3.8)
((p→ ⊥)→ (∃APACK(A, l, B[(|B| − (n+ 1))/a]))→ ⊥)There are two ases: p holds or it doesn't hold.

p holds: We are done. From (3.8) we knowA suh that PACK(A, l, B[(|B|−
(n+ 1))/a]), so the thesis is proved introduing tt for p and ((|B| −
(n+ 1)) :: A) for A in the positive part of (3.7).

(p→ ff) holds : A valid assignment A, if it does exists, has to assign ato the bin i with |B| −n ≤ i < |B|. So the searhed assignment andthe proof of its existene (or the proof of its non existene) is givenby the nested indution hypothesis (NIH)
• (a � B[|B| − (n + 1)]): Also in this ase, if a solution does exists, it isgiven by (NIH)The ode extrated from the previous proof is:(Re (list nat=> list nat=> (boole, list nat)))([B℄ (#tt , (:)))([a,l,f,B℄[(Re (nat => (boole, list nat))(#ff, (:))[n, (p ,A)℄if (a <= B[|B|-(n+1)℄)let (p',A') = f B[(|B|-n)/a℄if p' (#tt, (|B|-(n+1))::A') (p, A)(p, A)℄ |B|The let onstrutor is obtained using in some strategi point of the proof theidentity axiom (Setion 2.2). 35

3 Pruning3.3.1 ExperimentWe speialize the bin-paking proof on the input lists of boxes X = (n :: m :)and bins B = (a :: a :). The ontent of the speialized proof is:if (n<=a)if (m<=a--n)(#tt, 0::(if (m<=a-n) (0:) (if (m<=a) (1:) (:))))if (m<=a)(#tt, 0::(if (m<=a-n) (0:) (if (m<=a) (1:) (:))))if (n<=a)if (m<=a)(#tt, 1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))(m<=a-n�if (m<=a-n)(1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))(:))(#ff, (:))if (n<=a)if (m<=a)(#tt, 1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))(m<=a-n,if (m<=a-n) (1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))) (:))(#ff, (:))The permutative onversion rules are applied to the speialized proof. Theomputational ontent of the permuted proof is:if (n<=a)if (m<=a-n)(#tt, (0::0:))if (m<=a)(#tt,(0::1:))if (n<=a)if (m<=a) (#tt, (1::0:)) (m<=a-n, (if (m<=a-n) (1::1:) (:)))(#ff, (:))if (n<=a)if (m<=a) (#tt, (1::0:)) (m<=a-n, (if (m<=a-n) (1::1:) (:)))(#ff, (:))Finally pruning is applied to the permuted proof. Here we distinguish twoases in extrating the ode from the pruned proof:No additional knowledge on n,m is required: P1= if (n<=a)if (m<=a-n) (#tt, (0::0:)) (m<=a, (if (m<=a) (0::1:) (:)))(#ff, (:))Assuming m ≤ n: 36

3.4 ConlusionsP2 = (n<=a, if (n<=a) (0::1:) (:))In the �rst ase (no knowledge on the input parameters) the e�et of pruningis the simpli�ation of if-statements that our in the left/right branh of anouter if-statement with the same boolean ondition. This proess ould beperformed with a program transformation tehniques suh as partial evalua-tion[21℄.In the seond ase (m ≤ n) something di�erent happens: there is no wayto go from P1 to P2 with any program transformation tehnique. In fat,the elimination of the if-statement on the ondition (m<=a-n) only refers todependeny information available at proof level, and not at program level.Finally we see that the extensional behavior of the extrated ode P1 and P2hanges. While P1, if n<=a may return (0::0:), P2 will always return (0::1:).But pruning keeps the end formula of the sub-proofs on whih it is applied soboth the results even if di�erent will satisfy the same logial spei�ation.3.4 ConlusionsIn this hapter we presented an adaptation of the pruning tehnique[17℄ tominimal logi on whih the Minlog proof assistant is based and we appliedit to the formalization and simpli�ation of the bin paking problem. In ourwork we showed how pruning is intimately related to the operation of proofpermutation and we showed the omputational bene�ts, in terms of eliminationof redundant ode, that the permutation operation indue s on the extratedode. In hapter 5 we will propose an extension of the pruning tehnique.

37

3 Pruning

38

4 Bounded Perfet Mathing Problem4.1 Introdution and MotivationIn this setion we introdue a widely studied problem in Bioinformats, theshortest ommon superstring problem. The problem an be formulated as fol-lows: given a set of strings P = {s1, . . . , sn} �nd the shortest string S thatontains every string in P . For example a superstring of ab and fa is w-faabd but abfa and fab are the shortests.The problem of �nding the shortest superstring have appliations in dataompression but the major motivation is related to the sequene assembly prob-lem in shotgun sequening, a method used for sequening long DNA strands.Eah string in the set P models one of the sequened DNA fragments reatedby the shotgun sequening protool[20, pp. 420℄. The assembly problem is todedue the originating DNA string S from the set of sequened fragments P .Without sequening errors, the originating string S is a superstring of P and,under some assumptions, S is likely to be a shortest superstring of P . In thatase, a shortest superstring of P is a good andidate for the originating string
S.In [40℄ it is formally showed that the shortest ommon superstring is a NP-hard problem, that is there is no polynomial time algorithm solving it (unlessP=NP). An idea to solve this problem is to embed it into more familiar algo-rithmi �elds, namely Hamiltonian iruit problems.Let s1, . . . , sm be a list of strings. We indiate by o(si, si+1), p(si, si+1) and
s(si, si+1) the lengths of the overlap, of the pre�x and of the su�x between thestrings si and si+1. Here we use the notion of �pre�x� and �overlap� de�nedas follow. Given deompositions of strings S = XY and T = Y Z suh that
Y is the longest su�x of S (di�erent form S) and also a pre�x of T , we all
Y , X and Z respetively the the overlap, pre�x and su�x strings of S with
T . These de�nitions give rise to two graphs, alled overlap graph, and pre�xgraph for a string list s1, . . . , sm. Both are direted graphs that have m nodeslabeled s1, . . . , sm and direted edges between any two suh nodes (thus alsofrom every node bak to itself). Furthermore, the edge pointing from node sito sj is weighted by number o(si, sj) in the overlap graph, and p(si, sj) in thepre�x graph.As showed in [40℄, searhing for a shortest ommon superstring might aswell replaed with searhing for the heapest Hamiltonian yle (losed path39

4 Bounded Perfet Mathing Problemvisiting eah node exatly one) through the pre�x graph. Unfortunately theHamiltonian yle problem is NP-omplete, but as it is known from algorithmtheory, omputing a �nite set of disjoint yles (instead of a single yle) havingminimum summed osts and overing every node in a weighted graph is ane�iently solvable problem. Suh a �nite set of yles is alled a yle over.As proved [40℄ the problem of omputing a yle over with minimum ostsin a pre�x graph is equivalent to the problem of omputing a yle over withmaximum osts in overlap graph. To do so, we transform the yle over prob-lem for overlap graphs into a perfet mathing problem in a bipartite versionof overlap graph. The latter is de�ned as follows. Create for every node si inoverlap graph a opy node alled gi. Thus the new graph onsists of two parts,a left part with all the nodes from the original graph, and a right part that is aopy of the left part. Every direted edge from node si to node sj is simulatedby an undiret edge between node si and opy node gj with weight o(si, sj).Now onsider an arbitrary loal yle with ost c in overlap graph:
sπ1 → sπ2 → sπ3 → . . .→ sπm−1 → sπm → sπ1for some permutation π. Its direted edges orrespond to undireted edges ofthe bipartite version as follows:

sπ1 sπ2 sπ3
. . . sπm−1 sm

gπ2 gπ3 gπ4
. . . gπm gπ1Suh a one-to-one relation between node sets {s1, . . . , sm} and {g1, . . . , gm}with an undireted edge between any two related nodes is alled a mathing.The ost of a mathing are de�ned as the summed weights of its undiretededges. We observe that the osts of the onstruted mathing oinide withthe ost c of the onsidered loal yle. Conversely, having a mathing withosts c between node sets {s1, . . . , sm} and {g1, . . . , gm} we may always arrangemathes pairs in an ordering as above, thus we obtain a loal yle with osts

c through node set {s1, . . . , sm}. Now let us onsider an arbitrary yle overwith osts c in overlap graph. Its yles lead to a olletion of (loal) mathingsthat together form a mathing with osts c, alled a perfet mathing (�perfet�sine all nodes partiipate in the mathing).In this hapter we formalize the problem of �nding a perfet mathing withmaximum weight higher or equal of a �xed threshold t of a omplete bipartitegraph. We will present a proof of the existene of suh perfet mathing and wewill extrat a program from it. The proof-strategy we follow is simply to enu-merate all the possible solutions and selet the one that satisfy our onstraints.This learly generate an exponential extrated program. In our experimentswe show how, applying the pruning method on speial instantiations of this40

4.2 Bounded Perfet Mathing of a Complete Bipartite Graphproblem where some additional knowledge on the input graph is assumed (theMonge inequality) then it is possible to extrat a program extremely simpli�erthan the one that enumerate all the possible solutions.4.2 Bounded Perfet Mathing of a Complete Bipartite Graph4.2.1 Basi De�nitionsDe�nition 4.2.1 (Weighted Bipartite Graph). The weighted graph G = (V ⊆
N, E ⊆ N×N×N) is bipartite, if there exists V1 and V2 suh that: V = V1∪V2,
V1 ∩ V2 = ∅ and ∀e ∈ E. π0e ∈ V1 ∧ π1e ∈ V2.Here πi∈{0,1,2}(n1, n2, n3) = ni, and the natural n3 is the weight of the edge
(n1, n2). If the graph G = (V,E) is bipartite then we write it as G = (V1, V2, E)for two opportune sets of verties V1 and V2.De�nition 4.2.2 (Complete Weighted Bipartite Graph). Let G = (V1, V2, E)be a weighted bipartite graph. G is omplete if ∀u ∈ V1 v ∈ V2 ∃e ∈ E.π0e =
u ∧ π1e = v.De�nition 4.2.3 (Mathing). Given the weighted bipartite graph G = (V1, V2, E)a mathing M of G is a subset of V1×V2 with the following two properties: forall u ∈ V1, v ∈ V2 if (u, v) ∈M , then1. ∀u′ ∈ V1.u 6= u′ → (u′, v) 6∈M2. ∀v′ ∈ V2.v 6= v′ → (u, v′) 6∈MDe�nition 4.2.4 (Weight of a Bipartite Graph). Given a mathing M ofthe weighted bipartite graph G = (V1, V2, E) the weight of M, SUM(M,E), isde�ned as follows:SUM({}, E) = 0SUM(M ∋ e, E) = v + SUM(M\{e}, E) with (π0e, π1e, v) ∈ EIn the following we will indiate the ardinality of a set U by |U |.De�nition 4.2.5 (Perfet Mathing). Given a omplete weighted bipartitegraph G = (V1, V2, E), with |V1| = |V2| = n, we say that a mathing M of
G is perfet if |M | = n.De�nition 4.2.6 (Maximum Perfet Mathing Problem). Given the ompleteweighted bipartite graph G = (V1, V2, E) with |V1| = |V2|, �nd a mathing Msuh that SUM(M ′, E) ≤ SUM(M,E) for any perfet mathing M ′ of G.De�nition 4.2.7 (Bounded Perfet Mathing Problem). Given the ompleteweighted bipartite graph G = (V1, V2, E) with |V1| = |V2|, and T a naturalnumber, �nd a mathing M suh that T ≤ SUM(M,E). 41

4 Bounded Perfet Mathing Problem4.2.2 Algorithms, Data Strutures and Automati Program SynthesisThe sets V1 and V2 are implemented as lists of naturals without dupliations.We indiate the length of the list V by |V |. We indiate by tail(V) the operationthat return the tail of the non empty list V . The set E of weights is implementedby a list of triple of naturals (i, j, vi,j), with i ∈ V1, j ∈ V2 and vi,j weight ofthe edge (i, j). Given i ∈ V1, j ∈ V2, the weight of the ar (i, j) is indiated by
E[i, j]. A perfet mathingM of V1 and V2 is implemented by a list of naturals
M with the following two properties: i) for all j, if M [j] = k then (V1[j], k),with V2[m] = k for some m, belong to the perfet mathing and ii) for all
j 6= k, M [j] 6= M [k]. By i) and ii) it follows that M is a permutation of V2.Under these assumptions the funtion SUM : N → N → (N ×N ×N) → N(that takes in input the vetor of nodes V1, the mathing vetor M , the thematrix of weights E and returns the weight of M) is de�ned as follow:SUM([], [], E) = 0SUM(v :: V1,m :: M,E) = E[v,m] + SUM(V1,M,E)Given a omplete weighted bipartite graph G = (V1, V2, E), with |V1| = |V2|,Mis a omplete mathing of G if and only if MATCH(M,V2), with the prediateMATCH de�ned as follow:

rri
(M1) MATCH((:), (:))

MATCH(M, V2\{n})
(M2) V2[n] = mMATCH(m :: M, V2)Proposition 4.2.1. ∀l.MATCH(l, l)Proof. Case l = (:), by (M1). Case l = (a :: l′), We have to prove MATCH(l′, l′)that follow by the indution hypothesis.Now we supply a onstrutive proof of the existene (or not) of a perfetmathing (with weight higher or equal than a �xed threshold) of a ompletebipartite graph. The used strategy is to enumerate all the possibilities, tillthe desired solution is found. Obviously this searhing method is partiularlyine�ient, and it require an exponential number of steps when exeuted on aspei� input graph.In the rest of the hapter we will use the following onventions:

V1, V2, E, T −→M for �M is a perfet mathing between V1 and V2 suh that
T ≤ SUM(V1,M, E)�, that is MATCH(M,V2) ∧ T ≤ SUM(M,V1, E)

V1, V2, E, T −→n M for V1 6= (:), V1, V2, E, T −→M and |V2|−n ≤ ♮(M [0], V2)and we wrote V \{m} to indiate the list V from whih is dropped the node inposition m, with m : 0, . . . , |V | − 1 and ♮(n, V2) = m for V2[m] = n.42

4.2 Bounded Perfet Mathing of a Complete Bipartite GraphTheorem 4.2.2.
∀V1V2E,T. (|V1| = |V2| ∧ 0 ≤ T)→ ∃p.

p→ (∃M.V1, V2, E, T −→M)∧
(p→ ⊥)→ (∃M.V1, V2, E, T −→M)→ ⊥Proof. By indution on V1. Case V1 = (:): Assume V2,E, T and ip:(|(:)| =

|V2|) ∧ 0 ≤ T). By ip it follows V2 = (:). The urrent thesis beame:
∃p. p→ (∃M.(:), (:), E, T −→M)∧

(p→ ⊥)→ (∃M.(:), (:), E, T −→M)→ ⊥
(4.1)Two ases are possible: Case 0 < T : then no perfet mathing does exist. Sowe introdue � for p. The positive part of (4.1) is proved by (Efq). To provethe negative part of (4.1) let's assume ⊤ and ip:∃M.(:), (:), E, T −→ M . Byip does exists M suh that MATCH(M, (:)) and T ≤ SUM(M, (:), E). But ifMATCH(M, (:)) by (M1) we have M = (:), and so SUM((:), (:), E) = 0 thatgenerate a ontradition with the hypothesis 0 < T ≤ SUM((:), (:), E). Case

0 = T : Introdue tt for p. The positive part of (4.1) is proved introduing (:)for M , and the negative part of (4.1) is proved by (Efq). Case V1 = (a :: l) :Assume
∀V2E,T. (|l| = |V2| ∧ 0 ≤ T)→ ∃p.

p→ (∃M.l, V2, E, T −→M)∧
(p→ ⊥)→ (∃M.l, V2, E, T −→M)→ ⊥

(4.2)
V2, E, T and ip:(|(a :: l)| = |V2| ∧ 0 ≤ T). Given the natural a, we prove

∃p. p→ (∃M.(a :: l), V2, E, T −→M)∧
(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→M)→ ⊥

(4.3)In order to prove (4.3) we prove the following assertion:
∀n.∃p. p→ (∃M.(a :: l), V2, E, T −→n M)∧

(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n M)→ ⊥
(4.4)Obviously (4.3) is obtained instantiating (4.4) on |V2|. To prove (4.4) we pro-eed by indution on n. Case n = 0: We shall look for a mathing M suhthat ♮(M [0], V2) ≥ |V2|, but from this follow a ontradition. So we introdue� for p. The positive part of (4.4) is proved by (Efq). For the negative part,assume ⊤, and ip′: ∃M.(a :: l), V2, E, T −→|V2| M . From ip′ it follows thatthere exists M suh that (a :: l), V2, E, T −→ M and |V2| ≤ ♮(M [0], V2). But

M [0] is an element of V2, that is ♮(M [0], V2) ≤ |V2| − 1, from whih it follow a43

4 Bounded Perfet Mathing Problemontradition. Now let's assume the nested indutive hypothesis
∃p. p→ (∃M.(a :: l), V2, E, T −→n M)∧

(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n M)→ ⊥
(4.5)a natural n, and we prove

∃p. p→ (∃M.(a :: l), V2, E, T −→n+1 M)∧
(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n+1 M)→ ⊥

(4.6)There are two ases, CaseE[a, V2[|V2| − (n+ 1)]] < T : We instantiate (4.2) on
V2\{|V2| − (n + 1)}, E and (T − E[a, V2[|V2| − (n + 1)]]). This instantiationprodue the following hypothesis:

(|l| = |V2\{|V2| − (n+ 1)}| ∧ 0 ≤ (T − E[a, V2[|V2| − (n+ 1)]]))→ ∃p.
p→ (∃M.l, V2\{|V2| − (n+ 1)}, E, (T − E[a, V2[|V2| − (n+ 1)]]) −→M)∧
(p→ ⊥)→
(∃M.l, V2\{|V2| − (n+ 1)}, E, (T −E[a, V2[|V2| − (n+ 1)]]) −→M)→ ⊥

(4.7)By ip, |(a :: l)| = |V2| thus |l| = |V2\{|V2|−(n+1)}|, moreover by E[a, V2[|V2|−
(n + 1)]] < T it follows that 0 ≤ (T − E[a, V2[|V2| − (n + 1)]]). Instantiating(4.7) on these two fats, we know a boolean p suh that

p→ (∃M.l, V2\{|V2| − (n+ 1)}, E, (T − E[a, V2[|V2| − (n+ 1)]]) −→M)∧
(p→ ⊥)→
(∃M.l, V2\{|V2| − (n+ 1)}, E, (T − E[a, V2[|V2| − (n+ 1)]]) −→M)→ ⊥

(4.8)Two ases are possible, Case p: We introdue tt for p in the goal formula (4.6)obtaining the new goal:
(tt→ ∃M.(a :: l), V2, E, T −→n+1 M)∧
⊥ → ((∃M.(a :: l), V2, E, T −→n+1 M)→ ⊥)

(4.9)To prove the positive part of (4.9): assume tt and instantiate the left of (4.8)on p, from whih it follow that there exists M suh that:
l, V2\{|V2| − (n+ 1)}, E, (T − E[a, V2[|V2| − (n+ 1)]]) −→M (4.10)So we introdue (V2[|V2| − (n+ 1)] :: M) for M . We have to prove:

• MATCH((V2[|V2| − (n+ 1)] :: M), V2): by (M2) this orrespond to proveMATCH(M,V2\{|V2| − (n+ 1)}), that hold by (4.10).
• T ≤ SUM(a :: l, (V2[|V2| − (n + 1)] :: M), E): This orrespond to prove
T − E[a, V2[|V2| − (n+ 1)]] ≤ SUM(l,M,E), that follow by (4.10).

• |V2|− (n+1) ≤ ♮((V2[|V2|− (n+1)] :: M)[0], V2): By de�nition (V2[|V2|−44

4.2 Bounded Perfet Mathing of a Complete Bipartite Graph
(n+ 1)] :: M)[0] = V2[|V2| − (n+ 1)] and then ♮(V2, V2[|V2| − (n+ 1)]) =
|V2| − (n+ 1).To prove the negative part of (4.9): by (Efq). Case p→ ⊥: by (4.5) there exists

p suh that:
p→ (∃M.(a :: l), V2, E, T −→n M)∧
(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n M)→ ⊥

(4.11)We introdue p for p in (4.6) obtaining the new goal:
p→ (∃M.(a :: l), V2, E, T −→n+1 M)∧
(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n+1 M)→ ⊥

. (4.12)To prove the positive part of (4.12): assume p and instantiate the positive partof (4.11) on p. It follows that there exists M perfet mathing between (a :: l)and V2 suh that |V2| − n ≤ ♮(M [0], V2), and thus, |V2| − (n+ 1) ≤ ♮(M [0], V2).To prove the negative part of (4.12): Assume p→ ⊥. Now, onsidering that:
• Instantiating the negative part of (4.8) on (p → ⊥) there not exists any
M suh that l, V2\{|V2|− (n+1)},E, (T −E[a, V2[|V2|− (n+1)]]) −→M .Thus, for eah mathing M , naming δM = SUM(l,M,E), we have δM <
T − E[a, V2[|V2| − (n + 1)]] and thus δM + E[a, V2[|V2| − (n + 1)]] < T ,i.e. there exists no mathingM between (a :: l) and V2 suh that M [0] =
V2[|V2| − (n+ 1)].
• Instantiating the negative part of (4.11) on p → ⊥ there not exists any
M suh that: (a :: l), V2, E, T −→n Mwe onlude that there exists no mathingM suh that: (a :: l), V2, E, T −→n+1

M . CaseE[a, V2[|V2| − (n+ 1)]] ≥ T : The value of the mathing built so far ishigher than T , so we an stop the searh. Instantiate (4.2) on V2\{|V2|−(n+1)},
E and 0. Thus there exists p suh that

p→ (∃M.l, V2\{|V2| − (n+ 1)}, E, 0 −→M)∧
(p→ ⊥)→ (∃M.l, V2\{|V2| − (n+ 1)}, E, 0 −→M)→ ⊥

(4.13)Eah mathing between two set has a value greater or equal than zero (exeptthe ase in whih we onsider ars with negative weight). Thus p has to betrue. We state this fat asserting the validity of p. So we have two new goals:
p and p→(4.6). To prove p: we assert that the existene a mathing between
l and V2\{|V2| − (n+ 1)} with a value higher or equal than 0. We reate twonew subgoals:

∃M.l, V2\{|V2| − (n+ 1)}, E, 0 −→M (4.14)45

4 Bounded Perfet Mathing Problem
(∃M.l, V2\{|V2| − (n+ 1)}, E, 0 −→M)→ p. (4.15)To prove (4.14): by de�nition the returning mathing, if it exists, is a list ofnaturals, permutation of V2\{|V2| − (n + 1)}. So we an return the identitypermutation, that is we introdue V2\{|V2|− (n+1)} forM . We have to prove:

• MATCH(V2\{|V2| − (n+ 1)}, V2\{|V2| − (n+ 1)}): By Prop. 4.2.1.
• 0 ≤ SUM(l, V2\{|V2| − (n+ 1)}, E): By de�nition of SUM.To prove (4.15): Assume ip′ : ∃M.l, V2\{|V2| − (n + 1)}, E, 0 −→ M . Thehypothesis (4.13) is a onjuntion, so both the branhes have to be true. Inpartiular, by ip, (∃M.l, V2\{|V2| − (n + 1)}, E, 0 −→ M) → ⊥ is false, thus

p→ ⊥ has to be false and p true. To prove p→ (4.6). Assume p. We introduett for p in (4.6) obtainingtt→ (∃M.(a :: l), V2, E, T −→n+1 M)∧
⊥ → (∃M.(a :: l), V2, E, T −→n+1 M)→ ⊥

(4.16)To prove the positive part of (4.16): assume tt. Instantiate the left of (4.13)on p, so we know M suh that:
l, V2\{|V2| − (n+ 1)}, E, 0 −→M (4.17)We introdue (V2[|V2| − (n+ 1)] :: M) for M . We have to prove:

• MATCH(V2[|V2| − (n + 1)] :: M,V2): By (M2) it orresponds to proveMATCH(M,V2\{|V2| − (n+ 1)}) that follow by (4.17).
• T ≤ SUM((a :: l), V2[|V2| − (n + 1)] :: M,E): It is equivalent to prove
T ≤ E[a, V2[|V2| − (n + 1)]] + SUM(l,M,E). This fat follows fromSUM(l,M,E) ≥ 0, by (4.17), and by the hypothesis E[a, V2[|V2| − (n +
1)]] ≥ T .

• |V2| − (n + 1) ≤ ♮((V2[|V2| − (n + 1)] :: M)[0], V2): already proved as avalid inequality.To prove the negative part of (4.16): by (Efq).The omputational ontent of the Theorem4.2.2 is showed in Table 4.1 (thealgorithm is written by metarules)4.2.3 Problem Speialization: The Monge InequalityIn this subsetion we present an algorithm to solve the bounded perfet math-ing problem in presene of additional knowledge on the input parameters. The46

4.2 Bounded Perfet Mathing of a Complete Bipartite Graph
0 < T

(:), V2, E, T −→ (�, (:)) (:), V2, E, 0 −→ (tt, (:))
(a :: l), V2, E, T −→|V2| (p,M)

(a :: l), V2, E, T −→ (p,M)

T −→|V2| T

V1, V2, E, T −→0 (�, (:))tail(V1), V2\{|V2| − (n+ 1)}, E, T ′ −→ (tt,M) C1
V1, V2, E, T 7−→n+1 (tt, (V2[|V2| − (n+ 1)] :: M))tail(V1), V2\{|V2| − (n+ 1)}, E, T ′ −→ (�,_) V1, V2, E, T −→n (p,M) C1

V1, V2, E, T 7−→n+1 (p,M)tail(V1), V2\{|V2| − (n+ 1)}, E, 0 −→ (p,M)
¬C1

V1, V2, E, T 7−→n+1 (tt, (V2[|V2| − (n+ 1)] :: M))with
T ′ := T − E[V1[0], V2[|V2| − (n+ 1)]],C1 := E[V1[0], V2[|V2| − (n+ 1)]] < T ,
¬C1 := E[V1[0], V2[|V2| − (n+ 1)]] 6< TTable 4.1: Algorithm to ompute the Maximum Perfet Mathing of the Bipar-tite Graph G = (V1, V2, E) (V1 and V2 of same ardinality)solution we present here is not synthesized from a proof, anyway the orretnessof the method is proved formally. The basi idea is that if the input bipartitegraph V satisfy a ertain property, the Monge inequality, then we an omputethe weight of the maximum perfet mathing of V using a partiularly fastalgorithm, alled the Greedy algorithm [20℄. One we have vmax, weight of themaximum perfet mahting of V, and t natural threshold, then the boundedperfet mathing problem an be solved by just a omparison between vmaxand t.De�nition 4.2.8. Let G = (V1, V2, E) a omplete weighted bipartite graph.Now let u, u′ ∈ V1 and v, v′ ∈ V2 and assume without loss of generality thatmax{E[u, v′], E[u′, v], E[u′, v′]} ≤ E[u, v]. If

E[u′, v] + E[u, v′] ≤ E[u, v] + E[u′, v′]then the four nodes u, v, u′, v′ are said to satisfy the Monge inequality. 47

4 Bounded Perfet Mathing ProblemA omplete weighted bipartite graph is said to satisfy the Monge inequalitiesif the Monge inequality is satis�ed for any two arbitrary nodes from V1 togetherwith any two arbitrary nodes from V2.If a omplete weighted bipartite graph G satisfy the Monge inequalities thenthe Greedy Assignment algorithm (Figure 4.1) applied to G return a maxi-mal mathing for G (theorem 4.2.3). This is not true in general [For exampleonsider G = ({0, 1}, {0, 1}, {(0, 0, 9), (0, 1, 10), (1, 0, 1), (1, 1, 7)})℄.The greedy assignment algorithm runs in O(n2log(n)), with Vi = n, and isone the known fastest algorithm to ompute the maximal perfet mathing of
G for G omplete weighted bipartite graph that satisfy the Monge inequality.In Figure 4.1 we used the following notation:
• l1, l2 7−→m l3, for � l3 is the ordered merge of the two lists of weightednodes l1 and l2�
• E 7−→ms E′, for �E′ is obtained ordering the list of weighted nodes E bythe Merge Sort algorithm�
• V1, V2, E 7−→gr M , for �M is the perfet mathing between V1 and V2obtained by the Greedy assignment �.
• E{→ v} for the list E where are dropped all the ars (u, v, lu,v), for eah
u ∈ V1

• E{u←} for the list E where are dropped all the ars (u, v, lu,v), for eah
v ∈ V2

• E[i,...,j] = (E[i], . . . , E[j]), E[|E|,...,|E|−1] = (:).Theorem 4.2.3. Given a omplete weighted bipartite graph G = (V1, V2, E), if
V1, V2, E 7−→gr M then M is a maximum perfet mathing of G.Proof. By ontradition. Assume M is a perfet mathing between V1 and
V2 with respet to the set of edges E suh that SUM(M) < SUM(M). Thenassume e = (u, v) ∈ M �rst edge found by the greedy algorithm that does notbelong to M . Follow that the two edges a = (u, v′), and b = (u′, v), has tobelong to M , for some u′ ∈ V1, v 6= u′, u′ ∈ V2, v 6= v′,. The edge e washosen by the greedy algorithm among also all the edges inident in u and v,so E[e] ≥ E[a] and E[e] ≥ E[b]. Now the ases are possible:
f = (u′, v′) ∈M , Obviously f 6∈ M . Being e the �rst edge hosen by thegreedy algorithm not inM then E[e] ≥ E[f] and by the Monge inequality,48

4.2 Bounded Perfet Mathing of a Complete Bipartite Graph
l, (:) 7−→m l (:), l 7−→m l

l1, ((u
′, v′, l′u,v) :: l2) 7−→m l3

lu,v ≤ l′u,v

((u, v, lu,v) :: l1), ((u
′, v′, l′u,v) :: l2) 7−→m ((u, v, lu,v) :: l3)

((u, v, lu,v) :: l1), l2 7−→m l3
lu,v > l′u,v

((u, v, lu,v) :: l1), ((u
′, v′, l′u,v) :: l2) 7−→m (((u′, v′, l′u,v) :: l3)

E
[0,...,⌊

|E|
2

⌋−1]
7−→ms l1 E

[⌊
|E|
2

⌋,...,|E|−1]
7−→ms l2 l1, l2 7−→m l3

|E| > 0,
E 7−→ms l3

{}

(:) 7−→gr' (:)

l{→ v}{u←} 7−→gr' M
((u, v, lu,v) :: l) 7−→gr' ((u, v, lu,v) :: M)

{}
|E| = 0

E 7−→ms (:)

E 7−→ms l l 7−→gr' M
V1, V2, E 7−→gr M

V1, V2, E 7−→gr M C
V1, V2, E, T 7−→bgr (tt,M)

V1, V2, E 7−→gr M
¬C

V1, V2, E, T 7−→bgr (�, (:))with C ≡ T ≤ SUM(M,E)Figure 4.1: Greedy Assignment to �nd the Bounded Perfet Mathing of a bi-partite Graph G = (V1, V2, E) that satisfy the Monge inequality.
E[a] + E[b] ≤ E[e] + E[f]. We de�ne the new perfet mathing M ′ by a�loal� modi�ation of M as follow:

M
′
= (M\{a, b}) ∪ {e, f}Being e, f inM we have |M\M ′
| = |M\M |−2, that is |M\M ′

| < |M\M |.Moreover by the inequality E[a]+E[b] ≤ E[e]+E[f] we have SUM(M) ≤SUM(M
′
).

f = (u′, v′) 6∈M , Let's assume h = (u′, v′′) ∈ M and g = (v′, u′′) ∈ M with
v′ 6= v′′ and u′ 6= u′. Obviously h, g 6∈ M else would be violated theproperty to be a mathing for M , and being e the �rst edge in M\M49

4 Bounded Perfet Mathing Problemhose by the greedy algorithm we have E[h] ≤ E[e] and E[g] ≤ E[e]. If
h, g are piked up by the greedy algorithm then E[f] ≤ E[h], E[f] ≤
E[g] and by transitivity E[f] ≤ E[e]. Thus by the monge inequality
E[a]+E[b] ≤ E[e]+E[f]. As in the above ase we de�ne the new perfetmathing M ′ by a �loal� modi�ation of M as follow:

M
′
= (M\{a, b}) ∪ {e, f}Being e in M we have |M\M ′
| = |M\M | − 1, that is |M\M ′

| < |M\M |.Moreover by the inequality E[a] + E[b] ≤ E[e] + E[f], SUM(M) ≤SUM(M
′
).Now ifM = M
′ stop, else we setM ←M

′, pik a new e �rst edge inM\M andrepeat the proedure above. This algorithm produe a list of perfet mathings
M1,M2, . . . ,Md≤n (in the beginning we have M = M1) suh that

0 = |M\Md| < . . . < |M\M2| < |M\M 1|(from whih follow M = Md) andSUM(M) < SUM(M1) ≤ . . . ≤Md = SUM(M)4.3 Pruning at WorkIn this setion we show the results we obtained applying the pruning protoolto the proof of Theorem 4.2.2.Proof Speialization We speialized the proof on the following omplete bipar-tite graph V:
b b

b b

b b

i

a n

m

a v

j

i j

1

2

3

4

5

650

4.3 Pruning at WorkThat is, V = ({1, 2, 3, 4, 5, 6}, {(1, 4, i), (1, 5, a), (1, 6, j), (2, 4, n), (2, 5,m),
(2, 6, i), (3, 4, a), (3, 5, v), (3, 6, j)}).Pruning We applied a �rst time pruning on the speialized proof in order tomanipulate a shorter proof during the pruning protool. The extratedode is here listed:[if (0<t--i--m--j)[if (0<t--i--i--v)[if (0<t--a--n--j)[if (0<t--a--i--a)[if (0<t--j--n--v)[if (0<t--j--m--a)(False�(Nil nat))(True�6::[if (0<t--j--n--v)[if (0<t--j--m--a)(Nil nat)(5::[if(0<t--j--m--a)(Nil nat)(4:)℄)℄(4::[if(0<t--j--n--v)(Nil nat)(5:)℄)℄)℄(True�6::[if(0<t--j--n--v)[if(0<t--j--m--a)(Nil nat)(5::[if(0<t--j--m--a)(Nil nat)(4:)℄)℄(4::[if (0<t--j--n--v) (Nil nat) (5:)℄)℄)℄(True�5::[if (0<t--a--n--j)[if(0<t--a--i--a)(Nil nat)(6::[if(0<t--a--i--a)(Nil nat)(4:)℄)℄(4::[if (0<t--a--n--j) (Nil nat) (6:)℄)℄)℄(True�5::[if (0<t--a--n--j)[if(0<t--a--i--a)(Nil nat)(6::[if (0<t--a--i--a)(Nil nat)(4:)℄)℄(4::[if (0<t--a--n--j) (Nil nat) (6:)℄)℄)℄ (True� 4::[if (0<t--i--m--j)[if (0<t--i--i--v) (Nil nat)(6::[if(0<t--i--i--v)(Nil nat)(5:)℄)℄(5::[if (0<t--i--m--j) (Nil nat) (6:)℄)℄)℄ (True�4:: [if (0<t--i--m--j)[if(0<t--i--i--v)(Nil nat)(6::[if (0<t--i--i--v) (Nil nat) (5:)℄)℄(5::[if (0<t--i--m--j) (Nil nat) (6:)℄)℄)℄Permutative Conversion At this stage we permuted the pruned proof of theprevious step. As extensively explained in hapter 3.2.3 this operationis neessary if we want to perform suessfully the dependenies removaltransformation step of the pruning protool. Moreover, as we will see,to permute a proof it has the nie side e�et of eliminating part of theredundanies in the extrated ode. It follow the ode synthesized frompermuted proof: 51

4 Bounded Perfet Mathing Problem[if (0<t-i-m-j)[if (0<t-i-i-v)[if (0<t-a-n-j)[if (0<t-a-i-a)[if (0<t-j-n-v)[if (0<t-j-m-a)(False�(Nil nat))(True�6::[if (0<t-j-m-a) (Nil nat) (5::4:)℄)℄(True�6::4::5:)℄(True�5::[if (0<t-a-i-a) (Nil nat) (6::4:)℄)℄(True�5::4::6:)℄(True�4::[if (0<t-i-i-v) (Nil nat) (6::5:)℄)℄(True�4::5::6:)℄Removal Dependenies Transformation The ode extrated in the previous stepstill ontain several redundanies, as for example the presene of severalnested if's statements on the same boolean ondition. This kind of re-dundanies are even more if we assume to have some knowledge on theinput weights of the omplete graph V. In this partiular ase study weassumed the input graph V to satisfy the Monge inequality. More pre-isely we assumed the following inequalities relations among the weightsof the input graph:1. m < i < n < a < v < j2. m+ 1 ≤ a+m3. i+ a ≤ m+ j4. 2i ≤ j + n5. a+m ≤ v + n6. a+ i ≤ j + n7. i+ v ≤ j +m8. 2a ≤ v + iAt this point the removal dependenies transformation was applied keep-ing into aount the additional knowledge on V. After that, pruning wasapplied again. It follow the extrated program of the resulting proof:(*) [if (0<t-i-m-j)[if (0<t-a-n-j)[if (0<t-j-n-v) (False�(Nil nat)) (True�6::4::5:)℄(True�5::4::6:)℄(True�4::5::6:)℄We note that this ode is extremely shorter than the ode we synthesizedafter the proof speialization step. Anyway, in order have a better52

4.4 Conlusionsomprehension of the quality of our result, we instantiated the programin Figure ...(the better algorithm to ompute a solution for the boundedperfet mathing problem) on the input graph V and later on we simpli�edit aording to the above onstraints 1., . . . , 8. The resulting program isthe following:(**) [if (0<t-m-i-j) (False�(Nil nat)) (True�4::5::6:)℄As we an see, if the input parameter t is less or equal than tmax, with
tmax weight of the perfet mathing of V with maximumweight, then both(*) and (**) returns in one step the ouple (True�4::5::6:). On the otherhand if t > tmax, that is the problem does not admit a solution, (**)return (False�(Nil nat)) in one step while (*) needs to perform, in orderto return the same result, two more ase distintions. This phenomenarely essentially on the fat that no one of the eight onstraints 1., . . . , 8.involve the parameter t4.4 ConlusionsWhat we showed in this hapter is that the pruning protool matters in theautomati synthesis of orret and e�ient ode. Starting from a proof of anexistential statement proved by an enumeration strategy (from whih it waspossible to synthesize an algorithm with an exponential omplexity runningtime) we were able to produe, through the several proof re�nements stepsof the pruning tehnique, a new proof of an instane of the original problemwith omputational ontent omparable with the instantiation of a quadratirunning time algorithm that solved the same problem.The main limit of the present work is the restrited set of input graphs onwhih we ould test the pruning protool, but are working in order to extendthis set of examples in order to have a leared idea of the power of this method.

53

4 Bounded Perfet Mathing Problem

54

5 Generalizing Pruning5.1 IntrodutionIn Chapters 3 and 4 we have introdued the Pruning tehnique and we haveshown the power of this proof transformation on two partiularly big exam-ples: the Bin Paking Problem and the Bounded Perfet Mathing Problem.We have seen that the transformations pruning indue on the extrated pro-grams ould not be performed by any other known program transformation:pruning manipulates the proofs of the programs, so it works with dependen-ies informations that does not our in programs written by people. In thishapter we present an extension of the pruning tehnique and we will show itse�etiveness on a very simple but instrutive example.5.2 Proof ContextsHere we de�ne λ-terms CAB for natural dedution proofs of type A with exatlyone hole (•) of type B.De�nition 5.2.1 (Proof Context).
C := •B | 〈MA, CB〉A∧B | 〈CA,MB〉A∧B | (π0C

A∧B)A | (π1C
A∧B)B |

(λxρCA)∀x
ρA | (C∀xρAt)A[x/t] | (MA→BCA)B | (CA→BMA)B |

(λuACB)A→BBy CAB [MB] we indiate the replaing of •B in CA with MB .De�nition 5.2.2. Let MA and NA be two proofs of the same formula A withthe property that there exists a proof ontext CA suh that MA ≡ CA[NA](syntati equivalene). The set of disharged assumptions from N to M ,DSA(C), is de�ned as follow:DSA(•) = ∅DSA(C) =

8

>

>

>

>

<

>

>

>

>

:

DSA(C′) ∪ {u} C ≡ C′[λuA•]DSA(C′) C ≡ C′[(π0•
A∧B)A], C′[(π1•

A∧B)B],
C′[〈MA, •B〉A∧B], C′[〈•A,MB〉A∧B]

C′[(•∀x
ρAt)A[x/t]], C′[(MA→B•A)B],

C′[(•A→CMA)B], C′[λxρ•], 55

5 Generalizing Pruningfor some opportune C′.Based on the previous de�nitions, in Figure 5.1 we propose the general prun-ing rule. The redundanies eliminated by the simpli�ation rule in Figure
|N

A

|M

A

−→
|N

A
OA(N)\DSA(C) = OA(N)with M ≡ C[N].Figure 5.1: General pruning rule5.1 are not so obvious to �nd in proof written by hand but not rely suh infer-enes ours in proofs generated automatially by automati theorem proversor in proofs where part of the input parameters are speialized.5.3 Properties of the General Pruning RuleWe will writeM −→p N for �N is obtained fromM applying one of the pruningrules in Figure 3.1�,M −→gp N for �N is obtained fromM applying the generalpruning rule in Figure 5.1�, and −→+

p and −→+
gp for the transitive losure of

−→p and −→gp. Given the derivations M and N we de�ne M n
−→p N , with

0 < n, as follow:
• If M −→p N then M 1

−→p N

• If M −→p M
′ −→+

p N and M ′ n
−→p N then M n+1

−→p NBeing not unique the derivation betweenM and N (there ould be many) therewill be di�erent �n� suh that M n
−→p N .Proposition 5.3.1. For eah proof ontext CCA , proofsMA and NA, ifM −→p

N then C[M] −→p C[N].The same hold for −→gp. Obviously if we loally simplify a proof by −→pthen the same simpli�ation an be performed by the general pruning rule
−→gp. This fat is stated in the followingTheorem 5.3.2. For all proofs M and N , if M −→p N then M −→gp N .Proof. If M −→p N , then only three ases are possible:56

5.3 Properties of the General Pruning Rule1. M ≡ C[N ′] with N ′ ≡ (IF t λutM ′C λvt→⊥N ′′C)C , for an opportune on-text proof C, and ut does not our in M ′. Then C[N ′] −→p C[M ′] bythe rule i), Figure 3.1. On the other hand we an write N ′ ≡ C′[M ′]with C′ ≡ (IF t λut •φ λvt→⊥N ′′φ)φ. It follow that OA(M ′)\DSA(C′) =OA(M ′) beause DSA(C′) = {u} and by hypothesis u 6∈ OA(M ′). So ap-plying the simpli�ation rule in Figure 5.1 to N ′ we have C[C′[M ′]] −→gp

C[M ′]2. M ≡ C[N ′] with N ′ ≡ (IF t λutM ′C λvt→⊥N ′′C)C and vt→⊥ does notour in N ′′. We proeed as in the previous ase (but we use the pruningrule ii) instead of i)).3. M ≡ C[N ′] with N ′ ≡ (∃−x,A,CM
′∃xA λxρuAN ′′C)C and uA does notour in N ′′. We proeed as in point 1. (and we use the pruning rule iii)instead of i)).Theorem 5.3.3. For all n, M and N , if M n+1
−→p N then M −→+

gp N .Proof. By indution on n. If n = 0 we have M −→p N and thus M −→gp Nby Theorem 5.3.2, andM −→+
gp N by de�nition of −→+

gp. Now assume that foreahM andN , ifM n+1
−→p N thenM −→+

gp N and assumeM ′ −→p M
n+1
−→p N

′,for some �xedM ′,M and N ′. Instantiating the indution hypothesis onM and
N ′, we have M −→+

gp N
′. By Theorem 5.3.2 if M −→p M then M −→gp Mand hene M −→+

gp M and by transitivity M −→+
gp N

′.Corollary 5.3.4. For all M and N , if M −→+
p N then M −→+

gp N .On the other hand, it is not true that we an mimi any redution performedby −→gp with −→p (for this reason the impliation in Theorem 5.3.2 is not anequivalene). Consider for example the following proof:
IF t

|M

A

|N

A
t→ A

|N ′

A
(t→ ⊥)→ A

Aand assume that the assumption ut our in N but not in M , that vt→⊥our in N ′ and �nally that no open assumption of M is disharged in N .Under these onditions the pruning rules (Figure 3.1) are not appliable. Forthe ontrary using the general pruning rules (Figure 5.1) the above proof redueto the simplest: 57

5 Generalizing Pruning
|M

A5.4 Case StudyConsider the prediate ψ ⊆ N ×N suh that ψ(x, y) ⇔ x2 ≤ y. We proposethe following original derivation of the fat that for eah natural x there exista natural y suh that ψ(x, y). Through the proof we will make use of the fol-lowing axioms: ∀xψ(x, x2) and ∀x(x ≤ 1)→ ψ(x, 2).
[u : x > 1→ ∃yψ(x, y)]

(x > 1→ ∃yψ(x, y))→ (x > 1→ ∃yψ(x, y))

∀z(x > 1→ ∃yψ(x, y))→ (x > 1→ ∃yψ(x, y))

Indz, (x>1)→∃yψ(x,y)

∀xψ(x,x2) x

ψ(x, x2)
∃+

∃yψ(x, y)

x > 1→ ∃yψ(x, y)

∀z(x > 1)→ ∃yψ(x, y)

∀x(x ≤ 1)→ ψ(x, 2) x

(x ≤ 1)→ ψ(x, 2) [v : x ≤ 1]

ψ(x, 2)
∃+

∃yψ(x, y)

x ≤ 1→ ∃yψ(x, y)

IF x > 1

[u : x > 1]

∀z(x > 1)→ ∃yψ(x, y) x

(x > 1)→ ∃yψ(x, y)

∃yψ(x, y)

x > 1→ ∃yψ(x, y)

∃yψ(x, y)

∀x∃yψ(x, y)The ode extrated from the previous proof is the following:
λx if (x > 1) ((RN

N x2 λn, p. p)x) 2Obviously, for x > 1, this ode perform useless omputation in order to ompute
x2, but more important, no redundanies are detet in the proof by the pruning58

5.4 Case Studyrules (Figure 3.1). In fat, both the assumption variables u and v oursrespetively in the left and right branhes of the ase distintion.On the other hand we see that in the base ase of the indution we provethe formula ∃yψ(x, y) without using u and none of the assumptions used inthis subproof is later on disharged through the path to the other ourrenesof ∃yψ(x, y) at the end of the ase distintion. Under these onditions we anapply the general pruning rule (Figure5.1) to our proof obtaining:
∀xψ(x, x2) x

ψ(x, x2)

∃yψ(x, y)

∀x∃yψ(x, y)From whih it is possible to extrat the simpli�ed ode: λxx2.

59

5 Generalizing Pruning

60

6 String Alignment6.1 IntrodutionA widely studied problem in Bioinformatis is to �nd the distane between twogiven sequenes of symbols (over an alphabet Σ). The two main tehniquesdeveloped in this area to solve this problem turned out to be the edit distaneand the similarity of strings [20℄.Edit distane fous on the transformation of the �rst list into the seondone using a restrited set of operations (insertion I , deletion D, mathing M ,and replaement R) Given two lists we de�ne the edit distane problem thetask of �nding the minimum number of insertions, deletions and substitutionsoperations to transform the �rst list to the seond one. One the right set ofbasi operation is found, this is stored in a string alled edit transript (buildon the alphabet I ,D,M , and R) that will onstitute the output of the problem(Figure 6.1, line 1).The other way to measure the distane of lists is the so alled similaritymethod. The idea is based on the onept of string alignment. Given twostrings l1 and l2, an alignment of l1 and l2 is obtained inserting a new symbol�_� (named spae) (that does not belong to Σ) into the strings l1 and l2 andthen plaing the two strings one above the other, so that every harater orspae in either list is opposite a unique harater or spae in the other list,and no spae is opposite to another spae (Figure 6.1, lines 2,3). We indiateby (δ1, δ2) a general alignment the lists l1 and l2. Here δ1 and δ2 are stringsover Σ ∪ {_}. Afterwards the similarity between l1 and l2 is de�ned as thegreatest E((δ1, δ2)) with E funtion with values in N that assoiate a sore toeah alignment (δ1, δ2).In omputational biology the similarity of l1 and l2 is e�iently solved usingdynami programming; in fat the problem an be solved storing in a matrix
M , of dimension |l1|× |l2|, the values of the similarities between all the pre�xesof length i ≤ |l1| and j ≤ |l2| of l1 and l2. This ould be seen as a sort ofgeneralization of the Fibonai problem to 2-dimensions.In this work we will formalize the similarity problem in the proof assistantMinlog. We will extrat, from the proof of the existene of an alignmentwith highest sore between two given strings the naive exponential programto ompute the similarity of strings. Afterwards, we will propose a method totransform the given proof into another from whih it will be possible to extrat61

6 String Alignment
1 : R I M D M D M M I
2 : v _ i n t n e r _
3 : w r i _ t _ e r s

(6.1)Figure 6.1: Alignment (lines 2, 3) and edit-transript (line 1) of the strings wintnerand writers. It is possible to note how the two methods are equivalent: amismath in the alignment orrespond to a replaement in the edit tran-sript, a spae in the alignment ontained in the �rst string orrespondto the insertion of the opposite harater in �rst string, and a spae inthe alignment ontained in the seond string orrespond to a deletion ofthe opposite harater in the �rst string.a more e�ient program, in dynami programming style.We propose a method that we name list as memory. The idea onsist in eval-uating a su�ient amount of data in advane so that the extrated algorithmgets to reuse it instead of reomputing it eah time it is needed. This is doneby introduing in the proof a list of ad-ho axioms. The method we proposeannot be applied automatially to an arbitrary proof; it an be seen more asa general shema (that has to be instantiated ase by ase) to follow in orderextrat dynami programs from proofs.This hapter is organized as follow: in setion 6.1.1 we formalize the proof ofthe existene of an alignment with highest sore between lists and we extrata program from the proof. The designed solution enumerate all the alignmentsin order to �nd the right one, and this generate an exponential running timeextrated algorithm. In setion 6.1.2 we present a proof transformation toapply to the proof presented in setion 6.1.1 in order to extrat an algorithm indynami programming style. In setion 6.2, we make some �nal onsiderationsover the presented method and future works.6.1.1 The String Similarity ProblemLet l1 and l2 be two lists built on the alphabet Σ, with Σ equal to N>0 (theset of naturals stritly higher than zero), 0 6∈ Σ be the spae harater and
α : N×N→ Z be the soring funtion on a pair of symbols.Given two lists l1 and l2 over Σ, in Figure 6.2 we give an indutive de�nitionof the family of sets Al1,l2i,j , the set of the alignments between the �rst i ≤ |l1|haraters of l1 and j ≤ |l2| haraters of l2.In Figure 6.2 and in the rest of the hapter we make use of the followingonventions: n, m, i and j ranges over N, |l| is the length of l, l[i] is the i+ 1-th harater of l, head(a :: l) = a, tail(a :: l) = l, pren(l) is a partial operator62

6.1 Introdution(A0)
((:), (:)) ∈ A

l1,l2
0,0

(A1)
(0j+1, prej+1(l2)) ∈ A

l1,l2
0,j+1(A2)

(prei+1(l1), 0i+1) ∈ A
l1,l2
i+1,0

(δ1, δ2) ∈ A
l1,l2
i+1,j(A3)

(δ1 · (0), δ2 · l2[j]) ∈ A
l1,l2
i+1,j+1

(δ1, δ2) ∈ A
l1,l2
i,j+1(A4)

(δ1 · l1[i], δ2 · (0)) ∈ A
l1,l2
i+1,j+1

(δ1, δ2) ∈ A
l1,l2
i,j(A5)

(δ1 · l1[i], δ2 · l2[j]) ∈ A
l1,l2
i+1,j+1Figure 6.2: Indution de�nition of the alignments Al1,l2

|l1|,|l2|(E0)
E[((:), (:))]α = 0

(E1)
E[(0j , prej(l2))]α =

Pj
k=1

α(0, l2[k])(E2)
E[(prei(l1), 0i)]α =

Pi
k=1 α(l1[k],0)

E[(δ1, δ2)] = n(E3)
E[(δ1 · (0), δ2 · l2[j])]α = n+ α(0, l2[j])

E[(δ1, δ2)] = n(E4)
E[(δ1 · l1[i], δ2 · (0))]α = n + α(l1[i], 0)

E[(δ1, δ2)] = n(E5)
E[(δ1 · l1[i], δ2 · l2[j])]α = n+ α(l1[i], l2[j])Figure 6.3: Indution de�nition of the evaluator funtion Ethat return the �rst n elements of a list l, 0n is the list omposed by a sequeneof n zeros, l · g the operation of appending the list g to l and (a1, . . . , an) is thelist omposed by ai ∈ N.We assoiate a sore to eah alignment by the evaluator funtion E : Al1,l2

|l1|,|l2|
→

(N×N→ N)→ N de�ned on the indutive struture of Al1,l2
|l1|,|l2|

(Figure 6.3).The funtion E take as input an alignment, a soring funtion and return thesore of the input alignment. Our goal is to �nd the alignment in Al1,l2|l1|,|l2|
withhighest sore (this sore will be the similarity between l1 and l2) with respetto a given soring funtion α.RemarkMany problems an be modeled as speial ase of similarity by hoos-ing an appropriate soring funtion α. Let onsider (below) the de�nition ofthe longest ommon subsequene problem.De�nition 6.1.1. A subsequene of a string l is spei�ed by a list of indies63

6 String Alignment
i1 < i2 < . . . < ik for some k ≤ |l|. The subsequene spei�ed by this list is thestring l[i1]l[i2] . . . l[ik]De�nition 6.1.2 (Longest Common Subsequene Problem). Given two strings
l1 and l2 a ommon subsequene of l1 and l2 is a sequene that appear both in
l1 and l2 as a subsequene. The Longest Common Subsequene Problem onsistin �nding the longest ommon subsequene between l1 and l2For example, 145 is a ommon subsequene of 114666725 and 1124375 but
11475 is the longest ommon ones. The solution of the longest ommon sub-sequene problem an be obtained from the solution of the similarity of listsproblem by hoosing a soring funtion α that sores a �1� for eah math and�0� for eah mismath or presene of a 0 (the result will depend by the im-plemented strategy to solve the problem sine there ould be more alignmentswith the same highest sore).Now we show formally that given a ouple of lists l1, l2 over Σ there existsalways an alignment in Al1,l2

|l1|,|l2|
of maximum sore with respet to α.Theorem 6.1.1.

∀l1, l2∃δ1, δ2((δ1, δ2) ∈ A
l1,l2
|l1|,|l2|

)∧

∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈ A

l1,l2
|l1|,|l2|

→ E(δ′1, δ
′
2) ≤ E(δ1, δ2))Proof. We assume l1 and l2. In order to prove the thesis we prove the followingstatement:

∀n,m∃δ1, δ2((δ1, δ2) ∈ A
l1,l2
n,m)∧

∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈ A

l1,l2
n,m)→ E(δ′1, δ

′
2) ≤ E(δ1, δ2)Obviously we obtain the thesis instantiating this assertion on |l1| and |l2|.From now on we will write Q(δ1, δ2, n,m) for

((δ1, δ2) ∈ A
l1,l2
n,m) ∧ ∀δ′1, δ

′
2((δ

′
1, δ

′
2) ∈ A

l1,l2
n,m)→ E(δ′1, δ

′
2) ≤ E(δ1, δ2)We go by indution on n and m.Base Case[n = 0℄ We prove

∀m∃δ1, δ2Q(δ1, δ2, 0,m)by ase distintion over m:Base Case[n = 0, m = 0℄: Q((:), (:), 0, 0) by rule (A0).Indution Step[n = 0, m+ 1℄We have Q(0m+1, prem+1(l2), 0,m+ 1) by rule (A1).Indution Step[n+ 1℄ We now assume
∀m∃δ1, δ2Q(δ1, δ2, n,m) (6.2)64

6.1 Introdutionand we must show
∀m∃δ1, δ2Q(δ1, δ2, n+ 1,m)By indution over m:Base Case[n+ 1, m = 0℄

Q(pren+1(l1), 0
n+1, n+ 1, 0) by (A2)Indution Step[n+ 1, m+ 1℄: Assume

∃δ1, δ2Q(δ1, δ2, n+ 1, m) (6.3)we have to prove
∃δ1, δ2Q(δ1, δ2, n+ 1, m+ 1)By (6.3) there exists δ′1,δ′2 suh that (δ′1, δ

′
2) ∈ A

l1,l2
n+1,m and suh that forevery (δ1, δ2) ∈ A

l1,l2
n+1,m

E(δ1, δ2) ≤ E(δ
′
1, δ

′
2) (6.4)Instantiating (6.2) on m+1 there exists δ′′1 , δ′′2 suh that (δ′′1 , δ

′′
2) ∈ Al1,l2n,m+1 andfor every (δ1, δ2) ∈ A

l1,l2
n,m+1

E(δ1, δ2) ≤ E(δ
′′
1 , δ

′′
2) (6.5)Instantiating (6.2) on m there exists δ′′′1 , δ

′′′
2 suh that (δ′′1 , δ

′′
2) ∈ Al1,l2n,m and forevery (δ1, δ2) ∈ A

l1,l2
n,m

E(δ1, δ2) ≤ E(δ
′′′
1 , δ

′′′
2) (6.6)Now we have to dispath over the following ases:ip1. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]):Then, only 2 ases are possible:ip1.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]): We laim Q(δ′1 ·

(0 :), δ′2 · l2[m + 1], n + 1,m + 1). This is proved dispathing over (δ1, δ2) in
Al1,l2n+1,m+1. In fat for every (δ1, δ2) ∈ A

l1,l2
n+1,m+1 only three ases are possibleip1.1.1(δ1, δ2) = (δ∗1 · (0 :), δ∗2 · l2[m + 1])

E(δ1, δ2) = E(δ∗1 · (0 :), δ∗2 · l2[m+ 1])

= E(δ∗1 , δ
∗
2) + α((0 :), l2[m+ 1]) by(E3)

≤ E(δ′1, δ
′
2) + α((0 :), l2[m + 1]) by (6.4) 65

6 String Alignment
= E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by(E3)ip1.1.2 (δ1, δ2) = (δ∗1 · l1[n + 1]), δ∗2 · (0 :)): So,

E [(δ1, δ2)] = E(δ∗1 · l1[n+ 1], δ∗2 · (0 :))

= E(δ∗1 , δ
∗
2) + α(l1[n+ 1], (0 :)) by(E4)

≤ E(δ′′1 , δ
′′
2) + α(l1[n+ 1], (0 :)) by (6.5)

= E(δ′′1 · l1[n+ 1], δ′′2 · (0 :))

≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by (ip1)ip1.1.3 (δ1, δ2) = (δ∗1 · l1[n + 1]), δ∗2 · l2[m + 1])

E [(δ1, δ2)] = E(δ∗1 · l1[n+ 1], δ∗2 · l2[m+ 1])

= E(δ∗1 , δ
∗
2) + α(l1[n+ 1], l2[m+ 1]) by(E5)

≤ E(δ′′′1 , δ
′′′
2) + α(l1[n+ 1], l2[m+ 1]) by (6.6)

= E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])

≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by (ip1.1)ip1.2 E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′1 · (0 :), δ′2 · l2[m + 1]): We laimQ(δ′′′1 ·

(l1[n + 1]), δ′′′2 · l2[m + 1], n + 1, m + 1). The proof of this laim is done, as inthe previous ase, dispathing over (δ1, δ2) in Al1,l2n+1,m+1.ip2 E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m + 1]): Then there exists onlytwo ases:ip2.1 E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′′1 · l1[n + 1], δ′′2 · (0 :)): We laimQ(δ′′1 ·

l1[n+ 1], δ′′2 · (0 :), n+ 1,m+ 1).ip2.2 E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′′1 · l1[n + 1], δ′′2 · (0 :)): We laim Q(δ′′′1 ·

l1[n+ 1], δ′′′2 · l2[m+ 1], n+ 1, m+ 1). The proofs of the previous two laims isdone dispathing over (δ1, δ2) in Al1,l2n+1,m+1.The theorem 6.1.1 an be simply modi�ed in order to onstrut not only thealignment with highest sore but also the sore itself (that is the similarity).The program extrated from the previous proof is the following:[l,g,alpha℄(Re nat=>nat=>(list nat �� list nat))([m℄ if (m=0) ((:), (:))((zeros (m+1)), (pre (m+1) g))([n, f: (nat=>(list nat �� list nat))℄(Re nat=>(list nat, list nat))((pre (n+1) l), (zeros (n+1)))([m,(d_1',d_2')℄[LET (d_1'', d_2'') = (f (m+1)) IN66

6.1 Introdution[LET (d_1''', d_2''') = (f m) IN[IF ((E (d_1'':+: l[n+1℄) 0 alpha) <=(E (d_1':+: (:)) (d_2':+: g[m+1℄) alpha))[IF ((E (d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄) alpha)<=(E (d_1':+: (:)) (d_2':+: g[m+1℄) alpha))((d_1':+:(:)), (d_2':+: g[m+1℄))((d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄))℄[IF ((E (d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄) alpha)<=(E (d_1'':+: l[n+1℄) (d_2'':+: (:)) alpha))((d_1'':+: l[n+1℄) (d_2'' :+: (:)))((d_1''':+:l[n+1℄) (d_2''':+:g[m+1℄))℄℄℄℄)))|l||g|Here we indiated by (pre n) the operator pren, by (zeros n) the string 0n,by E the funtion E and by alpha the soring funtion α.Complexity of the Extrated Algorithm: The omplexity of the ex-trated program an be modeled by the following reurrene:
T1(n,m) =

k1m n = 0
T2(m) n > 0with

T2(m) =

8

<

:

k2n m = 0
T2(m− 1) + T1(n− 1, m)+
T1(n− 1, m− 1) + 2k3max(n+m)

m > 0with 2k3max(n+m) ost for the severals appliation of the append operationin the body of the nested reursion. The omplexity of the extrated programthen will be given by T1(|l1|, |l2|). Given n > 0 and m > 0 the unfoldingof T1(n,m) an be represented as a ternary tree where the lowest branh hashigh m and the highest n+m. Thus the extrated programs has a number ofreursive alls in Ω(3min(n,m)).6.1.2 List as Memory ParadigmTo drastially redue the omplexity of our extrated program, we developeda method that we named list as memory. The idea onsist in evaluating asu�ient amount of data in advane so that the extrated algorithm gets toreuse it instead of reomputing it eah time it is needed.The basi idea is still to prove Theorem6.1.1 by a double indution (beforeon the length |l1| of the �rst list and by a nested indution on |l2| length of theseond list) but this time using an additional data struture w, a FIFO (FirstIn First Out) list where we store the alignments with highest sore omputedin the previous steps. The list w will be built and updated during the proof67

6 String Alignmentand it will onstitute part of the witness of the new proof together with thealignment of highest sore.Thus assuming we want to ompute the best alignment of the �rst n + 1haraters of l1 and m+1 harater of l2, we will assume w to be the followinglist of alignments:
(δ1, δ2)

l1,l2
n,m , (δ1, δ2)

l1,l2
n,m+1, . . . (δ1, δ2)

l1,l2
n,|l2|

(δ1, δ2)
l1,l2
n+1,0, (δ1, δ2)

l1,l2
n+1,1 . . . , (δ1, δ2)

l1,l2
n+1,mwith (δ1, δ2)

l1,l2
i,j alignment of highest sore between the �rst i haraters of l1and j haraters of l2. At this point the intended alignment will be omputedonsidering the head of w, (δ1, δ2)

l1,l2
n,m , the head of the tail of w, (δ1, δ2)

l1,l2
n,m+1and the reursive all of the nested indution on l2 (the alignment of highestsore between the �rst n+1 element of l1 and m elements of l2, that here ouras last element in w) One the new alignment is omputed the list w has to beproperly updated.So in general the idea is to replae the double instantiation of the indutionhypothesis (6.2) in Theorem 6.1.1 (that orrespond to the two reursive allsin the extrated algorithm) with just a reading operation of the head and thehead of the tail of our memory list w.In order to use suh memory list in our proof we have to modify the originalproof of the Theorem 6.1.1 in an appropriate way. More preisely we introduethe prediate MEM ⊆ L(N>0)× L(N>0)×N×N × L(L(N) × L(N)) where,

• (MEM l1 l2 0 v w), stands for �in w are stored the the v + 1 alignments
(0k, prek(l2)) with k = 0, . . . v� (here we assume 00 = (:) and pre0(l2) =
(:)) and

• (MEM l1 l2 (u+ 1) v w), stands for �in w are stored the |l2|+ 2 alignmentsof highest sores between the �rst j and k haraters of l1 and l2 with
(j, k) ∈ {(u, v), . . . , (u, |l2|), (u+ 1, 0), . . . , (u+ 1, v)}and the following set of axioms speifying the neessary operations to buildand orretly update the memory list w:[I℄(Initialization),

∀l1, l2,m,w(MEM l1 l2 0m (initml2))with
(initml2) =

((:), (:)) m = 0
((init (m− 1)) : + : (0m, prem l2)) 0 < m[H℄ (Head of the list):68

6.1 Introdution
∀l!, l2, n,m,w(MEM l1 l2 (n+ 1)mw)→

Q(π0(headw), π1(headw), n,m)[HT℄ (Head of the tail):
∀l!, l2, n,m,w(m < |l2|)→ (MEM l1 l2 (n+ 1)mw)→

Q(π0(head(tailw)), π1(head(tailw)), n,m+ 1)[CL℄ (Change Line):
∀l1, l2, n,m,w(MEM l1 l2 n |l2|w)→

(MEM l1 l2 (n+ 1) 0 ((tailw) : + : ((pren+1 l1), 0
n+1))[OSOR1℄ (One Step On the Right 1):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|)→ (Qδ′1 δ

′
2 nm)→

(MEM l1 l2 nmw)→
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′1 · (0 :), δ′2 · l2[m+ 1])))with (δ′′′1 , δ

′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).[OSOR2℄ (One Step On the Right 2):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|)→ (Qδ′1 δ

′
2 nm)→

(MEM l1 l2 nmw)→
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) � E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))with (δ′′′1 , δ

′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).[OSOR3℄ (One Step On the Right 3):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|)→ (Qδ′1 δ

′
2 nm)→

(MEM l1 l2 nmw)→
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) ≤ (δ′′1 · l1[n+ 1], δ′′2 · (0 :)))→
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′1 · l1[n+ 1], δ′′2 · (0 :))))with (δ′′′1 , δ

′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).[OSOR4℄ (One Step On the Right 4):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|)→ (Qδ′1 δ

′
2 nm)→

(MEM l1 l2 nmw)→
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) � (δ′′1 · l1[n+ 1], δ′′2 · (0 :)))→
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))with (δ′′′1 , δ

′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).Theorem 6.1.2. [I℄ → [CL℄ → [H℄ → [HT℄ → [OSOR1℄ → [OSOR2℄ →[OSOR3℄ → [OSOR4℄ → ∀l1, l2(∃δ1, δ2(δ1, δ2) ∈ Al1,l2|l1|,|l2|

∧ ∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈69

6 String Alignment
Al1,l2|l1|,|l2|

→ E(δ′1, δ
′
2) ≤ E(δ1, δ2))) ∧ ∃w(MEM l1 l2 |l1| |l2|w)Sketh. Assume [I℄, [CL℄, [H℄, [HT℄, [OSOR1℄, [OSOR2℄, [OSOR3℄, [OSOR4℄

l1 and l2. In order to prove the theorem 6.1.2 we prove the following assertion:
∀n,m(∃δ1, δ2(δ1, δ2) ∈ A

l1,l2
n,m ∧

∀δ′1, δ
′
2(δ

′
1, δ

′
2) ∈ A

l1,l2
n,m → E(δ

′
1, δ

′
2) ≤ E(δ1, δ2))∧

∃w(MEM l1 l2 nmw)By indution on n and m.Base Case[n = 0℄ We prove
∀m∃δ1, δ2Q(δ1, δ2, 0, m) ∧ ∃w(MEM l1 l2 0mw)by ase distinion over m:Base Case[n = 0, m = 0℄

Q((:), (:), 0, 0) ∧ ∃w(MEM l1 l2 0 0 (init0 l2))) by rule (A0) and [I℄.Indution Step[n = 0, m+ 1℄We have Q(0m+1, prem+1(l2), 0,m+ 1) ∧
∃w(MEM l1 l2 0 (m+ 1) (init (m+ 1) l2)) by rule (A1) and [I℄.Indution Step[n+ 1℄We now assume

∀m∃δ1, δ2Q(δ1, δ2, n,m) ∧ ∃w(MEM l1 l2 nmw) (6.7)and we show
∀m∃δ1, δ2Q(δ1, δ2, n+ 1, m) ∧ ∃w(MEM l1 l2 (n+ 1)mw)By indution over m:Base Case[n + 1, m = 0℄ Q(pren+1(l1), 0

n+1, n + 1, 0) by (A2). Then in-stantiating (6.7) on |l2| we have w suh that ∃w(MEM l1 l2 n |l2|w) and by [CL℄we have (MEM l1 l2 (n+ 1) 0 ((tailw) · ((pren+1 l1), 0
n+1)).Indution Step[n+ 1, m+ 1℄ Assume

∃δ1, δ2Q(δ1, δ2, n+ 1, m) ∧ ∃w(MEM l1 l2 (n+ 1)mw) (6.8)we prove
∃δ1, δ2Q(δ1, δ2, n+ 1, m+ 1) ∧ ∃w(MEM l1 l2 (n+ 1) (m+ 1)w)By (6.8) there exists δ′1,δ′2 suh that (δ′1, δ

′
2) ∈ A

l1,l2
n+1,m and suh that for every

(δ1, δ2) ∈ A
l1,l2
n+1,m

E(δ1, δ2) ≤ E(δ
′
1, δ

′
2) (6.9)70

6.1 IntrodutionBy (6.8) let w be suh that (MEM l1 l2 (n + 1)mw). By [HT℄, we have that
(δ′′1 , δ

′′
2) ∈ Al1,l2n,m+1 and for every (δ1, δ2) ∈ A

l1,l2
n,m+1

E(δ1, δ2) ≤ E(δ
′′
1 , δ

′′
2) (6.10)with (δ′′1 , δ

′′
2) = (head(tailw)).By [H℄ we have that that (δ′′′1 , δ

′′′
2) ∈ Al1,l2n,m and for every (δ1, δ2) ∈ A

l1,l2
n,m

E(δ1, δ2) ≤ E(δ
′′′
1 , δ

′′′
2) (6.11)with (δ′′1 , δ

′′
2) = (headw). Now we have to dispath over the following ases:ip1. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]): Then, only 2 ases arepossible:ip1.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]): We laim

Q(δ′1 · (0 :), δ′2 · l2[m+ 1], n+ 1, m+ 1)and
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′1 · (0 :), δ′2 · l2[m+ 1])))This is proved dispathing over (δ1, δ2) in Al1,l2n+1,m+1 and by [OSOR1℄, ip1 andip1.1.ip1.2. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′1 · (0 :), δ′2 · l2[m + 1]): We laim

Q(δ′′′1 · (l1[n+ 1]), δ′′′2 · l2[m+ 1], n+ 1, m+ 1)and
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))This is proved dispathing over (δ1, δ2) in Al1,l2n+1,m+1 and by [OSOR2℄, ip1 andip1.2ip2. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m + 1]):Then there exists onlytwo ases:ip2.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′′1 · l1[n + 1], δ′′2 · (0 :)): We laim

Q(δ′′1 · l1[n+ 1], δ′′2 · (0 :), n+ 1, m+ 1)and
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′1 · l1[n+ 1], δ′′2 · (0 :)))Proved dispathing over (δ1, δ2) in Al1,l2n+1,m+1 and by [OSOR3℄, ip2 and ip2.171

6 String Alignmentip2.2. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′′1 · l1[n + 1], δ′′2 · (0 :)): We laim
Q(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1], n+ 1,m+ 1)and

(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]))Proved dispathing over (δ1, δ2) in Al1,l2n+1,m+1 and by proved by [OSOR4℄, ip2and ip2.2From the previous proof we an extrat the following program:[l,g,alpha℄(Re nat=>nat=>((list nat��list nat)��(list(list nat��list nat))([m℄ [if (m=0)(((:),(:)) , ((:),(:)))(((nZeros (m+1)), (nPrefix (m+1) g)),(init (m+1) g)([n,f:(nat=>((list nat��list nat)��(list(list nat��list nat)))℄(Re nat=>((list nat��list nat)��(list(list nat��list nat)))LET w = (f |g|) IN(((nPrefix (n+1) l), (nZeros (n+1))) ,((tail w):+:((nPrefix (n+1) l),(nZeros(n+1)))))([m,((d_1',d_2'),w)℄[LET (d_1'', d_2'') = (head (tail w)) IN[LET (d_1''', d_2''') = (head w) IN[IF((E (d_1'':+: l[n+1℄) 0 alpha) <=(E (d_1':+: (:)) (d_2':+: g[m+1℄) alpha))[IF((E(d_1''':+: l[n+1℄)(d_2''':+: g[m+1℄)alpha)<=(E (d_1':+: (:))(d_2':+: g[m+1℄) alpha))(((d_1':+:(:)),(d_2':+:g[m+1℄)),((tail w):+:(d_1':+:(:)),(d_2':+:g[m+1℄)))(((d_1''':+: l[n+1℄)(d_2''':+:g[m+1℄)),((tail w):+:(d_1''':+: l[n+1℄)(d_2''':+:g[m+1℄)))℄[IF((E(d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄)alpha)<= (E(d_1'':+:l[n+1℄) (d_2'':+: (:))alpha))(((d_1'':+: l[n+1℄)(d_2'' :+: (:))),((tail w):+:((d_1'':+: l[n+1℄) (d_2'':+:(:)))))(((d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄)),((tail w):+:((d_1''':+:l[n+1℄) (d_2''':+:g[m+1℄))))℄℄℄℄)))|l| |g|72

6.2 Conlusions6.1.2.1 Complexity ConsiderationsThe omplexity of the extrated program an be modeled by the followingreurrene (here we have as additional parameter the length of g):
T1(n,m) =

k1m n = 0
T2(n,m) n > 0with

T2(n,m) =

T1(n− 1, |g|) m = 0
T2(n,m− 1) + 2k3max(n+m) m > 0Given |l| > 0 and |g| > 0 the unfolding of T1(|l|, |g|) an be represented bythe following |l| × |g| matrix of list of alls:

T1(|l|, |g|) → T2(|l|, |g|) → . . . → T2(|l|, 0)
→ T1(|l|−1, |g|) → T2(|l| − 1, |g|) → . . . → T2(|l| − 1, 0)...
→ T1(1, |g|) → T2(1, |g|) → . . . → T2(1, 0)and being the omplexity of eah all 2k3max(|l| + |g|) then T1(|l|, |g|) is in
O(|l||g|max(|l||g|))6.2 ConlusionsWith an opportune modi�ation of the alignment de�nition in Figure 6.2 wean avoid the ost relative to the appliations of the append funtion. In thisway, the extrated program from the e�ient implementation of the existeneof an alignment with highest sore will have a omplexity in O(|l||g|). Futurework will regards a sort of automation of the presented method.

73

6 String Alignment

74

7 Tail Reursion7.1 IntrodutionLetM be a proof by indution over n (natural number) of the property ∀nA(n),and let, by the Proofs-as-Program paradigm, [[M]] be the (reursive) ontent of
M . In this hapter we will try to answer the following question: How to turnautomatially M into another proof, say N , with tail reursive ontent? PennyAnderson in her Phd thesis [1℄ used Frank Pfenning's Insertion Lemma [30℄proof transformation, in order to extrat tail reursive programs from proofs.This method, although partiularly interesting, is user dependent. What wewill do here is to present and develop in a formal setting an idea �rst roughlyintrodued in [9℄ (originated from an informal hat the author had with AndrejBauer in 2004, reported in the Bauer's mathematial blog1) in order to extrattail reursive programs from proofs but in a ompletely automati fashion.Let us onsider the following program, written in an ML-like syntax:let re FACT n = if n = 0 then 1 else n * FACT (n - 1)FACT omputes the fatorial of n, for any positive integer n. But this imple-mentation is not tail reursive beause in eah step of the omputation theompiler has to store (on a stak) the ontext (n ∗ []), evaluate FACT (n-1)
7→ v, and returns (n ∗ v). It is well known that FACT an be turned into asimpler funtion where it is not neessary to stak any ontext information:let re FACT' n =let re FACT'' n m y =if n = 0 then y else FACT'' (n - 1) (m + 1) ((m + 1) * y)in FACT'' n 0 1Now assume FACT to be the omputational ontent of the proof by indution
M , with end formula ∀nA(n), that states that for eah natural n there exists
n!. From whih proof is it possible to extrat FACT'? Both programs FACTand FACT' ompute the fatorial funtion, so FACT' should be the ontent of anappropriate proof of ∀nA(n) as well. So the problem is shifted in understandingwhih logial property FACT� has. Given a natural n, (FACT�n) is a funtion1http://math.andrej.om/2005/09/16/proof-haking/ 75

7 Tail Reursionthat takes the natural m, the witness y for A(m) and returns a witness for
A(n+m).Hene given n, (FACT�n 0 1) is the witness for A(n) as expeted. Intuitively,we expet FACT� to be the omputational ontent of some proof of the formula
∀n,m(A(m)→ A(n+m))Will show that this is the right intuition to follow for the automati genera-tion of tail reursive programs.This hapter is organized as follows. In setion 7.2 we address two prooftransformations in order to extrat ontinuation and aumulator based tailreursive programs, in setion 7.3 we show that there exists a formal onnetionbetween the two proof transformations presented in setion 7.2 and �nally, insetion 7.4 we apply our methods to a well known problem in bioinformatis,the Maximal Soring Subsequene Problem.7.2 Proof ManipulationThis setion is devoted to expose the proofs transformation we have in mind inorder to generate (by extration) more e�ient programs starting with a givenindutive proof on natural numbers. How the tehniques an be extended toother data types is disussed in the onlusion.De�nition 7.2.1 (Tail Expressions [22℄). The tail expressions of t ∈ Terms,are de�ned indutively as follows:1. If t ≡ (λx.e) then e is a tail expression.2. If t ≡ (if t r s) is a tail expression, then both r and s are tail expressions.3. If t ≡ (Rι r s) is a tail expression, then r and s are tail expressions.4. Nothing else is a tail expression,where ι ∈ {N,L(ρ)}.De�nition 7.2.2. A tail all is a tail expression that is a proedure all.De�nition 7.2.3 (Tail Reursion [23℄). A reursive proedure is said to betail reursive when it tail alls itself or alls itself indiretly through a series oftail alls.Now, let F be the following indution proof over N:

|M

A(0)

|N

∀n(A(n)→ A(n+ 1))

∀nA(n)The ontent of F is (RσN b f) with b and f ontent of the proofs M and N .76

7.2 Proof Manipulation7.2.1 Continuation Based Tail ReursionGiven the proedure (RσN b f) de�ned in the previous setion, let Λ be the term:
R

(σ→σ′)→σ′

N
(λk.kb)(λn, p, k. p λu.k(f nu))In Λ, the �rst input parameter, whih has type (σ → σ′). is alled a on-tinuation; Λ is a funtion with just one tail reursive all and a funtionalaumulator parameter k with the following property: for eah n, at the i-th(0 < i ≤ n) step of the omputation of (Λn (λx.x)) the ontinuation has theform λu.(f (n − 1) (. . . (f (n − i)u) . . .)). At the n-th step the ontinuation

λu.(f (n− 1) (. . . (f 0u) . . .)) is applied to the term b and returns. We see thatsuh returned value orresponds to (RσN b f)n. This fat is stated formally inthe following,Theorem 7.2.1. For eah natural n:
Λn =Rηβ λk

σ→σ′

. k((RσN b f)n)Proof. By indution over n:
n = 0

Λ0 =Rηβ λk.kb

=Rηβ λk. k((RσN b f)0)

n+ 1

Λ (n+ 1) =Rηβ (λn, p, k. p λu.k(f nu))n (Λn)

=Rηβ λk.(Λn)λu.k(f nu)

=Rηβ λk.(λk.k((RσN b f)n))λu.k(f nu) (by IH)
=Rηβ λk.(λu.k(f nu))((RσN b f)n)

=Rηβ λk.k(f n ((RσN b f)n))

=Rηβ λk.k((RσN b f)(n+ 1))Now, as expeted, when applied to the identity ontinuation λx.x we getanother program in the same equivalene lass:Corollary 7.2.2. λn.Λn (λx.x) =Rηβ (RσN b f)So we have at hand a better program. We still need to ensure it an bereahed, in an automati way, from another proof of the same given statement.77

7 Tail ReursionMore formally, assume we are given some proof term F , with extration [[F]] =
(RσN b f), is it possible to �nd out another proof F ′ of the same statement,whih leads to the other program: [[F ′]] = (λn.Λn (λx.x)). This is the hallengethat we will answer positively below.The key point is to understand the logial role of the ontinuation parameterin Λ: given a natural n, at eah step i : n, . . . , 0 in omputing (Λn (λx.x)),the ontinuation is a funtion that takes the witness for A(i) and returns thewitness for A(i + m), for m suh that i + m = n. So we expet Λ to be theomputational ontent of a proof with end formula:

∀n∀nm((A(n)→ A(n+m))→ A(n+m)) (7.1)We observe that the ounter m is introdued to ount how muh n is dereasingduring the omputation. So, as suh, it plays a �logial� role (or ommentaryrole if one prefers); in other words, it is irrelevant at the programming level, andshould be marked to be dropped out. To this end, we expliitly underline the�hidden� role of m quantifying over it by the speial non-omputational quan-ti�er ∀n[5℄[4℄. Let us prove the above statement (7.1), under the assumptionswe have proofs for both A(0) and ∀n(A(n)→ A(n+ 1)),Proposition 7.2.3. A(0)→ ∀n(A(n)→ A(n+1))→ ∀n∀nm((A(n)→ A(n+
m))→ A(n+m))Proof. Assume b : A(0) and f : ∀n(A(n)→ A(n+ 1)). By indution on n.
n = 0 We have to prove

∀nm((A(0)→ A(m))→ A(m))So assume m and k : (A(0)→ A(m)). Apply k to b : A(0).
n+ 1 Assume n, the reursive all p : ∀nm((A(n)→ A(n+m))→ A(n+m)),

m, and the ontinuation k : A(n+1)→ A(n+m+1). We have to prove:
A(n+m+ 1)Apply p to (m + 1) obtaining (p (m + 1)) : (A(n) → A(n + m + 1)) →

A(n+m+1). So, if we are able to prove the formula A(n)→ A(n+m+1),by some proof t, we an just apply (p (m+ 1)) to t and we are done.So let us prove
A(n)→ A(n+m+ 1)Assume v : A(n). We apply k to (f n v).78

7.2 Proof ManipulationProposition 7.2.4. A(0)→ ∀n(A(n)→ A(n+ 1))→ ∀nA(n).Proof. Assume b : A(0), f : ∀n(A(n)→ A(n+ 1)). Given n, to prove A(n), weinstantiate the formula proved in Proposition 7.2.3 on b, f , n, 0 and A(n) →
A(n).The ontent of the previous proof, that we name Ind_CONT, is the following:[b,f,n℄ (Re nat => (sigma => sigma) => sigma)([k℄(k b))([n,p,k℄ p ([u℄ k (f n u)) n ([x℄x))Notie that, although the funtional parameter in Λ is a ontinuation, Λ isnot of the kind provided alongside a CPS-transformation of the reursion overnaturals shema. In fat f and b are not altered in our transformation andthey ould ontain bad expressions, like not tail alls.The formula (7.1) ould be substituted by the more general ∀n(A(n) →
⊥) → ⊥. By an opportune adaptation of the proof of Proposition 7.2.3 wewould have obtained the same omputational ontent (of Porposition 7.2.4)Ind_CONT. However, here we o�er a learer formulation for the logial propertythe ontinuation parameter is supposed to satisfy. In addition, this approahrepresents a non trivial usage of the non omputational quanti�ers ∀n.7.2.2 Aumulator Based Tail ReursionHere we present the essene of Bauer's [? ℄ original idea. Given the proedure
(RσN b f) de�ned in the last setion, let Π be the term:

RN→σ→σ
N (λm, y.y) (λn, p,m, y. p (m+ 1) (f my))In Π there are two aumulator parameters: a natural and parameter of type σwhere intermediate results are stored. For eah natural n, at the i-th (0 < i ≤

n) step of the omputation of (Πn 0 b) the aumulator of the partial resultswill be equal to the expression (f (i−1) (. . . (f 0 b) . . .)). At the n-th step (basease of Π) the aumulator of the partial results is returned and it orrespondsto (RσN b f)n. This fat is stated in theorem 7.2.6 below.De�nition 7.2.4. For all n,m, let fN→N→σ→σ be a funtion suh that:
fm n = f (n+m)Proposition 7.2.5. For all naturals n and m:

(RσN (fm 0 b) fm+1)n =Rηβ (RσN b fm) (n+ 1)Proof. By indution on n. 79

7 Tail Reursion
n = 0

(RσN (fm 0 b) fm+1) 0 =Rηβ (fm 0 b)

=Rηβ (RσN b fm) 1

n+ 1

(RσN (fm 0 b) fm+1)n+ 1 =Rηβ fm+1 n ((RσN (fm 0 b) fm+1)n)

=Rηβ fm+1 n ((RσN b fm) (n+ 1)) by IH
=Rηβ f (m+ 1 + n) ((RσN b fm) (n+ 1))by Def. 7.2.4
=Rηβ fm (n+ 1) ((RσN b fm) (n+ 1))

=Rηβ (RσN b fm) (n+ 2)Theorem 7.2.6. For all naturals n,
Πn =Rηβ λm, y(R

σ
N y fm)nProof. By indution on n:

n = 0

Π 0 =Rηβ λm, y.y

=Rηβ λm, y.(RσN y fm) 0

n+ 1

Π(n+ 1) =Rηβ (λn, p,m, y.p(m+ 1)(f my))n (Πn)

=Rηβ λm, y.(Πn) (m+ 1) (f my)

=Rηβ λm, y.(λm, y.(RσN y fm)n) (m+ 1) (f my) by IH
=Rηβ λm, y.(RσN (f my) fm+1)n

=Rηβ λm, y.(RσN (fm 0 y) fm+1)n by Def. 7.2.4
=Rηβ λm, y.(RσN y fm)(n+ 1) by Prop. 7.2.5Now, ompared with previous step, we have to provide an initial value to

Π in order to get an equivalent program. Aording to the aumulator-based80

7.2 Proof Manipulationapproah, arguments 0, b roughly take the plae of the ontinuation (funtion).See setion 7.3 for more development on this remark.Corollary 7.2.7. λn.Πn 0 b =Rηβ (RσN b f)Again, we still have to address the question, whether given a proof F suhthat
[[F]] = (RσN b f)it is possible to �nd F ′ suh that:

[[F ′]] = λn.(Πn 0 b)?Funtions are very powerful tools, so it is not a surprise that going along withoutthem has a ost. Atually, we an still ahieve our goal, but the answer is nowa little bit more elaborate.Given two natural indexes i , j, with i + j = n, (Π i j) is a funtion thattakes the witness for A(j) and returns the witness for A(i+ j). So we expet
Π to be the omputational ontent of a proof with end formula:

∀n,m(A(m)→ A(n+m))that use the proofs termsMA(0) and N∀n(A(n)→A(n+1)) as assumptions. Let usprove this laim.Proposition 7.2.8. A(0) → ∀n(A(n) → A(n+ 1)) → ∀n,m(A(m) → A(n +
m))Proof. Assume b : A(0) and f : ∀n(A(n)→ A(n+ 1)). By indution on n:
n = 0 We have to prove

∀m(A(m)→ A(m))this is trivially proved by (λm, u.u).
n+ 1 Let us assume n, the reursive all p : ∀m(A(m) → A(n + m)), m andthe aumulator y : A(m). We have to prove

A(n+m+ 1)Apply f to m and y obtaining (f my) : A(m+1). Now apply p to (m+1)and (f my).The aumulator-based program transformation provides us with a new proofof the indution priniple over natural numbers: 81

7 Tail ReursionProposition 7.2.9. A(0)→ ∀n(A(n)→ A(n+ 1))→ ∀nA(n).Proof. Assume b : A(0), f : ∀n(A(n) → A(n + 1)) and n. To prove A(n):instantiate the formula proved in Proposition 7.2.8 on n, 0 and b : A(0)We are done: the program extrated from the previous proof named asInd_ACC, is the following:[b,f,n℄ (Re nat => nat => sigma => sigma)([m,y℄y)([n,p,m,y℄ p (m+1)(f m y)) n 0 b7.3 From Higher Order to First Order ComputationIn this setion, we answer positively to the question of the existene for someformal onnetion between Ind_CONT and Ind_ACC. The link between thetwo of them relies on Defuntionalization. This program transformation, �rstintrodued by Reynolds in the early 1970's [32℄ and later on extensively studiedby Danvy [15℄, is a whole program transformation to turn higher-order into�rst-order funtional programs, that is to transform programs where funtionsmay be anonymous, given as arguments to other funtions and returned asresults, into programs where none of the funtions involved aept argumentsor produe results that are funtions. Let us onsider the following simpleexample taken from [15℄:(* aux : (nat -> nat) -> nat *)let aux f = (f 1) + (f 10)(* main : nat * nat * bool -> nat *)let main x y b = aux (fun z -> x + z) *aux (fun z -> if b then y + z else y * z)The above funtion aux alls the higher order funtion f twie: on 1 and 10and returns the sum as its result. Also, the main funtion alls aux twie andreturns the produt of these alls. There are only two funtion abstrationsand they our in main.Defuntionalizing this program amounts to de�ning a data type with twoonstrutors, one for eah funtion abstration, and its assoiated apply fun-tion. The �rst funtion abstration ontains one free variable (x, of type nat),and therefore the �rst data-type onstrutor requires a natural. The seondfuntion abstration ontains two free variables (y, of type nat, and b of typebool), and therefore the seond data-type onstrutor requires an integer anda boolean.82

7.3 From Higher Order to First Order ComputationIn main, the �rst abstration is thus introdued with the �rst onstrutorand the value of x, and the seond abstration with the seond onstrutor andthe values of y and b.To the funtional argument used in aux, orresponds a pattern mathingdone by the following apply funtion:type lam = LAM1 of nat | LAM2 of nat * bool(* apply : lam * nat -> nat *)let apply l z =math l with| LAM1 x -> x + z| LAM2 y b -> if b then y + z else y - z(* aux_def : lam -> nat *)let aux_def f = apply f 1 + apply f 10(* main_def : nat * int * bool -> nat *)let main_def x y b = aux_def (LAM1 x) * aux_def (LAM2 y b)Now let us apply defuntionalization to Ind_CONT. We introdue the algebrapath_nat (below) to represent the initial ontinuation λx.x and the interme-diate ontinuation λu.k(f n u).type path_nat = TOP | UP of path_nat * natEah onstrutor has as muh parameters as free variables ourring in theorresponding ontinuation funtion. Finally the all (k b) in Ind_CONT isreplaed by the apply funtion (here is anonymous) that dispathes over thepath_nat onstrutors. We named the defuntionalization of Ind_CONT byInsd_Def_CONT and it is listed below:[n℄(Re nat => path_nat => sigma[q℄ (Re path_nat => sigma => sigma[y℄ y[m,q',p,y℄ (p (f m y))) q b[n,p,q℄ (p (UP q n))) n TOPNow the question is: from whih proof is it possible to extrat Ind_Def_CONT?Given q of type path_nat and y �of type� A(n) the inner proedure would beexpeted to return an element of type A(n) when q = TOP and an element oftype A(n+ m + 1) when q = (UP (...(UP TOPn + m)...) n). But q doesnot depend expliitly on n, so given y and p alone one annot guess anythingabout the type of the returned value. In order to state this link between the83

7 Tail Reursionabove two inputs we need to quantify non omputationally over an additionalparameter as showed in the theorem below. In order to do that, let us beforeintrodue the following notation.De�nition 7.3.1. Given p and q of type path_nat the �degree� of q with respetto p is de�ned by the following partial funtion:
♯p(q) =

8

<

:

♯p(p) = 0
♯p(TOP) = Undef if p 6= TOP
♯p((UP q n)) = 1 + ♯(q)De�nition 7.3.2. Given x and p of type path_nat and a natural n, we saythat x has a �good shape� with respet to p at level n whenGoodShape(x, p, n)⇐⇒

p = x
p 6= x = (UP q l) ∧ (l = n) ∧ GoodShape(q, p, n+ 1)In the following we adopt the following notation: by C[t] we indiate apath_nat term that ontain an ourrene of the term t. So for example if

C[t]=(UP(UP TOP j)i), for some naturals i and j, then t it ould be TOP, (UPTOP j) or C[t] it self.Theorem 7.3.1. A(0)→ ∀n(A(n)→ A(n+1))→ ∀x∀nnGoodShape(x, TOP, n)→
A(n)→ A(n+ ♯TOP(x))Proof. By indution over x.
x = TOP Assume n, u : A(n) and GoodShape(TOP, TOP, n). The thesis followsby u.
x = (UP q l) Assume p : ∀nn.GoodShape(q, TOP, n) → A(n) → A(n + ♯(q)), n,gs : GoodShape((UP q l), TOP, n) and y : A(n). By gs and de�nition 7.3.1follows l = n and gs′ : GoodShape(q, TOP, n + 1). Instantiate f on l and

A(n) (l is equal to n) obtaining (f l y) : A(n+ 1). To prove the thesis, itremains to instantiate p on n+ 1, gs′ and (f l y).The program extrated from theorem 7.3.1 is Ind_Def_CONT but we arenot done yet: the theorem below shows as Ind_Def_CONT needs some ad-ditional simpli�ation. In the following lines we will favor the presentation
(λn.P nTOP) in plae of Ind_Def_CONT.Theorem 7.3.2. For all n, ppath_nat ,ACCpath_nat , if

(λn.P np) (n+ 1) =Rηβ P 0ACCthen GoodShape(ACC, p, 0) and ♯pACC = n+ 1.84

7.4 Case StudyProof. By indution on n.
n = 0 (λn.P np) 1 rewrite to P 0 (UP p 0) in one step.
n > 0 Assume IH: ∀p,ACC, if (λn.P np) (n+ 1) =Rηβ P 0ACC then ♯pACC =

n + 1 and GoodShape(ACC, p, 0); assume p, ACC and ip:(λn.P n p) (n +
2) =Rηβ P 0ACC. We have to prove GoodShape(ACC, p, 0) and ♯pACC =
n+2. It is just enough to see that (λn.P n p) (n+2) =Rηβ (λn.P n (UP p (n+
1)))(n+1) and so by ip, we have ip′ : (λn.P n (UP p (n+1)))(n+1) =Rηβ

P 0ACC. Then instantiating IH on (UP p (n+ 1)) and ACC, and by ip′ wehave that GoodShape(ACC, (UP p (n+ 1)), 0) and ♯(UP p (n+1))ACC = n+ 1.It follows that ACC = C[(UP (UP p (n+ 1))n)], for some path_nat term C,that is ♯p(ACC) = n+ 2 and GoodShape(ACC, p, 0).As a orollary of theorem 7.3.2, we have that, for p = TOP the expression
(λn.P n TOP)(n+1), that is Ind_Def_CONT(n+1), rewrites to (P 0ACC) withGoodShape(ACC, TOP, 0) and ♯TOP(ACC) = n+1. A data struture like type_natis too omplex to store this partiular simple data. So we replae type_nat by
N in Ind_Def_CPS aording to the informal orrespondene:TOP ! 0

(UPTOPn) ! 1... ...
(UP(. . . (UPTOPn) . . .)0) ! n+ 1obtaining the ode Ind_Intermediate_ACC, listed below:[n℄ (Re nat => nat => sigma[q℄ (Re nat => nat => sigma => sigma[m,y℄ y[q',p,m,y℄ (p (m+1) (f m y))) q 0 b[n,p,q℄ (p (q+1))) n 0This proedure still performs some redundant omputations: the outer reur-sion runs over n, so the aumulator parameter q ranges from 0 to n. At thispoint the inner routine (that will return the �nal result) is alled on q, nowequal to n. This is equivalent to alling diretly the subroutine over n, whihorresponds to Ind_ACC as expeted.7.4 Case StudyLet us onsider now a more elaborated example taken from Bioinformatis.This is an area where the orretness and the e�ieny of programs plays85

7 Tail Reursiona ruial role: e�ieny beause DNA sequenes are really huge and gettinglower omplexity lass is essential, orretness beause we need to trust pro-grams and we annot hek their results by hand. An important line of researhis the �Sequene Analysis�, whih is onerned with loating biologially mean-ingful segments in DNA sequenes. In this ontext, we will treat the so-alled�Maximal Soring Subsequene� (MSS) Problem. For a sequene of real num-bers, we are looking for a ontiguous sub-sequene suh that the sum of itselements is maximal over all sub-sequenes. Several authors have investigatedthat problem or a variation thereof, see, e.g., [16, 11, 18, 25, 42℄The MSS problem has various appliations in Bioinformatis and we willmention only a few of them. The GC ontent in DNA of all organisms variesfrom 25% to 75%, where, e.g., genes are usually loated in region with a highGC ontent. Suh regions an easily be determined with a MSS algorithm,where the bases G and C get a positive, while the bases A and T get a negativevalue. Also in omparative genomis, the sequene similarity for orrespondingexons between human and mouse is up to 85%, while for introns it is as lowas 35%. Using the Smith-Waterman loal alignment algorithm suh regionswith high similarity an be roughly determined, but a re�nement in a post-proessing step using variations of MSS algorithms are helpful to eliminatesub-regions with a low similarity. Furthermore, strongly onserved regions of amultiple sequene alignment an be found using MSS algorithms, where eaholumn will be sored based on a suitable similarity measure. In transmembraneproteins, the more hydrophobi regions of the protein are usually loated insidethe membrane and more hydrophili regions are loated outside. Thus, loatinghydrophobi regions using MSS algorithms are helpful for a �rst rough strutureresolution of transmembrane proteins, where hydrophobi amino aids get apositive and hydrophili a negative value. For a detailed list of appliations inbiomoleular sequene analysis, see [25℄, for example.7.4.1 The MSS ProblemThe MSS (Maximal Soring Subsequene) problem, in its most general presen-tation, an be explained as follows:MSS Problem : Given a list l of real numbers, �nd an interval (i, k) (with
i ≤ k ≤ |l| − 1) suh that

k′
X

j=i′

l [j] ≤
k

X

j=i

l [j]for every (i′, k′) (with i′ ≤ k′ ≤ |l| − 1). The problem doesn't admitsolutions for all the inputs, in fat on the empty list there is no solution.86

7.4 Case Study
in knjn n n + 1

seg [j′, n] ≤ seg[jn, n], ∀j′ ≤ n

seg [i′, k′] ≤ seg[in, kn], ∀i′, k′ ≤ nFigure 7.1: The witnesses in,jn and kn at step n of the indutionHere we report on a variant of the MSS problem �rst proposed in [2, 35℄.MSS Problem Instane :Given the funtion seg : N×N→ X de�ned on [0, . . . , n]×
[0, . . . , n], �nd the interval (i, k),(with i ≤ k ≤ n) suh that

seg [i′, j′] ≤X seg [i, j]for every (i′, k′), (with i′ ≤ k′ ≤ n). This time the problem admitssolution on eah natural input n. Here X is a set on whih we an de�nea total order relation ≤X. Moreover we require seg to have the followingproperty:AX = ∀n, i, j. seg[i, n] ≤X seg[j, n]→ seg[i, (Su n)] ≤X seg[j, (Su n)]Theorem 7.4.1. For all n
∃i, k((i ≤ k ≤ n) ∧ ∀i′, k′((i′ ≤ k′ ≤ n)→ seg[i′, k′] ≤X seg[i, k]) (7.2)

∃j((j ≤ n) ∧ ∀j′((j′ ≤ n)→ (seg[j′, n] ≤X seg[j, n])))) (7.3)Proof. By indution on n.
n = 0 We set i = k = j = 0.
n+ 1 Assume (7.2) and (7.3) hold for n (hypothesis IH1

n,IH2
n). Let (in, kn) and

jn be the segment and the value that satisfy IH1
n and IH2

n respetively(see piture in Figure 7.1) By IH2
n, for an arbitrary j′ ≤ n

seg[j′, n] ≤X seg[jn, n] (7.4)87

7 Tail ReursionInstantiating Ax on n,j′,jn and (7.4),
seg[j′, n+ 1] ≤X seg[jn, n+ 1]The witness for IH2

n+1 is given by:
jn+1 =

jn seg[n+ 1, n+ 1] ≤X seg[jn, n+ 1]
(n+ 1) seg[n+ 1, n+ 1] �X seg[jn, n+ 1]We have to prove that jn+1 satis�es,

∀j′.(j′ ≤ (n+ 1))→ seg[j′, (n+ 1)] ≤X seg[jn+1, (n+ 1)])This has to be proved both for j′ ≤ n and j′ = (n + 1). Both asesfollow straightforwardly from IH2
n and the onstrution of jn+1. The newmaximal segment, is given by:

(in+1, jn+1) =

(in, kn) seg[jn+1, n+ 1] ≤X seg[in, kn]
(jn+1, n+ 1) seg[jn+1, n+ 1] �X seg[in, kn]Again, we have to prove that (in+1, kn+1) satis�es,

∀i′, k′(i′ ≤ k′ ≤ (n+ 1))→ seg[i′, k′] ≤X seg[in+1, kn+1]This property has to be proved both for (i′ ≤ k′ ≤ n) and (i′ ≤ k′ = n+1).Both ases follows from IH1
n, IH2

n, and the onstrution of (in+1, kn+1)The program extrated from the previous proof, namedMSS, is the following:(Re nat => sigma(0,0,0)[n,(i,j,k)℄LET m = (if(seg[n+1, n+1℄ <= seg[j, n+1℄) j (n+1))IN if(seg[m,n+1℄ <= seg[i,k℄) (i,m,k) (m,m,n+1))With seg some �xed funtion. The above algorithm makes use of the ex-pression (LET r IN s). This is atually syntati sugar : although it does notbelong to our term language, Minlog allows the user to make use of it. Thisis irrelevant in the ontext of this setion, and the reader is referred to [10℄ fora a further development on that issue.By the following extension of the de�nition 7.2.1:
3′. if t ≡ (LET r IN s) then s is a tail expression.and w.r.t. de�nition 3.3, the program MSS is not tail reursive.88

7.4 Case Study7.4.2 Generation of a Continuation/Aumulator BasedMSS-ProgramWe apply the transformations proposed in setion 7.2.1 and 7.2.2 to the proofof the theorem 7.4.1 in order to extrat respetively a ontinuation and anaumulator based version of theMSS program. We �rst onsider the extrationof a ontinuation based version of the MSS program. Before to do that, let'sname the following formula,
∀n∃i, k((i ≤ k ≤ n) ∧

∀i′, k′((i′ ≤ k′ ≤ n)→ seg[i′, k′] ≤X seg[i, k]) ∧

∃j((j ≤ n) ∧ ∀j′((j′ ≤ n)→ (seg[j′, n] ≤X seg[j, n]))))with ∀nMSSseg
X

(n). Moreover we name the base and the step of the indutiveproof of theorem 7.4.1 respetively asM andN . ClearlyM has typeMSSseg
X

(0)and N has type ∀n(MSSseg
X

(n)→MSSseg
X

(n+ 1)).Now, let instantiate A(n) in Proposition 7.2.3 with MSSseg
X

(n). We namethe proof of the Proposition 7.2.3 so istantiated as MSS_CONT. At this point,following the idea proposed in Proposition 7.2.4 we build the following proof-tree:
|N

∀n(MSSseg
X

(n) →MSSseg
X

(n+ 1))MSS_CONTMSSseg
X

(0) →

∀n(MSSseg
X

(n) →MSSseg
X

(n+ 1)) →

∀n∀nm(MSSseg
X

(n) →MSSseg
X

(n +m)) →MSSseg
X

(n+m)

|MMSSseg
X

(0)

→−

∀n(MSSseg
X

(n) →MSSseg
X

(n+ 1)) →

∀n∀nm(MSSseg
X

(n) →MSSseg
X

(n+m)) →MSSseg
X

(n+m) __
→−

∀n∀nm(MSSseg
X

(n) → MSSseg
X

(n +m)) → MSSseg
X

(n +m) n 0

∀−

(MSSseg
X

(n) → MSSseg
X

(n)) → MSSseg
X

(n)___ [u : MSSseg
X

(n)]
→+

uMSSseg
X

(n) → MSSseg
X

(n)

→−MSSseg
X

(n)

∀+

∀nMSSseg
X

(n)The program extrated from the above proof is the ontinuation based versionof the MSS program:([n℄(Re nat => (sigma => sigma) => sigma 89

7 Tail Reursion[k℄ k (0,0,0)[n,p,k℄ p ([(i,j,k)℄LET m = if (seg[n+1, n+1℄ <= seg[j, n+1℄) j (n+1)IN if (seg[m,n+1℄ <= seg[i,k℄) (i,m,k) (m,m,n+1))))n [x℄xFor the extration of an aumulator based version of the MSS program wefollow the same idea. Before we instantiate A(n) in Proposition 7.2.8 withMSSseg
X

(n). We name the proof of the Proposition 7.2.8 so istantiated asMSS_ACC. Now adapting the proof of Proposition 7.2.9 we build the followingproof-tree: MSS_CONT
∀n(MSSseg

X
(n) → MSSseg

X
(n + 1)) →

∀n,m(MSSseg
X

(m) →MSSseg
X

(n +m))

|N

∀n(MSSseg
X

(n) → MSSseg
X

(n + 1))

→−

∀n,m(MSSseg
X

(m) → MSSseg
X

(n +m)) n 0

∀−

(MSSseg
X

(0) →MSSseg
X

(n))

|MMSSseg
X

(0)MSSseg
X

(n)

∀+

∀nMSSseg
X

(n)The program extrated from the above proof is the aumulator based versionof the MSS program([n℄(Re nat => nat => sigma => sigma[m,y℄ y[n,p,m,(i,j,k)℄p (m+1) LET m = (if (seg[n+1, n+1℄ <= seg[j, n+1℄) j (n+1))IN if (seg[m,n+1℄ <= seg[i,k℄) (i,m,k) (m,m,n+1))))n 0 (0,0,0)Both the ontinuation and aumulator version of the MSS program are tailreursive, as the result of automati transformation from the proof of the the-orem 7.4.1. This way, we have ensured these are still orret implementationsof the abstrat algorithm while being more e�ient in the same time.
90

8 Beyond Primitive Reursion8.1 IntrodutionIn this hapter1 we extend what we have seen in the previous hapter. Follow-ing the pioneering work of Manna and Waldinger's [27℄ we introdue severalindution priniples over natural numbers and we will investigate how it is pos-sible to express eah one in terms of the others, both from a programming anda proof-theoreti point of view. This represents a ontribution with respet to[27℄. Moreover we will show how it is possible to turn eah indution prinipleinto an equivalent one, but from whih it is possible to automatially synthesizea tail reursive program.For readability reasons part of the ode presented in this setion will bewritten with the ML syntax.8.1.1 Up Primitive Reursive IndutionHere is the proof priniple for primitive reursion:
|Z

P (0)

|S

∀n(P (n)→ P (n+ 1)) (up-prim-re)
∀nP (n)Manna and Waldinger refer to it as `going up' sine P (n) is needed to dedue

P (n+1). The orresponding synthesized funtional Up.prim_re is displayed inFigure 8.1. There, z is extrated from [[Z]] and s from [[S]]. The omputation isdriven by the input variable n: omputing the result for n requires the resultfor n − 1 to be omputed, until the base ase n = 0 is reahed in a trail ofnested appliations of the funtion denoted by s.The reursive de�nition of the fatorial funtion is a straightforward exampleof primitive reursion, and is obtained as an instane of Up.prim_re where zis instantiated with identity element for multipliation (z = 1) and s with the(urried) multipliation funtion (s = fn i => fn => (i + 1) *):1The material in this hapter was developed in ollaboration with Olivier Danvy duringJanuary 2009, during a visit to the Århus's Computer Siene Department. 91

8 Beyond Primitive Reursionstruture Up= strutfun prim_re n (*: nat-> 'a *)= let fun visit m= if m =0 then z else s (m - 1)(visit(m - 1))in visit nendfun prim_iter n (* : nat ->'a *)= let fun visit m= if m = 0 then z else s (visit (m - 1))in visit nendend Figure 8.1: Synthesized up-indution funtionalsfun up_prim_re_fat n= let fun visit m= if m = 0 then 1 else m * (visit (m - 1))in visit nend8.1.2 Up Primitive Iterative IndutionHere is the proof priniple for primitive iteration:
|Z

P (0)

|S

∀nn(P (n) → P (n + 1)) (up-prim-iter)
∀nP (n)The di�erene between primitive and iterative iteration is that in the itera-tive ase, we quantify non omputationally over n in the indutive step. Onean then synthesize the funtional for up primitive iteration Up.prim_re inFigure 8.1. Again, there, z is extrated from [[Z]] and s from [[S]].To de�ne the fatorial funtion as an instane of Up.prim_iter we must gener-alize Kleene's trik to ompute the predeessor funtion over Churh numerals.So instantiating z = (1,1) and s = fn(i,) =>(i+1,i*) in Up.prim_iter weobtain:fun up_prim_iter_fat n= let fun visit m92

8.1 Introdution= if m = 0 then (1,1) else let val (i,)=visit(m - 1)in (i + 1,i *)endin #2 (visit n)end8.1.3 Down Primitive Reursive IndutionManna and Waldlinger also present a `going down' version of primitive reur-sion:
|Z

Q(n)

|S

∀m(Q(m + 1) → Q(m)) (down-prim-re)
Q(0)where n ould be a free variable in Q. They refer to it as `going down' sine

Q(n+ 1) is needed to dedue Q(n).The idea is that the property ∀nP (n) is proved using a prediate Q(m) suhthat Q(0) redues to P (n) (noted Q(0) ; P (n)). This indution priniple isthen applied to Q(0). The hallenging point here is that a kind of eureka stepis required in order to �nd a satisfatory prediate Q.So, given the proof of Q(0) in terms of M∃mQ(n) and N∀m(Q(m+1)→Q(m)),we prove ∀nP (n) by
|R

P (n)
→+

Q(0) → P (n)

...
Q(0)

→−

P (n)
∀+

∀nP (n)Here we require the normalization of the ode extrated from the proof-term
λuQ(0)RP (n) to be equal to the identity funtion. This is beause we assume
Q(z) to be a prediate that, when instantiated with 0, an be rewritten into
P (n) in a �nite number of steps, using an opportune set of rewriting rules.This proess of simpli�ation is performed using the following, and only thefollowing axiom:Eq-Compat : ∀x1, x2(x1 ; x2 → P (x1)→ P (x2))where ; denotes a binary relation and P a generi prediate symbol. Thisaxiom says that, if we know that a given term (bounded by x1) is in relationwith another term (bounded by x2) � for example the equality relation � and93

8 Beyond Primitive Reursionstruture Down= strutfun prim_re n (* : nat -> 'a *)= let fun visit m= if m = n then z else s m (visit (m + 1))in visit 0endfun prim_iter n (* : nat ->'a *)= let fun visit m= if m = n then z else s (visit (m + 1))in visit 0endend Figure 8.2: Synthesized down-indution funtionalswe know that P (x1) holds then we an onlude that P (x2) holds. Lettingthe omputational ontent of the Eq-ompat axiom be the identity funtion,it is lear that the program extrated from nested appliations of Eq-ompat,one normalized, will orrespond to the identity funtion. Sine the derivationabove is a detour, we rewrite it in the following way:...
Q(0)

|R

P (n)
∀+

∀nP (n)whih an be read as the replaement of eah open assumption uQ(0) in R bythe proof of Q(0). The program extrated from the omplete proof of ∀nP (n)is the funtional Down.prim_re in Figure 8.2, where z ould depend on n (henethe order of the parameters).We now return to the fatorial funtion over natural numbers:fat(n) =

1 if n = 0
n× fat(n− 1) if n > 0Let us prove that ∀n∃m(m = fat(n)) by going-down primitive reursion.We assume n. In order to prove ∃m(m = fat(n)), we design the new goal

∃m(fat(0) × m = fat(n)). Applying the going-down primitive reursive in-dution priniple to this formula requires us to prove the following two subgoals:94

8.1 Introdution
• ∃m(fat(n)×m = fat(n)): It is su�ient to set m = 1.
• Now assume y and ih : ∃m(fat(y + 1) × m = fat(n)). We prove
∃m(fat(y) × m = fat(n)). By ih we know that there does exist an
m′ suh that fat(y + 1) ×m′ = fat(n). Considering that fat(y + 1) =
(y + 1)× fat(y), the thesis is proved for m = (y + 1)×m′.The program extrated from this proof reads as follows:fun down_prim_re_fat n= let fun visit m= if m = n then 1 else (m + 1) * (visit (m + 1))in visit 0endCorrespondingly, this residual program is also obtained by speializing Down.prim_reon z equal to the identity element for multipliation and s the (urried) multi-pliation funtion:8.1.4 Down Primitive Iterative IndutionHere is the proof priniple for primitive iteration:

|Z

Q(n)

|S

∀nm(Q(m + 1) → Q(m)) (down-prim-iter)
Q(0)Again, the di�erene between primitive and iterative iteration is that in theiterative ase, we quantify non omputationally over m in the indutive step.One an then synthesize the funtional for down primitive iteration in Fig-ure 8.2, where n, in the loal de�nition of visit, is free.Again, to de�ne the fatorial funtion as an instane of Down.prim_iter weuse Goldberg and Reynolds's generalization of Kleene's trik to ompute thepredeessor funtion over Churh numerals. So instantiating z = (1,1) ands = fn(i,) => (i+1, i*) in Down.prim_iter we obtain:fun down_prim_iter_fat n= let fun visit m= if m=n then (1,1) else let val (i,) = visit (m+1)in (i + 1, i *)endin #2 (visit 0)end 95

8 Beyond Primitive Reursion8.2 Expressive PowerIn this setion we show that the indution priniples reviewed in Setion 8.1share the same expressive power.Up.prim-re //

��

Down.prim-reoo

��Up.prim-iter
OO

// Down.prim-iteroo

OO

8.2.1 Up Primitive Iteration in Terms of Up Primitive ReursionTo simulate up primitive iteration in terms of up primitive reursion we instan-tiate the base and step of Up.prim_re respetively by z' and fn n=>fn y=>s'ywith z' and s' base and step of Up.prim_item:fun up_prim_iter n= let fun visit m= if m =0 then z' else s'(visit(m - 1))in visit nendProof interpretation:Proposition 8.2.1. Given the proof
|M

P (0)

|N

∀nn(P (n) → P (n + 1)) (up-prim-iter)
∀nP (n)then there exists M ′, N ′ suh that:

|M ′

P (0)

|N ′

∀n(P (n) → P (n + 1)) (up-prim-re)
∀nP (n)with omputational ontent equal to up_prim_iter.Proof. iao96

8.2 Expressive PowerEq-Compat [u : y = n]

|N

∀n(P (n) → P (n + 1)) y
∀−

P (y) → P (y + 1)
→−

P (n) → P (n + 1)

[r : ∃y(y = n) ∧ P (n)]
∧−

1

P (n)
→−

P (n + 1)
→+
u

y = n → P (n + 1)
∀+

∀y(y = n → P (n + 1))

∃−

[r : ∃y(y = n) ∧ P (n)]
∧

−
0

∃y(y = n) ________
∃−

P (n + 1)

∃−

[r : ∃y(y = n) ∧ P (n)]
∧

−
0

∃y(y = n)

∃+ (y + 1)

[u : y = n]

y + 1 = n + 1
∃+

∃y(y = n + 1)
→+

u

y = n → ∃y(y = n + 1)
∀+

∀y(y = n → ∃y(y = n + 1))
∃−

∃y(y = n + 1) _
∧+

∃y(y = n + 1) ∧ P (n + 1)
→+

r

(∃y(y = n) ∧ P (n)) → (∃y(y = n + 1) ∧ P (n + 1))
∀n+

∀nn((∃y(y = n) ∧ P (n)) → (∃y(y = n + 1) ∧ P (n + 1)))

∃+ 1 (1 = 0)
∃+

∃y(y = 0)

|M

P (0)
∧+

∃y(y = 0) ∧ P (0) __ (up-prim-iter)
∀n(∃y(y = n) ∧ P (n)) n

∀−

∃y(y = n) ∧ P (n)
∧−

1

P (n)
∀+

∀nP (n)Figure 8.3: Simulation of up-prim-re in term of up-prim-iter. The variable n doesnot our in ontent of the proof of the formula (∃y(y = n) ∧ P (n)) →

(∃y(y = n + 1) ∧ P (n + 1)), thus the (∀n+) inferene results orretw.r.t. the de�nition given in setion 2.1.2. 97

8 Beyond Primitive Reursion
|M

P (0)

|N

∀nn(P (n) → P (n + 1)) n
∀−

P (n) → P (n + 1) [u : P (n)]
→−

P (n + 1)
→+

u

P (n) → P (n + 1)
∀+

∀n(P (n) → P (n + 1)) (up-prim-re)
∀nP (n)8.2.2 Up primitive Reursion in Terms of Up Primitive IterationTo simulate up primitive reursion in terms of up primitive iteration we useKleene's trik: we instantiate the base and step of Up.prim_iter respetivelyby (0,z') and fn (j,)=>(j + 1, s' j), with z' and s' base and stepof Up.prim_re:fun up_prim_re n= let fun visit m= if m = 0 then (0,z')else let val (j,) = (visit (m - 1))in (j+1, s' j) endin #2 (visit n)end)Proof interpretation:Proposition 8.2.2. Given the proof

|M

P (0)

|N

∀n(P (n) → P (n + 1)) (up-prim-re)
∀nP (n)then there exists M ′, N ′, R suh that:

|M ′

∃y(y = 0) ∧ P (0)

|N ′

∀nn(∃y(y = n) ∧ P (n) → ∃y(y = n + 1) ∧ P (n + 1)) (up-prim-iter)
∀n(∃y(y = n) ∧ P (n))

|R

∀nP (n)98

8.2 Expressive Powerand from whih it is possible to extrat up-prim-re.Proof. See Figure 8.3.8.2.3 Up Primitive Reursion in Terms of Down Primitive ReursionTo simulate up primitive reursion in terms of down primitive reursion, we useKleene's trik: we instantiate the base and step of Down.prim_re respetivelyby (0,z') and fn m =>fn(j,)=>(j+1,s'j), with z' and s' base and stepof Up.prim_re:fun up_prim_re' n= let fun visit m= if m = n then (0,z') else let val (j,) = (visit (m + 1))in (j+1,s'j) endin #2(visit 0)endProof interpretation:Proposition 8.2.3. Given the proof
|M

P (0)

|N

∀n(P (n) → P (n + 1)) (up-prim-re)
∀nP (n)then there exists M ′, N ′ suh that:

|M ′

∃z(z = n − n) ∧ P (n − n)

|N ′

∀y((∃z(z = n − (y + 1)) ∧ P (n − (y + 1))) →

(∃z(z = n − y) ∧ P (n − y))) (down-prim-re)
∃z(z = n − 0) ∧ P (n − 0)

∧−
1

P (n)
∀+

∀nP (n)and from whih it is possible to extrat the proedure up-prim-re'.Proof. See Figure 8.4. 99

8 Beyond Primitive Reursion
[r : ∃z(z = n− (y + 1)) ∧ P (n− (y + 1)) ∧ (y + 1 ≤ n)]

∧
−
0

∃z(z = n − (y + 1)) ∧ P (n− (y + 1))
∧−

1
P (n − (y + 1))Eq-Compat [u : z = n− (y + 1)]

|N

∀n(P (n) → P (n+ 1)) z
∀−

P (z) → P (z + 1)
→−

P (n − (y + 1)) → P (n− y)
→−

P (n − y)
→+

u
(z = n − (y + 1)) → P (n− y)

∀+

∀z((z = n− (y + 1)) → P (n− y))

∃−

[r : ∃z(z = n − (y + 1)) ∧ P (n− (y + 1)) ∧ (y + 1 ≤ n)]
∧−

0
∃z(z = n − (y + 1)) ∧ P (n − (y + 1))

∧−
0

∃z(z = n − (y + 1)) __
∃−

P (n− y)

∃+ (n − y)

[u : z = n − (y + 1)]
(∗)

z + 1 = n− y
∃+

∃z(z = y − n)
→+

u
(z = n − (y + 1)) → ∃z(z = n + 1)

∀+

∀z((z = n− (y + 1)) → ∃z(z = n − y))

∃−

[r : ∃z(z = n− (y + 1)) ∧ P (n− (y + 1)) ∧ (y + 1 ≤ n)]
∧−

1
∃z(z = n− (y + 1))

∃−

∃z(z = n − y)__________________________ ________________________
∧+

∃z(z = n − y) ∧ P (n − y)__________ [r : ∃z(z = n − (y + 1)) ∧ P (n − (y + 1)) ∧ (y + 1 ≤ n)]
∧−

1
(y + 1 ≤ n)

(y ≤ n)
∧+

∃z(z = n − y) ∧ P (n − y) ∧ (y ≤ n)
→+

r
(∃z(z = n − (y + 1)) ∧ P (n − (y + 1)) ∧ (y + 1 ≤ n)) →

∃z(z = n − y) ∧ P (n − y) ∧ (y ≤ n)
∀+

∀y((∃z(z = n − (y + 1)) ∧ P (n− (y + 1)) ∧ (y + 1 ≤ n)) →

∃z(z = n − y) ∧ P (n − y) ∧ (y ≤ n))

∃+ 0 (0 = n− n)
∃+

∃z(z = n− n)

|M

P (n− n)
∧+

∃z(z = n− n) ∧ P (n − n) n ≤ n
∧+

∃z(z = n− n) ∧ P (n− n) ∧ (n ≤ n) ____ (down-prim-re)
∃z(z = n− 0) ∧ P (n− 0) ∧ (0 ≤ n)

∧−
0

∃z(z = n− 0) ∧ P (n− 0)
∧

−
1

P (n)
∀+

∀nP (n)Figure 8.4:100

8.2 Expressive Power8.2.4 Down Primitive Reursion in Terms of Up Primitive ReursionTo simulate down primitive reursion in terms of up primitive reursion, weinstantiate the base and step of Up.prim_re respetively by (n,z') (for someinput parameter n) and fn m=>fn (j,)=> (j-1, s'(j-1)), with z' and s'base and step of Up.prim_re:fun down_prim_re n= let fun visit m= if m =0 then (z',n) else let val (j,) = (visit(m - 1))in (j-1, s'(j-1)) endin #2(visit n)endProof interpretation:Proposition 8.2.4. Given
|M

Q(n)

|N

∀m(Q(m + 1) → Q(m)) (down-prim-re)
Q(0)

|R

P (n)
∀+

∀nP (n)we want to �nd the opportuneM ′, N ′ suh that if the proof of Q(0) is substitutedby
|M ′

∃z(z = n) ∧ Q(n)

|N ′

∀y(((∃z(z = n − y) ∧ Q(n − y)) →

(∃z(z = n − (y + 1)) ∧ Q(n − (y + 1)))) (up-prim-re)
∀y(∃z(z = n − y) ∧ Q(n − y)) n

∀−

∃z(z = 0) ∧ Q(0)
∧

−
1

Q(0)then the omputational ontent of the resulting proof orresponds to down_prim_re.Proof. We propose only a sketh beause the struture of the proof is the sameas the one displayed in Fig. 8.4. The idea is to prove the lemma
∀y(∃z(z = n− y) ∧Q(n− y))by up primitive reursion: 101

8 Beyond Primitive Reursion
[Base y = 0] We have to prove ∃z(z = n) ∧Q(n). The left onjunt is provedby just introduing n for z. The right onjunt is given my M .
[Step y+1] Let us assume y and z′ suh that z′ = n−y and Q(n−y). We haveto prove ∃z(z = n− (y+1))∧Q(n− (y+1)). The left onjunt is provedintroduing z′− 1 for z. The right onjunt is proved by instantiating Non z′− 1, from whih we dedue Q(z′)→ Q(z′− 1) that an be rewrittenas Q(n− y)→ Q(n− y − 1) by the indution hypothesis z′ = n− y and�nally instantiating this formula on Q(n− y).8.2.5 Down Primitive Iteration in Terms of Down PrimitiveReursionTo simulate down primitive iteration in terms of down primitive reursion, weinstantiate the base and step of Down.prim_re respetively by z' and fn j =>fn =>s',with z' and s' base and step of Down.prim_iter:fun down_prim_iter n= let fun visit m= if m = n then z' else s'(visit (m + 1))in visit 0endProof interpretation:Proposition 8.2.1. Given

|M

Q(n)

|N

∀nm(Q(m + 1) → Q(m)) (down-prim-iter)
Q(0)

|R

P (n)
∀+

∀nP (n)we want to �nd the opportuneM ′, N ′ suh that if the proof of Q(0) is replaledby
|M ′

Q(n)

|N ′

∀m(Q(m + 1) → Q(m)) (down-prim-re)
Q(0)then omputation ontent of the transformed proof is equal to down_prim_iter.102

8.2 Expressive PowerProof. The struture of the proof is similar to that of Prop. 8.2.1. We simply set
M ′ equal toM andN ′ equal to the proof term λm,uQ(m+1)(N∀nm(Q(m+1)→Q(m)) mu).8.2.6 Down Primitive Reursion in Terms of Down PrimitiveIterationTo simulate down primitive reursion in terms of down primitive iteration, weinstantiate the base and step of Down.prim_iter respetively by (n,z') (forsome given n) and fn(j,)=>(j -1, s(j-1)), with z' and s' base and stepof Down.prim_re:fun down_prim_re' n= let fun visit m= if m = n then (n,z') else let val (j,)=(visit (m+1))in (j -1, s(j-1))) endin #2(visit 0)end= #2 (Down.prim_iter n ((n, z), fn(j,)=>(j -1, s(j-1))))Proof interpretation:Proposition 8.2.5. Given the proof

|M

Q(n)

|N

∀m(Q(m + 1) → Q(m)) (down-prim-re)
Q(0)

|R

P (n)
∀+

∀nP (n)�nd M ′, N ′ and an appropriate Q′ suh that
|M ′

Q′(n)

|N ′

∀nm(Q′(m + 1) → Q′(m)) (down-prim-iter)
Q′(0)

|R

P (n)
∀+

∀nP (n) 103

8 Beyond Primitive Reursionand from whih it is possible to extrat down_prim_re'.Proof. We propose only a sketh beause the struture of the proof is the sameas the one displayed in Fig. 8.3. The idea is to set
Q′(0) ≡ ∃y(y = 0) ∧Q(0)and prove Q′(0) by up primitive iterative indution:

[Case n] We have to prove ∃y(y = n) ∧Q(n), whih follows diretly by n = nand MQ(n).
[Case m+ 1→ m] Assumem (whih we quantify non omputationally) and y′suh that y′ = m+1 and Q(m+1). We prove ∃y(y = m)∧Q(m). For theleft onjunt, it is enough to introdue y′−1 for y. For the right onjunt,we need to instantiate N with (y′− 1), obtaining Q(y′)→ Q(y′− 1). Bythe assumption y′ = m+1, we have Q(m+1)→ Q(m) and instantiatingit with Q(m+ 1) we obtain the thesis.8.2.7 Up Primitive Iteration in Terms of Down Primitive IterationTo simulate up primitive iteration in terms of down primitive iteration, weinstantiate the base and step of Down.prim_iter respetively by (0,z') andfn(j,) => (j+1, s'), with z' and s' base and step of Up.prim_iter:fun up_prim_iter' n= let fun visit m= if m = n then (0,z') else let val (j,) = (visit (m+1))in (j+1, s') endin #2(visit 0)endThis ase is treated as the one in Setion 8.2.4.8.2.8 Down Primitive Iteration in Terms up Primitive IterationTo simulate down primitive iteration in terms of up primitive iteration, we useKleene's trik: we instantiate the base and step of Up.prim_iter respetivelyby (n,z') and fn(j,) => (j - 1, s'), with z' and s' base and step ofDown.prim_iter:104

8.3 Primitive Reursion and Iteration with Aumulatorsfun down_prim_iter' n (z, s)= let fun visit m= if m = 0 then (n,z') else let val (j,)=(visit(m -1))in (j-1, s') endin #2(visit n)endThis ase is treated as the one in Setion 8.2.3.8.2.9 Summary and onlusionWe have shown proof theoretially how the original up versions and Mannaand Waldinger's down versions of primitive reursion and primitive iterationare equivalent.8.3 Primitive Reursion and Iteration with AumulatorsHere we present the proof-theoretial analogous of fold-left from funtionalprogramming with lists, where the result is aumulated at all time instead ofat return time. We onsider in turn the aumulator-based versions of eah ofthe indution priniples reviewed in Setion 8.1.8.3.1 Up Primitive Reursion with AumulatorHere the problem is how to transform the following up primitive reursiveindution priniple,
|M

P (0)

|N

∀n(P (n)→ P (n+ 1)) (up-prim-re)
∀nP (n)into another proof (of the same formula ∀nP (n)) but with a omputationalontent that is the aumulator-based version of up primitive reursion:fun up_prim_re_a n= let fun visit m j a= if m = 0 then a else visit (m - 1) (j + 1) (s j a)in visit n 0 zendwith z and s base and step of Up.prim_re. In these de�nitions, we use andmanipulate two aumulators: j, to ount from 0 to n and a, to store the partialresult at step j. Obviously, for j = n we have a = s (n− 1)(. . . (s 0 z) . . .). 105

8 Beyond Primitive ReursionSo given a proof of ∀nP (n) by the up primitive reursive indution priniplein terms of z : MP (0) and s : N∀n(P (n)→P (n+1)) we an build a new proof of
∀nP (n) with ontent up_prim_re_a through the following two steps:1. We prove the lemma ∀n∀m(P (m)→ P (n+m)) by up primitive reursiveindution:Casen = 0 We have to prove

∀m(P (m)→ P (m))whih is trivially proved by (λm, u.u).Casen+ 1 Let us assume n, the reursive all p : ∀m(P (m)→ P (n+m)),
m and the aumulator y : P (m). We have to prove

P (n+m+ 1)Apply s to m and y, obtaining (smy) : P (m+ 1). Now apply p to
(m+ 1) and smy.2. Finally we derive the initial formula ∀nP (n) by assuming n and instan-tiating the formula proved in the �rst step on n, 0 and z : MP (0).8.3.2 Up Primitive Iteration with AumulatorWe follow the same shema as in Setion 8.3.1. The only di�erene is that inthe intermediate lemma (point 1), we have to quantify non omputationallyover m. In other words, we have to prove the modi�ed intermediate lemma:

∀n∀nm(P (m)→ P (n+m))The synthesized program will embody the up primitive iterative indution prin-iple with aumulator:fun up_prim_iter_a n= let fun visit m a= if m = 0 then a else visit (m - 1) (s a)in visit n zendwith z and s base and step of Up.prim_iter.8.3.3 Down Primitive Reursion with AumulatorHere the problem is how to transform the following down primitive reursiveindution priniple,106

8.3 Primitive Reursion and Iteration with Aumulators
|M

Q(n)

|N

∀y(Q(y + 1) → Q(y)) (down-prim-re)
Q(0)into another proof, still of the formula Q(0), but with a omputational ontentthat is the aumulator-based version of down primitive reursion:fun down_prim_re_a n= let fun visit m j a= if m = n then a else visit (m+1)(j-1)(s(j-1)a)in visit 0 n zendwith z and s base and step of Down.prim_re. We propose here an approahsimilar to the one in Setion 8.3.1. The funtion down_prim_re_a is equippedwith two additional aumulators, indiated with the letters j and a. The �rstone is initialized with n at the beginning of the omputation and dereased of 1in eah iteration, and the seond aumulator, initialized with z, of type P (n),is dediated to store the partial results. The proof from whih it is possible tosynthesize up_prim_re_a is based on the following two steps:1. We prove the intermediate lemma ∀i(Q(i) → Q((i + 0) − n)) by downprimitive reursive indution:Case y = n We have to prove ∀i(Q(i)→ Q(i)) that is given by onstru-tion by the following proof term λi, uQ(i)uCase y + 1→ y Given y, the indution hypothesis visit : ∀i(Q(i)→ Q((i+

y + 1) − n)), i and u : Q(i), we prove Q((i+ y) − n) by onstrut-ing the following proof term: (visit (i − 1) (N∀y(Q(y+1)→Q(y)) (i −
1)u))Q((i+y)−n).2. We instantiate the proof of the formula ∀i(Q(i) → Q((i+ 0) − n)) on nand on zQ(n), obtaining Q(0).8.3.4 Down Primitive Iteration with AumulatorWe follow the same shema as in setion8.3.3. The only di�erene is that in theintermediate lemma (point 1), we have to quantify non omputationally over

i. In other words, we have to prove the modi�ed intermediate lemma:
∀ni(Q(i)→ P ((i+ 0)− n))The proedure extrated from this new proof is the following down primitiveiteration priniple with aumulator: 107

8 Beyond Primitive Reursionfun down_prim_iter_a' n= let fun visit m a= if m = n then a else visit (m + 1) (s a)in visit 0 zendwith z and s base and step of Down.prim_iter.8.3.5 Summary and ConlusionWe have presented the aumulator-based versions of Manna and Waldinger'sgoing-up and going-down primitive reursion and primitive iteration reviewedin Setion 8.1.8.4 Case Study: The Fatorial FuntionIn this setion we put into pratie what we have seen so far on a ase study. Weprove by up primitive indution over natural numbers that ∀n∃y(y = Fat (n))(de�nition of Fat in 1.2):
∃+ 1 = Fat(0)

∃+

∃y(y = Fat(0)) ∃− [v : ∃y(y = Fat(n))]

[u : y = Fat(n)]

y ∗ (n+ 1) = Fat(n+ 1)
∃+

∃y(y = Fat(n+ 1))
→+

u
(y = Fat(n)) →

∃y(y = Fat(n+ 1))
∀+

∀y(y = Fat(n) →

∃y(y = Fat(n + 1)))
∃−

∃y(y = Fat(n+ 1))
→+

v
∃y(y = Fat(n)) → ∃y(y = Fat(n+ 1))

∀+

∀n(∃y(y = Fat(n)) → ∃y(y = Fat(n + 1))) up-prim-re
∀n∃y(y = Fat(n))We name this proof as Proof_fat1. The program extrated from Proof_fat1is the following:let fun fat n =if (n=0) then 1else (fat (n-1))*nLet assume to name the base's and step's proofs of Proof_fat1 respetivelyas B and the step as S. We have already seen in setion 8.2.2 how to expressat programming level, via the Kleene trik, up primitive reursion in terms ofup primitive iteration. In the same setion we have seen how to do it also atproof level. So replaing M with B, N with S and P (n) with Fat(n) in Figure8.3, we obtain a new proof, that we name Proof_fat2, with the followingomputational ontent:108

8.4 Case Study: The Fatorial Funtionfun fat' n =#2(let fun visit m =if (m=0) then (0,1)elselet val (j,)=visit (m-1)in (j+1,j*) endin visit n endProof_fat2 will be a proof with the following shape:
|B

∃y(y = Fat(0))
|K

∃y(y = 0) ∧ ∃y(y = Fat(0)) |S

∀n(∃y(y = Fat(n)) → ∃y(y = Fat(n + 1)))

|J

∀nn((∃y(y = n) ∧ ∃y(y = Fat(n))) →

(∃y(y = n+ 1) ∧ ∃y(y = Fat(n + 1)))) (up-prim-iter)
∀n(∃y(y = n) ∧ ∃y(y = Fat(n))) n

∀−

∃y(y = n) ∧ ∃y(y = Fat(n))
∧−

1Fat(n)
∀+

∀nFat(n)Where |K and |J an be dedued from Figure 8.3. Now, in setion 8.3.2 wehave seen how to transform an up primitive iterative proof of the form:
|M

P (0)

|N

∀nn(P (n) → P (n + 1)) (up-prim-iter)
∀nP (n)into another proof with an aumulator based extrated program. Now re-plaing M with K[B], N with J [S] and P (n) with ∃y(y = n) ∧ Fat(n) inthe above shema and then appling the proof transformation desribed in se-tion 8.3.2 to the proof so instantiated, we obtain a new proof of the formula

∀n(∃y(y = n)∧Fat(n)), that we name Proof_fat3. Thus, from the derivation:Proof_fat3
∀n(∃y(y = n) ∧ Fat(n)) n

∀−

∃y(y = n) ∧ Fat(n)
∧−

1Fat(n)
∀+

∀nFat(n)we extrat the following iterative with aumulator version of the fatorialfuntion:fun fat'' n =#2(let fun visit m a=if (m=0) then aelse visit (m-1) ((#1a)+1, #1a*#2a)in visit n (0,1) end) 109

8 Beyond Primitive ReursionWe would like to point out one more that, even if the program obtained afterthe appliation of the above transformation is not partiularly ompliated, ourtransformation is ompletely automati and ats at proof level, that is, the proofitself will onstitute a erti�ate of the orretness of our transformation.

110

9 Conlusions and Future WorksIn this thesis we developed a set of proof-transformations in order to extrate�ient program from proofs. In the following we will brie�y introdue eahproof-transformation tehnique presented and we will disuss possible exten-sions of it.PruningOne of the main result in this thesis regarded pruning: we showed on two bigexamples, the bin paking problem and the perfet mathing one, that pruningan be an essential tool to improve the e�ieny of the programs extratedfrom proofs. The aspet that make pruning a proof/program transformationnot omparable with other proof/program transformations rely on the fat thatpruning modify the omputational behavior of the extrated programs. Thisan looks (in a �rst moment) a property not desideable, but in the truth is theseret of the power of this method: given a proof of a problem with many so-lutions pruning transform the proof (and so the solution odi�ed in the proof)into another proof, simplifying all the redundant ase distintions.In hapter 5 then we extended pruning with a more general rule. We provedformally that eah simpli�ation that an be done by pruning then is per-formable by the new pruning rule, and we showed on a ase study that theopposite is not true: that is there are simpli�ations performed by the newrule that is not possible to mimi with pruning.Further works ould regards an extension of the new pruning rule in order tooverame the problem (that we did not treat in our formulation) of pruning assoure of ine�ieny. In order to make lear this point onsider the followingexample. If we apply pruning on the proof in Figure 9.1 we obtain the proofterm: IF t2 (∃+ r2 (AX1 u
t2)) (∃+ r3 (AX2 u

¬t2))Now assume in this ase that t1 is a fast algorithm, that is that t1[x/r] anbe normalized in just few steps for eah input r. Suppose further that t2 isvery slow. Then we have the following situation: whenever t1 holds, r1 maybe immediately returned as the output, but when ¬t1 holds a long omputa-tion must be undertaken to determine whih of t2 or ¬t2 holds. However, theorretness of the �long omputation� does not depend on whether ¬t1 holds.Thus we have a fast way (t1) of disriminating between two ways of omputing111

9 Conlusions and Future WorksIF t2

[AX1 : atom(t2) → C(x, y, r2)] ut2

C(x, y, r2)

∃zC(x, y, z)

[AX2 : ¬atom(t2) → C(x, y, r3)] v¬t2

C(x, y, r3)

∃zC(x, y, z)

∃zC(x, y, z)IF t1

AX3 : [atom(t1) → C(x, y, r1)] ut1

C(x, y, r1)

∃zC(x, y, z) ____________
∃zC(x, y, z)

∀x, y∃zC(x, y, z)Figure 9.1:a satisfatory output, one of whih is very fast (the simple return of r1) andthe other of whih is very slow. Further the slow way always works. Pruning inthis ase has the e�et of throwing away the disrimination (t1) and hoosingthe slow way every time.Dynami ProgrammingIn hapter 6 we presented an a do proof-transformation in order to synthesizea dynami program from a onstrutive proof. The proposed method's namewas list as memory. The idea onsist in evaluating a su�ient amount of datain advane so that the extrated algorithm gets to reuse it instead of reom-puting it eah time it is needed. This is done introduing in the proof a listof ad-ho axioms. The method we proposed in this thesis an not be appliedautomatially to an arbitrary proof but it an be seen more as a general shema(that has to be instantiated ase by ase) to follow in order extrat dynamiprograms from proofs. Future works in this diretion will regards the automa-tion of this proess.Tail ReursionIn hapter 7 we have seen how to transform a proof with reursive ontent intoanother proof with tail reursive ontent. We presented two proof transforma-tions: an �aumulator� based one, from whih it is possible synthesize the Πtail reursive shema and a �ontinuation� based, from whih it is possible toextrat the Λ shema.We note that Λ is in some way more general than Π. The modi�ation of Λin order to make it working on lists (let us name it ΛL(ρ)) instead of naturalsis easy; more importantly, the proof from whih ΛL(ρ) an be extrated isobtained by a slightly modi�ation of the proof from whih Λ is extrated. In112

the ase of lists the end formula to prove should be: ∀lL(ρ).(P (l) → ⊥) → ⊥.Unfortunately we an not extend in the same way Π and its proof: Π looksintrinsially dependent from the algebra of natural numbers.Possible appliations of Λ and Π go beyond the tail reursion. We noted thatthere exists proofs from whih are extrated programs that run in exponentialtime that an be turned (by the proofs transformations proposed here) in newproofs from whih it is possible to extrat polynomial time algorithms. Thisan appear pretty amazing and we are urrently working in order to state suhresult more preisely.Another appliation of the proofs transformations proposed here is an exten-sion of the CPS-transformation over formal proofs (Shwihtenberg [34℄ andGri�n [19℄) but this time onerning the indution axiom. The proposal isto perform CPS over proofs in two stages: a pre-proessing step where all theproofs by indution are transformed aording to our method, and a seondstage where CPS is applied skipping all the proofs by indutions. Currently weare studying also this aspet but it need a deeper investigation.A �nal remarks on the formal transformation of Ind_CONT into Ind_ACCpresented in setion 7.3. It ould be interesting to study if, and how, toperform the inverse operation, that is to go from Ind_ACC to Ind_CONT. Weargue that it ould be done by the Refuntionalization tehnique [14℄, but alsothis aspet needs a deeper investigation.

113

9 Conlusions and Future Works

114

Bibliography[1℄ Penny Anderson. Program Derivation by Proof Transformation. PhDthesis, Carnegie Mellon University, 1993.[2℄ Joseph L. Bates and Robert L. Constable. Proofs as programs. ACMTransations on Programming Languages and Systems, 7(1):53�71, 1985.[3℄ Stefano Berardi. Pruning simply typed lambda terms. Journal of Logiand Computation, 6(5), 1996.[4℄ Ulrih Berger. Uniform Heyting Arithmeti. Annals Pure Applied Logi,133:125�148, 2005.[5℄ Ulrih Berger. Program extration from normalization proofs. In M. Bezemand J.F. Groote, editors, Typed Lambda Caluli and Appliations, volume664 of LNCS, pages 91�106. Springer Verlag, 1993.[6℄ Ulrih Berger, Wilfried Buholz, and Helmut Shwihtenberg. Re�nedprogram extration from lassial proofs. Annals of Pure and AppliedLogi, 114:3�25, 2002.[7℄ Lua Boerio. Optimazing Programs Extrated from Proofs. PhD thesis,Computer Siene Department of Turin, 1997.[8℄ R. Burstall and J. Darlington. A transformation system for developingreursive programs. Journal of ACM, 24(1), August, 1977.[9℄ Lua Chiarabini. Extration of E�ient Programs from Proofs: The aseof Strutural Indution over Natural Numbers. In Arnold Bekmann,Costas Dimitraopoulos, and Benedikt Löwe, editors, Logi and Theoryof Algorithms, 2008.[10℄ Lua Chiarabini. A new adaptation of the pruning teh-nique for the extration of e�ient program from proofs, 2008.http://www.mathematik.uni-muenhen.de/�hiarabi/publ.html/PrunInMinlog.pdf.[11℄ K.-M. Chung and H.-I. Lu. An optimal algorithm for the maximum-densitysegment problem. SIAM Journal on Computing, 34:373�387, 2004. 115

Bibliography[12℄ Ferruio Damiani and Paola Giannini. Automati useless ode dete-tion and elimination for hot funtional programs. Journal of FuntionalProgramming, 10(6), 2000.[13℄ Olivier Danvy. Three steps for the ps transformation. Tehnial reportCIS-92-02, 1991. DAIMI, Department of Computer Siene, University ofÅrhus, Danimark.[14℄ Olivier Danvy and Kevin Millikin. Refuntionalization at work. Sieneof Computer Programming, 2008.[15℄ Olivier Danvy and Lasse R.Nielsen. Defuntionalization at work. In ed-itor Harald Søndergaard, editor, Proeedings of the Third InternationalConferene of Priniples and Pratie of Delarative Programming, pages162�174, Firenze, Italy, September 2001. ACM Press. Extended versionavailable as the tehnial report BRICS RS-01-23.[16℄ P. Fariselli, M. Finelli, D. Marhignoli, P.L. Martelli, I. Rossi, and R. Casa-dio. Maxsubseq: An algorithm for segment-length optimization. the asestudy of the transmembrane spanning segments. Bioinformatis, 19:500�505, 2003.[17℄ Christopher Goad. Computational uses of the manupulation of formalproofs. Tehnial report, Stanford Departmet of Computer Siene, Au-gust 1980. Report No. STAN-CS-80-819.[18℄ M.H. Goldwasser, M.-Y. Kao, and H.-I. Lu. Linear-time algorithms foromputing maximum-density sequene. Journal of Computer and SystemSienes, 70(2):128�144, 2005.[19℄ Timothy G. Gri�n. A formulae-as-types notion of ontrol. In Proeedingsof the 17th Annual ACM Symp. on Priniples of Programming Languages,POPL'90, San Franiso, CA, USA, 1990.[20℄ Dan Gus�eld. Algorithms on Strings, Tree and Sequenes. CambridgeUniversity Press, 1997.[21℄ N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and automatiProgram Generation. Prentie Hall, 1993.[22℄ R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 report on the algo-rithmi language sheme. Higher-Order and Symboli Computation, 11(1),August, 1998.[23℄ K. Kent Dybvig. The Sheme Programming Language. Mit Press, 1996.116

Bibliography[24℄ G. Kreisel. Interpretation of Analysis by means of Funtionals of FiniteType. In A. Heyting, editor, Construtivity in Mathematis, 1959.[25℄ Y.-L. Lin, T. Jiang, and K.-M. Chao. E�ient algorithms for loating thelength-onstrained heaviest segments with appliations to biomoleularsequene analysis. Journal of Computer and System Sienes, 65:570�586,2002.[26℄ Jaques Loekx, Hans-Dieter Ehrih, and Markus Wolf. Spei�ation ofAbstrat Data Types. Wiley/Teubner Computing Series, 1997.[27℄ Zohar Manna and Rihard J. Waldinger. Towards automati programsynthesis. Communiations of the ACM, 14(3), 1971.[28℄ Kobayashi Naoki. Type-based useless variable elimination. Tehnial re-port, Department of Information Siene, University of Tokyo, July 1999.Tehnial Report 99-02.[29℄ Aleksey Nogin. Writing Construtive Proofs Yielding E�ient ExtratedPrograms. In Didier Galmihe, editor, Proeedings of the Workshop onType-Theoreti Languages: Proof Searh and Semantis, volume 37 of Ele-troni Notes in Theoretial Computer Siene. Elsevier Siene Publishers,2000.[30℄ Frank Pfenning. Program development through proof transformation. InContemporary Mathematis, volume 106, pages 251�262, 1990.[31℄ Dag Prawitz. Ideas and results in proof theory. Proeedings of the 2.Sandinavian Logi Symposium, pages 237 � 309, 1971.[32℄ John C. Reynolds. De�nitional interpreters for higher-order programminglanguages. Higher-Order and Symboli Computation, 11(4):363�397, 1998.Reprinted from the proeedings of the 25th ACM National Conferene(1972).[33℄ Amr Sabry. Continuations in programming pratie: Introdution andsurvey, 1999. Unpublished manusript.[34℄ Helmut Shwihtenberg. Proofs, lambda terms and ontrol operators. InLogi of omputation. Proeedings of the NATO ASI.Marktoberdorf, Ger-many, 1995.[35℄ Helmut Shwihtenberg. Programmentwiklung durh beweistransforma-tion: Das Maximalsegmentproblem. In Bayer. Akad., 1996. 117

Bibliography[36℄ Helmut Shwihtenberg. Minimal Logi for Computable Funtionals. De-ember 2008.[37℄ Helmut Shwihtenberg. Minlog referee manual.http://www.minlog-system.de/, Deember 2006.[38℄ Thomas S.Ferguson. Linear programming, a onise introdution. LetureNotes, www.math.ula.edu/�tom/LP.pdf, 2009.[39℄ M.H. Sørensen and P.Urzyzyn. Letures on the Curry-Howard Isomor-phism, volume 149 of Studies in Logi and the Foundations of Mathematis.Elsevier, 2006.[40℄ Volker Spershneider. Bioinformatis. Springer, 2008.[41℄ Anne S. Troelstra and H. Shwihtenberg. Basi Proof Theory. CambridgeUniversity Press, 2002.[42℄ M. Tompa W.L. Ruzzo. A linear time algorithm for �nding all maximalsoring subsequenes. In Proeedings of the 7th International Confereneon Intelligent Systems for Moleular Biology, ISMB'99, pages 234�241,1999.

118

	Introduction
	Automatic Program Development
	Content of the Thesis
	Related Work

	Logical Foundations
	Modified Realizability for First Order Minimal Logic
	Gödel's T
	Heyting Arithmetic
	Normalization of Proofs
	Short Excursus in Program Extraction from Proofs

	A First Example of Proof Transformation: How to Extract Programs with let
	Minlog

	Pruning
	Introduction
	Pruning in Minlog
	Immediate Simplification in Minlog
	Dependencies Removal Transformation
	Computing with Permutative Conversions

	Case Study: The Bin Packing Problem
	Experiment

	Conclusions

	Bounded Perfect Matching Problem
	Introduction and Motivation
	Bounded Perfect Matching of a Complete Bipartite Graph
	Basic Definitions
	Algorithms, Data Structures and Automatic Program Synthesis
	Problem Specialization: The Monge Inequality

	Pruning at Work
	Conclusions

	Generalizing Pruning
	Introduction
	Proof Contexts
	Properties of the General Pruning Rule
	Case Study

	String Alignment
	Introduction
	The String Similarity Problem
	List as Memory Paradigm

	Conclusions

	Tail Recursion
	Introduction
	Proof Manipulation
	Continuation Based Tail Recursion
	Accumulator Based Tail Recursion

	From Higher Order to First Order Computation
	Case Study
	The MSS Problem
	Generation of a Continuation/Accumulator Based MSS-Program

	Beyond Primitive Recursion
	Introduction
	Up Primitive Recursive Induction
	Up Primitive Iterative Induction
	Down Primitive Recursive Induction
	Down Primitive Iterative Induction

	Expressive Power
	Up Primitive Iteration in Terms of Up Primitive Recursion
	Up primitive Recursion in Terms of Up Primitive Iteration
	Up Primitive Recursion in Terms of Down Primitive Recursion
	Down Primitive Recursion in Terms of Up Primitive Recursion
	Down Primitive Iteration in Terms of Down Primitive Recursion
	Down Primitive Recursion in Terms of Down Primitive Iteration
	Up Primitive Iteration in Terms of Down Primitive Iteration
	Down Primitive Iteration in Terms up Primitive Iteration
	Summary and conclusion

	Primitive Recursion and Iteration with Accumulators
	Up Primitive Recursion with Accumulator
	Up Primitive Iteration with Accumulator
	Down Primitive Recursion with Accumulator
	Down Primitive Iteration with Accumulator
	Summary and Conclusion

	Case Study: The Factorial Function

	Conclusions and Future Works
	Bibliography

