
Polynomial Time Calculi

Stefan Schimanski

Πp

@ v@

@

Πg

Γg

Πt Πl

Γt Γv Γl

consn+1
τ Πv

@
@

@

] [
!n

Πr

Γr

Dissertation an der Fakultät für Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universität München

vorgelegt am 16. Dezember 2008

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie. Detailierte bibliographische Daten sind im Internet
über http://dnb.ddb.de abrufbar.

Dissertation an der Fakultät für
Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universität München

1. Berichterstatter: Prof. Dr. Helmut Schwichtenberg
2. Berichterstatter: Prof. Martin Hofmann, Ph.D.
3. Prüfer: Prof. Dr. Otto Forster
4. Prüfer: Prof. Dr. Helmut Zöschinger
Ersatzprüfer: Prof. Dr. Hans-Jürgen Schneider
Externer Gutachter: Ass. Prof. Kazushige Terui, Universität Kyoto

Vorgelegt am: 16. Dezember 2008
Tag des Rigorosums: 23. Februar 2009

ISBN 978-1-4092-7313-4
© 2009 Stefan Schimanski. Alle Rechte vorbehalten.

http://dnb.ddb.de

Abstract

This dissertation deals with type systems which guarantee polynomial time
complexity of typed programs. Such algorithms are commonly regarded
as being feasible for practical applications, because their runtime grows
reasonably fast for bigger inputs. The implicit complexity community has
proposed several type systems for polynomial time in the recent years,
each with strong, but different structural restrictions on the permissible al-
gorithms which are necessary to control complexity. Comparisons between
the various approaches are hard and this has led to a landscape of islands
in the literature of expressible algorithms in each calculus, without many
known links between them.
This work chooses Light Affine Logic (LAL) and Hofmann’s LFPL, both

linearly typed, and studies the connections between them. It is shown that
the light iteration in µLAL, the fixed point variant of LAL, is expressive
enough to allow a (non-trivial) compositional embedding of LFPL. The
pull-out trick of LAL is identified as a technique to type certain non-size-
increasing algorithms in such a way that they can be iterated. The System
T sibling LLT! of LAL is developed which seamlessly integrates this tech-
nique as a central feature of the iteration scheme and which is proved again
correct and complete for polynomial time. Because LLT!-iterations of the
same level cannot be nested, LLT! is further generalised to LLFPL!, which
surprisingly can express the impredicative iteration of LFPL and the light
iteration of LLT! at the same time. Therefore, it subsumes both systems
in one, while still being polynomial time normalisable. Hence, this result
gives the first bridge between these two islands of implicit computational
complexity.

Diese Dissertation behandelt Typsysteme, welche für getypte Programme
polynomielle Komplexität garantieren. Solche Algorithmen werden in der
Praxis üblicherweise als effizient angesehen, weil ihre Laufzeit mit wach-
sender Größe der Eingaben nur mäßig ansteigt. Im Bereich der impliziten
Komplexitätstheorie wurden in den letzten Jahren eine Reihe von solchen
Typsystemen vorgeschlagen, wobei jedes davon sehr strikte, aber in jedem
Fall unterschiedliche strukturelle Anforderungen an typisierbare Algorith-
men stellt. Ein Vergleich dieser Ansätze ist schwierig, was inzwischen zu
einer Insellandschaft in der Literatur geführt hat, ohne dass man viel über
Verbindungen zwischen den Systemen weiß.

v

Diese Arbeit wählt zwei solcher Typsysteme, nämlich Light Affine Logic
(LAL) und Hofmanns LFPL, beide linear getypt, und untersucht, wie diese
zusammenhängen. Es wird gezeigt, dass die leichte Iteration in µLAL, der
Fixpunkt-Variante von LAL, ausdrucksstark genug ist, um LFPL (nicht-
trivial) kompositional einzubetten. In LAL wird der Trick des „Herauszie-
hens von Abstraktionen” als Technik identifiziert, mit der man in LAL be-
stimmte Algorithmen so typisieren kann, dass sie iterierbar sind. Mit LLT!

wird eine System-T-Variante von LAL entwickelt, die diese Technik nahtlos
in das Iterationsschema integriert, und welche auch wieder normalisierbar
ist in polynomieller Zeit und dazu vollständig. In LLT! können Iterationen
auf demselben Level, wie auch in LAL, nicht geschachtelt werden. Daher
wird LLT! weiter verallgemeinert zu LLFPL!, welches überraschenderweise
sowohl imprädikative Iteration à la LFPL, als auch leichte Iteration à la
LLT! erlaubt, und dabei auch wieder korrekt und vollständig für polynomi-
elle Zeit ist. Auf diese Weise baut diese Arbeit eine neue, bisher unbekannte
Brücke zwischen zwei Inseln der impliziten Komplexitätstheorie.

vi

Contents

1. Introduction 1
1.1. Why (Polynomial) Complexity Matters 3
1.2. Type Systems – A Tool to Express Program Properties . . 6
1.3. Related work – Approaches to Capture Complexity Classes 7

1.3.1. Predicativity . 9
1.3.2. Linearity – Controlling Duplication 14
1.3.3. Extensional versus Intensional Point of View 17

1.4. Contributions . 19
1.5. Structure . 22

2. Polynomial Time Type Systems 23
2.1. Preliminaries . 24

2.1.1. System T . 24
2.1.2. Linear System T . 29
2.1.3. System F . 31
2.1.4. Linear System F . 34

2.2. LFPL . 34
2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL) . . 38

2.3.1. Proof Nets . 39
2.3.2. Term System . 42

vii

Contents

2.3.3. Proof Nets Formally 45
2.3.4. Normalisation . 51
2.3.5. Encodings and Polynomial Time 55
2.3.6. Light Affine Logic with Fixed Points (µLAL) 56

3. Building an Intuition by Examples 59
3.1. Booleans and Products . 60

3.1.1. Data Types in the Different Calculi 61
3.1.2. Cartesian Product in System F and LAL 64
3.1.3. Beckmann/Weiermann Example 69
3.1.4. Necessity of the Cartesian Product in LFPL 73

3.2. Recursion Schemes . 76
3.2.1. Two Recursions . 76
3.2.2. Higher Type Result 79
3.2.3. Non-Linear Recursion Argument 81
3.2.4. Iteration Functional 82
3.2.5. Iterating the Recursion Argument 84

3.3. Non-Artificial Algorithms 86
3.3.1. Insertion Sort . 86
3.3.2. Polynomials . 94

3.4. Conclusion and Outlook . 97

4. Relaxing Linearity 99
4.1. Motivation . 100
4.2. The Extended Calculus δLFPL 101
4.3. Normalisation . 105
4.4. Data Size Analysis . 108

4.4.1. Interacting Variables 111
4.4.2. Lengths of Lists . 121

4.5. Complexity . 124
4.5.1. Complexity Theorem 128

4.6. Conclusion and Outlook . 132

5. Embedding LFPL into Light Affine Logic with Fixed Points 133
5.1. Iterating Iterators . 134

5.1.1. Building an Intuition 134
5.1.2. Iterated Iterators in Light Affine Logic 138

5.2. Embedding LFPL into Light Affine Logic with Fixed Points 142

viii

Contents

5.2.1. Flat Iteration . 143
5.2.2. Translation of LFPL 145
5.2.3. Example Insertion Sort 147

5.3. Conclusion and Outlook . 149

6. Understanding Light Affine Logic as a Variant of System T 151
6.1. Preliminary Motivation – From Paragraphs to Levels 153

6.1.1. Stratification . 154
6.1.2. Translation of Types 157

6.2. Syntax . 158
6.2.1. Terms . 159
6.2.2. Proof Nets . 162
6.2.3. Examples . 166
6.2.4. Connection between Terms and Proof Nets 170

6.3. Completeness for Polynomial Time 173
6.4. Normalisation via Case Distinction Unfolding 175

6.4.1. Complexity of Normalisation 179
6.5. Types of Constants . 188

6.5.1. Arrow . 188
6.5.2. Case Distinction . 190
6.5.3. Product . 190
6.5.4. Iteration . 191

6.6. Conclusion and Outlook . 192

7. From LFPL and Light Linear T to Light LFPL 195
7.1. From LLT! to LLT!♦ . 196
7.2. From LLT!♦ to LLT′!♦ . 198
7.3. From LLT′!♦ to LLFPL! . 199

7.3.1. Towards a Light LFPL with Itn+1
τ,σ -Constant and(c 201

7.3.2. Iteration as a Term Construct 205
7.3.3. LLFPL! Calculus – the Complete Picture 207
7.3.4. Normalisation . 212
7.3.5. Complexity . 215

7.4. Conclusion and Outlook . 230

8. Conclusion and Outlook 235
8.1. Summary of the results . 235

8.1.1. The Bigger Picture 236

ix

Contents

8.2. Open Questions and Outlook 237
8.2.1. Going Back to the §-Modality 237
8.2.2. Strong Normalisation of LLT! and LLFPL! 238
8.2.3. Ideas of LLFPL! in LAL 239
8.2.4. DLLFPL . 240
8.2.5. Divide and Conquer 240
8.2.6. BC + LLFPL, WALT 240
8.2.7. Complete Terms and Light Iteration 240

A. Calculi with the Traditional §-Modality 243
A.1. Sketch of LLT!§ . 243
A.2. Sketch of LLFPL!§ . 244

Index 247

List of Figures 255

Bibliography 257

Acknowledgments 271

Curriculum Vitae 273

x

1
Introduction

This thesis is about type systems which guarantee polynomial time com-
plexity of typed programs. A type system is a tool to give a program an
additional structure. This structure makes sure that the program satis-
fies certain properties, e.g. it guarantees that only sensible (well-typed –
whatever that may mean) programs can be written.
We propose an intuitive example: take a tool like a nut cracker. You put

in a walnut and it cracks it, outputting a cracked walnut. This information
can be called its type:

from walnuts to cracked walnuts

or in a mathematical notation:

walnut→ cracked walnut.

We say that the nut cracker is typed because we assigned a type to it.
Now try to plug a coconut into the same nut cracker. It will not fit and

probably the tool would not be usable with the coconut. Hence, it is not
type correct to apply a coconut to a common nut cracker.
On the other hand, take a hazelnut. Put it into the cracker and it works

as well. But as we have typed the nut cracker to only take walnuts as input,
this application is not type correct either. So maybe our chosen type was
not the best one possible because hazelnuts work very well with our nut
cracker tool.

1

Introduction

In the real-world most programming languages provide a type system.
Some of them enforce that every program is completely typed already before
it is even run on the computer system. This is called static typing . Others
type the part of the program at the very moment of its execution, i.e.
dynamically when it is run. Hence, this kind is called dynamic typing.
From the nut cracker example we have learnt that there can be more than

one type for a given program. Moreover, finding a type for a program can
be complicated. Somebody who has never seen a nut cracker before most
probably will not type it as we did above, at least not if we do not tell him
that it is a tool in the context of nuts. Finding a type for a program can
be hard or even impossible for a computer in general. There are basically
two solutions to this problem:

1. We restrict the type system in such a way that it is very easy to
find types. We could restrict our world to walnuts, coconuts and
hazelnuts. Then it is easy to find the right type for the nut cracker,
maybe even for a computer with some knowledge about nuts, how
they look like and how they behave. A human could try out the tool
with all nuts and infer the right type.

2. We can give a typing ourselves, or at least some of it. If we tell the
computer that the nut cracker produces cracked hazelnuts, it could
conclude that it needs also hazelnuts as an input.

The type system can be very simple or rather powerful. How can we express
that the nut cracker outputs cracked walnuts if we input walnuts and that
it outputs cracked hazelnuts if we input hazelnuts? The type

from hazelnuts or walnuts to cracked hazelnuts or cracked walnuts

certainly does not describe this precisely enough. What we want is merely
something like “from hazelnuts to cracked hazelnuts or from walnuts to
cracked walnuts”. The type system must allow for such constructions, i.e.
they must be expressible in the type language. Depending on the context,
certain possible types are chosen, together with a set of typing rules. This
is essentially what we call a type system: the set of types and the rules to
type a program.
In computer science there are many type systems in use. They help the

software developer to create usable programs. Though, it is common that
programs have flaws which make them not do what they should: they can

2

1.1. Why (Polynomial) Complexity Matters

crash once in a while or do not do what was meant by the developers. Type
systems in real-world languages, like e.g. in Java or C++ certainly help to
create programs. But they do not forbid writing those which cannot be
considered sensible. In other words, Java’s or C++’s type systems are not
very strong or strict, but arguably they allow to write and type nearly every
kind of algorithm1.
On the other hand, programming languages (e.g. the Simply Typed

Lambda Calculus) are developed in the academic area guaranteeing (proved
by mathematical means) that every written program will terminate with a
result, i.e. without crashing ever. So, why not use those in practice? Un-
fortunately, not every algorithm that developers would like to use can be
easily written down in these. While the idea of e.g. Simply Typed Lambda
Calculus is very elegant and gives the impression that it is the “right way”
to type programs, it is not applicable in many cases. But luckily there are
extensions of the calculus which are much more powerful, e.g. Gödel’s Sys-
tem T, which basically adds constants to the game that allows recursion on
natural numbers or lists (compare Section 2.1.1). While much more power-
ful, System T keeps the property that programs never crash. Moreover, it
looks like a programming language which is remotely similar to those used
in the industrial world. Conversely, there are features like polymorphism,
which appeared in academic calculi (System F, compare Section 2.1.3) more
than 30 years before they became common sense in everyday programming
in Java 5 just a few years ago, in 2004.

1.1. Why (Polynomial) Complexity Matters

In this work we talk about type systems which do not only guarantee termi-
nation (i.e. without crashes and without infinite loops), but also polynomial
time complexity. In practice, termination alone is not enough. Consider an
algorithm which searches for the assignment making a propositional formula
with n propositional variables A1, . . . , An true (called the SAT problem),
e.g. (A1 ∨A3) ∧ (¬A2 ∨ ¬A3). Solving this with an algorithm on the com-
puter might take a certain time, e.g. 1ms. Taking one variable more into
account will double the time (with all known algorithms2). With 10 more
1We write “nearly” here because this thesis is about intentional expressiveness. Of
course, Java and C++ are Turing Complete, but not every algorithm is expressible
in a natural formulation.

2In fact, the factor 2 can be improved. But in all known algorithms it is still a constant
> 1. Which is essentially as bad as 2.

3

Introduction

variables it is 210 = 1024 times as slow. Hence, an easy calculation gives
the disillusioning result that with 40 more variables the runtime of the con-
sidered algorithm will easily exceed the length of a human life. It is clear
that this problem, which is exponential according to today’s knowledge, is
not feasible in the usual time spans.
The number of 40 variables is not at all unrealistic. A lot of real-world

problems can easily and naturally be broken down to SAT, but often with
hundreds or thousands of variables. Even if computers get twice as fast
every 18 months (Moore’s Law), there is no chance that this number can
be handled in the near future. Exponential algorithms are not what we
want (for every input that is not tiny).
On the other side of the coin, there are a lot of algorithms which have

a polynomial runtime. A look at the growth rate in Figure 1.1 shows that

200 400 600 800 1000

1

10
100
1000

10000
100000
1x106
1x107
1x108
1x109
1x1010
1x1011
1x1012

Figure 1.1.: Exponential versus polynomial growth

polynomial time is much more usable because an increase in the input size
(the x-axis) results in a reasonable increase of the runtime (the y-axis).
While exponential algorithms with input of size n have a runtime of e.g.
2n processing steps, polynomial algorithms have instead only nc steps for
some constant c. In practice the constant c is often not that big either.
The difference between the two worlds is fundamental.
Note that by Moore’s Law the available computer power goes up linearly

4

1.1. Why (Polynomial) Complexity Matters

on the y-axis. On the x-axis you can read then the maximal feasible input
for exponential or polynomial algorithms. The exponential function is a
straight line. Hence, in order to reach an input size of 100 for instance, we
have to go upwards very far, up to 1030.
Examples for polynomial time runtime:

• Sorting of a list of n natural numbers (O(n2) “Quick Sort” or even
O(n logn) “Merge Sort”)

• Addition and multiplication of (unary) natural numbers ≤ n (linear
O(n), quadratic O(n2))

• Addition and multiplication of binary numbers with ≤ n digits (linear
O(n), quadratic O(n2))

• Multiplication of n× n-matrices (O(n3))

• Shortest paths in graphs/maps with n nodes (O(n2))

• Network flow optimisation for networks with n nodes (“Ford-Fulkerson”,
O(n5)).

Of course, a non-optimal implementation of those algorithms might also
lead outside polynomial time. For example the sorting problem “selects”
the right sorting for a given list of numbers. There are n! = n · (n −
1) · · · 2 · 1 different permutations of n numbers, i.e. even many more than
exponentially many. Hence, the algorithms (e.g. Quick Sort) are much
faster than a naive search for the right permutation.
What this thought tells us, is that one has to take care to really formulate

the algorithm in such a way that the computation is polynomial. Even for
polynomial problems (i.e. which can be solved in polynomial time) there
are bad implementations that get exponential or worse.
The aforementioned type system guaranteed that the coconut was not

applied to the nut cracker for wal- and hazelnuts. The typing “from coconuts
to cracked coconuts” was not correct because the nut cracker is not able to
crack a coconut.

Why should a type system not make sure that bad
implementations of algorithms, i.e. those which are exponential,

are not type correct?

5

Introduction

In the same direction, termination is made sure in Typed Lambda Calculus
or System T by the type system. Hence, guaranteeing polynomial time
looks like a natural extension of this idea which would give practically-
terminating (i.e. feasible) algorithms.
In the same way that, for instance, System T does not talk about ex-

plicit measures or well-founded relations in the typing rules as a witness of
the property, type systems for polynomial time complexity should not talk
about polynomials in an explicit way. Merely, the type system should force
the program to have a certain structure which leads to polynomial runtime.
Because no polynomials are directly involved, this area of research is called
implicit complexity theory. Though, admittedly, the goal there is to char-
acterise a complexity class, rather than to create a programming language
to write algorithms in. Section 1.3 will give an overview of works in this
area and the central ideas to restrict the complexity to polynomial time.

Remark 1.1. Of course, for certain applications even polynomial time
can be too much. In areas like real-time systems a maximal response
time is needed, which might require constant time or maybe logarithmic
or linear time algorithms. The same idea of using type systems for
guaranteeing these complexity classes could be studied. We will not
do that in this thesis, but concentrate completely on polynomial time
runtime complexity.

1.2. Type Systems – A Tool to Express Program Properties

Type systems have a long tradition as a tool to guarantee properties of
terms. One of the first work in this direction is due to Russel [Rus03, Rus08]
from the beginning of the 20th century about methods to exclude the para-
dox of naive set theory which has become known as Russell’s Paradox nowa-
days. Later, Church [Chu40] added simple types to λ-calculus, the basis
for all the calculi considered in this thesis. Tait [Tai67] showed further that
those simply typed terms are strongly normalising, i.e. whatever reduction
order you choose, you reach the same normal form in the end. Of course,
this is essential in order to use a calculus as a predictable programming
language. Moreover, every such term terminates, i.e. does not loop for-
ever. Gödel [Göd58] added constructors of natural numbers and recursion
to the Simply Typed Lambda Calculus, giving System T (compare Section
2.1.1), still with the same property that every typed term will eventually
terminate.

6

1.3. Related work – Approaches to Capture Complexity Classes

This is all folklore and types are everywhere, especially in computer sci-
ence and the multitude of programming languages in this area. Even though
the properties that those languages enforce using types are far from being
as rigorous and clear as in Simply Typed Lambda Calculus or System T.
E.g., in Java it is easy to write a program which does not terminate3, but
moreover no type can enforce termination; or another program in C, which
just crashes without a proper output. Hence, types have maybe taken a
much more pragmatic role in today’s programming languages.
In this thesis, we will take a more theoretic position, and study variants

of System T and the higher-order λ-calculus System F. This will allow us to
prove mathematical theorems about the calculi because their terms, types,
typing rules and reductions are formally defined. Still, we will always keep
the idea at the back of our mind that we are talking about those calculi
from a programmer’s perspective.

Our main goal is to study how well one can type algorithms (in
their natural formulation, not by some awkward embedding)
and which features can be added to the calculi to make the

formulation easier, keeping the meta complexity properties of
the system.

We are not so much interested in the traditional idea of implicit com-
plexity, which is that a correct and complete calculus gives just another
definition of a known complexity class. While the presented systems can
serve this need as well, this motivation would be in conflict with our desire
to extend the flexibility to express more algorithms. Instead, the implicit
complexity theorist might aim at the opposite: make the system as small
and simple as possible while still being complete for PTime. Expressing
algorithms other than those needed for a Turing Machine simulation would
be secondary.

1.3. Related work – Approaches to Capture Complexity
Classes

The idea of implicit complexity has a long tradition. The polynomial time
complexity class in particular, has been explored many times and quite a

3Non-termination is not a bad property of course because every Turing complete
calculus must allow partial functions.

7

Introduction

number of systems were proposed. In the following, we give a small survey
on the developments.
In parallel to term systems for polynomial time (in short PTime), there

is another branch in the literature about arithmetics which have exactly
the PTime provably recursive functions. The ideas behind those are often
very similar to those for the term systems. Moreover, for some there is a
direct correspondence (e.g. LHA [Sch06] for LT [SB01] similar to Heyting
Arithmetic for System T) because the provably recursive functions in the
arithmetic are exactly the terms in the term system. In this work we
concentrate only on the latter.
The works reported in the literature on term systems which capture poly-

nomial time can be roughly split into two groups:

1. the systems which implement some kind of predicativity by restricting
recursion, iteration or induction (in the case of arithmetic),

2. the systems which use linear/affine typing and some kind of control
of duplication.

There are plenty of papers, which are somehow related to these two central
ideas, such that the list of systems that we present here will certainly not
be exhaustive. We focus on those which are considered most interesting for
the aim of this thesis. In Figure 1.2 on page 19 one can find a graphical
overview of the landscape of polynomial time calculi with their relations
and origins.

The setting In most of the cases shown in the following sections there is
a type system with either unary numbers (constructors S and O), binary
numbers (constructors S0, S1 and 0) or lists (constructors cons and nil;
then binary numbers are lists of booleans). On those data types some kind
of primitive recursion or iteration is available, e.g.

f(0,−→y) := g(−→y)

f(Sn,−→y) := h(n,−→y , f(n,−→y))

for recursion and

f(0,−→y) := g(−→y)

f(Sn,−→y) := h(−→y , f(n,−→y))

8

1.3. Related work – Approaches to Capture Complexity Classes

for iteration (i.e. without the additional argument n applied to h). More-
over, already well-typed functions can be composed in the usual mathemat-
ical sense of composition. In the case of binary numbers, sometimes the
term recursion on notation is used because the structural recursion

f(0,−→y) := g(−→y) (1.1)

f(Sin,
−→y) := hi(n,

−→y , f(n,−→y)) (1.2)

recurses on the notation of the numbers, i.e. on the stack of Si constructors.
Instead of this equational definition of terms, it is common to use System

T style constants, e.g. the RRRτ recursion constant with the type

RRRτ : N → (N → τ → τ)→ τ → τ

for unary numbers. (RRRτ h g n) then gives the unary recursion from above.
In analogy, only the iterator Itτ might be available with

Itτ : N → (τ → τ)→ τ → τ.

In System T the recursion can be simulated using iteration. In calculi which
are restricted (e.g. linear) this might not be the case.

Another line of research uses type systems which are derived from System
F, the polymorphic lambda calculus, without any constants or base types
like numbers (compare Section 2.1.3). Instead, numerals use the impred-
icative Church encoding N := ∀α.(α→ α)→ α→ α. This type is the type
of an iterator and in fact a Church encoded number is its own iterator.

1.3.1. Predicativity

In the following, we present the calculi which make use of some kind of
predicativity restriction.

Cobham “bounded recursion on notation” [Cob65] In order to capture
Polynomial Time (and not to exceed it), a recursion should not return a
value bigger than a (given) polynomial. Hence, Cobham’s idea is to bound
the result of a recursion with another function b(x,−→y) which is already
known to be polynomial. The recursion scheme is called bounded recur-
sion on notation. A function that is defined this way can then be used to
bound the next recursion, and so on. A function f , defined by recursion on

9

Introduction

notation, is bounded by b(x,−→y) (where b is defined in the system already)
if f(x,−→y) ≤ b(x,−→y) holds for all input.
To start somewhere, at least one polynomial function is given, e.g. the

smash function
x#y := S0 · · ·S00︸ ︷︷ ︸

|x|·|y|

,

which computes a number whose structural size |x#y| (which is the number
of constructors) is the product of the structural sizes of x and y.
The term predicativity comes from the fact that a function f , which is

defined by bounded recursion on notation, cannot grow faster than those
functions already defined (e.g. by composition of the smash function #).
Is this system implicit in the sense of implicit complexity? There are

no explicit polynomials involved. Though, one can argue that the smash
function is – by composition with itself – nothing else than the building
block of polynomials. Moreover, the bounding function either just cuts off
the recursion value, or one has to show outside the system that the b(x,−→y)

is really an upper bound. Either case is not satisfactory, because the system
essentially does not give purely syntactical rules which lead to polynomial
time.

Bellantoni and Cook’s BC "safe/normal recursion" [Bel92, BC92] The idea
of Cobham is improved by Bellantoni and Cook’s scheme safe recursion.
It is based on the insight that it is enough to restrict the recursion on
notation scheme in such a way, that the step function h (in Equation 1.2)
is not allowed to recurse over the last argument f(n,−→y), i.e. the recursion
result of the previous step.
The philosophical idea is that it is impredicative to define f by recursion

while using f already to start another nested recursion inside the defini-
tion. Predicativity means in this context that one can only recurse over
completely available values, i.e. those which do not depend on intermediate
results of a running recursion.
While Cobham explicitly required to bound a new function by an already

defined one, Bellantoni and Cook improve this idea to only allow recursions
on values which use already defined (therefore called normal) functions and
values.
Technically, in Bellantoni and Cook’s BC system two contexts are used,

one for the safe variables (which do not allow recursions) and one for the

10

1.3. Related work – Approaches to Capture Complexity Classes

normal variables (which are freely usable to recurse on). The two kinds of
variables in the definition of terms are separated by a semicolon:

f(0,−→x ;−→y) := g(−→x ;−→y)

f(Sin,
−→x ;−→y) := h(n,−→x ;−→y , f(n,−→x ;−→y))

with the normal variables on the left and the safe ones on the right. More-
over, there is a safe composition of functions which is restricted in such a
way, that on the left of the semicolon only terms may be put which do not
depend on safe variables. Hence, one can use normal variables for the safe
parts, but not the other way around.
Bellantoni and Cook [BC92] prove that BC is correct and complete for

PTime, i.e. every algorithm is polynomial time computable and every com-
putable time function can somehow be implemented as an algorithm in
BC.
While being a very simple and elegant restriction, BC is hardly usable

for practical programming as the recursion scheme is very restrictive. The
prime example for an algorithm not expressible in a natural way is Insertion
Sort which is polynomial of course.
Instead of safe/normal, several other similar terms were used by others

to describe the predicative and impredicative variables:

• incomplete and complete by Schwichtenberg and Bellantoni in the
system LT [SB01]

• input and output by Ostrin and Wainer in the system EA(I;O)

[OW05a].

Schwichtenberg and Bellantoni’s LT "complete/incomplete" [SB01]; arith-
metic LHA [Sch06] The original BC system does not allow higher types.
Especially the recursion scheme can only give ground type values, i.e. num-
bers. The system LT is the natural extension of BC to full System T, i.e.
recursion in higher types. The main idea is to reflect the two contexts of
Bellantoni and Cook’s BC by having two arrows in the type system of LT:

• → for the complete/normal/input variables/abstractions (which in
addition are denoted with a bar as in x̄),

• (for the incomplete/safe/output variables/abstractions.

11

Introduction

A term is called complete if it has no free variables which are incomplete4.
A term of the →-function type can only be applied to a complete term.
In the tradition of BC, the recursion constant in LT gets the following

type:
RRRρ,τ : L(ρ)→ (ρ→ L(ρ)→ τ (τ)→ τ (τ.

By far the most important arrows in this type are the first and the fourth
one:

• The first makes sure that a complete term is required to do a recursion
on.

• The fourth makes sure that the safe/incomplete recursion value can-
not be used to do another nested recursion (compare with the restric-
tions in BC above).

There are further, smaller restrictions necessary, like linearity of higher type
variables. Compare [SB01] and Section 3.2 for a more detailed account on
the role of the arrow choices, and how they are reflected in the PTime
correctness proof of [SB01].
As System T belongs to Heyting Arithmetic as a term system, in [Sch06]

a linear Heyting Arithmetic called LHA is introduced for LT. The provably
recursive functions of LHA are those of LT, and therefore they are poly-
nomial time computable. Essentially, the separation of the complete and
the incomplete contexts in LT must be extended to the quantifiers of the
arithmetic LHA.

Leivant and Marion “tiering”/”ramified recurrence” [LM93, Lei94a, Lei95b,
LM95] Bellantoni and Cook in BC and later Bellantoni together with
Schwichtenberg in LT have split the context in two, i.e. into the normal
and the safe part. Leivant and Marion [LM93] instead consider a whole
hierarchy called tiers, using another data type Ni for each tier i. Then
the recursion scheme is restricted in such a way that the result type has a
smaller tier i than the numeral that is recursed over of tier Nj , i.e. j > i

must be fulfilled. This gives a system which is very similar to BC. The
latter can then be viewed as a tiered system with only two tiers.

4Note here the difference between complete/incomplete terms and complete/incom-
plete variables. The later are marked in the types and the terms. The former are
inferred, depending on the free variables.

12

1.3. Related work – Approaches to Capture Complexity Classes

Leivant “data-predicative” [Lei95a, Lei01] The idea of normal/complete/in-
put variables can be transferred into the context of arithmetic. Daniel
Leivant takes his Intrinsic Theories IT(N) and identifies data-positive deriva-
tions which roughly correspond to terms with only ground-type recursions,
resulting in elementary time provable functions. Then he restricts these fur-
ther to data-predicative derivations, which forbid that the major premise
N(t) (the argument to do the induction over) is bound data-positively in
the derivation. This essentially means that the major premise of induction
is complete, and therefore that induction is not possible over N(t) coming
from the induction hypothesis. This is in analogy to safe recursion in BC,
where this would mean to do a nested recursion over the safe/incomplete
result of the previous step in the recursion.

Marion “input driven”,”actual arithmetic” [Mar01] In a similar setting as
Leivant’s Intrinsic Theories IT(N) Marion proposes an “actual” arithmetic
AT(W), a variant of the → ∀∧-fragment of Heyting Arithmetic, with an
equational calculus to define the clauses of the algorithms, and an induction
scheme which is relativised to W (x) (meaning x is a (binary) computable
value).

A term f is provably total if ∀−→x .W (x1), . . . ,W (xn) → W (t(−→x)) can be
proved.
The central idea, though, is to restrict the ∀-elimination rule to actual

terms which are those built up only from constructors and variables.
For instance, this rules out inductions over (addx y), because this is not

an actual term. When trying to prove W (exp(x)) (defined as usual with
exp(Si(x)) = add(exp(x), exp(x))) by induction on x, it is not possible in
the step case to apply the totality proof of add to exp(x) because this is
not a total or actual value. Hence, it is not definable, in analogy to the safe
recursion of BC.
Again, the idea is to enforce predicativity. Yet, in this system it is not

even possible to do recursion/induction over (multx y), e.g. to compute
(multx y) + (multx y), because there is no proper composition of totality
proofs. On the other hand, assumptions can be freely duplicated, hence it

13

Introduction

is possible to compute xe for any e ∈ N by (multx (multx (multx . . .))),
giving polynomial time completeness by a Turing Machine simulation.

Ostrin and Wainer’s EA(I;O) “input/output elementary arithmetic” [OW05a]
Last, but not least, Ostrin and Wainer designed the system EA(I;O) as an
arithmetic with input and output variables, motivated by the predicative
recursion with safe/normal variables of Bellantoni and Cook [BC92] and
Daniel Leivant’s Intrinsic Theories [Lei95a]. They show that the provably
recursive functions are exactly the elementary ones, and by switching to
binary numbers and restricting the induction to

∑
1-formulas, polynomial

time can be characterised. While these theoretical results are in line with
the topic of this thesis, the flavor of EA(I;O) is purely proof theoretic and
not meant to be a system for writing down algorithms.

1.3.2. Linearity – Controlling Duplication

Predicative recursion is one way to outlaw algorithms which are not poly-
nomial time computable. Another branch of research with similar results
studies linearity in type systems or logics. Exponential time algorithms
always duplicate data in one way or another. Hence, general duplication
of data (or assumptions in logics) is forbidden, and only allowed then in a
very restricted and controlled way.
The central idea, why this works, is that linear or affine λ-terms, i.e.

where every bound variable appears once or at most once in the body, can
be normalised in linear many steps. This is because in every reduction the
term gets smaller if terms cannot be duplicated.
Hence, the general approach is to add further features like restricted

duplication or iteration to such a linear or affine λ-calculus, but only as far
as the normalisation is still possible in polynomial time. Hence, compared
to predicativity based calculi from Section 1.3.1, the theme here is more
in the opposite direction, i.e. adding features which do not lead outside
polynomial time, instead of removing certain bad recursion schemes like
e.g. in LT or BC.

Hofmann’s LFPL “non-size-increasing” [Hof99a, AS00, AS02, ABHS04] In-
spired by Caseiro’s criteria for algorithms which are polynomial [Cas96a,
Cas96b, Cas97], Hofmann came up with the Linear Functional Program-
ming Language (LFPL). He starts with an affine λ-calculus with the base

14

1.3. Related work – Approaches to Capture Complexity Classes

type B and lists L(τ), case distinction and iteration. To control the com-
plexity of the iteration, he adds another type ♦ which is playing the role
of money during reduction. It can only come into play in a term by a free
variable. In order to extend a list using the cons : ♦(τ (L(τ)(L(τ)

constructor, one “coin” of type ♦ is needed. When a list is destructed in
an iteration, this ♦-money is given back in every step. This mechanism
together with linearity makes sure that the maximal list length during nor-
malisation is bounded (essentially by the number of free variables at the
beginning of the reduction sequence).
The LFPL system is very easy to grasp and as its name suggests, the ini-

tial intention is clearly to be a simple programming language. Complexity-
wise LFPL can only type polynomial time algorithms which do not increase
the size of the data (because the ♦-money cannot be created in a closed
term), i.e. which are non-size-increasing (compare Section 2.2 for a formal
definition of LFPL).

Girard, Asperti, Roversi’s LLL/LAL [Gir98, AR00, AR02] Girard introduced
Light Linear Logic (LLL) as a variant of Linear Logic, the discipline of
(usually) higher order logics which are linear, with the exceptions of terms
of type !τ (bang). The bang is a modality in the type system which marks
terms that can be duplicated, i.e. where the strict linearity does not apply.
The duplication itself is made explicit in the term system (or more precisely
in the proof nets which are used for normalisation; compare Definition 2.30)
as so called multiplexers. The introduction rule of ! is usually denoted by
a graphical box in the proof nets, with the subterms inside the box.
Light Linear Logic has the §-modality in addition to ! in order to mark

also the former existence of the ! in the type. This means that there is no
general term t :!τ (τ , but only t :!τ (§τ . In other words, if one wants
to eliminate the ! in the type, one gets the § in exchange. This property
is called stratification and is the central idea of LLL, which will allow the
normalisation in polynomial time. Moreover, only terms/proof nets with
at most one free variable/open assumption can be marked with the !, while
the free variable/open assumption is marked at the same time.
The duplication (contraction) rule in LLL is only binary, i.e. from one

term of type !τ two copies of type !τ are created.
Asperti and Roversi took Girard’s Light Linear Logic and simplified the

type system a lot to allow affine typing, resulting in Light Affine Logic
(LAL). LAL is shown to be complete and correct for polynomial time.

15

Introduction

Lafont’s SLL [Laf04]; Soft Lambda Calculus [BM04] In Soft Linear Logic
(SLL) the typing rules which relate to the !-modality of Linear Logic are
replaced by

• an n-ary multiplexer for arbitrary rank n, i.e. from !τ to τ, . . . , τ ,

• and a soft promotion rule, which can mark any term/proof net with
the bang !, while marking also the variables/open assumptions with
the !-modality.

Soft Linear Logic is also complete and correct for polynomial time. But
in contrast to LAL for example, the completeness proof (which simulates
a Turing Machine) is far from trivial and makes use of a lot of coding.
Another non-trivial example is the predecessor function, which requires a
lot of effort to be implemented in SLL. It is questionable how usable Soft
Linear Logic is from a programming point of view.

Baillot and Terui’s DLAL [BT04] Proof nets are the usual representation
of proofs in Linear Logic. The reason is that proof nets abstract from the
uninteresting details of proofs, like certain orders of rules. Traditional proof
theory adds permutative conversions for the same purpose, but these often
complicate the reasoning about proofs or terms (in the case of λ-calculi).
With Dual Light Affine Lambda Calculus (DLAL) Baillot and Terui in-

troduce a λ-calculus variant of Light Affine Logic. They remove the ne-
cessity of permutative conversions by a careful restriction of the LAL type
system. The central consideration is that the !-modality is usually only
needed on the left side of the arrow(. Hence, the general bang modality
! is replaced in this system by a special arrow σ → τ , which morally stands
for !σ(τ . Surprisingly, by this one can get rid of many difficulties when
trying to find a λ-calculus representation of LAL proof nets. DLAL can be
normalised in PTime without going to a proof net representation.

Roversi’s WALT [Rov08a, Rov08b] It was for long an open problem [MO00,
MO04, NM03] (in the time spans of implicit complexity of course) whether
Bellantoni and Cook’s BC system could be embedded into Light Affine
Logic. A restriction of BC called BC− can be embedded into LAL [MO00].
Mairson and Neergaard give a sketchy argument [NM03] as to why a com-
plete embedding of BC is probably not possible.

16

1.3. Related work – Approaches to Capture Complexity Classes

Recently, Roversi came up with essentially an extension of LAL called
Weak Affine Light Typing (WALT), which gives better control over the
normalisation order.

Terui [Ter01] had shown in his thesis long before that in LAL no special
normalisation order is necessary to stay in polynomial time. This property
and the example by Beckmann and Weiermann (compare Section 3.1.3),
which needs a special normalisation order in BC to be polynomial time
normalisable, were the basis of Mairson and Neergaard’s argument. An
embedding from non-strongly normalising BC into the strongly normalising
LAL would need to make the normalisation order explicit somehow. Roversi
managed to embed full BC into WALT by exploiting the better control of
when boxes are duplicated.

1.3.3. Extensional versus Intensional Point of View

A central distinction in implicit complexity is made between extensional
and intensional completeness. An algorithm is a syntactical object in some
calculus which implements a method to solve a problem. A function on
the other hand is a mathematical, set theoretic (therefore quite abstract)
relation between inputs and outputs. For a function there might be many
algorithms in different calculi that compute the function. On the other
hand, an algorithm computes only one function (if the coding of the input
and output is fixed).

Extensional view A calculus is usually considered to be complete for poly-
nomial time if it admits the implementation of at least one algorithm for
every polynomial time function. This is called extensional completeness.
In order to prove it, it is clearly enough to take an arbitrary computation
model for all polynomial time functions, e.g. Turing Machines or Register
Machines, and then to show that every polynomial time algorithm in that
model can be simulated in the considered calculus. Also, in the scientific
practice this is the most applied proof method to show completeness.

Obviously, it is highly questionable how relevant such a result is for using
a calculus as a programming language, i.e. to express practical algorithms.
From a theoretical point of view intensional completeness is exactly what
one wants to characterise a complexity class though.

17

Introduction

Intensional view From the intensional point of view one looks at algo-
rithms, and not only at the functions they compute. Clearly, this view is
much finer than “talking” about set theoretic functions (i.e. collections of
(input, output) pairs). Intensional expressivity of a system “talks” about
the algorithms which can be typed in a given calculus.
Classical complexity theory is not intensional and differences of computa-

tion models do not matter. But, if one is instead interested in polynomial
time calculi from the view point of programming algorithms, looking at
intensional properties is essential.

Intensional expressivity In the extensional setting expressivity is formu-
lated in the language of sets, sets of functions over the natural numbers.
The interesting complexity theoretic questions “talk” about complexity hier-
archies like the polynomial hierarchy or sub-recursive hierarchies like NCk.
While some complexity classes are in fact defined by some computational
model, the comparison is usually based only on the set-theoretic subset
relation.
In the intensional setting, when talking about algorithms, it is far from

being clear what one means. Intensional statements clearly depend on the
calculus one is considering. Extensionally, calculi like BC and LAL are
equally strong (both capture PTime). Intensionally, it is much harder to
compare them. One approach of course is based on embeddings from one
into the other. But by some detour embedding into a Turing Machine for
instance, and then its simulation in the other calculus, one can always get
an embedding “somehow”. Which kind of embedding is permissible? Some
kind of modularity and compositionality might be sensible requirements.

Encodings From the complexity theory point of view a characterisation
via unary or binary numbers is of no qualitative difference. For practical
considerations it is fundamental whether the calculus supports binary num-
bers (in Leivant’s words “word algebras”) or whether it only allows unary
encodings or monadic algebras. For instance, for the latter multiplication
is a quadratic operation, while in the former, it is only linear in the length
of the inputs (i.e. number of constructors).
But, much more striking for practical algorithms is that unary encodings

need exponentially more constructors for a numeral than a binary encoding.
For example multiplying 1000 by 1000 needs two times 10 constructors to
represent the input numbers in binary (and hence 20 for the result), but

18

1.4. Contributions

1000 for each of the inputs in the unary setting and even 1, 000, 000 for the
output. Hence, while linear versus quadratic does not seem to be dramatic,
the representation of the numbers gives the exponential blow up at the end.

1.4. Contributions

LHA LHA LHA

EA(I;O)

Actual
Arith.

data-
predicat.

LHA

LLL/
LAL

LFPL

δLFPL

LLFPL

LLT

BC

LT

BC-DLAL

Tiering

Cobham

μLAL

Arithmetics
Programming

languages

WALT

?

A B

A inspired B
A and B share similar ideas
A inspired B and embeds trivially into B
A is a restriction of B with a trivial embedding into B
A non-trivially embeds into B

Contribution of this thesis in bold
Interesting open question

5

6

4

7 7

7

4

6

Figure 1.2.: The landscape of polynomial time calculi and arithmetics and
the contribution of this thesis (the numbers are the correspond-
ing chapters)

Figure 1.2 shows the landscape of polynomial time calculi which is very
fragmented and diverse, with plenty of term systems, higher order logics and
arithmetics, which all characterise polynomial time functions in one way or
the other. This thesis studies this scene from an intensional point of view,

19

Introduction

especially how different systems relate to each other. This is a broad field
with a lot of unclear connections and open questions, e.g. whether sensible
embeddings exist. We concentrate on Bellantoni and Schwichtenberg’s LT,
Hofmann’s LFPL and Girard, Asperti and Roversi’s Light Affine Logic
LAL.

1. In Chapter 4 we develop an extension of LFPL called δLFPL that
allows typing terms which are not completely linear. Subterms with a
passive type like e.g. B or B⊗B can share free variables with the other
part of the term. This allows δLFPL to type “if-then-else” in the usual,
but non-linear way, where the predicate shares the free variables with
the two branches. The contribution is the new system δLFPL itself,
but more importantly, the extension of the syntactical complexity
proof for normalisation of Schwichtenberg and Aehlig [AS00, AS02]
to this setting with relaxed linearity. It introduces the concept of
contexts for subterms. Essentially, the instances of the same free
variable may be shared if they do not share a common context. While
being a new technique covering the non-linear case, this also improves
the result of [AS00, AS02] by allowing more liberal normalisation
orders.

2. In order to understand the relation of LFPL and LAL, in Chapter
5 we study how the former can be embedded into the latter. Hof-
mann’s LFPL has an impredicative iteration scheme (in the sense of
Section 1.3.1), which allows the quite liberal formulation of non-size-
increasing polynomial time algorithms. This scheme does not fit into
the stratified iteration of Light Affine Logic, and a direct embedding
(like e.g. of System T into F) does not seem to be possible. We identify
the terms called “iterated iterators” which resemble exactly LFPL’s
iterations. They allow it to separate the impredicativity of LFPL’s
iteration from the remaining algorithm logic. This finally allows the
embedding of LFPL into LAL in a mostly compositional way.

3. With the experience of Chapter 4 and 5, the similarities of LFPL and
LAL, showing up in the pull-out trick (compare Example 3.15), ask
for a setting which allows easier side-by-side comparison. LAL, as
a variant of System F with all the consequences, like e.g. different
possible encodings of numerals, is suited for this. In Chapter 6 we
introduce a variant of System T which transfers the ideas of Light

20

1.4. Contributions

Affine Logic into the world of System T. We prove that the calculus
Light Linear T with ! (LLT!) is complete and correct for polynomial
time.
Compared to LAL, it especially features the lack of the §-modality
of LAL which is replaced by a system of levels (similar to levels for
Linear Logic studied – completely independently from this thesis –
by Mazza [Maz08]), that makes LLT! stratified as its relative LAL.
In contrast to LAL, the calculus LLT! is much easier to program with.
With the introduction of System-T-like constants for iteration, case
distinction, etc. LLT! is not bound to the possible codings and re-
ductions which are imposed by the System-F-like LAL. Instead, the
constants can be freely adapted to the needs at hand, similarly to what
Hofmann does in LFPL in order to allow only non-size-increasing al-
gorithm in a variant of System T.
One central design choice of LLT! is the seamless integration of the
pull-out trick (compare Example 6.21), that allows the iteration of
algorithms which would get an asymmetric type in the naive formu-
lation in LAL.

4. Starting with LLT!, variations are developed which bring LLT! – step
by step via LLT!, LLT!♦, LLT′!♦ – nearer to LFPL, while keeping
LLT!’s expressivity, to finally end up in LLFPL!. This system, the
Light Linear Functional Programming Language with !, allows the
direct formulation of LLT! algorithms, and, at the same time, it fea-
tures impredicative iteration of LFPL. Hence, LFPL algorithms can
be expressed directly in LLFPL! as well. The LFPL part is identified
as being the first level of the stratified LLFPL! calculus.
In contrast to LAL, each level can have an impredicative iteration
of arbitrary nesting. Therefore, the polynomial, that describes the
complexity to normalise each level alone, is not quadratic (or of fixed
degree) like in LAL or LLT!, but depends on the nesting of impred-
icative iterations.
The system LLFPL! shows that impredicative iteration and light it-
eration are orthogonal and can be combined into one system without
loosing the polynomial time property.

The contributions from above are typeset in bold in Figure 1.2.

21

Introduction

1.5. Structure

The structure of this thesis is the following:

• Chapter 1 introduces the ideas, the motivation, view of the world
and related works of the thesis, without loosing itself in too many
technicalities.

• Chapter 2 introduces the considered calculi formally.

• Chapter 3 gives the intuition behind the polynomial time calculi. A
collection of example programs are implemented in these systems.
For those which are exponential it is shown how the type systems
outlaw them and what would happen in the complexity proofs if those
examples were allowed.

• Chapter 4 develops the quasi-linear extension δLFPL of LFPL and
shows that normalisation is possible in polynomial time.

• Chapter 5 embeds LFPL into µLAL using iterated iterators.

• Chapter 6 defines the System T sibling LLT! of Light Affine Logic
and shows its completeness and correctness for polynomial time.

• Chapter 7 exploits the higher flexibility of LLT! (compared to LAL)
by tweaking the type system and the constants to define LLFPL!,
which subsumes LFPL and LLT!.

• Chapter 8 gives a conclusion on the results of this text. Moreover,
open questions and further directions of research are presented, to-
gether with possible intuitions and ideas.

22

2
Polynomial Time Type Systems

This chapter introduces the different type systems that will be used through-
out the thesis. They serve as a starting point for further improvements, but
much more important as a very wide source of ideas and intuition of what
makes up a system which captures polynomial time. As described in the
introduction, there are a whole lot of calculi in the literature and we will
concentrate here only on a selection of them that are of interest for this
thesis.

For a deeper understanding, for the completeness and correctness proofs
of the presented systems we strongly recommend the respective original
papers. We will not go into the details in this chapter, because it would
be outside the scope of the thesis. Merely, we aim on fixing the notations
to write terms and proof nets. The Chapter 3 will then go through many
examples to show the differences between the different approaches.

Structure of this chapter In Section 2.1 we start with the presentation of
System T and System F as the basis of all later calculi. In Section 2.2 we
introduce Hofmann’s LFPL as a variant of Linear System T. In Section 2.3
Light Linear Logic and Light Affine Logic are presented, first as a term
calculus with a type system, and then using proof nets. Finally, subsection
2.3.6 presents Light Affine Logic with the fixed point extension.

23

Polynomial Time Type Systems

2.1. Preliminaries

Before introducing type systems for polynomial time though, we will start
with the well known Gödel’s System T [Göd58] and Girard’s System F
[Gir72]. All calculi introduced later are based on the model of computation
of one or the other.

2.1.1. System T

System T (also called Gödel’s T due to the first introduction in his Dialec-
tica paper [Göd58]) is a non-polymorphic typed lambda calculus with a set
of (inductive) types, constructor constants and primitive recursion in all
finite types.
In fact, Gödel’s version was restricted to the unary natural numbers. But

as the basic ideas easily extend to the usual inductive types we will liberally
use such extensions here, still keeping them under the name of Gödel’s T
(or synonymously System T).

Definition 2.1 (Types). The set TyT of types is defined inductively as

σ, τ ::= B | σ → τ | σ ⊗ τ | L(σ).

We write ρ → σ → τ for ρ → (σ → τ) and ρ ⊗ σ → τ for (ρ ⊗ σ) → τ .
Terms of type L(σ) are called lists of type σ or lists with σ-values. Terms of
type σ ⊗ τ are called pairs of σ and τ . Terms of type B are called boolean
values.

Definition 2.2 (Constants). The constants CnstT and their types are:

tt : B

ff : B

consτ : τ → L(τ)→ L(τ)

nilτ : L(τ)

⊗τ,ρ : τ → ρ→ τ ⊗ ρ
Caseτ : B → τ → τ → τ

RRRσ,τ : L(σ)→ (σ → L(σ)→ τ → τ)→ τ → τ

24

2.1. Preliminaries

πρ,σ,τ : ρ⊗ σ → (ρ→ σ → τ)→ τ.

Definition 2.3 (Terms). For a countably infinite set of variable names V
the set TmT of (untyped) terms is inductively given by:

r, s, t ::= xτ | c | λxτ .t | (t s)

for variables x ∈ V , types τ ∈ TyT and constants c ∈ CnstT .

Variables Variables carry their type in the style of Church. Variables are
identified with their name. Different types for the same variable will be
excluded by the typing rules, which will be introduced later on.

Subterms LetCT be the subterm relation defined by the transitive closure
of t CT (t s), s CT (t s) and t CT λx.t for s, t ∈ TmT . Let ET be the
reflexive closure of CT .

Free variables A variable x is called bound in λx.t. The set of free variables
FV(t) is defined by

FV((t s)) := FV(t) ∪ FV(s)

FV(λx.t) := FV(t) \ {x}
FV(x) := {x}
FV(c) := ∅.

Terms which are equal up to the naming of bound variables are identified.

We sometimes leave out the type of a variable if it can be easily inferred.
We liberally leave out parenthesis if they are clear from the context: e.g.
(f x y) for ((f x) y). We write λx, y.t instead of λx.λy.t or leave out the
dot for intermediate λ-abstractions as in λxλyλz.t. For a product term
(⊗τ,ρ t r) we also use t ⊗ r or t ⊗τ,ρ r. Note that λx.s ⊗ t and λx.(s ⊗ t)
are different, and (λx.t s) is different from λx. (t s). In other words, λ binds
strongest.
In order to type terms in the following definition, we first fix the meaning

of a context as a finite map. In other words, the order of assignments of
names to types does not matter in our setting.

25

Polynomial Time Type Systems

Definition 2.4 (Typing). A context is a finite map from the names V to
types TyT . Untyped terms are assigned types using the ternary relation
` between a context Γ, an untyped term t ∈ TmT and a type τ ∈ TyT ,
denoted Γ ` tτ via the following rules:

Γ, xτ ` xτ
(Var)

c constant of type τ
Γ ` cτ

(Const)

Γ, xσ ` tτ

Γ ` (λx.t)σ→τ
(→+)

Γ1 ` tσ→τ Γ2 ` sσ

Γ1,Γ2 ` (t s)τ
(→−)

with Γ1,Γ2 meaning the set union, such that Γ1 and Γ2 agree on the as-
signed types on the intersection of their domains.

In the style of the (Var)- and (Const)-rules we use implicit weakening
throughout this thesis.
Often we will talk about “a typed term t” (or just “a term tτ ”). This will

mean that there is, implicitly, a type derivation for Γ ` tτ for some context
Γ and type τ .

Definition 2.5 (Reductions). Terms are reduced via the usual β-conver-
sion plus conversion rules for the constants:

(λx.t s) 7−→ t[x := s]

(Caseτ tt) 7−→ λxτλyτ .x

(Caseτ ff) 7−→ λxτλyτ .y

(πρ,σ,τ (⊗ρ,σ r s)) 7−→ λfρ→σ→τ . (f r s)

(RRRσ,τ nilσ f g) 7−→ g

(RRRσ,τ (consσ v l) f g) 7−→ (f v l (RRRσ,τ l f g)) .

We write t −→ t′ if a subterm s E t reduces via 7−→ as defined above.
With t[x := s] we denote the capture-free substitution of x ∈ FV(t) by s
and t[x := s] = t if x /∈ FV(t).

2.1.1.1. Intended Meaning

The intended meaning of the types and constants is the following:

26

2.1. Preliminaries

• tt and ff of type B are boolean values and
(
Caseτ bB

)
is our rep-

resentation of an if-then-else case distinction which depends on the
“predicate” b.

• (⊗ρ,σ r s) is a (cartesian) product of the “left side” r and the “right
side” s. The constant πρ,σ,τ destructs a product by giving access to
the left and right values again.

• L(τ) denotes the type of lists with values of type τ . The usual “nu-
merals” are the chains of consτ and nilτ like in many programming
languages (such as LISP or Scheme).

• (RRRσ,τ l f g) defines a (primitive) recursion over the list l, using the
step term f and the base case g.

2.1.1.2. Located Subterms

Terms are equal if they are constructed the same way via the term Definition
2.3. In other words, terms are considered to be equal if they generate the
same syntax tree (up to renaming of bound variables).
This equality definition works fine for many cases, but is not suitable

for others: consider the term w := (t (t s)). How many subterms t does
w have? Of course, the intuitive answer is 2, i.e. there are two subterms
which have the same syntax tree as t. Moreover, these two occurrences are
clearly equal syntactically, but they differ with respect to their location in
the term w. To talk about these two instances independently, we introduce
the following concept:

Definition 2.6 (Located subterm). A located subterm of the term t is the
pair s ET t together with a unique description of its location of s in the
syntax tree of t.

Of course, this definition could be made more formal by fixing a coding
of syntax trees and another coding of locations therein. We will not fix
these codings here though in order to keep things as simple as possible.
The concept of located subterms has not been defined inductively above.

But depending on the chosen coding, it is not hard to make it into an induc-
tive one, following the clauses of the subterm relation. There is, however,
an even more direct solution to this: every proof that s is a subterm of t, i.e.

27

Polynomial Time Type Systems

that s ET t holds, is in fact just a proof termM , that is essentially built up
from constants corresponding to the inductive clauses of ET (which is CT
plus symmetry). Different located subterms give different proofs. Hence,
we can just consider these proofs as the located subterms. Then the coding
is simply that of proof terms which are inductively defined.
Throughout this thesis, the concept of located subterms will be used

for different term systems, though we will not introduce it again and again.
Instead, we implicitly assume that for every (non-strict) subterm relationE
there is a definition of located subterms in the same way as in the Definition
2.6 above for System T.
2.1.1.3. System T with Applicative Notation

Logically the application (t s) is the elimination of the arrow type. It can
be convenient to use the same applicative notation to eliminate the other
types as well. This way we remove the need for destruction constants
Caseτ , πρ⊗σ,τ ,RRRσ,τ by adding another typing rule for each of them, in the
following way:

Γ ` bB Γ ` fσ Γ ` gσ

Γ ` (b f g)σ
(B−)

Γ ` pσ⊗τ Γ ` fσ→τ→ρ

Γ ` (p f)ρ
(⊗−)

Γ ` lL(σ) Γ ` fσ→L(σ)→τ→τ Γ ` gτ

Γ ` (l f g)τ
(L(σ)−)

The reduction rules are replaced by the following:

(tt f g) 7−→ f

(ff f g) 7−→ g

((⊗τ,ρ r s) f) 7−→ (f r s)

(nilσ f g) 7−→ g

((consσ x l) f g) 7−→ (f v l (l f g)) .

Clearly, both notations for System T are equivalent in the sense that each
term in one system can be expressed in a very similar way in the other
(mainly by doing some η-expansion/reductions and then by doing simple
reformulations with the other syntax). The applicative notation though
can lead to shorter proofs since the rules look more uniform.
But more importantly, it is possible in the applicative System T to add

28

2.1. Preliminaries

restrictions to the each of these typing rules independently (see LFPL in
Section 2.2 for an example). I.e., we gain flexibility to adapt the calculus
to certain needs.
Conversely, the non-applicative System T has only one elimination rule.

Of course, one could restrict this instead, depending on the constant on
the left of the application. But then, we have the problem that it will be
necessary to normalise a term first before it is visible which constant is in the
left premise of the elimination rule (and therefore a possible redex). Hence,
adding restrictions is not that obvious in this non-applicative setting.

2.1.2. Linear System T

For the complexity of normalisation it can be crucial how often a variable
or a term is used. Consequently, it is common to introduce this more
prominently into the type system by restricting the use of bound variables
to be linear (or affine).

Remark 2.7. We will often use the term “linear” when in fact the tech-
nical precise term would be “affine” (affine = one or no occurrence of
a variable; linear = exactly one occurrence of a variable). Since we
use implicit weakening in all presented type systems (see the (Var) rule
above), we do not make this distinction.

Linear System T replaces the →-arrow with(and the recursion constant
RRRσ,τ with the iteration constant Itσ,τ . Hence, we get the following:

Definition 2.8 (Types). The set TyLinT of linear types is defined induc-
tively as

σ, τ ::= B | σ(τ | σ ⊗ τ | L(σ).

Note that we use the shorthand LinT because LT is used for Linear T in the
sense of Bellantoni and Schwichtenberg [SB01] (compare Section 3.1.1.2).

Definition 2.9 (Constants). The constants CnstLinT and their types con-
sist of:

tt : B

29

Polynomial Time Type Systems

ff : B

consτ : τ (L(τ)(L(τ)

nilτ : L(τ)

⊗τ,ρ : τ (ρ(τ ⊗ ρ
Caseτ : B(τ (τ (τ

Itσ,τ : L(σ)((σ(τ (τ)(τ (τ

πρ,σ,τ : ρ⊗ σ((ρ(σ(τ)(τ.

Definition 2.10 (Terms). For a countably infinite set of variable names
V the set TmLinT of (untyped) terms is inductively given by:

r, s, t ::= xτ | c | λxτ .t | (t s)

for variable x ∈ V , types τ ∈ TyLinT and constants c ∈ CnstLinT . Terms
which are equal up to the naming of bound variables are identified.
Subterms are defined in the same way as for TmT , i.e. CLinT :=CT .

Free variables The variable x is called bound in λx.t. The multiset of free
variables FV(t) is defined by

FV((t s)) := FV(t) ∪ FV(s)

FV(λx.t) := FV(t) \ {x}
FV(x) := {x}
FV(c) := ∅.

Note the difference to the System T setting that free variables are col-
lected in a multiset in the linear setup. The typing rules will use a multiset
context in order to make it possible to express the fact that two instances
of a variable are in the context in a subterm.

Definition 2.11 (Typing). A context is a (unordered) finite multiset of
type assignments from the variable names V to types TyLinT with the

30

2.1. Preliminaries

context condition that no variable is assigned different types at the same
time.
Untyped terms are assigned types using the ternary relation ` between

a context Γ, a untyped term t ∈ TmLinT and a type τ ∈ TyLinT , denoted
Γ ` tτ via the following rules:

Γ, xτ ` xτ
(Var)

c constant of type τ
Γ ` cτ

(Const)

Γ, xσ ` tτ

Γ ` (λx.t)σ(τ ((+)
Γ1 ` tσ(τ Γ2 ` sσ

Γ1,Γ2 ` (t s)τ
((−)

where Γ1,Γ2 denotes the multiset union which maintains the context con-
dition. In ((+) the context Γ must not have a type assignment for x.

Because we use multisets, the union Γ1 ∪ Γ2 adds up the number of
occurrences of each variable in Γ1 and Γ2. The ((+)-rule implies that x
appears at most once in Γ, xσ and therefore only linearly in t.
It is easy to see that every term of Linear System T can be translated

into one of System T without linearity. The converse is not true as – by
design of the type system – no duplication and therefore no growth of data
can take place.
Hofmann’s Linear Function Programming Language (LFPL) in Section

2.2 essentially uses this property to create a flexible type system for non-
size-increasing algorithms.

Definition 2.12 (Reductions). The reduction rules are the same as for
non-linear System T with the exception of the recursion rules which are
replaced by iteration rules:

(Itσ,τ nilσ f g) 7−→ g

(Itσ,τ (consσ v l) f g) 7−→ (f v (Itσ,τ l f g)) .

2.1.3. System F

In the following we present a formulation of System F, a polymorphic propo-
sitional logic, introduced by Girard [Gir72] and independently by Reynolds
[Rey74]. In comparison with System T, there are no constants and no base

31

Polynomial Time Type Systems

types in F. Instead, type variables and unrestricted quantification on the
type level are available:

Definition 2.13 (Types). For a countably infinite set T of type variable
names the set of types TyF is inductively defined by:

σ, τ ::= α | σ → τ | ∀α.σ

with α ∈ T . The type variable α is called bound in ∀α.σ. The set of free
type variables in a type τ is denoted by FTV(τ):

FTV(∀α.σ) := FTV(σ) \ {α}
FTV(α) := {α}

FTV(σ → τ) := FTV(σ) ∪ FTV(τ).

Types which are equal up to renaming of bound variables are identified.

Definition 2.14 (Terms). For a countably infinite set V of variable names
the set TmF of (untyped) terms is inductively defined by:

r, s, t ::= xτ | λxτ.t | (t s) | (t τ) | Λα.t

with types τ ∈ TyF , type variables α ∈ T and variable names x ∈ V . Terms
are identified up to renaming of bound term variables.

Variables The variable x is called bound in λxτ .t. The set FV(t) of free
variables is defined by

FV((t s)) := FV(t) ∪ FV(s)

FV(λxτ .t) := FV(t) \ {x}
FV(xτ) := {x}

FV((t τ)) := FV(t)

FV(Λα.t) := FV(t).

A type variable α is called bound in Λα.t. The set FTV(t) of free type
variables of a term t ∈ TmF is inductively given by

32

2.1. Preliminaries

FTV((t s)) := FTV(t) ∪ FTV(s)

FTV(λxτ .t) := FTV(t) ∪ FTV(τ)

FTV(xτ) := FTV(τ)

FTV((t τ)) := FTV(t) ∪ FTV(τ)

FTV(Λα.t) := FTV(t) \ {α}.

Subterms The subterm relation is defined by the same clauses as CT plus
t CF (t τ) and t CF Λα.t.

Because System F has no constants, data types are coded in an im-
predicative polymorphic way. The standard codings of booleans, natural
number and pairs are the following:

B := ∀α.α→ α→ α

σ ⊗ τ := ∀α.(σ → τ → α)→ α

N := ∀α.(α→ α)→ α→ α,

with the coding of N called Church numbers.

Definition 2.15 (Typing). A context is a finite map from the names V
to types TyF . Untyped terms are assigned types using the ternary relation
` between a context Γ, a untyped term t ∈ TmF and a type τ ∈ TyF ,
denoted by Γ ` tτ , via the following rules:

Γ, xτ ` xτ
(Var)

Γ, xσ ` tτ

Γ ` (λx.t)σ→τ
(→+)

Γ1 ` tσ→τ Γ2 ` sσ

Γ1,Γ2 ` (t s)τ
(→−)

Γ ` t
Γ ` Λα.t

(∀+)
Γ ` t∀α.t τ ∈ TyF

Γ ` (t τ)
(∀−)

where Γ1,Γ2 means the set union, such that Γ1 and Γ2 agree on the in-
tersection of their domains. In (→+) the context Γ must not have a type

33

Polynomial Time Type Systems

assignment for x. In (∀+) the type variable α must not be free in any type
of Γ.

We will not give a formal definition of the normalisation of terms in
System F. It should be clear how it works though – basically like System
T without constants, but with substitution for the type application (∀−).
2.1.4. Linear System F

In analogy to Linear System T, we can also restrict System F to the linear
fragment by taking multisets for the contexts. Otherwise, the typing rules
for the arrow (which we will denote by(again, as for Linear System T)
look formally the same:

Γ, xσ ` tτ

Γ ` (λx.t)σ(τ ((+)
Γ1 ` tσ(τ Γ2 ` sσ

Γ1,Γ2 ` (t s)τ
((−)

again with the restriction that Γ1 and Γ2 are compatible and Γ does not
type x. Since now we use multisets, the union Γ1 ∪Γ2 adds up the number
or occurrences of each variable in Γ1 and Γ2. Moreover, the ((+)-rule
implies that x appears at most once in Γ, xσ and therefore in t, which is
exactly the linearity condition.
This Linear F is in fact the starting point of Linear Logic which enriches

the types with modalities to allow restricted forms of duplication. The
Light Linear Logic system in Section 2.3 will use this approach.
The quantification Λα. . . . will not be required to be linear (whatever this

should mean if we required that). Linear type abstraction would restrict
possible polymorphic algorithms considerably, e.g. not even the Church
encoding of natural numbers are type-linear in this sense.

2.2. LFPL

The Linear Functional Programming Language (LFPL) was introduced by
Hofmann [Hof99a] as an attempt to capture the intuition of nested itera-
tions of non-size-increasing algorithms. This came about originally from
studying syntactical restrictions of function definitions in Caseiro’s thesis
[Cas97]. Intuitively, iterating algorithms which do not increase the size of
the data and which are polynomial time computable themselves cannot ex-
ceed polynomial time, as each iteration again is restricted by the original
input size.

34

2.2. LFPL

While Hofmann’s proofs for showing that “every algorithm is polynomial
time computable” use semantic arguments, another syntactical analysis was
given by Aehlig and Schwichtenberg [AS00, AS02]. We will follow the latter
in this thesis, from the point of view of the presentation of the type system
and with respect to the proofs in Chapter 4 which will explore extensions
of LFPL.
The system LFPL is a variant of Linear System T as presented in Section

2.1.2, with the following additions:

• another product type constructor × forming the cartesian product
(while ⊗ will be called the tensor product),

• a base type ♦, the diamond. ♦ plays the central role in the system, as
a kind of money which cannot be created out of nothing. Instead, the
terms of type ♦ always have free variables where ♦ occurs positively
in their type. Hence, the only way to get a term of type ♦ in a closed
term is by getting it “from outside” via a lambda abstraction, i.e. as
input.

• an iteration which is restricted to closed step terms.

There are several ways to enforce the closeness restriction of step terms
via a type system. A usual iteration constant could be applied to any
(also non-closed) step terms. One option would be to introduce another
arrow type which requires additional rules. Instead, we follow Aehlig and
Schwichtenberg with an applicative notation, as described in Section 2.1.1.3.
In contrast to Aehlig and Schwichtenberg, we do not use the curly brackets
as in the iteration (lL(σ) {f}) with the closed step term f , which is just a
cosmetic detail though. Moreover, we require that all destructor arguments
are given, i.e. (lL(σ) f g) is a valid term and (lL(σ) f) is not.

Definition 2.16 (Types). The set TyLFPL of linear types is inductively
defined by:

σ, τ ::= ♦ | B | σ(τ | σ ⊗ τ | σ × τ | L(σ).

35

Polynomial Time Type Systems

Definition 2.17 (Terms and Constants). The set TmLFPL of terms is
inductively defined by:

r, s, t ::= xτ | c | λxτ .t | 〈t, s〉 | (t s) .

Terms which are equal up to the naming of bound variables are identified.
Free variables are defined as in Definition 2.10, with the additional clause
FV(〈t, s〉) := FV(t) ∪ FV(s).

Constants The constructor symbols CnstLFPL and their types are:

tt : B

ff : B

consτ : ♦(τ (L(τ)(L(τ)

nilτ : L(τ)

⊗τ,ρ : τ (ρ(τ ⊗ ρ.

Subterms The subterm relation CLFPL is defined the same way as CLinT ,
with the additional clauses s CLFPL 〈s, t〉 and t CLFPL 〈s, t〉.

Definition 2.18 (Typing). A context Γ is defined as in Definition 2.11.
The relation Γ ` tτ is inductively defined as follows:

Γ, xτ ` xτ
(V ar)

c constant of type τ
Γ ` cτ

(Const)

Γ, xσ ` tτ

Γ ` (λx.t)σ(τ ((+)
Γ1 ` tσ(τ Γ2 ` sσ

Γ1,Γ2 ` (t s)τ
((−)

Γ ` sσ Γ ` tτ

Γ ` 〈s, t〉σ×τ
(×+)

Γ ` pρ×σ

Γ ` (p tt)ρ
(×−tt)

Γ ` pρ×σ

Γ ` (pff)σ
(×−ff)

36

2.2. LFPL

Γ1 ` bB Γ2 ` pτ×τ

Γ1,Γ2 ` (b p)τ
(B−)

Γ1 ` lL(τ) ∅ ` h♦(τ(σ(σ Γ2 ` gσ

Γ1,Γ2 ` (l h g)σ
(It)

Γ1 ` pρ⊗σ Γ2 ` fρ→σ→τ

Γ1,Γ2 ` (p f)τ
(⊗−)

where Γ1,Γ2 denotes the multiset union which maintains the context con-
dition. In ((+) the context Γ must not have a type assignment for x.

Definition 2.19 (Conversion and Reduction).

Conversion The conversion relation 7−→ is defined by:

(λxτ t s) 7−→ t[x := s]

(〈s, t〉 tt) 7−→ s

(〈s, t〉ff) 7−→ t

(tt 〈s, t〉) 7−→ s

(ff 〈s, t〉) 7−→ t

((⊗σ,τ s t) r) 7−→ (r s t)

(nilτ h g) 7−→ g

((consτ d v l) h g) 7−→ (h d v (l h g)) .

Reduction The reduction relation t −→ t′ is inductively defined by:

t 7−→ t′

t −→ t′
(conv)

t −→ t′

(t s) −→ (t′ s)
(l)

s −→ s′

(t s) −→ (t s′)
(r)

In other words, the reduction is done by applying conversions inside a
term, but not below a λ-node and not inside cartesian product terms 〈s, t〉.

37

Polynomial Time Type Systems

Remark 2.20. Because variables can be shared among the branches of a
cartesian product 〈s, t〉, special care must be taken that the substitution
in the beta-reduction does not increase the term considerably (i.e. by
duplication of the substituted term into s and t). As normalisation
inside cartesian products is not allowed, it is easy to apply sharing of
terms which appear multiple times in a such a pair.

Remark 2.21. The conversion of the list step does not depend on a
completely normalised list, i.e. a list term that is a chain of consτ -
constructors and the final nilτ . This is in contrast to the conversions in
[AS00] where the list length was used in an essential way to define the
polynomial measure. In Chapter 4 we will give a proof for an extension
of the LFPL system shown above, which allows certain non-linearities in
terms. The proof can also be applied to the LFPL calculus without the
extension. In comparison with the proof of [AS00], our proof in Chapter
4 makes much better use of the inherent size of the data in a term by
taking the number of free variables with ♦ in positive position of their
types.

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

In analogy to Linear System T of Section 2.1.2, we sketched Linear System
F in Section 2.1.4 by considering multiset contexts and by changing the
typing rules in order to enforce linear usage of variables. This has led to
a linear (or, as before, more precisely “affine”) Higher Order Propositional
Logic. As Linear System F is not very expressive anymore (similar to Linear
System T), the next step is to add a type modality to the system: the bang ,
denoted by !τ . This leads to what is usually known as Linear Logic.
There has been and still is a lot of research in the field of Linear Logic.

It is not possible and also not desired to give a complete account of this
subject in this work. For an introduction and overview, the works of Girard
[Gir95] and Danos [DC92] are suggested.
Instead, we want to concentrate on one prominent system: Light Linear

Logic (LLL), originally introduced by Girard [Gir98] and later simplified
by Asperti and Roversi [AR00, AR02] to Light Affine Logic (LAL). Again,
we will not use the linear variant, but allow arbitrary weakening. While in
this context a distinction is usually made between the linear and the affine
system, we will use linear and affine synonymously in the following. If the

38

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

“purely” linear system (i.e. LLL without arbitrary weakening) is meant, this
will be explicitly said.
The key property of Light Linear/Affine Logic, compared to more general

Linear Logics, is the introduction of a second modality, the paragraph §.

Definition 2.22 (Types). For a countably infinite set T of type variable
names, the set of light linear types TyLAL is defined inductively by:

A,B ::= α | A(B | !A | §A | ∀α.A

with α ∈ T . Bound and free variables are defined as for System F in Defi-
nition 2.13 with the additional clauses FTV(!A) := FTV(§A) := FTV(A).
Again, types equal up to renaming of bound type variables are identified.

Intuitively, the bang type !τ marks terms of type τ which can be used
arbitrarily often.
The paragraph marks terms, which have subterms that were originally

with a bang !τ , but that are now freed from it and therefore usable as
terms of type τ . Hence, the paragraph is the tool used to stratify the type
system: if you want to use a banged term t!τ as it was of type τ , it must
be placed as a subterm into a §σ term. This allows tracing of the fact that
t originally was of modal type. I.e., every term which makes use of the !τ

term by “removing” the ! has to be of type §σ, for some σ.
2.3.1. Proof Nets

In order to present LAL, we introduce another representation of typed
programs: proof nets. Formally, a proof net is a directed finite graph with
nodes (corresponding to the typing rules of terms), which have one typed
output link (with the exception of the λ-node which has another binding
link) and many or no input links, each labelled with a type.
Note that we only consider intuitionistic proof nets here, hence only one

output. The output link corresponds to the term itself with its type, and
the input links are connected to the output links of its subterms. Moreover,
box nodes of a proof net can have nested proof nets. Figure 2.1 shows a
typical proof net for the term

§ x =
]
s§σ
[
§
, y =

]
!n z =

]
f !(σ(τ)

[
!
in λs′.

(
z s′
)
[

!

in (y x) .

39

Polynomial Time Type Systems

!

λ
σ τ

@

!(σ ! τ)

σ ! τ

!(σ ! τ)

σ ! τ

§

§τ
τ

@
σ
§σ

Figure 2.1.: A proof net example for LAL.

Of course, there are certain restrictions, i.e. not every oriented graph
constructed with the available nodes is a proof net. Because our proof nets
are quite simple, we can use a term system with usual typing rules and
a translation of terms into these graphs. In other words, a given oriented
finite graph is a proof net if it is the image of a term under this translation.
The translation will be very similar to that which maps terms to their parse
DAGs (directed acyclic graphs).

In fact, for proof nets of (Linear) System T terms, these parse DAG
would be sufficient. For term systems which have multiplexers it is a bit
more complicated, because the translation will not be injective anymore,
but maps several terms to the same graph. In this context, an alternative
view of proof nets is that of equivalence classes, that consist of those sets of
terms which lead to the same graph, e.g. all those which are equal modulo
certain permutative conversions.

40

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

2.3.1.1. In the Context of the Literature

Before starting the formal definition, let us put our proof nets into the
context of the large amount of material available in the area of Linear
Logic, and also in some sense of optimal reductions of lambda terms. Our
proof nets are in fact a very simple variation of the idea to use labelled,
directed graphs to represent proofs.
The common motivation to do this at all is the desire to “talk” about a

proof, but in a way that structural details, like the order of the application
of certain rules, do not matter, i.e. are not visible in the structure. E.g.,
when applying two weakenings (the introduction of new assumptions in
sequent calculus), the proofs are essentially the same, independent of the
order in which these two rules are applied. A proof net neglects this by
the so called desequentialisation. Both proofs would lead to the same proof
net.
The drawback of the use of proof nets is that their definition is not in-

ductive anymore. Using inductive clauses for that would assign an ordering
again, whereas avoiding this was the whole point of proof nets in the be-
ginning. For the theory of proof nets it is an important and far from trivial
question which kind of graphs (or proof structures) are really proof nets,
i.e. to which proof nets can one assign an (inductively defined) proof. A
good survey on this topic is [Gue04].
In this thesis we will not use proof nets for deep structural proof theory.

Instead, we will adopt a very easy variant of proof nets, in order to normalise
programs with better control over shared subterms than one would have in
a traditional lambda calculus. For instance, we only consider intuitionistic
proof nets, and therefore we do not need advanced tools like polarisation of
links or multiple output links. Instead, one can see our proof nets as parse
trees (i.e. directed acyclic graphs) in the style of [SB01], but with explicit
duplication via multiplexer nodes and with the extension of boxes and the
nesting of proof nets via these boxes. In the terminology of [Gue04] those
graphs are called λ-nets with explicit sharing via multiplexers.
On the other hand, we do not go that far to talk about optimal reduc-

tions here, i.e. the optimal avoidance of redex duplication, as it is done in
[Gue99]. For that one needs two kinds of multiplexers with both polari-
ties/orientations. Here, we will consider only multiplexers with one input
and two output links. This greatly reduces the number of possible redexes
for the multiplexers themselves, i.e. only the (λ − up)-rule of [Gue99] is

41

Polynomial Time Type Systems

needed in our context. We call this redex the polynomial redex .

2.3.2. Term System

In the following, we will introduce the term system of Light Affine Logic.
The image of the terms under a mapping into proof net structures will
later define the proof nets. Moreover, the terms will serve as a notation
system for proofs in the language of proof nets. The latter usually get big
easily and hence writing down programs is not very comfortable. The term
system presented here describes proof nets in the sense that the terms are
one sequentialisation of a proof net. Therefore, direct normalisation of these
terms would introduce the problems of permutative conversions again. But,
we will not use the terms for that purpose:

Our model of computation is the proof net, not the term system.

Definition 2.23 (Terms). For a countably infinite set V of variable names,
the set of light linear terms TmLAL is defined inductively by:

r, s, t ::= x | λx.t | ! t | ! x =]s[! in t | § −→x ,−→y =
−→
]r[§,
−→
]s[! in t

| Λα.t | (s t) | (s τ) |
(
s C

x1
x2 t

)
.

with types τ ∈ TyLAL, type variables α ∈ T and x, y, x1, x2 ∈ V . Terms
which are equal up to the naming of bound variables and bound type vari-
ables are identified.

Variables Free and bound variables are defined as for System F in Defini-
tion 2.14 plus the cases

FV(! t) := FV(t)

FV(! x =]s[! in t) := FV(s) ∪ (FV(t) \ {x})

FV(§ −→x ,−→y =
−→
]r[§,
−→
]s[! in t) := FV(−→r) ∪ FV(−→s) ∪ (FV(t) \ {−→x ,−→y })

FV(
(
s C

x1
x2 t

)
) := FV(s) ∪ (FV(t) \ {x1, x2})

and mutatis mutandis for FTV.

42

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

Subterms Subterms are defined as for System F in Definition 2.14 with
the following additional clauses:

t CLAL! t

s, t CLAL! x = s in t

−→r ,−→s , t CLAL § −→x ,−→y =
−→
]r[§,
−→
]s[! in t

s, t CLAL
(
s C

x1
x2 t

)
.

Note that s is not a subterm of t in ! x = s in t . The same applies to −→r and
−→s in § −→x ,−→y =

−→
]r[§,
−→
]s[! in t for t. This is why we do not use the notation

! t[x :=]s[!] officially. Though, we will write e.g. ! λx, y. . . .]s[! . . . for

! z =]s[! in λx, y. . . . z . . . as a shorthand. The vector notation −→x ,
−→
]r[§,
−→
]s[!

means, that an arbitrary (also zero) finite number of those assignments can

be used, e.g. § x, x′, y =]r[§ ,
]
r′
[
§ ,]s[! in t .

Definition 2.24 (Typing). A context is a multiset of type assignments
from the variable names V to types, with the context condition that every
variable is not assigned different types. The relation Γ ` tτ is inductively
defined as follows:

Γ, xσ ` xσ
(Var)

Γ, xσ ` tτ

Γ ` (λx.t)σ(τ ((+)
Γ1 ` tσ(τ Γ2 ` sσ

Γ1,Γ2 ` (t s)τ
((−)

∅ ` tτ

∅ `! t
!τ

(!0)

xσ ` tτ Γ ` s!σ

Γ `! x =]s[! in t
!τ

(!1)

43

Polynomial Time Type Systems

−→
xρ,
−→
yσ ` tτ

−−−−→
Γ ` r§ρ

−−−−→
Σ ` s!σ

−→
Γ ,
−→
Σ ` § −→x ,−→y =

−→
]r[§,
−→
]s[! in t

§τ
(§)

Γ ` tτ

Γ ` Λα.t∀α.τ
(∀+)

Γ ` t∀α.τ

Γ ` (t σ)τ [α:=σ]
(∀−)

Γ1 ` s!σ Γ2, x
!σ
1 , x

!σ
2 ` tτ

Γ1,Γ2 `
(
s C

x1
x2 t

)τ (C)

with types σ, τ, ρ ∈ TyLAL, contexts Γ,Γ1,Γ2, terms t, s ∈ TmLAL, α ∈ T
and x, y, x1, x2 ∈ V . The notation Γ,Λ is the multiset union maintaining
the context condition.

• In the (§)-rule either vector can be empty, and the types σ and ρ can
be different for every vector component.

• In the rules (!0),(!1),(§) and (C) the variables x, y, x1, x2,
−→x ,−→y must

be fresh for the other contexts involved.

• In the (∀+)-rule the type variable α must not be free in the types of
Γ.

• In the ((+)-rule the variable x must not be in Γ.

Definition 2.25 (Level of a subterm). For a term w with Γ ` w : W every
subterm v of w is assigned a level in the following way:

• The level of w is 0 in w.

• If ! t is on level n in w, then t is on level n+ 1 in w.

• If ! x =]s[! in t is on level n in w, then t is on level n+ 1 in w and
s of level n in w.

• If § −→x ,−→y =
−→
]r[§,
−→
]s[! in t is on level n in w, then t is on level n + 1

in w and each −→r ,−→s of level n in w.

44

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

• In all other inductive clauses of C the level of the subterm s C t in
w is the level of t in w.

The maximal level Lt of a well-typed term t is the maximal level in t of its
subterms.

Remark 2.26. The level represents the number of boxes around a term,
while the terms r, s in]s[! ,]r[§ in the (!1)- and (§)-rules are seen as being
outside the box, hence the inverse brackets should look like holes in the
boxes. Therefore, we call]s[! the !-hole and]r[§ the §-hole of a box

§ −→x ,−→y =
−→
]r[§,
−→
]s[! in t or ! x =]s[! in t .

2.3.3. Proof Nets Formally

For each typing rule of Definition 2.24 we will now give a translation into
a subgraph, such that the image of a typing derivation gives a proof net
graph, in the following sense:

Definition 2.27 (Proof net structure). A proof net structure is a labelled
finite directed graph built from links (edges) and the nodes

λ
! ! §

∀−@ ∀+

......

finite number
or none

σα Πt Πt Πt

with their given in- and output degrees and the following properties:

1. Each link is labelled with a type in TyLAL, satisfying the following
restrictions given by the type annotations of the nodes’ in- and output
links with σ, τ ∈ TyLAL, α ∈ T :

45

Polynomial Time Type Systems

λ
τ

∀−@ ∀+

σ

τ

σ!τ

σ!τ σ

σα

∀α.τ

τ

τ [α/σ]

∀α.τ

Γ1 Γ2Γ Γ Γ
(!−)(!+) (∀−)(∀+)(Var)

σ

Πt Πt Πt ΠtΠs

! ! §
......

finite number
or none

!τ !τ §τ

!σ §Γ2!Γ1

τ τ

!τ

!τ!τ τ

σ

(!0) (!1) (§)(C) Γ1

Γ2

σ Γ2Γ1

Πt Πt Πt

Πt

Πs

2. There is exactly one �• node.

3. There is a closed · · · path around the input link of the ∀+
α node, such

that no σ-link with α ∈ FTV(σ) crosses it and no input port lays
within (and no node other than ∀+

α lays on it).

4. The Πt in every !- or §-box is a proof net structure with the principal
port �• and all the ◦-, �•-nodes laid out as displayed.

We call

• the ◦-nodes input ports or free variables,

• the •-nodes output ports or weakening ports,

• the �•-node the principal output port of the proof net structure,

• the output link of type σ of a λ-node, with another output link σ(τ ,
binding link or binding port,

• and the
`
-nodes multiplexers.

46

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

The type of a (non-output) node is the type of its (non-binding) output
link.
The type of an output node is the type of its input link.
For (!0), (!1) and (§) we say that Πt is the the proof net structure of the !-
or §-box.
A proof net structure is called closed if it has no input ports.
Nodes without a path to the principal node are called garbage. A proof
net structure Π′ is called cleanup of Π if Π′ is created from Π by removing
all garbage nodes and closing potential binding links or multiplexer output
links with a weakening port.

Remark 2.28. The binding link for a λ-node is well defined by the type
annotations.

Definition 2.29 (Subproof net structure). A subproof net structure Π′ of
a proof net structure Π is either

• derived from a subgraph of Π with edges, that lay only “half” inside,
connected to additional input and (principal) output ports or

• a subproof net structure of a proof net structure Πt of a box in Π.

This definition extends the concept of a subgraph to the nested boxes, i.e. a
subproof net structure can also be inside a box or at an even deeper nested
position in a proof net structure.
The typing rules in Definition 2.24 correspond one-to-one to the rules

given in Definition 2.27. Hence, we can map each typing derivation to a
proof net using the canonical mapping:

Definition 2.30 (Proof net). A proof net structure Πt is called a proof net
for t if it is the image of the typing derivation Γ ` tτ under the mapping
which translates each term typing rule of Definition 2.24 to the correspond-
ing proof net structure rule in Definition 2.27.
The output link coming from the conclusion of the typing rule at the

root of Γ ` tτ is marked as principal node �•. Free variables are turned into
input port, not appearing bound variables into non-principal output ports.

47

Polynomial Time Type Systems

We call a proof net Π a proof net of type τ (denoted with Πτ) if τ is the
type of the principal output node.
A subproof net of a proof net for the term tτ is a proof net of a subterm

s E t.

Remark 2.31. The translation of the arrow introduction ((+) that
types Γ ` λxσ.tσ(τ with x not free in t uses a weakening port for the
loose end of the binding link. In the type system of the terms we do not
use explicit weakening, though, for sake of simplicity.

Because the content t of a box ! x =]s[! in t is a subterm with xσ ` tτ

as the premise in the typing derivation, t will also map to a proof net of a
box. Hence, a proof net structure of a box is also a proof net.

Remark 2.32. The central difference between the terms and the proof
nets is the desequentialisation of the multiplexer rules. Compare the
translation of the multiplexer in the term language to the multiplexer
of the proof net in Figure 2.2 on the next page. While in a term the
position of the contraction rule in the typing derivation is explicit, in
the proof net it is not, because the proof net is just the graph. The
(permutative) order of the contraction (C) and other rules for instance
is lost there.
The proof net structure rules, though, induce an inductive structure

over those graphs, like type derivations do for terms. But due to the
lost order, there can be multiple terms for one proof net, i.e. also dif-
ferent inductive structures over a proof net. E.g., in the term system(
r!ρ C

x1
x2

(
! s C

y1
y2

t
))

and
((
r!ρ C

x1
x2 ! s

)
C
y1
y2 t

)
are different, whereas

as proof nets they are the same:

48

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

!
Πs Πr

Πt

Γ1

Γ2

In this sense, proof nets are desequentialisations of type derivations.
In Remark 6.28 we will go into more detail on this in the context of
LLT!.

Because the translation from terms to proof nets is mostly (up to the lost
order of the contraction rules) just that of creating a parse tree, we get the
following connection between subproof net structures and subterms:

Fact 2.33. Let Πs be the subproof net of a proof net Πt, Πt the proof net
for the term tτ and s E t the subterm for Πs. Then Πs is a subproof net
structure of Πt.

A proof net, as an image of a typing derivation, has many nice properties:

(
s !x1

x2
t
) !

s t

Γ1
Γ2

term

t

s

Γ1

Γ2

syntax tree proof net

Figure 2.2.: Translation of multiplexers from LAL terms to proof nets

49

Polynomial Time Type Systems

Definition 2.34 (Paths and proper paths). A sequence of proof net links
which can also go through boxes and the nested proof nets is called a proof
net path (short just path). A path which does not pass through a λ-node
via the binding link is called proper.

Fact 2.35.

1. Each maximal proper path in a proof net ends either in a weakening
port or in the principal port,

2. Every path in a proof net starting with the binding link of a λ-node
either ends in a weakening port or passes through the input link of the
starting λ-node,

3. There is no proper cycle in a proof net.

Remark 2.36. The second property of the previous definition is part of
what Schwichtenberg and Bellantoni [SB01] call conformal graphs. This
essentially makes sure that the λ only binds variables in its body.

Remark 2.37. A proof net can have loops. These loops always go
through a λ-node. If the binding links are “cut” and replaced with
named variables (as done e.g. in [SB01]), the proof nets become trees
with sharing that is made explicit via the multiplexers. Schwichtenberg
and Bellantoni [SB01] call these parse DAGs (directed acyclic graphs)
with sharing . We do not want to talk about variable names here. There-
fore, we do not “cut” the binding links.

Notation 2.38. We use the term nodes of a proof net structure Π for the
graph-theoretic nodes of Π.
We use the term nested nodes of a proof net structure Π

• for nodes of Π

• and for nested nodes of a proof net structure of a box of Π.

The nesting box structure of a proof net suggests a classification of nodes
and redexes by the number of boxes around them. Therefore, we introduce
the concept of a level of nodes in a proof net.

50

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

Definition 2.39 (Level and node of level in a proof net).

1. If a box node b with Πt as the proof net of b is a node in the proof
net Π, then every node of level n in Πt is of level n+ 1 in Π.

2. If n is a node of the proof net Π, then n is of level 0 in Π.

The maximal level n with nodes of level n in Π is denoted by LΠ.
The level of a subproof net of Π is the level of its principal node in Π.

Note that every node x of some level n in Π is also a nested node of Π.
In fact, even the converse is true. The nested nodes of Π are exactly all
nodes of arbitrary level in Π.

Compare this definition with the level of a subterm in Definition 2.25.
Both concepts count the number of boxes around a subterm or subproof
net and are equal in the sense that a subterm s E t is of level n iff the
corresponding subnet Πs in Πt is also of this level. In the context of proof
nets, the connection to the box nesting depth is more obvious, because a
subterm s in the “hole”]s[! of a box lays clearly outside the box in the proof
net representation of the same term.

2.3.4. Normalisation

Normalisation is done in the proof nets and not in the terms. It is defined by
local graph rewrite rules, to be applied to the proof net graph and the proof
net graphs of the boxes and so on. Clearly, a formal and complete study
of proof nets would need to show that these reductions really lead to proof
nets again. We will not do that here though and refer to [AR00, AR02].

Definition 2.40 (Rewriting rules, redexes). The graph rewriting relation
between proof nets is split into the following redexes:

• the linear part 7−→l (usual beta reduction and type beta reduction)
which decreases the proof net size. If the binding link ends in a
weakening port, Πs disappears,

• the shifting part 7−→s (box merging), which also reduces the proof
net size,

51

Polynomial Time Type Systems

• and the polynomial part 7−→m (duplication), which makes copies of
boxes and hence increases the proof net size.

∀−

∀+

σ

α

∀α.τ

τ

τ [α/σ]

Π

τ [α/σ]

Π[α/σ]!−→n
l

Γ

Γ

λ

@

!−→n
l

Γ1

Γ2

Γ2

Γ1

Πs

Πt
Πs

Πt

Γ1

Πtor

!

! !

!−→n
s

§

§

!−→n
s

§ or !

ΠtΠt Πt Πt

ΠsΠs Πs Πs

!

! !
!−→n

m

!

! !
!−→n

m

Πt Πt

Πt Πt

Πt Πt

We call 7−→n
p :=7−→n

s ∪ 7−→n
m polynomial redexes and 7−→:=7−→l ∪ 7−→s

∪ 7−→m arbitrary redexes.
We write Πt −→ Πt′ if

• Πs 7−→ Πs′ for some subproof net Πs of Πt,

• and Πt′ is Πt with Πs replaced by Πs′ (and mutatis mutandis −→?

for 7−→?-redexes) after cleaning up garbage nodes.

52

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

A proof net Πt is called 7−→?-normal or −→?-normal if there is no Πt′ with
Πt −→? Πt′ . The notation nf−→? denotes the relation which puts a term in
relation with its normal form(s), i.e.

Π nf∼ Π′ :⇐⇒ Π ∼∗ Π′ ∧Π′ is ∼ -normal.

The level of a redex Πs 7−→? Πs′ is the level of Πs (which is the same as
the level of Πs′). We write 7−→n

? for 7−→? (and −→n for −→) restricted to
level n redexes.

It is clear from the definition of the graph rewriting rules that the nesting
of the proof nets with boxes does not change during normalisation because
the rewrite rules only apply to one level at a time (with the exception of
shifting a redex 7−→s which glues two boxes together; this though does not
make any trouble either). Hence:

Fact 2.41. During normalisation via −→ the level of the nodes in a proof
net Π is constant.

This gives rise to the normalisation by levels:

Definition 2.42 (Normalisation by levels). For a proof net Π we define
the normalisation by levels

−→NbL:=

LΠ∏

n:=0

(nf−→n
l

nf−→n
p).

In other words, normalisation by levels first normalises outside boxes and
then continues with redexes inside. For this reason, it is also called “from
outside to inside” normalisation.
Normalisation by levels is a good strategy in fact, i.e. it is not any worse

qualitatively than normalising in another, not-level-driven strategy (in the
sense that it can lead to a normal form if there is one). The reason is that
the rewrite rules are formulated in such a way that redexes do not make
any assumptions about nodes on different levels, i.e. inside boxes or outside
the box a redex is in. Of course, normalisation by levels duplicates boxes as
early and as often as possible. Hence, complexity-wise it is not very good
because a lot of redexes are duplicated.

53

Polynomial Time Type Systems

For normalisation by levels it is essential that no new outer redexes can
be created during reduction in boxes:

Fact 2.43. Let Π be normal for the levels ≤ n and Π −→n+1 Π′. Then
also Π′ is normal for levels ≤ n.

In other words, firing a redex on level n+ 1 does not create new redexes
on lower levels (i.e. further outside boxes).

Corollary 2.44. If there is a normal form of a proof net Π according to
−→, then this normal form can also reached by a strategy in −→NbL.

To sum up, the considered normalisation for proof nets in LAL is the
following:

• We start with the linear redexes on the “outside”,

• Next, we fire the shifting and polynomial redexes on the “outside”.

• Then, after the outer level 0 is normal, we continue with level 1,

– again, first the linear redexes on level 1,

– then the shifting and polynomial redexes on level 1.

– Then, after level 1 is normal, we continued with level 2.

∗ And so on...

It has been shown by Asperti and Roversi [AR00, AR02] that normalisation
by levels for Light Affine Logic is done in polynomial many steps and that
LAL is in fact complete for PTime:

Definition 2.45 (Proof net size). The size of a proof net |Π| is the number
of nodes in Π plus the sum of |Πi| of the proof nets Πi in the box nodes vi
of Π.

Theorem 2.46 (Completeness for Ptime, Asperti-Roversi). Every Turing
Machine M which terminates after polynomially many steps in the size of
the input can be simulated by a LAL proof net ΠM of type σ(τ with

54

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

• the input of the Turing Machine (i.e. the input tape) coded with proof
nets Πin of type σ with LΠin ≤ LΠM

• and the output of M coded as proof nets of type τ .

Theorem 2.47 (Correctness for PTime, Asperti-Roversi). Every proof net
Π of LAL can be normalised in O(|Π|6

LΠ
).

We will use essentially the proof idea of [AR00, AR02] as a starting point
to prove the complexity bound for Light Linear T in Chapter 6, and also
for LLFPL! in Chapter 7.
Furthermore, it was shown by [Ter01] that LAL is even strongly normal-

ising in polynomial time, i.e. by any normalisation order, not only by levels.
But we will not need this result in this work.

Remark 2.48. The restriction to the maximal level LΠin ≤ LΠM is es-
sential in Theorem 2.46. The normalisation complexity is polynomial,
but the order of the polynomial depends on the maximal level of the
proof net which is normalised, i.e. ΠM applied to the input Πin. Hence,
it is important to bound the levels which appear in the input Πin. It is
easily possible otherwise to define inputs which, although they are all of
the same type, have increasingly high levels and therefore can normalise
in exponential time in their size. This way even exponential time Turing
Machines could be simulated.

2.3.5. Encodings and Polynomial Time

In [Lag03] and [LB06] different kinds of encodings for natural numbers
are studied. The question is which subsystems of full second order Light
Linear Logic with products, fixed point types, product and co-product are
sound and/or complete for PTime.
The result of the former reference is mainly that one has to restrict the

use of the (∀−)- and (∀+)-rule to types whose nesting of modalities is bound
by the nesting in the conclusion and premises. In other words, the inputs as
cut-free proofs must not have nodes of higher level than the nesting depths
in the input type. To show this necessity, a uniform input type for natural
numbers is given having cut-free proofs without this property.

55

Polynomial Time Type Systems

In the second reference, the follow-up paper, this idea is extended by not
restricting the kind of cut-free input proofs, but by restricting the logic.
Namely, the ∀-rules are restricted to linear types (i.e. those without ! or §
in them). It is further shown that such a subsystem of Light Linear Logic
can still be complete for PTime, while also being sound for any type for
input and output.

2.3.6. Light Affine Logic with Fixed Points (µLAL)

As Dal Lago and Baillot [LB06] point out, the normalisation process of
LAL does not make essential use of the types in a proof net other than the
structure of the boxes which can be read off from the modalities. Hence, it
can be asked which interesting extensions of the type system are possible
without breaking the normalisation proof. Dal Lago and Baillot [LB06]
present an extension with fixed point types (µα.τ), the corresponding term
constructs to fold and unfold terms and the fold- and unfold-typing rules:

Definition 2.49 (Types). For a countably infinite set T of type variable
names the set of light linear types with fixed points TyµLAL is defined
inductively by:

A,B ::= α | A(B | !A | §A | ∀α.A | µα.A.

Definition 2.50 (Terms). For a countably infinite set V of variable names
the set of light linear terms TmµLAL is defined inductively by:

r, s, t ::= x | λx.t | ! t | ! x =]s[! in t | § −→x ,−→y =
−→
]r[§,
−→
]s[§ in t

| Λα.t | (s t) | (s τ) |
(
s C

x1
x2 t

)
| {t} | }t{

with types τ ∈ TyµLAL, type variables α ∈ T and x, y, x1, x2 ∈ V . Terms
which are equal up to the naming of bound variables and bound type vari-
ables are identified.

Variables Free and bound variables are defined as for LAL in Definition
2.23 plus the cases FV({t}) := FV(}t{) := FV(t) and mutatis mutandis for
FTV.

56

2.3. Light Linear Logic (LLL) and Light Affine Logic (LAL)

Subterms Subterms are defined as for LAL in Definition 2.23, with the
additional clauses t CµLAL {t} and t CµLAL}t{.

Definition 2.51 (Typing). The typing rules are as in Definition 2.24 for
LAL with the following additional rules:

Γ ` tτ [α:=µα.τ]

Γ ` {t}µα.τ
(Fold)

Γ ` tµα.τ

Γ `}t{τ [α:=µα.τ]
(Unfold)

The corresponding “left” rules for fixed points, which operate on the context,
are derivable as usual. We refer to [LB06] for more details.

57

Polynomial Time Type Systems

58

3
Building an Intuition by Examples

In this chapter, we take a collection of algorithms, which are either expo-
nential per se or at least exponential with a badly chosen normalisation
strategy. We explore how the different polynomial time type systems of
Chapter 2 handle these, i.e. how the algorithms are outlawed or how a good
normalisation strategy is enforced to avoid the exponential normalisation
time.
It is not our goal to give a full study or formal comparison of the used

calculi. Instead, the examples, seen side by side in the different settings,
should help the reader build an intuition on the ideas involved to restrict
the definable algorithms in a type system to polynomial time.
A real deep study of these ideas, their formalisation and the formal com-

plexity proofs, is much more involved and mostly a very technical matter.
These technicalities usually make it very hard to understand the presented
system up to every detail. Here however, we want to stress the underlying
ideas, how the the ideas are expressed in the calculi and how the systems
outlaw certain bad algorithms.

Structure of this chapter We divide the considered examples in this chapter
into three classes:

• Section 3.1 introduces the representation of the basic data types of
booleans and products in the different systems and studies examples

59

Building an Intuition by Examples

where the normalisation complexity mainly depends of the properties
of these data types.

• Section 3.2 analysis different recursion schemes which allow the defini-
tion of exponential functions. These algorithms are exponential “per
se” and they must be outlawed independently from any normalisation
strategy.

• Section 3.3 implements real-world polynomial time computable func-
tions in order to compare the intentional expressivity of the considered
calculi.

In Section 3.4 this chapter ends with a conclusion and an outlook on the
following chapters of this work, by a collection of questions arising from the
example and references to the respective chapter which will give answers to
them.

3.1. Booleans and Products

We will start looking at very basic data types: the booleans and the prod-
uct. The System T based calculi usually have them “hard-coded” as base
types, and the typing rules and reduction rules enforce certain properties.
System F based system often use the implicit Church encoding:

Definition 3.1. The Church encoding in System F of booleans and prod-
ucts (compare [GLT88]):
Boolean: B := ∀α.α→ α→ α

Product: σ ⊗ τ := ∀α.(σ → τ → α)→ α

In Light Linear Logic things are not much different. The only difference
is that the linear arrows(are used instead of →. The properties of the
System F product and the Light Linear Logic product will be different due
to the linearity constraints:

Definition 3.2. Church encoding in Light Affine Logic of booleans and
products (compare [AR00]):
Boolean: B := ∀α.α(α(α

Product: σ ⊗ τ := ∀α.(σ(τ (α)(α

60

3.1. Booleans and Products

Example 3.3. With the linearity requirement we have to do some extra
work during destruction of a boolean (i.e. the usual if-then-else construct
in a programming language) if the two alternatives s[x] and t[x] share
free variables, here the x. This situation is not allowed in Light Linear
Logic, but of course it is not hard to “abstract them out”:

if bB then s[x] else t[x] := (((b σ(τ) λx.s[x]λx.t[x]) x) .

with B := ∀α.α (α (α. For each free variable one adds another
arrow to the type σ(τ and another λ-abstraction in the then- and else-
cases. While not very complicated, this should illustrate the work one
often has to do in a linear type system to make an algorithm typable.

3.1.1. Data Types in the Different Calculi

In the following subsections we will give an overview of the base types and
products, starting with the System T based ones, which have them build
into the term language and the types:

3.1.1.1. LFPL

We repeat some parts of the definition of LFPL in Section 2.2:
Types:

• boolean: B

• tensor product: σ ⊗ τ

• cartesian product: σ × τ

• lists: L(τ)

• diamond: ♦

Constructor:

• tt,ff (as constants)

• ⊗τ,ρ : τ (ρ(τ ⊗ ρ (as constant)

• 〈t, s〉τ×σ (as term construct)

• nilτ : L(τ) and consτ : ♦(τ (L(τ)(L(τ).

61

Building an Intuition by Examples

Destructors:

•
(
bB pτ×τ

)τ (as term construct)

•
(
pρ⊗σ fρ→σ→τ

)τ (as term construct)

• (〈s, t〉 tt) , (〈s, t〉ff) (as term construct)

• iteration:
(
lL(τ) f♦(τ(σ(σ

)σ(σ

with closed f .

Typing rules:

Γ ` sσ Γ ` tτ

Γ ` 〈s, t〉σ×τ
(×+)

Γ ` pρ×σ

Γ ` (p tt)ρ
(×−tt)

Γ ` pρ×σ

Γ ` (pff)σ
(×−ff)

Γ1 ` bB Γ2 ` pτ×τ

Γ1,Γ2 ` (b p)τ
(B−)

Γ1 ` pρ⊗σ Γ2 ` fρ→σ→τ

Γ1,Γ2 ` (p f)τ
(⊗−)

Γ1 ` lL(τ) ∅ ` h♦(τ(σ(σ Γ2 ` gσ

Γ1,Γ2 ` (l h g)σ
(It)

Restrictions:
Normalisation under λ and inside a term 〈t, s〉 is not allowed. The lin-

earity restriction does not apply to 〈t, s〉, i.e. both branches can share free
variables.

3.1.1.2. LT

The calculus LT is a higher-type variant of BC, i.e. Bellantoni and Cook’s
safe recursion. Compare [SB01] and [Sch06] for a complete definition. We
will not formally introduce it here because it will only play a role in the
examples of this chapter, for comparison to the other type system. Instead,
we list only the main features:
Types:

• boolean: B

62

3.1. Booleans and Products

• tensor product: σ ⊗ τ

• cartesian product: σ × τ

• lists: L(τ)

Constructor:

• tt,ff (as constants)

• ⊗+
σ,τ : σ(τ (σ ⊗ τ (as constant)

• ×+
σ,τ,ρ : (ρ(σ)((ρ(τ)(ρ(σ × τ (as constant)

• nilτ : L(τ) and consτ : τ (L(τ)(L(τ).

Destructors:

• Caseρ,τ : L(ρ) (τ × (ρ (L(ρ) (τ) (τ with linear τ (as
constant)

• ⊗−σ,τ,ρ : σ ⊗ τ ((σ(τ (ρ)(ρ (as constant)

• projections: fstσ,τ : σ × τ (σ, sndσ,τ : σ × τ (τ (as constants)

• recursion: constant RRRσ,τ : L(σ) → (σ → L(σ) → τ (τ) → τ (τ

with linear τ , i.e. no arrow → in τ .

Restrictions:
There is no explicit restriction of the normalisation strategy in the def-

inition of the term system and its reductions. Though, the complexity
theorem in [SB01] chooses one in the correctness proof. This strategy then
is polynomial in the input size.

3.1.1.3. LAL

Light Affine Logic is formally introduced in Section 2.3. For the examples
below we use the following additional definitions:
Types:

• boolean: B := ∀α.α(α(α

• tensor product: σ ⊗ τ := ∀α.(σ(τ (α)(α

• cartesian product σ × τ : see Section 3.1.2 below

63

Building an Intuition by Examples

• lists: L(τ) := ∀α.!(τ (α(α)(§(α(α)

• numerals: N := ∀α.!(α(α)(§(α(α).

Constructor:

• tt := Λα.λx, y.x, ff := Λα.λx, y.y

• ⊗+
σ,τ := λsσ, tτ .Λαλfσ(τ(α. (f s t)

• ×+
σ,τ := λs, t.〈s, t〉: see Section 3.1.2 below.

Destructors:

• Caseρ := λbλthenρ, elseρ. (b ρ then else)

• ⊗−σ,τ,ρ := λpσ⊗τ , fσ(τ(ρ. (p ρ f)

• projections πσ,τ,0, πσ,τ,1: see Section 3.1.2 below.

Restrictions:
Normalisation is done by levels, i.e. from outside to inside boxes as pre-

sented in Definition 2.42. It is shown by Terui [Ter01], that not even this
restriction is important and that LAL even normalises in polynomial time
with an arbitrary normalisation strategy.

3.1.2. Cartesian Product in System F and LAL

Above, we have not given a definition of a cartesian product for Light
Affine Logic. This has a reason: it is not obvious how to define it, due
to the linearity constraints of the type system. Therefore, we study the
possibilities to introduce such a cartesian product in this subsection. Our
goal is that the cartesian product

• allows shared variables in both components,

• and has a uniform type, i.e. that is independent of the component
terms.

64

3.1. Booleans and Products

Cartesian Product in System F As an instance of impredicatively defined
inductive types, System F has a natural definition for a product:

σ ⊗ τ = ∀α.(σ → τ → α)→ α.

The projection functions are canonical:

πσ,τ,0 := λpσ⊗τ . (p σ λxσ, yτ .x)

πσ,τ,1 := λpσ⊗τ . (p τ λxσ, yτ .y) .

The constructor is straightforward as well:

⊗+
σ,τ := λs, t.Λα.λf (γ→σ)→(γ→τ)→α. (f s t)

such that
(
πσ,τ,0

(
⊗+
σ,τ s t

))
−→∗ s

(
πσ,τ,1

(
⊗+
σ,τ s t

))
−→∗ t.

Cartesian Product in LAL - Naively How does the System F cartesian prod-
ucts translate to linear logic? Replacing → with the linear arrow(gives
the type

σ ⊗ τ = ∀α.(σ(τ (α)(α

with the same projections as in the non-linear case.
Take two terms of type σ and τ , e.g. s := (f xγ)σ and t := (g xγ)τ . We

want to have a pair of s and t. Naively, one gets 〈s, t〉 = Λα.λh. (h s t). Both
s and t have the free variable xγ . Hence, the term 〈s, t〉 is not linear and
therefore not well-typed. In other words, the cartesian product of System
F does not give a cartesian product in Light Linear Logic.
With some more effort it is possible to define a cartesian product term

in LAL of type

σ × τ := ((γ(σ)⊗ (γ(τ))⊗ γ.

But this type is not uniform in the terms, i.e. depending on the (non-linear)
free variables of s and t, the type γ will change. The constructor and the
projections are as expected:

〈s, t〉 := ((λcγ .s⊗ λcγ .t)⊗ cγ)σ×τ

65

Building an Intuition by Examples

πσ,τ,0 := λp((γ(σ)⊗(γ(τ))⊗γ . (p λx, c. (xλs, t. (s c)))σ

πσ,τ,1 := λp((γ(σ)⊗(γ(τ))⊗γ . (p λx, c. (xλs, t. (t c)))τ .

Applying this to our example 〈s, t〉 from above, we get the term

((λxγ . (f xγ)⊗ λxγ . (g xγ))⊗ xγ).

The projections take this term as the argument p, split it into the left
component x : (γ (σ) ⊗ (γ (τ) and the term of the shared variables
c : γ. Then the branch of x (which is linearly typed now) is chosen and c
is applied to it.
Because the type of the product changes depending on the free variables

in a pair, this naive approach does to not give us the product that we are
after.

Cartesian Product in LAL - Mendler style Inspired by the Mendler style re-
cursion [Men88, Mat99], one can also make use of the parametricity of Sys-
tem F to define a product type in LAL. Parametricity (compare [Wad89])
means that a term cannot assume anything about a type variable, i.e. a
term is defined uniformly in the possible substitutions of its free type vari-
ables. E.g., there is no case distinction possible on the type level, which
can make a term behave differently depending on the type one substitutes
into a type variable.
We use this property as follows, in order to define a uniform cartesian

product in Light Affine Logic. We assume to have the usual impredicative
definition of the sum type

ρ1 + ρ2 := ∀α.(ρ1(α)((ρ2(α)(α

with the canonical injections inL and inR.
First note that this sum type does not have the issues with linearity that

we saw before with the product because the two arguments of type ρ1(α

and ρ2(α are given by the term that uses the sum. Hence, the sum term
itself does not have to take care of linearity.
With this in mind, we can define a Mendler style product type:

σ × τ := ∀α, β.(α+ β)(((σ ⊗ α) + (τ ⊗ β)). (3.1)

The α and β in the positive positions guarantee that a term of type σ×τ

66

3.1. Booleans and Products

always “chooses” the correct branch depending on the input α+β. Although
the result type is a sum type as well, the parametricity of the system forces
the term to take the same branch as the input α+ β. Because there is no
canonical inhabitant of α or β, there is no other (closed) choice.
On the other hand, due to parametricity and because the result is a sum

type, the code that uses such a cartesian product and projects it to one
component has to handle both branches of the result, i.e. both σ ⊗ α and
τ⊗β. The parametricity makes sure that it is known on the meta level that
no cartesian product term with this type can choose the ”wrong” branch.
Hence, we get:

Theorem 3.4 (Correctness). Given a term p ∈ TmLAL with

Γ ` p : ∀α, β.(α+ β)(((σ ⊗ α) + (τ ⊗ β)),

a term
(
pαβ

(
inR bβ

))
with b ∈ V and α, β ∈ T cannot reduce to a left

injection (inL t) for any t ∈ TmLAL (and conversely for the right injection).

Proof sketch. By parametricity, p is uniform in α and β. Hence, we can
substitute α and β by any type without changing the behaviour.
First choose α = ⊥ = ∀δ.δ, i.e. the type which has no inhabitants. Then a

term
(
p⊥β

(
inR bβ

))
is of type (σ⊗⊥)+(τ⊗β) and hence the left injection

is not inhabited either. If
(
pαβ

(
inR bβ

))
reduces to a left injection, then(

p⊥β
(
inR bβ

))
will do it too (by parametricity). Then replace σ with

some inhabited type such that t is inhabitant of σ ⊗⊥. Contradiction.
Note that we implicitly make use here of the fact that there cannot be

free variables of type α or β in p because the (∀+)-rules forbids this.

On the term level it is ”not known” which branch of the sum will be
chosen when using the projection on such a product. But with a simple
trick this is not a problem: just choose α = U , β = σ (τ in the right
projection, and α = τ (σ,β = U in the left projection (with the unit type
U := ∀α.α(α and 1 := Λα.λx.x as its inhabitant). Then the projections
are well typed, and uniform in σ and τ :

πσ,τ,0 := λpσ×τ.
(
(pU τ(σ (inL1))λxσ⊗U.(xλs,a.s)λxτ⊗(τ(σ).(xλt,b.(b t))

)

(3.2)

67

Building an Intuition by Examples

πσ,τ,1 := λpσ×τ.
(
(p σ(τ U (inR 1))λxσ⊗(σ(τ).(xλs,a.(a s))λxτ⊗U.(xλt,b.t)

)

(3.3)

It remains to be shown that the type

σ × τ = ∀α, β.(α+ β)(((σ ⊗ α) + (τ ⊗ β))

has indeed the properties of a cartesian product:

Theorem 3.5 (Existence). In LAL for all types γ, σ, τ and terms Γ1,Γ `
sσ, Γ2,Γ ` tτ with Γ1 and Γ2 disjoint, there is an element 〈s, t〉 : σ×τ with
(πσ,τ,0 〈s, t〉) −→NbL s and (πσ,τ,1 〈s, t〉) −→NbL t.

Proof. Let −→x be the list of variables in Γ, and −→γ the iterated tensor product
of their types. Define a cartesian pair 〈s, t〉σ×τ as

〈s, t〉 := Λα, β.λcα+β .
(
(c δ λaα,−→x

−→γ .

σ⊗α+τ⊗β︷ ︸︸ ︷
(inL (s⊗a)) λbβ,−→x

−→γ.

σ⊗α+τ⊗β︷ ︸︸ ︷
(inR (t⊗b)))−→x

)

(3.4)

δ := −→γ ((σ ⊗ α+ τ ⊗ β). (3.5)

Then it is clear that the term 〈s, t〉 is well typed with Γ1,Γ2,Γ ` 〈s, t〉σ×τ.
Moreover, (πσ,τ,0 〈s, t〉) −→NbL s and (πσ,τ,1 〈s, t〉) −→NbL t because al-
ready

(πσ,τ,0 〈s, t〉) −→∗l s

and
(πσ,τ,1 〈s, t〉) −→∗l t

holds, i.e. the Linear System F reductions of LAL are enough (normalisation
inside boxes is not necessary).

Selection by a boolean Given a cartesian pair 〈s, t〉 of type τ × τ , it is
possible to select the side by using a boolean, i.e. to create a function of
type

π : ∀τ.B(τ × τ (τ

given by

π := Λτ.λbB . (b (τ×τ)(τ πτ,τ,0 πτ,τ,1) .

68

3.1. Booleans and Products

3.1.3. Beckmann/Weiermann Example

After the discussion of the products in the different calculi, we look at the
first example now that is connected with the possible normalisation orders
related to products. Originally, it was given by Beckmann and Weiermann
[BW96] to show the necessity of restricting the permissible normalisation
strategies in Bellantoni and Cook’s safe recursion [BC92]. Later, Neergaard
and Mairson [NM03] used this as a hint that a complete embedding of full
BC into LAL is not possible.
Our interest is to extend the analysis of the example to all the systems

we consider here: LT, BC, LAL and LFPL.

Example 3.6 (Beckmann/Weiermann). Written in (applicative) Sys-
tem T with lists, cartesian product and iteration:

t := λlL(B).
(
ItB,B l λbBλpB . (b 〈p, p〉) tt

)
.

The question, that we want to ask now, is how the different calculi avoid
that during the unfolding of the iteration the term (b 〈p, p〉) grows as in the
following illustration:

(t (consB tt (consB tt (consB tt nilB))))
(
tt
〈

·
︷ ︸︸ ︷(
tt
〈

·
︷ ︸︸ ︷(
tt
〈
·
︷︸︸︷
tt

, ·
︷︸︸︷
tt

〉)
, ·
︷ ︸︸ ︷(
tt
〈
·
︷︸︸︷
tt

, ·
︷︸︸︷
tt

〉)

〉)
, ·
︷ ︸︸ ︷(
tt
〈

·
︷ ︸︸ ︷(
tt
〈
·
︷︸︸︷
tt

, ·
︷︸︸︷
tt

〉)
, ·
︷ ︸︸ ︷(
tt
〈
·
︷︸︸︷
tt

, ·
︷︸︸︷
tt

〉)

〉)

〉)
.

It is clear that this tree like structure grows exponentially because with
every consB in the input list another level in this illustration is created,
doubling its size.
On the other hand, the applied normalisation strategy which leads to

this size explosion is a very bad one. One can easily avoid the problem
altogether by normalising the cartesian selection with the tt first, before
unfolding and substitution. Then the algorithm runs even in linear time.
But for that normalisation under λ is necessary because the selection is
under the λp abstraction.

69

Building an Intuition by Examples

We will go through the different calculi now to see how such an op-
timisation is enforced by the type system or by some restriction of the
normalisation strategy.
3.1.3.1. LT

t := λl.
(
RRRB,B l̄ λx̄, l̄′, p. (x̄ 〈p, p〉) tt

)
.

The reduction strategy, which is proposed in the complexity theorem of
[SB01], will reduce this in the following way:

1. The list l̄ is normalised first to know its length n (this is possible
because l̄ is complete) and the possibly not yet normal first arguments
biof the consB .

2. The iteration is unfolded n times to get (sn . . . (s1 tt)) with step terms
si = λp. (bi 〈p, p〉), obviously of linear size in the length of the list n.
Each of these si can be normalised independently to s′i because of
completeness of si.

3. Then (s′n . . . (s
′
1 tt)) is normalised further using the strategy given by

the "Sharing Normalisation" lemma in [SB01].

In the last step the “Sharing Normalisation” makes sure that the copies of
p in the cartesian product subterms are properly shared in each step of
the reduction, i.e. during beta-reduction the argument of the application is
not duplicated, but only gets two pointers pointing to it. Hence, the DAG
(directed acyclic graph, i.e. the model of computation of LT) stays linear
in n during normalisation.
In the second step the si are complete. Hence, if they used another

nested recursion, it could be normalised in each si independently. This is
the central idea in LT, but not necessary for this example. In this example
the sharing of duplicated terms of ground type is what avoids exponential
growth of the term.

3.1.3.2. BC - Beckmann/Weiermann’s Solution

When using a simple term rewriting system (and not DAGs) as the model
of computation, the upper solution with sharing is not available. But even
in this setting one can normalise Bellantoni-Cook-style terms in polynomial
time.

70

3.1. Booleans and Products

Beckmann and Weiermann consider a term rewriting variant of Bellan-
toni and Cook’s (non-higher-type) safe recursion calculus BC. I.e., in con-
trast to Bellantoni and Schwichtenberg’s LT [SB01] they only take ground
type terms into account and write program as equational definitions. The
main restriction of their setting though is that they have to describe the
normalisation purely as a term rewriting system with term rewriting rules.

Basically, they show that the term rewriting system must not have a gen-
eral standard rewrite rule for composition and primitive recursion. Instead,
the rules are restricted to have only numerals in the safe argument posi-
tions. Hence, the rewrite rule for the safe composition becomes (in their
denotation)

SUBk,lk′,l′ [f, g1, ..., gk′ , h1, ..., hl′](x1, ..., xk;n1, ..., nl) −→

f(g1(x1, .., xk;), .., gk′(x1, .., xk;);

h1(x1, ...xk;n1, .., nl), .., h1′(x1, .., xk;n1, .., nl))

and for recursion

PRECk+1,l[g, h1, h2](Si(;x), x1, ..., xk;n1, ..., nl) −→

hi(x, x1, ..., xk;n1, ..., nl,PRECk+1,l[g, h1, h2](x, x1, ..., xk;n1, ..., nl)).

With n we denote numerals here. This means that these rules are in fact
two rewrite schemes for all possible numerals.

The case which is interesting here is the one of case distinction in a safe
position. When writing down the Beckmann/Weiermann example in this
setting, the (safe) recursion result (b 〈p, p〉) is not a numeral, and there-
fore the upper two rewrite rules cannot be applied then. Hence, before
the recursion can be unfolded again via the PREC rewrite rule, the term
must be normalised further to be not a case distinction anymore, but a
numeral. This obviously leads to a “good” evaluation strategy, which is not
exponential, in this example.

3.1.3.3. Light Linear Logic

In a linear calculus like LAL the first question is how to represent the term
〈p, p〉 which is obviously not linear.

71

Building an Intuition by Examples

Naive cartesian product We will first follow the idea of the naive approach
in section 3.1.2 to “abstract out” the p. This gives the Beckmann/Weier-
mann variant for LAL:

t := §
(](

l B ! λbBλpB .
((

(bB(B)λp.p λp.p
)
p
))[

§

tt
)
.

During normalisation this term does not explode in LAL because no
duplication is possible at all: from the start the shared p of the two branches
is moved outside the branching which depends on b. Hence, the boolean
b (which decides which branch to take) is applied to the (now closed) two
branches before plugging in the shared variable p. So the application of
p cannot give a redex before the redex of the boolean b is fired. In other
words, the boolean selection blocks the duplication.

Mendler style cartesian product If we use the more general Mendler style
cartesian product of Section 3.1.2, we get exactly the same effect. The
canonical Mendler style cartesian pair constructor, as given in Lemma 3.5,
uses the λaα (in the left branch) and λbβ (in the right branch) to block the
application of the shared variables −→x . Hence, also in this case, duplication
is avoided completely by the same mechanism as with the naive cartesian
product.

3.1.3.4. LFPL

The example written in LFPL is the same as in T after replacing the iter-
ation constant with the applicative syntax:

t := λlL(B).
(
l λd♦, bB , pB . (b 〈p, p〉) tt

)
.

The term is non-linear of course, but this special non-linearity in the carte-
sian product is allowed in LFPL. The calculus morally assumes that only
one of the branches is ever chosen during normalisation. Reduction is not
possible inside such a cartesian pair. As described in Remark 2.20 this
makes it easy to apply sharing for shared terms inside pairs like 〈p, p〉.
Like in the case of LT, this makes the term of the Beckmann/Weiermann
example linear again in the input size.
The further normalisation of the term will choose the correct branch (here

the left one) in each step, from outside to inside. But as no duplication can

72

3.1. Booleans and Products

happen due to sharing, this normalisation order is not bad anymore.

3.1.4. Necessity of the Cartesian Product in LFPL

The question we want to answer in this section is whether one really needs
the cartesian product in LFPL, or if it is enough to have the usual (B−)

rule of the applicative Linear System T with booleans instead, i.e.

Γ1 ` bB Γ2 ` fσ Γ3 ` gσ

Γ1,Γ2,Γ3 ` (b f g)σ
(B−aLinT)

with the same type for the two alternatives. In the Beckmann/Weiermann
example in Section 3.1.3 we have seen that the restriction to forbid reduction
inside 〈s, t〉 can be important to avoid exponential behaviour. Hence, the
question about the necessity of the cartesian product in LFPL is important.
First recall that there are two kinds of elimination rules for the cartesian

product in LFPL:

Γ ` pρ×σ

Γ ` (p tt)ρ
(×−tt)

Γ ` pρ×σ

Γ ` (pff)σ
(×−ff)

and
Γ1 ` bB Γ2 ` pτ×τ

Γ1,Γ2 ` (b p)τ
(B−)

The former two allow distinct types ρ and σ for the left and right com-
ponent, but can only be applied to constants tt,ff . The latter requires
symmetric types τ × τ , but allows any term bB to choose the projection.
The system does not have type quantification, but is simply typed. Hence,

types are fixed and we can make a distinction between those terms of sym-
metric and those of asymmetric cartesian product types. Clearly, every
application of (×−tt/ff) to a symmetric one can be replaced by the (B−)

rule, hence we have to think about how to type the symmetric case for
(B−) and the asymmetric case for (×−tt), (×−ff) with the (B−aLinT) rule.

Symmetric case Normalisation inside cartesian products 〈t, s〉 is prohibited
in LFPL. Hence, in the symmetric case we can “factor out” all free variables
with the following replacement without blocking any redexes which were not
blocked before already:

73

Building an Intuition by Examples

〈s[x], t[x]〉τ×τ (λb. (b 〈λx.s[x], λx.t[x]〉) x)B(τ .

By doing this again and again until the product components have distinct
free variables or are even closed, we can replace 〈λ−→x .s[−→x], λ−→x .t[−→x]〉 with

p := λb. ((b λ−→x .s[−→x]λ−→x .t[−→x]) −→x)

using the (B−aLinT) rule. Finally, in order to make the (B−) elimination(
b pB(τ

)
type correct again, we replace it with ((−), i.e.

(
pB(τ b

)
. This

gives a derivation of a functionally equivalent term without symmetric
cartesian product eliminations via (B−).
Note that the vector −→x can only be substituted into s[−→x] or t[−→x] after

the boolean b is available and reduced. But this would only be an issue if
normalisation inside 〈·, ·〉 would be possible in LFPL.

Asymmetric case – factoring out free variables What is left are asymmetric
cartesian products p := 〈t, s〉τ×σ. A first idea – again – is to factor out
common free variables, e.g. in the following way by turning the cartesian
pair into a tensor triple:

p′ := (λ−→x .t[−→x]⊗ λ−→x .s[−→x])⊗−→x

of type ((−→γ (τ) ⊗ (−→γ (σ)) ⊗ −→γ and by replacing
(
qτ×σ tt

)
(q is not

necessarily a 〈·, ·〉 term) with
(
q′ λpλ−→x . (p λlλr. (l−→x))

)
.

The problem with this encoding though is that the type of q′ depends on
the free variables of p. In the term (q′ λpλ−→x . (p λlλr. (l−→x))) the subterm
q′ could be a bound variable. During reduction p′ could be substituted
into the position of q′. Because types are static in LFPL, the type of q′ is
the same as the one of p′. Hence, the type of q′ will depend on the free
variables of p which can be somewhere far away in the term. Therefore,
this transformation is not what we were aiming for.

Asymmetric case – canonical inhabitants Another trick is to code asymmet-
ric products σ × τ as symmetric products (σ ⊗ τ)⊗ (σ ⊗ τ). If we assume
that every type ρ is inhabited by a closed term iρ, we can code 〈s, t〉s×t as
〈s ⊗ iτ , iσ ⊗ t〉(σ⊗τ)×(σ⊗τ), with the obvious projections. Then we use the

74

3.1. Booleans and Products

encoding for the symmetric case to get rid of the cartesian product. This
does not work with non-inhabited types like ♦ though.

Asymmetric case – sum type Assume we had a sum type τ + σ in the
system LFPL with

Γ1 ` pτ+σ Γ2 ` fτ(ρ Γ3 ` gσ(ρ

Γ1,Γ2,Γ3 ` (p f g)ρ
(+−)

Then we could use an alternative rule like

Γ1 ` bB Γ2 ` pτ×σ

Γ1,Γ2 ` (b p)τ+σ
(B−sum)

which looks like a good replacement for the LFPL rules (×−tt) and (×−ff).
But in fact it is not: take the LFPL-term t := λp♦×B . (p tt)♦. With the
(B−sum) rule this t would turn into something like

λp.♦×B
(

(tt p)♦+B λx♦.x gB(♦
)♦

.

There is no closed term g of type B (♦. In other words, the sum in
(B−sum) gives us another branch in the sum elimination that we cannot cope
with in this example.

Remark 3.7. Compare the setting here with that of Section 3.1.2. There,
a cartesian product is defined for Light Affine Logic which allows shared
variables and asymmetric types. The difference is that LAL has poly-
morphic types, i.e. the type of a product is not as static as in LFPL.
Here, we cannot define a product by a function that takes a sum or a
boolean as selector for the branch because then the type will be different
depending on the choice. This seems to be the very reason why LFPL
has these extra typing rules (×−tt), (×−ff) for the two projections.

We will not continue investigating the issue here and leave it as an (vague)
open question:

Problem 3.8. Can one transform every LFPL algorithm with occurrences
of (B−), (×−tt) or (×−ff) into an equivalent one with (B−aLinT)?

75

Building an Intuition by Examples

By the explanation above the only remaining case is the occurrence of
(×−tt) or (×−ff) with asymmetric types σ × τ indeed.

3.2. Recursion Schemes

The example by Beckmann and Weiermann in 3.1.3 was very much based
on the way the calculi handle cartesian products and how those can be used
in a recursion. That example though, in fact, is not exponential per se, i.e.
there is a normalisation strategy which computes the result in polynomial
(even linear) time.
In the following, we analyse several recursive algorithms, which have an

exponential growth, i.e. the result is a list whose size is exponential in the
input length. It is clear that, in order to produce such a result, it needs
exponentially many computation steps (at least with the usual canonical
encoding and representation of numerals or lists).
Most of the examples in this section are taken from [SB01] where they

were used to motivate the choice of arrows in the types of the constants and
other restrictions in the type system of LT. But they are also well suited
to study the restrictions of other calculi.

3.2.1. Two Recursions

The first example in this row is the possibly most direct way to calculate
an exponential function, i.e. by iterating a doubling function d(n):

d(0) := 0 (3.6)

d(S(x)) := S(S(d(x))) (3.7)

e(0) := S(0) (3.8)

e(S(x)) := d(e(x)). (3.9)

3.2.1.1. LT

The calculus LT has two kinds of arrows: the normal/complete one → and
the safe/incomplete arrow(. The abstracted variables of the former are
overlined as in x. The recursion constant has the type

RRRσ,τ : L(σ)→ (σ → L(σ)→ τ (τ)→ τ (τ,

76

3.2. Recursion Schemes

with the restriction that the type τ is linear, i.e. the arrow→ is not allowed
in τ .
To order to express the doubling function d (with N := L(U) for numer-

als, U a unit type with constant 1 : U), one recursion is necessary which
forces us to use the complete arrow → for the input list (compare the first
arrow in the type of RRRσ,τ):

d := λl.
(
RRRU,L(U) l λxλl′λp. (consU 1 (consU 1 p)) nilU

)

d : L(U)→ L(U).

This is a valid LT term.
The iteration of e in another recursion gives:

e := λl.
(
RRRU,L(U) l λxλl′λp. (d p) (consU 1nilU)

)

e : L(U)→ L(U)

which is not correctly typed because d needs a complete (i.e. overlined)
argument. But p as the recursion result (compare the forth arrow in the
type of RRRσ,τ) is incomplete.

Analysis of the complexity proof A deeper look into the proof of the “RRR-
elimination” in [SB01] tells us that it would break for the following reason
if this term was allowed: during the elimination of the RRRU,L(U) in e the RRR-
constants are removed in the step terms si :=

(
λxλl′λp. (d p) ri li

)
for some

complete RRR-free terms ri and li (i.e. by applying the induction hypothesis
of the theorem to every half instantiated step). Here, it is crucial that the
sizes of ri+1 and li+1 do not depend on the previous step si or (si pi). If the
recursion argument p (or here pi+1) was complete, the size of the si could
not be polynomially bounded anymore.
On the other hand, having an incomplete arrow for the p does not allow

the recursion in d. If it was allowed, the induction hypothesis in the theorem
could not be applied, as the RRRU,L(U) of d cannot be eliminated without
giving also a substitution for (the now incomplete) p in si.

3.2.1.2. Light Affine Logic

In order to iterate the doubling function later for the definition of e, the
term of d must have a symmetric type like N (N . But in Light Affine

77

Building an Intuition by Examples

Logic this is not possible: the reason is that the Church encoding of natural
numbers in LAL,

N := ∀α.!(α(α)(§(α(α),

requires that the (abstracted) step term of the result, which is of type

!(α (α), must be used twice in the step term as in ! λz.
(
]f [!

(
]f [! z

))

(compare Equation 3.7) which is applied to the input numbers:

d := λxN .Λα.λf !(α(α).§ λy.
(](

xα ! λz.
(
]f [!

(
]f [! z

)))[
§
y

)
.

This is not type-correct for LAL because the subterm ! λz.
(
]f [!

(
]f [! z

))

cannot have two “holes”]f [! due to the (!1)-rule:

x : A ` t : B Γ ` s :!A

Γ `! x =]s[! in t :!B
(!1)

Of course, it is not too hard to rewrite the doubling algorithm by using
the usual concatenation, i.e. addition without any iteration. Then though
the input number must be duplicated (i.e. appears twice) and therefore the
type of the d function must be decorated with the right modalities in order
to allow this:

d := λx!N .§ Λα.λf !(α(α).§ λy.
(]

(]x[! αf)
[
§ (
]
(]x[! αf)

[
§ y)

)
(3.10)

d :!N (§N.

We cannot replace the outer §-box with the !-rule to make the type sym-
metric because x is non-linear which would conflict with the (!1)-rule again
(see above). The intuition is that the §-modality is used to mark exactly
those non-linearities. More precisely, it is a marking in the type that a
banged variable (the x), which was duplicated (as two occurrences of x), is
”de-banged” (as]x[!), i.e. can be used inside a §-box multiple times.

In order to implement the algorithm e, one would have to iterate d. But
the type of d is not symmetric anymore. So the exponential algorithm e is
not definable in LAL this way. Note that we cannot say much about the

78

3.2. Recursion Schemes

e(x) function in contrast to the algorithm with this kind of argument, but
the general PTime normalisation theorem by [AR02] can of course.

Remark 3.9. This example gives a hint about the role of the two modal-
ities which will be the central insight in Chapter 7: to create size-
increasing algorithms (like d) in LAL an asymmetric type is needed.
Symmetric algorithms are very similar to non-size-increasing algorithms
of LFPL.

3.2.1.3. LFPL

In Hofmann’s non-size-increasing system LFPL everything is affine (with
the exception of 〈s, t〉-subterms). Moreover, the ♦-terms cannot be dupli-
cated. Hence, the definition of d is not possible at all, as it increases the
size of the data. Therefore, the example does not apply.

3.2.2. Higher Type Result

A variation of the previous example is the following which uses a higher
type recursion to iterate the double function d:

e(0, y) := y

e(S(x), y) := e(x, d(y)),

or written with higher types:

e(0) := id

e(S(x)) := e(x) ◦ d

with the usual concatenation ◦ of functions and “id” as the identify. Clearly,
this gives an exponential function by

e′(x) := e(x, x).

3.2.2.1. LT

The argument to d must be complete/normal because of the recursion in
the definition of d (see 3.2.1). Hence, the return type of the recursion in
e must use the complete arrow, i.e. N → N . In LT only linear types τ
are allowed as result types τ of recursions RRRσ,τ though. Therefore, the
definition of e is outlawed by a type restriction on RRRσ,τ .

79

Building an Intuition by Examples

Analysis of the complexity proof Let us check where the complexity proof
in [SB01] would break if non-linear return types of recursions were allowed.
In fact, like in Section 3.2.1.1 before, the RRR-elimination lemma would be
the one which breaks, more precisely in the case of the step term:

• Assume that s : σ → L(σ) → τ (τ is the recursion step for a
recursion with complete arrow type, e.g. τ := N → N , i.e. in fact

s : σ → L(σ)→ (N → N)(N → N.

• Let s include a RRR-constant which depends on the forth argument,
which is of type N here. Because τ has a complete arrow, this argu-
ment is complete which is crucial to allow such a recursion.

• The normalisation of the partial steps si := (s ri li) will not remove
this RRR because no numeral substitution of its principal argument is
available.

• Hence, the induction step in the RRR-elimination theorem fails and the
polynomial normalisation bound breaks down.

3.2.2.2. Light Affine Logic

We take the modified d from Equation 3.10 in Section 3.2.1.2. Then we
write down the example e without thinking about the types yet:

e := λxN .Λα.
(
xβ

step︷ ︸︸ ︷
λy︸︷︷︸
e(p)

. λz. (y (d z))︸ ︷︷ ︸
e(p)◦d

id︷︸︸︷
λy.y

)
.

As described in Section 3.2.1.2, the type of d is not symmetric, but !N (
§N . Therefore, y is applied to an §-argument (d z) such that the type of y
must be β := §N (γ for some type γ.
On the other hand, d must be applied to a !-argument such that z is of

type !N and therefore λz. (y (d z)) : β =!N (γ′. This this would mean
§N (γ = β = !N (γ′, contradiction.
Hence, once again the stratification of the LAL type system makes the

iteration of d (with the chosen implementation) impossible.

80

3.2. Recursion Schemes

3.2.2.3. LFPL

Again, d cannot be defined in LFPL as it is not non-size-increasing such
that the example does not apply.

3.2.3. Non-Linear Recursion Argument

The previous example in Section 3.2.2 was the motivation in LT to forbid
the complete arrow→ in the recursion type. The question remains whether
higher type recursion that only uses the(-arrow can be allowed.
For this consider another way to create an exponential function that uses

a higher type recursion, but now with the(arrow. It uses the recursive
value twice:

e(0, y) := S(y)

e(S(x), y) := e(x, e(x, y))

or written directly with higher types:

e(0) := S

e(S(x)) := e(x) ◦ e(x).

Again clearly this growths exponentially.

3.2.3.1. LT

In the LT system this example is forbidden in an ad hoc way by enforcing
linearity for incomplete higher-type arguments. This restriction of course
rules out the definition of e above: in the clause for e(S(x)) the recursion
argument e(x) is used twice, i.e. non-linearly. Because the recursion type is
N (N , the use of e(x) must be linear by the restriction, and hence this
example is not type correct.

Analysis of the complexity proof Again, we ask where the complexity proof
breaks in [SB01] if non-linear higher type variables were allowed. This time
the RRR-elimination lemma would not break directly. Instead, the sharing
normalisation lemma does not hold anymore: in the case (λx.r s) for higher
type x, it is essential that x occurs at most once (i.e. the parse dag is h-

81

Building an Intuition by Examples

affine). Otherwise, the s node would have to be duplicated as soon as a
redex, that involves s, is fired. Naive sharing cannot cope with this case1.

Remark 3.10. In fact, LT does not enforce linearity of complete higher
type variables directly. But those terms which are shown to admit a
polynomial normalisation are those which are simple, i.e. those without
any abstraction of complete higher type variables. For simple terms
(which are h-affine) no sharing is ever needed for function type terms.

3.2.3.2. Light Affine Logic

The recursion result is not linear in the definition of e(S(x)). Hence,
contraction is needed which would require a banged iteration type, e.g.
!(N (N). Then, in order to get rid of the ! for the application of e(x),
the §-rule has to be used, probably similarly to

§ . . .]e(x)[! . . .]e(x)[!

This though would imply a recursion type with a §. Hence, we get an
asymmetric type for the step term of the iteration which is not possible.
Hence, again the stratification property of LAL outlaws the definition of e.

3.2.3.3. LFPL

As before, d cannot be defined in LFPL as it is not non-size-increasing.
Therefore, this example does not apply.

3.2.4. Iteration Functional

A generalisation of the example about higher type recursions in Section
3.2.1 is the iteration functional. It takes a number, a function and a base
value and iterates the function:

I(0, f, y) := y

I(S(x), f, y) := f(I(x, f, y))

or written in higher types:

I(0, f) := id

1It could be worthwhile to look into works about optimal reduction by Mairson et.
al.

82

3.2. Recursion Schemes

I(S(x), f) := f ◦ I(x, f).

The example in Section 3.2.2 can be written as I(x, d).

3.2.4.1. LT

I := λxL(U), f̄ .
(
RRRU,L(U)(L(U) xλz̄, l̄, p.λy.

(
f̄ (p y)

)
λy.y

)

This is a perfectly valid term if f̄ is required to be of linear type. In this
implementation though, the necessity for f̄ to have linear type does not
follow from the linear result type restriction of the recursion, but from the
incompleteness of the recursion argument p. Because p appears free in the
argument term of f̄ , it would not be type correct if f̄ expected a complete
argument, i.e. if f̄ was of non-linear type.
The completeness of f̄ comes from the fact that the step term of a recur-

sion must be complete, such that no free incomplete variables are allowed
in it (they would be duplicated during recursion otherwise).
Conversely, another equivalent implementation of the iteration functional

would be the following:

λxL(U), f̄ .
(
RRRU,L(U)(L(U) xλz̄, l̄, p.λy.

(
p
(
f̄ y
))
λy.y

)
.

But now the type of p is required to be linear (as the result type of the
recursion). Hence, y must be incomplete. Therefore, also f̄ must have an
incomplete first argument.

Remark 3.11. By this example it is not clear why the whole type of f̄
has to be linear. In fact, it is to be expected that the concept of “linear”
types can be specialised to “p-linear”, i.e. a type is p-linear if it has no
→ in positive positions.

Remark 3.12. The term I is not simple because it has complete variables
of higher type (f̄). Hence, neither the RRR-elimination nor the Sharing
Normalisation lemma can be applied to it directly. The solution to this
in [SB01] is the following: a ground type term with only ground type
free variables can be normalised using the Sharing Normalisation such
that all complete higher type variables (which bound of course due to
the restriction of the whole term) disappear. Hence, before a (closed)

83

Building an Intuition by Examples

algorithm t :
−→
N → N is applied to its inputs −→n , (t−→x) is normalised

in this way. The complexity of this step might be big, but it is only
a constant in the size of −→n . The resulting normal form nf((t−→x)) is
simple and the RRR-elimination and Sharing Normalisation lemmas are
applicable, with the substitution −→x := −→n .

3.2.4.2. LFPL

The iteration functional is a built-in constant of LFPL. Though, by the
construction of the type system, only non-size-increasing functions can be
defined, and hence iterated. Therefore, the example is less interesting
for LFPL, essentially because iteration of a polynomial non-size-increasing
function gives a polynomial non-size-increasing function.

3.2.4.3. Light Affine Logic

The iteration function is trivially given in Linear Logic as Church numer-
als are used to represent natural numbers. So, any natural number is its
own iteration functional. Similarly to LFPL though, also in LAL the ex-
ample is less interesting because only functions can be iterated which have
a symmetric type. As described in Remark 3.9 already, symmetric func-
tions in LAL are related to non-size-increasing functions in LFPL (compare
Chapter 7).

3.2.5. Iterating the Recursion Argument

The example of Section 3.2.3 can be rewritten with the iteration functional
I:

e(0) := S

e(S(x)) := I(S(S(0)), e(x)).

3.2.5.1. LT

Starting with the iteration functional from 3.2.4.1, it is obvious that the
application of the incomplete p = e(x) (i.e. the incomplete recursion argu-
ment) to the iterator (I (S (S 0))) is not allowed:

I := λx̄, f̄ .
(
RRRU,L(U) λz̄, l̄, p.λy.

(
f̄ (p y)

)
λy.y

)

e := λx̄.
(
RRRU,L(U)(L(U) x̄ λr̄, l̄, p. (I (S (S 0)) p) S

)
.

84

3.2. Recursion Schemes

For illustration we want to see what happens during normalisation of (e n)

with some numeral n if we assume that this term was allowed:

• During the RRR-elimination of the outer recursion in e, the partial step
terms si :=

(
λr̄, l̄, p. (I (S (S 0)) p) ri li

)
with complete and normal

terms ri and li are built.

• The recursions inside si are eliminated, which means in our example
that si is reduced to λp, y. (p (p y)).

• Hence, we get the same step term as in 3.2.3.1, which had led to the
conclusion that higher type incomplete terms cannot be duplicated
by using it in a non-linear fashion.

Remark 3.13. In fact, this normalisation is not exactly the one given in
[SB01], but the inner iteration (I (S (S 0)) p) would be reduced already
before the RRR-elimination is started (compare Remark 3.12), giving the
term λp, y. (p (p y)) which is not h-affine. But, we could avoid this pre-
normalisation of the inner iteration by considering

e′ := λx̄.
(
RRRU,L(U)(L(U) x̄ λr̄, l̄, p.

(
I l p

)
S
)

instead. Clearly, it is exponential as well and the pre-normalisation
cannot remove the inner recursion constant, but has to wait until the
partial step terms of the outer recursion are normalised and therefore
freed from the RRR constants.

3.2.5.2. LFPL

In LFPL the step term of the iteration must be closed. Here, in fact,
the step term seems to be closed. But this is not true because the two
S constants (which build up the numeral 2) require two terms of type ♦.
Inside an LFPL iteration though, only one ♦ is available. The second ♦-
term can only be provided by a free variable. Hence, the example is not
typable in LFPL.

3.2.5.3. Light Affine Logic

In Light Affine Logic the numeral is the iterator itself, i.e. of type ∀α.!(α(
α)(§(α(α). Hence, we get something like

e := λxN .
(
x γ λpγ .

(
2 γ′ p

)
λy.y

)

85

Building an Intuition by Examples

plus some modalities in the types and the corresponding boxes.
In the application to the numerals 2 the argument p must be banged,

which means γ =!(γ′ (γ′) for some γ′. But the result type of the itera-
tions (the inner one of the 2 numeral and the outer one of x) will get the
paragraph at the outside their types. Hence, the type γ must be !(γ′(γ′)
and §(γ′(γ′) at the same time. In other words, the stratification of LAL
makes this term impossible, once again.

3.3. Non-Artificial Algorithms

In the previous sections we studied recursion schemes which lead to expo-
nential time and hence had to be outlawed by the type system. In a sense,
those are easy tasks for the calculi we are looking at. The real challenge,
where the “competing” systems differ, are polynomial time algorithms which
should be expressible in a natural way.
For practical application it is not enough to know that there is some algo-

rithm which computes a given function. E.g., completeness proofs usually
show that some kind of model of computation for PTime can be simulated
in the system. Of course, this gives a theoretical implementation for every
PTime algorithm, but it may be far from the intended one because the
simulation usually destroys the original recursive structure.
For instance a PTime Turing Machine simulation mainly consists of an

outer loop, executing polynomially many steps of the machine, and another
inner loop to update the tape. This structure is clearly different from the
recursive structure of many algorithms, but still, every algorithm is mapped
to this simple scheme.

3.3.1. Insertion Sort

A common example for PTime type systems is the Insertion Sort algorithm.
It is probably so common because it is one of the few which is primitive
recursive in its natural formulation. Therefore, it looks like fitting directly
into the available recursion schemes. Though, this hope is far too optimistic
as we will see.
Here is the algorithm implemented in System T, assuming that the (com-

putable) predicate ≤: N → N → B is given:

insert := λxN , lL(N).
((
RRRN,N→L(N) l step base

)
x
)

86

3.3. Non-Artificial Algorithms

step := λyN , l′L(N), pN→L(N), zN .
(
CaseL(N) (≤ y z) then else

)

then := (consN y (p z))

else := (consN z (p y)) or alternatively
(
consN z l′

)

base := λy. (consN y nilN)

sort := λlL(N).
(
RRRN,L(N) l λx

N , l′L(N), pL(N). (insertx p) nilN
)
.

The crucial property of this algorithm is that there are two recursions2

involved: the outer one in the “sort”-term and another one in the “insert”-
term. The inner one does recursion over the list which is the result of the
outer recursion, i.e. the recursive argument p in the “sort” line.
Clearly, the complexity is quadratic and polynomial therefore, without

taking the comparison ≤ into account which might differ depending on
unary or binary numbers.
Another important observation about Insertion Sort is that it is non-size-

increasing. Obviously, the “insert”-term just inserts the number x into the
list l and therefore does not increase the size of the data if one compares
the input (the list of length n plus another number) and the output (a list
of length n + 1). The “sort”-term just iterates the “insert”-term such that
it does not increase the size either.

3.3.1.1. System F

The translation of the above algorithm into System F is straight forward
(again we assume the existence of ≤: N → N → B):

L(τ) := ∀α.(τ → α→ α)→ α→ α

N := ∀α.(α→ α)→ α→ α

B := ∀α.α→ α→ α

insert := λxN , lL(N).

L(N)︷ ︸︸ ︷
Λα.λfN→α→α, aα. ((l N (α step base) x)

step := λyN , pN→L(N), zN .
(

(≤ y z) α then else
)

then := (f y (p z))

else := (f z (p y))

2In fact, the recursions do not use the second argument and are therefore only itera-
tions.

87

Building an Intuition by Examples

base := λx. (f x a)

sort := λlL(N).
(
l L(N)λxN , pL(N). (insertx p) Λα.λf, a.a︸ ︷︷ ︸

nil

)
.

The Church encoding forces us to use iteration instead of recursion. Hence,
the alternative implementation of the “else”-case from above is not possible
although it might speed up the algorithm.

3.3.1.2. Linear System F

On the way to the version for Light Affine Logic, we first try to reformulate
the algorithm in Linear System F. This seems to be possible without ma-
jor changes because the algorithm is non-size-increasing and nearly linear
already, with two exceptions:

• The ≤: N → N → B “consumes” the two numbers. After the com-
parison they are gone and cannot be used for the further computation
(here for the return value). Without giving a detailed implementation
here, it is possible to formulate a linearly typed comparison predicate
≤′: N (N ((N ⊗N ⊗ B) which compares the two numbers and
then returns the comparison result and the two numbers. This is es-
sential of course in order to give a linear implementation of Insertion
Sort.

• The second exception are the Church encodings of lists and natural
numbers. While the latter is only of interest in the implementation of
≤′, the former will become clear in the following attempt to implement
Insertion Sort in Linear System F:

L(τ) := ∀α.(τ (α(α)(α(α

N := ∀α.(α(α)(α(α

B := ∀α.α(α(α

insert := λxN , lL(N).

L(N)︷ ︸︸ ︷
Λα.λfN(α(α, aα. ((l N (α step base) x)

step := λyN , pN(L(N), zN .
((
≤′ y z

)
αλy, z, b.ifthenelse

)

ifthenelse := ((b (N(α)((N(α(α)(N(N(α then else) p f y z)

then := λp, f, y, z. (f y (p z))

88

3.3. Non-Artificial Algorithms

else := λp, f, y, z. (f z (p y))

base := λx. (f x a)

sort := λlL(N).
(
l L(N)λxN , pL(N). (insertx p) Λα.λf, a.a︸ ︷︷ ︸

nil

)
.

Clearly, with the – a bit complicated – “ifthenelse”-term we manage to
make the original algorithm linear which looks completely fine. But
the problem lays somewhere else: which lists can be built in Linear
System F using the Church encoding? Already the list of length 2

has to apply the step term twice which contradicts the linearity and
is not typable therefore. In other words, while the upper algorithm is
type correct, the involved (Church like) data types are not what we
had in mind for lists.

Remark 3.14. In the implementation above, in System F and also in
Linear System F, we have moved the Λα.λfλa . . . outside the step term
of the iteration (take a look at the “insert”-line above). In this context.
this is a completely arbitrary choice. It would be equally possible to do
this abstraction (and therefore the elimination as well) in every step. In
fact, this would fit much better to the System T formulation of Insertion
Sort. In the following section though, the modalities (i.e. the boxes) will
enforce the formulation from above where the abstractions are “pulled
out” from the inner iteration.

3.3.1.3. Light Affine Logic

The idea of Linear Logic is to add modalities to the types of Linear System
F to make (restricted) duplication possible in a controlled way. E.g., in
Light Affine Logic we have the stratification property to keep complexity
under control. It gives a kind of symmetry of the number of modalities in
the types, e.g. that there is no general function !τ (τ , but only !τ (§τ .
I.e., if we eliminate the !-modality, we have to add the paragraph § to the
result type.
Again, we assume having an implementation of≤′: N (N (N⊗N⊗B

with

N := ∀α.!(α(α)(§(α(α)

L(τ) := ∀α.!(τ (α(α)(§(α(α)

B := ∀α.α(α(α.

89

Building an Intuition by Examples

Before giving the term of the “insert”-term, we look at the simpler, but
in fact very similar algorithm of iterating the identity:

Example 3.15 (Identity iteration, pull-out trick). In System T the
iteration of the identity step term would look like this:

IdIt := λlL(N).
(
RRRN,L(N) l λx, l

′, p. (consN x p) nilN
)
.

In System F we would get something similar, but we now have two
choices to place the Church abstraction Λαλfλy:

IdIt := λlL(N).
(
l L(N)

step︷ ︸︸ ︷
λxλp.Λαλfλy. (f x (pα f y))

base︷ ︸︸ ︷
Λαλfλx.x

)

IdIt′ := λlL(N).Λαλfλy.
(
l L(N) λxλp. (f x p)︸ ︷︷ ︸

step

y︸︷︷︸
base

)
.

The first version is the direct translation of the System T term into F.
The second though needs some deeper insight into the structure of the
algorithm to see that Λαλfλy can be placed in front of the iteration.
If we now try to add the boxes of LAL to both terms, we get the

following:

IdIt := λlL(N).
(
l L(N) ! λxλp.Λαλf§ λy.

(
f x
]
(pα f § y)

[
§

)
§ Λαλf.§ λx.x

)

IdIt′ := λlL(N).Λαλf.§ λy.
(](

l L(N) ! λxλp.(]f [! x p)
)[

§
y
)
.

The crucial difference of these two variations is the type:

IdIt : L(N)(§L(N)

IdIt′ : L(N)(L(N).

Of course, the second type is much better in the sense that the first
can be defined by the second, but not the other way round. The used
method, i.e. to pull out the abstractions in front of the iteration and the
§-box, we will call the pull-out trick in the following.

With the pull-out trick in mind, we can now formulate the “insert”-term.
In order to iterate this later, we have to find a formulation which has a

90

3.3. Non-Artificial Algorithms

symmetric type, i.e. like

insert : §N (L(N)(L(N).

Note that the first parameter has to be on the same level (in the sense of
Definition 2.39) as the numbers inside the list. This is necessary because the
comparison ≤′ takes two numbers on the same level as arguments. Hence,
the first parameter of “insert” has to be of type §N and not just N .
The result type is a list. Hence, the question is where to put the §-

box (which comes from the § in L(N)). Here, we follow the Example 3.15
from above and apply the pull-out trick to the “insert” formulation: the
abstractions of α and of the step function of the result are placed outside
the box. Like in Example 3.15 we could not get the desired symmetric type
otherwise (but something like §N (L(N) (§L(N); compare Remark
3.14). These considerations finally lead to the following implementation of
“insert”:

insert := λx§N, lL(N).

L(N)︷ ︸︸ ︷
Λα.λf !(N(α(α).§ λaα.

(
(](l N(α step)[§ base)]x[§

)

step :=! λyN, pN(α, zN.
(

(≤′ y z)αλy, z, b.ifthenelse
)

ifthenelse :=
(
(b (N(α)((N(α(α)(N(N(α then else) p]f [! y z

)

then := λp, f ′, y, z.
(
f ′ y (p z)

)

else := λp, f ′, y, z.
(
f ′ z (p y)

)

base := λx.
(
]f [! x a

)
.

First, we try to understand how the instances of the step function f of
the result are used: it appears in the step term of the iteration exactly
once (of course in the “de-banged” version]f [!) as this is required by the
(!1)-rule. Another copy is used in the base case. Here though, the (§)-rule
is used to type the term such that we could even use more than one copy
there.
More interesting is the first occurrence that should be analysed a bit

further:
• The step f of the result is used once in the iteration step. There is
no other way to use it twice or more times. The (!0/1)-rules do not
allow this. But as the step’s type in L(N) is !(N (α(α) there is

91

Building an Intuition by Examples

no other choice than using the (!0/1)-rules to type it because we have
to get rid of the ! to apply the step f in the step of the iteration.

• If f had to be used more than once (e.g. like in a doubling function,
compare Section 3.2.1.2), we could not use the pull-out trick to move
the abstractions outside the box. If we kept the abstractions inside
the box though, we could use arbitrary many instances of f because
we could use the (§)-rule to “de-bang” f . Of course, we would get an
asymmetric type at the end (compare with Example 3.15).

• The f corresponds to the use of the consN -constant in the System T
formulation. Hence, being forced to use at most one instance of f is
equivalent to use only one consN in the step term. This is the central
idea for the LLT! calculus in Chapter 6. Moreover, this reminds a lot
of the restriction in LFPL that we only have one instance of the ♦-
term in the step of an LFPL-iteration. This similarity will be the
topic of Chapter 7: symmetric LAL-function are non-size-increasing
(also compare Remark 3.9).

Because we are able to formulate “insert” with the symmetric type, it is
straightforward to iterate it in order to get the full Insertion Sort algorithm
(with a little exception as we will see below):

sort′ := λlL(N).

(
l L(N) ! λxNλpL(N) (insertx p) Λαλf§ λx.x

)
.

This term is not correctly typed yet because the x is of the wrong level. In
order to apply it to “insert” term, we have to lift it, i.e. apply a function
↑§NN : N (§N :

sort : L(N)(§L(N)

sort := λlL(N).
(
l L(N) ! λxNλpL(N)

(
insert (↑§NN x) p

)
Λαλf.§ λx.x

)

↑§NN := λxN .§
(](
xN ! λpN .Λα.λf.§ λa.(]f [! (](pα f)[§ a))

)
[

§

Λαλf.§ λx.x
)
.

The type of “sort” is not symmetric anymore such that it is not possible
to iterate “sort”. So, why is that? Obviously, “sort“ is non-size-increasing.
Can we apply the pull-out trick here again to get symmetric version of the
Insertion Sort algorithm?

92

3.3. Non-Artificial Algorithms

• A first theoretical consideration about the complexity: assume sort0:=sort
was of the symmetric type L(N) (L(N) by applying the pull-out
trick. Then, we could iterate sort0 to get sort1. Its complexity would
be at least O(n3) (n times Insertion Sort, which is quadratic). If we
could apply the pull-out trick again to get a symmetric sort1, we could
iterate it again to get sort2 with complexity of at least O(n4), and so
on. Hence, one could create a polynomial complexity hierarchy with
this construction. But it is known that the degree of the complex-
ity polynomial for fixed depth LAL proof nets is constant. Here, the
proof net depth would be fixed indeed. In other words, this whole
construction cannot work as described.

• On the syntactical level: to apply the pull-out trick we first have
to identify the instances of the step f of the result Λαλf.§ λa... .
Here, the result of the “insert”-iteration is also the result of the “sort”-
iteration. In other words, the f of the “insert”-term must be “pulled
out” somehow to apply the trick. But in the “insert”-term it must be
“available” as a banged variable because it is used more than once (in
each step of the iteration). By “pulling it out” in front of the “sort”-
iteration though, the f would be singly banged as in !(α(α), which
would allow only exactly one copy]f [! in the “sort”-iteration step
which has no ! anymore in its type. In fact, in order to get the f often
enough, in the inner iteration step a type like !!(α (α) would be
needed: one ! for enough copies of]f [! in the “sort”-step, and one ! for
enough copies of

]
]f [!
[
!
in the “insert“-step. For this though one would

need a different type for the result of the whole sorting algorithm,
something like L(N)′ := ∀α.!!(N (α (α) (§§(α (α), a
completely different data type of course.

Hence, it seems that we do not have a chance to get the symmetric variant of
the Insertion Sort. This again is due to the stratification property of LAL.
We will see further below the same effect in the definition of polynomials.

3.3.1.4. LT

In the Bellantoni-Cook-style [Bel92] predicative recursion of the system LT
the recursion argument is incomplete. Hence, another (nested) recursion
over the recursion argument is not possible.
The Insertion Sort algorithm needs exactly this though, i.e. in the step

of the “sort”-recursion an inner recursion is executed to insert the element

93

Building an Intuition by Examples

at the right position. The result is given to the next step of the “sort”-
recursion. But there it is not complete to drive the insertion.
In fact, this observation was, originally, one of the motivations to invent

LFPL [Hof99b].

3.3.1.5. LFPL

Hofmann’s LFPL is exactly built after the recursion scheme of Insertion
Sort. Hence, it is not surprising that we can just take the System T algo-
rithm and translate into the LFPL syntax (with N := L(U)):

insert := λxN , e♦, lL(N). ((l step base) x)

step := λyN , d♦, pN→L(N), zN .
(

(≤ y z) λbB , yN , zN . (b 〈then, else〉)
)

then := (consN y d (p z))

else := (consN z d (p y))

base := λy. (consN y enilN)

sort := λlL(N). (l insertnilN) .

Of course, we also need the special comparison predicate ≤: N (N (
(B ⊗N ⊗N) in this linear setting. It gives back the original values of the
two inputs in order to reuse them to compute the selected branch.

Remark 3.16. In contrast to the considerations for LAL about the con-
struction of the polynomial hierarchy by iterating “sort” we will not get
a contradiction here. The “sort”-term here is symmetric (there are no
modalities in LFPL at all) and iterating it is possible without restriction.
The complexity proof by [AS00] even gives an explicit way to calculate
the degree of the complexity polynomial. Essentially, the nesting of the
closed step terms of the LFPL iteration determines the degree. For In-
sertion Sort we have two (or three with the iteration inside ≤) nested
iterations. Hence, the complexity is O(n2) (or O(n3) with ≤).

3.3.2. Polynomials

Most completeness proofs for polynomial time systems are based on a sim-
ulation of polynomial time Turing Machines, i.e. the completeness proofs
give a mapping of a Turing Machine program to a simulation of it computed

94

3.3. Non-Artificial Algorithms

in polynomial time on the considered computation model. One basic ingre-
dient for these completeness results is a way to make the step function of a
Turing Machine being executed polynomially often. For that polynomials
on natural numbers, lists or whatever data structure is involved, are to be
defined using

• addition (i.e. an algorithm which creates a data structure of the size
equal to the sum of the inputs)

• and multiplication (i.e. an algorithm which creates a data structure
of the size equal to the product of the inputs)

both with unary numbers N := L(U)3.
For System T this gives:

+ := λl1, l2.
(
RRRU,L(U) l1 λx, r, p. (consU x p) l2

)

∗ := λl1, l2.
(
RRRU,L(U) l1 λx, r, p. (+ l2 p) nilU

)
.

3.3.2.1. LT

The System T terms from above translate directly into LT:

+ := λl̄1, l2.
(
RRRU,L(U) l̄1 λx, r, p. (consU x p) l2

)

∗ := λl̄1, l̄2.
(
RRRU,L(U) l̄1 λx̄, r, p.

(
+ l̄2 p

)
nilU

)
.

Addition makes use of (or in other words: consumes) one complete ar-
gument. For multiplication a second complete one is needed to “drive” the
outer recursion.
Similarly, in order to increase the degree of the calculated polynomial

by one, another complete argument is needed. Because in LT there is no
restriction on the contraction of ground types, all those complete inputs of
polynomial can be contracted freely to give enough copies of the input to
drive all recursions. I.e., a value like nk for fixed k can be computed by
taking k copies of the input n and applying ∗.

3The data type does not really matter here. The size of the data structures as the
number of constructors is important at this point. For simplicity usually unary
numbers are used.

95

Building an Intuition by Examples

3.3.2.2. LFPL

Addition is non-size-increasing and its implementation in LFPL is straight-
forward:

+ := λl
L(U)
1 , l

L(U)
2 . (l1 consU l2) .

Multiplication, as a size-increasing algorithm, is not definable in LFPL. If
one took the usual System T multiplication to implement it in LFPL, it
cannot be typed because the step term is not closed (compare above in the
LT case).

3.3.2.3. Light Affine Logic

Addition is simple concatenation in LAL which is possible even without
iteration, and with a symmetric type N (N (N :

+ := λl1, l2.Λα.λf.§ λx.
(

](l1 αf)[§

(
](l2 αf)[§ x

)) N(N(N

.

The impredicative encoding “abstracts out” the base case. Hence, it is
enough to plug the second number into the base case of the first iteration
functional (i.e. the first Church number). In other words, concatenation of
data structures is a constant time operation in this system.
In contrast, the multiplication requires iteration. In every step addition

is applied with l2 as the argument. In order to make this possible, l2 must
have a banged type !N . This, though, also forces us to lift the result type
to the next level via §N :

∗ := λl1, l2.
(
l1 N !

(
+]l2[!

)
§ 0

)N(!N(§N
.

Can we do any better? Is there an implementation of type N (N (
N for multiplication as well? This can be answered via some complexity
considerations: If we had ∗ : N (N (N , we could formulate:

t := λl!N .§
(
∗]l[!

(
∗]l[! . . .

(
∗]l[!]l[!

)))

with k copies of]l[!. Obviously,
(
t ! l

)
will compute

∣∣l
∣∣k, and the maximal

level of
(
t ! l

)
is independent of k. Hence, we can increase k freely and

compute any polynomial
∣∣l
∣∣k. By the complexity theorem of e.g. Asperti

96

3.4. Conclusion and Outlook

and Roversi[AR00], it is known that the maximal degree of the complexity
polynomial only depends on the maximal level appearing in the term. This
contradicts this situation were we can set k freely.

3.4. Conclusion and Outlook

In this chapter we have discussed a collection of algorithms:

• some which require a certain normalisation strategy to be efficient
(Section 3.1),

• some which are exponential (or worse) per se (Section 3.2),

• some which stress the intentional expressivity of the type system (Sec-
tion 3.3).

In the first case, we have analysed how the considered calculi enforce this
strategy while reducing a term.
In the second case, the implementation cannot be type correct, and hence,

the type systems must outlaw the algorithm by some structural restriction
on the allowed recursion schema. Furthermore, we have traced back the
exponential behaviour of the normalisation if such an implementation was
typable in a system or we pointed out where the complexity proofs of the
normalisation would break in this case.
In the third case, we have identified several difficulties to express algo-

rithms in their natural formulation and structure:

• Strict linearity in a type system makes the usual formulation of “if-
then-else” constructions impossible if the predicate and the branches
share free variables (compare Insertion Sort in Section 3.3.1.3 and
3.3.1.5). This means that predicates have to be reformulated in a
way that they “give back” the original values in order to pass these to
the selected branch. In Chapter 4 the extension δLFPL of LFPL is
introduced and shown to be sound for polynomial time, which solves
this very problem by allowing certain non-linearities.

• An essential technique in Light Affine Logic is the pull-out trick. It
is often necessary to type an algorithm symmetrically, i.e. in such
a way that it can be iterated (compare Example 3.15). Chapter 6
will introduce a complete and correct System T variant LLT! which

97

Building an Intuition by Examples

integrates this trick seamlessly, i.e. without the need to explicitly pull-
out the abstractions.

• The pull-out trick is not always applicable (compare Insertion Sort in
LAL), even though the algorithm is non-size-increasing. Chapter 7
will give a solution to this problem by introducing a calculus LLFPL!

which has light iteration and impredicative iteration (like in LFPL)
in the same system.

• Hofmann’s LFPL does – by design – only support non-size-increasing
algorithms. Those can be expressed very elegantly in many cases. But
even simple multiplication increases the size and is therefore outside
the expressivity of LFPL. In this sense LLFPL! in Chapter 7 can also
be considered as an extension of LFPL to support size-increases in a
controlled way (using levels and stratification).

98

4
Relaxing Linearity

A central concept of this thesis is linearity, i.e. the occurrence of a bound
variable in a term at most once. The reason that this can help to control
complexity is that the substituent does not have to be duplicated during a
beta reduction. In Hofmann’s LFPL system this leads to the invariant of
the system that the number of diamonds does not increase during normal-
isation.
Linearity though is a very restrictive property of a program. Many algo-

rithms, although they make essentially linear usage of every bound variable
if you consider the recursion schemes, use some variables in a non-linear way
which does not harm the complexity. This chapter studies an extension of
Hofmann’s LFPL that allows certain non-linearities in terms. The normal-
isation proof of [AS00] is extended in order to also cover this extension.
Moreover, the technical tools needed for this allow us to improve the origi-
nal complexity theorem in such a way that the normalisation order is less
restrictive. This leads to a better understanding of LFPL’s normalisation
in general.

Structure of this chapter After the motivation of extensions to Hofmann’s
LFPL in Section 4.1, we introduce the extended calculus δLFPL formally
by giving the types, the terms and the typing rules. In Section 4.3 the
normalisation of δLFPL is defined. Section 4.4 is the core of this chapter. It
consists of the introduction of the variable interaction concept in Subsection

99

Relaxing Linearity

4.4.1 and the definition of the list length measure in Subsection 4.4.2. The
latter is the basis of the complexity analysis of the normalisation in Section
4.5. The chapter ends in Section 4.6 with a conclusion by discussing the
results and their limitations, and it gives an outlook of possible further
work.

4.1. Motivation

Consider the following algorithm, written in System T with the predefined
function ≤: L(B)→ L(B)→ B to compare two numbers:

insert : L(B)→ L(L(B))→ L(L(B))

insert := λx, l.
(
(RRRL(B),L(B)→L(L(B)) l stepλz.z)x

)

step := λy, l, p.λz.
(
CaseL(L(B)) (≤ z y) (consL(B) z (p y)) (consL(B) y (p z))

)
.

The algorithms inserts the number x into the list l. This is done by iterating
through the list in order to find the first position where the element y
in the list is bigger than z. We see that the linearity restriction for x
forces us to change the result type of the recursion, e.g. into a function
L(B)→ L(L(B)). Otherwise, x would have to be free in every step term.
Of course, even this formulation of the algorithm is not linear yet. First,

the two branches of the Case share the variables z, p, y. Though, the
calculus LFPL has a construct 〈s, t〉 for that. Hence, this can easily be
made linear in LFPL.
The bigger problem is the occurrence of the z and the y in the boolean

argument to Case and in the branches of Case. LFPL does not provide
any way to type that. The usual solution in [Hof99a, AS00] is to postulate
that ≤ is of type L(B) → L(B) → L(B) ⊗ L(B) ⊗ B, i.e. it “gives back”
the original numbers (compare Section 3.3.1.2). This way one can use the
left and middle component of the result of (≤ z y) in the branches of the
Case.
This kind of program transformations complicates the program. Chang-

ing the definition of ≤ into the second variant is not trivial either, and one
might wonder whether this is needed at all.
The “insert” algorithm, that uses z and y twice, looks completely harmless

because the result of the comparison (≤ z y) is just a boolean, i.e. the two
numbers are thrown away during the computation. Hence, from the point of

100

4.2. The Extended Calculus δLFPL

view of non-size-increasing computation, this non-linearity does not harm.
The questions we will answer in the following are:

• How can we extend LFPL with harmless non-linearities?

• How restricted does the normalisation order have to be to stay in
polynomial time?

This chapter answers these questions by introducing a variant of LFPL
with a duplication operator, which is then studied in detail. Under certain
restrictions of this new operator (compare Assumptions 4.22 and 4.49), the
calculus will be shown to be sound for polynomial time.

4.2. The Extended Calculus δLFPL

Definition 4.1 (Types). The set TyδLFPL of linear types is defined induc-
tively by:

σ, τ ::= ♦ | B | σ(τ | σ ⊗ τ | σ × τ | L(σ).

Definition 4.2 (Terms and Constants). Let V be a countably infinite set
of variable names. The set TmδLFPL of terms is inductively defined by

r, s, t ::= xτ | c | λxτ .t | 〈t, s〉 | (t s) | δt

with c ∈ CnstδLFPL, x ∈ V and τ ∈ TyδLFPL. Terms which are equal
up to the naming of bound variables are identified. Free and bound vari-
ables are defined as in Definition 2.17 for LFPL, with the additional clause
FV(δt) := FV(t), but by collecting the free variables as located subterms
(see Definition 2.6).
The set of variable subterms x E t with x 6∈ FV(t) (i.e. bound variables)

is denoted by BV(t).
Constants are as in Definition 2.17 for LFPL, i.e. CnstδLFPL = CnstLFPL.

The subterm relationCδLFPL is defined asCLFPL with the additional clause
t CδLFPL δt.

101

Relaxing Linearity

Definition 4.3 (Typing). Contexts are defined as in Definition 2.4 as finite
mappings from variable names V to types TyδLFPL.
The relation between contexts Γ and Λ, a untyped term t ∈ TmδLFPL and

a type τ ∈ TyδLFPL, denoted Γ; Λ ` tτ , is inductively defined as follows:

Γ, xτ ; Λ ` xτ
(Var)

Γ; Λ, xτ ` xτ
(Varl)

c constand of type τ
Γ,Λ ` cτ

(Const)

Γ; Λ, xσ ` tτ

Γ; Λ ` (λxσ.t)σ(τ ((+)
Γ; Λ1 ` tσ(τ Γ; Λ2 ` sσ

Γ; Λ1,Λ2 ` (t s)τ
((−)

Γ; Λ ` sσ Γ; Λ ` tτ

Γ; Λ ` 〈s, t〉σ×τ
(×+)

Γ; Λ ` tσ×τ

Γ; Λ ` (t tt)σ
(×−0)

Γ; Λ ` tσ×τ

Γ; Λ ` (tff)τ
(×−1)

Γ; Λ1 ` tB Γ; Λ2 ` 〈s, r〉τ×τ

Γ; Λ1,Λ2 ` (t 〈s, r〉)τ
(B−)

Γ; Λ ` tL(τ) ∅; ∅ ` h♦(τ(σ(σ

Γ; Λ ` (t h)σ(σ (L(τ)−)

Γ; Λ1 ` tρ⊗τ Γ; Λ2 ` sρ(τ(σ

Γ; Λ1,Λ2 ` (t s)σ
(⊗−)

Γ; Λ ` fσ(τ

Γ; Λ ` δfσ(τ⊗σ (dup−)

with Γ1,Γ2 meaning the set union, such that Γ1 and Γ2 agree on the as-
signed types on the intersection of their domains. For Γ; Λ the contexts Γ

and Λ must have disjoint domains.

The left context is the non-linear one, i.e. variables in (t s) on both sides
can overlap if they are typed via the left context. The right context is

102

4.2. The Extended Calculus δLFPL

the linear part which corresponds to the contexts in the original LFPL in
Definition 2.18.

The non-linear variables cannot be bound by a lambda abstraction. Hence,
those variables are always free. In other words, a closed term (with minimal
contexts) has no variables in the left context.

Remark 4.4. Compare the context definition with that of System T (Def-
inition 2.4) and LFPL (Definition 2.18). In the setting of this chapter,
we split the environment into to two contexts. Both are represented as
finite maps, not multisets as for LFPL. Basically, multiple occurrences
of variables in a multiset LFPL context can be translated by putting
the variable once into the left context of δLFPL. Therefore, we do not
need to use multisets here.
On the other hand, we cannot even use multisets for δLFPL because

this would break subject reduction in the case of the reduction rule for
Γ; ∅ ` (δf s) which duplicates s. With the left context Γ being a set we
do not have to take care to have enough “copies” of x ∈ FV(s) in Γ.

The typing of the δf term construction expresses what was suggested in
the motivation in Section 4.1: a term of type σ should be duplicated, one
copy applied to the function fσ(τ and one copy given back as the right
side of the pair of type τ ⊗ σ.
The typing rule (dup−), as given above, is not complete yet. We will

discuss necessary side-conditions later in this chapter before proving the
complexity theorem. Just to give a hint: the type τ cannot be arbitrary
because e.g. by choosing τ = σ = ♦, one could duplicate the diamond
easily. This cannot be allowed of course because then non-polynomial time
algorithms become definable.

By the shape of (Var) and (Varl), it is clear that we have full weakening
in the sense of the following lemma:

Lemma 4.5 (Weakening). If Γ; Λ ` tτ , then also Γ′; Λ′ ` tτ holds for finite
contexts Γ′ ⊇ Γ and Λ′ ⊇ Λ.

Proof. Easy induction over the typing derivation.

103

Relaxing Linearity

Definition 4.6 (linear, almost-closed). A variable subterm x E t is called
linear in t if x is not free in t or x is typed in Γ; Λ ` tτ via Λ.
A term t is called linear if all variables x ∈ FV(t) are linear in t.
A term t is called almost-closed if all free variables in t are of type ♦.
A subterm s E t is called bound in t if s has free variables which are bound
in t.

In other words, a variable x is linear in t if it does not occur at all in t or,
if it does, there is a typing derivation, such that x is in the right context,
the linear one.
A linear term has only linear variables, i.e. the term can be typed with

an empty left context.
In order to allow case distinctions in proofs later on, we state the following

easy lemma:

Lemma 4.7. For every variable x exactly one of the following cases holds:

1. xE t and x is not free in t,

2. xE t and x is free in t,

3. or x 6Et.

Proof. By definition of free and bound variables.

Lemma 4.8. For every typed λxσ.t the variable x is linear in t.

Proof. If λxσ.t is typed, by the rule ((+) there is a context Γ; Λ with
Γ; Λ, xσ ` tτ . Hence, by definition x is linear in t.

Lemma 4.9 (Linearity). Assume Γ; Λ ` (t1 t2)τ . Then there are types τ1
and τ2 and disjoint contexts Λ1,Λ2 with Λ1 ∪Λ2 = Λ, such that Γ; Λ1 ` tτ11

and Γ; Λ2 ` tτ22 . If τ1 is a list type L(τ ′1) then t2 is closed.

Proof. By the shape of the typing rules, the last rule of the typing derivation
of Γ; Λ ` (t1 t2)τ must be one of ((−), (×−0), (×−1), (B−), (⊗−) or (L(τ)−).
In the last case t2 and with the weakening Lemma 4.5 we get Γ; Λ2 ` tτ22 ,

104

4.3. Normalisation

and similarly for (×−0) and (×−1). For the other cases we get Λ1 and Λ2

directly from the premises of the typing rules.

Having two contexts implies the question which one is stronger in the
sense in which direction we can move type assignments between them. The
intuition behind the left non-linear and the right linear contexts suggests
that variables can be moved freely from right to left (while adapting the
typing derivation of course), and formally this is also the case:

Lemma 4.10. Let be Γ; Λ ` tτ , then also Γ,Λ; ∅ ` tτ holds.

Proof. We show that Γ,Λ1; Λ2 ` tτ follows from Γ; Λ1,Λ2 ` tτ for all dis-
joint Γ,Λ1,Λ2 which implies the claim of the lemma.
Induction on the typing of t and in each step case distinction on the

shape of t:
Case x, c: trivial by (V ar), (V arl) and (Const).
Case 〈r, s〉: Follows from (×+) and the IH on r and s.
Case λxσ.rτ : It follows from ((+) that Γ; Λ1,Λ2, x

σ ` r and by IH we
get Γ,Λ1; Λ2, x

σ ` rτ which implies Γ,Λ1; Λ2 ` λxσ.rτ by ((+).
Case (s r):
Subcase (rσ(τ sσ)

τ : Typed by ((−). By IH we get Γ,Λ1; Λ12 ` rσ(τ and
Γ,Λ2; Λ22 ` sσ and by applying ((−) again the claimed Γ,Λ1,Λ2; Λ12,Λ22 `
tτ .
Subcase

(
rσ×τ tt

)σ: Typed by (×−1), trivial with IH.
Subcase

(
rσ×τ ff

)τ : Typed by (×−2), trivial with IH.
Subcase (v 〈r, s〉)τ : Typed by (B−). By IH Γ,Λ1; Λ12 ` vB and Γ,Λ2; Λ22 `
〈r, s〉τ×τ . Applying (B−) again yields Γ,Λ1,Λ2; Λ12,Λ22 ` (v 〈r, s〉)τ .
Subcase (r λxτ , yρ.s)σ: Typed by (⊗−). Analogous to the first subcase.

Subcase
(
rL(τ) h

)σ(σ

: Typed by (L(τ)−). Trivial using IH for r.

Case δfσ(τ⊗σ: Typed by (dup−). Trivial using IH for f .

4.3. Normalisation

105

Relaxing Linearity

Definition 4.11 (Conversion and Reduction). The conversion relation 7−→
is defined by:

(λxτ .t s) 7−→ t[x := s]

(〈s, t〉 tt) 7−→ s

(〈s, t〉ff) 7−→ t

(tt 〈s, t〉) 7−→ s

(ff 〈s, t〉) 7−→ t

((⊗σ,τ s t) r) 7−→ (r s t)

(nilτ h g) 7−→ g

((consτ d v x) h g) 7−→ (h d v (xh g))

(δf s) 7−→ (⊗σ,τ (f s) s) if s is normal.

The reduction relation t −→ t′ is inductively defined by:

t 7−→ t′

t −→ t′
(conv)

t −→ t′

(t s) −→ (t′ s)
(l)

s −→ s′

(t s) −→ (t s′)
(r)
.

Note that by this definition reduction is not possible under λ-abstraction
(the λ-restriction) or inside 〈s, t〉.

Remark 4.12. The normalisation is mostly the standard LFPL reduc-
tion, given e.g. by Aehlig and Schwichtenberg [AS00], but with one im-
portant difference which makes it far more general: the conversion of
the list step does not depend anymore on a full normalised list on the
left of the redex. In [AS00] this term had to be normalised until at least
the length of the resulting list is known precisely. The reason for this
was the simple measure used to bound the number of times the step
term h had to be duplicated. Here, we will use another, more global
measure which does not need this special normalisation strategy.

Remark 4.13. We need to use the sharing technique as described in Re-
mark 2.20 for pure LFPL. Otherwise, the beta-reduction would poten-
tially double the term size. But due to forbidden reduction inside carte-

106

4.3. Normalisation

sian pairs, it is easy to apply sharing of subterms which the branches of
cartesian pairs have in common.

Lemma 4.14 (Substitution). If Γ; Λ, xσ ` tτ and Γ; ∅ ` sσ, then Γ; Λ `
t[x := s]τ .

Proof. Induction on t:
Case t = x or t = c: Trivial, with weakening Lemma 4.5.
Case t = (t1 t2): By Lemma 4.9 either t[x := s] = (t1[x := s] t2) or

t[x := s] = (t1 t2[x := s]). Apply the IH to the substitution subterm.
Case t = λyν .r: Then t is typed with ((+) s.t. Γ\y; (Λ, xσ)\y, yν ` rρ

with τ = ν(ρ.
Subcase x = y: This implies Γ; Λ, yν ` rρ due to ((+), i.e. x is not free

in r. Hence, the claim Γ; Λ ` t[x := s]ρ follows with t[x := s] = t.
Subcase x 6= y: We get Γ\y; Λ\y, yν ` r[x := s]ρ by IH. By ((+) this

gives the claim Γ; Λ ` t[x := s]ρ.
The other cases are easy.

By Lemma 4.10 every typed term can be “re-typed” in such a way, that all
free variables are moved into the left context. As we cannot normalise below
λ-abstractions anyway, this is good enough (remember: only variables in
the right context can be bound).
For this kind of typed terms we can easily prove subject reduction, i.e.

that the reduct can be typed with the same type after a normalisation step:

Lemma 4.15 (Subject reduction). If Γ; ∅ ` tτ and t −→ t′, then Γ; ∅ ` t′τ .

Proof. By definition of −→ only conversions have to be considered:
Case (λxτ .t s) 7−→ t[x := s]: by Lemma 4.14 with Λ = ∅.
Case (δf s) 7−→ (f s) ⊗ s: (δf s) can only be typed due to (()−, i.e.

Γ,Λ1 ` δfσ(τ . But as normalisation under lambda abstractions is not
allowed and ((+) is the only rule which has a smaller context in the
conclusion, we get Γ; ∅ ` δfσ(τ and with the same argument Γ; ∅ ` sσ. δf
can only be typed due to (dup)− s.t. τ = ν⊗σ for some ν and Γ; ∅ ` fσ(ν .
Conversely, with Γ; ∅ ` fσ(ν and Γ; ∅ ` sσ, (()−, (⊗−) and (Const) one
gets Γ; ∅ ` (f s)⊗ sν⊗σ.
The other cases are easy.

107

Relaxing Linearity

4.4. Data Size Analysis

Next to the fact that the presented type system is sound, the more inter-
esting question for us is the complexity of the normalisation. The standard
LFPL system is polynomial time normalisable [AS00]. I.e., there is an nor-
malisation strategy which needs a polynomial number of steps in the size
of the input term.

Example 4.16. In Section 4.2 we added the δf construction to the
system. As mentioned before, this extension in the general version will
break the polynomial time property. Here is an example for this:

d := λxL(τ). (δIdx)

e := λxL(τ).
(
xλd♦, y, pL(τ). ((d p) cat)

(
consτ e♦ y nilτ

))
.

The function d duplicates a list. The function e uses the non-size-
increasing concatenation function cat, and doubles the size of the list in
every iteration step using d. This is obviously exponential, but express-
ible without problems with our extension so far.

In order to restrict the δf -construction, we first introduce the kind of types
which are safe to duplicate:

Definition 4.17 (Passive types, passive subterms, passive free variables,
active). A type τ is called passive if every almost-closed normal term wτ

is closed, i.e. if every almost-closed term normalises to a closed term.
Let be sτ C t of a passive type τ and FV(s)∩BV(t) = ∅, then s is called

a passive subterm in t. The free variables of t with x E s C t are called
passive free variables for t. Free variables in t that are not passive for t are
called active for t. The set of all active free variables (denoted as located
subterms) for t is denoted by FVa(t).

Example 4.18.

1. B is a passive type because every almost-closed term of type B
reduces to either tt or ff . Moreover, when starting with an almost-

108

4.4. Data Size Analysis

closed term t and t −→∗ t′, every subterm s′B of t′ that is not
under λ-abstraction is almost-closed again.

2. B ⊗B is passive.

3. L(B) is not passive because
(
consB x♦ tt nil

)
is almost-closed and

normal, but not closed.

4. B(B is not passive because λxB .
(
〈x, y♦〉 tt

)
is normal (reduc-

tion under lambda is not allowed), almost-closed, but not closed.

5. B×B is not passive because 〈
(
λx♦.tt y♦

)
,ff〉 is normal (reduction

inside cartesian products is not allowed), almost-closed, but not
closed.

Example 4.19. A passive free variable of t is a free variable of t which
is “under” a passive strict subterm of t. Take t :=

(
f♦(B x♦

)
⊗ y♦.

Then x is passive in t because (f x) is a passive subterm. But y is active
for t because there is no such strict subterm s of t above y which is
passive.

In other words, a passive strict subterm s of t turns all free variables “below”
s into passive ones for t. Those which are not “covered” by such a passive
subterm stay active for t. Hence, the intuition is that passive subterms
“mask away” everything below in the syntax tree, such that it does not
contribute to the data size outside anymore.

Remark 4.20. A passive subterm does not have to be almost-closed.
In fact, even xB is a passive term. The definition of passive subterm
only requires that the type is passive, i.e. if the subterm was almost-
closed, then it would normalise to a closed term. Due to this distinction
between passive types and passive terms it makes sense to talk about
passive variables in the first place.

Free variables under a passive subterm cannot “escape” it, i.e. they cannot
become active during normalisation. If the passive subterm disappears the
variables under it will do so as well. Otherwise, they stay passive:

109

Relaxing Linearity

Lemma 4.21. Let be t −→n t′ and x ∈ FV(t) − FVa(t), i.e. x is passive
in t. Then x /∈ FVa(t′) holds.

Proof. Easy induction over n and case distinction according to the defini-
tion of 7−→.

The central idea to control the normalisation complexity in the setting
with duplication, is the following:

Duplication does not harm if only one copy of the duplicated
data stays active and the other copy is protected under a

passive subterm.

In order to study the normalisation with this idea, we make the following
assumption:

Assumption 4.22. Only allow passive types τ for (δf s)τ⊗σ.

Note here that σ (the duplicated type) is not restricted, only the type of
the subterm (f s), i.e. the left side of the reduct (f s)⊗s. This passive type
stops the left copy of s from taking any influence on the data size outside
the subterm (f s): after normalisation (f s) will not have any free variable
of type ♦ anymore because (f s) is almost-closed (compare Definition 4.17).

Cartesian products The cartesian product allows common free variables in
the branches because during normalisation it will be chosen which branch
is used. I.e., not both can take effect on the data outside the product at
the same time. Hence, we will always assume to know which branch is the
right one by using the correct forecast for the choice:

Definition 4.23. [Forecast, effective]Let t be a term.
A mapping η : {〈v, w〉 | 〈v, w〉 E t} → {tt,ff} is called forecast for t.
A subterm s of t is called effective according to η if s 6Ew in case of
η(〈v, w〉) = tt and s 6Ev in case of η(〈v, w〉) = ff for all 〈v, w〉E t.
The set FVη(t) ⊆ FV(t) consists exactly of those free variables (as located
subterms) that are effective according to η.

110

4.4. Data Size Analysis

Lemma 4.24. If Γ; Λ ` λxτ .sτ(σ, then for any forecast η for s the
variable x occurs at most once in s as a subterm, that is effective for η.

Proof. Induction on the term structure.

Passive subterms (which are not variables themselves) make all of their
free variables passive. They, kind of, protect the data below in the syntax
tree from having an influence on list in other branches of the tree.
Every subterm is either below such a passive subterm, or there is no

such subterm above. This passive subterm strictly above or the root of the
syntax tree (if the passive subterm strictly above does not exist) is called
the context:

Definition 4.25 (Context). For sE t the term

ct(s) = min{u | sC uE t and u has passive type, or u = t}

is called the context of s in t.

4.4.1. Interacting Variables

In the following, we relate those subterms which can form a list together,
i.e. where one is not protected from the other by a passive subterm in
between. In order to get an idea of this subterm interaction, we start with
three examples:

(consτ d v ·)

t

x! y!

z!

u!

B

B

Figure 4.1.: Example syntax tree for interacting subterms

111

Relaxing Linearity

Example 4.26. In order to create a list, terms of the♦-type are needed.
Hence, consider the syntax tree in Figure 4.1.

Which variables of type ♦ can form list together of length ≥ 2?

Obviously, x and y could be part of the same list. On the other
hand, z and u are both separated from x and y. Moreover, z and u

cannot interact either because u has another passive subterm of type B
above. Of course, z and u have a common passive subterm above, but
the minimal one (i.e. the context) is a different one for each. x and y

have the same context, namely ct((consτ d v ·)).

(consτ d v ·)

t

x!z!

s := (λx!.w y!)

B

(a) direct

(consτ d v1 (f v2))

t

z!

s := (λf.w λv.(consτ y! v nilτ))

B

(b) higher type

Figure 4.2.: Interaction via abstractions

Example 4.27. Consider the syntax tree in Figure 4.2a. z and x in-
teract in the sense of the previous example. But in this example ab-
stractions come into play: the variable x is bound, and via substitution
during a beta reduction, z can also interact with y.
Note that the context of z is the B-type term in the middle, while

the context of y is the root of the tree. But even in such a case with
different contexts, the abstraction makes the interaction possible.

112

4.4. Data Size Analysis

Example 4.28. The interaction via a λ-abstraction in the previous
example is quite direct. Without deeper understanding of the normali-
sation, the connection between z and y is visible. But this is not always
the case: consider the third example in Figure 4.2b.

Can z and y interact in this case?

The λ-abstraction λf is of higher type. The variable f is a function
and the term λf.w is applied to the subterm with y. During beta re-
duction, the right term is substituted into the position of f . Finally, it
is applied to v2, and obviously z and y form a list together.

These three example motivate the formalisation of the concept of interac-
tion. The last example suggests that interaction, somehow, resembles the
whole inner abstraction structure of a lambda term. In order to capture
this, we introduce two simultaneously inductively defined relations:

Definition 4.29 (In the context, interact). For every term t and a forecast
η for t

• the relation v �t x between terms vE t and free variables x ∈ FV (t)

• and the relation x ≺�ηt y between x, y ∈ FVη(t)

are simultaneously defined as follows:

1. ct(x) �t x

2. z ≺�ηs x ∧ λzτ .sE t→ ct(λz
τ .s) �t x

3. ∃c(c �t x ∧ c �t y)→ x ≺�ηt y.

We say for x ≺�ηt y that x interacts with y, and for s �t x that x is in the
context of s.

The intuition for the three clauses is the following:

1. x is in its own context in the term t.

2. z and x can interact in a term s, and z is bound above, then x is also
in the context of the abstraction. This is basically the case of Figure
4.2a.

113

Relaxing Linearity

3. If x and y have a common context c that they are in, then x can
interact with y and vice versa.

The inductive closure over these clauses makes situations like in Figure 4.2b
possible which go though more than one abstraction.

Remark 4.30. The forecasts are part of the definition by restricting the
domain of the ≺�ηt relation to the variables which are effective in t, i.e.
FVη(t). In other words, we do not care about ineffective variables at
all.

In the following, we will show that the relation ≺�ηt , in fact, is a equiv-
alence relation over the (active) free variables of a term. But this alone
would not tell us much. We also need the property that the equivalence
relation is somehow compatible with the normalisation, especially that du-
plication via the δf construction creates copies of variables which reside in
different equivalence classes. This will be the main work in Theorem 4.36.
Finally, we will show that, because of this well behaved duplication re-

duction, the sizes of the equivalence classes do not grow. I.e., they are
non-size-increasing during normalisation.
But before we have to prove basic properties of the two relations:

Lemma 4.31.

1. If c �t x, then x E c.

2. If c �t x, then ct(x) E c.

Proof. Claim 1: Induction on �t:

• Base case: clear.

• Step case: If ct(λzτ .s) �t x, we have z ≺�ηs x and by the 3rd clause
the existence of an common context c of x and z with c E s and
therefore x E s E ct(λz.s).

Claim 2: By the shape of the clauses of �s, the term c must be a context,
i.e. a passive term or s itself. ct(x) is the smallest passive term above x.
Hence, by the first claim we have ct(x) E c.

114

4.4. Data Size Analysis

Lemma 4.32.

1. For cE sC t: If c �t x, then c �s x.

2. For cC sC t: If c �s x, then c �t x.

3. For cE sE t with s of passive type: c �s x iff c �t x.

Proof. Claim 1 follows from the observation that ct(v) = cs(v) holds for
every v E s E t with ct(v) E s. In either case, Clause 1 or Clause 2 of
Definition 4.29, this gives c �s x.
Claim 2 follows from the observation that ct(v) = cs(v) holds for every

vC sE t with cs(v)C s.
For Claim 3 the case c = s from left to right remains. Then c = s = cs(v)

holds for some vC s, the witness for c �s x. Because s is passive, c is also
the smallest passive term in t above v. Hence, cs(v) = ct(v).

Remark 4.33. For c E sCt the Claim 2 of Lemma 4.32 would be wrong.
Take the term

(f x)♦ = c = sC λx.
(
g♦(B (f x)♦

)B
.

Then the variable x is in the context s in the term s, i.e. cs(x) = s �s x.
But in the term t the context of x is the smallest passive term strictly

above x which is
(
g♦(B (f x)♦

)B
here.

This counter-example works because s is of type ♦, i.e. not a passive
type. Otherwise, the Claim 3 of Lemma 4.32 applies.

Lemma 4.34.

1. For c1 �t x, c2 �t x either c1 E c2 or c2 E c1 is the case.

2. If c �t x, xE sC cE t and no free variables of s are bound in t, then
ct(s) �t x.

3. If c �t[u:=s] x, u ∈ FV(t) and xE s, then c �t u.

4. If c �t x, x E s C c E t and s is not under a λ-abstraction, then
c = ct(s).

115

Relaxing Linearity

Proof. By xEc1, xEc2 due to Lemma 4.31 and the tree structure of terms,
the Claim 1 is obvious.
Claim 2: First let c be E-minimal with c �t x and s C c. The case

c = ct(s) = ct(x) is trivial. Otherwise, there is a witness λzτ .v for c �t x
(due to Clause 2 of Definition 4.29). As no free variables of s are bound in
t and c is chosen to be E-minimal, λzτ .vE sC c is the case and therefore
c = ct(λz

τ .v) = ct(s), because the minimal passive term strictly above
s would be the context of λzτ .v as well. Hence, this proves the claim
c = ct(s) �t x.
If c is not minimal from the beginning, we trace back the witnesses λz.v

of c �t x until λz.v E s holds (which it will at some point because � is
inductively defined). This will give aE-minimal c �t′ x with xEsCcEt′Et.
If no variables of s are bound in t, then neither in t′. Hence, we can apply
the E-minimal case above.
Claim 3 follows from the fact that no free variables of s are bound in

t[u := s] by easy induction over the inductive predicate �?.
Claim 4 is a special case of Claim 2: By the latter we have ct(s) �t x. If

it was c B ct(s), then only due to Clause 2 of Definition 4.25 which would
imply a λ-abstraction above c and hence above ct(s). Hence, c E ct(s) and
with minimality of ct(s) above s we have c = ct(s).

Claim 1 of this lemma is clear.
Claim 2 tells us that a variable x can only be in the context of a c above

s with no bound variables in s if it is already in the context of this very s.
In other words, formulated in the negative way: a term s above x in the
syntax tree with a context of x even further above can only not interact
with x (i.e. ct(x) 6�t x) if this s has free variables bound by λ-abstractions
in t above. Only those bound variables would make it possible to “jump
over” ct(s) with the �? -relation.
Claim 3 finally tells us that the �? relation is somewhat stable under

substitution, but in the reverse way: if x is in context of c after substitution,
it was already in the context c before.
Claim 4 is a special case of Claim 2 and says that a context of x above

ct(s) is not possible without λ-abstractions above s.

116

4.4. Data Size Analysis

Lemma 4.35 (Equivalence relation). The relation ≺�ηt is an equivalence
relation.

Proof. Symmetry and reflexivity are obvious by definition. The transitivity
is shown by (course-of-value) induction on t. Assume x ≺�ηt y, y ≺�

η
t z

with the witnesses c1 and c2 (for Clause 3 of Definition 4.29). Then:

• Base cases with x and y not under λ-abstraction: The only possible
situation is c1 = ct(x) = ct(y) = ct(z) = c2 and hence the transitivity
of the base case.

• Step case: Assume transitivity of ≺�ηs for all sC t. By the previous
lemma, Claim 1 w.l.o.g. assume c1 C c2. Let c be minimal with
c1 C c and c �t y. Because c1 is passive, there must be a λuτ .s with
u ≺�ηs y and c = ct′(λu

τ .s) as witness for c �t′ y for some t′ E t.
Because c is the smallest passive term above λuτ .s and c 6= c1, it
follows c1 C λuτ .s. Hence, by Lemma 4.32 part 1 and the symmetry
of ≺�ηs , one gets x ≺�ηs y, y ≺�ηs u and by induction hypothesis
x ≺�ηs u. Therefore, c �t′ x holds. By repeating this method, c2 will
be reached after a finite numbers of steps, such that c2 �t x holds,
which implies x ≺�ηt z.

What one basically does here in order to show x ≺�ηt z is to take the two
witnesses c1 and c2 which are both contexts of y, and then – step for step
– it is shown that the contexts in between up to c2 are also contexts of x.
Hence, finally c2 is the witness as well for x ≺�ηt z.
The equivalence relation ≺�ηt induces partitions on the free variables of

t that are effective according to η. These partitions will play an important
role as an upper bound of the length of a list that is recursed over. More
precisely, the size of the equivalence class of the list term is watched during
reduction for any forecast η. That this size does not increase and therefore
is bounded by the number of free variables in the whole term t at the
beginning, will be proved in the next theorem:

Theorem 4.36 (Non-size-increasing equivalence classes). For a typed term
t and t −→ t′, a forecast η′ for t′ and an equivalence class C′ of ≺�η

′

t′ , there
is a forecast η for t and an equivalence class C of ≺�ηt with |C′| ≤ |C|.

117

Relaxing Linearity

Proof. Assume t −→ t′ due to the conversion s 7−→ s′ with sE t and s′E t′.
Let η′ be a forecast for t′.
For variables x, y in t′ as located subterms, for readability, we will use the

same names x, y for the “corresponding” located subterms in t before nor-
malisation. The conversions of δLFPL allow us to find such a “correspond-
ing” original subterm in t in any case. In the case of the (δf s)-conversion
all free variables in the two copies of s in the reduct of course share the
“corresponding” subterms in t.
We show that there is a forecast η for t, such that

∀x, yE t′.x ≺�η
′

t′ y → x ≺�ηt y

and that x1 6≺�η
′

t′ x2 if x ∈ FV (t) is the “corresponding” subterm in t for
the copies x1 and x2 in t′, i.e. different occurrences in t′ of the same free
variable of t fall in different equivalence classes of ≺�η

′

t′ . This is done for all
the conversions by case distinction, which finally implies the claim of the
theorem.
So let η′ be a forecast for t′, distinct x, y ∈ FVη′(t′) with x ≺�η

′

t′ y with
witness c′ E t′. Case distinction for s 7−→ s′:

1. Case (λuτ .v w) 7−→ v[u := w]:
According to Lemma 4.24 u does occur t most once effectively a in v
according to η′. Hence, no x ∈ FVη(w) will be duplicated in v[u := w],
effectively according to η′.

The forecast η for t is selected to be the canonical counterpart to η′,
i.e. η operates on the 〈p, q〉-subterms of t in same way η′ does on t′.

2. Subcase x, yE w in t′:

a) Subsubcase c′Cw: Apply Lemma 4.32 part 1 to c′EwCt′ and
then with part 2 to c′CwC t, giving the witness c′ for x ≺�ηt y.

i. Subsubcase c′ = w: Then w must be passive. Apply
Lemma 4.32 part 3, once from right to left with c′ = wE t′

and then from left to right for c′ = wE t.

ii. Subsubcase w C c′ E t′: The redex s = (λu.v w) is not
under λ-abstraction (the reduction would not be allowed
then), and hence, with Claim 4 of Lemma 4.34 we have
c′ = ct′(w) and by Claim 1 of Lemma 4.32 we get w �w x

and w �w y. By the uniqueness of a minimal passive term

118

4.4. Data Size Analysis

above w, there is an cBw in t with c �t x and c �t y acting
as a witness for x ≺�ηt y.

b) Subcase x, yE v[u := w], x, y 6Ew in t′:

i. Subsubcase c′E v[u := w]: No free variable of w is bound
in t′, but outside w itself (again the reduction would not be
allowed then). Therefore, no free variable subterm of w can
act as a witness for some c′′ �v[u:=w] x, i.e. the substitution
can be ignored, such that also c′′ �v x holds in t. Therefore,
x ≺�ηv y.

ii. Subsubcase v[u := w] C c′: Then v[u := w] �v[u:=w] x,
v[u := w] �v[u:=w] y hold by Claim 1 of Lemma 4.32, and
with the same argument about bound variables in w as in
the previous subsubcase, we have v �v x, v �v y. Again
by uniqueness of the minimal passive term c above v, this c
acts as a witness of x ≺�ηt y.

c) Subcase x, yE v[u := w], x 6Ew, yE w in t′:
By yE w we can assume that u ∈ FV(v).

i. Subsubcase c′Ev[u := w]: By Lemma 4.34 part 3 c′ �v u.
Therefore, c′ is a witness for x ≺�ηv u. Moreover, w is not
passive, because then the biggest c with c �t′ y could not
be above w as w has no bound variables in t′ and t outside
itself. Therefore, by Lemma 4.34 part 2 the smallest passive
term c above w in t gives c �t y, but ct(λuτ .v) = c, such
that c is a witness for x ≺�ηt y.

ii. Subsubcase v[u := w]E c′: With a similar argumentation
as in the previous subsubcase, w is not passive and no dEw
acts as a witness for c′ �t′ x. Therefore, ct(v) = ct(λu

τ .v) =

ct(w) holds and x ≺�ηt y with ct(w) = ct(λu
τ .v) as the

witness.

d) Subcase with x, y 6Ev[u := w] in t′ is easy because again v[u :=

w] has no variables bound outside.

e) Subcase with x 6Ev[u := w],y E v[u := w],y 6Ew in t′ (and vice-
versa):
v[u := w] has no free variables bound above, but c′ must be
above v[u := w]. Hence, by Lemma 4.34 Claim 4 c′ = ct′(v[u :=

119

Relaxing Linearity

w]) �t′ x, y. But, as there is no variable in w bound above that
is below v[u := w] either, we can ignore the substitution again
and get ct(v) �t y. By x 6Ev[u := w] and therefore also x 6Ev in t,
we have that v is not passive, such that ct(v) 6= v. Hence, ct(v)

is the corresponding subterm of ct′(v) and therefore the witness
for x ≺�ηt y we aimed at.

3. Case (δf v) 7−→ (f v)⊗σ,τ v:
By Assumption 4.22 we have that (f v) is of passive type and not
under λ-abstraction. Hence, for every xE (f v) and c �t′ x the term
c is also subterm of (f v). But for every d �t′ y, y 6E (f v) with
xE d the term d is above or equal to (f v)⊗ v, such that no witness
for x ≺�ηt′ y can be found for those cases. Hence, two instances of
x ∈ FV (v), once as subterm of (f v) and once as subterm of the outer
v, fall in distinct equivalence classes.

Interaction outside (f v)⊗σ,τ v: As (f v) is not under λ-abstraction
in t′, no free variable of (f v) acts as a witness for any e �t′ x with
xEt′ and x 6E (f v), such that from x ≺�η

′

t′ y it easily follows x ≺�ηt y.

4. Case (〈s, t〉 tt) 7−→ s:
The forecast η is equal to η′ on the common domain, but extended
by 〈s, t〉 7→ tt and arbitrary values for any 〈v, w〉E t. Otherwise, this
case is easy.

5. Case (〈s, t〉ff) 7−→ t: Analogous.

6. Case (tt 〈s, t〉) 7−→ s: Analogous.

7. Case (ff 〈s, t〉) 7−→ t: Analogous.

8. Case (s⊗σ,τ t r) 7−→ ((r s) t): clear.

9. Case (nilτ h g) 7−→ g: clear.

10. Case ((consτ d v x) h g) 7−→ (h d v (xh g)): Clear, as h is closed.

Corollary 4.37. The size of every equivalence class of ≺�η
′

t′ is bounded
by |FV(t)| for t −→n t′ and every n ∈ N.

120

4.4. Data Size Analysis

Proof. By the Theorem 4.36 every equivalence class after reduction is not
bigger than one class before reduction. At the start of the reduction chain,
the size of every equivalence class is obviously bounded by |FV(t)|, i.e. by
all variables, in the worst case in one equivalence class. By induction on n
it follows that no equivalence class of ≺�η

′

t′ can be bigger than |FV(t)|.

By this corollary the equivalence classes are shown to be non-size-increasing.
During normalisation the number of classes may grow, but each class stays
small.
If one takes the original LFPL system and tries to identify the classes, one

finds exactly the same structure. The key difference is that in LFPL there
is no duplication and hence the overall number of free variables will never
increase. In other words, in LFPL the sum of the class sizes is already
non-size-increasing. Hence, there is not much sense to look at this fine
grained interaction structure at all, which induces the equivalence relation
≺�ηt onto the term t.
In δLFPL this fine look is essential though, because the overall number of

free variables increases. Every time a term is duplicated, one might dupli-
cate the free variables and possibly also increase the number of equivalence
classes. The Assumption 4.22 makes sure that the equivalence classes under
the passive term cannot interact with the outside.

4.4.2. Lengths of Lists

In [AS00] the polynomial measure is (recursively) defined for each LFPL
term and shown to strictly decrease in each normalisation step. For the
iteration construct in the LFPL language this measure uses the number of
free variables as an upper bound for the length of lists which can occur in
the term.
If we transfer this idea to the δLFPL-system, it is natural to take the

size of the ≺�ηt -equivalence class of the list as this upper bound. With the
same argument as in [AS00] and the fine analysis of the equivalence classes
during normalisation in Theorem 4.36, it is clear that this makes sense,
because a list can never cross different equivalence classes. In order to see
this, we take a list term:

l :=
(
consτ d♦0 v0

(
consτ d♦1 v1

(
consτ d♦2 x2 . . .

)))
.

121

Relaxing Linearity

The list type L(τ) is never passive (compare Example 4.18), and the ♦ is
not passive either. Hence, we get

ct(d0) = ct(d1) = · · · = ct(l).

Moreover, it is clear that a variable x♦i (or at least with ♦ positively in
the type of xi) is needed in every term of type ♦, and this xi must be in
the context of ct(di). Therefore, the size of the equivalence class of ct(l)
bounds the length of l.
With this intuition what the bound of the list lengths could be, we need

to define the length of a (non-normal) term of list type L(τ). In order to
consider a length measure l(sL(τ)) to be reasonable, it has to satisfy certain
conditions:

1. l(sL(τ)) < l((consτ d x s))

2. l(sL(τ)[x♦ := v]) = l(s)

3. l(sL(τ)) ≤M(t) for t −→∗ t′, sE t′ and M(t) is constant.

The first condition describes that applying consτ creates a longer list.
The second property makes sure that substituting a variable of type ♦

with a term of the same type does not alter the list length. Note here that
because of this property it is not enough to count the variables of e.g. type
♦ (or at least with ♦ positively in the type). If we did that, we could
substitute a term like v :=

(
y♦ ⊗♦,♦ z♦ λy, z.y

)
for x. This would increase

the length of the list s[x := v].
The last condition makes sure that every length of a list which occurs

during normalisation can be bound by some constant which only depends
on the starting term t.
We will now fix a specific length measure. We then show that it is

reasonable in the sense of the upper conditions. In the next section, about
the complexity of normalisation, we will exploit those properties in order
to show the complexity theorem.

Definition 4.38 (List length measure). For a term sE t of list type the
length of s is defined as

l(s) = max
η

∣∣∣
{
v♦ E s | v effective for η ∧ cs(v) = s

122

4.4. Data Size Analysis

∧ v is E -maximal with these properties
}∣∣∣

where η ranges over the forecasts for s.

Condition 1 for a reasonable length measure is easy:

Lemma 4.39. l(s) < l((consτ d v s)).

Proof. The subterm d of type ♦ contributes to l((consτ d v s)) because it
is maximal of ♦-type and c(cons d v s)(d) = (consτ d v s). Conversely, all
wC s which contribute to l(s) are also maximal of ♦-type in (consτ d v s).
Moreover, s is not passive, such that by Lemma 4.32 part 3 c(cons d v s)(w) =

(consτ d v s) holds. Hence, w also contributes to l((consτ d v s)).

Corollary 4.40. The recursion t = ((consτ d v s) h g) E t can only be
unfolded l((consτ d v s)) times.

Proof. The length of the remaining list s is strictly decreasing when unfold-
ing once. Because the length is non-negative by definition, the unfolding
must stop after less than l((consτ d v s)) times.

Condition 2 for a reasonable length measure:

Lemma 4.41. l(sL(τ)[x♦ := v]) = l(s) holds.

Proof. If x does not count for l(s), the claim is trivial. If x itself counts for
l(s), then v will count for l(sL(τ)[x♦ := v]) and vice-versa.

Lemma 4.42. For every term v♦ E s there is an xσ ∈ FVη(v) with ♦
positively in σ and v �v x.

Proof. We show that for every term vτ E s with ♦ positively in τ there is
an xσ ∈ FVη(v) with ♦ positively in σ and v �v x by induction on the
term v.

123

Relaxing Linearity

Corollary 4.43. For sL(τ) the following holds:

1. l(s) ≤ maxη |{x | x ∈ FVη(s) ∧ s �s x}|,

2. For a fixed η all those x from 1 are in the same equivalence class of
≺�ηs .

Proof. Every v contributing to l(s) contains an xσ ∈ FVη(v) with ♦ posi-
tively in σ and v �v x due to Lemma 4.42. Moreover, cs(v) = s holds, and
as v is not passive, we get s �s x.
The second claim is true because all the x from 1 share the same common
context s.

With Corollary 4.37, which said that the equivalence classes do not grow,
we have just proved condition 3 of a reasonable length measure, but not
in full generality, but only if s is not under λ-abstraction. Because in that
case, from x ≺�ηs y we can conclude x ≺�ηt y with Lemma 4.32 part 3
because s is not passive. Hence, we get the constant M(t) := FVη(t) of
condition 3 for a reasonable length measure:

Lemma 4.44. If s′Et′ is not bound in t′ and t −→∗ t′, then l(s′) ≤ |FV(t)|
holds.

Proof. If s′ is not bound in t′, every free variable of s′ is also free in t′. By
Corollary 4.43 those free x ∈ FVη(s′) which contribute to l(s) are in the
same equivalence class of ≺�ηt′ . The size of this class is bounded by |FV(t)|
by Corollary 4.37.

A special case of this lemma is the one where s′ is not under λ-abstraction.

4.5. Complexity

With the data size analysis, i.e. the definition of the length of lists, we
can proceed in applying essentially the complexity proof by Aehlig and
Schwichtenberg [AS00] that the normalisation is bound by a polynomial.
The basic idea is that we first define the polynomial ϑq(t) ∈ N0[X], where
t is a δLFPL-term. Then, we show that there is a constant c (which is
linear in |t|), such that ϑq(t)(c) > ϑq(t

′)(c) for t −→ t′. This means that
any reduction sequence, starting from t, is at most ϑq(t)(c) steps long.

124

4.5. Complexity

And, because c ∈ O(|t|) we get the polynomial time complexity of the
normalisation.

Definition 4.45 (Complexity measure). For each subterm t E q the com-
plexity measure ϑv(t) ∈ N0[X] is defined by recursion on t:

ϑq(x) := 0

ϑq(c) := 0

ϑq((s t)) :=

ϑq(s)+(l(s)+1) · ϑq(t)+l(s)+1 if s is not bound in q
and s is of list type

ϑq(s)+(X+1) · ϑq(t)+X+1 if s is bound in q
and s is of list type

ϑq(s)+ϑq(t)+1 if s is of tensor type σ ⊗ τ
ϑq(s)+ϑq(t) otherwise

ϑq(λx
τ .t) := ϑq(t)+1

ϑq(〈s, t〉) := sup
�
{ϑq(s), ϑq(t)}+1

ϑq(δf) := ϑq(f)+1

with sup� being the supremum of two polynomials, and � as the lexico-
graphic order on the coefficients.

Note that the index q in ϑq(t) is needed to express whether s is bound in q
in the iteration cases.

Remark 4.46. There are two cases for the iteration, i.e. for a list type
term s applied to a step term t in (s t):

• If s is not bound, the list will not change anymore. This
property, therefore, makes sure that the length measure l(s)

is precise and we can use it instead of X in the polynomial
ϑq(((consB x tt nilB) h)).

• If s is bound, there is still a variable in s bound above, such that
we do not know much about l(s). Hence, we use the placeholder
X for the length of s. X will be set later to a value bigger than
the number of free variables in the whole term |FV(q)|. In other

125

Relaxing Linearity

words, X will later be an upper bound for l(s) as long as we do not
know better. In the moment the last bound variable is substituted,
the polynomial ϑq((s t)) switches from the second to the first case
in the definition.

• If s is almost-closed, by Lemma 4.41 we know that the length of
s will not change anymore during beta reduction. But this is not
enough in order to use l(s) already, i.e. if s is still bound. We
further have to require that s is not bound in q. Take the term

q := 〈λx♦. ((consB x tt nilB) h) , tt〉.

Is the list length l((consB x tt nilB)) bounded by |FV(q)|?
Obviously, this is not the case because the term q is closed, and
therefore |FV(q)| = 0. But clearly, (consB x tt nilB) is bound
in q (because x is a bound variable). Hence, the size measure
of this list in the complexity measure ϑq(q) must be X, and not
l(l((consB x tt nilB))) = 1.

• Would it be enough to require “s is under λ-abstraction” instead
of “s is bound” in the definition of ϑq(t)?
The answer can be seen in the following example:

q :=
(
λfσ(σ, ptt.f

((
consB x♦ tt nilB

)
h
))

.

Assume that we use “s is under λ-abstraction” instead of “s
is bound”. The polynomial ϑq(

((
consB x♦ tt nilB

)
h
)
) will use

the precise length measure 1 for the list involved because there
is no λ above. After beta reduction q −→ q′, the list
though will suddenly be under the λp and hence the polynomial
ϑq′(

((
consB x♦ tt nilB

)
h
)
) would switch to the X-case. This

would increase the value ϑq′(q′)(|FV(q)|) if |FV(q)| > 1 holds.
In the definition with “s is bound” this cannot happen.

Lemma 4.47. If x is linear and free in (t s), then x is free in either t or
s, but not in both.

Proof. By Definition 4.6 of linear and Lemma 4.42.

126

4.5. Complexity

The most complicated case in the analysis of the complexity is the be-
haviour of the polynomial ϑq(t) during beta-reduction, i.e. when substitut-
ing a variable with another term. This is non-trivial, as usual, because
substitution is a non-local operation on a term. Hence, we study this very
case first in its own lemma:

Lemma 4.48 (Substitution Complexity Lemma). Let be Γ; ∅ ` (λxσ.u sσ)

with q := (λxσ.u sσ) and q′ := u[x := s] and η a forecast for q and η′ the
corresponding forecast for q′. Then

ϑq(u[x := s])(X) < ϑq((λx
σ.u sσ))(X)

holds for all X ≥ |FV((λxσ.u sσ))|.

Proof. We show ϑq′(t[x := s])(X) ≤ ϑq(t)(X) + ϑq(s)(X) for all tE u by
induction on t. Then the claim follows from the case t = u with

ϑq(u)(X) + ϑq(s)(X) < ϑq(u)(X) + ϑq(s)(X) + 1 = ϑq((λx
σ.u sσ))(X).

We write f � g for ∀x.f(x) ≤ g(x).
The only non-trivial cases are those where t is an application, i.e. t is of

the shape (r r′). For all other cases the induction step is easy.
Case r = δf : x only occurs free at most once in t by Lemma 4.47. Assume
x is free in f . Then:

ϑq′(
(
δf r′

)
[x := s]) = ϑq′(

(
δf [x := s] r′

)
)

= ϑq′(f [x := s]) + ϑq(r
′) + 1

� ϑq(f) + ϑq(s) + ϑq(r
′) + 1 by IH

= ϑq(
(
δf r′

)
) + ϑq(s).

The case where x is free in r′ is similar.
Case r is of list type and not bound in q: Then r′ = h, the step term. h is
closed and r has no variable bound above. Hence, the x cannot be free in
(r r′).
Case r is of list type and bound in q: The case with x not-free in r is trivial
again. If x is free in r we get two subcases:
Subcase r[x := s] is bound in q′:

ϑq′((r h) [x := s]) = ϑq′((r[x := s]h))

127

Relaxing Linearity

= ϑq′(r[x := s]) + (X + 1) · ϑq′(h) +X + 1

� ϑq(r) + ϑq(s) + (X + 1) · ϑq(h) +X + 1 by IH

= ϑq((r h)) + ϑq(s).

Subcase r[x := s] is not bound in q′: The substitution replaced the last
bound variable of r, such that we switched from the iteration case of the
definition of ϑq((r r′)) with length measure X to the case with length mea-
sure l(r[x := s]). By assumption of this lemma, we know

X ≥ |FV(q)| ≥ |FVη(q)| ≥
∣∣FVη′(q′)

∣∣ ≥ l(r[x := s]), (4.1)

such that

ϑq′((r h) [x := s])(X)

= ϑq′((r[x := s]h))(X)

= ϑq′(r[x := s])(X) + (l(r[x := s]) + 1) · ϑq′(h)(X) + l(r[x := s]) + 1

≤ ϑq′(r[x := s])(X) + (X + 1) · ϑq′(h)(X) +X + 1 by Eq. 4.1

≤ ϑq(r)(X) + ϑq(s)(X) + (X + 1) · ϑq(h)(X) +X + 1 by IH

= ϑq((r h))(X) + ϑq(s)(X).

Case r is not of list type: Then, by Lemma 4.47 we know that x can only
occur at most once in t because x is linear in t. Therefore, either

ϑq′(
(
r r′
)

[x := s]) = ϑq′(
(
r[x := s] r′

)
)

or
ϑq′(

(
r r′
)

[x := s]) = ϑq′(
(
r r′[x := s]

)
).

In either case, the result follows from the definition of ϑq((r r′)) and the
induction hypothesis.

Note that the second last case of this proof makes use of the special
distinction of the two list cases which was already pointed out in Remark
4.46

4.5.1. Complexity Theorem

The main goal of this chapter is the proof that δLFPL-terms normalise in
polynomially many steps in their size (measured as the size of the syntax

128

4.5. Complexity

tree). Before giving a proof for that, we have to restrict the system a bit
further:

Assumption 4.49. Only allow those types σ for (δf sσ) E q s.t. every
normal and almost-closed sσ has the property ϑq(s) = 0.

This restriction mainly makes sure that a normal term which is closed up
to free variables of type ♦ does not contain blocked redexes anymore. When
looking at the definition of ϑq(·) the most common case of those almost-
closed, normal terms are that of so-called numerals, i.e. applications of
constructors. Constructors do not count, i.e. ϑq(c) = 0 and the ϑq((s t)) =

ϑq(s) + ϑq(t). Hence, we get the following:

ϑq(
(
consB y♦ tt

(
consB y♦ tt nilB

))
)

:= ϑq(consB) + ϑq(y) + ϑq(w) + ϑq(consB) + ϑq(y) + ϑq(tt) + ϑq(nilB)

= 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0.

The restriction in Assumption 4.49 will be crucial in the last case of the
following main theorem:

Theorem 4.50 (Complexity Theorem). Assume Γ; ∅ ` qδ with almost-
closed q and |FV(q)| ≤ N ∈ N. If q −→ q′, then

ϑq(q)(N) > ϑq′(q
′)(N).

In particular, any reduction sequence starting from q has length at most

ϑq(q)(|FV(q)|).

Proof. We proof the claim by induction on the (inductive) relation q −→ q′:
Case (r s) −→ (r′ s) via r −→ r′: We distinguish whether r is a list, a
tensor or another type.
Subcase r is a list: Because normalisation under λ-abstraction is not possi-
ble, r cannot be bound in q. Moreover, we know the length of lists cannot
increase, i.e. l(r) ≥ l(r′). Hence:

ϑq((r s))(N)

= ϑq(r)(N) + (l(r) + 1) · ϑq(s)(N) + l(r) + 1

> ϑq′(r
′)(N) + (l(r′) + 1) · ϑq′(s)(N) + l(r′) + 1 by IH

129

Relaxing Linearity

= ϑq′(
(
r′ s
)
)(N).

Subcase r is a tensor product:

ϑq((r s))(N)

= ϑq(r)(N) + ϑq(s) + 1

> ϑq′(r
′)(N) + ϑq′(s)(N) + 1 by IH

= ϑq′(
(
r′ s
)
)(N).

Otherwise:

ϑq((r s))(N)

= ϑq(r)(N) + ϑq(s)(N)

> ϑq′(r
′)(N) + ϑq′(s)(N) by IH

= ϑq′(
(
r′ s
)
)(N).

Case (r s) −→ (r s′) via s −→ s′:
Subcase r is a list: Because normalisation under λ-abstraction is not possi-
ble, r cannot be bound in q. Hence:

ϑq((r s))(N)

= ϑq(r)(N) + (l(r) + 1) · ϑq(s)(N) + l(r) + 1

> ϑq′(r)(N) + (l(r) + 1) · ϑq′(s′)(N) + l(r) + 1 by IH and l(r) + 1 ≥ 1

= ϑq′(
(
r s′
)
)(N).

Otherwise: Like for the previous case.
Case r 7−→ r′:
Subcase (λxτ .t s) 7−→ t[x := s]: Because the right context of qδ is empty
and r is not under λ-abstraction, also r has an empty right context, and
every subterm u E r is bound in r if and only if it is bound in q. With
N ≥ |FV(q)| ≥ |FV(r)| and Lemma 4.48 we get:

ϑq((λx
τ .t s))(N) = ϑr((λx

τ .t s))(N) > ϑr′(t[x := s])(N) = ϑq′(t[x := s])(N).

Subcase (〈s, t〉 tt) 7−→ s: easy
Subcase (〈s, t〉ff) 7−→ t: easy
Subcase (tt 〈s, t〉) 7−→ s: easy
Subcase (ff 〈s, t〉) 7−→ t: easy

130

4.5. Complexity

Subcase ((⊗σ,τ s t) v) 7−→ ((v s) t):

ϑq(((⊗σ,τ s t) v))(N)

= ϑq((⊗σ,τ s t))(N) + ϑq(v)(N) + 1

= ϑq(s)(N) + ϑq(t)(N) + ϑq(v)(N) + 1

> ϑq′(s)(N) + ϑq′(t)(N) + ϑq′(v)(N)

= ϑq′(((v s) t))(N).

Subcase (nilτ h g) 7−→ g: Because normalisation under λ-abstraction is not
possible, nilτ cannot be bound in q. Hence:

ϑq((nilτ h g))(N)

= ϑq((nilτ h))(N) + ϑq(g)(N)

= ϑq(nilτ)(N) + (l(nilτ) + 1) · ϑq(h)(N) + l(nilτ) + 1 + ϑq(g)(N)

= 1 + ϑq(h)(N) + ϑq(g)(N)

> ϑq′(g)(N).

Subcase ((consτ d v x) h g) 7−→ (h d v (xh g)): Because normalisation un-
der λ-abstraction is not possible, (consτ d v x) cannot be bound in q. Hence:

ϑq(((consτ d v x) h g))(N)

= ϑq(((consτ d v x) h))(N) + ϑq(g)(N)

≥ ϑq((consτ d v x))(N) + (l(x) + 2) · ϑq(h)(N) + (l(x) + 1) + 1 + ϑq(g)(N)

≥ ϑq(h)(N)+ϑq(d)(N)+ϑq(x)(N)+(l(x)+1)·ϑq(h)(N)+l(x)+1+ϑq(g)(N)+1

> ϑq′((h d (xh g)))(N).

Subcase (δfσ(τ s) 7−→ (⊗τ,σ (f s) s): Because normalisation under λ-
abstraction is not possible and q is almost-closed, also s is almost closed.
With Assumption 4.49 we have ϑq(s)(N) = 0. Then:

ϑq((δf s))(N)

= ϑq(f)(N) + ϑq(s)(N)︸ ︷︷ ︸
0

+1

> ϑq′(f)(N) + ϑq′(s)(N) + ϑq′(s)(N)

= ϑq′((⊗τ,σ (f s) s))(N).

131

Relaxing Linearity

4.6. Conclusion and Outlook

This chapter extends the complexity proof of Aehlig and Schwichtenberg[AS00]
to a more relaxed type system, which allows certain non-linearities. Obvi-
ously, it is considerably more complicated because the original measure of
the free variables in LFPL must be replaced with the equivalence classes of
≺�ηt . But the proof structure is very similar in the end.
Next to the support for the δf -construct in the language of δLFPL, the

complexity result here is stronger than the one of Aehlig and Schwichten-
berg [AS00]: we do not require that a list is computed in order to know its
exact size before an iteration can be unfolded. The size of the ≺�ηt -classes
as an estimate for the lengths of lists is precise enough, even without nor-
malisation of the list argument.
An interesting question is how essential the restriction is that normali-

sation below λ-abstraction is forbidden. Our proof makes use of this in a
number of places, mainly in order to simplify the length measure below a
λ-abstraction. If there are bound variables around, it is not easy to say
which length a list will possibly have during further normalisation. This of
course depends on the substituted term when the abstraction is going away
during beta-reduction.
An idea to improve the length measure to those cases would be to take

the whole context of a list into account. But then, it is not very clear how
the length decreases when an iteration is normalised. Also the result of the
iteration will stay in the context and the length measure will not obviously
become smaller.

132

5
Embedding LFPL into Light Affine Logic with Fixed

Points

In this chapter we embed LFPL-terms into Light Affine Logic with fixed
points. In Section 3.3.1.3 the Insertion Sort example is discussed in the
context of Light Affine Logic. Insertion Sort is the prime example of a
non-size-increasing algorithm which is easily typable in LFPL. In a sense,
LFPL is just a variant of Gödel’s System T which captures the idea of
non-size-increasing functions. Such a function can only create outputs at
most as big as the input. For this purpose a special diamond type ♦ is
used which is not inhabited by a closed term. The only way to “get” a
diamond is through the iteration operator, which passes one ♦ to each step
function. Moreover, the consτ -operation to enlarge a list “consumes” one
diamond. The consequence is that the number of diamonds around during
normalisation is bounded by the number of diamonds in the beginning of
normalisation, hence every function definable in this system is non-size-
increasing.

After LFPL, the second system of interest in this chapter is Light Affine
Logic as described in Section 2.3. Light Affine Logic is based on System F
and therefore no base types are available. The list type L(τ) of LFPL can
be easily defined in an impredicative way using type abstractions.

The meaning of the diamond type is not obvious though when one tries to
reformulate LFPL algorithms in LAL. The Insertion Sort of Section 3.3.1.3,

133

Embedding LFPL into Light Affine Logic with Fixed Points

as shown there, can be expressed in LAL, but its type is asymmetric and
cannot be iterated therefore. In LFPL the iteration scheme of the Inser-
tion Sort algorithm can be expressed directly and iterated again without
restriction. Hence, the question arises how far apart LAL and LFPL really
are.

The goal of this chapter is to give an embedding of LFPL
programs into Light Affine Logic or more precisely into Light

Affine Logic with fixed points.

The latter will make it easier to represent the non-recursive parts of algo-
rithms in a flat way, because fixed point types allow us to use inductive data
types without any modality (and, at the same time, without the ability to
iterate over them)1.
The embedding should be of a compositional nature, without the long

way of simulating a computational model like Turing Machines, SECD ma-
chines (compare [NM03]) or any other low-level machine.

Structure of this chapter This chapter starts with the iterated iterator con-
cept in Section 5.1, that is used to do impredicative iteration in LAL. After
an intuitive introduction and motivation in Subsection 5.1.1, we present the
implementation of the iterated iterators in Light Affine Logic in Subsection
5.1.2. Section 5.2 uses the definitions of the previous section in order to im-
plement a flat embedded of the non-recursive parts of LFPL-algorithms into
Light Affine Logic with fixed points. The chapter ends in Section 5.3 with
a conclusion by discussing whether the presented embedding is satisfactory.

5.1. Iterating Iterators

The main tool for this chapter will be the concept of iterated iterators.
Before introducing them formally we try to get an idea first why they do
in LAL what the built-in iteration scheme does in LFPL:

5.1.1. Building an Intuition

The complexity proof in [AS00] constructs a polynomial measure which
strictly decreases during normalisation in every step (compare Section 4.5).
1This is purely technical and, probably, the traditional Light Affine Logic, as described
in Section 2.3, would work as well with some other, much more involved coding for
data types without iteration.

134

5.1. Iterating Iterators

one iteration in the outer recursion of sort (l insertnil)
one iteration in each insert (l ... ≤ ... base)

one iteration in each ≤ in the step of insert ≤
no further iteration in the the step of ≤ . . .

Figure 5.1.: Iteration nesting of Insertion Sort (compare Section 3.3.1)

The degree of the measure is uniform in the input, i.e. there is polynomial
ϑq(t)(X) = akX

k + ak−1X
k−1 + . . .+ a0 for every typable term tL(τ)(σ of

LFPL, with k and the coefficients ai independent of the input lL(τ), such
that (t l) normalises in at most ϑq(t)(|l|) many steps.

The main insight in the complexity proof of [AS00] is the way this poly-
nomial can be constructed: Due to the requirement of the type system that
step terms must be closed (see rule (It) of LFPL in Section 2.18) it is possi-
ble to derive ϑq(t)(X) from t mainly by recursion on the nested iterations in
the term, increasing the degree of the polynomial with each further nesting.
In other words, the polynomial for (l h) is essentially X · ϑq(h)(X).

This construction leads to the intuition that the power of LFPL lays in
the nesting of iterations inside the step terms of iterations. This nesting
dominates the normalisation time, i.e. the degree of the normalisation time
polynomial ϑt(t) is bounded by the nesting depth of the iterations in t.
Consequently, in order to get an embedding of LFPL into another calculus,
the crucial point will be to model this nesting. Compare Figure 5.1 for an
non-trivial nesting of iterations.

An algorithm without any nesting, e.g. (l λx, d, p. (consτ x d p) nilτ), ba-
sically just needs one iterator which runs |l| many steps. If the nesting is
one level deep, e.g. in

t := (l λy, e, q. (consτ y e (q λx, d, p. (consτ x d p) nilτ)) nilτ) , (5.1)

one needs another “fresh” iterator in each step of the outer iteration. The
outer step is called |l| times. Due to the property of the system that only
non-size-increasing algorithms can be formulated, we know that also the
inner iteration will run no more than |l| steps. Hence, we have to find an
iterator “data structure” for the embedding which provides the iterators of
length |l| in each outer step, i.e. |l| many of them, in order to drive the
inner iteration. This process can be repeated if the nesting is even deeper.

135

Embedding LFPL into Light Affine Logic with Fixed Points

simple iteration functional N ∼= L(U) r linear
iterations in iterations L(N) � quadratic

it. in it. in it. L(L(N)) cubic

it. in it. in it. in it. L(L(L(N))) hyper-cubic

Figure 5.2.: Iterated iterators illustrated

︸︷︷︸

︸︷︷︸

︸︷︷︸

depth
n

depth
n

depth
n • in each dimension

a list of lengh n

• iterator for 3 nested LFPL iterations

Figure 5.3.: Iterated iterator of dimension 3 and depth n

In LAL an iterator is the list itself (remember, lists are Church encodings
in LAL) . Therefore, an iterator of length |l| is just a list L(τ) of that size,
especially |l| itself of course. An iterator which provides another iterator
in each step is of type L(L(τ)) and so on. We will call this construction
iterated iterators. Compare Figure 5.2 for a graphical intuition.
Because the outer iterations are of length at most |l| and the inner iter-

ations as well, we need an inhabitant of L(N) which is of the right length,
and each numeral in the list is again of length |l|. This idea is to be repeated
for higher nestings. For nesting depth 1 we get a square shape, for nesting
depth 2 we get a cube, and so on.
Before going into the technical details how these constructions are pos-

sible in LAL, we want to get a better idea how these nested iterators can
be used to translate LFPL terms later on. For this purpose assume that
Itkn is such an iterated iterator of length n (i.e. every occurring list at every
nesting level has length n) and nesting depth k (hence, geometrically k+ 1

is the dimension of its shape). In Figure 5.3 It2n is shown, of dimension 3

as a cube.
Then, one can replace the term in Equation 5.1 with

136

5.1. Iterating Iterators

level 0

level 1

level 2

level 3

l : L(τ)

§§§l′ : µα.1 +♦⊗ τ ⊗ α

! : N

! :!N

! :!!N

! :!L(N)

: L(L(N))

flat embedding, hence µ-types are enough

!- and §-magic
to build the iterated iteratorsinput list

Φ(t)

Figure 5.4.: Separation of iteration and remaining logic of an algorithm

t′ :=
(
It1n λIt

0
n, e, q....

(
It0n λx

τ , d, p.... ...
)
...
)
,

i.e. the list It1n provides the iterators It0n for the inner recursion.

Of course, the question is where the “real” list l is gone. The idea is that
we can implement the actual computation on l just by using the destructor
Caseτ,σ (or in fact the case distinction for the sum type because we will
use fixed point types for the lists), without any iteration. We know that our
iterators will run the step term often enough to destruct the list l (and any
other occurring list) consτ by consτ until the empty list is reached. The
whole complexity is encapsulated in the iterators. They make the iteration
scheme of LFPL explicit.

So, why does this help to create an embedding into LAL? While the
iterated iterators can be implemented in LAL as we will see in the next sec-
tion, the main point is the following: by separating the iteration structure
from the remaining logic of an algorithm, we are able to embed the latter
in a completely flat way. This means that (while the iterators need a lot of
modalities, i.e. magic with !- and §-boxes) the algorithm can be essentially
embedded into one level of the LAL box structure. This idea is illustrated
in Figure 5.4

137

Embedding LFPL into Light Affine Logic with Fixed Points

5.1.2. Iterated Iterators in Light Affine Logic

In order to implement the idea of iterated iterators in LAL, we first fix the
list type as L(τ) := ∀α.!(τ (α (α) (§(α (α), the numerals as
N := ∀α.!(α(α)(§(α(α) and the unit as U := ∀α.α(α, with

Succ := λn.Λαλf !(α(α)§ λgα
(](

nα ! λp.
(
]f [! p

))[
§
g

)
: N (N

0 := Λαλf !(α(α)§ λa.a : N

Consτ := λlL(τ)λx§τ .Λαλf.§ λgα
(

]f [!]x[§

(](
l α ! λp, x.

(
]f [! x p

))[
§
g

))

: L(τ)(§τ (L(τ)

Nilτ := Λαλfτ(α(α.§ λgα.g : L(τ)

1U := Λα.λxα.x.

We want to build an iterated iterator of arbitrary, but constant nesting
depth. The size of the iterated iterators (on each nesting level) is the
length of the input of type N .

Liftings As a first step, we need a number of lifting terms. Essentially, the
first goal is to duplicate the input number n by lifting it to a type with
the bang ! in front. Such a lifting term of type N (!N is too ambitious
though, but for the cost of an additional paragraph § it is possible to express
it in LAL, even to an arbitrary number of !-modalities:

↑§N := λn.§
(]

(nN ! Succ)
[
§

0
)

: N (§N

↑§!
N := λn.§

(](
n !N ! λp!N ! (Succ]p[!)

)[

§

! 0
)

: N (§!N

↑§§
h!i§j

N := λn.§
(](

n §h!i§jN ! step
)[

§
§ · · ·! · · ·§ 0 · · · · · ·

)
: N(§§h!i§jN

step := λp!!N§ · · ·! · · ·§ (Succ
]
· · ·
]
· · ·]p[§ · · ·

[
!
· · ·
[
§
) · · · · · · .

138

5.1. Iterating Iterators

With this we can create any number of copies of the input, with τn :=

τ ⊗ · · · ⊗ τ︸ ︷︷ ︸
n times

and 0n := 0⊗ · · · ⊗ 0, again with arbitrary many ! in front:

Succn := λp. (p λx1 . . . xn. (Succx1)⊗ · · · ⊗ (Succxn)) : Nn(Nn

p§
n := λn.§

(]
(nNn ! Succn)

[
§

0n
)

: N (§Nn

p§§h!i§j
n := λn.§

(]
(n §h!i§jNn ! step)

[
§
§ · · ·! · · ·§ 0 · · · · · ·

)
: N (§§h!i§jNn

step := λp.§ · · ·! · · ·§ (Succn
]
· · ·
]
· · ·]p[§ · · ·

[
!
· · ·
[
§
) · · · · · · .

Base cases for nesting one and two With this preparation we can easily
create the smallest non-trivial iterated iterator of type L(N). It consists of
a list of length |n| with copies of x in the list cells:

�§
0 := λn, x.§

(](
nL(N) !

(
ConsN]x[!

))[
§
NilN

)

: N (§!N (§L(N).

Using ↑§!
N and then ↑§N , we can get the arguments for �§

0:

λnN .§
(
λm!N .§

(
�§

0]m[!

(
↑§!
N]m[!

))](
↑§!
N n

)[
§

)
: N (§§§L(N).

In order to go one step further, i.e. the next deeper nesting level, we have
to modify �§

0 in such a way that we also get another banged copy of the
input number in each list cell:

�§!
0 : λn, x.§ !

(](]
(n !(!N ⊗ L(N)) ! step)

[
§

!
]
]x[§

[
!
NilN

)
[

!

λl, r.r
)

: N (§!!N (§!L(N)

step := λp.!
(

]p[! λl, r.
(
ConsN §]l[! r

))
.

139

Embedding LFPL into Light Affine Logic with Fixed Points

Again, using the lifting term ↑§§
h!i§j

N , we are able to create the needed inputs
for �§!

0 :

λnN .§
(
λm!N .§

(
�§!

0]m[!

(
↑§!!
N]m[!

))](
↑§!
N n

)[
§

)
: N (§§§!L(N).

This can be used to provide �§
1, the equivalent of �§

0 for the next nesting
level:

�§
1 := λn, x.§

(](
nL(L(N)) !

(
ConsL(N)]x[!

))[
§
NilN

)

: N (§!L(N)(§L(L(N)).

This scheme can be continued. After nesting one and two, we will now
switch to the general case.

General case for arbitrary nesting For this we first need some helper terms
which take a number and another argument of generic type α with enough
bangs in front, and which produces a list with the length of the former and
copies of the banged α argument in the cells of the list, with the cost of one
!-modality. For the base case with only 2 bangs we get the following:

�1 := ΛαλnN , x§!!α.§ !
(]](
�′1 αnx

)[
§

[
!
λl, r.r

)

: ∀α.N (§!!α(§!(L(α))

�′1 := ΛαλnN , x§!!α.§ �′′1 : ∀α.N (§!!α(§!(!α⊗ L(α))

�′′1 :=

n τ ! λp.!

(
]p[! λy

!α, lL(α).y ⊗
(
Consα §]y[! l

))

§

base

τ :=!(!α⊗ L(α))

base :=!
]
]x[§

[
!
⊗Nilα .

For an arbitrary number of bang modalities we get the following with
the same idea, but of course many more boxes depending on the number of
bangs:

140

5.1. Iterating Iterators

�i := ΛαλnN , x§!!···!α.§ ! · · ·!
(]
· · ·
]](
�′i αnx

)[
§

[
!
· · ·
[

!
λl, r.r

)
· · ·

: ∀α.N (§ !! · · ·!︸ ︷︷ ︸
i+1 many

α(§ ! · · ·!︸︷︷︸
imany

(L(α))

�′i := ΛαλnN , x§!!···!α.§ �′′i : ∀α.N (§!! · · ·!︸ ︷︷ ︸
i+1 many

α(§! · · ·!︸︷︷︸
imany

(!α⊗ L(α))

�′′i :=

](
n !· · ·!(!α⊗ L(α)) ! step

)[
§

! · · ·!
]
· · ·
]
]x[§

[
!
· · ·
[

!
⊗Nilα · · ·

step := λp.! · · ·!
(]
· · ·]p[! · · ·

[
!
λy!α, lL(α).y ⊗

(
Consα §]y[! l

))
· · · .

Now, all ingredients are available to define the iterated iterator term of
arbitrary, but constant nesting level i in Light Affine Logic. It makes use
of all the �i terms from above, up to the nesting level we want to have:

�0...i := λxN .§ §

(]](
p§§
i+2 x

)[
§

[

§
λy, x0, x1, . . . , xi.t

)

: N (§! · · ·!︸︷︷︸
i times

L(· · ·L︸ ︷︷ ︸
i times

(N) · · ·).

t :=

(
�0 L(· · ·L(N)· · ·)xi

· · ·
(
�i−1 L(N)xi−1

(
�i N xi

(
↑§!i+1

N y
)))
· · ·
)
.

Intuitively speaking, the term (�0...i x) gives an i-dimensional cube of edge
size x with a copy of x in every atomic cell, the “(hyper-) cube of iterated
iterators” of dimension i.

Tuples on each nesting level Finally, another possible generalisation is the
tuple-wise duplication of each level in the iterated iterator, i.e. some con-
struction of type L(· · ·L(Nn)n · · ·). In other words, each sub-cube exists
n times. This will be needed later if more than one iterator appears in the
step of an iteration. This extension �n0...i is straight forward:

141

Embedding LFPL into Light Affine Logic with Fixed Points

�ni := ΛαλmN , x§!!···!α.§ ! · · ·!
(]
· · ·
]](
�′i mx

)[
§

[
!
· · ·
[

!
λl, r.r

)
· · ·

: ∀α.N (§ !! · · ·!︸ ︷︷ ︸
i+1 many

α(§ ! · · ·!︸︷︷︸
imany

(L(α)n)

�′i := ΛαλmN , x§!!···!α.§ �′′i : ∀α.N(§!! · · ·!︸ ︷︷ ︸
i+1 many

α(§! · · ·!︸︷︷︸
imany

(!α⊗ L(α)n)

�′′i :=

](
m !· · ·!(!α⊗ L(α)n) ! step

)[
§

! · · ·!
]
· · ·
]
]x[§

[
!
· · ·
[

!
⊗ nilnα · · ·

step := λp.! · · ·!
(

]p[! λy
!α, lL(α)n .y ⊗

(
consnα §

]
· · ·]y[! · · ·

[
!
ln
))
· · · .

And finally again the iterated iterator term, now with products of size n
on every level:

�n0...i := λxN .§ §

(]](
p§§
i+2 x

)[
§

[

§
λy, x0, x1, . . . , xi.t

)

: N (§! · · ·!︸︷︷︸
i times

L(· · ·L︸ ︷︷ ︸
i times

(Nn)n · · ·)n.

t :=

(
�n0 L(· · ·L(Nn)n· · ·)n x0

· · ·
(
�ni−1 L(Nn)n xi−1

(
�ni Nn xi

(
p§!i+1

N y
)))
· · ·
)
.

5.2. Embedding LFPL into Light Affine Logic with Fixed
Points

Now, that we know how to create the iterated iterators in LAL, we have to
implement the embedding. For that, first take another look at Figure 5.4
to get a picture of the idea. We switch to the variant of LAL which also has
fixed point types. In µLAL we can formulate inductive data types without

142

5.2. Embedding LFPL into Light Affine Logic with Fixed Points

iteration. With some more effort one could probably do something similar
in pure LAL, but this should not be our goal here.

Remark 5.1. Of course, Church numerals in LAL can also be used with-
out using all their iteration capabilities, i.e. just for case distinction and
no iteration. In this sense, we could also destruct a list Consτ by Consτ .
But, this case distinction will take place on the level of the list, and not
on the level of the data of type τ . Hence, the Church numerals are not
a flat data type that is needed for our purpose. For example, a list of
lists L(L(τ)) is not flat because the inner list is on one level higher:

∀α.!(L(τ)(α(α)(§(α(α).

In order to switch back to pure Light Affine Logic one has to find a flat
list data type, with the case distinction and the content of the list being
on one level.

5.2.1. Flat Iteration

Light Affine Logic allows a normalisation strategy by levels (compare [AR02]
and Section 2.42). The main issue in finding an embedding of LFPL, is to
place the impredicative iteration scheme of LFPL (compare the (It)-rule in
Definition 2.18) into the levels of µLAL. In Section 5.1.1 and Figure 5.4 we
already sketched the basic idea:

The iterated iterators of Section 5.1 can be used to implement LFPL’s
impredicative iteration scheme, but separated from the actual data, i.e.
the lists of type L(τ) in LFPL. The latter (i.e. the input) will be lifted –
once – into one µLAL-level, called the data level. In this they will “live” as
fixed-point type lists, i.e. without any iteration capability left.

The data level depends on the number of levels that are needed “below”
to build the iterated iterators (compare Section 5.1.2 and Figure 5.4). The
nested LFPL iterations will be translated into closed µLAL terms of the
type § · · · §(α(α), i.e. taking the base case of the iteration on the data
level, and producing the result of the iteration on the data level as well:

Definition 5.2 (Flat iteration term). The flat iteration terms Itni of
width n and depth i are defined as

143

Embedding LFPL into Light Affine Logic with Fixed Points

Itn0 := λlN .Λα.λf.§ λg.
(

](l α f)[§ g
)

: N (∀α.!(α(α)(§(α(α)

Itn1 := λlL(N)Λαλf.

§
(](

l §(α(α) ! λxN
n

, p§(α(α).§ λy.
(]

(]f [! x)
[
§ (]p[§ y)

))
[

§

§ λg.g
)

: L(N)(∀α.!(Nn(§1(α(α))(§2(α(α)

...

Itni := λlL
i
n(Nn)Λαλf.

§
(](
l §i(α(α) ! λxL

i−1
n (Nn), p§i(α(α).§i λy.

(]
(]f [! x)

[
§i(]p[§i y)

))
[

§

§i λg.g
)

: Lin(Nn)(∀α.!(Li−1
n (Nn)(§i(α(α))(§i+1(α(α)

were Lin(Nn) denotes

i︷ ︸︸ ︷
L(· · ·L(Nn)n · · ·), i.e. the type of the iterated it-

erator, and §n t denotes § · · · § t · · · with n boxes, and]t[§n denotes
]
· · ·]t[§ · · ·

[
§
with n nested holes.

Note that there is no ·n around the outer L(·) in Lin(Nn).
The actual data is of type α with enough modalities to be on the data

level, e.g. α := §§§B for data level 4 (not α := §§§§B because α is inside
a box in Church numerals). The flat iteration maps the data on the data
level §· · ·§α to the data level §· · ·§α, in other words: the mapping is flat,
the reason for the name flat iteration.
Moreover, we see that in the step term applied to Itni the iterated iterator

of type Li−1
n (Nn) is “available”. This means that we can use Itni−1 inside

this step term, and hence nest flat iterations. Clearly, this can be repeated
i times, i.e. a nesting of i requires that we start with Itni . In other words,
we count the iteration nesting in the original LFPL term, and then use the
flat iteration term Itni for an i that is big enough in order to simulate the
LFPL iteration in our embedding.
If we start with the flat iteration term Itni to simulate the outer iteration

144

5.2. Embedding LFPL into Light Affine Logic with Fixed Points

of the LFPL term, we have to use §§iα for the data (for some instantiation
for α), i.e. the data level is i+ 1 (plus the levels used to build the iterated
iterators in the first place).

5.2.2. Translation of LFPL

With the flat iteration in place, the translation of LFPL into Light Affine
Logic with fixed points can be defined. For LFPL-types τ ∈ TyLFPL and
typed LFPL-terms t ∈ TmLFPL the translation is denoted with φ(τ) and
Φni (t) where i and n must be chosen big enough for the iteration nesting in
t.

Definition 5.3 (Translation of LFPL types into µLAL).

φ : TyLFPL → TyµLAL

φ(♦) := δ

φ(B) := ∀α.α(α(α

φ(σ(τ) := φ(σ)(φ(τ)

φ(σ ⊗ τ) := ∀α.(φ(σ)(φ(τ)(α)(α

φ(σ × τ) := φ(σ)× φ(τ)

φ(L(σ)) := µα.((δ ⊗ φ(σ)⊗ α) + 1)

for some arbitrary type δ and φ(σ) × φ(τ) as in Equation 3.1 in section
3.1.2.

The translation of the LFPL-types is the canonical (flat) embedding into
µLAL. As described before, lists in LFPL are mapped onto the fixed-point
type. Hence, they loose the ability to “drive” an iteration, but are flat in
the sense that they do not need any modality anymore.

For the translation of the terms, we proceed in two steps: With φni (t)

we translate a typed LFPL-term t ∈ TmLFPL to a pseudo µLAL-term. In
the second step with Φni (t) we put around the necessary §-boxes to get a
(typable) µLAL-term.

Remark 5.4. We call φni (t) a “pseudo µLAL-term”, because it is not an
actual µLAL-term yet: it uses

]
· · ·]·[§ · · ·

[
§
-holes without the necessary

145

Embedding LFPL into Light Affine Logic with Fixed Points

§ · · ·§ · · · · boxes around, which are then added in Φni (t). Recall, that

the notation § · · ·]·[§ · · · is just a shorthand for § x =]·[§ in · · · .

Definition 5.5 (Translation of LFPL terms into µLAL).

φni (x) := vx

φni (tt) := Λα.λxλy.x

φni (ff) := Λα.λxλy.y

φni (consτ) := λdφ(♦)λxφ(τ)λlφ(L(τ)).{(inL d⊗ x⊗ l)}
φni (nilτ) := {(inR 1)}
φni (⊗τ,ρ) := λlλr.(l ⊗ r)
φni (λx.t) := λvx.φ

n
i (t)

φni (〈tτ , sσ〉) := 〈φni (t), φni (s)〉
φni (
(
b pσ×σ

)
) :=

(
φni (b)φ(σ×σ)(φ(σ)λp.

(
πφ(σ),φ(σ),0 p

)
λp.
(
πφ(σ),φ(σ),1 p

)
φni (p)

)

φni (
(
pτ×σ tt

)
) :=

(
πφ(τ),φ(σ),0 φ

n
i (p)

)

φni (
(
pτ×σ ff

)
) :=

(
πφ(τ),φ(σ),1 φ

n
i (p)

)

φni ((t s)) := (φni (t)φni (s)) due to ((−)

φni (
(
lL(τ) h♦(τ(σ(σ

)
) :=

λgφ(σ).

((](
Itni m

Lin(Nn)
∗ ρ ! step

)[
§i+1

g ⊗ φni (l)

)
φ(σ)λsλt.s

)

with

ρ := φ(σ)⊗ φ(L(τ))

step := λmLi−1
n (Nn)n.§i λpφ(σ)⊗φ(τ). (p ρ λsλt.((}t{φ(σ)(ρ left right) s))

left := λqλs′.
(
q λdφ(♦)λxφ(τ)λt′φ(L(τ)).(

(
φni−1(h) d x s′

)
⊗t′)

)

right := λu1λs′.s′ ⊗ (inR 1)

and finally

146

5.2. Embedding LFPL into Light Affine Logic with Fixed Points

Φni : TmLFPL → TmµLAL

Φni (t) := λmLin(Nn)n .§i+1 φni (t)

with πφ(τ),φ(σ),0, πφ(τ),φ(σ),1, 〈φni (t), φni (s)〉 as Equations 3.2, 3.3, 3.4 in
Section 3.1.2.
With m∗ we denote a projection mj of a tuple m for some j, such that

the linearity constraints are fulfilled.

The presented embedding is mostly canonical in the sense of embedding
a Linear System T-like calculus into Linear System F. The iteration case is
the only non-obvious one in this definition:
The variable m is a tuple of iterated iterators. It is bound in the step

term. Because there might be more than one iteration in an LFPL-term
t, there might be more than one free m∗ in the translation φni (t). But as
every LFPL step term h is closed and there are only finitely many of those
in a LFPL-term, the parameter n of the translation Φni can be chosen in a
way, that every m? can be bound in a linear way as component of the tuple
m.
When translating a term t into φni (t), some m∗ in the outer step term

might be free. Φni (t) binds these in the tuple mLin(Nn)n . The iterated
iterators of Section 5.1.2 can provide a term of such a type.
5.2.3. Example Insertion Sort

In order to illustrate the translation Φni with a concrete example, the In-
sertion Sort example is considered again. Insertion Sort is easily writable
in LFPL (compare [AS00, Hof99a] and Section 3.3.1). For the time being,
let us assume for simplicity that the natural numbers are atomic types in
LFPL and µLAL, i.e. denoted by N in either system with φ(N) = N. Oth-
erwise, the translation of L(N) = L(L(B)) would distract from the more
interesting parts.
We start with the LFPL-term:

≤ : N(N(N⊗ N, given term

insert := λd♦λxNλlL(N). ((l h x⊗ nilN) λyλl. (consN d y l))

h := λc♦λyNλpN⊗L(N). (p λp0λp1. ((≤ y p0) λaλb.a⊗ (consN c b p1)))

sort := λlL(N). (l insertnilN) .

147

Embedding LFPL into Light Affine Logic with Fixed Points

Here, for simplicity, ≤ is supposed to return a sorted pair of the two in-
puts (in contrast to the definition of ≤ from Section 3.3.1, which returns a
boolean as the result of the comparison; but this is a minor change).

The presentation of the translation starts from the outside, i.e. by trans-
lating “sort”. The nesting level of the iterations in Insertion Sort (compare
Section 5.1) is 2 (plus the iteration inside ≤, which we take for granted
here). Hence, the data level is one higher. This means that all data is
within 3 boxes.

Φn2 (sort) = λmL2
n(Nn).§ § § φn2 (sort)

φn2 (sort) = λvl. (φ
n
2 ((l insert))φn2 (nilN))) : φ(L(N))(φ(L(N))

φn2 ((l insert)) = λvlλg
φ(L(N)).

(
(
](
Itn2 m

L2
n(Nn)
∗ τ ! stepsort

)[
§3
g ⊗ φn2 (l))φ(L(N))λsλt.s

)

τ := φ(L(N))⊗ φ(L(N))

stepsort := λmL1
n(Nn)n .

§ λp. (p τ λsλt. ((}t{φ(L(N))(τ leftsort rightsort) s))

leftsort := λqλs′.
(
q λdλxλt′.(

(
φn1 (insert) d x s′

)
⊗ t′)

)

rightsort := λuλs′.(s′ ⊗ (inR 1)).

The step term of the LFPL term “sort” uses one nested iteration to im-
plement “insert”. With i = 2 for Φni (sort) we have the iterated iterators
mL1

n(Nn)n available to “drive” the insertion (compare the line for stepsort).
Hence, for the insertion we will use the flat iteration of level 1, i.e. Itn1 which
takes mL1

n(Nn)
0 as its argument:

φn1 (insert) = λvdλvxλvl.

((φn1 ((l h)) vx ⊗ {inR1}) φ(L(N))λvyλvl.{(inL vd ⊗ vx ⊗ vl)})

φn1 ((l h)) = λg.
(
(
]
(Itn1 m

L1
n(Nn)
∗ τ ! stepins)

[
§2
g⊗φn1 (l))φ(N⊗L(N))λsλt.s

)

τ := φ(N⊗ L(N))⊗ φ(L(N))

stepins := λmNn .

§ λp.
(
p τ λsλt.

((
}t{φ(N⊗ L(N))(τ leftins rightins

)
s
))

148

5.3. Conclusion and Outlook

leftins := λqλs′.
(
q λdλxλt′.(

(
φn0 (h) d x s′

)
⊗ t′)

)

rightins := λu1λs′.(s′ ⊗ (inR 1))

φn0 (h) = Φn0 (λc♦λyNλpN⊗L(N).
(
p λp0λp1.((≤ y p0)λaλb.(a⊗ (consN c b p1)))

)

= λvcλvyλvp.(
p λvp0λvp1 .((≤ vy vp0)λvaλvb.(a⊗ {(inL vc ⊗ vb ⊗ vp1)}))

)
.

As in both step terms there is only one iteration, we can choose n as low
as 1. The stepins term provides the iterator mNn of depth 0. This can be
used inside ≤ to compute the ordered pair.
Note that the term Φn2 (sort) has a symmetric/flat type. Hence, we could

iterate this again, in contrast to the implementation of Insertion Sort in
LAL in Section 3.3.1.3.

5.3. Conclusion and Outlook

In this chapter we have introduced an embedding of LFPL-terms into Light
Affine Logic with fixed points. The main contribution is the insight that one
can split LFPL-algorithms into the impredictively recursive structure and
the flat non-recursive part. The former can be simulated by iterated iter-
ators in µLAL, and the latter by a canonical embedding of the terms into
one level of µLAL. Therefore, iterated iterators capture the impredicative
iteration scheme of LFPL. Here, it is essential to spread this scheme over
multiple levels of µLAL because of the limited expressivity and normalisa-
tion complexity of one single level.

Data size and complexity in the embedding In LFPL the diamond ♦ plays
the role of money, and there is no closed term of type ♦ in LFPL. The only
way to create a list is by having free variables with ♦ in a positive position
in their types. Together with the linear typing of LFPL terms, this idea
gives a syntactical way to control the size of computed lists and therefore
of the complexity of the definable algorithms.
In the presented embedding into µLAL via Φni (t) the money role of the
♦ is not explicit anymore. Instead, ♦ is mapped to an arbitrary type δ.
Hence, φ(♦) = δ is not used anymore to control the complexity.

Which mechanism is taking over this control role in the embedding?

149

Embedding LFPL into Light Affine Logic with Fixed Points

We lift the input data (i.e. the lists) into the data level. There, lists
become fixed-point types, i.e. they do not have the capability for iteration.
Therefore, they do not contribute to the complexity. Instead, the input
data is used – at the same time – to construct the iterated iterators. These
do the actual work of iterating and their complexity depends polynomially
on the input data length (by correctness of the µLAL-calculus for PTime).
Because we know that during LFPL normalisation no lists are created

which are bigger than the input, we also know that the iterated iterators
do enough steps to completely destruct the lists on the data level. This is
the missing link between the complexity of the embedding and the original
non-size-increasing LFPL term.

Is the embedding compositional? On the first sight, one cannot naively
compose two embedded LFPL-algorithms Φni (t) and Φni (s). But, we can
do this by using φni (t) and φni (s):

φni ((t s)) = (φni (t)φni (s))

and then binding the iterated iterators by

Φni ((t s)) = λm.§o+1 (φni (t)φni (s)) .

Compared to Φitnt(t) and Φisns(s), we have to use i := max{it, is} and n :=

nt +ns, because, each of φni (t) and φni (s) can have free m? and all must be
bound by the tuple m in Φni ((t s)). Hence, next to this small adaption of
the meta variables i and n,Φni (·) is in fact compositional.

Is the embedding satisfactory? In a sense, we have exploited a property of
LFPL to make sure that the embedding does, what the original LFPL term
did. What we get by this, is an embedding, which keeps the structure of
LFPL terms to some degree. It is not as structure destructing as a Turing
Machine simulation. But still one can argue that the presented embedding
is not a completely structural one which would map the ♦ type to some
µLAL type, which plays exactly the same role. It is not clear whether
something like this could be done. After all, we still have a lot of freedom
to choose the δ type in order to make its role explicit in the embedding.

150

6
Understanding Light Affine Logic as a Variant of

System T

In this chapter we explore and try to understand Light Affine Logic as a
programming language. The main aim is to make LAL comparable to other
polynomial time calculi. We will concentrate on the central properties of
the logic when writing down programs.
Light Affine Logic is a variant of higher order propositional logic (Sys-

tem F), or from a programming point of view of the typed polymorphic
lambda calculus. While one is not forced to use certain standard encodings
(compare [Lag03]) for data types, usually Church encodings are chosen to
implement inductive types like numerals or lists. For instance, the com-
pleteness proofs for LAL of [AR02, AR00] go this route.
Our approach is to define a variant of System T, called Light Linear T

(short LLT!), which is modelled after the typing rules of LAL. The goal is
to get a system which captures the main ideas (e.g. the modalities, strati-
fication and so on) of LAL, but which is formally, as a System T variant,
much nearer to LFPL (compare Section 2.2), LT or BC than a higher or-
der propositional logic like LAL, but also polymorphic light lambda calculi
without constants like DLAL can be.

151

Understanding LAL as a Variant of System T

Remark 6.1. While being based on System T (instead of the logic Sys-
tem F), this choice seems to restrict the flexibility to choose also non-
standard data type encodings. Hence, we have to set some goal how
expressive LLT! must be in order to consider it as a sensible System T
correspondence of LAL. We have a very pragmatic attitude here: we
choose the standard arithmetic with Church numerals and the complete-
ness proofs [AR02, AR00] as a measure, in the sense that LLT! should
admit a very natural formulation of the algorithms used in those con-
texts. One focus will be the pull-out trick (compare Examples 3.15 and
6.21) which should be seamlessly supported by LLT!.
Our goal should not be to allow a complete embedding of LAL into our

LLT!. From theoretical point of view, the question of the existence of
this would be natural. But we do not want to go that route. Of course,
compared to a formal embedding of LAL into the new calculus, our goal
seems to be very vague. But in our view, the former does not tell much
about the practical use of LLT! to express algorithms in the system in
their natural formulation.

Our motivation is a better understanding of the differences and
common properties of the restrictions underlying (D)LAL, BC,

LT and the non-size-increasing LFPL.

There are first results in this direction about embeddings (and failed
attempts) of BC into LAL [MO04, NM03]. The arguments given are though
not very convincing as it is not clear whether their considered “sensible”
embeddings are general enough. For example in these works one looks for
a correspondence between normal/safe and the modalities ! and § of LAL.
It is concluded – mainly by using Beckmann’s and Weiermann’s example
(compare Section 3.1.3 and [BW96]) – that safe recursion is not compatible
with LAL’s strong normalisation property [Ter01]. In fact, recent work of
[Rov08a] seems to solve the problem of embedding BC into the LAL variant
Weak Affine Light Typing (WALT) which allows better control over the
normalisation order.
The approach of this work is different, as we define a system based on

Gödel’s T, which is much closer to BC, LT and LFPL. As argued in Remark
6.1 one might think, that this is a major restriction of possible embeddings
as there is no polymorphism in the calculus and therefore also no (non-
standard) implicitly defined data types. We argue though that this can
give a lot more freedom: Gödel’s T allows the addition of constants and

152

6.1. Preliminary Motivation – From Paragraphs to Levels

rewrite rules which have no direct correspondence in the System F world. In
Chapter 7 we will pursue this very idea by modifying the iteration constant.
In this chapter we introduce LLT! following the style of works about

LAL [AR02, AR00, BT04] (compare Section 2.3) – i.e. we introduce a term
calculus and a proof net calculus. The former seen as an easy way to
describe proof nets without huge graphical illustrations. The model of
computation, or better said the actual calculus LLT! are the proof nets.
The term system is just a notation for these.
The main reason for the choice to use proof nets for the computation is

to avoid complications arising from blocked redexes. These would appear
in the term calculus as a computation model without the addition of several
permutative conversion rules. These problems are easily circumvented by
using proof nets which abstract away the difference of terms which only
differ in the application of permutative conversions.

Structure of this chapter This chapter starts in Section 6.1 with a prelimi-
nary motivation of the concept of levels as a replacement of the §-modality.
In Section 6.2 the LLT!-calculus is formally introduced with the type system
for terms and the proof net calculus for the normalisation, and a number
of examples in Subsection 6.2.3 in order to get used to the syntax. Section
6.3 gives a completeness proof using a Turing Machine simulation, showing
that every PTime function can be computed by a LLT!-algorithm. The
core of the chapter is the normalisation of LLT! in Section 6.4 and its com-
plexity analysis in Subsection 6.4.1. Section 6.5 will motivate and discuss
the choice of constants in LLT! and the consequences for the calculus. The
chapter ends in Section 6.6 with a conclusion on the results, the drawbacks
of the calculus and an outlook of possible further work.

6.1. Preliminary Motivation – From Paragraphs to Levels

Before starting with the actual calculus LLT!, we want to give some intu-
ition of the concept of levels which will be used later on. For this section we
assume that the reader knows about the modalities of Light Affine Logic,
especially about stratification and the role of the paragraph: Light Affine
Logic (compare Definition 2.24) has the modalities ! (“bang”) and § (“para-
graph”) in its type system. There are two rules for the former:

153

Understanding LAL as a Variant of System T

∅ ` tτ

∅ `! t
!τ

(!0)
xσ ` tτ Γ ` s!σ

Γ `! x =]s[! in t
!τ

(!1)

and one rule for the latter:

−→
xρ,
−→
yσ ` tτ

−−−−→
Γ ` r§ρ

−−−−→
Σ ` s!σ

−→
Γ ,
−→
Σ ` § −→x ,−→y =

−→
]r[§,
−→
]s[! in t

§τ
(§)

6.1.1. Stratification

The key observation about the rules above is that they keep a kind of
symmetry, in the following sense:

• In (!1) the variable xσ is free in tτ in the premise. In the conclusion
the term is put into a box and gets the type !τ . At the same time, xσ

is replaced by a term s!σ. This symmetry is seen even better in the
proof net notation:

!

!τ

!σ

τ

σ
Πt

The proof net Πt is put into a box. It has one input of type σ and
the output of type τ . Outside the box the input is turned into !σ and
the output into !τ . In other words, ! is introduced for the input and
output at the same time.

• The same happens in the (§)-rule: the free variables
−→
xρ,
−→
yσ are re-

placed with terms
−→
]r[§ and

−→
]s[! and a box is put around. The box

term is typed as §τ , the subterms −→r and −→s as
−→
§ρ and

−→
!σ . In the

proof net notation the output of Πt of type τ is turned into §τ , and
the input contexts Γ1, Γ2 into §Γ1 and !Γ2:

154

6.1. Preliminary Motivation – From Paragraphs to Levels

§
......

§τ

§Γ2!Γ1

τ

Γ2Γ1

Πt

Hence, again the modalities are introduced for the output and the
input contexts at the same time.

The reduction rules of LAL are designed in a way that boxes can be dupli-
cated and merged, but the nesting depth of subproof nets never changes.
I.e., one can trace a node x during normalisation of a proof net, and it will
always have the same number of boxes around. This stratification property
is essential to allow a polynomial normalisation of a proof net.

Stratification of types If the number n of boxes around a node x (of type
τ) of a proof net (or a subterm node in a syntax tree) never changes, one
could also mark x with this very number directly, i.e. as a label n attached
to x. We call this label n the level of x. The reduction rules guarantee
that the level is constant for a given node during normalisation: it always
represents the number of boxes around the node.
We can even go a step further and put the level into the type, i.e. we

assign each type τ a level n, e.g. like in τn. A node x of type τn will be of
level n in this setting.
Why do we do this? The level in the types is clearly redundant because

the box structure around x already implies the value n. This redundancy
though allows us to drop the paragraph box and the paragraph modality
from the system altogether: we know that xτ

n

is of level n and therefore
has n boxes around. Because the !-modality is still explicit and its level is
annotated, we know the sequence of the n !- or §-modalities of a type τn.
For example, !2!4B7 means §§!§!§§B.

Without the paragraph How does the stratification property translate to
this setting with levels in the types? First of all, we do not need the notation
]r[§ anymore to mark that the §-modality is to be removed from the types

155

Understanding LAL as a Variant of System T

of −→r in the (§)-rule. Hence, the (§)-rule of LAL turns into a much simpler
one, which only removes !-modalities from the types of −→s :

−→
yσ

l

` tτ
n
−−−−−−−→
Σ ` s!mσn

′

−→
Σ ` t[−→y :=

−−→
]s[!m]τ

n
(§′)

There is no need for the vector notation anymore, because multiple in-
stances of the vector-less rule

yσ
l

` tτ
n

Σ ` s!mσn

Σ ` t[y :=]s[!m]τ
(§′′)

can do the same. Finally, we get rid of this substitution by transforming it
into a simple !m-elimination rule (or]·[!m -introduction respectively):

Σ ` t!
mσn

Σ `]t[!m
σn

(§′′′)

Level restrictions What are the necessary restrictions in (§′′′)? Because a
term of type σn has one box less around itself than a term of type !mσn,
the restriction n ≥ m+ 1 should certainly hold. Why not even n = m+ 1?
Imagine the type !0B3. This corresponds to !§§B in LAL. Similarly, !0B1

corresponds to !B in LAL. Hence, n = m + 3 is a reasonable instance of
the (§′′′)-rule.

Absolute vs. relative levels In Light Affine Logic the boxes (and by the
(!0/1)- and (§)-rules also the types) describe the level relatively, in the fol-
lowing sense: a term of type §§B is a boolean value, whose actual value is

computed inside two nested §-boxes, e.g. t := § § tt , but also e.g.

t′ := §

(
λx.§]x[§ §

]
]b[§

[
§

)
.

The level of the boolean in either case is 2, viewing it on the basis of t and
t′. Clearly, the level of the boolean in t′′ := § t is three though.
Conversely, with the concept of levels in the types, the level is a fixed and

absolute natural number, that does not depend on the term the considered

156

6.1. Preliminary Motivation – From Paragraphs to Levels

node is subterm of. The lowest level is 0, if there is no box around at all.

Remark 6.2. Putting fixed values into the types seems to destroy mod-
ularity because functions cannot easily be composed anymore. This is
not a problem though because one can type terms with meta variables
for the levels, i.e. in the style of typing schemes. For instance, we can
say fB

n(Bn+1
` (f tt)B

n+1
for every natural number n ∈ N. We use

this technique in the examples later on in Section 6.2.3.

6.1.2. Translation of Types

The motivation in the previous subsection suggests that levels and the §-
modality are very similar. There should be some kind of translation between
types that use the § and those using levels in types.

From levels to §-boxes We can translate types with levels back to those
with the §-modality:

Φn(!p(τ q)) :=§p−n!(Φp+1(τ q)) (6.1)

Φn((σp(τ q)min{p,q}) :=§min{p,q}−n(Φmin{p,q}(σq)(Φmin{p,q}(τ q)) (6.2)

Φn((σp ⊗ τ q)min{p,q}) :=§min{p,q}−n(Φmin{p,q}(σq)⊗ Φmin{p,q}(τ q)) (6.3)

Φn(Bp) :=§p−nB (6.4)

Φn(Lp+1(τ q+1)) :=§p−n∀α.!(Φp+1(τ q+1)(α(α)(§(α(α).

(6.5)

The parameter n describes that Φn(τp) should be the translation of τ rel-
ative to level n, i.e. Φ2(B3) = §B and Φ0(B3) = §§§B. Clearly, n ≤ p, q is
necessary for all the cases above.
From Clause 6.1 we get p+ 1 ≤ q in !p(τ q).
From Clause 6.5 we get p+ 1 ≤ q + 1, i.e p ≤ q in Lp(τ q).
For n = 0 we get back the intuition, that the levels p, q are the number

of boxes (or !, § in the types) around a term (or type).

From §-boxes to levels The translation Φn(τp), as given above, is not sur-
jective. It is not, even if we consider those LAL-types only which are built
from Church-style lists, booleans, products, functions and !-, §-types: with
the pattern on the left side we restrict the function space and the product

157

Understanding LAL as a Variant of System T

space to those types, whose level is the minimum of p and q (Equations 6.2
and 6.3). This is a general design choice that we follow within this chapter.

Remark 6.3. In Light Affine Logic there are the types §σ (§τ and
§(σ (τ). The latter is stronger in the sense that the following term
(and the corresponding proof net) exists:

λf§(σ(τ), x§σ.§
(

]f [§]x[§

) §τ

: §(σ(τ)((§σ(§τ).

With the decision to use the minimum in Equations 6.2 and 6.3 (and
later in Definition 6.4), we restrict the types in this chapter to those of
the shape §(σ(τ): a λ-abstraction for this type is inside a box, hence
it is assigned the minimum of levels of the input and output type.
Conversely, the level of a λ-abstraction for §σ (§τ would not be

the minimum of σ and τ , but smaller. Hence, we do not consider those
function spaces at all. This choice is kind of arbitrary, but motivated
by the reduced number of level annotation in the types: we can drop
the level from the (and ⊗ type constructors. Moreover, we did not
encounter any example which needs the §σ(§τ -type.

With the given motivation for levels in the types we can now proceed
and introduce the calculus formally.

6.2. Syntax

In the following, Light Linear T with ! (LLT!) is introduced, a linear variant
of System T with iteration, explicit sharing via a multiplexer

n
C and only

one kind of box, namely !n · . The role of the § in LAL will be played by
levels on the ground types.

Definition 6.4 (Types). The set TyLLT!
of linear types and the level of a

type `(τ) ∈ N0 are defined inductively by:

σ, τ ::= Bn | σ(τ | σ ⊗ τ | Ln(σ) | !nσ

`(ρ) :=

{
n if ρ ∈ {Bn, Ln(σ), !nσ}
min{`(σ), `(τ)} otherwise

158

6.2. Syntax

with the side condition `(σ) ≥ n for Ln(σ) and `(σ) > n for !nσ.

Definition 6.5 (Constants). The set CnstLLT! of LLT! constants:

ttn,ffn : Bn

Casenσ : Bn(σ(σ(σ with `(σ) ≥ n
Casenτ,σ : Ln(τ)((τ (Ln(τ)(σ)(σ(σ with `(σ) ≥ n
consnτ : !n(τ (Ln+1(τ)(Ln+1(τ))

nilnτ : Ln+1(τ)

⊗nτ,ρ : τ (ρ(τ ⊗ ρ with `(τ ⊗ ρ) = n

πnτ,ρ,σ : τ ⊗ ρ((τ (ρ(σ)(σ with `(σ) ≥ `(τ ⊗ ρ) = n

Itnτ,σ : Ln+1(τ)(!n(τ (σ(σ)(σ(σ

whose level is the level of their type.

Note that the restrictions on types above imply restrictions on the possible
types of the constants. E.g., by `(τ (σ (σ) > n as the restriction for
!n(τ (σ(σ) in the type of Itnτ,σ it follows that `(τ) > n and `(σ) > n

must hold.

We will sometimes leave out the level annotation on the ground type, e.g.
write !nB for !nBn+1, if it is clear from the context.

The importance of the levels will become clearer in Section 6.4. Essen-
tially, it will allow us to put an order on the redexes, such that a polynomial
bound can be proved for the number of normalisation steps (see Theorem
6.42).

6.2.1. Terms

The used syntax is in analogy to the presented term system for Light Affine
Logic in Section 2.3.2. It will mainly be used as the basis to define (sensible)
proof nets later on. For the sake of brevity, we will also liberally use the
term syntax to write out examples through out this text although the actual
computation will be done on proof nets.

159

Understanding LAL as a Variant of System T

Definition 6.6 (Terms). For a countably infinite set V of variable names
the set of (untyped) light linear terms TmLLT! is defined inductively by:

s, t ::= xτ | c | λxτ .t | (t s) | !n t | !n x =]s[!n in t |]t[!n |
(
s
n
C
x1

x2 t
)

with types τ ∈ TyLLT!
, c ∈ CnstLLT! , n ∈ N0 and x, x1, x2 ∈ V . Terms

which are equal up to the naming of bound variables are identified.

Variables Free and bound variables are defined as for Linear System T in
Definition 2.10 plus the additional clauses:

FV(!n t) := FV(t)

FV(!n x =]s[!n in t) := FV(s) ∪ (FV(t) \ {x})

FV(]t[!n) := FV(t)

FV(
(
s C

x1
x2 t

)
) := FV(s) ∪ (FV(t) \ {x1, x2}).

Subterms Subterms are defined as for Linear System T in Definition 2.10
with the following additional clauses:

t CLLT! !
n t

s, t CLLT! !
n x =]s[!n in t

t CLLT!]t[!n

s, t CLLT!

(
s
n
C
x1

x2 t
)
.

We call]s[!n a hole in the box !n x =]s[!n in t .

Notation 6.7. We write !n t[x :=]s[!n] instead of !n x =]s[!n in t as short-

hand, but in fact s is not a subterm of t in !n x =]s[!n in t . That is why

we can not officially use the notation !n t[x :=]s[!] which would imply

s E!n t[x :=]s[!] .
As shorthand we will also use an applicative style (compare Applica-

tive System T in Section 2.1.1.3). We write
(
pτ⊗ρ λlτ, rρ.sσ

)
instead of

(
πnτ,ρ,σ p

τ⊗ρ λl, r.sσ
)
and the same for the Casenσ-constant:

(
bB

n

lσ rσ
)
in-

160

6.2. Syntax

stead of (Casenσ b l r). Moreover, we are quite liberal in leaving out types or
levels whenever they are clear from the context, or to add types (as upper
index) to subterms to make understanding easier for the reader.

The usual projections for products can be easily defined as

πn0 := λpτ⊗ρ.
(
πnτ,ρ,τ p λl, r.l

)

and
πn1 := λpτ⊗ρ.

(
πnτ,ρ,ρ p λl, r.r

)
.

Definition 6.8 (Term typing rules). A context is an (unordered) finite
multiset of type assignments from the variable names V to types, with the
context condition that no variable is assigned different types at the same
time.
Untyped terms are assigned types using the ternary relation ` between

a context Γ, a untyped term t ∈ TmLLT! and a type τ ∈ TyLLT!
, denoted

Γ ` tτ , via the following rules:

Γ, xτ ` xτ
(Var)

c constant of type τ
Γ ` cτ

(Const)

Γ, xσ ` tτ

Γ ` (λxσ.t)σ(τ ((+)
Γ1 ` tσ(τ Γ2 ` sσ

Γ1,Γ2 ` (t s)τ
((−)

∅ ` tτ

∅ `!n t
!nτ

(!0) Γ ` t!
nτ

Γ `]t[τ!n
(]·[!n)

xσ ` tτ Γ ` s!nσ

Γ `!n x =]s[!n in t
!nτ

(!1)

Γ1, y
!nσ
1 , y!nσ

2 ` tτ Γ2 ` s!nσ

Γ1,Γ2 `
(
s
n
C
y1

y2 t
τ
)τ (C)

where Γ1,Γ2 denotes the multiset union which maintains the context con-
dition.
In ((+) there must not be x in Γ, in (C) no y1, y2 in Γ1 and in (!1) no x
in Γ.

161

Understanding LAL as a Variant of System T

In (!0) and (!1) the term t must not have subterms of level ≤ n.
The level of a term is the level of its type.

The typing rules are syntax directed . Each subterm s E t of Γ ` tτ

appears as the premise of some rule in the typing derivation of t (or in the
context in the case of variables).

Fact 6.9. The restrictions of the (!0)- and (!1)-rules imply that t does not
have occurrences

• of constants of level ≤ n or

• subterms of shape]·[!i with i ≤ n or

• !i · -boxes with i ≤ n or

•
(
·
i
C
y1

y2 ·
)

with i ≤ n.

Definition 6.10 (Level of a subterm). The level of a subterm s E t is the
level `(σ) of its type σ. The maximal level Lt of a well-typed term t is the
maximal level of its subterms.

6.2.2. Proof Nets

For the definition of proof nets we closely follow – mutatis mutandis –
Section 2.3.3 about Light Affine Logic.

Definition 6.11 (Proof net structure). A proof net structure is a labelled
finite directed graph built from links (the edges) and nodes

λ
!n !n

@] [
!n

cΠt Πt

162

6.2. Syntax

with their given in- and output degrees and the following properties:

1. Each link is labelled with a type in TyLLT!
, satisfying the restrictions

given by the type annotations of the nodes’ in- and output links with
σ, τ ∈ TyLLT!

, τc the type of c ∈ CnstLLT! and Πs,Πt proof net
structures in

λ @

σ

σ!τ

σ!τ σ

Γ1 Γ2Γ
(!−)(!+)(Var)

σ c
τc

(Const)

Πt Πt Πs

τ

!n !n

!nτ !nτ

!nσ

!nτ

!nτ!nτ

σ

(!0) (!1)(C)
Γ1

Γ2

σ

!nτ

] [
!n

(]·[)

Πt Πt

Πt

Πs

τ
ττ

2. There is exactly one �• node.

3. The Πt in every !n-box is a proof net structure having all the ◦-,
�•-nodes laid out as displayed.

We call

• the ◦-nodes input ports or free variables,

• the •-nodes output ports or weakening ports,

• the �•-node the principal output port of the proof net structure,

• the
`
-nodes multiplexers,

163

Understanding LAL as a Variant of System T

• the output link of type σ in a λ-node, with another output link σ(τ ,
binding link or binding port,

• and the]·[!n -nodes holes on level n.

The type of a (non-output) node is the type of its (non-binding) output
link.
The type of an output node is the type of its input link.
For (!0) and (!1) we say that Πt is the the proof net structure of the box.
A proof net structure is called closed if it has no input ports.
Nodes without a path to the principal node are called garbage. A proof
net structure Π′ is called cleanup of Π if Π′ is created from Π by removing
all garbage nodes and closing potential binding links or multiplexer output
links with a weakening port.

Remark 6.12. Cleaning up a proof net structure after a reduction –
at least in the simple tree-like setting with sharing here – is a simple
task which is at worst linear in the proof net size. Hence, we will not
study this procedure in detail. Basically, after each reduction where a
subproof net Πs is “unlinked” from a node one can trace back this Πs

to do the cleanup in a very efficient way. Hence, we will assume in the
reduction rules further down that the cleanup is always done implicitly
when firing a redex, such that we can always assume to have a clean
proof net before and after each redex.

The boxes in a proof net create a nesting structure, i.e. there are possibly
proof nets nested in boxes, and proof nets nested in nested proof nets and
so on. Technically the nested proof nets do not directly belong to the graph
that a proof net is. Hence, we introduce the concept of nested nodes:

Notation 6.13. We use the term nodes of a proof net structure Π for the
graph-theoretic nodes of Π.

We use the term nested nodes of a proof net structure Π

• for nodes of Π

• and for nested nodes of a proof net structure of a box of Π.

164

6.2. Syntax

Definition 6.14 (Subproof net structure). A subproof net structure Π′ of
a proof net structure Π is either

• derived from a subgraph of Π with the edges which lay only “half”
inside connected to additional input and (principal) output ports or

• a subproof net structure of a proof net structure Πt of a box in Π.

Definition 6.15 (Proof net). A proof net structure Πt is called a proof
net if Πt is the image of the typing derivation Γ ` tτ under the mapping
which recursively translates each term typing rule of Definition 6.8 to the
corresponding proof net structure rule in Definition 6.11.
The output link coming from the conclusion of the typing rule at the root

of Γ ` tτ is marked as principal node �• in Πt. Free variables are turned
into input links, not appearing bound variables into non-principal output
links.
We call a proof net Π a proof net of type τ (denoted with Πτ) if τ is the

type of the principal output node.
A subproof net (short a subnet) of a proof net for the term tτ is a proof

net of a subterm s E t.

Note that the translation of the arrow introduction ((+) that types Γ `
λxσ.tσ(τ with x not free in t uses a weakening ports for the “loose end”
of the binding link. In the type system of the terms we do not use explicit
weakening though for sake of simplicity. In the proof nets weakening is
explicit by (non-principal) output nodes.

Fact 6.16. The restrictions of the typing rules (!0) and (!1) of Definition
6.8 imply that the subnet Πt of a !n-box in a proof net Π does not have
occurrences of

• constants of level ≤ n or

•]·[!i -nodes with i ≤ n or

• !i · -boxes with i ≤ n or

165

Understanding LAL as a Variant of System T

• multiplexers
i
C with i ≤ n

in analogy to Fact 6.9 for terms.

Remark 6.17. We have no explicit restriction about nodes of lower level
in boxes for proof nets. Instead this is a consequence that a proof net is
the image of a term into the proof net language.

The translation from terms to proof nets is mostly just the transformation
of a term to its parse tree. The only exception is the image of the con-
traction rule (the multiplexers), which is not faithful because it drops the
information about the position of the (C) in the typing derivation (more
about this in Section 6.2.4). Hence, not every subproof net structure cor-
responds to a subterm, but the converse of course holds:

Fact 6.18. Let Πs be the subproof net of a proof net Πt for the term tτ

with s E t as the subterm for Πs. Then Πs is a subproof net structure of
Πt.

Definition 6.19 (Paths and proper paths). Mutatis mutandis like Defini-
tion 2.34.

Fact 2.35 and Remarks 2.36, 2.37 about paths apply here as well.

Definition 6.20 (Level of a node, level of a proof net). For a nested node
s the level of s is the level of the its type. The maximal level n of nested
nodes in Π is denoted by LΠ. The level of a proof net is the level of the
principal node.

Each node, which is not input or output node, in a proof net Π for the
term tτ corresponds to a typing rule in the typing derivation of tτ . Its
(non-binding) output link corresponds to a subterm of t therefore, and the
other way round. Hence, we get Lt = LΠ, i.e. both concepts of a level in
terms and proof nets are the same.

6.2.3. Examples

In order to get an idea of the syntax, we start with some example terms:

166

6.2. Syntax

Example 6.21 (Identity). The most basic algorithm we will present is
the iteration of the consτ -constant.
First, let us formulate this very naively in Light Affine Logic (↑ as the

§-lifting, see Remark 6.25):

L(τ) := ∀α.!(τ (α(α)(§(α(α)

consItLAL := λlL(τ).
(
l L(τ) ! step § Nilτ l

)
: L(τ)(§L(τ)

step := λxλt.Λαλf.§ λb.
(

]f [!]↑x[§

(
](t α f)[§ b

))
.

The type is not symmetric (i.e. not L(τ)(L(τ)), hence this algorithm
is not the real identity. But one can do better:

consIt′LAL := λlL(τ).Λαλf.§ λb.
(](

l α ! λxλt.
(
]f [! x t

))[
§
b

)

: L(τ)(L(τ).

The trick here is to pull out the abstractions Λαλf in front of the iter-
ation itself (compare “pull-out” trick in Example 3.15). This works be-
cause the step term only uses f once. It is questionable though whether
this is still the intended iteration of the consτ because of the non-local
nature of the transformation.
In our LLT!-system, the simple cons-iteration can be implemented

directly without any trick whatsoever:

consItLLT! := λlL
1(τ).

(
It0
τ,L1(τ) l cons

0
τ nil

0
τ

)
.

Example 6.22 (Split). The split algorithm, a central part of Merge
Sort and in a slightly modified shape with a pivot element in Quick Sort,
is non-size-increasing as it only distributes a list into two new lists. In
our system LLT! the resulting type is symmetric:

splitLLT!
:= λlL(τ).

(
π1

1

(
It0
τ,σ l !

0 s tt1⊗nil0τ⊗nil0τ
))

σ := B1⊗L1(τ)⊗L1(τ)

167

Understanding LAL as a Variant of System T

s := λx, p.
(
p λbB

1
, l, r.

(
t
]
cons0

τ

[
!0
x l r

))

t :=
(
b λc, x, l, r.(ff1⊗(c x l)⊗r)λc, x, l, r.(tt1⊗l⊗(c x r))

)
.

Hence, one can iterate the splitLLT!
-term in another iteration.

The same algorithm, written in traditional Light Affine Logic, is not
symmetric (like consItLAL above), or it will get a somehow odd result
type, which is different from the expected (and hoped for) pair of lists:

L(τ) := ∀α.!(τ (α(α)(§(α(α)

splitLAL := λlL(τ)Λα, βλf.§ λa, b.
(
π1

(](
l B ⊗ α⊗ β ! s

)[
§
ff ⊗ a⊗ b

))

: L(τ)(∀α, β.
!((τ(α(α)⊗ (τ(β(β))(§(α(β(α⊗ β)

s := λx, p.
(
p λb, q.

(
q λl, r.

(
t]f [! x l r

)))

t := (b λc, x, l, r.(ff⊗((π0 c) x l)⊗r)λc, x, l, r.(tt⊗l⊗((π1 c) x r))) .

The type ∀α, β.!((τ (α(α)⊗(τ (β(β))(§(α(β(α⊗β)

is some kind of iterator type for two interconnected iterations which can
not be used independently in full generality.

Remark 6.23. This example about the split function and its unusual
type in LAL is actually a strong hint that a direct embedding of LLT!

into LAL is not possible. The design of LLT! is deeply motivated by the
seamless integration of the pull-out trick into the type system. Clearly,
the pull-out trick applies to the split algorithm as shown above, and
LLT! easily types splitLLT!

therefore. In LAL though, the application
of the pull-out trick twice, i.e. for both result lists, cannot be done in a
clean way, independently from each other.

Example 6.24 (Arithmetic). The usual unary polynomials with N :=

L(B) for unary numbers by ignoring the boolean value (compare Section
3.3.2.3 for the LAL version):

addn := λxL
n+1(B), yL

n+1(B).
(
ItnB,Ln+1(B) x cons

n
B y
)

168

6.2. Syntax

multn := λxL
n+1(B), y!nLn+2(B).
(
ItnB,Ln+2(B) x !n λb, p.

(
addn+1]y[!n p

)
niln+1

B

)
.

Example 6.25 (Lifting). By induction on the type we get coercions
for the (data) types

σ, τ ::= Bn | σ ⊗ τ | Ln(σ) | !nσ

from τ to the lifted version ↑τ , one level higher. I.e., in ↑τ every ground
type is lifted, but the levels of the !i stay the same:

↑nBn := λbB
n

.
(
CasenBn+1 b ttn+1 ffn+1) : Bn(Bn+1

↑nσ⊗τ := λp.
(
p λl, r.

(
↑n
′
σ l

)
⊗
(
↑n
′′
τ r

))
: pσ⊗τ (p↑σ⊗↑τ

where n = min{n′, n′′}

↑nLn(σ) := λl.
(
Itnσ,↑Ln(σ) l !

n step niln↑σ
)

: Ln(σ)(Ln+1(↑σ)

step := λx, p.
(]
consn↑σ

[
!n

(↑nσ x) p
)

↑n!nσ := λs.!n ↑nσ]s[!n :!nσ(!n(↑σ).

Remark 6.26. The lifting of the function space σ(τ does not work
as easily because σ appears negatively. Hence, one would have to lift
the whole term recursively, not only a variable of that type. Otherwise,
redexes inside the function definition would be of lower level. Therefore,
they could be activated only after the outer beta-reduction takes places.
This contradicts the normalisation by levels.

Example 6.27 (!-lifting). As in Light Affine Logic, the lifting into
banged types is not possible in such a general way. The reason is that
!n-boxes can only have one hole]·[!n , but data types other than Bn

have more than one component. Lifting each might be possible (e.g.
via σ(!n↑σ and τ(!n↑τ), but combining them into one data type
(e.g. !n(↑σ⊗↑ τ)) will not work, because then the]·[!n -holes of either

169

Understanding LAL as a Variant of System T

component will have to appear as holes of the combined term. The
same argument applies to the list type Ln(σ).
But fortunately, some types can be lifted into a banged version. Espe-

cially the common type Ln+1(Bn+1), that is used to represent natural
numbers, can be lifted to !n+1Ln+3(Bn+3):

⇑nBn := λb.

(
Casen!nBn+1 b ! ttn+1 ! ffn+1

)

⇑nLn+1(Bn+1) := λlL
n+1(Bn+1).

(
ItnBn+1,σ l !

n step !n+1 niln+2
Bn+3

)

σ :=!n+1Ln+3(Bn+3)

step := λx. (xλp.c0 λp.c1)

c0 :=!n+1 (]consn+2
Bn+3

[
!n+2 tt]p[!n+1

)

c1 :=!n+1 (]consn+2
Bn+3

[
!n+2 ff]p[!n+1

)
.

Note here, that the !n+1-boxes in c0 and c1 seem to have two holes each,
on the first sight. But in fact, the first]·[!n+2 around the consn+2

Bn+3 is a
level n+ 2 hole, which is typed via the (]·[!n+2)-rule, and not via (!1).

6.2.4. Connection between Terms and Proof Nets

Each typed term can be translated into a proof net according to the rules
in Definition 6.15. The multiplexers in the terms are replaced by the proof
net multiplexers, as shown in Figure 6.1a.
There is also a natural way to translate the proof net multiplexers back

to terms by β-expansion, i.e. “abstracting out” the non-linear subnet s (see
Figure 6.1c). Though, this translation is not uniquely defined because it is
not clear at which position the (C) is to be inserted in the typing derivation.
Consider the proof net on the left in Figure 6.1c. Both syntax trees on the

right are valid term representations of the proof net. Hence, proof nets and
terms are different, though a proof net can also be seen as the set of those
terms which result in the same proof net. In fact, we will compute with
the proof net. In this sens, our term syntax is just a way to define proper
proof net structures which have the shape of a parse tree with sharing.

Our model of computation is the proof net, not the lambda term.

170

6.2. Syntax

Γ1,Γ2 !
(
s !x1

x2
t
)τ !

s t

Γ1
Γ2

term
Γ1

Γ2

syntax tree proof net

Πt

Πs

(a) From LLT!-terms to proof nets

Γ1

Γ2

proof net

t

s

@

Γ1

Γ2

λ

term !

after
β expansion

Πt

Πs

(b) From proof nets back to LLT!-terms:
we drop the multiplexer and do a β-
expansion, which gives the picture on the
right. As the term system should be lin-
ear, the λ- and the @−node are merged
into a new C-node, which is a binary
binder (hence in the figure there are two
“binder” lines going down).

t2

t1

t2

t1!

!

(1) (2)

s

s

or

Πt1

Πt2

Πs

(c) Lack of uniqueness in the translation from multiplex-
ers in proof nets to LLT!-terms: both interpretations
of the proof net are valid, in the sense of the transfor-
mation shown in Figure (b).

Figure 6.1.: Translating multiplexers between LLT!-terms and proof nets

171

Understanding LAL as a Variant of System T

Remark 6.28 (Permutative Conversions). The study of “real” lambda
calculus formulations of logics with multiplexers has been done before
[Ter01, BT04]. In [BT04] the role of the !-modality in the types is
drastically reduced by only allowing ! on the left of an arrow (. The
resulting calculus DLAL is still complete for PTime and does not have
the issues of permutative conversions, but the new type system forces
global adaptions of algorithms to fit into the new typing rules.
The main tool of Terui [Ter01] is to add two permutative conversions:

• for two (C) rules in a row

• and for (C) and ((−) in a row, where (C) blocks a beta redex,

namely the following:

Γ1, y
!nσ
1 , y!nσ

2 ` tτ
Γ2, x

!nσ
1 , x!nσ

2 ` sρ Γ3 ` r!nσ

Γ2,Γ3 `
(
r
n
C
x1

x2 s
)!nρ

(C)

Γ1,Γ2,Γ3 `
((
r
n
C
x1

x2 s
)
n
C
y1

y2 t
τ
)τ (C)

l (CC -pm)

Γ1, y
!nσ
1 , y!nσ

2 ` tτ Γ2, x
!nσ
1 , x!nσ

2 ` s!nσ

Γ1,Γ2, x
!nσ
1 , x!nσ

2 `
(
s
n
C
y1

y2 t
)τ (C)

Γ3 ` r!nρ

Γ1,Γ2,Γ3 `
(
rρ

n
C
x1

x2

(
s
n
C
y1

y2 t
))τ (C)

and

Γ1, x
!nρ
1 , x!nρ

2 ` tσ(τ Γ2 ` rρ

Γ1,Γ2 `
(
r
n
C
x1

x2 t
)σ(τ

(C)
Γ3 ` sσ

Γ1,Γ2,Γ3 `
((
r
n
C
x1

x2 t
)
s
)τ ((−)

l (C@-pm)

Γ1, x
!nρ
1 , x!nρ

2 ` tσ(τ Γ3 ` sσ

Γ1, x
!nρ
1 , x!nρ

2 ,Γ3 ` (t s)τ
((−)

Γ3 ` sσ

Γ1,Γ2,Γ3 `
(
r
n
C
x1

x2 (t s)
)τ (C)

172

6.3. Completeness for Polynomial Time

Both conversions are indeed permutative conversions in the usual sense:
observe that in the (C)-rule the type of the conclusion also appears as
the type of the first premise. This give raise to the following two blocked
redexes which can be activated by applying (CC -pm) or respectively
(C@-pm):

((
r
n
C
x1

x2 !n s
)
n
C
y1

y2 t
) CC-pm
−→n

(
rρ

n
C
x1

x2

(
!n s

n
C

y1

y2
t
))

((
r
n
C
x1

x2 λxt
)

s
) C@-pm
−→n

(
r
n
C
x1

x2 (λxt s)
)
.

In the first case a multiplexer redex is blocked because the box !n s

cannot be duplicated with the multiplexer on the right of it. In the
second case the β-redex of λxt and s is blocked. In either case, the C-
node blocks the redex, while after the permutative conversion the redex
is visible and can be fired.
The resulting lambda calculus λLA is shown to be strongly normal-

ising in PTime [Ter01], and there is no reason to expect that the same
cannot be done with a lambda version of LLT!. Though, for the sake of
simplicity, for our purposes we will stick to the easier proof net calculus
which does not have these issues.

6.3. Completeness for Polynomial Time

For the (extensional) completeness proof we use a Turing Machine simula-
tion which is supposed to run polynomially many steps in the size of the
input.

Lemma 6.29. Every boolean function f : Bk → Bl is expressible in LLT!

as a closed term of type Bn ⊗ · · · ⊗Bn︸ ︷︷ ︸
k many

(Bn ⊗ · · · ⊗Bn︸ ︷︷ ︸
l many

.

Proof. Using theCasenBn constant create a big case distinction on the input
s(Bn)k . In every branch return the output f(s) build up only by constants
ttn, ffn and ⊗nBn,Bn .
The term can get big, but is still only of constant size for the simulation.

We code the tape of the Turing Machine as a list T := Ln+1(A⊗P) with

173

Understanding LAL as a Variant of System T

• the alphabet A := (Bn+1)na , na ∈ N, and

• a boolean marker P := Bn+1 for the current position on the tape (tt
iff the head is at that position).

The number of states of the Turing Machine is finite and can be represented
by S := (Bn+1)ns for some ns ∈ N.
The computation of the transition function is done by an iteration over

the tape tT . For the step term we use the following names for values before
the update:

• aA the old character,

• mP
p the marker of the previous position,

• mP the marker of the current position,

• mP
n the marker of the next position,

• sS the current state.

The new values after the update are a′,m′p,m′,m′n, s′. For each position
on the tape we can compute the new character a′, the new marker m′, the
current state s and the new state s′ with a boolean function

f(a,mp,m,mn, s) = a′ ⊗m′ ⊗ s⊗ s′A⊗P⊗S⊗S .

As the iteration type we use P (P ⊗ T ⊗ S ⊗ S, which stands for

λmn. . . .m⊗
(
]consnA⊗P [!n a

′ ⊗m′ tl
)
⊗ s⊗ s′

With this we get the following transition function:

transition := λrT⊗S .
(
r λt, s.

(
ItnA⊗P,P(P⊗T⊗S⊗S t !n step’ base’

))T⊗S

base′ := λmn.ff ⊗ nilnA⊗P ⊗ s⊗ (tt⊗ · · · ⊗ tt)

step′ := λxA⊗P , pP(P⊗T⊗S⊗S ,mn.
(
xλa,m.

(
(pm) λmp, tl, s, s′.result′

))

result′ :=
(
f(a,mp,m,mn, s λa

′,m′, s, s′.

m⊗(]consnA⊗P [!n a
′⊗m′ tl)⊗s⊗s′

)
.

The step has a symmetric type T⊗S(T⊗S which is the crucial property
for the simulation because it allows iteration. Polynomials are expressible in

174

6.4. Normalisation via Case Distinction Unfolding

LLT! by coercions, addn and multn (compare the examples in the previous
section).
Moreover, a natural number as input can be translated into a tape, say

by convin : Lk(Bk)(T (for some levels k and n) with a tape length which
is polynomial in the input. The machine head cannot move further than
that anyway, so it is big enough to do all computations, and there is never
the need to enlarge the tape.
The output can be transformed back into a natural number, say by

convout : T ⊗ S(Ln+1(Bn+1).
Let prep : L1(B1)(Ln(Bn)⊗T be the preparation of the input of type

L1(B) with

• the left component of the pair as the number of steps the Turing
Machine should run,

• the right component of the pair as the starting tape computed via
convin

and s0 ∈ S as the starting state. Then we get

tm := λxL
1(B1). (convout ((prepx) λzλt0.sim))

: L1(B1)(Ln+1(Bn+1)

sim :=

(
Itn−1
Bn,T⊗S z !n−1 λxB

n

.transition t0⊗s0

)

as a simulation of Turing Machine which runs polynomially many steps:

Theorem 6.30. Every function f : N → N in PTime can be computed by
a closed LLT! term t : L1(B1)(Ln+1(Bn+1) for some level n ∈ N.

6.4. Normalisation via Case Distinction Unfolding

For simplicity of the complexity proof, a reduction order should be studied
which is as near as possible to the normalisation which takes place in LAL.
The main idea there is that normalisation is done by levels, i.e. redexes are
assigned a level according the types of terms involved. Redexes with lower
levels (in LAL this means redexes which have fewer boxes around) are fired
first.
For LAL this is in fact a very bad reduction strategy. But, it can be shown

that even this is polynomial in the length of the terms if the maximal level

175

Understanding LAL as a Variant of System T

(i.e. nesting of boxes) is bounded [AR00, AR02], and even more: LAL is
strongly normalising in PTime [Ter01].

In the following, reduction by levels for LLT! is considered and shown
to be sound for PTime. The main point here is how and especially when
iterations are unfolded:

Iteration in LAL In LAL, as a variant of System F, Church numerals or the
corresponding type for lists are used for inductive types. Church numerals
are “their own” iterator. A Church numeral l applied to an iteration step
term f by (l f) “executes” the iteration of f . By the type ∀α.!(· · ·(α(
α) (§(α (α) the step term itself (i.e. the content of the box that
makes up f) is on a higher level (because of the ! for the step type) and
its normalisation will, therefore, not take place until normalisation of the
outer level is completely finished. In other words, the substitution of the
step terms into the iterator (and the duplication of the step terms that is
needed for this) is completely separated from the normalisation of the step
terms themselves (i.e. the normalisation of the content of the box of f).

Iteration in LLT! How does this translate to the world of LLT!, i.e. a
System T like calculus with Itnτ,σ and consnτ ? Here, the substitution of
the step term into a numeral means that the consnτ must be replaced by
the actual step term when it comes in contact with the iterator. This is
straightforward as we have a flat Casenτ,σ-constant for lists in the system
which can implement the iteration via a long case distinction :

CaseItnl,0 := λg.g

CaseItnl,k+1 :=(
Casen+1

τ,σ(σ l λx, l
′, g.

(
]fk+1[!n x

(
CaseItnl′,k g

))
λg.g

)

for copies fi of the step term if the length of the list l is bounded by some
k+ 1 and known in advance. The needed maximal length k+ 1 of this case
construction can be obtained by counting the number of consnτ -constants
and

n
C in the list term: each multiplexer which duplicates a consnτ vanishes.

Hence, the sum of both numbers is a proper upper bound (which we will
later call Kn for level n) of the number of consnτ that can ever be created
during normalisation of level n.

176

6.4. Normalisation via Case Distinction Unfolding

Cuts In the following, the different kinds of cuts will be defined. All the
cuts will get assigned a level n which is the minimum of the levels of the
types involved. The cut relation is indexed by this level as in 7−→n

? . The
lower index ? will mark the kind of redex:

Definition 6.31 (Normalisation/Cut Elimination). The graph rewriting
relation between proof nets is split into the following redexes (compare
[AR00] and Definition 2.40 for LAL):

1. The linear cuts (see Figure 6.2a):

(λxσ.tτ s) 7−→n
l t[x := s] with `(σ(τ) = n

(
πnσ,τ,ρ

(
⊗nσ,τ s t

))
7−→n

l λf. (f s t)

(Casenτ tt
n) 7−→n

l λx
τλyτ .x

(Casenτ ff
n) 7−→n

l λx
τλyτ .y

(
Casenτ,σ nil

n−1
τ

)
7−→n

l λfλg.g(
Casenτ,σ

(]
consn−1

τ

[
!n−1 v l

))
7−→n

l λfλg. (f v l)

2. The iteration cuts for closed l:

(
Itnτ,σ l f g

)
7−→n

i,Kn

((
f
n
C
f1

f ′1
...

(
f ′Kn−1

n
C
fKn
f ′Kn

(
CaseItnl,Kn g

)))
g

)
.

3. The shifting cuts (see Figure 6.2b):
]
!n x =]s[!n in t

[
!n
7−→n

s t[x :=]s[!n]
]
!n t

[
!n
7−→n

s t

!n x =
]
!n y =]s[!n in v

[
!n

in t 7−→n
s !n y =]s[!n in t[x := v]

!n x =
]
!n v

[
!n

in t 7−→n
s !n t[x := v] .

4. The multiplexer/contraction cuts (see Figure 6.2c):
(

!n x =]s[!n in v
n
C
x1

x2 t
)

177

Understanding LAL as a Variant of System T

λ

@

!−→n
l

Γ1

Γ2

Γ2

Γ1

Πs

Πt
Πs

Πt

Γ1

Πt

or

(a) Linear cut 7−→n
l for a β-redex: the left if there is a path from the

binding link back to the λ-node, the right otherwise.

!n

!n !n

!−→n
s

!n

] [!n !−→n
s

] [!n
!n

] [!n !−→n
s

!n

!n !n

!−→n
s

Πs

Πt

Πt Πt

Πs

Πt

Πt

Πt Πt

Πs Πs

Πt

(b) Shifting cut 7−→n
s

!n
!n !n

!−→n
m

!n
!n !n

!−→n
m

Πt

Πt

Πt Πt

ΠtΠt

(c) Multiplexer cut 7−→n
p

Figure 6.2.: Cuts in LLT!

178

6.4. Normalisation via Case Distinction Unfolding

7−→n
m

(
s
n
C
y1

y2 t[x1 :=!n x =]y1[!n in v , x2 :=!n x =]y2[!n in v]

)

(
!n v

n
C
x1

x2 t
)
7−→n

m t[x2 :=!n v , x2 :=!n v].

The last two kinds are called polynomial redexes and are denoted by
7−→n

p :=7−→n
s ∪ 7−→n

m, an arbitrary redex by 7−→n:=7−→n
l ∪ 7−→n

i,Kn ∪ 7−→
n
s

∪ 7−→n
m.

We write Πt −→n Πt′ if Πs 7−→n Πs′ for some subproof net Πs of Πt and
Πt′ is Πt with Πs replaced by Πs′ (and mutatis mutandis −→n

? for 7−→n
?

redexes) after cleaning up.
A proof net Πt is called 7−→n

? -normal or −→n
? -normal if there is no Πt′

with Πt −→n
? Πt′ . The notation nf−→n

? denotes the relation which puts a
term in relation with its normal form(s), i.e.

Π nf∼ Π′ :⇐⇒ Π ∼∗ Π′ ∧Π′ is ∼ -normal.

Note that the redexes in the previous definition are graph rewriting rules
working on proof nets. The definition uses the term syntax just for brevity.
The Kn in the 7−→n

i,Kn -cut is the maximal length of the list, such that
the CaseItnl,Kn -term properly simulates the iteration. The complexity proof
of Theorem 6.42 will choose a correct value for Kn.

Remark 6.32. The redexes, especially those concerning constants, are
defined in a way that they do not create new redexes on lower levels.
This is the key to make normalisation by levels work. In Section 6.5 we
will look at this in more detail.

6.4.1. Complexity of Normalisation

Inside a !n-box no subterms (or nodes in the proof nets) are allowed which
have types of level ≤ n, by the typing rules (!0) and (!1). This is the
essential property to normalise proof nets because it allows duplication of
boxes without creating new nodes or redexes on level ≤ n.

Lemma 6.33. A proof net Πt of a box of level n in a proof net Π is 7−→k-
normal for every k ≤ n.

179

Understanding LAL as a Variant of System T

Proof. By definition of proof nets (or the typing rules (!0) and (!1) for the
terms) Πt has no (nested) node of level ≤ n. Every redex of level ≤ n

though involves such a (nested) node of the very same level. Hence, Πt is
7−→k-normal for k ≤ n.

The normalisation is claimed to be sound for PTime. To make this
precise, first a size measure is needed for a proof net Π. This is usually
the number of nodes. The same is essentially done here now, but with an
independent precise size measure for each level. This will be needed for the
analysis of the complexity of the normalisation later on.

Definition 6.34 (Proof net size). The size of level n of a proof net Π is
defined as

|Π|n :=
∑

v nested node of Π

|v|n

with:

• |v|n := 0 if `(τ) 6= n for the type τ of v,

• |v|n := 0 for input and output ports,

• |v|n := 1 in all other cases.

The size |t|n of a term tτ is the size of the proof net Πt of t. The size of
the whole term is then defined by |t| =

∑N
i=0 |t|i if N is the highest level in

t (and mutatis mutandis for a proof net Π).

Remark 6.35. An alternative equivalent size measure definition for terms
tτ would be the following, recursively with the size of the subterms:

|xτ |n := 0

|cτ |n := δn,`(τ)

|λxσ.r|n := |r|n + δn,`(τ)

|(r s)|n := |r|n + |s|n + δn,`(τ)∣∣∣!k r
∣∣∣
n

:= |r|n + δn,`(τ)

∣∣∣!k x =]s[!k in r
∣∣∣
n

:= |s|n + |r|n + δn,`(τ)

180

6.4. Normalisation via Case Distinction Unfolding

∣∣]r[!k
∣∣
n

:= |r|n + δn,`(τ)∣∣∣∣
(
r
k
C
x1

x2 s

)∣∣∣∣
n

:= |r|n + |s|n + δn,`(τ),

with

δij :=

{
1 if i = j

0 otherwise

as the Kronecker symbol .

Definition 6.36 (Normalisation measure).
Let Πt be 7−→i-normal for every i < n and 7−→n

l -normal. Then the
normalisation measure for level n νn(Πt) is defined as

νn(Πt) :=
〈
cnW (Πt), . . . , c

n
0 (Πt), |Πt|≤n , |Πt|>n

〉

where cw(Πt) counts the (nested) multiplexers
n
C of weight w in Πt, while

W is the maximal weight of
n
C appearing in Πt.

The number of nested nodes of level≤ n is denoted by |Πt|≤n, the number
of nested nodes of level > n by |Πt|>n :=

∑∞
k=n+1 |Πt|k. The order ≺ is

the strict lexicographical order on νn(Πt).
The weight wnΠ(v) of a nested multiplexer node v in Π is computed using

the following rules (compare Figure 6.3):

• The output link of a (!0)-box has the weight 1.

• The output link of a (!1)-box has the weight of its input link +1.

• The output link of a multiplexer has the weight of its input link.

• A multiplexer has the weight of its input link.

• Every other link has the weight 0.

In other words, wnΠ(
n
C) counts the maximal number of !n-boxes that

will be duplicated by that multiplexer when reducing shifting and mul-
tiplexer redexes. Compare wnΠ(

n
C) with wgt(Π)(a), and νn(Πt) with ϕl(Π)

in [AR00].

181

Understanding LAL as a Variant of System T

!n!n

1

proof nets
terms

t2

!
s t2

!
s

w w
w

w

w

w+1

Πt Πt

Figure 6.3.: The weight wnΠ(·) for the proof net Π and corresponding term
t. The arrows show how the weight propagates from the arrow
start to the arrow end.

Remark 6.37. We could also define the weight wnt (s) for a term s E t

as:

wnt (
(
q
n
C
x1

x2 r
)

) := wnt (q) (6.6)

wnt (x) := wnt (m) if x is bound in t (6.7)

by a multiplexer m

wnt (!n r) := 1 (6.8)

wnt (!n x =]q[!n in r) := wnt (q) + 1 (6.9)

and wnt (s) := 0 for all other cases, giving the same weight in the proof
net Πt.
In the term representation of the definition of wnt (·) it is not obvious

which kind of graph the weight propagation creates on the subterms.
The proof net representation in Figure 6.3 is much easier to grasp be-
cause the artificialC-nodes in the term representation do not complicate
the structure.

As there is no rule for weight propagation for the λ node, which is the
only way to cause loops in proof nets, the arrows of the weight propagation

182

6.4. Normalisation via Case Distinction Unfolding

form trees: the multiplexer trees. Note that there can be many of those
trees in a proof net. But no two of them overlap, i.e. a node is at last part
of one multiplexer tree.

!n
!n !n

!−→n
m

+1

+1+1

Πt

Πt Πt

Figure 6.4.: How the multiplexer tree changes during a multiplexer redex
7−→n

m.

Lemma 6.38. The weight of a multiplexer decreases in a 7−→n
m-cut.

Proof. The multiplexer tree is transformed as shown in Figure 6.4. The
node of the multiplexer moves down and the box moves up by duplicating
it. The weight of the multiplexer decreases by one.

Remark 6.39. The weights of the multiplexers possibly further up in
the multiplexer tree in Figure 6.4 do not change because only one of the
duplicated boxes contributes to those weights (because the multiplexer
tree has no loop).

When reducing a shifting-cut, two boxes will be merged. The multiplexer-
cuts duplicate, i.e. create new boxes. Naturally the question arises how big
boxes can become during normalisation of both kinds of cuts.
Figure 6.4 and 6.5 show how shifting and multiplexer redexes influence

the multiplexer trees only locally. The shape of the multiplexer tree es-
sentially stays the same (i.e. the branching structure). Boxes are moved
through the tree, away from the root. Hence, only boxes on the same

183

Understanding LAL as a Variant of System T

!n

!n !n

!−→n
s

+1

+1

+1

w

w+1

w+2

w

w+1

Πt Πt

Πs Πs

Figure 6.5.: How the multiplexer tree changes during a shifting redex 7−→n
s .

branch of the tree will ever have the chance to be merged by shifting re-
dexes. This gives raise the following lemma about the maximal box sizes
during 7−→n

p -normalisation:

Lemma 6.40. For Π(−→n
p)∗Π′ and all proof nets Πt of nested !n-boxes in

Π′

|Πt|k ≤ |Π|k
holds. Moreover, with |Πt|>n :=

∑∞
k=n+1 |Πt|k this implies |Πt|>n ≤ |Π|>n.

Intuitively, this lemma says that copies of boxes due to a 7−→n
m-redex will

not be able to merge later. This is the key for the PTime normalisation of
LLT!:

Lemma 6.41. Let Πτ be a proof net which is 7−→i-normal for all i < n and
moreover 7−→n

l - and 7−→n
i,Kn -normal. Then Π

nf−→n
pΠ′ with |Π′| ∈ O(|Π|4)

in O(|Π|3) many 7−→n
p -steps.

Proof. Case Π −→n
s Π′ (compare Figure 6.2b): Clearly, |Π|≤n decreases by

at least one because of the dropped box. Meanwhile, all other components
of νn(Π) stay the same or decrease as well, i.e. νn(t′) ≺ νn(t).
Case Π −→n

m Π′ (compare Figure 6.2c) for a multiplexer node s in Π:
Then |Π′|≤n increases (by 1 for the extra !n-box) and d(t) increases by the
size of the contents of the box. But

νn(Π′) =
〈
. . . , cnw(Π)− 1, cnw−1(Π) + 1, . . . ,

∣∣Π′
∣∣
≤n ,

∣∣Π′
∣∣
>n

〉

184

6.4. Normalisation via Case Distinction Unfolding

≺
〈
. . . , cnw(Π), cnw−1(Π), . . . , |Π|≤n , |Π|>n

〉
= νn(Π)

for the weight w := wnΠ(s) independently of the increase of |Π′|≤n and
|Π′|>n, due to the lexicographic ordering.

Now, consider Π
nf

(−→n
s ∪ −→n

m) Π′ and let be νn(Π) =
〈
cW , cW−1, . . . , c0, b, d

〉
.

How many m-redexes in Π can be reduced while s-redexes are only reduced
if no m-redex is left anymore? The following values are upper bounds for
the measure when reducing the m-redexes of highest weight:

• At the beginning with d := |Π|>n:

νn(Π) =
〈
cW , cW−1, . . . , c0, b, d

〉
.

By Lemma 6.40 d is an upper bound of the !n-box-sizes in all of the
following 7−→n

s - and 7−→n
m-normalisations.

• After one m-redex:
〈
cW − 1, cW−1 + 1, . . . , c0, b+ 1, d+ d

〉
.

The b + 1 comes from the extra !n-box. By the restrictions on proof
nets of boxes, the duplicated !n-boxes do not contain multiplexers of
level ≤ n, any !n-box or any other node of level ≤ n, which could
contribute to b.

• After cW m-redexes:
〈
0, cW−1 + cW , . . . , c0, b+ cW , cW · d+ d

〉
.

• After cW + 1 m-redexes:
〈
0, cW−1 + cW − 1, . . . , c0, b+ cW + 1, (cW + 1) · d+ d

〉
.

Note here that the last component only increases by d because every
!n-box is smaller than d by the very choice of d as an upper bound.

• After cW + (cW−1 + cW) m-redexes:
〈
0, 0, cW−2+cW−1+cW , . . . , c0, b+cW+cW−1+cW , cW ·d+(cW−1+cW)·d+d

〉
.

185

Understanding LAL as a Variant of System T

• After
∑W
i=k(i− k + 1) · ci m-redexes:

〈
0, . . . , 0︸ ︷︷ ︸
W−k+1

, ck−1+
W∑

i=k

ci, . . . , c0, b+
W∑

i=k

(i−k+1)·ci, d·
W∑

i=k

(i−k+1)·ci+d
〉
.

• After
∑W
i=0(i+ 1) · ci m-redexes:

〈
0, . . . , 0︸ ︷︷ ︸
W+1

, b+

W∑

i=0

(i+ 1) · ci, d ·
W∑

i=0

(i+ 1) · ci + d
〉
.

Hence, at this point, less than b+
∑W
i=0(i+ 1) · ci s-redexes might be left.

Altogether this gives an upper bound of

W∑

i=0

(i+ 1) · ci + b+

W∑

i=0

(i+ 1) · ci

≤ |Π|+ 2

W∑

i=0

(i+ 1) · |Π| = |Π| · (1 + 2

W+1∑

i=1

i)

≤ |Π| (1 + (|Π|+ 1) · (|Π|+ 2) ∈ O(|Π|3)

many s- and m-redexes on level n.
During the reduction of s-redexes, the number of (nested) nodes of level

n in the proof net decreases (one !n-box less). During the reduction of
m-redexes, it increases by one. But by the analysis above, this increase is
polynomial:

∣∣Π′
∣∣ =

∣∣Π′
∣∣
≤n +

∣∣Π′
∣∣
>n

≤ b+
W∑

i=0

(i+ 1) · ci + d ·
W∑

i=0

(i+ 1) · ci + d

∈ O(|Π|3) +O(|Π|4) = O(|Π|4).

The considered normalisation strategy with case distinction unfolding
−→cdu can be expressed as

−→cdu:=

N∏

n=0

(nf−→n
l

nf−→n
i,Kn

nf−→n
l

nf−→n
p), (6.10)

186

6.4. Normalisation via Case Distinction Unfolding

where N denotes the highest level of types appearing in the proof net. The
Kn will be chosen in the following theorem:

Theorem 6.42 (Correctness). There is a polynomial PN (x), such that
every proof net Πτ with levels ≤ N can be normalised in PN (|Π|) many
−→n-steps of −→cdu.

Proof. The reductions of 7−→n
l -redexes decrease the size |Π| due to the

linearity of the term system and the weight of the constants, which makes
the left hand sides of the reduction rules heavier than the right hand sides,
for instance:

|(λxσ.tτ s)| = 1 + 1 + |t|+ |s| > |t|+ |s| > |t[x := s]|

or
|(Casenτ ttn)| = 1 + 1 + 1 = 3 > 2 = |λxλy.x| ,

and similarly for the other linear cuts.
After the linear reductions, the iterations are to be unfolded. At this

point, we finally can fix Kn which was left open in 7−→n
i,Kn up to now.

Ln+1(τ)-lists will not get longer than the number of consnτ -constants which
can appear in the term (after possible duplication by the multiplexers).
Hence, we choose and fix Kn now as the sum of the number of consnτ ′
(for any type τ ′) and

n
C nested nodes in Π (i.e. before any 7−→n

i,Kn -redex is
fired).
With the chosen Kn, each 7−→n

i,Kn -redex will, via CaseItnl,Kn , introduce

several Casen+1
τ,σ -constants and

n
C-nodes in order to get the Kn copies of

the step term. For every consnτ and every
n
C in the proof net Π (i.e.

before any 7−→n
i,Kn -redex was fired), we get another

n
C as part of every

CaseItnl,Kn . With every 7−→n
i,Kn -redex, we have one Itnτ,σ-node less in the

proof net. Both, the number of Itnτ,σ-constants in Π and Kn is bounded
by |Π|. Hence, firing all 7−→n

i,Kn -redexes gives us a quadratic growth of the
proof net size1.
After the iteration part the new linear redexes of CaseItnl,Kn are nor-

malised with another nf−→n
l which decreases the term size. Hence, up to

1Note that these bounds are far from optimal in the sense that they can be improved
from quadratic to linear by a more careful (and much more involved) analysis of
which consnτ will interact with which Itσn,τ . But for our purpose to get just the
correctness result, we will stick to this simpler approach.

187

Understanding LAL as a Variant of System T

this point, after nf−→n
l

nf−→n
i,Kn

nf−→n
l , the number of reduction steps and

the term size is bounded by O(|Π|2). With Lemma 6.41 we complete the
normalisation with the nf−→n

p -redexes, giving a complexity of O(|Π|2·3) to
normalise level n altogether. Moreover, the resulting term size will be in
O(|Π|2·4) due to Lemma 6.41 and the analysis above for the linear and
iteration part of the reduction..
Now consider the normalisation for all levels via −→cdu, starting with

Π0 := Π. Every reduction of one level n, starting with Πn and leading
to Πn+1, consists of O(|Πn|2·3) many reductions of single redexes. Then
Πn+1 is the start proof net of the reductions of level n+1 and therefore we
have also |Πn+1| ∈ O(|Πn|2·4) . Hence, we get the following upper bound
of reduction steps for all levels summed up:

N∑

n=0

O(|Πn|2·3) ≤
N∑

n=0

O(|Π|(2·4)n+1
) = O(|Π|(2·4)N+1

).

6.5. Types of Constants

The constants of LLT! are introduced in Section 6.2 without giving a mo-
tivation or reasoning about their types. In the following we discuss why
the very choice of levels and types is essential. This should give a better
understanding of the construction of the LLT!-calculus.

The central constraint driving the typing of constants is the compatibility
with normalisation by levels:

Redexes on level n for a certain constant must not block redexes
of lower levels.

But before looking at the constant types, we need to know the level that
should be assigned to an arrow type.

6.5.1. Arrow

It is not obvious that the minimum of the levels of the left and right type
in σ (τ is the right choice in Definition 6.4. Hence, we go through the
other alternatives in order to see their influence on the calculus.
Given the levels `(σ) and `(τ), the first case is that both levels are equal.

Then the natural choice is to use `(σ) = `(τ) = `(σ(τ).
Otherwise, we have the following cases:

188

6.5. Types of Constants

1. `(σ) > `(τ): Assume `(σ(τ) = `(σ) and consider the term

t :=
(
π
`(τ)

B`(τ)

(
λxσ.

(
⊗`(τ)

B`(τ),B`(τ) y z
)
sσ
))

.

The beta redex for λxσ is of level `(σ) > `(τ) and therefore not fired
before level `(σ) in the normalisation by levels. Hence, in Πt this
redex blocks the projection redex for π`(τ)

B`(τ) , which is on level `(τ),
i.e. below `(σ). Therefore, `(σ (τ) = `(σ) does not satisfy the
requirement not to block redexes.
This counter-example does not work if we choose `(σ (τ) = `(τ)

instead, because this forces us to fire the beta redex early, in any case
before any redex of the body of the abstraction might be a candidate
for reduction.

2. `(σ) < `(τ): Assume `(σ(τ) = `(τ) and consider the term

t :=
(
λxσ.

(
Case`(σ) xσ y z

)
sσ
)

with σ = B`(σ). Then the beta redex for λxσ is fired in level `(σ(
τ) = `(τ) > `(σ) in Πt. The inner case distinction redex though (of
level `(σ)) is blocked by this. Hence, this choice is not a good one
either.
Again by choosing `(σ(τ) = `(σ) this case cannot happen anymore
because it forces the beta reduction to be executed as early as possible.

Hence, we have chosen `(σ(τ) = min{`(σ), `(τ)} in Definition 6.4. With
this plus a similar consideration for the product σ ⊗ τ we are able to get
the following subtype property:

Lemma 6.43. For every type δ appearing in ρ (negatively or positively)
`(δ) ≥ `(ρ) holds.

Proof. Induction on the type ρ.

This lemma is crucial in order to know that the arguments, which are
applied to a constant, are of a higher or an equal level as the constant itself.

189

Understanding LAL as a Variant of System T

6.5.2. Case Distinction

The first constant we look at is the case distinction on boolean values:

Casenσ : Bn(σ(σ(σ with `(σ) ≥ n

with the following two redexes:

(Casenσ tt
n) 7−→n

l λx
σλyσ.x

(Casenσ ff
n) 7−→n

l λx
σλyσ.y.

The boolean parameter decides which alternative is taken. This redex is
of level n and therefore is not fired earlier in the normalisation by levels.
Imagine we chose `(σ) = n− 1 < n, e.g. σ = Bn−1 ⊗Bn−1. Then take the
term

(
πn−1
σ

(
Casenσ tt

(
⊗n−1
Bn−1,Bn−1 x y

) (
⊗n−1
Bn−1,Bn−1 x

′ y′
)))

.

Clearly, the case distinction blocks the outer projection redex, which is on
level n− 1. The very same situation happens with the list case distinction,
i.e.

Casenτ,σ : Ln(τ)((τ (Ln(τ)(σ)(σ(σ with `(σ) ≥ n
consnτ : !n(τ (Ln+1(τ)(Ln+1(τ))

nilnτ : Ln+1(τ).

In general, the effect of the side condition `(σ) ≥ n is that it forces the
level of the constant’s type not to be smaller than `(Bn) = n (by applying
Lemma 6.43). This is the theme to determine the needed side conditions
of all the constants.

6.5.3. Product

⊗nτ,ρ : τ (ρ(τ ⊗ ρ with `(τ ⊗ σ) = n

πnσ : τ ⊗ ρ((τ (ρ(σ)(σ with `(σ) ≥ `(τ ⊗ ρ).

We have `(τ ⊗ ρ) = min{`(τ), `(ρ)} (by essentially the same argument as
for the arrow in Section 6.5.1).
Now assume σ would be arbitrary, especially `(σ) < `(τ ⊗ ρ). We can

get the following case with σ = ρ(δ:

190

6.5. Types of Constants

((
λpτ⊗ρ.

(
πnσ p λl, r.λx

ρ.lδ
) (
⊗nτ,ρ l r

))
t
)
.

The λp is of level `(τ⊗ρ) > `(σ). The inner abstraction λx.l is of level `(σ),
but the beta-redex is blocked by the product calculations. The t can only
be substituted into the x after the product introduction and elimination
are reduced. Hence, we need the side condition to rule out this example.
Again, like for the case distinctions we make sure with the side condition

that the redex is on the level of the constants involved, i.e.

`(τ (ρ(τ ⊗ ρ) = n = `(τ ⊗ ρ((τ (ρ(σ)(σ).

6.5.4. Iteration

Itnτ,σ : Ln+1(τ)(!n(τ (σ(σ)(σ(σ

The reduction for the iteration in Definition 6.31 leads to a reduct with
new redexes on the same level:

(
Itnτ,σ l f g

)
7−→n

i,Kn

((
f
n
C
f1

f ′1
...

(
f ′k−1

n
C
fKn
f ′Kn

(
CaseItnl,Kn g

)))
g

)
.

In the type of Itnτ,σ no further side condition is needed because the restric-
tion on `(σ) and `(τ) is implicit by the side conditions in the definition of
the types, leading to

`(σ), `(τ) > `(Ln+1(τ)(!n(τ (σ(σ)(σ(σ) = n.

Level of the list At this point, we want to stress again the reason why
Itnτ,σ expects a list of level n + 1. While by this, the list type lives one
level higher than the iterators and the iteration redex, the consnτ :!n(τ (
Ln+1(τ)(Ln+1(τ)) for that list type are on the level n. In the iteration
reduction the consnτ is replaced with a copy of the step term. The step
term, as seen in the type of Itnτ,σ is of a !n-type and therefore lives on level
n, in order to be duplicatable with the polynomial reductions.
This fits very well, in fact, to the origin of the consnτ -constant in LAL,

namely the (abstracted) step term of the result list which of course also
has a !-type. There, the actual step terms, or more precisely the actual
algorithm in the step, also lives on level the above, while the box around is
one level below this.

191

Understanding LAL as a Variant of System T

6.6. Conclusion and Outlook

We introduced the calculus LLT!, a variant of System T with the !-modality
and levels in the types. We used the level concept in order to implement
the stratification property without the need of the §-modality. The calculus
LLT! is shown to be complete and correct for polynomial time.
The goal has been to create a type system with constants which allows

typing of typical algorithms from Light Affine Logic with Church numerals
in a very natural way in LLT!. The completeness proof shows how easy
and direct the Turing Machine simulation can be implemented. In contrast
to the one of Light Affine Logic [AR02], LLT! hides a lot of technicalities
which must be employed and understood in Light Affine Logic.
One focus, which shows up also in the Turing Machine simulation, has

been the seamless integration of the pull-out trick (compare Examples 3.15
and 6.21) in order to archive symmetric types, such that algorithms can
be iterated again if the trick can be applied. Especially, the types of the
iteration- and the consτ -constants are motivated by this goal. Moreover,
this is a key difference to a naive formulation of a System T variant which
easily embeds into Light Affine Logic.
The Example 6.22 about the split function suggests though, that LLT!

is in fact more than a simple definitional calculus based on LAL, i.e. we
cannot express every LLT!-constant as a LAL-term in such a way that we
get a direct embedding from LLT! into LAL (compare Remark 6.23).

Correctness and unnatural unfolding The correctness proof is very similar
to that of [AR02]. The main difference is the unfolding of the iteration
constant. The Church numerals of Light Affine Logic make a natural dis-
tinction between the duplication of the step term and the actual computa-
tions of the step terms. In the normalisation by levels strategy these two
steps are clearly separated. In the setting of System T though, this “nor-
malisation by case distinction unfolding” is very unnatural. Therefore, in
this chapter it is left open how to switch to a more natural reduction rule
of iteration in System T. Chapter 7 though will solve this issue nicely by
lifting the iteration constant one level higher.

Going back to the §-modality? We motivated the use of levels in types in
Section 6.1.2 by arguing that the level is a very similar concept to the §-
modality. The choice, whether to stick to levels or §, might be a question of

192

6.6. Conclusion and Outlook

taste: the § can be seen as a way to implement the stratification property,
which is – otherwise – only disturbing in a term. Clearly, it can be argued
pro and contra this design decision. It should be possible tough to reformu-
late LLT! without any levels in the types, i.e. using traditional §-boxes and
the §-modality like in Light Affine Logic. A sketch of such a system LLT!§

is shown in Section A.1 in the appendix. The central point, also in such a
setting, is the type of the iteration- and the consτ -constant. It allows the
formulation of algorithms using the pull-out trick.

193

Understanding LAL as a Variant of System T

194

7
From LFPL and Light Linear T to Light LFPL

In this chapter we first sketch a step-by-step transition of LLT! to a light
stratified variant of Hofmann’s LFPL which provides the impredicative it-
eration on each level, and which allows a direct embedding of LLT! terms
as well. The developed ideas are then made formal in the Light Linear
Functional Programming Language (LLFPL!), which is proved to be nor-
malisable in polynomial time.
The system LLT!, as presented up to now in Chapter 6, is very much

designed after the normalisation of Light Affine Logic. This is intentional
of course because LAL gives the intuition, although this leads to a non-
standard unfolding of the iteration constant. The main issue is that Itσn,τ
is a constant on level n, and hence the normalisation must take place on
the very same level, although the lists are a level higher on n+ 1. The goal
of this chapter is to lift this iteration constant to level n+1 as well, in order
to allow us to use a standard iteration normalisation, and also to allow us
to extend the system by impredicative iteration. This will lead to LLFPL!,
which subsumes both iteration schemes, and which solves the problem of
LLT! to have non-standard reduction rules for the iteration.

Structure of this chapter This chapter starts in with a number of sketches
of variations of LLT! which approach – step by step – the goal of this
chapter: the introduction of Light LFPL: Section 7.1 splits the role of the
consnτ -constant in LLT! into a flatly typed consnτ -constant and a diamond

195

From LFPL and Light Linear T to Light LFPL

dn :!n♦n+1 in LLT!♦. Section 7.2 adds a ♦n+1-argument to the iteration
steps in the style of LFPL’s iteration scheme. Section 7.3 – the core of the
chapter – first motivates the necessary lifting of the iteration into the level
of the lists. In Subsection 7.3.1 a preliminary type system for a light LFPL
with a closed arrow (c is sketched, before transforming this idea into
special iteration typing rules (Ln(τ)−0) and (Ln(τ)−1) in Subsection 7.3.2.
Subsection 7.3.3 introduces LLFPL! formally by giving type system for
terms and a proof net calculus, which is used for normalisation in Subsection
7.3.4. Subsection 7.3.5 finally combines the complexity proofs of LFPL and
LLT! to show that every (closed) LLFPL!-proof net can be normalised in
polynomial time. The chapter ends in Section 7.4 with a conclusion of the
result, the bi-product of an improved LLT!-iteration reduction rule, and an
outlook of applying the ideas to a LAL like system and the conversion into
a more traditional type system using the §-modality.

7.1. From LLT! to LLT!♦

We start with LLT!, but replace the consnτ - and nilnτ -constants by

consn+1
τ : ♦n+1(τ (Ln+1(τ)(Ln+1(τ)

niln+1
τ : Ln+1(τ)

using a new, LFPL inspired, type ♦n, the diamond, and a corresponding
constant

dn :!n♦n+1.

In order to construct a list of level n+1 one now needs a ♦n+1-term. Every
closed term of this type has to contain the dn constant which is of level n,
for instance]dn[!n .
The iteration constant stays the same:

Itnτ,σ : Ln+1(τ)(!n(τ (σ(σ)(σ(σ.

The reduction rules of theCasen,τσ constant must be changed in the obvious
way: (

Casenτ,σ nilnτ
)
7−→n

l λfλg.g(
Casenτ,σ

(
consnτ t♦

n

x l
))

7−→n
l λfλg. (f t x l)

(7.1)

and similarly the iteration unfolding, which has to choose an appropriateKn

as before. Instead of counting the multiplexers and the consnτ -constants,

196

7.1. From LLT! to LLT!♦

we now count the E-maximal ♦n+1-subnets (compare Definition 4.38 for
δLFPL). For closed terms this is bounded by the number of multiplexers
of level n and dn constants.

Remark 7.1. In Equation 7.1 the ♦n-term t is applied to f . The step
term of the iteration though does not have an ♦n+1-argument. This is
important because otherwise there would be two ways to inject a ♦n+1-
term into a !n-box, which would allow typing the “double” function in a
symmetric way.

Intuition Compare this new system using dn and the flat consn+1
τ with

the LLT!-system, which only has consnτ . Essentially we have split consnτ
of LLT! into two constants in LLT!♦: the dn with its type !n♦n+1 makes
sure that only one instance can be “injected” into a !n-box. This was the
original motivation of the type of consnτ in LLT!. With dn taking over this
functionality, the remaining consn+1

τ -constant in LLT!♦ can be typed with
a very usual type, like in LFPL, without mentioning the !-modality.

Without giving a technical, formal embedding of LLT! into LLT!♦, it
should be clear that we did not lose any expressivity. Translating a LLT!-
term into a LLT!♦-term is possible by “replacing” the consnτ -constants with
dn and by inserting the “new” consn+1

τ at the places where the ♦n+1-term
is now available to construct a list.

Example 7.2 (Arithmetic in LLT!♦). The usual polynomials for unary
numbers (compare with the LLT! term in Example 6.24):

addn := λxL
n+1(B), yL

n+1(B).
(
ItnB,Ln+1(B) x !n λbλp.

(
consn+1

B]dn[!n b p
)
y

)

multn := λxL
n+1(B), y!nLn+2(B).

(
ItnB,Ln+2(B) x !n λb, p.

(
addn+1]y[!n p

)
niln+1

B

)
.

Obviously, only one consn+1
B can be effectively used in the step term of

addn, because each further consn+1
B would need another ♦n+1-subterm.

The only way to get this though is by using an instance of dn and

197

From LFPL and Light Linear T to Light LFPL

another]·[!n -subterm to get it into the !n-box of the step. But due to
the restriction of the (!1)-rule, this is impossible a second time.

7.2. From LLT!♦ to LLT′!♦

The purpose of the !n♦n+1 typing of the dn-constant in LLT!♦ is to control
the number of “injected” ♦n+1-terms in step terms of level n, based on
the “one-hole” restriction of the (!1)-rule. Inspired by LFPL’s iteration
constant, we can enforce the same by changing the types of the step terms
to have an additional ♦n+1-argument (to inject the ♦n+1-term), i.e.

Itnτ,σ : Ln+1(τ)(!n(♦n+1(τ (σ(σ)(σ(σ,

and by forbidding the dn+1 : ♦n+1 constant in a !n-box altogether. Note
the changed type of dn and the therefore different indices compared to
LLT!♦. This way, the step term can only use one ♦n+1-term, the one
given as an argument, to construct a list1. The constants must be adapted
accordingly:

Casenτ,σ : Ln(τ)((♦n(τ (Ln(τ)(σ)(σ(σ with `(σ) ≥ n
consnτ : ♦n(τ (Ln(τ)(Ln(τ)

nilnτ : Ln(τ).

The reduction rules therefore become
(
Casenτ,σ nil

n
τ

)
7−→n

l λfλg.g(
Casenτ,σ

(
consnτ t

♦n x l
))
7−→n

l λfλg. (f t x l) ,

i.e. the case distinction does not forget about the ♦n term. The iteration
unfolding is adapted accordingly.
It is clear again that the new system is at least as expressive as LLT!♦,

because the only difference is that now the ♦n term is not injected into a
box via]·[!n , but via the first argument of the step in analogy to LFPL.

1In fact, another possibility is to inject a !nρ term, with ♦n+1 positive in ρ, via
the (!1)-rule into the step term, e.g. !n λdλxλl. . . .]z[!n with a free variable

z!n(B(♦n+1). But there is no closed term of type !n(B (♦n+1). Hence, the
algorithms will not be a closed term at the end. We will only normalise algorithms
without free variables, such that this term would be ruled out.

198

7.3. From LLT′!♦ to LLFPL!

Remark 7.3. In fact, one does not need to use the “one-hole-per-box”
possibility just to inject a ♦n+1-subterm into a step term anymore in
LLT′!♦. In other words, the]·[!n -hole, which is allowed according to (!1),
can now be used for other purposes. In LLT! (or LLT!♦) this one-time
possibility per !n-box was “used up” for the injection of consnτ (or dn) in
every non-trivial step term. Hence, it seems that LLT′!♦ is even slightly
more expressive than LLT! or LLT!♦.

Now let us see again the standard example:

Example 7.4 (Arithmetic in LLT′!♦). The usual polynomials for unary
numbers (compare with the LLT! term in Example 6.24):

addn := λxL
n+1(B), yL

n+1(B).
(
ItnB,Ln+1(B) x !n λd♦

n+1
λbλp.

(
consn+1

B d b p
)
y

)

multn := λxL
n+1(B), y!nLn+2(B).

(
ItnB,Ln+2(B) x !n λd♦

n+1
λb, p.

(
addn+1]y[!n p

)
niln+1

B

)
.

Here, the step of addn gets the ♦n+1-term from the first argument d.
The step can be typed via (!0) because there is no]·[!n necessary in the
box. The d of the step of multn is not used. Of course, it would be
possible to apply it to another consn+1

τ .

7.3. From LLT′!♦ to LLFPL!

The reduction rules for the Casen+1
τ,σ constant in LLT!♦ and LLT′!♦ only

involve terms of level n+ 1, i.e. terms on the same level as the list Ln+1(τ)

and the Casenτ,σ-constant themselves. On the other hand, the correspond-
ing iteration Itnτ,σ-constant of these systems is still on the level n and the
reduction rules of Itnτ,σ involve terms of both levels: n+ 1 and n. The final
step in our transformation of LLT! into a light LFPL is to lift the iteration
constant with case-distinction-unfolding to level n + 1. This will allow us
to use a more standard reduction purely on level n+ 1.

199

From LFPL and Light Linear T to Light LFPL

Remark 7.5. For now we always speak about “light LFPL”. The final
LLFPL! calculus in Section 7.3.3 will need some more (technical) mod-
ifications which we will talk about later.

The central question now is the following:

Why is this lifting to level n+ 1 possible if the step terms are
duplicated and therefore must be of a !n-type on the level n

below?

Intuition of practical closed terms The key idea to answer the question
is to see the !n boxes as “practically closed terms”. This means they are
considered being closed up to the possibly existing]·[!n -hole which can be
neglected during normalisation.
This intuition is backed up by the typing rules (!0) and (!1). The former

puts a box around a closed term on level n + 1, and the later puts the
box around a term which is closed up to possible free variables in the
one and only]·[!n -hole (with the content on level n). If we normalise by
levels though, and are on level n+ 1 reducing an iteration redex, this]·[!n
cannot contribute anymore anyway to the result. Hence, it makes sense to
consider a !n-box to be closed on level n + 1 and higher in this moment
of normalisation of the iteration on level n + 1. Its free variables in the
possible]·[!n -hole do not matter anymore.
In the proof net setting, this intuition means that the step Πt of the

iteration, which is in a !n-box, has possibly a proof net below, but otherwise
no inputs. We can remove the box around the step and replace it with a
]·[!n -node with the former proof net below. Figure 7.1 shows the LLT!

iteration constant next to a potential light LFPL iteration constant that
we will use later. The Πr net on the right will typically be a !n-box. The
actual step Πs has all the properties of a proof net of a box (which in the
LLT!-system it really was). But instead the box is removed to make it
possible to lift the @-node to level n+ 1.

Relation to LFPL Closed step terms remind a lot of Hofmann’s LFPL
iteration. There, the steps are duplicated during the iteration (in the words
of LLT!: on the same level as the lists), i.e. when an Itτ,σ constant comes
into contact with a (consτ d x l) term. This can only work in a linear system
if the steps are closed. But with the upper intuition of “practically closed

200

7.3. From LLT′!♦ to LLFPL!

!n
Πs

Πr

@

Πs

Πr

@

!n] [

LLT! light LFPL

on level n on level n + 1

!nρ !nρ

ρ
ρ

!nσ σ

Itn
τ,σ Πl

@
Πl

@
Itn+1

τ,σ

Figure 7.1.: On the left the iteration constant of level n in LLT! with a
boxed step term; on the right the iteration of level n + 1 in
LLFPL! with a step term on level n+1, but with the properties
of a term in a box.

terms” we have a very similar situation which leads us to a new iteration
constant which has a type on level n+1 and its reductions can be done one
level n+ 1 as well.

7.3.1. Towards a Light LFPL with Itn+1
τ,σ -Constant and (c

We will now motivate the technical changes which are necessary to turn
LLT′!♦ into a light LFPL. Note that the syntax in this subsection will not
be the final one of LLFPL! yet. We will turn to a more LFPL-like syntax
(like the one in Chapter 4 and in [AS00, AS02]) later in Section 7.3.2, in
order to be in line with the complexity analysis of δLFPL in Chapter 4.

Lifting the iteration to level n+1 As described above, the possible]s[!n -hole
in the step term has no influence anymore on the reduction of an iteration
on level n + 1. Therefore, we do not care about it in the following when
reducing an iteration redex. Instead, we duplicate the step term and add a
n
C-multiplexer to duplicate the s in the]s[!n -hole.

(
Itn+1
τ,σ

(
consn+1

τ t♦
n+1

x l
)
f [z :=]s[!n] g

)

201

From LFPL and Light Linear T to Light LFPL

7−→n
i

(
s
n
C
s1

s2

(
f [z :=]s1[!n] t x

(
Itσn+1,τ l f [z :=]s2[!n] g

)))
.

The reduction creates a multiplexer on level n and makes a copy of the
term f which is closed up to s1/2. The multiplexer is necessary because s
could have free variables. Because the type system is linear, we cannot just
copy s syntactically as well. Moreover, using a multiplexer is a constant
size increase of the proof net, while duplication of the proof net would be
linear in the worst case, for every reduction step!

Doing light iteration What is the type of Itn+1
τ,σ and how is the application

(
Itn+1
τ,σ l f [z :=]s[!n]

)

typed? The step term type should be on level n+1 as well (and not on level
n), because otherwise the iteration constant would not be on level n + 1.
Hence, a !n-banged type is not possible. But on the other hand, we have
to allow light iteration like in LLT′!♦. For this we can introduce another
arrow(c into the type system with the following additional rules:

Γ ` tσ(cτ ∅ ` sσ

Γ ` (t s)τ
((−c,0)

Γ1 ` tσ(cτ xρ ` sσ Γ2 ` r!nρ

Γ1,Γ2 `
(
t s[x :=]r[!n]

)τ ((−c,1)

with no subterm of level < n + 1 in s, x ∈ FV(s) in ((−c,1) and n + 1 =

`(σ(c τ), or more precisely the corresponding proof net constructions in
Figure 7.2, again without (nested) nodes of level < n+ 1 in Πs.

The resulting application (tσ(cτ sσ), in fact, is on level n+ 1 now. The
step term s is subject of the same restrictions as a term inside a !n-box. In
the left case Πs is a closed step (which corresponds to the (!0)-rule). In the
right case Πs can be a usual (possibly not-closed) step of an LLT′!♦-iteration
(which corresponds to the (!1)-rule), e.g. by putting the]·[!n around the !n-
box for the step !n λdλp.s that one is used to in LLT′!♦:

(
Itn+1
τ,σ l

]
!n λdλp.s

[
!n

)
.

Remark 7.6. These rules play nicely with subject reduction. For ((−c,0)

this is clear. For ((−c,1) we have (with the terminology of Figure 7.2):

202

7.3. From LLT′!♦ to LLFPL!

Πs

@

light LFPL with !c

Γ2

σ

] [
!n

Πs

@
on level n + 1

σ

Πr

Itn+1
τ,σ Πl

@
Itn+1

τ,σ Πl

@

Figure 7.2.: Two rules to type an(c-application: on the left with a closed
Πs; on the right with a Πs which has exactly one free variable.
In both cases there are no nodes of level < n+ 1 in Πs.

• If Πr is a box typed via (!0), the]·[!n -node above will form a redex
with that box. The reduct of this is a closed proof net: Π′r (the
proof net of the box Πr) below Πs, linked to Πs. Hence, this can
be typed with ((−c,0) rule.

• If Πr is a box which is typed via (!1), the]·[!n -node will form a
redex with that box again. Now Π′r (the proof net of the box Πr)
and Πs are linked as before, but now with the (one and only) input
]·[!n . This is illustrated in Figure 7.3. The reduct on the right side
is typable with ((−c,1).

Remark 7.7. The ((−c,1)-rule implicitly tells us the following about
terms (and in analogy about proof nets):

• If s[x :=]r[!] is not closed, the free variables must be in r.

• The term (t s) typed with ((−c,1) for level n+ 1 cannot be inside
another !n-box, because (!0), (!1) do not allow]r[!n -subterms be-
cause r would be of level n. But this case is outlawed by the side
condition of the (!0)- and (!1)-rules.

203

From LFPL and Light Linear T to Light LFPL

Πs

Π′
r

@

!n] [Itn+1
τ,σ

ρ

σ

!n

Πs

Π′
r

@

ρ

σ

!n] [

!−→n
s{

Πr

Πl

@
Itn+1

τ,σ Πl

@

Figure 7.3.: A (!1)-box is merging with a ((−c,1)-node.

Why is this important? It is crucial to keep subject reduction for the
reduction rules of Itn+1

τ,σ . If the step term has a]r[!n -subterm (Πr′ -
subnet) because the iteration is typed via ((−c,1), the iteration reduction

has to introduce copies of r (Π′r) using
n
C multiplexers. This would not

be possible if there was another box around the iteration.
Moreover, we want that inside boxes there is “nothing” of level ≤ n (to

be able to duplicate the box’s contents in the 7−→n
m-reduction, without

creating new subterms of level ≤ n).

Doing impredicative iteration As we have seen, the new arrow allows us to
type the Itnτ,σ-constant for Ln(τ)-lists in a light LFPL with a level n type
(instead of one level below in LLT! or LLT′!♦):

Itσn,τ : Ln(τ)((♦n(τ (σ(σ)(c σ(σ

with `(σ), `(τ) ≥ n. This is exactly the iteration constant of LFPL (if one
only considers one level). Hence, such a light LFPL subsumes LFPL in a
trivial way because it allows impredicative iteration. Step terms in LFPL
are closed by definition, such that we can use ((−c,0) to type the iteration.

Example 7.8 (Arithmetic with light impredicative iteration). The
usual polynomials for unary numbers (compare with the LLT! term in
Example 6.24):

204

7.3. From LLT′!♦ to LLFPL!

addn := λxL
n(B), yL

n(B).
(
ItnB,Ln(B) xλd

♦nλbλp. (consnB d b p) y
)

multn := λxL
n+1(B), y!nLn+2(B).

(
Itn+1
B,Ln+1(B)

xλd♦
n+1

λbλp.
(
addn+2]y[!n p

)
niln+2

B

)
.

Here, the step of addn, as in Example 7.4 before, gets the ♦n-term from
the first argument d. Moreover, the step is closed. Hence, ((−c,0) is
used to type the application to the iteration constant.
In the second term multn the step is not closed, but has the shape

s[x :=]r[!n]σ (with r := y), such that ((−c,1) must be used.
Note that the multiplication is not non-size-increasing and therefore

not typable in LFPL. Hence, the levels of a stratified, light LFPL are
really necessary in this example.
We can also write the multiplication with a !n-box for the step term.

This underlines the similarity with multn of LLT′!♦ in Example 7.4 even
more. At the same time, it highlights the difference that we put a]·[!n
around the box to lift it to level n+ 1:

multn := λxL
n+1(B), y!nLn+2(B).

(
Itn+1
B,Ln+1(B)

x

]
!n λd♦

n+1
λbλp.

(
addn+2]y[!n p

) [

!n
niln+2

B

)
.

7.3.2. Iteration as a Term Construct

The new arrow (c is only necessary to type the Itnτ,σ-constant in the
presented light variant of LFPL. We have not given an introduction rule
for the(c-arrow. Therefore, we do not have λ-abstraction for(c.

In order to simplify our type system and to make it more similar to
Hofmann’s LFPL, we get rid of the (c immediately again by replacing
the Itnτ,σ-constant with two applicative elimination rules for lists (compare
Section 2.1.1.3 about Applicative System T):

205

From LFPL and Light Linear T to Light LFPL

Γ ` lL
n+1(τ) ∅ ` t♦

n+1(τ(σ(σ

Γ ` (l t)σ(σ (Ln+1(τ)−0)

Γ1 ` lL
n+1(τ) xρ ` t♦

n+1(τ(σ(σ Γ2 ` r!nρ

Γ1,Γ2 `
(
l t[x :=]r[!n]

)σ(σ (Ln+1(τ)−1)

with no subterm of level < n + 1 in t, x ∈ FV(t) in (Ln+1(τ)−1) and
n+ 1 ≤ `(σ), `(τ).

We rewrite our arithmetic example from above a last time to get the
LLFPL! version:

Example 7.9 (Arithmetic with light impredicative iteration). The
usual polynomials for unary numbers (compare with the LLT! term in
Example 6.24):

addn := λxL
n(B), yL

n(B).
(
xλd♦

n

λbλp. (consnB d b p) y
)

multn := λxL
n+1(B), y!nLn+2(B).

(
xλd♦

n+1
λbλp.

(
addn+2]y[!n p

)
niln+2

B

)
.

The addition algorithm is (up to eta-expansion) the LFPL version of
Section 3.3.2.2. The multiplication is essentially the LAL algorithm of
Section 3.3.2.3, with the necessary modification to replace the §-modality
with the levels of the setting here.
Note that the step terms do not have the !n-box around. Though,

again the restriction of the (Ln+1(τ)−0)- and (Ln+1(τ)−1)-rules make
sure that we could put a box around like in the following alternative
formulation:

addn := λxL
n(B), yL

n(B).

(
x

]
!n λd♦

n

λbλp. (consnB d b p)
[

!n
y

)

multn := λxL
n+1(B), y!nLn+2(B).

(
x

]
!n z =]y[!n in λd♦

n+1
λbλp. (addn+2 z p)

[

!n
niln+2

B

)
.

206

7.3. From LLT′!♦ to LLFPL!

Example 7.10 (Arithmetic and Numerals). Now imagine multn is ap-
plied to actual numerals, e.g.

(
mult0

(
cons1

B d1 tt nil1B
)

!0
(
cons2

B d2 tt nil2B
))

.

First note that in the !0-box we could not use d1. Hence, there is no
closed (non-nil1τ) list of type !0L1(τ) in this system, such that on level n
we can only duplicate lists of at least level n+ 2. In the example above,
the second argument is of type !0L2(B) for this very reason.
One can trace back this strange level distance of 2 in the following way:

we lifted the iteration and the cons-constant one level higher to n+ 1,
i.e. the consnτ of LLT! is replaced by consn+1

τ and dn+1 in light LFPL.
Hence, the d2 above corresponds to cons1

τ in LLT!. In other words,
using d1 and cons1

τ for L1(τ) in the example above would correspond
to a !0L1(τ) list in LLT!. But of this type there are no longer lists than
length 1 in LLT! either. Hence, also here we need at least level 2 to
create a list of arbitrary length.

7.3.3. LLFPL! Calculus – the Complete Picture

With the intuition in place we can now introduce LLFPL! formally:

Definition 7.11 (Types). The set TyLLFPL!
of linear types and the level

of a type `(τ) ∈ N0 are defined inductively by:

σ, τ ::= Bn | σ(τ | σ ⊗ τ | Ln(σ) | !nσ | ♦n

`(ρ) :=

{
n if ρ ∈ {Bn, Ln(σ), !nσ,♦n}
min{`(σ), `(τ)} otherwise

with the side condition `(σ) ≥ n for Ln(σ) and `(σ) > n for !nσ.

Definition 7.12 (Constants). The set CnstLLFPL! of LLFPL! constants
consists of

ttn,ffn : Bn

207

From LFPL and Light Linear T to Light LFPL

Casenσ : Bn(σ(σ(σ with `(σ) ≥ n
Casenτ,σ : Ln(τ)((♦n(τ (Ln(τ)(σ)(σ(σ with `(σ) ≥ n
consnτ : ♦n(τ (Ln(τ)(Ln(τ)

nilnτ : Ln(τ)

dn : ♦n

⊗nτ,ρ : τ (ρ(τ ⊗ ρ with `(τ ⊗ ρ) = n

πnσ : τ ⊗ ρ((τ (ρ(σ)(σ with `(σ) ≥ `(τ ⊗ ρ) = n

whose levels are the levels of their type.

7.3.3.1. Terms

Definition 7.13 (Terms). For a countably infinite set V of variable names
the set of (untyped) light linear terms TmLLFPL! is defined inductively by:

s, t ::= xτ | c | λxτ .t | (t s) | !n t | !n x =]s[!n in t |]t[!n |
(
s
n
C
x1

x2 t
)

with types τ ∈ TyLLFPL!
, c ∈ CnstLLFPL! , n ∈ N0 and x, x1, x2 ∈ V . Terms

which are equal up to the naming of bound variables are identified.

Variables Free and bound variables are defined as for Linear System T in
Definition 2.10 plus the cases

FV(!n t) := FV(t)

FV(!n x =]s[!n in t) := FV(s) ∪ (FV(t) \ {x})

FV(]t[!n) := FV(t)

FV(
(
s C

x1
x2 t

)
) := FV(s) ∪ (FV(t) \ {x1, x2}).

Subterms Subterms are defined as for Linear System T in Definition 2.10
with the following additional clauses:

t CLLFPL! !n t

s, t CLLFPL! !n x =]s[!n in t

208

7.3. From LLT′!♦ to LLFPL!

t CLLFPL!]t[!n

s, t CLLFPL!

(
s
n
C
x1

x2 t
)
.

The level of a subterm is the level of its type.
We call]s[!n a hole in the box !n x =]s[!n in t .

Notation 7.14. The same shorthand conventions as in notation 6.7 are used.

Definition 7.15 (Term typing rules). A context is an (unordered) finite
multiset of type assignments from the variable names V to types TyLLFPL!

with the context condition that no variable is assigned different types at
the same time.
Untyped terms are assigned types using the ternary relation ` between a

context Γ, a untyped term t ∈ TmLLFPL! and a type τ ∈ TyLLFPL!
, denoted

Γ ` tτ , via the following rules:

Γ, xτ ` xτ
(Var)

c constant of type τ
Γ ` cτ

(Const)

Γ, xσ ` tτ

Γ ` (λxσ.t)σ(τ ((+)
Γ1 ` tσ(τ Γ2 ` sσ

Γ1,Γ2 ` (t s)τ
((−)

∅ ` tτ

∅ `!n t
!nτ

(!0) Γ ` t!
nτ

Γ `]t[τ!n
(]·[!n)

xσ ` tτ Γ ` s!nσ

Γ `!n x =]s[!n in t
!nτ

(!1)

Γ1, y
!nσ
1 , y!nσ

2 ` tτ Γ2 ` s!nσ

Γ1,Γ2 `
(
s
n
C
y1

y2 t
τ
)τ (C)

Γ ` lL
n+1(τ) ∅ ` t♦

n+1(τ(σ(σ

Γ ` (l t)σ(σ (Ln+1(τ)−0)

209

From LFPL and Light Linear T to Light LFPL

Γ1 ` lL
n+1(τ) xρ ` t♦

n+1(τ(σ(σ Γ2 ` r!nρ

Γ1,Γ2 `
(
l t[x :=]r[!n]

)σ(σ (Ln+1(τ)−1)

where Γ1,Γ2 denotes the multiset union which maintains the context con-
dition.
In ((+) there must not be x in Γ, in (C) no y1, y2 in Γ1 , in (!1) no x

in Γ and in (Ln+1(τ)−τ) no x in Γ1,Γ2.
In (!0), (!1), (Ln+1(τ)−0) and (Ln+1(τ)−1) the term t must not have sub-

terms of level ≤ n or occurrences of di with i ≤ n+ 1.

The typing rules are essentially syntax directed . Each subterm s C t of
Γ ` tτ (with the exception of the]r[!n in (Ln+1(τ)−1)) appears as the premise
of some rule in the typing derivation of t (or in the context in the case of
variables).

Fact 7.16. The restriction of the rules (!0), (!1), (Ln+1(τ)−0) and
(Ln+1(τ)−1) implies that t does not have occurrences

• of constants of level ≤ n or

• subterms of shape]·[!i with i ≤ n or

• !i · -boxes with i ≤ n or

•
(
·
i
C
y1

y2 ·
)

with i ≤ n or

• di with i ≤ n+ 1 or

• iterations of level i < n+ 1.

Definition 7.17 (Maximal level). The maximal level Lt of a well-typed
term t is the maximal level of its subterms.

7.3.3.2. Proof Nets

For the definition of proof nets we closely follow Section 6.2.2 about LLT!.

210

7.3. From LLT′!♦ to LLFPL!

Definition 7.18 (Proof net structure). Mutatis mutandis like Definition
6.15 with the additional typing rules for iterations:

Πs

@

Γ2

] [
!n

Πs

@

Πr

Πt

(Ln+1(τ)−0) (Ln+1(τ)−1)

Ln+1(τ)

Πt

Ln+1(τ)

Γ1Γ1

♦n+1 " τ "σ"σ ♦n+1 " τ "σ"σ

Definition 7.19 (Proof net). Mutatis mutandis like Definition 6.15.

Definition 7.20 (Subproof net structure). Mutatis mutandis like Defini-
tion 7.20.

Fact 7.21. The restrictions of the typing rules (!0), (!1), (Ln+1(τ)−0) and
(Ln+1(τ)−1) of Definition 7.15 for terms imply that the subnet Πt of a !n-box
in a proof net Π does not have occurrences of

• constants of level ≤ n or

•]·[!i -nodes with i ≤ n or

• !i · -boxes with i ≤ n or

• multiplexers
i
C with i ≤ n or

• di with i ≤ n+ 1 or

• iterations of level i < n+ 1

in analogy to Remark 7.16 for terms.

211

From LFPL and Light Linear T to Light LFPL

Remark 7.22. We have no explicit restriction about nodes of lower level
in boxes for proof nets. Instead this is a consequence that a proof net is
the image of a term into the proof net language.

The translation from terms to proof nets, again, is mostly just the trans-
formation of a term to its parse tree. As for LLT! we have:

Fact 7.23. Let Πs be the subproof net of a proof net Πt for the term tτ

with s E t as the subterm for Πs. Then Πs is a subproof net structure of
Πt.

Definition 7.24 (Paths and proper paths). Mutatis mutandis like Defini-
tion 2.34.

Fact 2.35 and Remarks 2.36, 2.37 about paths apply here as well.

Definition 7.25 (Level of a node, level of a proof net). Mutatis mutandis
like Definition 6.20.

7.3.4. Normalisation

As the definitions above also the normalisation of LLFPL! is mostly that of
LLT! with necessary differences for the new iteration construction and the
♦n argument of the consnτ :

Definition 7.26 (Normalisation/Cut Elimination). The graph rewriting
relation between proof nets is split into the following redexes (compare
[AR00] and Definition 6.31 for LLT!):

1. The linear cuts (see Figure 6.2a on page 178) with the λ-restriction
that a 7−→n

l -redex is not under a λ-node of level ≤ n:

(λxσ.tτ s) 7−→n
l t[x := s] with `(σ(τ) = n(

πnσ,τ,ρ
(
⊗nσ,τ s t

)
f
)
7−→n

l (f s t)

(Casenσ ttn f g) 7−→n
l f

(Casenσ ffn f g) 7−→n
l g(

Casenτ,σ nilnτ f g
)
7−→n

l g(
Casenτ,σ

(
consnτ d♦ x l

)
f g
)
7−→n

l (f d x l)

212

7.3. From LLT′!♦ to LLFPL!

and
((

consn+1
τ t♦

n+1
v l
)
f g
)
7−→n+1

l (f t v (l f g))
((

consn+1
τ t♦

n+1
v l
)
f [z :=]r[!n] g

)
7−→n+1

l

(
r
n
C
r1

r2

(
f [z :=]r1[!n] t v

(
l f [z :=]r2[!n] g

)))

(
niln+1

τ f g
)
7−→n+1

l g

for the iteration (see Figure 7.4). The first rule is for a closed f

typed via (Ln+1(τ)−0), the second for the (Ln+1(τ)−1)-case.

2. The shifting cuts like in Definition 6.31 (see Figure 6.2b on page 178).

3. The multiplexer/contraction cuts like in Definition 6.31 (see Fig-
ure 6.2c on page 178).

The last two kinds are called polynomial redexes and are denoted by
7−→n

p :=7−→n
s ∪ 7−→n

m, an arbitrary redex by 7−→n:=7−→n
l ∪ 7−→n

s ∪ 7−→n
m.

We write Πt −→n Πt′ if Πs 7−→n Πs′ for some subproof net Πs of Πt and
Πt′ is Πt with Πs replaced by Πs′ (and mutatis mutandis −→n

? for 7−→n
?

redexes) after cleaning up.
A proof net Πt is called 7−→n

? -normal or −→n
? -normal if there is no Πt′

with Πt −→n
? Πt′ . The notation nf−→n

? denotes the relation which puts a
term in relation with its normal form(s), i.e.

Π nf∼ Π′ :⇐⇒ Π ∼∗ Π′ ∧Π′ is ∼ -normal.

Note the following difference of the normalisation for LLFPL! defined above
and the normalisation of LLT! in Definition 6.31: in order to allow a length
estimate for lists under a λ-abstraction of level ≤ n (compare with δLFPL
in Chapter 4), we have to forbid normalisation under such a λ-node in
LLFPL!.
The LLFPL!-normalisation is a mixture of LFPL’s reductions (arbitrary

order; 7−→n
l not under λ-nodes of level ≤ n) and the polynomial reductions

of light systems, both phases for each level:

213

From LFPL and Light Linear T to Light LFPL

Πp

@v@

niln+1
τ

@

Πg

Γg

!−→n+1
l

Πg

Γg

Πp

@v@

niln+1
τ

@

Πg

Γg

!−→n+1
l

Πg

Γg

] [
!n

Πr

Γr

(a) niln+1
τ -cases

Πp

@v@

@

Πg

Γg

!−→n+1
l

Πt Πl

Γt Γv Γl

consn+1
τ Πv

@
@

@

Πp

@v@

@

Πg

Γg

Πl

Γl

@

@
Πp Πt

Γt Γv

Πv

@

Πp

@v@

@

Πg

Γg

!−→n+1
l

Πt Πl

Γt Γv Γl

consn+1
τ Πv

@
@

@

Πp

@v@

@

Πg

ΓgΠl

Γl

@

@
Πp Πt

Γt Γv

Πv

@

] [
!n

Πr
] [

!n

Πr

] [
!n

Γr

Γr

n

(b) consn+1
τ -cases

Figure 7.4.: The iteration cuts for LLFPL!

214

7.3. From LLT′!♦ to LLFPL!

−→LLFPL! :=

N∏

n=0

nf−→n
l

nf−→n
p

with N ∈ N0 as the maximal level of (nested) nodes in the proof net.
First, we make sure that the normalisation of one level works by splitting

it into the linear and the polynomial reduction:

Lemma 7.27 (Level normalisation). Let Πt be 7−→i-normal for each i < n,
7−→n

l -normal and Πt −→n
p Π′t. Then also Π′t is 7−→n

l -normal.

Proof. All the 7−→n
l -redexes, with the only exception of the iteration cut,

talk only about one level and do not involve any reference to boxes. More-
over, the boxes in 7−→n

s and 7−→n
m are of level n, therefore the content is of

level ≥ n+ 1 and hence not of interest for 7−→n
l -cuts.

The iteration 7−→n
l -redex of level n only references boxes of level n − 1.

Hence, a 7−→n
s - or 7−→n

m-reduction, which merges or duplicates level n boxes,
cannot cause a new iteration redex of level n.

7.3.5. Complexity

The main difference of LLFPL!’s normalisation, compared with the one of
LLT!, is the changed iteration cut in the linear part of the normalisation
of each level. The iteration phase 7−→n

i of LLT! for level n + 1 lists is
dropped in LLFPL! and replaced by “flat” level n + 1 reductions as part
of the linear phase. The polynomial part of the reduction is the same in
LLT! and LLFPL!, such that we know by Lemma 6.41 that the polynomial
reduction nf−→n

p is of complexity O(|Π|3) and results in a proof net of size
O(|Π|4).
What we have to show now is that the complexity of the linear reduction

nf−→n
l is polynomial in the proof net size with a degree which is uniform

in the proof net at the very beginning of the normalisation, and of course
independent of the input numerals/lists.
Compared to LFPL or δLFPL we do not need free variables in this set-

ting to get terms of type ♦n, because the constant dn is available for this
purpose. Hence, the concept of almost-closeness (compare Definition 4.6)
is not needed here.

215

From LFPL and Light Linear T to Light LFPL

Definition 7.28 (λ-abstraction of a level, bound for a level). A λ-node of
type σ(τ with `(σ(τ) = n is called a λ-abstraction of level n.
A node x in a proof net Π is called bound for level n in Π (short: n-

bound) if x is under a λ-abstraction node z of level n in Π and there is a
path from z to x.
A subproof net Π′ of Π is called bound for level n in Π (short: n-bound)

if there is a node x in Π′ that is bound for level n in Π.

If an iteration redex is fired, we know that it is not under λ-abstraction
of level n (by restrictions on the normalisation rules). Therefore, the list
cannot be bound for level n. If a list was bound for level n, a beta-redex
on level n might change its length.
Moreover, the λ-restriction in Definition 7.26 also forbids λ-nodes above

of lower level, i.e. < n. This will be necessary in Lemma 7.37 in order to
know that the ♦n-parameter of a consnτ -constant in the iteration redex is
not due to a bound variable of level < n.
With this in mind, we define the measures by counting the dn-nodes:

Definition 7.29 (List length measure). For a proof net Π with dn(Π) we
denote the number of (nested) dn-nodes in Π (and in analogy for terms t,
i.e. dn(t) := |{dn E t}|).
For a subproof net Π′ of Π with a list type Ln(τ) which is not n-bound

in Π, we call dn(x) the length l(Π′) := dn(Π′) of Π′ in Π (and in analogy
for a list term t).

Clearly, in this basic setting we get the usual properties of a sensible
length measure, e.g.

l((consnτ d
n v l)) < l(l)

and moreover a bound l(s) ≤ dn(t) for each not n-bound subterm s E t

(and in analogy for proof nets).
Note that we restrict ourselves to lists here which have no bound variables

which might be substituted later by a beta-redex of level n. Hence, the
substitution property of length measures in Section 4.6 does not apply.
We will define the complexity measure in analogy to Definition 4.45 for

δLFPL. There, the model of computation is the λ-term. Here, we normalise

216

7.3. From LLT′!♦ to LLFPL!

using proof nets. Hence, we have to adapt the ϑq(·)-measure of Chapter 4
to this setting:

Intuition for the complexity measure Each (nested) node v in a proof net
Π is assigned a multiplicator ϑnΠ(v) ∈ N0[X] for level n, which depends on
the (Ln(τ)−0/1)-nodes v@ “effectively above” v in the proof net. Each such
node v@ with a list tL

n(τ) gives raise to

• a factor X + 1 ∈ N0 in ϑnΠ(v) if v@ is n-bound in Π,

• a factor l(t) + 1 in ϑnΠ(v) otherwise.

Note that the second case is chosen if v@ is not under λ-abstraction (of any
level ≤ n).

Remark 7.30. The intuition given for δLFPL in Remark 4.46 applies
here as well, transferred to the setting with levels. We restrict the first
case to “n-bound”, instead of just “bound” as in δLFPL in Section 4.45,
because the measure ϑnΠ(v) is just needed for the normalisation of the
linear redexes on level n. It can be that there is a λ-abstraction of level
> n above an iteration node. But this has no influence on the level n
normalisation, and, in fact, the λ-restriction of level n allows redexes
under such a node.

Effectively above We have to define what “effectively above” means: the
idea here is that an iteration only duplicates a node x if it is in the proof
net Πs of the (Ln(τ)−0/1)-rule as shown in Definition 7.18. Otherwise, the
corresponding factor of the (Ln(τ)−0/1)-node is ignored for this node x. This
makes sense because the normalisation of this iteration node will not du-
plicate any node outside Πs.

We will make all this formal now:

Definition 7.31 (Effectively above, factor, multiplicator). Let v@ be the
@-node as in

217

From LFPL and Light Linear T to Light LFPL

Πs

@

Γ2

] [
!n

Πs

@

Πr

Πt

(Ln+1(τ)−0) (Ln+1(τ)−1)

Ln+1(τ)

Πt

Ln+1(τ)

v@ v@

Γ1Γ1

♦n+1 " τ "σ"σ ♦n+1 " τ "σ"σ

or

in the proof net Π and w a (nested) node in Πs. Then v@ is effectively
above w for level n+ 1.
For each such v@ effectively above w, we define the factor for level n+ 1,

denoted ϕn+1
Π (v@) ∈ N0(X), as

• ϕn+1
Π (v@) := X + 1 if v@ is n-bound in Π,

• ϕn+1
Π (v@) := l(Πt) + 1 otherwise.

The multiplicator for level n of a node w in Π, denoted ϑnΠ(w), is the
product of the factors of nodes which are effectively above w for level n,
i.e.

ϑnΠ(w) :=
∏

v@∈eanΠ(w)

ϕnΠ(v@)

where eanΠ(w) is the set of nodes effectively above w in Π.
We call Dn

Π(w) := |eanΠ(w)| the (iteration) nesting depth of w for level
n. The maximal Dn

Π(w) for all (nested) nodes w of a proof net Π is called
the nesting depth of Π for level n, denoted Dn(Π).

Lemma 7.32. For X ∈ N0 and every (nested) node v in a proof net Π

ϑnΠ(v)(X) ≥ 1

holds.

Proof. We have X ≥ 0 by assumption and l(Πt) ≥ 0 by definition of the
length measure. Hence, for every factor ϕnΠ(v@) ≥ 1 holds and therefore

218

7.3. From LLT′!♦ to LLFPL!

ϑnΠ(v) := ΠϕnΠ(v@) ≥ 1, especially if there is no v@ effectively above v for
level n.

Compare the multiplicator with Definition 4.45 for δLFPL. Due to the
inductive definition of terms there, we gave a recursive definition computing
the measure for a whole term. Here, we compute a measure for each node w
by looking for the set of nodes effectively above. If a node w is in a step of
an iteration (and not in the proof net below the hole in case of (Ln(τ)−1)),
it will weight more because it might be duplicated depending on the list
length of the iteration. This is the same in both definitions.
The distinction between effective and non-effective is not necessary for

δLFPL or LFPL, because there every step term is closed. Hence, a (nested)
node, which is below an iteration node in the step, is automatically effective,
because the right (Ln(τ)−1)-case in the figure of Definition 7.31 above does
not exist. Moreover, there we only have one level, such that the postfix “for
level n” can be dropped as well.

Remark 7.33. Remark 4.46 does apply here as well, as a motivation for
the upper definition.

We stress the point that the nodes in a step of (Ln+1(τ)−1), which are not
in Πs (e.g. the]·[!n -node and the nodes in Πr in the figure of Definition 7.31
above) are only counted once, and not multiplied by the length of the list
(the (Ln+1(τ)−1)-node is not effective for those). This fits to the reduction
rule for the consn+1

τ -case of the iteration which does not duplicate the Πr

subnet, but only introduces a multiplexer to get the typing right.
With the multiplicator we define the measure ϑn(Πt) for a complete

proof net (which corresponds to ϑq(t) in Definition 4.45 for δLFPL):

Definition 7.34 (Complexity measure). For each proof net Πt and a level
n ∈ N0 the complexity measure ϑn(Πt) ∈ N0[X] is defined as:

ϑn(Πt) :=
∑

v nested node of Πt

w(v) · ϑnΠt(v),

with w(v) := 3 for consnτ -nodes and w(v) := 1 otherwise.

219

From LFPL and Light Linear T to Light LFPL

Remark 7.35. The weight w(v) here is for technical reasons to compen-
sate for the new nodes on the right hand side of the consn+1

τ -case in
Figure 7.4b on page 214.

In analogy to δLFPL (compare Lemma 4.48), we first consider the beta
reduction case. We have to show that the complexity measure goes strictly
down when such a redex is fired. For this it is enough to show that for each
(nested) node v in the net one of the following holds:

1. ϑnΠ(v)(X) stays the same,

2. or ϑnΠ(v)(X) goes down,

3. or v disappears during normalisation,

and for at least one node v in the proof net either 2 or 3 is the case, in
order to get a strict decrease.

Lemma 7.36 (Substitution complexity). Let Π −→n
l Π′ via a β-redex.

Then
ϑn(Π)(X) > ϑn(Π′)(X)

holds for all X ≥ dn(Π).

Proof. Assume that Π −→n
l Π′ is the case due to the following β-redex (by

definition of the reduction rules v@ is not under λ-abstraction of level ≤ n):

λ

@

!−→n
l

Γ1

Γ2

Γ2

Γ1

Πs

Πt
Πs

Πt

Γ1

Πt

or

v@

vλ

eλ

In either case, the @-node is dropped and by Lemma 7.32 we have
ϑnΠ(v@) ≥ 1. Hence, it is enough to show that the multiplicators of all
the other nodes stay the same or decrease for the chosen X.
The right case: Clearly, the right case is trivial because then all the nodes
in Πs are dropped (due to the garbage cleanup). If a (Ln(τ)−0/1)-node in

220

7.3. From LLT′!♦ to LLFPL!

Πs was effectively above any node w for level n in Π, this w “lost” a factor
in its multiplicator ϑnΠ′(w). Hence, ϑnΠ′(w)(X) ≤ ϑnΠ(w)(X). Similarly,
the possible dn-nodes in Πs are dropped which possibly reduces factors
of (Ln(τ)−0/1)-nodes above v@ because l(Πl) for those iteration nodes de-
creased.
The left case: Now, suppose the left case of the figure happens, i.e. the
argument Πs is placed below Πt:
First, no node w in Πs will loose a factor because an iteration node

effectively above will still be effectively above.
Can there be a (Ln(τ)−0/1)-node vit in Πt which is now effectively above

a node w in the reduct Π’ that was not effectively above before? We can
assume, that such a w is not in Πt and vit is either a (Ln(τ)−0)- or (Ln(τ)−1)-
node:

Πp

@

Γ2

♦n " τ "σ"σ

] [
!n−1

Πp

@
♦n " τ "σ"σ

Πr

Πl

(Ln(τ)−0) (Ln(τ)−1)

Ln(τ)

Πl

Ln(τ)

vit vit

Γ1Γ1

In either situation, w must lay inside Πp in Π′, because vit is effectively
above w. Moreover, we know that vit is below v@ in Π′, because vit is in
Πt. In Π though, there must have been a path, starting with eλ and ending
in vit via the output link of Πp, because w (which is not in Πt) cannot be
below vit otherwise.

• In the (Ln(τ)−0)-case this path is impossible because Πp is closed.

• In the (Ln(τ)−1)-case this path must have gone through the]·[!n−1 -
node of the (Ln(τ)−1)-rule in Π. But then Πs would be completely
below this]·[!n−1 -node in Π′. Hence, w could not be in Πp. Contra-
diction.

221

From LFPL and Light Linear T to Light LFPL

Finally, if an n-bound (Ln(τ)−0/1)-node in Π is not n-bound anymore in
Π′, its factors in all the multiplicators turn from X + 1 to `(Πl) + 1.
Hence, due to X ≥ dn(Π) ≥ l(Πl) for the list proof net of the (Ln(τ)−0/1)-
node, every multiplicator ϑnΠ(w) with this factor (non-strictly) decreases:
ϑnΠ(w) ≥ ϑnΠ′(w).
Note that a (Ln(τ)−0/1)-node which is not n-bound in Π, cannot become

n-bound in Π′.

With this result we can tackle the complexity lemma. This will give us
the polynomial which bounds the number of steps during the normalisation
of the 7−→n

l -redexes on one level n:

Lemma 7.37 (Complexity of nf−→n
l). Assume a closed proof net Π and

dn(Π) ≤ N ∈ N. If Π −→n
l Π′, then

ϑn(Π)(N) > ϑn(Π′)(N).

In particular, any reduction sequence starting from Π has a length of at
most ϑn(Π)(N), and

ϑn(Π)(|Π|) ≤ (|Π|+ 1)D
n(Π)+1 ∈ O(|Π|D

n(Π)+1)

holds.

Proof. We proof the first claim by case distinction on the different kinds of
redexes 7−→n

l :

• β-redex: shown in Lemma 7.36.

•
(
Casenτ,σ nilnτ f g

)
7−→n

l g: only the subnet for g is kept. The other
nodes are dropped. Possibly some factors of (Ln(τ)−0/1)-nodes v@

decrease, because of deleted dn-nodes in the list proof net Πl of v@

the length measure l(Πl) can decrease.

•
(
Casenτ,σ

(
consnτ d♦ x l

)
f g
)
7−→n

l (f d x l): similar.

• (Casenτ ttn f g) 7−→n
l f : similar.

• (Casenτ ffn f g) 7−→n
l g: similar.

•
(
πnσ,τ,ρ (⊗σ,τ s t) f

)
7−→n

l (f s t): similar.

222

7.3. From LLT′!♦ to LLFPL!

• Iteration redex: this is the interesting case. Compare the nodes on the
left sides with the nodes on the right sides in Figure 7.4 on page 214.

– nilnτ -cases: similarly to the cases above, most of the nodes are
dropped: the dropped dn might decrease some factors. The
dropped (Ln(τ)−0/1)-nodes v@ might remove factors ϕnΠ(v@) from
some multiplicators ϑnΠ(w).

– consnτ -cases: we consider the second (Ln(τ)−1)-case (the first
is similar, but even simpler). Counting the nodes gives that

the right side has one]·[!n−1 -node, one
n−1
C -node and the Πp-

copy more (note: in the Figure 7.4b 7−→n+1
l is pictured, here we

consider 7−→n
l).

Because Π is closed and the redex is not under λ-abstraction for
level ≤ n, we know that Πt must have at least one dn-node2.
Hence, the factor ϕnΠ′(v@) for the nodes w′r in the right copy of
Πp in Π′ is at least one smaller than it was in Π, i.e. ϑnΠ(v@).
Hence, if w is the (nested) node in Πp in Π, w′l the corresponding
(nested) node in the left copy of Πp in Π′, and w′r the (nested)
node in the right copy, we get:

ϑnΠ(w)(X) = ϕnΠ(v@)(X) ·
∏

v∈eanΠ(w)
v 6=v@

ϕnΠ(v)(X)

= (l(Π(consτ t v l)) + 1) ·
∏

v∈eanΠ(w)
v 6=v@

ϕnΠ(v)(X)

≥ (l(l) + 1 + 1) ·
∏

v∈eanΠ(w)
v 6=v@

ϕnΠ(v)(X)

≥
∏

v∈eanΠ(w)
v 6=v@

ϕnΠ(v)(X) + (l(l) + 1) ·
∏

v∈eanΠ(w)
v 6=v@

ϕnΠ(v)(X)

≥ ϑnΠ′(w′l)(X) + ϑnΠ′(w
′
r)(X).

Because w(w) = w(w′l) = w(w′r) holds, we get w(w) · ϑnΠ(w) ≥
w(w′l) · ϑnΠ′(w′l) + w(w′r) · ϑnΠ′(w′r) as required.

2Here, we need that the λ-restriction for level n forbids λ-nodes above of level ≤ n,
not only of level = n: there is no term of type ♦n with only a free variable of
level > n; but, there is a term of type ♦n with a free variable of level < n, e.g.
(xB

n−1(♦n ttn−1).

223

From LFPL and Light Linear T to Light LFPL

The dropped consnτ -node contributes a decrease of 3 ·ϑnΠ(v@) to
the measure ϑn(Π′), due to w(consnτ) := 3 in Definition 7.34.

The additional]·[!n−1 - and
n−1
C -nodes contribute an increase of

1 · ϑnΠ′(v@) each. With ϑnΠ(v@) = ϑnΠ′(v@) this gives a decrease
of 1 · ϑnΠ′(v@) for ϑn(Π′) altogether, compared to ϑn(Π).

For each node w in Πr the effective nodes eanΠ(w) stay the same
in Π′ because no (Ln(τ)−0/1)-node v@ in either copy of Πp can

be effectively above w. Hence, the multiplexer
n−1
C and the two

nets Πp cannot lead to an increase of the multiplicator of those
w.

We have shown now, that the value ϑn(Π)(N) strictly decreases in every
linear reduction step. Of course, ϑn(Π)(N) cannot be negative, with ϑn(Π)

as a polynomial with positive coefficients. Hence, ϑn(Π)(N) is an upper
bound of the possible length of any reduction sequence starting from Π.
A (nested) node v in a proof net Π has at most Dn

Π(v) many factors in
its multiplicator on level n. For every factor ϕnΠ(v@) with the list subnet
Πl of v@ we have by definition and due to |Π| ≥ dn(Π) ≥ l(Πl):

ϕnΠ(v@)(|Π|) ≤ |Π|+ 1.

Hence, with dn(Π) ≤ |Π|:

ϑn(Π)(|Π|) :=
∑

v nested node in Π

w(v) · ϑnΠ(v)(|Π|)

≤
∑

v nested node in Π

w(v) · (|Π|+ 1)D
n(Π)

≤ 3 · |Π| · (|Π|+ 1)D
n(Π)

≤ 3 · (|Π|+ 1)D
n(Π)+1 ∈ O(|Π|D

n(Π)+1).

Corollary 7.38. For Π
nf−→n

l Π′, Π closed, the size grows polynomially in
|Π|, more precisely ∣∣Π′

∣∣ ∈ O(|Π|D
n(Π)+1).

Proof. By Lemma 7.32 and Definition 7.34 we have |Π′| ≤ ϑn(Π′). With
the previous lemma we get ϑn(Π′)(|Π|) ≤ ϑn(Π)(|Π|) ∈ O(|Π|D

n(Π)+1).

224

7.3. From LLT′!♦ to LLFPL!

7.3.5.1. Uniformity of the nesting depth

Before the complexity lemma for the linear normalisation can be combined
with the polynomial nf−→n

p -normalisation on each level, we have to make
sure that

1. the degree of ϑn(Π) is uniform in Π with fixed Dn(Π) in the sense
that it only depends on Dn(Π), not on the details of Π otherwise,

2. and that the degree of ϑn(Π) does not grow under normalisation,
especially of lower levels than n.

The first property is part of Lemma 7.32.
In Remark 7.7 we already sketched how we can get the second prop-

erty. The basic idea is that (non-trivial) nested iterations require the step
to be typed with the (Ln(τ)−0)-rule instead of (Ln(τ)−1). Then steps are
closed from the very beginning and their nesting depth is constant during
normalisation.
In order to see the reason for this, first we study three cases which nest

iterations:

Case 1. Consider a nested iteration on level n of at least nesting depth 2:

(
lL
n(τ) λdλxλp....]s[!n−1 ...

(
l′

inner step︷ ︸︸ ︷
λd′λx′λp′....

]
s′
[
!n−1 ...

)
...

︸ ︷︷ ︸
outer step

)
.

The outer step is typed with (Ln(τ)−1), which is fine. The inner step
also has a]·[!n−1 -hole. Therefore, it must be typed with (Ln(τ)−1)

as well. But this means that the outer step has two of those]·[!n−1

nodes which is not possible by the restriction of the (Ln(τ)−1)-rule.
For this recall that the proof net of the step of an iteration has the
same properties as a proof net of a !n−1-box. Hence, it cannot have a
(nested)]·[!n−1 -node.

Case 2. Consider another nesting:

(
lL
n(τ) λdλxλp....

]
...
(
l′

inner step︷ ︸︸ ︷
λd′λx′λp′....

]
s′
[
!n−1 ...

)
...
[
!n−1 ...︸ ︷︷ ︸

outer step

)
,

225

From LFPL and Light Linear T to Light LFPL

i.e. the inner iteration is inside the]·[!n−1 -hole of the outer step term.
This situation is fine. But in order to be a nested iterations in the
sense of LFPL, the inner iteration must be in the Πs-subnet (in the
sense of figure of Definition 7.18), such that the outer iteration node
v@ is effectively above the inner one. Here, this is not the case. In
other words, the nesting is only 1.

Case 3. Consider the third nesting:

(
lL
n(τ) λdλxλp....

]
...!n−1 (l′

inner step︷ ︸︸ ︷
λd′λx′λp′....

]
s′
[
!n−1 ...

)
...
[
!n−1 ...

︸ ︷︷ ︸
outer step

)
,

i.e. the inner iteration is inside a !n−1-box which will eventually merge
with the]·[!n−1 -node of the (Ln(τ)−1)-rule of the outer iteration . Here,
we have to be more precise in the notation though:

• If]s′[!n−1 is supposed to be a subterm (subproof net) of the con-
tent of the box (proof net of the box), then this is not typable
because of the restriction of the !0,1-rules about subterms (nodes).

• If the notation is the shorthand for

!n−1 z =
]
s′
[
!n−1 in

(
l′

inner step︷ ︸︸ ︷
λd′λx′λp′....z...

)
,

then the inner iteration is, in fact, typed via (Ln(τ)−0).

By the first and the last case we immediately get the following lemma:

Lemma 7.39. A proof net Πt of a !n−1-node (or the step proof net Πs of
a (Ln(τ)−1)-node) has no (nested) (Ln(τ)−1)-nodes.

Corollary 7.40. For a nesting depth Dn(Π) ≥ 2 the inner level n iterations
are typed with (Ln(τ)−0).

We come back to the original question:
Is it possible to increase Dn(Π) during the normalisation?

226

7.3. From LLT′!♦ to LLFPL!

Lemma 7.41. Let Π′ be the result of normalisation by levels up to level
n− 1, started from Π. Then:

Dn(Π′) ≤ Dn(Π) + 1.

Proof. First, we know that a (nested) node v of the proof net of a (nested)
!n−1-box v! in Π′ “has always been” a (nested) node of a proof net of a
(nested) !n−1-box during normalisation. This is clear, because no reduction
rule puts a box around a proof net which did not have a box around before
the reduction.

Therefore, every iteration node v@ in the proof net of such a v!, that is
a (Ln(τ)−0)-node by Lemma 7.39, has always been a (Ln(τ)−0)-node during
normalisation, i.e. no polynomial cut turned a (Ln(τ)−1)-node into such a
(Ln(τ)−0)-node. This means that the iteration nesting depth of v@ can be
at most Dn(Π).

We show the following two invariants during normalisation of Π:

Every nested (Ln(τ)−1)-node has at most Dn(Π) factors
and

every (Ln(τ)−0)-node in a !n−1-box has at most Dn(Π) factors.

Both are true by assumption of the lemma at the beginning for Π.

Let Π′ be an intermediate reduct and Π′ −→i Π′′. The only way to
increase the number of a factors or a node from Π′ to Π′′ is by merging an
!n−1-box with the]·[!n−1 of an (Ln(τ)−1)-node in Π′, like in:

227

From LFPL and Light Linear T to Light LFPL

Π′
s

@

] [
!n−1

Π′
s

@

Π′
t

(Ln(τ)−1)

Ln(τ ′)

Π′
t

v@

Γ1

Γ1

♦n " τ "σ"σ

!n−1

Π′
s

@

] [
!n−1

Π′
s

@

Π′
t

Ln(τ ′)

Π′
t

v@

Γ1

Γ1

♦n " τ "σ"σ

!−→n
s

-nodes

-node

-node

Ln(τ)Ln(τ)

(Ln(τ ′)−0)

(Ln(τ ′)−0)

Only the multiplicators of (Ln(τ)−0,1)-nodes w in Π′s get the additional factor
of v@. Because these nodes w are in a box, we know that they are in fact
(Ln(τ)−0)-nodes, and therefore they have at most Dn(Π) factors due to the
second invariant. After the reduction w has at most Dn(Π) + 1 factors, as
v@ is now possibly effectively above. But w is not in a !n−1-box anymore.
The number of factors for v@ did not change such that the first invariant is
still true for v@.
The number of factors for nodes outside of Π′s and Πt did not change
because v@ is not effectively above them in Π′′. The (Ln(τ)−0,1)-nodes in Πt

are in fact (Ln(τ)−0)-nodes such that the invariants do not claim anything
about them. Hence, both invariants hold again for Π′′.

Corollary 7.42. The nesting depth of iterations on any level n of a proof
net Πτ is bounded during normalisation via −→LLFPL! . The bound only
depends on Dn(Π).

This is the uniformity that is needed to get a polynomial complexity
of the normalisation by levels. For every level we can say, just from the
original nesting depths, how big Dn(Π′) will be during normalisation of Π

to Π′. It tells us that the nesting depth Dn(Π′), which will, later on, be a
bound of the degree of the complexity polynomial of each level, does not
depend on the input (if it is given as numeral with lower nesting than Π).

228

7.3. From LLT′!♦ to LLFPL!

In other words, it is not possible to implement a term whose nesting depth
increases depending on the length of some input numeral.
7.3.5.2. Correctness proof

Theorem 7.43 (Correctness). For every maximal nesting depth D and
maximal level L there is a polynomial PL,D(x), such that every closed proof
net Πτ with levels ≤ L and Dn(Π) ≤ D can be normalised in O(PL,D(|Π|))
many steps.

Proof. By Lemma 7.41 and the assumptions we haveDn(Π′) ≤ Dn(Π)+1 ≤
D + 1. Let be D′ := D + 1.
By Lemma 7.37 we know that there is a polynomial pnD ∈ N0[x] of degree
≤ D′ + 1 in the proof net size which bounds the number of possible 7−→n

l -
normalisation steps on every level n, uniformly for every closed proof net
of maximal nesting depth D′.
By Corollary 7.38 the size after nf−→n

l is polynomially bounded by qnD ∈
N0[x] of degree ≤ D′ + 1 in the proof net size.
Applying the polynomial reductions on level n gives a polynomial “blowup”

with degree 4 (compare Lemma 6.41) in a cubic number of steps at worst.
Let be Πn be the proof net which is nf−→i

l
nf−→i

p-normal for level i < n and
Π0 := Π. Then, normalising first the linear redexes on level n of Πn gives
Π′n, and normalising then the polynomial redexes on level n of Π′n gives
Π′′n = Πn+1, altogether in

PnD(|Πn|) := c · (pnD(|Πn|) + qnD(|Πn|)3)

many steps in the size of the proof net of the previous level, giving a nor-
malised proof net for level n of size

QnD(|Πn|) := d · qnD(|Πn|)4

for some constants c, d ∈ N0. Hence, we get Πn+1 from Πn in

O(PnD(|Πn|))

many steps and of size

|Πn+1| = O(QnD(|Πn|)).

The degree to normalise each level is uniformly (only depending on L and

229

From LFPL and Light Linear T to Light LFPL

D), polynomially bounded. Because the maximal level is ≤ L we get ΠL+1

in a polynomial in |Π| which is independent of the actual Π, only depending
on L and D.

Example 7.44 (Insertion Sort in LLFPL!). The insertion sort algo-
rithm, the prime example of LFPL:

<n : Ln(B)(Ln(B)(Ln(B)⊗ Ln(B)⊗B

insertn := λxL
n(B), d♦

n

lL
n(Ln(B)).

(
πn
(
l stepnilnLn(B) ⊗ x

)
λl, y.

(
consnLn(B) d y l

))

step := λd, x, p.
(
p λl, y.

(
(<n x y) λx, y, b.

(
CasenLn(Ln(B)) c< c≥

)))

: ♦n(Ln(B)(Ln(Ln(B))⊗ Ln(B)(Ln(Ln(B))⊗ Ln(B)

c< :=
(
consnLn(B) d y l

)
⊗ x c≥ :=

(
consnLn(B) d x l

)
⊗ y}

sortn := λlL
n(Ln(B)).

(
l insertn nilnLn(B)

)
: Ln(Ln(B))(Ln(Ln(B)).

The type of the sorting function is symmetric, as expected from a non-
size-increasing algorithm. Hence, we can now iterate sortn again. Of
course, the resulting algorithm is still non-size-increasing and hence has
a symmetric type.
Compare Insertion Sort in LLFPL! with Insertion Sort in LAL in

Section 3.3.1.3. There, in the latter, the “insert”-term can be expressed
with an symmetric type using the pull-out trick, but “sort” cannot. This
is the consequence of impredicative iteration in LLFPL! which is not
possible in LAL or LLT!.

7.4. Conclusion and Outlook

In this chapter we have started with the ideas of LLT! and, step by step,
transformed it into a Light LFPL-calculus. The iteration scheme of LLFPL!

allows the formulation of LFPL-algorithms in LLFPL! in a trivial way be-
cause LLFPL! on one level, without any modalities is basically LFPL. At
the same time, LLT!-algorithms can be reformulated to fit into LLFPL!.
The latter is based on the key insight that non-size-increasing computation
of LFPL with closed step terms is very similar to LLT!’s iteration scheme
which requires step terms with the !-type, such that they are essentially
closed (up to the possible hole in the box, which cannot contribute to the
computation anymore).

230

7.4. Conclusion and Outlook

While being as expressive as LFPL and as expressive as LLT! indepen-
dently, in LLFPL! we can combine algorithms seamlessly from either type
system. For example, we can express size-increasing algorithms like mul-
tiplication, and still, at the same time, we can type non-size-increasing
algorithms in a symmetric way. The prime example for this is the Insertion
Sort algorithm (compare Example 7.44) which is of type Ln(Ln(B)) (
Ln(Ln(B)) in this setting. It can be used together with the multiplication
algorithm in one term. This would not be possible in either system alone.

Side product of a natural iteration for LLT! As a side product we have
found a way to remove the unnatural “iteration reduction by case distinction
unfolding” (compare Section 6.4) which was due to the direct translation
of LAL’s reduction strategy to the System T situation with levels. Here
in LLFPL!, the iteration constant lives on the same level as the lists and
hence a normal System T like step-by-step iteration reduction is possible.

Cartesian products In the formulation of LLFPL!, there is no cartesian
product type σ × τ , as in LFPL, yet. It is not clear how important this
really is (compare Section 3.1.4). In order to add this product, one has to
come up with a proof net representation of a 〈s, t〉-term, which shares the
variables (inputs) of s and t. As normalisation inside 〈s, t〉 is not possible
in δLFPL and LFPL (compare Section 4.3), we do not have to take care of
blocked redexes inside of this proof net construction either. Hence, some
new proof net node like

Πs Πt〈 〉,

σ × τ

Γ

would probably work, plus the reduction rules for the application to the
boolean constants tt and ff , which would “unpack” the cartesian pair.

Going back to LAL? An interesting question is whether the ideas of LLFPL!

can be translated back to LAL. We originally started with LAL, introduced

231

From LFPL and Light Linear T to Light LFPL

the System T variant LLT! in Chapter 6, and finally transformed LLT! to
LLFPL!. This detour was worthwhile because in System T one has less
freedom in the choice of the data types (System F allows many different
encodings), but more choice to adapt the types and reduction rules of con-
stants. The latter was the central tool in Sections 7.1-7.3. Though, it is
not clear whether something similar works in LAL as well (compare Figure
7.5). Hence, the question is whether this flexibility in the choice of the
constants is really essential to implement the core ideas of LLFPL!.

Going back to the §-modality? In analogy to LLT! and the sketch of LLT!§

in Figure A.1 on page 243, we can try to go back with LLFPL! to a more
traditional type system with the §-modality. In Section A.2 of the appendix
we have sketched how LLFPL!§ could look like.
The central point in that calculus would be the iteration rules (L(τ)−0)

and (L(τ)−1). In LLFPL! these two rules are a combination of the (!0), (!1)-
rules and the (]·[!n)-rule. The latter is a relict of the (§)-rule of LAL (com-
pare Section 6.1). Hence, the two rules (L(τ)−0) and (L(τ)−1) in LLFPL!§

will be a combination of (!0),(!1) and (§).
Another crucial question is the typing of the d-constant. In LLFPL! it

is not possible to use the dn+1-constant inside a !n-box. If we use d : §♦ in
the calculus LLFPL!§, we get the very same effect, namely that we cannot
create a list of type !L(τ), but only !§L(τ), for instance by

! §
(
consτ]d[§ xnilτ

) !§L(τ)

.

The term

!
(
consτ]d[§ xnilτ

) !L(τ)

is not typable. Moreover, the step term of an iteration cannot use the d

freely, but only the one given as the first argument.

232

7.4. Conclusion and Outlook

LHA LHA LHA

EA(I;O)

Actual
Arith.

data-
predicat.

LHA

LLL/
LAL

LFPL

δLFPL

LLFPL

LLT

BC

LT

BC-DLAL

Tiering

Cobham

μLAL

Arithmetics
Programming

languages

WALT

?

A B

A inspired B
A and B share similar ideas
A inspired B and embeds trivially into B
A is a restriction of B with a trivial embedding into B
A non-trivially embeds into B

Contribution of this thesis in bold
Interesting open question

5

6

4

7 7

7

4

6

Figure 7.5.: The landscape of polynomial time calculi and arithmetics and
the contribution of this thesis (the numbers are the corre-
sponding chapters). Interesting open question: is there a LAL-
variant which embeds LFPL, like LLFPL! is for LLT!?

233

From LFPL and Light Linear T to Light LFPL

234

8
Conclusion and Outlook

In this chapter we give some conclusions on the results of this thesis and an
outlook with worthwhile further directions of research. In contrast to the
“Conclusion and Outlook” section of each technical Chapter 4-7, we step
back a few steps here, in order to see the results from a greater distance.
For the discussion of details, especially possible technical improvements, we
refer to the “conclusion and outlook” of the respective chapter.

8.1. Summary of the results

We have given a detailed description of the contributions of this work in
the introduction in Section 1.4. Without repeating ourselves with all the
details, the (technical) contributions can be briefly summarised in the fol-
lowing way:

This dissertation investigates the relationship of impredicative non-
size-increasing iteration (of LFPL) and light iteration (of LAL):

1. It is shown that light iteration in LAL is expressive enough to
allow an (non-trivial) compositional embedding of LFPL into the
fixed point variant of LAL.

235

Conclusion and Outlook

2. The pull-out trick of LAL is identified as a technique to type cer-
tain non-size-increasing algorithms in a way, that they can be iter-
ated again. We introduce the System T-like calculus LLT!, which
seamlessly integrates this technique as a central feature of the iter-
ation scheme. We show that LLT! is polynomial time normalisable
and also complete for PTime.

3. While LLT!-iterations of the same level cannot be nested, we gen-
eralise LLT! to LLFPL! which can express impredicative iterations
of LFPL and light iteration of LLT!, and hence subsumes both
systems in one, still being polynomial time normalisable and com-
plete.

In this summary, we intentionally leave out Chapter 4 because its imme-
diate goal is somehow different. Still, it serves the purpose of an analysis
of a LFPL-like system, giving a deep understanding of the normalisation
of LFPL and the impredicative iteration. In this sense, the Chapter 4 is
an important step which finally led to the understanding of the relation of
LFPL and LAL.

8.1.1. The Bigger Picture

After stepping back, how do these results fit into the bigger picture of
implicit complexity research? This thesis studies the two iteration schemes:
light iteration and impredicative non-size-increasing iteration. Both are in
the area of type systems for functional programming, i.e. λ-calculi.

Orthogonal iteration schemes The calculus LLFPL! shows that the impred-
icative iteration of Hofmann’s LFPL and light iteration of LAL are not two
parallel and highly incompatible concepts. Instead, the iteration of LLFPL!

integrates both of them in an orthogonal way : the impredicative iteration
can be used for non-size-increasing computations, on one level without us-
ing modalities at all. For size-increasing algorithms light iteration and the
levels are available, giving asymmetric types with increasing levels.

From Light Affine Logic’s point of view With the pull-out trick, LAL al-
ready supports non-size-increasing computation partially. E.g., the “inser-
tion” function of Insertion Sort can be implemented with a symmetric type.

236

8.2. Open Questions and Outlook

What is missing, is the ability to express impredicative iteration nestings.
The contribution of LLFPL! to LLT!, in this sense, is the lifting of the it-
eration onto the level of the lists such that those nestings become possible.

From LFPL’s point of view Conversely, LFPL supports impredicative it-
eration. But, it is bound to the restriction to stay on one level, because
there are no modalities or levels at all in the system. Inside a step term, no
♦-term can be “created” without free variables. In LLFPL! though, di : ♦i

can be used freely if the level i is above the level of the current iteration.
Hence, from the point of view of LFPL, the calculus LLFPL! adds the abil-
ity to use levels: on each level the terms are still non-size-increasing. But,
by going up in the level hierarchy, also size-increasing algorithms can be
expressed.

8.2. Open Questions and Outlook

In the following we point out some open questions, which could give a
direction of further research. Again, we refer to the “Conclusion and Out-
look” sections at the end of each chapter for more detailed and technical
discussions.

8.2.1. Going Back to the §-Modality

Both calculi, LLT! and LLFPL!, are formulated using the concept of levels
in order to replace the §-modality in the type system. What is left, is the
!-modality and the artifacts of the (§)-rule, namely the (]·[!n)-rule. This
design choice gives the type system a much different look compared to
traditional calculi with the § like LAL. Clearly, an immediate question is
whether this is really necessary:

Are there variations of LLT! and LLFPL! using the traditional
§-modality and (§)-rule?

We think, that this is possible. In the appendix, the type systems LLT!§

(Section A.1) and LLFPL!§ (Section A.2) are sketched. Though, an analysis
of these two proposals is still open. We refer to Section 6.6 and Section 7.4
for further explanations of these sketches.
In the same direction we have to ask whether the design choice, to use

level instead of §, paid out in some way. Of course, the level concept might

237

Conclusion and Outlook

help the intuition to think about boxes in a different way. Moreover, the
§-boxes complicate the term (and proof net) structure. In this sense, the
levels are a matter of taste whether one prefers levels in types or §-boxes
in the terms.
The original hope has been though that we get more freedom to choose the

types of the constants with levels. But, the sketches of LLT!§ and LLFPL!§

suggest that this has not been necessary, in fact, at least not for these two
systems: all the constants of LLT! and LLFPL! can easily be translated
into the setting with the §-modality.

8.2.2. Strong Normalisation of LLT! and LLFPL!

Terui showed that Light Affine Logic is even polynomial time strongly nor-
malisable [Ter01]. This means that the normalisation by levels is not nec-
essary at all, but any reduction strategy will finish in polynomially many
steps.
The original normalisation proofs for LAL [AR00, AR02] though were

also based on normalisation by levels. We essentially followed them to
prove polynomial time normalisation for LLT! and LLFPL!. Hence, we
have to ask the question:

Can LLT! and LLFPL! be normalised in polynomial time with
an arbitrary reduction strategy?

For LLT! For the former, i.e. LLT!, this is very improbable: the normali-
sation of LLT! uses the unfolding of the iteration (compare Section 6.4) to
simulate the substitution of the step term of Church numerals. Hence, it is
not clear how strong normalisation would look like in this setting because
at some point the number Kn must be chosen. At least in our proof, this
number depends on the normalisation of the lower levels. Hence, it is not
clear which Kn should be chosen in order to make the CaseItnl,k-term long
enough.

For LLFPL! In the case of LLFPL! (or LLFPL!§) the normalisation rules
do not depend on normalisation by levels. Hence, here the question about
strong normalisation is much more interesting. The main differences of
LLFPL!, compared to LAL, are the impredicative iteration and the restric-
tion that reductions under λ-abstraction are not allowed (the λ-restriction).
The latter is necessary in order to get a good enough size measure estimate

238

8.2. Open Questions and Outlook

(compare Section 7.3.4). Though, it is not clear whether the λ-restriction
is really needed for polynomial time normalisation of LFPL. Maybe, a
better, more precise measure of the length of lists is enough to drop the
λ-restriction.

Is the λ-restriction necessary in LFPL and LLFPL!?

For LLT! again, with iteration of LLFPL! One can also view LLFPL! as
a more natural formulation of LLT! if one restricts LLFPL! to predicative
iterations. Then, the reduction rules of the iteration constant do not use the
case distinction unfolding of LLT!, but instead very System T-like reduction
rules. In this setting, the upper question about strong normalisation makes
sense again. Moreover, this setting might be easier than the impredicative
setting of LLFPL! for answering the question whether the λ-restriction is
still necessary.

8.2.3. Ideas of LLFPL! in LAL

In Chapter 6 we turned LAL into a variant of System T with constants.
We argued that this gives us more freedom in the choice of the constants
(compared to a System F like calculus), especially the iteration constant.
We exploited this freedom in Chapter 7 to lift the iteration into the level
of the lists, leading to LLFPL!.
Clearly, we had to pay for this freedom in the loss of the flexibility in

choosing other non-standard encodings of data types, and in the loss of poly-
morphism. Especially the latter can be seen as a step backwards. Hence,
we ask whether we can transfer the ideas of light impredicative iteration of
LLFPL! back to LAL:

Is there a variant of LAL which allows impredicative
non-size-increasing iteration?

This is maybe one of the most interesting further directions of this work.
But at this time, it is not clear how this would look like. A guess is that
there must be some kind of duplication of closed (or practically-closed)
terms that is done without having a box around them. This would allow
the duplication of step terms in a way that does not depend on the number
of multiplexers in the term as in LAL.

239

Conclusion and Outlook

8.2.4. DLLFPL

By restricting the occurrences of the !-modality to the left position of an
arrow, Terui and Baillot [BT04] manage to define a λ-calculus variant DLAL
of LAL, which does not need permutative conversions. The type system is
simplified a lot in comparison to LAL. Of course, we can ask whether this
can also be applied to LLFPL! or LLT!§ in a similar way.

Is there a Dual Light Linear Functional Programming Language?

8.2.5. Divide and Conquer

The calculi in the implicit complexity community mostly stick to primitive
recursion or primitive iteration. We, with LLT! and LLFPL!, are no ex-
ception. Many algorithms, which are used in practice, are not primitive
recursive in their natural formulation. Clearly, a formulation of QuickSort,
for instance, in LLT! is “somehow” possible, but not in an elegant way.
Hence, we can ask for an extension of the calculi with divide-and-conquer
iteration:

Can one add a divide-and-conquer iteration to LLT! or LLFPL!?

The QuickSort algorithm is even non-size-increasing. Therefore, it could be,
especially, an interesting question whether we can add divide-and-conquer
capabilities to LLFPL!.

8.2.6. BC + LLFPL, WALT

Recently, Roversi managed to embed full safe recursion into his LAL-variant
WALT [Rov08a]. He essentially extends the control over the normalisation
order when reducing the polynomial redexes. Can one learn anything from
his work to do something similar in our setting of LLFPL!?

Can one extend LLFPL! to allow the embedding of BC?

8.2.7. Complete Terms and Light Iteration

Another intuition in the direction of BC and LLFPL!, which might be
worthwhile to investigate, is the following: The central idea in the calculi
which use predicative recursion (compare Section 1.3.1) is that recursion can
only be done over those lists (or numbers) which are completely “available”,

240

8.2. Open Questions and Outlook

i.e. which can be computed by normalisation because all necessary data is
given. In LT by Bellantoni and Schwichtenberg [SB01], this idea is explicitly
visible in the definition of a complete term: a term is complete if all free
variables are complete. This means that such a term can be computed up
to a numeral if the values of the free variables are given.
How can this fit to light systems? Let tτ be a (light) complete term

of level n′ which has only complete free variables of level n ≤ n′ = `(τ).
Then this t could be used as a level n term because the numeral value of
such a complete term can be computed by normalisation. In other words,
this numeral could be “pulled down” from level n′ > n to level n after the
normalisation has turned it into a numeral at higher level. I.e., a numeral
of level n′ > n would then be handled like a numeral of level n. Clearly,
this is a very vague idea. It would allow a combination of predicativity and
a light iteration.

Can one combine the idea of predicativity with light iteration
by reducing the levels of certain terms which can be computed

to a numeral?

241

Conclusion and Outlook

242

A
Calculi with the Traditional §-Modality

A.1. Sketch of LLT!§

The following definition sketch a LLT!§-calculus which uses the traditional
§-modality and the corresponding §-boxes.

Definition A.1 (Types). The set TyLLT!§
of linear types is defined induc-

tively by:

σ, τ ::= B | σ(τ | σ ⊗ τ | L(σ) | !σ | §σ.

Definition A.2 (Constants, Typing). The set CnstLLT!§ of LLT!§ con-
stants:

tt,ff : B

Caseσ : B(σ(σ(σ

Caseτ,σ : L(τ)((τ (L(τ)(σ)(σ(σ

consτ : !(τ (L(τ)(L(τ))

nilτ : L(τ)

⊗τ,ρ : τ (ρ(τ ⊗ ρ

243

A. Calculi with the Traditional §-Modality

πσ : τ ⊗ ρ((τ (ρ(σ)(σ

Itτ,σ : §L(τ)(!(τ (σ(σ)(§(σ(σ).

Replace the (]·[!n)-rule of LLT! with the (§)-rule

−→
xρ,
−→
yσ ` tτ

−−−−→
Γ ` r§ρ

−−−−→
Σ ` s!σ

−→
Γ ,
−→
Σ ` § −→x ,−→y =

−→
]r[§,
−→
]s[! in t

§τ
(§)

while the other rules are like those of LLT! mutatis mutandis without the
levels in the types.

A.2. Sketch of LLFPL!§

The following definitions sketch a LLFPL!§-calculus which uses the tradi-
tional §-modality and the corresponding §-boxes. Special attention is due
for the d-constant and the iteration rules.

Definition A.3 (Types). The set TyLLFPL!§
of linear types is defined

inductively by:

σ, τ ::= B | σ(τ | σ ⊗ τ | L(σ) | !σ | §σ | ♦.

Definition A.4 (Constants, Typing). The set CnstLLFPL!§
of LLFPL!§

constants:

tt,ff : B

Caseσ : B(σ(σ(σ

Caseτ,σ : L(τ)((♦(τ (L(τ)(σ)(σ(σ

consτ : ♦(τ (L(τ)(L(τ)

nilτ : L(τ)

d : §♦
⊗τ,ρ : τ (ρ(τ ⊗ ρ
πσ : τ ⊗ ρ((τ (ρ(σ)(σ.

244

A.2. Sketch of LLFPL!§

Replace the (]·[!n)-rule of LLFPL! with the (§)-rule

−→
xρ,
−→
yσ ` tτ

−−−−→
Γ ` r§ρ

−−−−→
Σ ` s!σ

−→
Γ ,
−→
Σ ` § −→x ,−→y =

−→
]r[§,
−→
]s[! in t

§τ
(§)

and the iterations rules with

Γ ` lL(τ) ∅ ` t♦(τ(σ(σ

§Γ ` § (l t)
§(σ(σ)

(L(τ)−0)

Γ1 ` lL(τ) xρ ` t♦(τ(σ(σ Γ2 ` r!ρ

§Γ1,Γ2 ` § x =]r[! in (l t) §(σ(σ)
(L(τ)−1)

while the other rules are like those of LLFPL! mutatis mutandis without
the levels in the types.

245

A. Calculi with the Traditional §-Modality

246

Index

A
abstract variables out, 61
active, 108
affine, 29, 38
algorithm, 17
almost-closed, 104, 215
applicative, 205

notation, 28
arithmetic, 8, 19, 168, 233

actual, 13
Heyting, 12, 13
input/output elementary, 14

B
bang, 15, 38, 39
BC, see Bellantoni-Cook
Beckmann/Weiermann example,

69
Bellantoni-Cook, 10–13, 16, 70,

151
boolean, 24
bound, see variable, bound

bound for a level, 216
bounded recursion on notation, see

recursion
box, 41, 243
box merging, 51

C
case distinction unfolding, 239
Church

encoding, 9, 34, 60, 78, 136,
151

encoding in Light Affine Logic,
60

encoding in System F, 60
number, 33
numeral, 144, 152, 157, 176,

192
style, 25
style lists, 157

cleanup, 47, 164
closed, 47, 164

practically, 200, 239

247

Index

complete, 11, 12
completeness

extensional, 17
intensional, 17
proof, 151

complexity measure, 125, 219
composition

safe, 11
compositional, 134
conformal, 50
constant, 3, 24, 29, 159, 239,

243, 244
constructor, 36
context, 26, 30, 33, 36, 43, 102,

111, 161, 209
condition, 31, 37, 43, 161,

209
multiset, 30, 38

contraction, 213
control of duplication, 8
conversion

beta, 26
permutative, 16, 40, 42, 153,

172, 240
relation, 37, 106
rule, 26, 153

correctness, 187
cubic, 136
cut

contraction, 213
linear, 51, 68, 212
multiplexer, 213
polynomial, 52
shifting, 51, 213

cut elimination, see normalisation
cut-free, see normal

D
DAG, see graph, directed acyclic
data-positive, 13
data-predicative, 13
desequentialisation, 41, 48, 49
Dialectica, 24
diamond, 35, 103, 196
divide and conquer, 240
DLAL, see Dual Light Affine Lambda

Calculus
Dual Light Affine Lambda Calcu-

lus, 16, 240
Dual Light Affine Logic, 151
duplication, 8, 52, 239
dynamic typing, 2

E
effective, 110
effectively above, 218
encoding, 55

non-standard, 239
standard, 151

equivalence relation, 114, 117
eta expansion, see expansion, eta
eta reduction, see reduction, eta
expansion

eta, 28, 206
exponential, 4
extensional, 17

F
factor, 218
feasible, 4
finite map, 26
fixed point, 56, 134
flat iteration term, 143
fold, 56
forecast, 110

248

Index

free, see variable, free
function, 17

provably recursive, 8

G
garbage, 47, 164
Girard’s F, see System F
Gödel’s T, see System T
graph

conformal, 50
directed, 39
directed acyclic, 40, 41, 50,

70
finite directed, 45, 162
rewrite rule, 51
rewriting relation, 51, 177,

212
ground type, 83

H
h-affine, 82, 85
Higher Order Propositional Logic,

38
higher order propositional logic,

151
hole, 45, 160, 164, 209
hyper-cubic, 136

I
identity, 167
if-then-else, 61
implicit complexity, 6, 17
impredicative, 10, 20, 33
in the context, 113
incomplete, 11, 12
induction, 8
input, 11
Insertion Sort, 86, 231
intensional, 17

interact, 113
iterated iterator, 20, 134, 136
iteration, 8, 29

divide-and-conquer, 240
impredicative, 236
light, 236
unfolding, 238

K
Kronecker symbol, 181

L
LAL, see Light Affine Logic
lambda abstraction

of a level, 216
lambda restriction, 106, 212, 217,

238
lambda-net, 41
length, 122, 216
level, 51, 155, 156, 237

maximal, 51, 210
of a constant, 159, 190
of a node, 166, 212
of a proof net, 166
of a redex, 53
of a subproof net, 51
of a subterm, 44, 162, 209
of a term, 162
of a type, 158, 207

LFPL, see Linear Functional Pro-
gramming Language

LHA, see arithmetic, Heyting
lifting, 169, 237
Light Affine Logic, 15, 38, 152
Light Linear Logic, 34, 38, 55, see

also Light Affine Logic
Light Linear T, 55
linear, 29, 104

249

Index

Linear Functional Programming
Language, 34, 152

Linear Logic, 34, 38
linearity, 14
link, 45

binding, 39, 46, 164
input, 39, 45, 163
output, 39, 45, 163

list length measure, 122, 216
LLL, see Light Linear Logic
LT, 11, 12, 152

M
measure

complexity, 125, 219
normalisation, 181

Mendler style, 66
modality, 15, 56, 243
model of computation, 170
money, 35
multiplexer, 15, 41, 46, 163, 170,

183, 239
tree, 183
weight of, 181

multiplicator, 218
multiset, 30, 34, 43, 161, 209

N
nesting, 39, 136

depth, 135, 138, 225
depth of a node, 218
depth of a proof net, 218
level, 141
maximal, 229
of boxes, 176
of iterations, 135, 145
structure, 164

node, 45, 162

nested, 50, 164
of a proof net structure, 50,

164
of level, 51, 212

nodes effectively above, 218
non-size-increasing, 15, 20, 152,

236
normal, 10, 53, 179, 213
normal form, 54, 84, 179, 213
normalisation, 177, 212

by levels, 53, 192, 238
measure, 181
order, 17, 55, 69
outside to inside, 53
strong, 238

numeral, 27, 241

O
occurrence, 27
optimal reduction, 41
output, 11

P
paragraph, 39, 243
parametricity, 66
parse DAG, see also graph, di-

rected acyclic parse -
parse tree, see directed acyclic graph,

parse
partition, 117
passive, 20, 108

free variable, 108
subterm, 108

path, 50, 212
proper, 50, 212

permutative conversion, see con-
version, permutative

p-linear, 83

250

Index

polarisation, 41
polymorphic, 3, 24, 34

lambda calculus, 9, 151
propositional logic, 31

polymorphism, 239, see polymor-
phic

polynomial, 168, 197, 199, 204,
206

redex, 42, 52, 179, 213, 240
time, 7, 16, 18
time complexity, 3
time computable, 11

port
binding, 46, 164
input, 46, 163
output, 46, 163
principal output, 46, 163
weakening, 46, 163

practically closed, see closed, prac-
tically

practically-terminating, 6
predicativity, 8–10, 241
product

cartesian, 27, 35, 65
Mendler style, 66
tensor, 35

proof net, 15, 39, 47, 153, 159,
165, 170, 211

intuitionistic, 41
of a box, 47, 164
of type τ , 48, 165
path, 50
size, 54, 180
structure, 45, 162, 211
structure of a box, 47, 164
subproof net, 48, 165
subproof net structure, 47,

165

proper, see path, proper
PTime, see polynomial, time
pull-out trick, 21, 89, 90, 92, 93,

167, 168, 230

Q
QuickSort, 240

R
ramified recurrence, 12
recursion, 8

bounded recursion on nota-
tion, 9

on notation, 9
predicative, 240
primitive, 8, 24, 27, 240
rule, 31
safe, 10, 13, 62, 69, 71, 240

redex, 51, 177, 188, 212
arbitrary, 52, 179, 213
beta, 191
polynomial, 42, 52, 179, 213

reduction
beta, 51, 169
eta, 28
order, 6
relation, 37, 106
rule, 28, 31
strategy, 70

rewrite rule, 51

S
safe recursion, see recursion, safe
SECD machine, 134
sequent calculus, 41
sequentialisation, 42
sharing, 38, 41, 50, 70, 170
simple, 82, 83

251

Index

Simply Typed Lambda Calculus,
3

simulation of a computational model,
134

SLL, see Soft Linear Logic
Soft Linear Logic, 16
soft promotion, 16
standard encoding, 151
static typing, 2
stratification, 15, 20, 39, 154, 155

of types, 155
structural proof theory, 41
subnet, 165
subproof net, 48, 165

structure, 47, 165, 211
substitution

capture-free, 26
subterm, 160

located, 27, 101
relation, 25, 33, 36, 43, 57

syntax directed, 162, 210
System F, 9, 31, 151

linear, 34
System T, 3, 6, 24, 151, 236

applicative, 28
linear, 29

T
term, 25, 30, 32, 36, 101

actual, 13
complete, 241
light linear, 42, 56, 160, 208
pseudo, 145
subterm in a term, 104

term rewriting, 71
termination, 3
tier, 12
Turing Machine, 55, 134

type, 1, 24, 32, 57
abstraction, 32, 34
finite, 24
fixed point, 56
higher, 12
light linear, 39
light linear – with fixed points,

56
linear, 29, 35, 101, 158, 207,

243, 244
of a list, 24
of a node, 47, 164
of an output node, 47, 164

type variable, 12
bound, 32
free, 32
free - of a term, 32
name, 32, 56

typed, 1
Typed Lambda Calculus, 6

U
unary numbers, 168, 197, 199, 204,

206
unfold, 56
union

multiset, 31, 37, 44

V
variable

bound, 25, 30, 32, 39, 42,
56, 101, 160, 208

complete, 11, 241
free, 25, 30, 32, 39, 42, 46,

56, 160, 163, 208
incomplete, 11
normal, 11
safe, 10

252

Index

variable name, 25, 30, 32, 42,
56, 101, 102, 160, 208

W
WALT, see Weak Affine Light Typ-

ing
Weak Affine Light Typing, 17, 240
weakening, 38, 41, 103
weight, 219

of a multiplexer, 181

253

Index

254

List of Figures

1.1. Exponential versus polynomial growth 4
1.2. The landscape of polynomial time calculi and arithmetics

and the contribution of this thesis (the numbers are the cor-
responding chapters) . 19

2.1. A proof net example for LAL. 40
2.2. Translation of multiplexers from LAL terms to proof nets . 49

4.1. Example syntax tree for interacting subterms 111
4.2. Interaction via abstractions 112

5.1. Iteration nesting of Insertion Sort (compare Section 3.3.1) . 135
5.2. Iterated iterators illustrated 136
5.3. Iterated iterator of dimension 3 and depth n 136
5.4. Separation of iteration and remaining logic of an algorithm 137

6.1. Translating multiplexers between LLT!-terms and proof nets 171
6.2. Cuts in LLT! . 178

255

List of Figures

6.3. The weight wnΠ(·) for the proof net Π and corresponding term
t. The arrows show how the weight propagates from the
arrow start to the arrow end. 182

6.4. How the multiplexer tree changes during a multiplexer redex
7−→n

m. 183
6.5. How the multiplexer tree changes during a shifting redex 7−→n

s .184

7.1. On the left the iteration constant of level n in LLT! with
a boxed step term; on the right the iteration of level n + 1

in LLFPL! with a step term on level n + 1, but with the
properties of a term in a box. 201

7.2. Two rules to type an (c-application: on the left with a
closed Πs; on the right with a Πs which has exactly one free
variable. In both cases there are no nodes of level < n + 1

in Πs. 203
7.3. A (!1)-box is merging with a ((−c,1)-node. 204
7.4. The iteration cuts for LLFPL! 214
7.5. The landscape of polynomial time calculi and arithmetics

and the contribution of this thesis (the numbers are the cor-
responding chapters). Interesting open question: is there a
LAL-variant which embeds LFPL, like LLFPL! is for LLT!? 233

256

Bibliography

[ABHS04] Klaus Aehlig, Ulrich Berger, Martin Hofmann, and Hel-
mut Schwichtenberg. An arithmetic for non-size-increasing
polynomial-time computation. Theoretical Computer Science,
318(1-2):3–27, 2004.

[ABT07] Vincent Atassi, Patrick Baillot, and Kazushige Terui. Verifi-
cation of Ptime reducibility for system F terms via Dual Light
Affine Logic. Logical Methods in Computer Science, 3(4), 2007.

[AJ05] Klaus Aehlig and Jan Johannsen. An elementary fragment of
second-order lambda calculus. ACM Transactions on Compu-
tational Logic (TOCL), 6(2):468–480, 2005.

[AL94] Andrea Asperti and Cosimo Laneve. Interaction Systems I -
The theory of optimal reductions. Mathematical Structures in
Computer Science, 4(4):457–504, 1994.

[AL96] Andrea Asperti and Cosimo Laneve. Interaction Systems II
- The Practice of Optimal Reductions. Theoretical Computer
Science, 159(2):191–244, 1996.

[AM04] Andreas Abel and Ralph Matthes. Fixed points of type con-
structors and primitive recursion. In Proceedings of Computer

257

Bibliography

Science Logic, Lecture Notes in Computer Science, volume
3210, pages 190–204, 2004.

[AM05] Toshiyasu Arai and Georg Moser. Proofs of Termination of
Rewrite Systems for Polytime Functions. In Proceedings of
Foundations of Software Technology and Theoretical Computer
Science, Lecture Notes in Computer Science, volume 3821,
pages 529–540, 2005.

[AR00] Andrea Asperti and Luca Roversi. Light Affine Logic. arXiv,
cs/0006010, 2000.

[AR02] Andrea Asperti and Luca Roversi. Intuitionistic Light Affine
Logic. ACM Transactions on Computational Logic, 3(1):137–
175, 2002.

[AS00] Klaus Aehlig and Helmut Schwichtenberg. A syntactical anal-
ysis of non-size-increasing polynomial time computation. In
Proceedings of Logic in Computer Science, pages 84–91, 2000.

[AS02] Klaus Aehlig and Helmut Schwichtenberg. A syntactical
analysis of non-size-increasing polynomial time computation.
ACM Transactions on Computational Logic, 3(3):383–401,
2002.

[Bai06] Patrick Baillot. Linear logic, lambda-calculus and polynomial
time complextixy. GEOCAL Winter School, Marseille, 2006.

[Bar92] Henk Barendregt. Lambda calculi with types. Handbook of
Logic in Computer Science, 1992.

[Bar96] Andrew Barber. Dual Intuitionistic Linear Logic. 1996.

[BB05] Henk Barendregt and Erik Barendsen. Introduction to
Lambda Calculus. manuscript, 2005.

[BC92] Stephen Bellantoni and Stephen Arthur Cook. A new
recursion-theoretic characterization of the polytime functions.
Computational Complexity, 2:97–110, 1992.

258

Bibliography

[BCdNM03] Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and
Jean-Yves Marion. Safe Recursion Over an Arbitrary Struc-
ture: PAR, PH and DPH. Electronic Notes in Theoretical
Computer Science, 90(1), 2003.

[BCL07] Patrick Baillot, Paolo Coppola, and Ugo Dal Lago. Light Log-
ics and Optimal Reduction: Completeness and Complexity.
In Proceedings of Logic in Computer Science, pages 421–430,
2007.

[Bec01] Arnold Beckmann. Exact Bounds for Lengths of Reductions
in Typed Lambda-Calculus. The Journal of Symbolic Logic,
66(3):1277–1285, 2001.

[Bel92] Stephen Bellantoni. Predicative Recursion and Computational
Complexity. Ph.D. thesis, University of Toronto, 1992.

[Ben01] Ralph Benzinger. Automated Complexity Analysis of NuPRL
Extracts. Journal of Functional Programming, 11(1):3–31,
2001.

[Ben04] Ralph Benzinger. Automated higher-order complexity analy-
sis. Theoretical Computer Science, 318(1-2):79–103, 2004.

[BH02] Stephen Bellantoni and Martin Hofmann. A New "Feasible"
Arithmetic. Journal of Symbolic Logic, 67(1):104–116, 2002.

[BJdM97] Richard S Bird, Geraint Jones, and Oege de Moor. More haste,
less speed: lazy versus eager evaluation. Journal of Functional
Programming, 7(5):541–547, 1997.

[BM04] Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: A
Language for Polynomial Time Computation. In Proceedings
of Foundations of Software Science and Computation Struc-
tures, volume 2987, 2004.

[BMM05] Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves
Moyen. Quasi-interpretation: a way to control resources. The-
oretical Computer Science, 2005.

259

Bibliography

[BNS00] Stephen Bellantoni, Karl-Heinz Niggl, and Helmut Schwicht-
enberg. Higher type recursion, ramification and polynomial
time. Annals of Pure and Applied Logic, 104(1-3):17–30, 2000.

[BT04] Patrick Baillot and Kazushige Terui. Light types for polyno-
mial time computation in lambda-calculus. In Proceedings of
Logic in Computer Science, pages 266–275, 2004.

[BT05] Patrick Baillot and Kazushige Terui. A Feasible Algorithm for
Typing in Elementary Affine Logic. In Proceedings of Typed
Lambda Calculi and Applications, Lecture Notes of Computer
Science, volume 3461, pages 55–70, 2005.

[BT07] Patrick Baillot and Kazushige Terui. Light types for poly-
nomial time computation in lambda calculus (long version).
manuscript, 2007.

[BW96] Arnold Beckmann and Andreas Weiermann. A term rewriting
characterization of the polytime functions and related com-
plexity classes. Archive for Mathematical Logic, 36(1):11–30,
1996.

[BW00] Arnold Beckmann and Andreas Weiermann. Characterizing
the elementary recursive functions by a fragment of Gödel’s
T. Archive for Mathematical Logic, 39(7):475–491, 2000.

[Cas96a] Vuokko-Helena Caseiro. An Equational Characterization of
the Poly-time Functions on any Constructor Data Structure.
citeseer, 1996.

[Cas96b] Vuokko-Helena Caseiro. Criticality Conditions on Equations
to Ensure Poly-time Functions. 1996.

[Cas97] Vuokko-Helena Caseiro. Equations for Defining Poly-time
Functions. Ph.D. thesis, University of Oslo, 1997.

[Chu40] Alonzo Church. A Formulation of the Simple Theory of Types.
Journal of Symbolic Logic, 5(2):56–68, 1940.

[Cob65] Alan Cobham. The intrinsic computational difficulty of func-
tions. In Proceedings of Logic, Methodology, and Philosophy
of Science, volume II, pages 24–30, 1965.

260

Bibliography

[Col01] Loïc Colson. Functions versus algorithms. Current Trends in
Theoretical Computer Science, pages 343–362, 2001.

[CW85] Luca Cardelli and Peter Wegner. On understanding types,
data abstraction, and polymorphism. ACM Computing Sur-
veys (CSUR), 17(4):471–522, 1985.

[DC92] Vincent Danos and Roberto Di Cosmo. The linear logic
primer. manuscript, 1992.

[DJ03] Vincent Danos and Jean-Baptiste Joinet. Linear logic and
elementary time. Information and Computation, 183(1):123–
137, 2003.

[dRG06] Simona Ronchi della Rocca and Marco Gaboardi. Soft Linear
Lambda-Calculus and Intersection Types. GEOCAL Work-
shop, Marseille, 2006.

[Ehr04] Thomas Ehrhard. Linear Logic in Computer Science. Cam-
bridge University Press, New York, NY, USA, 2004.

[GAL92a] Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. Lin-
ear logic without boxes. In Proceedings of Logic in Computer
Science, pages 223–234, 1992.

[GAL92b] Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. The
geometry of optimal lambda reduction. In Proceedings of Prin-
ciples of Programming Languages, pages 15–26, 1992.

[Geu05] Herman Geuvers. Lambda Cube and Pure Type Systems.
Types Summer School, Göteborg, 2005.

[Gir72] Jean-Yves Girard. Interpétation fonctionnelle et élimination
des coupures dans l’arithmétique d’ordre supérieur. Ph.D. the-
sis, Université de Paris VII, 1972.

[Gir95] Jean-Yves Girard. Linear logic: its syntax and semantics. In
Proceedings of the Workshop on Linear Logic, Ithaca, pages
1–42, 1995.

[Gir98] Jean-Yves Girard. Light Linear Logic. Information and Com-
putation, 143(2):175–204, 1998.

261

Bibliography

[Gli05] Johan Glimming. System F. manuscript, 2005.

[GLT88] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and
Types. Cambridge University Press, New York, NY, USA,
1988.

[Göd58] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung
des finiten Standpunktes. Dialectica, 12:280–287, 1958.

[Gue99] Stefano Guerrini. A general theory of sharing graphs. Theo-
retical Computer Science, 227(1-2):99–151, 1999.

[Gue03] Stefano Guerrini. Coherence for sharing proof-nets. Theoreti-
cal Computer Science, 294(3):379–409, 2003.

[Gue04] Stefano Guerrini. Proof Nets and the Lambda-Calculus. Lon-
don Mathematical Society Lecture Note Series, 316:65–118,
2004.

[Hof98] Martin Hofmann. A Mixed Modal/Linear Lambda Calculus
with Applications to Bellantoni-Cook Safe Recursion. In Pro-
ceedings of Computer Science Logic, Lecture Notes of Com-
puter Science, volume 584, pages 275–294, 1998.

[Hof99a] Martin Hofmann. Linear Types and Non-Size-Increasing Poly-
nomial Time Computation. In Proceedings of Logic in Com-
puter Science, pages 464–473, 1999.

[Hof99b] Martin Hofmann. Type Systems For Polynomial-time Compu-
tation. Habilitation thesis, Technische Universität Darmstadt,
1999.

[Hof00a] Martin Hofmann. Programming languages capturing complex-
ity classes. ACM SIGACT News, 31(1):31–42, 2000.

[Hof00b] Martin Hofmann. Safe recursion with higher types and BCK-
algebra. Annals of Pure and Applied Logic, 1-3:113–166, 2000.

[Hof02] Martin Hofmann. The strength of non-size increasing com-
putation. In Proceedings of Principles of Programming Lan-
guages, pages 260–269, 2002.

262

Bibliography

[Hof06] Martin Hofmann. Non-Size-Increasing Computation. GEO-
CAL Winter School, Marseille, 2006.

[KJ05] Lars Kristiansen and Neil D Jones. The Flow of Data and the
Complexity of Algorithms. Computability in Europe, Lecture
Notes in Computer Science, 3526:263–274, 2005.

[Kri08] Lars Kristiansen. Implicit Characterisations of Complexity
Classes and recursion in higher types. NoCOST workshop,
Paris, 2008.

[KV03] Lars Kristiansen and Paul J Voda. The Surprising Power of
Restricted Programs and Gödel’s Functionals. In Proceedings
of Computer Science Logic, Lecture Notes in Computer Sci-
ence, volume 2803, pages 345–358, 2003.

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theoretical
Computer Science, 318(1-2):163–180, 2004.

[Lag03] Ugo Dal Lago. On the Expressive Power of Light Affine Logic.
In Proceedings of the Italian Conference of Theoretical Com-
puter Science, Lecture Notes of Computer Science, volume
2841, pages 216–227, 2003.

[Lag06a] Ugo Dal Lago. Context semantics, linear logic and computa-
tional complexity. In Proceedings of Logic in Computer Sci-
ence, pages 169–178, 2006.

[Lag06b] Ugo Dal Lago. Context Semantics, Linear Logic and Implicit
Complexity. GEOCAL Winter School, Marseille, 2006.

[Lag06c] Ugo Dal Lago. Semantic Frameworks for Implicit Compu-
tational Complexity. Ph.D. thesis, Università degli Studi di
Bologna, 2006.

[LB06] Ugo Dal Lago and Patrick Baillot. On light logics, uniform
encodings and polynomial time. Mathematical Structures in
Computer Science, 16(4):713–733, 2006.

[Lei91] Daniel Leivant. Finitely stratified polymorphism. Information
and Computation, 93(1):93–113, 1991.

263

Bibliography

[Lei94a] Daniel Leivant. A foundational delineation of poly-time. In-
formation and Computation, 110(2):391–420, 1994.

[Lei94b] Daniel Leivant. Predicative Recurrence in Finite Types. In
Proceedings of Logical Foundations of Computer Science, Lec-
ture Notes in Computer Science, volume 813, pages 227–239,
1994.

[Lei95a] Daniel Leivant. Intrinsic Theories and Computational Com-
plexity. In Proceedings of Logical and Computational Com-
plexity, Lecture Notes in Computer Science, volume 960, pages
117–194, 1995.

[Lei95b] Daniel Leivant. Ramified Recurrence and Computational
Complexity I: Word Recurrence and Poly-time. In Proceedings
of Feasible Mathematics II, Birkhäuser, pages 320–342, 1995.

[Lei98] Daniel Leivant. Applicative control and computational com-
plexity. In Proceedings of Computer Science Logic, Lecture
Notes in Computer Science, volume 1683, pages 82–95, 1998.

[Lei99] Daniel Leivant. Ramified recurrence and computational com-
plexity III: Higher type recurrence and elementary complexity.
Annals of Pure and Applied Logic, 96(1-3):209–229, 1999.

[Lei01] Daniel Leivant. Termination Proofs and Complexity Certi-
fication. In Proceedings of Theoretical Aspects of Computer
Software, Lecture Notes in Computer Science, volume 2215,
pages 183–200, 2001.

[Lei02] Daniel Leivant. Intrinsic reasoning about functional programs
I: first order theories. Annals of Pure and Applied Logic, 114(1-
3):117–153, 2002.

[LH05] Ugo Dal Lago and Martin Hofmann. Quantitative Models
and Implicit Complexity. In Proceedings of Foundations of
Software Technology and Theoretical Computer Science, Lec-
ture Notes in Computer Science, volume 3821, pages 189–200,
2005.

264

Bibliography

[LM93] Daniel Leivant and Jean-Yves Marion. Lambda Calculus
Characterizations of Poly-Time. Fundamenta Informaticae,
19(1/2):167–184, 1993.

[LM95] Daniel Leivant and Jean-Yves Marion. Ramified recurrence
and computational complexity II: substitution and poly-space.
In Proceedings of Computer Science Logic, Lecture Notes in
Computer Science, volume 933, pages 486–500, 1995.

[LM98] Daniel Leivant and Jean-Yves Marion. Ramified Recurrence
and Computational Complexity IV: Predicative functionals
and Poly-space. unpublished, 1998.

[LMR04] Ugo Dal Lago, Simone Martini, and Luca Roversi. Higher-
Order Linear Ramified Recurrence. In Proceedings of Types
For Proofs And Programs, Jouy-en-Josas, Lecture Notes in
Computer Science, volume 3085, pages 178–193, 2004.

[Mai02] Harry G. Mairson. From Hilbert Spaces to Dilbert Spaces:
Context Semantics Made Simple. In Proceedings of Founda-
tions of Software Technology and Theoretical Computer Sci-
ence, Lecture Notes in Computer Science, volume 2556, pages
2–17, 2002.

[Mai03] Harry G. Mairson. From Hilbert space to Dilbert space: Con-
text semantics as a language for games and flow analysis. In
Proceedings of ACM SIGPLAN International Conference on
Functional Programming, 2003.

[Mar01] Jean-Yves Marion. Actual Arithmetic and Feasibility. In Pro-
ceedings of Computer Science Logic, Lecture Notes in Com-
puter Science, volume 2142, pages 115–129, 2001.

[Mar06a] Jean-Yves Marion. Ramification. GEOCAL Winter School,
Marseille, 2006.

[Mar06b] Jean-Yves Marion. Rewriting systems and quasi-
interpretation. GEOCAL Winter School, Marseille, 2006.

265

Bibliography

[Mat98] Ralph Matthes. Monotone fixed-point types and strong nor-
malization. In Proceedings of Computer Science Logic, Lec-
ture Notes in Computer Science, volume 1584, pages 298–312,
1998.

[Mat99] Ralph Matthes. Extensions of System F by Iteration and
Primitive Recursion on Monotone Inductive Types. Ph.D. the-
sis, LMU München, 1999.

[Maz08] Damiano Mazza. Linear Logic by Levels and bounded time
complexity. NoCOST workshop, Paris, 2008.

[MdPR] Maria Emilia Maietti, Valeria de Paiva, and Eike Ritter. Nor-
malization bounds in rudimentary linear lambda calculus. un-
published.

[Men88] Paul Francis Mendler. Inductive Definition in Type Theory.
Ph.D. thesis, Cornell University, 1988.

[Miq05a] Alexandre Miquel. Normalisation of Second Order Arithmetic.
Types Summer School, Göteborg, 2005.

[Miq05b] Alexandre Miquel. System F. Types Summer School, Göte-
borg, 2005.

[MO00] Andrzej S Murawski and C.-H. L. Ong. Can safe recursion be
interpreted in light logic. In Proceedings of the Workshop on
Implicit Computational Complexity, Santa Barbara, 2000.

[MO04] Andrzej S Murawski and C.-H. L. Ong. On an interpretation
of safe recursion in light affine logic. Theoretical Computer
Science, 318(1-2):197–223, 2004.

[MR67] Albert R Meyer and Dennis M Ritchie. The complexity of loop
programs. ACM Annual Conference, pages 465–469, 1967.

[Nee04a] Peter Neergaard. BC-epsilon-minus: A Recursion-Theoretic
Characterization of. unpublished, 2004.

[Nee04b] Peter Neergaard. Complexity Aspects of Programming Lan-
guage Design. Ph.D. thesis, Brandeis University, 2004.

266

Bibliography

[Nel97] Edward Nelson. Ramified Recursion and Intuitionism.
manuscript, 1997.

[NM02] Peter Neergaard and Harry G. Mairson. LAL is square: Rep-
resentation and expressiveness in light affine logic. In Proceed-
ings of the Workshop on Implicit Computational Complexity,
Copenhagen, 2002.

[NM03] Peter Neergaard and Harry G. Mairson. How light is safe
recursion? compositional translations between languages of
polynomial time. Unpublished Notes, 2003.

[Nor05] Bengt Nordström. Types, Propositions and Problems - an
introduction to type theoretical ideas. Types Summer School,
Göteborg, 2005.

[OW05a] Geoffrey E Ostrin and Stanley S Wainer. Complexity in
Predicative Arithmetic. In Proceedings of New Computational
Paradigms, Conference on Computability in Europe, Lecture
Notes in Computer Science, volume 3526, pages 378–384,
2005.

[OW05b] Geoffrey E Ostrin and Stanley S Wainer. Elementary arith-
metic. Annals of Pure and Applied Logic, 133(1-3):275–292,
2005.

[Rey74] John C Reynolds. Towards a theory of type structure. In
Proceedings of the Symposium on Programming, Lecture Notes
in Computer Science, volume 19, pages 408–423, 1974.

[Rov02] Luca Roversi. Light Linear Logic and Programming Lan-
guages. slides, page 21, 2002.

[Rov03] Luca Roversi. An introduction to intuitionistic light affine
logic. Mini (Doctoral) School Chambéry/Turin of Theoretical
Computer Science, 2003.

[Rov08a] Luca Roversi. Weak Affine Light Typing: Polytime intensional
expressivity, soundness and completeness. arXiv, 0712.4222,
2008.

267

Bibliography

[Rov08b] Luca Roversi. Weak Affine Light Typing (WALT). NoCOST
workshop, Paris, 2008.

[Rus03] Bertrand Russell. Appendix B: The Doctrine of Types. Princi-
ples of Mathematics, Cambridge University Press, pages 523–
528, 1903.

[Rus08] Bertrand Russell. Mathematical Logic as Based on the The-
ory of Types. American Journal of Mathematics, 30:222–262,
1908.

[SB01] Helmut Schwichtenberg and Stephen Bellantoni. Feasible
Computation with Higher Types, 2001.

[Sch05] Stefan Schimanski. A quasi-linear typed term system for
PTIME computation, 2005.

[Sch06] Helmut Schwichtenberg. An arithmetic for polynomial-time
computation. Theoretical Computer Science, 318(1-2):3.27,
2006.

[Sha06] Jatin Shah. Fundamental issues in representing NP-complete
problems. Ph.D. thesis, Yale University, 2006.

[Str97] Thomas Strahm. Polynomial Time Operations in Explicit
Mathematics. Journal of Symbolic Logic, 62(2):575–594, 1997.

[Str04] Thomas Strahm. A proof-theoretic characterization of the ba-
sic feasible functionals. Theoretical Computer Science, 329(1-
3):159–176, 2004.

[Tai67] William W Tait. Intensional interpretation of functionals of
finite type. Journal of Symbolic Logic, 32(2):187–199, 1967.

[Ter] Kazushige Terui. A Translation of LAL into DLAL, a short
note. unpublished.

[Ter01] Kazushige Terui. Light Affine Calculus and Polytime Strong
Normalization. In Proceedings of Logic in Computer Science,
2001.

[Ter02] Kazushige Terui. Light Logic and Polynomial Time Compu-
tation. Ph.D. thesis, Keio University, 2002.

268

[TT97] Mads Tofte and Jean-Pierre Talpin. Region-based Memory
Management. Information and Computation, 132(2):109–176,
1997.

[Tur04] D. A Turner. Total Functional Programming. Journal of
Universal Computer Science, 10(7):751–768, 2004.

[Wad89] Philip Wadler. Theorems for free! In Proceedings of the Con-
ference on Functional Programming Languages and Computer
Architecture, pages 347–359, 1989.

[Wei98] Andreas Weiermann. How is it that infinitary methods can
be applied to finitary mathematics? Gödel’s T: a case study.
Journal of Symbolic Logic, 63(4):1348–1370, 1998.

269

270

Acknowledgments

I am thankful for the support from the Graduiertenkolleg “Logic in Com-
puter Science” which was financed by the Deutsche Forschungsgemeinschaft
and the state of Bavaria. Being part of it gave me a very broad and in-
spiring view on the subject and many areas around it. I have to thank
especially my supervisor Prof. Schwichtenberg for giving me the chance
to be part of this environment and the logic group in Munich, and for his
endless patience in listening to my woolly thoughts.

Moreover, I want to thank my second adviser, Prof. Hofmann from the
Computer Science department, for his support, the year of funding, but
more importantly for his help when meeting him, through his immediate
comprehension of my new vague ideas and his ability to ask the right ques-
tions.

I also have to send my thanks to Frank Stamm, who gave me – a long, long
ago, still in Clausthal – this survey paper by some M. Hofmann [Hof00a]
about polynomial time programming languages, which should eventually
become my Ph.D. topic.

When thinking about my Ph.D. time in a few years’ time, the first thing
which will most likely come to my mind will be the office with Diana and
Freiric. They were not only very good colleagues, open to my cryptic ex-
planations and drawings of boxes and lambda terms on the board, long

271

Acknowledgments

before they were remotely presentable to another audience. But more im-
portantly, during all that time, they and also Dan – Diana’s husband –
became good friends, with whom one could talk about things outside the
University, and who always had encouraging words for me when necessary
during yet another Ph.D. crisis.
I owe many thanks to the good colleagues and friends in the working

group, Basil, Bogomil, Dominik, Florian, Klaus, Luca, Markus, Martin,
Pierre, Sebastian, Simon, Trifon and everybody I forgot, making the time
in Munich what it was, especially with our local self-help group “the Un-
derground seminar” for disoriented Ph.D. students.
I want to thank Klaus Thiel for his endless good mood, energy to make

up plans for the weekends and evenings which eventually brought us all
much nearer, turning colleagues into friends. I remember a lot of barbecues,
Döners, beers, Oktoberfest visits, trips, movies and pizzas, discussion about
the meaning of life, intuitionism, truth and the pros and contras of being
a vegetarian. Our group climate would not have been what it was without
him.
I have to thank Luca for inviting me to his meeting with the Italians on

a lonely evening, promising me that there will be some Germans as well.
Meeting my Clelia there changed my life and made me smile uncountable
times for no apparent reason when sitting in the office and working on this
text. Without her, I might not be where I am. Moreover, without her
patience, especially during the last months, this work would not have been
possible.
Last but not least, I have to thank my family: my parents, my sisters and

my brother for always keeping the faith and encouraging me to go my way.
I was always happy to see each of them again, and the other way around,
when travelling the long way back to Wolfenbüttel, and I feel lucky to have
such a family.
Finally, I wish to thank everybody who contributed comments to earlier

versions of this text, especially Dan and Diana for their many, many remarks
and for fighting my run-on sentences and missing commas.

272

Curriculum Vitae

Birthday 08/04/1979, Wolfenbüttel, Germany

1998 Abitur, Gymnasium Große Schule, Wolfenbüttel

1998 Software development, Pinnacle Systems, Braunschweig

1998-1999 Military service, PzGrenKp 4/332, Wesendorf

1999 Software development, Pinnacle Systems, Braunschweig

1999-2004 Undergraduate studies in Computer Science, TU Clausthal

2000-2004 Undergraduate studies in Mathematics, TU Clausthal

2000-2001 Software Development, Caldera International, Erlangen

2001 Erasmus semester, Queen’s University of Belfast, Northern Ireland

2004 Diploma in Computer Science, with honour, TU Clausthal

2004 Diploma in Mathematics, with honour, TU Clausthal

2004-2006 Fellow of the Post Graduate Program
Graduiertenkolleg “Logic in Computer Science“, LMU

2006-2007 Research Assistant, Dept. of Computer Science, LMU

2007-2008 Research Assistant, Dept. of Mathematics, LMU

2009- Software Development, DFS Deutsche Flugsicherung, Langen

273

	1 Introduction
	1.1 Why (Polynomial) Complexity Matters
	1.2 Type Systems – A Tool to Express Program Properties
	1.3 Related work – Approaches to Capture Complexity Classes
	1.3.1 Predicativity
	1.3.2 Linearity – Controlling Duplication
	1.3.3 Extensional versus Intensional Point of View

	1.4 Contributions
	1.5 Structure
	2 Polynomial Time Type Systems
	2.1 Preliminaries
	2.1.1 System T
	2.1.2 Linear System T
	2.1.3 System F
	2.1.4 Linear System F

	2.2 LFPL
	2.3 Light Linear Logic (LLL) and Light Affine Logic (LAL)
	2.3.1 Proof Nets
	2.3.2 Term System
	2.3.3 Proof Nets Formally
	2.3.4 Normalisation
	2.3.5 Encodings and Polynomial Time
	2.3.6 Light Affine Logic with Fixed Points (LAL)

	3 Building an Intuition by Examples
	3.1 Booleans and Products
	3.1.1 Data Types in the Different Calculi
	3.1.2 Cartesian Product in System F and LAL
	3.1.3 Beckmann/Weiermann Example
	3.1.4 Necessity of the Cartesian Product in LFPL

	3.2 Recursion Schemes
	3.2.1 Two Recursions
	3.2.2 Higher Type Result
	3.2.3 Non-Linear Recursion Argument
	3.2.4 Iteration Functional
	3.2.5 Iterating the Recursion Argument

	3.3 Non-Artificial Algorithms
	3.3.1 Insertion Sort
	3.3.2 Polynomials

	3.4 Conclusion and Outlook

	4 Relaxing Linearity
	4.1 Motivation
	4.2 The Extended Calculus LFPL
	4.3 Normalisation
	4.4 Data Size Analysis
	4.4.1 Interacting Variables
	4.4.2 Lengths of Lists

	4.5 Complexity
	4.5.1 Complexity Theorem

	4.6 Conclusion and Outlook

	5 Embedding LFPL into Light Affine Logic with Fixed Points
	5.1 Iterating Iterators
	5.1.1 Building an Intuition
	5.1.2 Iterated Iterators in Light Affine Logic

	5.2 Embedding LFPL into Light Affine Logic with Fixed Points
	5.2.1 Flat Iteration
	5.2.2 Translation of LFPL
	5.2.3 Example Insertion Sort

	5.3 Conclusion and Outlook

	6 Understanding Light Affine Logic as a Variant of System T
	6.1 Preliminary Motivation – From Paragraphs to Levels
	6.1.1 Stratification
	6.1.2 Translation of Types

	6.2 Syntax
	6.2.1 Terms
	6.2.2 Proof Nets
	6.2.3 Examples
	6.2.4 Connection between Terms and Proof Nets

	6.3 Completeness for Polynomial Time
	6.4 Normalisation via Case Distinction Unfolding
	6.4.1 Complexity of Normalisation

	6.5 Types of Constants
	6.5.1 Arrow
	6.5.2 Case Distinction
	6.5.3 Product
	6.5.4 Iteration

	6.6 Conclusion and Outlook

	7 From LFPL and Light Linear T to Light LFPL
	7.1 From LLT! to LLT!
	7.2 From LLT! to LLT'!
	7.3 From LLT'! to LLFPL!
	7.3.1 Towards a Light LFPL with It,n+1-Constant and c
	7.3.2 Iteration as a Term Construct
	7.3.3 LLFPL! Calculus – the Complete Picture
	7.3.4 Normalisation
	7.3.5 Complexity

	7.4 Conclusion and Outlook

	8 Conclusion and Outlook
	8.1 Summary of the results
	8.1.1 The Bigger Picture

	8.2 Open Questions and Outlook
	8.2.1 Going Back to the §-Modality
	8.2.2 Strong Normalisation of LLT! and LLFPL!
	8.2.3 Ideas of LLFPL! in LAL
	8.2.4 DLLFPL
	8.2.5 Divide and Conquer
	8.2.6 BC + LLFPL, WALT
	8.2.7 Complete Terms and Light Iteration

	A Calculi with the Traditional §-Modality
	A.1 Sketch of LLT!§
	A.2 Sketch of LLFPL!§
	Index
	List of Figures
	Bibliography
	Acknowledgments
	Curriculum Vitae

