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Preface 

 
Nitric oxide (NO) is produced in response to stress and can lead to tissue injury because of its 

radical chemistry, or may be cytoprotective by destroying pathogenic microorganisms. NO 

causes the relaxation of vascular smooth muscles and has antiproliferative effects on mesangial 

cells (MC). Interactions of MC with components of the extracellular matrix (ECM) influence 

MC attachment, contraction, migration, survival and proliferation. ECM deposition leads to 

glomerular inflammation and fibrosis. Mesangial cells have proliferative and secretory potential 

which makes them important mediators of glomerular inflammation and fibrosis. In the presence 

of exogenous NO, adherent MC show detachment and exhibit disturbed organization of -actin 

filaments and a reduction in the number of focal adhesions. NO has also been shown to inhibit 

the expression of intercellular adhesion molecule-1 (ICAM-1) in rat mesangial cells (Ikeda et al., 

1996). Recent studies have established a direct role for NO in the regulation of gene expression 

in different cell types including MC. In MCs NO regulates the transcription of various genes 

such as MIP-2, MMP-9, SPARC, Biglycan, IAP, HO-1 and Cu/Zn- SOD. However, the extent 

and the level at which NO regulates the expression of ECM genes in MCs have not been 

systematically studied.  
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Nitric Oxide 
Nitric oxide (NO) is as a major signaling molecule in neurons and in the immune system, either 

acting within the cell in which it is produced or by penetrating cell membranes to affect adjacent 

cells. NO first captured the interest of biologists when this inorganic molecule was found to 

activate cytosolic guanylate cyclase and stimulate cyclic guanosine monophosphate (GMP) 

formation in mammalian cells. Further studies led to the finding that nitric oxide causes vascular 

smooth muscle relaxation and inhibition of platelet aggregation by mechanisms involving cyclic 

GMP and that several clinically used nitrovasodilators owe their biological actions to nitric 

oxide. NO is synthesized by vascular endothelium from the terminal guanido nitrogen atom(s) of 

the amino acid L-arginine (Moncada et al., 1988; Torreilles and Guerin, 1995). Nitric oxide 

possesses physicochemical and pharmacological properties that make it an ideal candidate for a 

short-term regulator or modulator of vascular smooth muscle tone and platelet function. Nitric 

oxide is synthesized by various mammalian tissues including vascular endothelium, 

macrophages, neutrophils, hepatic Kupffer cells, adrenal tissue, cerebellum, mesangial cells and 

other tissues. 

  

1.2. Synthesis of Nitric Oxide 
Nitric oxide is synthesized from endogenous L-arginine by a nitric oxide synthase system that 

possesses different cofactor requirements in different cell types. Two primary steps have been 

identified. The first step, a two electron oxidation, is a hydroxylation of one of the guadino 

nitrogens of L-arginine requiring molecular oxygen and nicotinamide adenine diphosphate 

(NADPH) to form NG- hydroxy-L- arginine. The second step is a three electron oxidation, again 

requiring molecular oxygen and NADPH to perform an electron removal, oxygen insertion, and 

carbon-nitrogen bond cleavage to form L- citrulline and the free radical nitric oxide (Furchgott, 

1993) (Fig.1). 
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Figure 1 Biosynthesis of NO catalyzed by NO synthase 

 

1.3. Nitric Oxide Signaling 
Nitric oxide (NO) is a major signal transduction molecule in vertebrates. The NO formed 

diffuses out of its cells of origin and into nearby target cells, where it binds to the heme group of 

cytosolic guanylate cyclase and thereby causes enzyme activation (Ignarro, 1992). This 

interaction represents a widespread signal transduction mechanism that links extracellular stimuli 

to the biosynthesis of cyclic GMP in nearby target cells. The small molecular size and lipophilic 

nature of nitric oxide enable communication with nearby cells containing cytosolic guanylate 

cyclase. The extent of transcellular communication is limited by the short half-life of nitric 

oxide, thereby ensuring a localized response. Labile nitric oxide-generating molecules such as S-

nitrosothiols may be involved as precursors or effectors (Ignarro, 1990; Ignarro, 1992). NO has 

effects on neuronal transmission as well as on synaptic plasticity in the central nervous system 

(Lipton, 1999). In the vasculature (Fig. 2), NO reacts with iron in the active site of the enzyme 

guanylyl cyclase (GC), stimulating it to produce the intracellular mediator cyclic GMP (cGMP), 

that in turn enhances the release of neurotransmitters resulting in smooth muscle relaxation and 

vasodilation (Murad, 1998). 
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Figure 2  Mechanism of NO signaling in the vasculature – a classical NO 
signaling mechanism 

 

NO has also been shown to activate diverse signaling pathways that affect gene expression in 

mammalian cells. A recent microarray study in NIH3T3 fibroblasts has shown that in addition to 

c-GMP NO employs different signaling pathways to activate gene expression (Hemish et al., 

2003). These signaling pathways have been identified to be NF-kB-, PI3K-, PKC- and p53- 

dependent and the gene families targeted by NO were involved in the regulation of transcription, 

cell cycle, apoptosis, metabolism, oxidative stress, membrane transport, extracellular matrix and 

adhesion. 

In addition to these pathways, different studies have suggested that all the major MAPK cascades 

including ERK, SAPK/JNK and p38 kinase cascades as well as JAK/STAT pathways were 

involved in the signaling by NO (reviewed in Beck et al., 1999). These cascade events then 

trigger the phosphorylation of key nuclear proteins, including transcription factors such as Egr-1 

(Rupprecht et al., 2000; Cibelli et al., 2002), c-jun (Kim et al., 1997), ternary complex factors or 

STATs (Pfeilschifter et al., 2001 “b”) and, finally, lead to alterations in gene expression. 

 

1.4. Nitric Oxide Metabolism 
The discovery of the arginine- oxygenase pathway for nitric oxide (NO) biosynthesis was one of 

the greatest and the most surprising discoveries in modern biochemistry and won the Nobel Prize 

in 1998. The history of its discovery as a mediator is fascinating, and its role in mammalian 

biology and medicine is proving to be of fundamental importance. NO may also be involved in 

the regulation of protein activity through S-nitrosylation. In the extracellular milieu NO reacts 

with oxygen and water to form nitrates and nitrites. NO toxicity is linked to its ability to combine 

with superoxide anions (O2–) to form peroxynitrite (ONOO–), an oxidizing free radical that can 
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cause DNA fragmentation and lipid oxidation. In the mitochondria, ONOO– acts on the 

respiratory chain (I-IV) complex and manganese superoxide dismutase (MnSOD), to generate 

superoxide anions and hydrogen peroxide (H2O2), respectively (Brown, 1999) (Fig. 3). 

 

Figure 3 Nitric Oxide metabolism – a schematic representation  
(Source : www.sigma-Aldrich.com) 

 

1.5. Reactive nitrogen species (RNS) and NO 
Under physiological conditions, NO reacts with molecular oxygen and reactive oxygen species 

(ROS) to produce intermediates known as reactive nitrogen species (RNS). The production of 

NO and RNS in the cell is controlled by hormones, neurotransmitters, cytokines, and growth 

factors. Hence NO and its derivatives act as secondary paracrine factors and transmit the signal 

from NO-producing to neighboring cells. Intracellular reception of NO and RNS is due to Src-

related tyrosine protein kinases, G-protein Ras, cytochrome oxidase, and guanylate cyclase. 

Receptor proteins mostly contain heme, active thiol, or iron-sulfur groups, and are both on the 

plasma membrane and in internal cell compartments. Many of the NO receptors are key 
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components of cell regulatory systems controlling the transcription factors AP-1, HIF-1, NF-

kappa B, and p53 and the expression of their target genes. Depending on the ROS level, NO 

activates different signal transduction pathways to induce (or suppress) different gene sets 

(Turpaev and Litvinov, 2004). 

NO has received special attention ever since: besides its potent vasodilatory and vasoprotective 

effects, NO was identified as a key player in innate immunity and was found to act as an 

unconventional type of neurotransmitter. 

 

1.6. NO and oxidative stress 
Uncontrolled nitric oxide generation leads to oxidative stress by producing superoxide leading to 

the production of oxidants such as peroxinitrite, nitrogen dioxide and hydroxyl radicals. 

Overproduction of NO in response to bacterial endotoxins and cytokines has been shown to 

promote undesired increases in vasodilatation, which may account for hypotension in septic 

shock and during cytokine therapy. Excessive NO production can strongly inhibit S-nitrosylation 

of glyceraldehyde-3-phosphate dehydrogenase in a cGMP-independent mechanism resulting in 

reduced cellular energy production (Molina y Vedia et al., 1992).  

On the other hand, high blood glucose levels, altered insulin signaling, reactive oxygen species 

(ROS), inflammation, and protein kinase C activation may lead to a decrease in NO 

bioavailability. Oxidative stress and decreased NO bioavailability can lead to vascular damage, 

such as endothelial dysfunction, vascular inflammation, atherosclerotic plaque formation and 

promotion of a prothrombotic state (Olson et al., 1995;Lehr et al., 2000; Suematsu et al., 2002; 

Li and Shah, 2004). Possible sources of oxidative stress are reduced nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, xanthine oxidase, uncoupled NO synthase, and the 

mitochondria (Endemann and Schiffrin, 2004). LPS-induced overproduction of NO has been 

shown to inhibit cytochrome P450-dependent metabolism and to mediate the suppression of 

hepatic metabolism (Duval et al., 1996; Kawada et al., 1998; Heller et al., 2000; Ding et al., 

2003). Moreover, NO synthetized in the peripheral nervous system is known to mediate 

nonadrenergic noncholinergic (NANC) neurotransmission (Boeckxstaens and Pelckmans, 1997). 

Overstimulation of NO synthases might therefore contribute to pathological states such as: reflux 

oesophagitis (Holzer, 1995; Giacoia, 1995; Martin et al., 1997; Xiong et al., 1999), asthma, adult 
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respiratory distress syndrome (ARDS) and chronic pulmonary artery hypertension (Barton et al., 

1995; Giacoia, 1995; Martin et al., 1997; Camsooksai, 1997;Gitto et al., 2001). NO-mediated 

biological functions also include the biological effects of NO-derivatives such as N-

nitrosocompounds, which act as carcinogenic agents, or C-nitrosocompound which were recently 

used as “zinc-ejecting” agents to inhibit HIV-1 infectivity of human T-lymphocytes. 

 

1.7. Nitric oxide in immune regulation 
Nitric oxide (NO) and reactive oxygen species exert multiple modulating effects on 

inflammation and play a key role in the regulation of immune responses (Shah and Billiar, 1998). 

They affect virtually every step of the development of inflammation. Low concentrations of 

nitric oxide produced by constitutive and neuronal nitric oxide synthases inhibit adhesion 

molecule expression (Ruetten et al., 1999; Kim et al., 2001), cytokine and chemokine synthesis 

(Biswas et al., 2001) and leukocyte adhesion and transmigration (Suematsu et al., 2002). Large 

amounts of NO, generated primarily by iNOS can be toxic and pro-inflammatory (Hansen, Jr. et 

al., 1998). Actions of nitric oxide are however not dependent primarily on the enzymatic source, 

but rather on the cellular context, NO concentration (dependent on the distance from NO source) 

and initial priming of immune cells (Wang et al., 2003). These observations may explain 

difficulties in determining the exact role of NO in Th1 and Th2 lymphocyte balance in normal 

immune responses and in allergic disease. Similarly superoxide anion produced by NADPH 

oxidases present in all cell types participating in inflammation (leukocytes, endothelial and other 

vascular cells etc) may lead to toxic effects, when produced at high levels during oxidative burst, 

but may also modulate inflammation in a far more discrete way (Diefenbach et al., 1998), when 

continuously produced at low levels by NOXs (non-phagocytic oxidases) (Catz and Sterin-

Speziale, 1996). The effects of both nitric oxide and superoxide in immune regulation are exerted 

through multiple mechanisms, which include interaction with cell signaling systems like cGMP, 

cAMP, G-protein, JAK/STAT or MAPK dependent signal transduction pathways. They may also 

lead to modification of transcription factors activity and in this way modulate the expression of 

multiple other mediators of inflammation (Guzik et al., 2003). 
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1.8. Nitric Oxide Synthases (NOS) 
Three isozymes of nitric oxide synthase (NOS) have been identified. Their cDNA- and protein 

structures as well as their genomic DNA structures have been described. ncNOS (NOS I, 

originally discovered in neurons) and ecNOS (NOS III, originally discovered in endothelial 

cells) are low output, Ca2+-activated enzymes whose physiological function is signal 

transduction. iNOS (NOS II, originally discovered in cytokine-induced macrophages) is a high 

output enzyme which produces toxic amounts of NO that represents an important component of 

the antimicrobial (Hibbs, Jr., 2002), antiparasitic (Fang, 2004) and antineoplastic (Drosten and 

Putzer, 2003) activity of these cells. Depending on the species, iNOS activity is largely (human) 

or completely (mouse and rat) Ca (2+)-independent. In the human species, the NOS isoforms I, II 

and III are encoded by three different genes located on chromosomes 12, 17 and 7, respectively. 

The amino acid sequences of the three human isozymes (deduced from the cloned cDNAs) show 

less than 59% identity. Across species, amino acid sequences are more than 90% conserved for 

NOS I and III, and greater than 80% identical for NOS II. All NOS produce NO by oxidizing 

guadino nitrogen of L-arginine utilizing molecular oxygen and NADPH as co-substrates. All 

isoforms contain FAD, FMN and heme iron as prosthetic groups and require the cofactor BH4. 

NOS I and III are constitutively expressed in various cells. Nevertheless, expression of these 

isoforms is subject to regulation. Expression is enhanced by e.g. estrogens (for NOS I and III), 

shear stress, TGF-beta 1, and (in certain endothelial cells) high glucose (for NOS III). TNF-alpha 

reduces the expression of NOS III by a post-transcriptional mechanism destabilizing the mRNA. 

The regulation of the NOS I expression seems to be very complex as reflected by at least 8 

different promoters transcribing 8 different exon 1 sequences which are expressed differently in 

different cell types. Expression of iNOS is mainly regulated at the transcriptional level and can 

be induced in many cell types with suitable agents such as LPS, cytokines, and other compounds. 

Whether some cells can express iNOS constitutively is still under debate. Pathways resulting in 

the induction of the iNOS promoter may vary in different cells. Activation of transcription factor 

NF-kappa B seems to be an essential step for iNOS induction in most cells. The induction of 

iNOS can be inhibited by a wide variety of immunomodulatory compounds acting at the 

transcriptional levels and/or post-transcriptionally (Forstermann and Kleinert, 1995). 
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The functional NOS protein is formed of two identical sub-units. There are three distinct 

domains in each NOS sub-unit: a reductase domain, a calmodulin-binding domain and an 

oxygenase domain (Fig. 4) 

• The reductase domain: This domain contains the FAD and FMN moieties and it acts to 

transfer electrons from NADPH to the oxygenase domain. It should be noted that the 

reductase domain transfers electrons to the oxygenase domain of the opposite sub-unit of 

the dimer, and not to the domain on the same sub-unit. 

• Calmodulin binding: The binding of calmodulin is required for the activity of all the NOS 

isoforms. It detects changes in intracellular calcium levels, although its precise function is 

slightly different in each of the three isoforms.  

• The oxygenase domain: This domain contains the binding sites for tetrahydrobiopterin, 

haem (heme) and arginine. The oxygenase domain catalyses the conversion of arginine 

into citrulline and NO.  

 

 

 

 

Figure 4 General structure of the NOS enzymes 
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1.9. Characteristics of Nitric Oxide Synthases 
• Isoform :   ncNOS  (125-135 K Da monomer) 

Alternative names :  Neuronal NOS/NOS typeI/NOS1   

Human cellular sources : Neurons, adrenal medulla, renal macula densa, glia and  

     astrocytes 

Location:   Membrane associated 

Presence:   Constitutive 

Activation:   Calcium increase leading to calmodulin binding 

• Isoform :   iNOS (155 K Da monomer) 

Alternative names :  Inducible NOS/NOS type II/NOS2 

Human cellular sources : Macrophages, monocytes, leukocytes, endothelium,  

smooth muscle, neutrophils, retinal pigmented epithelium, 

astrocytes, microglial, hepatocytes, Küpfer cells, 

fibroblasts, mesangium 

Location:   Cytosolic 

Presence:   Inducible 

Activation: Transcriptional induction, Calcium independent, 

calmodulin always bound  

• Isoform :   ecNOS (135 K Da monomer) 

Alternative names :  Endothelial NOS/NOS typeIII/NOS3  

Human cellular sources: Endothelium, platelets, smooth muscle 

Location:   Membrane associated (inactive); cytosolic (active) 

Presence:   Constitutive 

Activation:   Calcium increase leading to calmodulin binding 

 

*All enzymes active as dimmers. 
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1.10. Mechanism of INF-γ-mediated inducible nitric oxide synthase 

(iNOS) activation 
Interferons (IFNs) encode a large family of multifunctional secreted proteins that are involved in 

antiviral defense, the regulation of cell growth and modulation of the immune response. They are 

subdivided into two types that activate transduction pathways via different cell surface receptors. 

Binding of both IFN type I and II results in the differential activation of JAK (Janus kinases) that 

phosphorylate latent cytoplasmic transcription factors termed STATs (signal transducer and 

activator of transcription). Phosphorylated STATs translocate to the nucleus, bind specific DNA 

elements and direct transcription (Fig. 5). Type I IFN induces the phosphorylation of STAT1 and 

STAT2 proteins by tyrosine phosphorylation involving the type I IFN receptor-associated 

tyrosine kinases TYK2 and JAK1. Following phosphorylation, STAT1 and STAT2 form the 

transcriptionally active IFN-stimulated gene factor 3 (ISGF3) by association with a protein of the 

IFN regulatory factor (IRF) family, p48 (Darnell et al., 1994). 
IFN-γ, a cytokine that is secreted from activated T cells and macrophages, has been shown to 

enhance NO production (Lorsbach et al., 1993). T helper cell (Th1) cytokines have been reported 

to play a pathogenic role in some types of experimental glomerulonephritis, such as crescentic 

glomerulonephritis and Heymann nephritis (Kitching et al., 1997, 1998; Chadban et al., 1997; 

Farrar and Schreiber 1993). Interferon-γ (IFN-γ), which is representative of the Th1 cytokines, 

elicits cellular immune responses activating cytotoxic T lymphocytes, natural killer (NK) cells, 

and macrophages (Martin et al., 1989). Simultaneously, it also changes the phenotype of a 

variety of resident cells in renal tissue, inducing and/or enhancing the expression of multiple 

histocompatibility complex (MHC) class I and II, ICAM-1 (Baudeau et al., 1994; Coers et al., 

1994), inducible nitric oxide synthase (iNOS) (Mohaupt et al., 1998), chemokines (Grandaliano 

et al., 1994), or Fc receptors (Santiago et al., 1991). These effects result in the initiation and 

promotion of inflammatory processes in glomeruli (Sakatsume et al., 2000). In chronic 

glomerulonephritis, mesangial cells produce relatively large amounts of NO in response to the 

activation of iNOS by synergistic action of several proinflammatory cytokines, which may 

destroy renal tissue, worsen proteinuria, and produce deterioration of renal function. Although 

overproduction of NO is harmful to the body, complete inhibition of NO production is not 

beneficial because of the contribution of NO to homeostasis (Kone and Baylis, 1997). 
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Figure 5 Inducible nitric oxide synthase- signaling mediated by INF-γ 
(Source : www.sigma-Aldrich.com) 

 

1.11. Nitric oxide and mesangial cells 
NO causes the relaxation of vascular smooth muscles (Blatter and Wier, 1994) and has 

antiproliferative effects on mesangial cells (Rupprecht et al., 2000). Interactions of mesangial 

cells (MCs) with components of the extracellular matrix (ECM) influence MC attachment, 

contraction, migration, survival and proliferation. MCs by means of their proliferative and 

secretory potential are thought to be important mediators of glomerular inflammation and 

fibrosis. In the presence of exogenous NO, adherent MCs show detachment and exhibit disturbed 

organization of -actin filaments and a reduction in the number of focal adhesions (Yao et al., 
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1998). NO has also been shown to inhibit the expression of intercellular adhesion molecule-1 

(ICAM-1) in rat mesangial cells (Ikeda et al., 1996). NO elicits changes in gene expression in rat 

MCs and regulates the transcription of genes such as MIP-2, MMP-9, SPARC, Biglycan, IAP, 

HO-1 and Cu/Zn- SOD (Bogdan, 2001; Pfeilschifter, 2002).  

 

1.12. Nitric oxide and animal models of glomerular disease 
In the healthy kidney, NO controls intrarenal hemodynamics, tubuloglomerular feedback 

response, pressure natriuresis, release of sympathetic neurotransmitters and renin, and tubular 

solute and water transport (Kone, 1997). In several animal models of chronic renal disease and 

glomerular inflammation, the administration of L-arginine, by increasing NO synthesis, has been 

shown to decrease the degree of glomerulosclerosis, reduce matrix score and TGF-β 

overexpression, ameliorate fibrotic changes in the tubulointerstitial compartment of the kidney, 

attenuate focal glomerulosclerosis and proteinuria and also to decrease the infiltration of the 

kidney by invading macrophages (reviewed by Groves and Wang, 2000). 

Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis 

(Shultz and Raij, 1992). NO generated by the activation of iNOS has also been shown to have a 

protective role against tubulointerstitial injury and cytokine production in adriamycin 

nephropathy (Rangan et al., 2001). Inhibition of iNOS in a rat model of autoimmune interstitial 

nephritis shows host-protective effects of endogenously generated NO in an organ-specific 

manner (Gabbai et al., 1997). These results suggest that treatment modalities that increase nitric 

oxide formation might have a beneficial effect on the progression of cellular and molecular 

parameters of tubulointerstitial fibrosis and glomerular injury. However, chronic L-arginine 

supplementation, leading to a permanent increase in NO synthesis has been shown to be 

deleterious in renal ischemia, suggesting that excessive exposure to NO can be harmful (Peters et 

al., 1999). 

 

1.13. Glomerular mesangial cells and glomerulonephritis 
The glomerulus is a complex structure consisting of four cell types, namely, visceral epithelial, 

parietal epithelial, endothelial and mesangial cells. The glomerular mesangium consists of 

mesangial cells and extracellular matrix and plays a crucial role in maintaining structure and 
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function of the glomerular capillary tuft (Ardaillkjou, 1996). The mesangium is in direct contact 

with the fenestrated endothelium. Representing approximately one-third of the total number of 

glomerular cells, the turnover rate of MCs in the normal adult kidney is very low with a renewal 

rate of less than 1% (Pabst and Sterzel 1983). Hence, under normal conditions, quiescent MCs 

either face few mitogens or are unable to respond to mitogenic factors by downregulation of 

respective receptors or are protected by the presence of growth-inhibitory factors.  

Glomerulonephritis is a common clinical condition that is caused by immune-mediated injury to 

the kidney and is characterized by dysfunction of the glomerular capillary filtration barrier. 

Inflammatory glomerular lesions are induced by circulating inflammatory cells or proliferating 

resident glomerular cells. In experimental models of glomerulopathy, increased MC 

proliferation often precedes the development of glomerulosclerosis with increased ECM 

deposition in the mesangium (Floege et al., 1992; Pesce et al., 1991). In experimental and 

human glomerular inflammatory diseases, two prominent histological features are (a) mesangial 

hyperplasia due to elevated proliferation rate or reduced cell loss of MCs and (b) altered and 

increased deposition of mesangial ECM. Mesangial reconstitution is required as part of the 

repair process during a destructive glomerular injury e.g., acute mesangiolysis or chronic 

diabetic glomerulosclerosis which is followed by the loss of MCs. Limitations in the renewal 

rate of MCs is compensated by the increase in extracellular matrix leading to sclerosis. On the 

other hand, growth of MCs may be inadequately controlled and results in chronic 

mesangioproliferative glomerulonephritis. In the second kind of lesion, MC proliferation is 

induced without obvious cell loss either due to mitogenic stimuli or by products of activated 

glomerular cells or recruited inflammatory cells. Regardless of the underlying mechanism, 

altered control of MC proliferation appears to play an important role in the pathogenesis of 

progressive glomerular abnormalities leading to glomerulosclerosis.  
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1.14. Mechanism of tissue response to injury 
Scarring of soft internal organs such as liver, kidney and lung leads to loss of function and in 

certain circumstances death. Upon tissue injury inflammation occurs with platelets, fibroblasts, 

myofibroblasts, and eosinophils releasing transforming growth factor-beta (TGF-β) which 

stimulates fibroblasts and other reparative cells to proliferate and synthesize extracellular matrix 

components (Fig. 6). This leads to provisional repair, which under normal conditions results in 

involution, maturation, remodeling, reorganization, and regeneration. A continuation of 

provisional repair results in fibrosis and ultimately scarring.  
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Figure 6 Tissue response to injury 
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1.15. Connective Tissue Growth Factor 
CTGF is involved in extracellular matrix remodelling during development and in pathological 

conditions, and has increasingly been recognized as a pro-fibrotic factor e.g., in diabetic renal 

changes. It is a 36–38 kDa, cysteine-rich, secreted protein belonging to the CCN family of 

matricellular proteins. CTGF contains four modules: module 1 is an IGF-binding protein 

(IGFBP) domain, module 2 is a cysteine-rich von Willebrand type c (VWC) domain, module 3 is 

homologous to thrombospondin type 1 (TSP-1) and module 4 is a cysteine-rich C-terminal (CT) 

domain, found in several growth factors, including TGF-ß (Brigstock, 2003). CTGF’s modular 

structure explains its multiple interactions with the cell surface, extracellular matrix and other 

growth factors. CTGF binds to integrins and heparan sulfate proteoglycans via module 4 (Gao 

and Brigstock, 2004) and low-density lipoprotein receptor-related protein (LRP) via module 3 

(van Nieuwenhoven et al., 2005). In addition, CTGF can interact with, and influence the 

signaling of, IGF-I (Lam et al., 2003), VEGF (Hashimoto et al., 2002) and TGF-ß and BMPs 

(Abreu et al., 2002). Moreover, CTGF can be cleaved by metalloproteases (MMPs) and other 

proteases, and the resulting fragments have distinct biological activities (Brigstock, 2003). These 

properties and the fact that no signal transduction as a direct result of CTGF–receptor binding has 

been described make it likely that CTGF largely functions as a matricellular protein, modulating 

and integrating the role of other growth factors in extracellular matrix homeostasis. 

 

1.16. Role of CTGF in kidney disease 
Due to concerns regarding possible risks of long-term TGF-ß inhibition as a therapeutic approach 

to treat fibrotic diseases, CTGF was already recognized as a potential alternative target in 1997 

(Franklin, 1997). In addition, targeting of CTGF as a possible therapy specifically for diabetic 

nephropathy has been proposed by several investigators (Goldschmeding et al., 2000; Caramori 

et al., 2000; Mason and Wahab, 2003). Some studies have been published in which CTGF 

inhibition was applied in an effort to attenuate renal fibrotic processes. In vitro, an antibody 

against CTGF partly inhibited the glucose-induced collagen production in human renal 

fibroblasts (Lam et al., 2003), Glucose-induced elevated synthesis of fibronectin and 

plasminogen activator inhibitor-1 in human mesangial cell cultures was inhibited by CTGF 

antisense oligodeoxynucleotide (ODN) treatment (Wahab et al., 2001). Transfection of CTGF 
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antisense ODN in cultured renal fibroblasts significantly attenuated TGF-ß-stimulated 

upregulation of fibronectin (Yokoi et al., 2002). The same investigators showed that CTGF 

antisense ODN treatment in vivo attenuated renal fibrosis in rats after unilateral ureteral 

obstruction (Yokoi et al., 2004 “b”). Moreover, in a very recent study, administration of a 

neutralizing CTGF antibody to db/db mice for 2 months showed beneficial effects in terms of 

reduced renal hypertrophy, UAE and hyperfiltration, while glomerular hypertrophy was 

unchanged (Flyvbjerg et al., 2004) . Further, the diabetes-induced GBM thickening was 

significantly attenuated in CTGF-antibody treated mice (cf. attenuated GBM thickening in CTGF 

+/– STZ mice (Roestenberg et al., 2004 “b”), while the diabetes-associated increase in total 

mesangial volume was unaffected by the treatment (Flyvbjerg et al., 2004). The safety and 

tolerability of the same CTGF antibody are currently being tested in a phase 1 clinical trial in 

patients with idiopathic pulmonary fibrosis. In addition to neutralizing antibodies and ODN, 

specific low molecular size inhibitors of CTGF are being developed and will be used to study the 

suitability of CTGF as a target for therapeutic intervention in diabetic nephropathy. 

CTGF might modulate the signaling balance of key growth factors. CTGF contains four modules 

that associate with different growth factors, extracellular matrix proteins and cell surface 

proteins. The signaling activities of the different growth factors are influenced by binding to 

CTGF: IGF-I and TGF-ß1 signaling activity is enhanced, while BMP-4 and VEGF signaling 

activity is reduced by CTGF binding. The enhanced IGF-I and TGF-ß1 signaling is pro-fibrotic, 

while BMP signaling has been shown to reverse fibrosis (note that this has so far been shown for 

BMP-7 only, and binding of BMP-7 to CTGF has not been reported yet). VEGF signaling and 

angiogenic activity is inhibited by binding to CTGF, but is reactivated after cleavage of CTGF 

by MMPs. It thus appears that CTGF plays a key role in modulating the activity of several 

growth factors important in the development of diabetic kidney disease. In addition, CTGF might 

mediate cross-talk between signaling pathways by physical approximation of signaling receptors.  
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Figure 7 Modular structure of CTGF (Nieuwenhoven et al., 2005) 

 
Modular structure (Fig. 7) as proposed by recent studies (Nieuwenhoven et al., 2005) is 

represented in the following figure IGFBP = insulin-like growth factor-binding protein domain; 

VWC = von Willebrand type c domain; TSP-1 = thrombospondin 1 domain; CT = C-terminal 

domain; MMP = matrix metalloprotease; IGF-I = insulin-like growth factor I; TGF-ß = 

transforming growth factor-ß; BMP = bone morphogenetic protein; VEGF = vascular endothelial 

growth factor; LRP = low-density lipoprotein receptor-related protein; HSPG = Heparan sulfate 

proteoglycan.
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Aims and Objectives 
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2.1. Hypothesis 

 
The existing data on the beneficial role of NO in glomerular diseases together with previous 

studies from our laboratory that NO strongly inhibits MC proliferation by inhibiting serum-

induced early growth response gene-1 (Rupprecht et al., 2000) and that MC play an important 

role in ECM deposition lead us to hypothesize that the potential antifibrotic effects of NO in 

renal glomerular inflammation and fibrosis could be mediated by its direct influence on 

matricellular gene regulation. 

With this background in view, the purpose of this doctoral thesis was to study the role of NO in 

modulating the expression of genes in renal glomerular mesangial cells which can play a 

protective role during the course of fibrotic and inflammatory disorders in human kidney and to 

elucidate the fundamental mechanisms involved in the regulation of gene expression elicited by 

NO. 
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2.2. Objectives 
2.2.1. To investigate the global effect of NO on gene expression in 

glomerular mesangial cells 

o To determine the extent at which NO affects gene expression in MCs by using a 

polymerase chain reaction (PCR) – based representational differential analysis 

(RDA) (Hubank and Schatz, 1994; Pastorian et al., 2000) technique in S-Nitroso-

L-glutathione (GSNO) – treated rat MCs. 

 

2.2.2. To investigate and verify the effect of NO on extracellular matrix 

associated genes and proteins based on RDA results 
a. To verify the results of RDA by dot blot analysis. 

b. To underscore the significance of a set of downregulated genes involved in matrix 

accumulation and fibrosis. 

c. To determine the chemical activity of various NO donors used in an expanded 

study. 

d. To verify the downregulatory affects of NO on mRNA and protein levels of the 

genes involved in matrix accumulation and fibrosis in an expanded study entailing 

the use of exogenous NO donors with diverse potency. 

e. To demonstrate that similar changes are induced by endogenously generated NO 

in response to the activation of iNOS by INF-γ in mesangial cells. 

f. To determine whether some additional extracellular matrix associated genes 

linked to matrix accumulation are affected in a similar way by exogenous as well 

as endogenous NO stimulation in human mesangial cells. 
 

2.2.3. To investigate the mechanism of NO-mediated gene regulation  
g. To investigate the influence of NO- mediated downregulation at 

posttranscriptional level by carrying out mRNA stability measurements. 

h. To determine whether one of the candidate firbrotic marker genes, connective 

tissue growth factor (CTGF), is transcriptionally regulated at the promoter level by 

NO.
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Materials and Methods 
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3.1. Mesangial cell (MC) culture 
3.1.1. Primary rat mesangial cells 

Rat MC were cultured as described earlier (Rupprecht et al., 1992), in Dulbecco’s modified 

Eagle’s medium (DMEM) containing 5.5mM glucose and supplemented with 10% heat inactivated 

(56°C, 30 min) fetal calf serum (FCS), 50 U/ml penicillin, 50 µg/ml streptomycin, 2 mM glutamin 

and 5 µg/ml insulin in a 95% air-5% CO2 humidified atmosphere at 37°C. For serum starvation, rat 

MC were cultured in presence of 0.1% FCS. Except for Representational difference analysis 

(RDA), rat MC were further treated with 24.5nM of D-glucose and 5ng/ml TGF-β1 for additional 

24 hours in starvation medium for all nitric oxide stimulations only. For the iNOS activation 

experiments, rat MC were serum starved for 24 hours and then treated with cytokine cocktail for 

different time points. Rat MC were used for experiments between passages 8 and 20.  

 

3.1.2. Human mesangial cells 
Human MC from a stable cell line source (Banas et al., 1999) were cultured in DMEM containing 

5.5mM glucose and supplemented with 10% heat inactivated (56°C, 30 min) FCS, 50 U/ml 

penicillin, 50 µg/ml streptomycin in a 95% air-5% CO2 humidified atmosphere at 37°C. For serum 

starvation, human MC were cultured in presence of 0.1% FCS for 24 hours. Cells were further 

treated with 24.5nM of D-glucose and 5ng/ml TGF-β1 for additional 24 hours in starvation 

medium for all nitric oxide stimulations only. For the iNOS activation experiments, human MC 

were serum starved for 24 hours and then treated with interferon gamma (INF-γ) and 

tetrahydrobiopterin (BH4) for 20 hours. Human MC were used for experiments between 30 and 50 

passages. 

 
3.2. NO donors, cytokines, growth factors and special reagents 
S-nitroso-L-glutathione (GSNO), Spermine NONOate, DETA NONOate, 1400W 

(dihydrochloride), L-NMMA (citrate), L-NIL and tetrahydro-L-biopterin (dihydrochloride) 

(BH4 2HCL) was purchased from Cayman Chemicals (MI, USA). SNAP, NOC- 18, and 

Glutathione (GSH) was from Calbiochem (Germany). Human and rat recombinant interferon 

gamma (INF-γ), rat recombinant interleukin-1beta (IL-1β), rat recombinant tumor necrosis factor 

alpha (TNF-α) and human transforming growth factor-1beta (TGF- β1) was from Peprotech Inc. 
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(USA). Aqueous solutions from the above reagents were prepared instantly as and when needed. 

D-(+)-Glucose solution was from Sigma-Aldrich (USA). Polyclonal anti-rabbit iNOS antibody 

was from Cayman Chemicals (USA). Human monoclonal anti-CTGF antibody (FG3019) was 

from Fibrogen Inc. CA, USA. Bovine serum albumin (BSA) fraction V was from Roche, 

Mannheim, Germany. Tri reagent® and FORMAzol were from Molecular Research Center Inc. 

(USA); Greiss Reagent System from Promega (Madison, WI, USA); NuPAGE 4-12% Bis-Tris 

gels from Invitrogen Life Technologies (CA, USA); Polyvinylidine difluoride (PVDF) 

membranes from BioRad (München, Germany); Bright star positively charged nylon membranes 

from Ambion; Great EscAPe fluorescent SEAP Detection kit from BD Biosciences (CA, USA); 

SuperFect Transfection Reagent, EndoFree Plasmid Max kit, Rneasy mini kit and Rnase-Free 

Dnase from Qiagen and Human TSP-1 EIA Kit from PromoKine, PromoCell  GmbH, 

Heidelberg, Germany. Restriction enzymes were from Roche Diagnostics, Penzberg, Germany.  

 

3.3. Buffers and solutions for bacterial growth and DNA 
Luria-Broth medium liquid 10 g/l Tryptone; 5 g/l Yeast extract; 10 g/l Sodium chloride 

         solid LB medium + 1.5% Agar 

   selection 100 µg/ml Ampicillin; 40 µg/ml X-Gal; 0.2 mM/ml IPTG 

         for bacterial storage 50% LB medium + 50% Glycerin 

TE    10 mM Tris-Cl ; 1 mM EDTA ; pH 8.0 

DNA-loading dye 6x 0.25% Bromphenol blue; 0.25% Xylene cyanole FF; 30% Glycerol 

TBE 10x   1 M Tris; 0.5 M Boric acid; 20 mM EDTA; pH 8.3 

PAA: BAA 40% (19:1) 380 g/l Acrylamide; 20 g/l N,N’- Methylenebisacrylamide 

Sequencing-loading dye 98% Formamide (deionized); 10 mM EDTA, pH 8.0; 

0.025% Xylene cyanol  FF; 0.025% Bromphenol blue 
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3.4. Representational difference analysis 
The representational difference analysis (RDA) of cDNA (Fig.8) as described by Hubank and 

Schatz (Hubank and Schatz, 1994) was performed with the Clontech PCR-Select cDNA 

Subtraction Kit (Clontech, Palo Alto, USA) according to the manufacturer’s protocol. For this 

purpose, poly-A+ RNA was extracted from GSNO-treated and controls MC and reverse 

transcribed into cDNA. The cDNA containing the specific (differentially expressed) transcripts 

was termed “tester” and the reference cDNA “driver”. The tester and driver cDNAs were 

digested by Rsa I, a four-base-cutting restriction enzyme that yields blunt ends. The tester cDNA 

was then subdivided into two portions, and each was ligated with a different cDNA adaptor. The 

two adaptors had stretches of identical sequence to allow annealing of PCR primers once the 

recessed ends had been filled in. Two hybridizations were then performed. In the first, an excess 

of driver was added to each tester sample. The samples were then heat denatured and allowed to 

anneal. The concentration of high- and low-abundance sequences was equalized among the 

single strand molecules ligated to an adaptor because reannealing is faster for the more abundant 

molecules due to the second-order kinetics of hybridization. At the same time, these molecules 

were significantly enriched for differentially expressed sequences. During the second 

hybridization, the two primary hybridization samples and again an excess of driver were mixed 

together without denaturing. Now, only the remaining equalized and subtracted single-strand 

tester cDNAs could re-associate and form hybrid double-strand tester molecules with different 

ends, which correspond to the sequences of the different adaptors. The entire population of 

molecules was then subjected to PCR to amplify the desired differentially expressed sequences. 

Only the molecules, which had two different adaptors, could be amplified exponentially. These 

were the equalized, differentially expressed sequences. A secondary PCR amplification was 

performed using nested primers to further reduce any background PCR products and enrich for 

differentially expressed sequences. 
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Figure 8 Schematic representation of RDA analysis 
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3.5. Reverse transcription  
Reverse transcription was performed for 60 minutes at 42°C in a volume of 20 µl using a modified 

Moloney-murine leukemia virus (MMLV) reverse transcriptase (Superscript and respective buffer; 

Life Technologies, Karlsruhe, Germany). This was performed in the presence of 1 mmol/L dNTPs 

(Amersham Pharmacia, Freiburg, Germany), 40 U Rnase inhibitor (Rnasin; Promega, Mannheim, 

Germany), 2 µl dithiothreitol (DTT; Life Technologies), 2 µl random hexamers (Roche, 

Mannheim, Germany), and 7 µl of the above RNA solution. 

 

3.6. PCR for the subtraction efficiency testing by GAPDH 

abundance  
Subtracted and unsubtracted secondary PCR products were diluted 10-fold in H2O. The 

following reagents were combined in a PCR reaction tube: 

cDNA (subtracted or unsubtracted)         1.0 µl 

10 µM G3PDH 5’ Primer (5’-ACCACAGTCCATGCCATCAC-3’)  1.2 µl 

10 µM G3PDH 3’ Primer (5’-TCCACCACCCTGTTGCTGTA-3’)   1.2 µl 

10 x PCR reaction buffer          3.0 µl 

10 mM dNTP mix           0.6 µl 

Sterile H2O          22.4 µl 

50 x Advantage cDNA Polymerase Mix (Clontech, Palo Alto, USA)   

0.6 µl   

Total volume            30.0 µl 

 

The reagents were mixed by vortexing and briefly centrifuged. After denaturing the DNA for 

5 min at 94 °C the following thermal cycling program was used for 18, 23, 28 and 33 cycles: 

94 °C 30 s, 60 °C 30 s, 68 °C 2 min. At the end of the cycles the PCR-reactions were held at 

68 °C for 10 min, cooled and stored at 4 °C. For analysis 5 µl of the PCR-reactions were size 

fractionated by electrophoresis in a 1.5% TBE-agarose gel containing ethidiumbromide. The 

stained DNA was visualized by UV-light. 
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3.7. Cloning of PCR-fragments  
The PCR-products resulting after the subtraction procedure were blunt-end cloned into pCR-

Script SK(+) vector (Stratagene, La Jolla, USA) and transfected into E.coli XL1-Blue MRF’ 

supercompetent bacteria (Stratagene, La Jolla, USA). Positive clones were identified by a blue-

white selection on LB/amp/IPTG/X-Gal plates. For plasmid preparation bacteria were grown up 

in 50 ml LB-medium containing 100 µg/ml Ampicillin. The plasmid DNA was isolated with 

plasmid-preparation kits from BioRad (München, Germany), Roche (Mannheim, Germany) or 

Qiagen (Hilden, Germany). For radioactive labeling the cDNAs were cut out of the vector with 

the restriction enzymes EcoRI and SacI. 

 

3.8. Dot blot analysis  
To identify differentially expressed RNAs, equal amounts of cloned cDNAs were dotted twice 

onto nylon membranes (Amersham LifeScience, Little Chalfont, UK) as recommended by the 

company (Clontech, Palo Alto, USA). The membranes were air dried and hybridized with 

α[32P]dCTP labeled forward- and reverse-subtracted cDNA probes of the GSNO-treated and 

untreated mRNA populations. Blots were exposed to Kodak Biomax MS or MR films (Eastman 

Kodak Company, Rochester, USA) at -80 °C. cDNAs indicating differentially expressed RNAs 

were used for further tests in Northern blot. 

 

3.9. Sequencing of the cloned cDNAs 
The cDNAs cloned into the pCR-Script vector were sequenced by the method of Sanger et al. 

(1977) with a T7-sequencing kit (Amersham Pharmacia Biotech, Little Chalfont, UK) and α[35S]-

dATP. The used sequencing primers were T3 3’ Primer: 5’-AATTAACCCTCACTAAAGGG-3’ 

and T7 5’ Primer (Universal-Primer): 5’-GTAATACGACTCACTATAGGGC-3’. The sequence-

gels were vacuum dried on 3MM-paper and exposed to Kodak Biomax MS films (Eastman Kodak 

Company, Rochester, USA) at room temperature. The sequences were further verified by 

automated DNA sequencing done by Medigenomix, Martinsried, Munich, Germany. 
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3.10. Exogenous NO donors 
There are a number of commonly used exogenous NO donors which differ from one another in 

their chemical structure, stability and mode of action, which dictates the rate of NO release from 

these compounds. NO donors like S-nitroso-N-acetyl-DL-penicillamine (SNAP), Hydroxy-

nitrosohydrazino-bisethanamine (NOC’s) and Spermine NONOates are essentially stable NO-

amine complexes that release NO, without cofactors, under physiological conditions. The 

mechanism of NO release from donors like NOC’s is very simple compared to other classical 

NO donors, such as nitroglycerin and nitroprusside, and the by-products do not interfere with cell 

activities. S-Nitrosothiols like s-nitroso-glutathione (GSNO) and s-Nitrosocysteine (CySNO) 

diffuse as such to the site of action. These are also stable compounds at 37 °C and pH 7.4 in the 

presence of transition metal ion chelators. The presence of trace transition metal ions (present in 

all buffers) stimulates the catalytic breakdown of S-nitrosothiols to NO and disulfide. Thiyl 

radicals are not formed as intermediates in this process.  

 

3.11. Description of NO donors used in the expanded study 
3.11.1. S-Nitroso-L-Glutathione  
Formal Name:  Glycine, N-(N-L-γ-glutamyl-S-nitroso-L-cysteinyl)- 

 
Synonyms:  GSNO 
 
MF:   C10H16N4O7S 

 
Solubility  PBS 
 
Half-life  10 hours at 37°C at pH 7.2 
 

3.11.2. SNAP  
Formal Name:  S-Nitroso-N-acetyl-dL-penicillamine 

 
Synonyms:  Diethylenetriaamine NONOate 
 
MF:   C4H13N5O2 

 
Solubility  water 
 
Half-life  4.6 hours at 37°C at pH 7.4 
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3.11.3. Spermine NONOate 
Formula name: 1, 3-Propanediamine, N-[4-[1-(aminopropyl)-2-hydroxy-2-

nitrosohydrazino] butyl] 

Molecular formula: C10H26N6O2 

 

Solubility  water 

 

Half-life  39 minutes at 37°C at pH 7.4 

 

3.11.4. DETA NONOate or NOC-18 
Formal Name:  (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino]  

   diazen-1-ium-1, 2-diolate 
 

Synonyms:  Diethylenetriaamine NONOate 
 
MF:   C4H13N5O2 
 
Solubility  water 
 
Half-life  20 hours at 37°C at pH 7.4 

 

3.12. Nitrite Assay  
Nitric oxide is metabolized into its stable and nonvolatile products nitrite and nitrate. One means 

to investigate nitric oxide formation is to measure nitrite (NO2–). This assay relies on a 

diazotization reaction that was originally described by Griess in 1879. The Griess Reagent 

System is based on a chemical reaction which uses sulfanilamide and N-1-

napthylethylenediamine dihydrochloride (NED) under acidic (phosphoric acid) conditions. This 

system detects NO2– in a variety of biological and experimental liquid matrices such as plasma, 

serum, urine and tissue culture medium. The nitrite sensitivity is dependent on the matrix.  

Conditioned media after stimulation with different NO donors or cytokines were collected over 

24h and nitrite concentrations were measured using a colorimetric assay with the Griess reagent 

(Promega) using the protocol mentioned below. Absorbance at 550 nm was measured in GENios 

Plus Microtiter plate reader (TECAN GmbH, Austria) employing Xfluor4 software. 
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The following detailed protocol was used to perform nitrite assay using Griess reagent from 

Promega.  

 

3.12.1. Preparation of a Nitrite Standard Reference Curve 

• Prepare 1ml of a 500µM nitrite solution by diluting the provided 0.1M Nitrite 

Standard 5:1,000 in DMEM used for the experimental samples. 

• Designate 3 rows (30 wells) in a flat bottom transparent 96-well microtiter plate for 

the Nitrite Standard reference curve. Dispense 50µl of DMEM into the wells in 

rows A2–C10. 

• Add 100µl of the 500µM nitrite solution to the remaining 3 wells in rows A1-C1. 

• Immediately perform 6 serial 2-fold dilutions (50µl/well) in triplicate down the 

plate to generate the Nitrite Standard reference curve (500, 250, 125, 62.5, 31.25, 

15.62, 7.81, 3.9, 1.95, µM), discarding 50µl from the 1.56µM set of wells. Do not 

add any nitrite solution to the last set of wells (0µM). The final volume in each well 

is 50µl, and the nitrite concentration range is 0–100µM.  

 

3.12.2.  Nitrite Measurement  

• Allow the Sulfanilamide Solution and NED Solution to equilibrate to room 

temperature (15–30 minutes). 

• Add 50µl of each experimental sample to wells in duplicate or triplicate. 

• Using a multichannel pipettor, dispense 50µl of the Sulfanilamide Solution to all 

experimental samples and wells containing the dilution series for the Nitrite 

Standard reference curve. 

• Incubate 5–10 minutes at room temperature, protected from light. 

• Using a multi-channel pipettor, dispense 50µl of the NED Solution to all wells. 

• Incubate 5–10 minutes at room temperature, protected from light. A purple/magenta 

color will begin to form immediately. 

• Measure absorbance within 30 minutes in a plate reader with a filter between 520–

550nm.  
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3.13.  Northern blotting  
Total RNA was isolated by Tri Reagent or Rneasy mini kit according to the manufacturer’s 

instructions. Total RNA (15µg) was subjected to electrophoresis on 1% formaldehyde agarose 

gels and transferred to positively charged Bright Star nylon membranes by downward alkaline 

transfer. Blots were hybridized in ExpressHyb (Clontech) solution with 2 x 106 cpm/ml –labeled 

cDNA probes prepared by Prime-It® RmT Random Primer Labeling Kit, Single-Use α32P-

dCTP-Labeling Reactions (Stratagene). Probes for 18S rRNA, CTGF and COL1A2 were 

obtained from the restriction digestion of RDA clones. Probe for TSP-1 (pTS-33) was purchased 

from ATCC (VA, USA) which yields a TSP-1 full length cloned cDNA fragment of 1.29 kb after 

restriction digestion with EcoRI. Membranes were either exposed to a Kodak Bio Max x-ray film 

or visualized after exposure to Phosphoimager screen and quantified by Image quantitation 

software (IQ Mac v 1.2) provided with the Phosphoimager Strom 840 (Molecular Dynamics). X-

ray film blots were analyzed after scanning, by ImageJ version 1.32j image quantitation software 

(NIH, USA). 

 

3.13.1. RNA isolation from mesangial cells 
• Caution must be taken while handling RNA as it is prone to degradation by Rnases. 

• After proper stimulation of mesangial cells cultured in 10 cm tissue culture dishes, below 

mentioned protocol was followed for RNA isolation. 

• All steps except centrifugation were performed at room temperature in a fume hood. 

• Remove media completely from the dish. 

• Spread 1ml of the Tri Reagent on the monolayer of the cells. 

• Leave unattended for 5 minutes. 

• Spin the dish manually on a smooth surface to dislodge any attached cells for 2-3 

minutes. 

• Leave the dish in a tilted position for 5 minutes about till the cells in the reagent get 

collected at the bottom of the dish. 

• Pipett the solution up and down forcefully through a 1ml blue tip 20 times to disrupt any 

intact cell membranes. 

• Transfer the homogenate into a 1.5ml eppendorf. 
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• Incubate for 5 minutes. 

• Add 100µl of bromochloropropane and subject to vigorous manual shaking and mixing. 

• Incubate for 5 minutes. 

• Centrifuge -15,000 rpm for 25 minutes at 4°C. 

• Transfer aqueous phase (not more than 400µl to avoid any protein contamination) into a 

fresh tube. 

• Add 0.5ml of room temperature isopropanol and mix well. 

• Incubate for 10 minutes. 

• Centrifuge -15,000 rpm for 25 minutes at 4°C. 

• Mix RNA pellet with 1ml 75% ethanol by vortexing at least for two minutes. 

• Centrifuge -10,000 rpm for 10 minutes at 4°C. 

• Carefully drain the ethanol and wipe the insides of the tube with a clean paper towel 

without touching the pellet. 

• Air dry the pellet for 5 minutes. 

• Dissolve by pipetting in 75µl of FORMAzol (MRC, Inc. USA). 

• Incubate at 60°C for 10 minutes. 

• RNA in FORMAzol can be stored at -20°C until electrophoresis. 

 

3.13.2. Buffers and solutions for RNA-Gel Electrophoresis 

• DEPC Water 

0.001% (Diethyl Pyrocarbonate) DEPC in ddH2O or 1ml DEPC in 1L ddH2O   

• RNA- Gel Running Buffer (750 ml)    

10X E Buffer   75 ml 

Formaldehyde   60.75 ml 

Water    614.25 ml 

• 20X E Buffer (500 ml) 

0.9 M Na2HPO4  25.56 g 

0.1 M NaH2PO4  2.76 g 

• 1.2 % RNA Denaturing Agarose gel (75ml)   

Agarose   0.9 g    
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10 X E Buffer   7.5 ml    

Water    55.35 ml    

Melt agarose and let cool to 60°C     

Formaldehyde   12.15 ml 

Add, mix and pour immediately 

• 10X RNA Dye 

Bromophenol blue  0.025% 

Xylene cyanol FF  0.025% 

EDTA    0.5mM 

• RNA- Loading buffer  

Formaldehyde  81µl 

20 X E Buffer  24µl 

10X RNA Dye 48µl 

EtBr (200ng/µl) 48µl 

Water              39µl 

Total volume  240µl 

To each 10µl RNA sample in FORMAzol, add 10µl from the RNA- Loading buffer and 

mix by pipetting. 

Denature RNA at 65°C for 15 minutes, cool and electrophorese at 7V/cm. 

 

3.13.3. RNA transfer buffers 

• High Salt Alkaline Transfer Buffer for RNA  

NaOH   0.01N 

SSC   5X 

• 20X SSC Buffer (1L pH 7.0) 

NaCl   175.3 g 

Na Citrate  88.2 g 
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3.13.4. Downward transfer of RNA through a nylon membrane 
Nucleic acid transfer methods include dot blot, slot blot, vacuum blot, colony or plaque lift, 

electrotransfer and capillary blotting. Traditionally, blotting is completed by upward transfer 

methodology. More recently, downward transfer methods were developed (Fig.9). The 

downward method makes use of gravity to speed nucleic acid transfer and requires less weight 

on the blotting stack, thus preventing damage to the gel. Downward transfer times of 15-20 

minutes per mm gel thickness are recommended. Warm transfer solutions (35-45°C) soften the 

agarose gels allowing the nucleic acids to transfer faster and more efficiently for SSC or viscous 

transfer buffers. Alkaline transfers proceed very rapidly at room temperature, thus warming 

buffers is not recommended especially for RNA where fragmentation could occur. The 

membrane used for nucleic acid immobilization should be pre-wet (~5-15 minutes) in transfer 

buffer prior to transfer to equilibrate the membrane and remove any unattached surface 

particulate to which the nucleic acid could bind. Blotting paper porosity can affect wicking and 

transfer rates of nucleic acids. Quality grade blotting paper, ~4 sheets of Whatman 3MM, should 

be used for the wick and surround the gel and membrane. The quality blotting paper minimizes 

background contributions from lower grade papers. The blot stack must be carefully assembled 

to avoid air pockets that could disrupt the flow of transfer buffer, thus preventing nucleic acid 

capture. The wick should be thick enough to provide a continuous flow of liquid to the blot 

stack. The wick must also be carefully placed so that the wick only makes contact at the 

beginning sheet directing the flow through the gel to the membrane. The buffer system used here 

(0.01 N NaOH, 5X SSC) needs not more than 2 hours for a single RNA-Formaldehyde agarose 

gel of 15×10 cm dimension. 
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Figure 9 Downward RNA transfer system – a schematic representation 
 
 
3.14. Radiolabeling of cDNA probes for northern blotting 
 3.14.1. Random Primer Labeling Protocol 
The prime it® RmT random primer labeling kit uses random oligonucleotides as primers for 

labeling DNA to produce high-specific activity probes. The procedure relies on the ability of 

random 9-mers to anneal to multiple sites along the length of a DNA template. The primer–

template complexes formed represent a substrate for the magenta DNA polymerase, a thermostable 

polymerase. The enzyme synthesizes new DNA by incorporating nucleotide monophosphates at 

the free 3´-OH group provided by the primer. The newly synthesized DNA is made radioactive by 

substituting radiolabeled [α-32p] dCTP for unlabeled dCTP in the reaction mixture. The resulting 

labeled DNA serves as a sensitive hybridization probe for northern blots. DNA labeling reaction 

components (random primers, dNTPs, buffers and cofactors) are supplied as a dehydrated reaction 

mixture, pre-aliquoted in 24 single-use reaction tubes. 
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3.14.2. Protocol for labeling cDNA probes 
o Remove single-use reaction tubes from the reaction tube strips 

o Add the following to each single-use reaction tube: 

 dH2O to a final volume of 42 µl 

 25–50 ng of DNA 

o Boil the reaction for 5 minutes 

o Centrifuge briefly to collect the condensate 

o Add the following: 

o 5 µl of labeled nucleotide 

o 3 µl of magenta DNA polymerase (4 U/µl) 

o Mix well and incubate at 37°C for 5–10 minutes 

o Add 2 µl of stop mix 

 

3.14.3. Measurement of Probe Specific Activity 
To determine the specific activity of the radioactively labeled probes, the following steps 

were performed: 

The final reaction volume was 52µl  

o 1µl aliquot was  removed and applied on a chromatography paper DE81 2.3cm 

diameter circle (Whatman, England) 

o Remaining 51µl was applied to a desalting resin (Sephadex G-50) spin column 

(Roche) to remove any free nucleotides 

o Centrifugation was performed at 2500g for 4 minutes 

o 1µl from the resultant volume was again applied on another DE81 circle 

o The DE81 circles were air dried for 15 minutes 

o Radioactive incorporation as counts per minute (cpm) was measured in Liquid 

Scintillation Analyzer (Canberra Packard, Germany) by putting the circles containing 

radioactively labeled probes into small plastic scintillation vials (dry) and the counting was 

done by using Protocol 10 of the Scintillation Analyzer. 

o Specific activity of the probe was determined according to the following formula: 

SA= (µCi)(2.2×109)(P)/ Mi [(1.3×103)(P)(µCi/ Sa)] 

SA = the specific activity in disintegrations per minute per microgram (dpm/µg)  
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µCi = the amount of radiolabeled nucleotide in microcuries in the reaction mixture 

P = the proportion of radiolabeled nucleotide incorporated into the probe DNA, 

calculated by dividing the average counts per minute counted on the washed Whatman 

DE81 filter paper disks divided by the average counts per minute counted on the 

unwashed Whatman DE81 filter paper disks 

Mi = the mass of input of the DNA template in nanograms (ng) 

Sa = the specific activity of radiolabeled nucleotide in curies per millimole (Ci/mmol) 

[curies per millimole (Ci/mmol) equals microcuries per nanomole (µCi/nmol)] 

Multiply the microcuries (µCi) by 2.2 × 109 to calculate the total number of 

disintegrations per minute (dpm) in the reaction.  

This calculation also converts the final value for SA from disintegrations per minute per 

nanogram (dpm/ng) to disintegrations per minute per microgram (dpm/µg).  

Multiply the resulting value by P to calculate the proportion of disintegrations per minute 

(dpm) incorporated into the probe DNA. 

To compute the SA, divide the value obtained above by the total amount of DNA present 

at the end of the reaction. The total amount of DNA present at the end of the reaction is 

the sum of the mass of input (Mi) DNA template plus the mass of the newly synthesized 

DNA. The latter value is obtained by multiplying the number of nanomoles of dCMP 

incorporated [(P)(µCi/ Sa)] by four times the average molecular weight of the four 

dNMPs [(4)(325) = 1.3 × 103]. 

 

3.15. Western blotting  
Anti- iNOS rabbit polyclonal antibody from Cayman Chemicals was used in a dilution of 

1:1,000. Anti-CTGF human monoclonal anti-CTGF antibody (isotype IgG- FG3019) was from 

Fibrogen Inc. CA, USA and used at a 1:250 dilution. Cell lysates (20 mg) were subjected to 

NuPAGE 4-12% Bis-Tris gel. After elctrophoresis, the gel was transferred to PVDF membranes. 

Membrane were blocked overnight in 2% BSA, incubated with anti-iNOS or anti-CTGF 

antibody for 1 hour and for 45 minutes in secondary horse radish peroxidase IgG antibody. Equal 

amounts of protein loading were confirmed by Coomassie brilliant blue staining before blotting. 

Proteins were finally visualized by the SuperSignal Chemiluminescent kit (Pierce, IL, USA).  
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A. Preparation of cell lysates  

• Collect confluent stimulated mesangial cells by trypsinization and spin.  

• Lyse the pellet with 100 µl lysis buffer on ice for 10 min.  

(For 500,000 cells, lyse with 20 µl).  

• Spin at 14,000 rpm in an Eppendorf microfuge for 10 min at 4°C.  

• Transfer the supernatant to a new tube and discard the pellet.  

• Determine the protein concentration (Bradford assay- Bio-Rad)  

• Take 30µg protein and mix with an equal volume of 2x sample buffer.  

• Boil for 5 min.  

• Cool at RT for 5 min.  

• Flash spin to bring down condensation prior to loading gel.  

 

B. Preparation of gel  

• Assemble the glass plates and spacers (1.5 mm thick).  

• Pour the running gel to about 1 cm below the wells of the comb (~20 ml).  

• Seal with 1 ml water-saturated 1-butanol.  

• When gel has set, pour off the butanol and rinse with deionized water.  

• Pour the stacking gel (~5 ml) and insert the comb immediately.  

• When the stacking gel has set, place in gel rig and immerse in buffer.  

• Prior to running the gel, flush the wells out thoroughly with running buffer.  

 

C. Running the gel  

• After flash spinning the samples, load into the wells.  

• Use 15 µl Bio-Rad Kaleidoscope Prestained Standards directly.  

• Run with constant current (35 – 37 mA with voltage set at > 300 V).  

• Usual running time is about 2.5 hr.  
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D. Using precast gels  

• Assemble gel in gel rig (NuPAGE 4-12% Bis-Tris gels – Invitrogen Life Technologies). 

• Prepare protein samples (10 µg will suffice).  

• Use 5 µl of Kaleidoscope standard.  

• Run at 200 V (constant voltage) for 30 min.  

 

E. Preparation of membrane  

• Cut a piece of PVDF membrane (Pierce).  

• Wet for about 30 min in methanol on a rocker at room temp.  

• Remove methanol and add 1x Blotting buffer until ready to use.  

 

F. Membrane transfer  

• Assemble “sandwich” for Bio-Rad’s Transblot.  

• Prewet the sponges, filter papers (slightly bigger than gel) in 1x Blotting buffer.  

Sponge – filter paper – gel – membrane – filter paper – sponge  

• Transfer for 1 hr at 1 amp at 4°C on a stir plate.   

• When finished, immerse membrane in Blocking buffer and block overnight.  

 

G. Antibodies and detection  

• Incubate with primary antibody diluted in blocking buffer for 60 min at room temp.  

• Wash 3 x 10 min with 0.05% Tween 20 in PBS.  

• Incubate with secondary antibody diluted in Blocking buffer for 45 min at room temp.  

• Wash 3 x 10 min with 0.05% Tween 20 in PBS.  

• Detect with Amersham ECL kit (RPN 2106).  

 

H. Stripping blot  

• Rinse blot off with 0.05% Tween 20 in PBS.  

• Put blot into Kapak bag cut to slightly bigger size than blot.  

• Add about 5 to 10 ml Stripping buffer.  
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• Remove as much air as possible and seal bag.  

• Immerse into 80°C water bath and incubate for 20 min.  

• Rinse blot off with 0.05% Tween 20 in PBS.  

• Block for about 1 hr with 5% BSA/Tween 20, or overnight with 3% BSA/Tween 20.  

 
3.15.1. Buffers and solutions for Western blotting 

• Lysis buffer (10X) 

0.15 M NaCl  

5 mM EDTA, pH 8  

1% Triton X100  

10 mM Tris-Cl, pH 7.4  

Just before using add: 1:1000 5 M DTT  

1:1000, 100 mM PMSF in isopropanol  

1:1000, 5 M ε−aminocaproic acid  

• 2x sample buffer  

130 mM Tris-Cl, pH8.0  

20% (v/v) Glycerol  

4.6% (w/v) SDS  

0.02% Bromophenol blue  

2% DTT  

 
• 8x Resolving gel buffer (100 ml)  

0.8 g SDS (add last)  

36.3 g Trizma base (= 3 M)  

Adjust pH to 8.8 with concentrated HCl  
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• 4x Stacking gel buffer (100 ml)  

0.4 g SDS (add last)  

6.05 g Trizma base (= 0.5 M)  

Adjust pH to 6.8  

 
• 10x Running buffer (1 L)  

30.3 g Trizma base (= 0.25 M)  

144 g Glycine (= 1.92 M)  

10 g SDS (= 1%)  

Do not adjust the pH!!  

 

• 10x Blotting buffer (1 L)  

30.3 g Trizma base (= 0.25 M)  

144 g Glycine (= 1.92 M)  

pH should be 8.3; do not adjust  

 

• 1x Blotting buffer (1L) 

200 ml Methanol  

100 ml 10x Blotting buffer  

700 ml water  

 

• Blocking buffer (0.5 L)  

3% Bovine serum albumin (Fraction V)  

Make up in PBS and sterile filter.  

Then add 0.05% Tween 20.  
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• Stripping buffer (0.5 L)  
0.2 M Glycine, pH 2.5  
0.05% Tween 20 
Sterile filter solution and keep at 4°C 

 
• Staining solution 

Methanol     90 ml 

 H2O      90 ml  

acetic acid     20 ml 

Coomassie Brilliant Blue R250  0.25 g 

 Dissolve well and filtrate through a filter paper 

 
• Destaining solution 

Isopropanol     12.5% 

glacial acetic acid    10% 

Addition of small pieces of used X-ray film with the gel will accelerate the destaining 

process.  
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3.16. Determination of secreted Thrombospondin-1 protein (TSP-1) 

by Enzyme-linked immunosorbent Assay (ELISA): 
Quantitation of thrombospondin-1 protein (TSP-1) secreted into the culture medium by cells was 

performed using a competitive PromoKine Human TSP-1 enzyme immunoassay (EIA), which 

measures the natural and recombinant forms of TSP-1. With this assay system, goat anti-rabbit 

antibodies are used to capture a specific TSP-1 complex in each sample consisting of TSP-1 

antibody, biotinylated TSP-1 conjugate, and sample/standard. Biotinylated TSP-1 conjugate 

(competitive ligand) and sample or standard form a competition reaction for TSP-1 specific 

antibody binding site. Therefore, as the concentration of TSP-1 in the sample increases, the 

amount of biotinylated TSP-1 captured by the antibody decreases. With the addition of 

streptavidin conjugated alkaline phosphatase (which binds only to the biotinylated TSP-1) 

followed by the addition of the colour reagent solution, the amount of biotinylated TSP-1 is 

detected. This results in an inverse relationship between optical density (OD) and concentration: 

the higher the OD the less TSP-1 in the sample. Human mesangial cells were plated in 24-well 

culture plates at 70,000 cells per well in growth medium and incubated for 1-3 days until 

subconfluent. Cells were then serum starved for 24 hours in Dulbecco’s modified Eagles medium 

containing 30mM D-glucose and 5ng/ml TGF-β1. Thereafter, cells were treated with 50, 100 or 

250µM of Spermine NONOate, DetaNONOate or NOC-18 for 12 and 24 hours in the same 

medium. The culture medium was then collected, clarified by centrifugation and used 

immediately for assay or stored at –70°C until assayed. TSP-1 protein was quantified and 

assayed from the conditioned media after a 1:1 dilution with starvation media in 96 well 

microtiter plates pre-coated with goat anti-rabbit antibody. 25µl of diluted rabbit anti-human 

TSP-1 polyclonal antibody was added to each 100µl of diluted sample for 3 hours at room 

temperature. Thereafter, 25µl of human TSP-1 conjugate was added to each well and incubated 

at room temperature for 30 minutes. Thereafter, 50µl of diluted streptavidin- alkaline 

phosphatase was dispensed into each well and incubated for 30 minutes at room temperature. 

After that, plates were washed several times and soaked for 10 minutes in wash buffer. After 

aspiring the wells, 200µl of the prepared color reagent solution was added to each well and 

incubated for 20 minutes. During these 20 minutes, the plate was frequently read at 490 nm with 

GENios Plus Microtiter plate reader (TECAN, Austria GmbH) employing Xfluor4 software, 
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until the OD of “growth medium only” reached to 1.6. At this time point, 20µl of the stop 

solution was added to each well and the plate was read again. A standard curve with recombinant 

TSP-1 protein standard was run at each setting. Starvation medium was used at a dilutant and as 

negative control. Data acquired was analyzed by making use of excel spreadsheet using Slope 

and Y-Intercept (LINEST) function.  

 

3.17. Real-time quantitative RT-PCR 
Real-time RT-PCR was performed on a TaqMan ABI 7700 Sequence Detection System (Applied 

Biosystems, Weiterstadt, Germany) using heat-activated TaqDNA polymerase (Amplitaq Gold, 

Applied Biosystems). After an initial hold of two minutes at 50°C and 10 minutes at 95°C the 

samples were cycled 40 times at 95°C for 15 seconds and 60°C for 60 seconds. The cDNA content 

of each sample was compared with another sample following the ∆Ct technique. This procedure 

uses the formula A0/B0 =(1+E)(Ct,B Ct,A), where A0 is the initial copy number of sample A; B0, 

initial copy number of sample B; E, efficiency of amplification; Ct,A, threshold cycle of sample A; 

and Ct,B, threshold cycle of sample B. The amplification efficiency was defined as 1 as all 

analyses were performed during the same runs including control dilution series. Similar 

amplification efficiencies for targets and housekeeping genes were demonstrated by analyzing 

serial cDNA dilutions showing an absolute value of the slope of log input cDNA amount versus 

∆CT (Ct housekeeping gene Ct target) of <0.1.  

Commercially available human “TaqMan Gene Expression assays” with the following gene bank 

accession numbers and/or probe sequences were purchased from Applied Biosystems:  

Collagen Type I alpha1 (COL1A1; NM_000088) ACGAAGACATCCCACCAATCACCT; 

Collagen Type IV alpha2 (COL4A2; NM_001846) GAGCGTCTTGGCGGGTGTGAAGAAG; 

Biglycan (BGN; NM_001711) CCCTCTCCAGGTCCATCCGCCAT; and GAPDH (M33197). 

Human procollagen type I alpha 2 (COL1A2) and human inducible nitric oxide synthase 

(INOS2) gene sequences and fluorescent probes were custom prepared by Applied Biosystems. 

They are: COL1A2- NM_053356.1, sense primer 5’-CACAGAAATAACACTGCAAAC-3’, 

antisense primer 5’- CAGTGGTAGGTGATGTTCTG-3’, fluorescence labeled probe 5’- 

GGCAGACCTGGCCCAATTGGCCCA-3’); INOS2- NM_000625 sense primer 5’-

ACAACAGTAACCTACCAACTGACGG-3’, antisense primer 5’- CCTCCCAATGCAGCGTG-

3’, fluorescence labeled probe 5’- TGAGCTCATCTTCGCCACCAAGCA-3’). All these assay 
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reagents do not amplify genomic DNA. This was verified using genomic human DNA samples. 

Controls consisting of ddH2O were negative in all runs.  

 

3.18. Message stability assay 
Quiescent human MCs grown in serum free medium containing 30mM glucose and 5ng/ml TGF-

β1 for 24 hours were exposed to actinomycin D alone (10 µg/ml) or to actinomycin D (10µg/ml) 

and Spermine NO (500 µM). Total RNA from the stimulated cells (between 0 and 6 hours) was 

subjected to Northern blot hybridization using radiolabeled probes for CTGF and 18S rRNA to 

measure the rate of decay of CTGF mRNA. Measurement of the ratio of CTGF/18S rRNA at 

time = 0 (from actinomycin D treatment) in cells cultured in 500µM Spermine NONOate was 

assigned a relative value of 100%. Half-life was calculated according to the equation: t ½ = ln2/ 

λ (where ln is natural logarithm and λ is the rate of decay of the message). 

 
3.19. Transient Transfection and Reporter Assay 

3.19.1. SEAP Reporter System 
SEAP reporter system uses SEAP, a secreted form of human placental alkaline phosphatase 

(Berger et al., 1988) as a reporter molecule to monitor the activity of promoters and enhancers. We 

used here the BD Great EscAPe SEAP Reporter System 3 (BD Biosciences) for transfection 

studies in human and rat mesangial cells. A -805/+17bp sequence of CTGF promoter (kindly 

provided by Fibrogen Inc. CA, USA) was cloned into the pSEAP2-Basic Vector in front of the 

SEAP gene of the Reporter System 3. To analyze the promoter-reporter activities, we used the BD 

Great EscAPe™ SEAP Fluorescence Detection Kit. The fluorescent substrate, 4-

methylumbelliferyl phosphate (MUP), enables to monitor expression of the SEAP reporter gene 

using simple, sensitive, nonradioactive assays of secreted phosphatase activity (Fig.10). The 

fluorescent assay is comparable to assays for firefly luciferase and is suitable for all systems. This 

assay is linear over a 104 fold range of enzyme concentrations, which makes it particularly well 

suited for comparative analyses. 

The SEAP reporter gene encodes a truncated form of the placental enzyme that lacks the 

membrane anchoring domain, thereby allowing the protein to be efficiently secreted from 

transfected cells. Levels of SEAP activity detected in the culture medium have been shown to be 
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directly proportional to changes in intracellular concentrations of SEAP mRNA and protein 

(Berger et al., 1988; Cullen & Malim, 1992). SEAP has the unusual properties of being extremely 

heat stable and resistant to the phosphatase inhibitor L-homoarginine (Cullen & Malim, 1992). 

Therefore, endogenous alkaline phosphatase activity can be eliminated by pretreatment of samples 

at 65°C and incubation with this inhibitor.  

The secreted nature of SEAP provides several advantages for the use of this enzyme as a 

transcription reporter: 

• Preparation of cell lysates is not required for analysis. 

• The kinetics of gene expression can be studied simply by repeated collection of the culture 

medium from the same cultures. 

• Transfected cells are not disturbed by measurement of SEAP activity in the medium, so a single 

set of cultures can be used both for the SEAP assay and for further investigations such as RNA and 

protein analysis. 

• Background from endogenous alkaline phosphatase is almost absent in the culture medium 

following pretreatment. 

• Sample collection of the culture medium can be automated by growing cultures and performing 

the assays in 96-well plates. 
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Figure 10 Flowchart of the BD Great EscAPe™ SEAP Assay procedure 
 

 

 

 



  Materials and Methods 

 49

3.19.2. Transient Transfection of Human Mesangial Cells 
Human mesangial cells were transiently transfected using “Superfect Transfection Reagent” 

(Qiagen, Hilden, Germany) which is a specifically designed activated dendrimer. It possesses a 

defined spherical architecture with branches radiating from a central core and terminating at 

charged amino groups. The Superfect reagent assembles DNA into compact structures 

optimizing the entry of DNA into the cell. Superfect-DNA complexes possess a net positive 

charge which allows them to bind to negatively charged receptors on the surface of eukaryotic 

cells. Once inside, Superfect reagent buffers the lysosome after it has fused with endosome, 

leading to pH inhibition of lysosomal nucleases. This ensures stability of Superfect-DNA 

complexes and the transport of intact DNA to the nucleus. 

Human mesangial cells were seeded at a density of 70- 80,000 cells per well of a 24 well plate. 

The cells were allowed to grow for 6 hours in Dulbecco’s modified eagles medium (DMEM) 

supplemented with 10% heat inactivated fetal calf serum (FCS) and 1% Pencillin/ Streptomycin 

(PS). After 6 hours, the medium was changed to 0.1% DMEM+ 1% PS for 12 hours. At this 

stage, the cell density had reached around 40%. After a brief wash with DMEM, the cells in each 

well were transfected with 1µg of pCTGF-SEAP, pSEAP-basic or promoter-less pSEAP circular 

vector DNA using 2µl of Superfect reagent for 2 hours in a final volume of 350µl per well. The 

DNA/Superfect complex formation was performed as described in the manufacturer’s product 

manual. After transfection, cells were washed once with growth medium and incubated for next 

6 hours in DMEM+ 10%FCS+ 1%PS+ 5ng/mlTGF-ß+ 25.5mM D-glucose. After 6 hours, the 

cells were stimulated in the presence or absence of increasing doses of different nitric oxide 

(NO) donors for 66 hours.  

 

3.20. Statistical analysis 
All results are expressed as means and SD unless otherwise stated. Student’s unpaired t-test was 

used for statistical analyses. P values less than 0.05 were considered statistically significant. 
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4.1. Identification of genes differentially regulated by nitric oxide 
To identify genes differentially expressed by NO, MCs were treated with 500 µM GSNO for 8 

hours, a concentration which has been shown to inhibit MC proliferation, and at the same time is 

non-toxic and does not induce apoptosis of MC in the presence of serum (Rupprecht et al., 

2000). GSNO is an external and potent NO-donor with a half-life of about 10 hours, which 

generates NO+ and NO radicals. It can be easily synthesized from glutathione and NaNO2. MC 

were sub-confluent at the beginning of the experiment. 
From control and GSNO-treated cells, poly A+-RNA was isolated and reverse transcribed into 

cDNA. The cDNA was subtracted by RDA as described in materials and methods. To estimate 

the efficiency of the subtraction procedures the abundance of a known housekeeping gene, the 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA, was compared by PCR before and 

after subtraction. PCRs of the subtracted and unsubtracted cDNAs with 18, 23, 28 and 33 PCR-

cycles were performed. For the unsubtracted cDNA the GAPDH signal should be seen after 18 to 

23 cycles. In the “Pool A” subtracted cDNA sample a GAPDH signal was seen after 

approximately 33 cycles corresponding to a roughly 1500-fold enrichment of potentially 

differentially expressed cDNAs (Fig. 11).  

For the subtraction “Pool B” the difference was about 10 cycles, which corresponds to a roughly 

400-fold enrichment (data not shown). Although some difference in subtraction efficiency was 

observed, both enrichments were suitable for the further steps of the procedure. Therefore, the 

amplified PCR-fragments from both subtractions pools were ligated into the pCR-Script SK (+) 

vector and transfected into E.coli XL1-Blue MRF’ bacteria.  

A total of 51 clones were isolated, 23 clones from the subtraction “Pool A” (identified as 

sequences representing upregulated genes) and 28 clones from the subtraction “Pool B” 

(identified as sequences representing downregulated genes). The cDNA inserts varied in size 

from 130 bp to up to 1.5 kb. To test for the possible differential expression of these cDNAs, two 

identical dot blots were prepared and hybridized with radiolabeld cDNA from both pools ‘A and 

B’ (summarized in table 1). A total of 45 clones showed regulation in the dot blots.  
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Figure 11 Subtraction efficiency test of the RDA method 

Four PCRs of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA with 18, 23, 28 and 33 
PCR-cycles comparing “GSNO minus control” subtracted (lanes 1 to 4) and unsubtracted (lanes 5 to 8) 
cDNA-samples were performed. Amplified cDNA was size fractionated on a 1.2% agarose gel and 
stained with ethidium bromide. The difference between the GAPDH-signals of subtracted and 
unsubtracted samples corresponds to a roughly 1500-fold enrichment of potentially GSNO-upregulated 
cDNAs.  
 

4.1.1. Sequence comparison of the isolated clones 
All 45 clones were sequenced and the acquired sequence data were aligned against the GenBank 

nucleotide (rat genome) database at the National Center for Biotechnology Information (National 

Institutes of Health, Bethesda, MD) using “Blastn” to search for sequence matches. 7 Gene 

sequences, identified from the pool “A” showed upregulation in dot blot and had 98-100% 

homologies to different genes of diverse physiological relevance (table 1) and 11 gene sequences 

from pool “B”, showed downregulation in dot blot and had 98-100% homology to 4 well 

characterized matrix-associated genes and 7 genes with diverse biological significance (table 1). 

Several sequences from both pools were homologous to cloning vector and ribosomal RNA gene 

sequences (not listed). 
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4.1.2. List of differentially expressed genes of GSNO-treated rat 
mesangial cells 

 
Pool “A”: Upregulated genes  Genbank Accession # 
Pyruate kinase, muscle (Pkm2)    NM_053297 

Hemochromatosis (Hfe)     NM_053301 

ATPase synthase subunit 6     AF504920 

Tyrosine 3- mono-oxygenase (Ywhab)   NM_019377 

Integrin beta 1 (Itgb1)      NM_017022 

Aldose reductase (Akr1b10)     NM_001013084 

Triosphosphate isomerase 1 (Tpi1)    NM_022922 

Pool “B”: Downregulated genes  Genbank Accession # 
Poly (A) binding protein 1(Pabpc1)    NM_134353 

Thrombospondin-1 (TSP-1)     AF309630 

Connective tissue growth factor (CTGF)   NM_022266 

Procollagen type I alpha1 (COL1A1)   Z78279 

Procollagen type I alpha2 (COL1A2)   NM_0253356 

Mitochondrial cytochrome B5 (Cyb5)   NM_022245 

G rich sequence factor-1(GRSF-1)    XM_223327 

Ornithine aminotransferase (Oat)    NM 22521 

Dimethylaminohydrolase 1(Ddah1)    NM_022297 

mRNA for astrocytic phosphoprotein (PEA-15)  AJ243949 

Translation initiation factor 5 (Eif5)    NM_020075 

 
 

Table.1  Differentially expressed genes identified by RDA. 

 Rat MCs were incubated for 4 hours in the presence or absence of 500µM S-nitroso-glutathione. 
The subtraction library was generated using the cDNA representational difference analysis 
consisting of Pool “A” or upregulated and Pool “B” or downregulated genes. PCR products were 
cloned and sequenced. Sequence analysis was performed compared to public databases by using 
BLAST. 
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4.2. NO donors are chemically active in mesangial cells 
To investigate whether the NO donors used in an expanded study were chemically active, the 

stable and non-volatile metabolites of NO in the form of nitrites from the conditioned media 

were measured by Griess assay. Results from this study revealed that spermine NONOate, Deta 

NONOate, and NOC-18 under similar conditions produced nitrite as a stable metabolite of NO 

(Fig.12). Under our experimental settings, maximum nitrite production (280µM) was observed 

when human MCs were treated for 4 hours with 500µM of spermine NONOate which has a half-

life of only 39 minutes. This level was reduced to 220µM after 24 hours. Nitrite accumulation 

with 500µM of Deta NONOate (half-life: 20 hours at 37°C) and NOC-18 (half-life: 56 hours at 

37°C) was more pronounced at later time points with a maximum nitrite accumulation of 300µM 

with DetaNONOate and 290µM with NOC-18 at 24 hours. Under similar conditions 

unstimulated control human MCs showed a basal nitrite level of 2µM at 4, 8, 12 and 24 hours. 

These results indicate that all the NO donors tested were chemically active, although, the kinetics 

of NO release was different. 

             
 

 
Figure 12 Nitrite accumulations in human mesangial cells using different NO donors 

Quiescent human mesangial cells were incubated with medium containing 30mM glucose and 5ng/ml 
TGF-β1 for 24 hours before stimulation with or without spermine NONOate, DetaNONOate or NOC-18 
at the indicated concentrations and time points. Supernatants were harvested and assayed for nitrite 
content by using the Griess assay (Promega). Data are the mean of three independent experiments. 
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4.3. Production of endogenous NO is stimulated by the addition of 
INFγ and BH4; Inhibitors of iNOS block the production of NO 
stimulated by INFγ  and BH4 
 
To investigate whether a combination of INFγ and BH4 (a NOS co-factor) can stimulate the 

release of NO in MCs, quiescent MCs were first treated for 24 hours with 30mM glucose and 

then stimulated with 200U/ml of INFγ alone or INFγ plus 10µM of BH4 for 0-24 hours in 

presence or absence of iNOS inhibitors- 1400W, L-NIL and L-NMMA. The media were 

harvested at different time points and assayed for the presence or absence of nitrite by Griess 

assay. Nitrite concentration in the medium of INFγ and BH4- stimulated cells was significantly 

higher (7µM ± SD; P< 0.001) than in medium from untreated cells in multiple experiments. 

There was a significant decrease (P< 0.001) in nitrite accumulation in the medium from cells 

treated with either L-NIL, 1400W or L-NMMA in presence of INFγ+BH4 (Fig.13). 1400W was 

chosen as the inhibitor of iNOS enzymatic activity for future experiments.  

 

Figure 13 Nitrite assay demonstrating the production of NO in response to INF-γ stimulation 
and inhibitory effects of iNOS inhibitors. 

Quiescent human mesangial cells were incubated with medium containing 30mM glucose for 24 hours. 
Cells were left untreated or treated simultaneously, in presence of  200U/ml INF-γ or 200U/ml INF-γ plus 
10µM BH4, with 200µM 1400W, 100µM L-NIL, or 250µM L-NMMA. After 20 hours media were 
collected and assayed for nitrite content by using Griess assay. Data shown are mean of three independent 
experiments ± SD; ***P<0.001 compared to cells treated with 200U/ml INF-γ plus 10µM BH4.  
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4.4. INFγ and BH4 stimulation of human mesangial cells leads to the 

induction of iNOS mRNA and protein 
Given that a combination of INFγ and BH4 are able to stimulate the production of NO (Fig 14a 

and b) in human mesangial cells and that a selective iNOS inhibitor, 1400W, is able to lower the 

NO production to a significant level, we next investigated whether INFγ and BH4 were also able 

to induce the expression of iNOS in MCs. For this purpose human MCs were treated with INFγ 

and BH4 and total RNA and protein was harvested for Northern and Western blot analysis 

respectively. Increased iNOS mRNA and protein expression was detected after 20 hours of 

stimulation with INFγ or INFγ plus BH4 in human (Fig. 14b) as well as rat MCs (data not 

shown). Controls did not show any expression at the mRNA or protein levels.  

 

Figure 14 INFγ and BH4 lead to the production of NO by inducing iNOS in human MCs 

(a) Quiescent human MCs grown in medium containing 30mM glucose for 24 hours were left untreated 
(lane 1) or treated with 200U/ml INF-γ (lane 2), 200U/ml INF-γ plus 10µM BH4 (lane 3), 200U/ml INF-γ  
plus 200µM 1400W (lane 4) or 200U/ml INF-γ plus 10µM BH4 plus 200µM 1400W (lane 5) for 20 hours 
and nitrite release was quantified by nitrite assay. (b) Northern blot analysis was performed with the RNA 
extracted from the stimulated cells and probed for iNOS or 18S rRNA. For the determination of iNOS 
protein, equal amounts of total protein was subjected to SDS-PAGE analysis and probed with an anti-
rabbit iNOS polyclonal antibody as described in “materials and methods”.  
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4.5. Induction of MC iNOS by pro-inflammatory cytokines 
To demonstrate the induction of iNOS gene by a pro-inflammatory cytokine mixture, rat 

mesangial cells were treated with a mixture of cytokines (IL1-β 250U/ml; INF-γ 200U/ml; TNFα 

500U/ml). Total RNA was harvested after 8, 12 and 24 hours and subjected to Northern blot 

hybridization with a radioactively labeled human iNOS cDNA probe. The cytokine cocktail led 

to a strong activation of iNOS mRNA at 12 and 24 hours. Treatment of the cells with 1400W 

resulted in a considerable inhibition of iNOS mRNA induction (Fig. 15). 
 

 

 

 

Figure 15 A mixture of cytokines leads to the induction of iNOS in rat MCs 

Quiescent rat MCs were left untreated or treated with a cytokine cocktail (IL1-β 250U/ml; INF-γ 
200U/ml; TNFα 500U/ml) with or without the iNOS inhibitor- 1400W for 8, 12 and 24 hours. 15µg of 
total RNA from the monolayer of stimulated cells was isolated at the indicated time points and subjected 
to Northern blot hybridization using probes for 18S rRNA and iNOS. 
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4.6. GSNO downregulates the expression of CTGF and TSP-1 in rat 

mesangial cells 
To validate our RDA findings predicting the downregulation of CTGF and TSP-1, we analyzed 

total RNA extracted from GSNO stimulated rat MCs (treated with 5ng/ml TGF-β1 and 30mM 

glucose for 24 hours prior to NO stimulation) by Northern blot analysis using gene specific 

cDNA probes. Control cells were treated with equimolar amounts of GSH or decomposed GSNO 

(DGSNO) for 4 and 8 hours. A transient downregulation of CTGF and TSP-1 mRNA (Fig 16) 

was observed after 500µM of GSNO treatment. GSH and DGSNO alone had no effect on the 

downregulation of both the genes. 
 

4.7. DETA NONOate downregulates the expression of COL1A1 and 

COL1A2 in rat mesangial cells 
To validate our RDA findings predicting the downregulation of COL1A1 and COL1A2, total 

RNA extracted was analyzed from DETA NONOate stimulated rat MCs (treated with 5ng/ml 

TGF-β1 and 30mM glucose for 24 hours prior to NO stimulation) by Northern blot analysis 

using gene specific cDNA probes. Control cells were left untreated. A transient downregulation 

of COL1A1 and COL1A2 mRNA (Fig. 17) was observed after 500µM of DETA NONOate 

treatment for 8, 12 and 24 hours. 
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Figure 16 CTGF ands TSP-1 are downregulated by GSNO in rat MCs 
Quiescent rat mesangial cells were incubated with medium containing 30mM glucose and 
5ng/ml TGF-β1 for 24 hours before stimulation with or without 500µM each of GSNO, GSH or 
decomposed GSNO (DGSNO) at 4 and 8 hours. Total RNA (15µg) was isolated and the mRNA 
expression of CTGF and TSP-1 was analyzed by Northern blotting. 
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Figure 17 COL1A1 ands COL1A2 are downregulated by DETA NONOate in rat MCs 

Quiescent rat mesangial cells were incubated with medium containing 30mM glucose and 5ng/ml TGF-β1 
for 24 hours before stimulation with or without 500µM of DETA NONOate at the indicated time points. 
Total RNA (15µg) was isolated and the mRNA expression of COL1A1 and COL1A2 was analyzed by 
Northern blotting. 
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4.8. Spermine NONOate downregulates the expression of COL1A2 

mRNA in rat mesangial cells 
To investigate whether COL1A2 can also be downregulated by spermine NONOate, total RNA 

extracted was analyzed from spermine NONOate stimulated rat MCs (treated with 5ng/ml TGF-

β1 and 30mM glucose for 24 hours prior to NO stimulation) by Northern blot analysis using 

gene specific cDNA probes. Control cells were left untreated. A prolonged downregulation of 

COL1A2 mRNA (Fig. 18) was observed after 500µM of spermine NONOate treatment for 4, 8, 

12 and 24 hours. 

 

 

 

 

 

 

 

Figure 18 Exogenous NO donor spermine NONOate downregulates mRNA expression of 
COL1A2 in rat mesangial cells 

Quiescent rat mesangial cells were incubated with medium containing 30mM glucose and 5ng/ml TGF-β1 
for 24 hours before stimulation with or without spermine NONOate at the indicated concentrations and 
time points. Total RNA (15µg) was isolated and the mRNA expression of COL1A2 was analyzed by 
Northern blotting. 
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4.9. Spermine NONOate downregulates the expression of TSP-1 in 

human mesangial cells 
To investigate the downregulation of TSP-1 in human mesangial cells, we analyzed total RNA 

extracted from spermine NONOate stimulated human MCs (treated with 5ng/ml TGF-β1 and 

30mM glucose for 24 hours prior to NO stimulation) by Northern blot analysis using gene 

specific cDNA probes. A time and dose dependent downregulation of TSP-1 mRNA (Fig. 19) 

was observed after treatment with spermine NONOate.  
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Figure 19 Exogenous NO donor spermine NONOate downregulates mRNA expression of TSP-
1 in human mesangial cells 

Quiescent human mesangial cells were incubated with medium containing 30mM glucose and 5ng/ml 
TGF-β1 for 24 hours before stimulation with or without spermine NONOate at the indicated 
concentrations and time points. Total RNA (15µg) was isolated and the mRNA expression of TSP-1 was 
analyzed by Northern blotting. 
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4.10. Spermine NONOate downregulates the expression of CTGF in 

human mesangial cells 
To investigate the downregulation of CTGF in human mesangial cells, we analyzed total RNA 

extracted from spermine NONOate stimulated human MCs (treated with 5ng/ml TGF-β1 and 

30mM glucose for 24 hours prior to NO stimulation) by Northern blot analysis using gene 

specific cDNA probes. Treatment with spermine NONOate resulted in a dose- and time- 

dependent downregulation of CTGF mRNA (Fig. 20).  
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Figure 20 Exogenous NO donor spermine NONOate downregulates mRNA expression of 
CTGF in human mesangial cells 

Quiescent human mesangial cells were incubated with medium containing 30mM glucose and 5ng/ml 
TGF-β1 for 24 hours before stimulation with or without spermine NONOate at the indicated 
concentrations and time points. Total RNA (15µg) was isolated and the mRNA expression of CTGF was 
analyzed by Northern blotting. 
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4.11. Endogenously generated NO downregulates CTGF and TSP-1 

mRNA expression in human MC and COL1A2 mRNA in rat MC 
To demonstrate that endogenously produced NO in response to iNOS activation by INFγ and 

BH4 in human MCs leads to the downregulation of CTGF and TSP-1, quiescent human MCs 

grown for 24 hours in medium containing 30mM glucose were treated with 200U/ml of INFγ and 

200µM of BH4 or INFγ alone for 20 hours in the absence or presence of 1400 W. Control cells 

were left untreated. Total RNA was subjected to Northern blot hybridization with gene specific 

radioactively labeled probes. CTGF and TSP-1 mRNA were downregulated by INFγ alone or 

INFγ in combination with BH4 (Fig. 21a, lanes 2, 3). 1400W rescued the downregulatory effects, 

indicating that effects are NO specific. 

To demonstrate that similar changes are induced in COL1A2 mRNA in response to NO produced 

enzymatically by NO synthase induction in rat mesangial cells, the expression of iNOS was 

stimulated by using a mixture of cytokines (IL1-β 250U/ml; INF-γ 200U/ml; TNFα 500U/ml). 

Total RNA was harvested after 8, 12 and 24 hours and subjected to Northern blot hybridization 

with a radioactively labeled iNOS cDNA probe. The cytokine cocktail led to a strong activation 

of iNOS mRNA at 12 and 24 hours (Fig. 15). Treatment of the cells with 1400W, a selective 

iNOS inhibitor, in presence of the cytokine cocktail reduced the iNOS mRNA levels by almost 

50 percent (Fig. 15). Hybridization of the same membrane to COL1A2 radiolabelled probe 

showed that the COL1A2 mRNA was substantially downregulated at the 24 hour time point and 

1400W had rescued the downregulatory affects of the endogenously produced NO (Fig. 21b).  
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Figure 21 Endogenously produced NO downregulates the expression of CTGF and TSP-1 in 
human MC and COL1A2 in rat mesangial cells 

 
(a) Quiescent human MCs grown in medium containing 30mM glucose for 24 hours were left 

untreated (lane 1) or treated with 200U/ml INF-γ (lane 2), 200U/ml INF-γ plus 10µM BH4 
(lane 3), 200U/ml INF-γ  plus 200µM 1400W (lane 4) or 200U/ml INF-γ plus 10µM BH4 
plus 200µM 1400W (lane 5) for 20 hours. Northern blot analysis was performed with the 
RNA extracted from the stimulated cells and probed for CTGF, TSP-1 or 18S rRNA. 

 
(b) Quiescent rat MCs were left untreated or treated with a cytokine cocktail (IL1-β 250U/ml; 

INF-γ 200U/ml; TNFα 500U/ml) with or without the iNOS inhibitor- 1400W for 8, 12 and 24 
hours. 15µg of total RNA from the monolayer of stimulated cells was isolated at the indicated 
time points and subjected to Northern blot hybridization using probes for 18S rRNA and 
COL1A2.  
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4.12. Exogenous NO downregulates the expression of biglycan, 
COL4A2, COL1A1 and COL1A2 mRNA in human mesangial cells 
 
To investigate whether Biglycan, COL4A2 (two additional ECM associated genes), COL1A1 

and COL1A2 were also downregulated by spermine NONOate, total RNA extracted from 

Spermine NONOate stimulated human MCs (treated with 5ng/ml TGF-β1 and 30mM glucose for 

24 hours prior to NO stimulation) was subjected to real time PCR (RT-PCR) analysis. Gene 

specific RT-PCR probes as described in materials and methods were used. Control cells were left 

untreated. A dose and time dependent downregulation of Biglycan, COL4A2, COL1A1 and 

COL1A2 gene expression (Fig. 22) was observed after 100, 250 and 500µM of spermine 

NONOate treatment for 4, 8, 12 and 24 hours. 

 

 

 

Figure 22 Exogenous NO donor Spermine NONOate downregulates mRNA expression of 
Biglycan, COL4A2, COL1A1 and COL1A2 in human mesangial cells 

Quiescent human mesangial cells were incubated with medium containing 30mM glucose and 
5ng/ml TGF-β1 for 24 hours before stimulation with or without spermine NONOate at the 
indicated concentrations and time points. Total RNA was isolated and subjected to RT-PCR 
analysis by using gene specific RT-PCR probes as described in materials and methods. 
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4.13. Endogenously generated NO downregulates BGN, COL4A2, 

COL1A1 and COL1A2 gene expression in human mesangial cells 
To demonstrate that endogenously produced NO in response to iNOS activation by INFγ and 

BH4 in human MCs leads to the downregulation of Biglycan, COL4A2 (two additional ECM 

associated genes), COL1A1 and COL1A2, quiescent human MCs grown for 24 hours in medium 

containing 30mM glucose were treated with 200U/ml of INFγ and 200µM of BH4 or INFγ alone 

for 20 hours in presence of 1400 W. Controls were untreated. Total RNA was subjected to RT-

PCR analysis by using gene-specific RT-PCR probes. Results showed a significant 

downregulation of Biglycan, COL4A2 and COL1A1 mRNA in the samples treated with INFγ 

alone or INFγ in combination with BH4. The downregulation of COL1A2 was only significant in 

presence of BH4 (Fig. 23, lanes 2, 3). 1400W, a selective iNOS inhibitor had rescued the 

downregulatory effects of the combination of INFγ plus BH4 indicating that effects are NO 

specific. Interestingly, the effects of INFγ alone were not rescued by 1400W. 

 

Figure 23 Endogenously produced NO downregulates the expression of biglycan, COL4A2, 
COL1A1 and COL1A2 in human MC 

Quiescent human MCs grown in medium containing 30mM glucose for 24 hours were left untreated (lane 
1) or treated with 200U/ml INF-γ (lane 2), 200U/ml INF-γ plus 10µM BH4 (lane 3), 200U/ml INF-γ  plus 
200µM 1400W (lane 4) or 200U/ml INF-γ plus 10µM BH4 plus 200µM 1400W (lane 5) for 20 hours. 
Total RNA was subjected to RT-PCR analysis by using gene-specific RT-PCR probes. 
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4.14. Exogenous NO donors downregulate CTGF protein expression  
To investigate CTGF protein expression, human MCs were stimulated with 100 to 500µM of 

Spermine NO and NOC-18 for 24 hours and equal amounts of protein was subjected to SDS 

polyacralamide gel electrophoresis. CTGF protein was detected with a CTGF anti-human 

monoclonal antibody (FG-3019). Strong CTGF protein expression was detected in the control 

sample which was reduced in intensity in NO treated samples (Fig 24). There was a strong 

inhibition of CTGF protein expression in samples treated with 500 µM of both spermine 

NONOate and NOC-18. 
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Figure 24 CTGF protein expression is strongly downregulated by exogenous NO treatment. 

Quiescent human mesangial cells grown in medium containing 30mM glucose and 5ng/ml TGF-β1 for 24 
hours were treated or not treated with indicated concentrations of spermine NONOate or NOC-18 for 24 
hours. Total protein was harvested and subjected to Western blot analysis with human anti-CTGF 
antibody as described under “Experimental procedures”. 
 
 
4.15. Exogenous NO donors downregulate TSP-1 protein expression 
To verify the effects of exogenous NO donors on TSP-1 and CTGF protein expression, quiescent 

human mesangial cells were first treated for 24 hours with 5ng/ml TGF-β1 and 30mM glucose. 

Three different NO donors, Spermine NONOate, SNAP and NOC-18 in increasing doses were 

used to stimulate cultured cells for an additional 12 or 24 hours. After 12 and 24 hours of 

incubation, conditioned media were harvested and TSP-1 protein concentrations were 

determined by ELISA. We observed a significant (P< 0.001) dose and time dependent decrease 

in the TSP-1 protein content of spermine NONOate, SNAP and NOC-18 treated cells at all time 

points and concentrations except for 100, 250 and 500µM of spermine NONOate at 12 hours 

(Fig. 25 – a, b, c). 
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Figure 25 TSP-1 protein expression is strongly downregulated by exogenous NO treatment. 

 (a) Quiescent human mesangial cells were incubated with medium containing 30mM glucose and 5ng/ml 
TGF-β1 for 24 hours before stimulation with or without 100, 250 and 500µM of NOC-18, (b) Spermine 
NONOate and (c) SNAP for 12 and 24 hours. Conditioned media were collected after 12 and 24 hours 
and secreted level of TSP-1 were measured by enzyme-linked immunosorbent assay (ELISA) as 
described under “Experimental procedures“. Data represent mean ± SD of 8 cultures for each condition. 
TSP-1 levels were decreased significantly (**P< 0.01 and (***P< 0.001) as compared to untreated 
controls with all indicated concentrations of spermine NONOate at 24 hours, NOC-18 at 12 and 24 hours 
and SNAP at 12 and 24 hours.  
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4.16. Downregulation of CTGF by NO is not mediated by changes in 

mRNA stability 
To determine the effect of NO on CTGF mRNA stability; we performed Northern blot analysis 

of CTGF mRNA in human MCs treated with actinomycin D (10ng/ml) for up to 8 hours after 

incubation of MCs in the presence or absence of 500 µM of spermine NONOate. The rate of 

decay of the CTGF message was of equivalent magnitude in cells grown in spermine NO treated 

media (Fig. 26, a and b), and the average half-life of CTGF mRNA was calculated to be around 2 

h in control and spermine NO-treated media (Fig.26c). We concluded that the decrease in the 

steady-state level of CTGF mRNA elicited by spermine NO treatment in MCs is unlikely to be 

due to decreased mRNA stability, although a small component of message stabilization cannot 

be excluded.  
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Figure 26 CTGF mRNA stability is not affected by NO 

(a, b) Quiescent human MCs grown in serum free medium containing 30mM glucose and 5ng/ml 
TGF-β1 for 24 hours were exposed to actinomycin D alone (10 µg/ml) or to actinomycin D 
(10µg/ml) and Spermine NO (500 µM). Total RNA from the stimulated cells was subjected to 
Northern blot hybridization using radiolabelled CTGF probes. I Graphic profile of CTGF mRNA 
decay after treatment with actinomycin D for cells un- stimulated (□) or stimulated with 500 µM 
spermine NONOate (♦). Measurements at time 0 (from actinomycin D treatment) were assigned a 
relative value of 100%. The average half-life of the CTGF message was calculated to be around 2 
hours in both treated and untreated samples. 
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4.17. Gene organization, cloning and transfection of CTGF 

promoter into human mesangial cells  
CTGF protein contains four structural modules following the signal peptide (SP): insulin-like 

growth-factor binding (IGFB) domain, chordin-like cysteine rich (CR) domain, thrombospondin 

type 1 repeat (TSP-1), and a C-terminal cystineknot (CT).  

The CTGF promoter (-805/17) was cloned into a pSEAP-basic vector and the promoter-reporter 

construct was transfected into human mesangial cells (Fig. 27). 

 

 

 

 
Figure 27 CTGF gene organization and cloning strategy 

 

 

 

 



  Results 
 

 71

4.18. NO inhibits CTGF promoter activity in mesangial cell  
To confirm that the decrease in the steady-state level of CTGF mRNA by exogenous NO is due 

to a decreased gene transcription rate, we performed reporter assays using a chimeric CTGF-

promoter/SEAP- reporter construct. Human MCs were transiently transfected with a –805/+17 

base pair long human CTGF promoter construct pCTGF-SEAP. Relative SEAP activity was 

measured 48 h after addition of 10, 100 or 250µM of NOC-18. Reporter analysis showed a 

significant decrease (Fig. 28a) in relative SEAP activity (P< 0.001) in NOC-18 treated cells as 

compared to untreated controls. Stimulation of pCTGF-SEAP- transfected cells with increasing 

doses of DetaNONOate and spermine NONOate (Fig. 28b) also showed significant decrease in 

the reporter protein (SEAP) expression (P< 0.001). pSEAP-SV40 transfected human MCs 

stimulated with different doses of NOC-18, and used as a positive control, showed surprisingly 

significant upregulation in the relative SEAP activity (P< 0.01) as compared to untreated control 

cells (Fig. 28a). These data suggest that NO acts at the promoter level to suppress TGF- β1 and 

glucose induced CTGF expression.  
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Figure 28 NO donors downregulate the CTGF promoter-reporter activity in MC 

(a) Human MCs grown for 8 hours in DMEM containing 10% FCS were transfected with CTGF 
promoter (–805 to +17)/SEAP reporter plasmid (1.5 µg/well). After transfection, cells were 
incubated in serum free medium containing 30mM glucose and 5ng/ml TGF-β1 for 48 hours with 
or without 10, 100 and 250µM of NOC-18. Cells were co-transfected with SEAP-SV40 positive 
control plasmid (0.5µg/well) and treated with 250µM NOC-18 to show that NO does not exhibit 
any downregulatory effects on a different and unrelated promoter.  

 
(b) Under similar conditions, human MCs were transfected with pCTGF-SEAP (1.5µg/well). 
Control cells were transfected with 1.5µg/well pSEAP (–) reporter plasmid having no promoter. 
Transfected cells were not treated or treated with 50, 100 or 250µM of spermine NONOate or 
SNAP for 48 hours as indicated. Data represent mean ± SD of three independent experiments 
with triplicate wells for each condition in each setting (Fig. 28 a, b). SEAP activity in relative 
light units was measured after 48 hours from the conditioned media by using SEAP fluorescent 
assay kit as described in “Experimental procedures”. All experiments were performed in 12-well 
plates. Values show statistically significant differences in expression, **P<0.01 and *** P <0.001 
relative to cells transfected with pCTGF-SEAP but left untreated. 
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4.19. Protein interaction network and the regulatory pathways of 
CTGF, TSP-1, COL1A1, COL1A2, COL4A2, BGN and iNOS 
 

 

 

 

Figure 29 Protein interactions and signaling pathways of ECM proteins 

 
This network diagram was generated by Ingenuity Systems Software, which is a software tool for 
biological pathways analysis, expansion and visualization of gene regulation networks and protein 
interaction maps based on data from PubMed and curated molecular interaction databases. Ingenuity 
identifies relationships among genes, small molecules and other objects, and draws pathway diagrams, 
linked to the original sources of information. The pathway generated shows a central role for TGF-β1 in 
regulating the expression of matricellular genes linked to fibrosis and links NO produced enzymatically 
by iNOS (as NOS2A in the diagram) to the signal transduction pathways mediated by SMADs. 
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5.1. RDA analysis successfully identified NO regulated genes 

By using representational differential analysis, we have been able to add to our understanding of 

the complex role of NO in regulating gene expression in kidney mesangial cells. This systematic 

approach confirms the results of other investigators (Keil et al., 2002; Murphy et al., 1999) and 

provides novel observations regarding the biological role of NO in moderating gene expression 

in a fibrotic setting.  Despite the limitations of the Respresentational Difference Analysis (RDA), 

we successfully identified several important matrix associated genes downregulated by treatment 

with S-Nitrosos-L-Glutathione (GSNO) in glomerular mesangial cells. 

5.2. Mechanism of action and efficacy of exogenous NO donors 

In this study we used GSNO, a nitrosothiol, as the initial donor for investigating the genes 

affected by exogenous NO. S-Nitrosothiols are compounds with the generic structure of RSNO. 

Under appropriate conditions these compounds decompose to liberate NO and the corresponding 

disulfide. It has been suggested that the formation and decay of low molecular weight S-

nitrosothiols, such as S-nitrosoglutathione (GSNO) and S-nitrosocysteine (CySNO), may 

represent a mechanism for the storage or transport of NO (Myers et al., 1990; Girard and Potier 

1993). According to this proposal, S-nitrosothiols are synthesized chemically by reaction of NO 

with thiol. Subsequently, these compounds are diffused to the site of action. Decomposition of 

the S-nitrosothiol then leads to NO release and the corresponding biological effect. This 

hypothesis is mainly speculative and remains to be rigorously tested. Little is known about the 

reaction of NO with glutathione (GSH) in vivo; however, the direct reaction of GSH with NO 

does not generate GSNO but forms glutathione disulfide and nitroxyl anion (NO2) (Hogg et al., 

1996; DeMaster et al., 1995). GSNO is formed only if NO is oxidized, by reaction with oxygen, 

to form NO2 and N2O3 (Wink et al., 1994). As intracellular oxygen concentrations at the tissue 

level are in the range of 10–20 µM (Smirnova et al., 1995) and as the rate of NO oxidation is 

proportional to the squared power of the NO concentration (Wink et al., 1993), it is likely that 

the oxidation of NO by oxygen in vivo is a slow and insignificant process. Evidence for the 

formation of S-nitrosothiols from endogenous NO remains scarce. Nevertheless, nitrosylation of 

protein thiols has been implicated in the NO-dependent regulation of many enzymes, including 

protein kinase C (Gopalakrishna et al., 1993) and glyceral-3-phosphate dehydrogenase (Clancy 
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et al., 1994). It has been reported that normal human serum contains S-nitroso-serum albumin 

(Stamler 1992 “a/b”) which has been proposed to act as an endogenous regulator of vessel tone 

(Scharfstein 1994). Although the physiological relevance of S-nitrosothiols remains to be 

established, these compounds have been used as donors of NO (Ignarro et al., 1981; Asahi et al., 

1995; Radomski et al., 1992). The most commonly employed compounds are S-nitroso-L-

glutathione (GSNO) and S-nitroso-N-acetyl-DL-penicillamine (SNAP). Such compounds have 

been shown to have diverse and remarkable biological effects. For example, SNAP is a potent 

vasodilator (Ignarro et al., 1981) and low concentrations of GSNO have been shown to provide 

significant protection to the ischemic myocardium (Konorev et al., 1995). It is generally assumed 

that S-nitrosothiols decompose by cleavage of the S-N bond. 

RSNO → RS+NO 

This process generates NO and a thiyl radical, RS (Josephy et al., 1984). However, this 

assumption has not been effectively tested under physiologically relevant conditions. It has been 

established that S-nitrosothiols are sensitive to both photolytic (Singh et al., 1995; Sexton et al., 

1994) and transition metal ion-dependent breakdown (McAninly et al., 1993) but are stable in the 

presence of transition metal ion chelators in the dark. The biological activity of S-nitrosothiols 

may not be exclusively dictated by the release of NO as the chemistry of these compounds is 

complex. S-Nitrosothiols have also been shown to form NO2, which under appropriate 

conditions can lead to the formation of either nitrous oxide (Hogg et al., 1996; DeMaster et al., 

1995; Pryor et al., 1982) or peroxynitrite (Hogg et al., 1996; Bonner et al., 1986). S-Nitrosothiols 

can also undergo nitrosonium (NO+) transfer to other cellular thiols by a process referred to as 

transnitrosation (Hogg N, 2000).  

In this study, we studied the effects of a novel class of NO donors known as NONOates on gene 

expression and regulation in mesangial cells. NONOates otherwise known as diazeniumdiolates, 

are a novel group of NO donors. They are complexes of NO with nucleophiles (X) and have the 

general formula, XN (O−) N=O (Maragos et al., 1991). These compounds are generally stable as 

solids, but decompose in solution to generate NO (Keefer et al., 1996). Decomposition occurs at 

a predictable rate that depends on pH, temperature and the nature of the nucleophile (Maragos et 

al., 1991). NONOates were described in the chemical literature over 30 years ago (Longhi et al., 
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1962; Ragsdale et al., 1965) but it is only recently that their potential as sources of NO, with 

biological properties, has been studied (Maragos et al., 1991; Morley et al., 1993). NONOates 

have been found to be effective vasodilators both in vitro (Maragos et al., 1991; Morley et al., 

1993) and in vivo (Diodati et al., 1993; Vanderford et al., 1994). However, the in vitro effects of 

this novel group of NO donors have not previously been evaluated specifically on mesangial 

cells. As potential therapeutic agents, NONOates have an advantage over other NO donors in 

that the choice of nucleophile can determine the duration of biological action (Homer and 

Wanstall, 1998).  

We used two different NONOates, Spermine NONOate and DETA-NONOate (NOC-18). The 

total amount of NO that a NONOate can generate varies for different compounds. The theoretical 

maximum value is 2 mol of NO per mol of parent compound (Maragos et al., 1991) but at 

neutral pH it is usually less than this (Feelisch and Stamler, 1996). DETA-NONOate is a 1-

substituted diazen-1-ium-1, 2-diolates, containing a [N (O) NO]– group, generally referred to as 

diazenium diolates (Keefer et al., 1996). It has a half-life of 20 hours and releases NO without 

prior biotransformation (Hanson et al., 1995). Spermine NONOate also belongs to the same class 

of chemical compounds but differs in the rate of release of NO. Spermine NONOate has a half-

life of 39 minutes at 37°C and at pH 7.4. In our experiments, we measured nitrite as the stable 

metabolites of NONOates and found that nitrite concentrations in the medium were reduced by 

almost 50% as compared to the initial dose of parent compound with no time dependence 

(Fig.12). In experiments with mRNA or protein expression of different matricellular genes 

studied, we did not find any notable differences in the effects of either DETA-NONOate or 

Spermine NONOate. No remarkable differences were found either on CTGF promoter activity or 

the reporter gene expression during transfection analysis while working with DETA-NONOate 

or Spermine NONOate (Fig. 28b). However, Spermine NONOate at 12 hours did not show a 

significant change in the TSP-1 protein level (Fig. 25). Conclusively, the effects seen in each set 

of experiments in this study were dose- and time- dependent. 
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5.3. Genes upregulated by NO – general biological functions 

The genes upregulated in the assay include Pyruvate kinase (PK), a rate-controlling glycolytic 

enzyme, which catalyses the transfer of a phosphoryl group from phosphoenolpyruvate to ADP, 

yielding ATP and pyruvate. PK exists in the cytosol and is functional as a tetramer. Mammalian 

PK exists as four isoenzymes, which are referred to as the L-, R-, M1-, and M2-types, 

respectively (Imamura et al., 1986). The L-, R-, and M1-PK isoenzymes are tissue-specific, 

while L-PK is predominantly expressed in the liver but is also present in the kidney, small 

intestine, and in pancreatic b-cells (Imamura et al., 1986; Noguchi et al., 1991). R-PK is only 

expressed in erythrocytes. M1-PK is expressed in skeletal muscle, heart, and brain. In contrast, 

M2-PK is a ubiquitous isoenzyme and is found in nearly all tissues or cells. 

PK was expressed in MC with very low abundance and was approximately 6-fold induced by 

GSNO. This finding is, to our knowledge, the first description of a regulation of PK expression 

by nitric oxide. Interestingly, the transcription rate of PK has been described to be induced in 

muscle cells subjected to hypoxia, facilitating glycolysis under anaerobic or hypoxic conditions 

when oxidative metabolism is repressed (Kress et al., 1998).  

Aldose reductase (AR) another upregulated gene belongs to aldo/keto reductase family. This 

gene family includes a number of K+ ion channel beta chain regulatory domains. These are 

reported to have oxido-reductase activity. AR catalyzes the NADPH-mediated reduction of aldo-

sugars and aldehydes to their corresponding alcohols. AR-catalyzed reduction of glucose to 

sorbitol constitutes the first and rate-limiting step of the polyol pathway. Aldose reductase (AR) 

is a widely expressed aldehyde-metabolizing enzyme. The reduction of glucose by the AR 

catalyzed polyol pathway has been linked to the development of secondary diabetic 

complications. Although treatment with AR inhibitors has been shown to prevent tissue injury in 

animal models of diabetes, the clinical efficacy of these drugs remains to be established. Recent 

studies suggest that glucose may be an incidental substrate of AR, which appears to be more 

adept in catalyzing the reduction of a wide range of aldehydes generated from lipid peroxidation. 

Moreover, inhibition of the enzyme has been shown to increase inflammation-induced vascular 

oxidative stress and prevent myocardial protection associated with the late phase of ischemic 

preconditioning. On the basis of these studies several investigators have ascribed an important 

antioxidant role to the enzyme. Additional studies indicate that the antioxidant and signaling 
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roles of AR are interlinked and that AR regulates the PKC-NF-kappaB via redox sensitive 

mechanisms (Srivastava et al., 2005). Our result confirms the investigation of Seo (Seo et al., 

2000) which provided the first evidence that AR gene expression is induced by NO or NO-

derived chemical species in the vascular cells and a macrophage cell line. The major findings 

demonstrated in this study were that: 1) NO derived from NO donors as well as from endogenous 

iNOS up-regulated the expression of AR; 2) this effect of NO involved de novo mRNA 

synthesis, whereas neither guanylate cyclase nor tyrosine kinase activity mediated the signaling 

pathway; and 3) inhibition of AR activity under normal glucose conditions exacerbated the 

cytotoxic effect of NO. Methylglyoxal (MG), a reactive dicarbonyl produced during glucose 

metabolism, is known as a preferred substrate of AR that concomitantly catalyzes the reduction 

of glucose in the polyol pathway. MG modifies cellular proteins to form cross-links of amino 

groups, generating so-called advanced glycation end products. Increased rates of MG formation 

under hyperglycemic conditions and ensuing high serum levels of MG are reported in diabetic 

patients. A study published by Yabe-Nishimura (Yabe-Nishimura et al., 2003)) suggests that 

exposure to high concentrations of MG may be among the causative factors that accelerate 

cellular oxidative stress under such pathological conditions as diabetes. Induction of AR 

expression by MG was significantly suppressed when they pre-incubated aortic smooth muscle 

cells (SMC) with NAC, a thiol antioxidant as well as a precursor of GSH. On the other hand, 

pretreatment of SMC with BSO, a reagent that depletes intracellular GSH, further augmented the 

MG-induced increase in AR mRNA level. As GSH also serves as a cofactor of the glyoxalase 

system that catalyzes the metabolic disposal of MG, interpretation of these observations is not 

straightforward. However, the determination of intracellular levels of ROS using a peroxide-

sensitive fluorophore demonstrated that MG-induced a significant increase in intracellular ROS 

level prior to the elevation of AR mRNA. The molecular mechanism(s) underlying the MG-

induced augmentation of intracellular oxidative stress remains unclear. ROS may be generated 

during glycation reactions between MG and amino acid residues in proteins. Depletion of GSH 

due to increased metabolic load of MG through the glyoxalase system may further decelerate 

elimination of ROS in the cell. This observation that intracellular ROS were elevated prior to the 

change in AR mRNA level suggested that the effect of MG on AR expression may be 

attributable to increased oxidative stress caused by MG treatment. Findings of these investigators 

together with our results indicate that induction of AR by NO is the consequence of an adaptive 
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response to protect cells from oxidative stress and cytotoxic effects of MG. Accordingly, the 

primary role of AR may be a detoxification enzyme that degrades reactive aldehydes for cell 

survival.  

Triosephosphatase isomerase (TPI) gene, encoding another glycolytic enzyme, which 

catalyses the conversion of dihydroxyacetone phosphate into glyceraldehyde 3 Phosphate, an 

induction of transcription in response to ischemia has been reported (Liaud et al., 2000). 

Astrocytes exposed to hypoxia showed a decrease of intracellular glucose levels in parallel to the 

upregulation of various glycolytic enzymes, including TPI, which seemed to prevent cell death 

(Niitsu et al., 1999). In our assay TPI was upregulated by GSNO-treatment. Although hypoxia is 

not comparable with increased NO-levels, both environments represent an oxidative stress for 

the cells and various genes are similarly regulated under both conditions. Conclusively the 

upregulation of PK, AR and TPI by GSNO suggests an increased requirement for glycolytic 

enzymes of MC under conditions of high NO availability. 

The Hemochromatosis gene (Hfe) is a membrane protein involved in iron metabolism. Defects 

in the human homolog lead to hereditary hemochromotosis, an iron storage disorder (Holmstrom 

et al., 2003; Zhang et al., 2004). 
ATPase synthase subunit 6 is a mitochondrial gene involved in electron transport and oxidative 

phosphorylation (Huang et al., 2004). Nitric oxide specifically and reversibly inhibits 

cytochrome oxidase (complex IV), nitrosothiols inactivate complex I, while peroxynitrite 

(ONOO¯) has multiple effects on different respiratory complexes and can activate the 

permeability transition pore, which may trigger apoptosis (Brown 2001). In physiological 

concentrations, the effects on complex IV are probably most important and provide a mechanism 

by which nitric oxide may inhibit or regulate oxygen consumption. It is possible that the local 

generation of nitric oxide within or close to mitochondria may tonically inhibit oxygen 

consumption. 

Tyrosine 3- mono-oxygenase (Ywhab) is a member of the 14-3-3 protein family. Its functions 

are not well known but are thought to mediate signal transduction by binding to phosphoserine-

containing proteins and also play a role in cell cycle regulation (Cavet et al., 2003). 

Integrin beta 1 (Itgb1) belongs to beta 1-integrin family of cell-surface receptors. These 

receptors mediate cell-matrix interactions that play a critical role in tissue development and 

tissue remodeling after injury (Juliano et al., 1994). The integrins are a major family of cell 
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surface receptors that mediate attachment to the ECM (Ruoslahti et al., 1995; Clark et al., 1995). 

They are heterodimeric transmembrane glycoproteins that consist of various combinations of 

noncovalently bound α- and β-chains. Sixteen α and 8 β-chains have been described to date. The 

α-subunit largely determines substrate specificity with the ECM proteins (Venstrom and 

Reichardt et al., 1995), while the intracytoplasmic tail of the β-chain is mainly responsible for its 

interaction with the cell cytoskeleton (Yamada et al., 1991). The β1-subunit contains sites of 

tyrosine phosphorylation in the cytoplasmic domain, suggesting they have a potential role in 

signal transduction (Juliano et al., 1994; Clark et al., 1995). The normal mesangium possesses α1 

β1, α2 β1, α3 β1, α5 β1, α8 β1, and αv β3 integrins (Gauer et al., 1997 ; Cosio et al., 1990 ; Cosio 

1992). Mesangial cell survival and death may be regulated by ECM via β1-integrin molecules of 

cell surface receptors (Sugiyama et al., 1998). At present, it remains unclear which of β1-

containing integrins promote mesangial cell survival. Distinct β1-integrins can mediate cell 

survival in mammary epithelial cells and Chinese hamster ovary cells, whereas αv β3 integrin can 

mediate the survival of vascular endothelial cells and melanoma cell survival in three-

dimensional collagen (Zhang et al., 1995; Brooks et al., 1994). The integrin required for cell 

survival and integrin-dependent survival signals may be cell type specific. Changes in integrin 

expression in glomerular disease have been reported (Kagami et al., 1993). Several investigators 

have shown that the expression of β1-integrin decreases within areas of glomerular scarring in 

biopsies of patients with IgA nephropathy (Hillis et al., 1995) and rapidly progressive 

glomerulonephritis (Baraldi et al., 1995). These studies conclude that there was no evidence of 

an altered repertoire or increased intensity of staining for integrin receptors on mesangial cells or 

on apparently preserved glomerular capillary tufts. In contrast, the expression of several β1 

integrins was enhanced on damaged tubules, areas of tubulointerstitial scarring and sclerotic 

glomerular tufts. Our observation that Itgb1 is upregulated by NO supports the view that NO 

might prove to be a potential therapeutic molecule in treating glomerular fibrosis.  
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5.4. Genes downregulated by NO – a link to fibrosis 

Among the identified downregulated targets of NO were both the structural genes of Type I 

collagen – COL1A1 and COL1A2, COL4A2, OAT, TSP-1, biglycan, and CTGF. 

Type I collagen is a major structural component of the ECM, which is synthesized by fibroblasts 

and vascular smooth muscle cells and in the kidney by glomerular mesangial cells. Type I 

collagen is considered to be centrally involved in progressive glomerular ECM accumulation and 

is associated with chronic sclerotic processes (Ortega-Velazquez et al., 2004).  

Ornithine aminotransferase (OAT) is an enzyme of the alternative metabolic pathway for L-

arginine and generates proline (Burcham et al., 1988). It has been demonstrated that L-arginine 

metabolism through the arginase pathway is also increased in experimental acute nephritis (Cook 

et al., 1994; Jansen et al., 1992) and may play a role in matrix accumulation (Jansen et al., 1992). 

The metabolites of arginine produced through the activation of OAT are associated with cell 

proliferation and tissue repair (Smith and Phang 1978). In addition, Proline is a precursor of 

collagen, which is one of the major extracellular matrix proteins present in the mesangium of 

sclerotic glomeruli (Striker et al., 1984). A study published by Koga (Koga et al., 2003) 

demonstrated that NO generated by the induction of iNOS did not change the mRNA levels of 

OAT substantially in retinal pigment epithelial cells in culture. Our finding that OAT is 

downregulated by GSNO in mesangial cells is a unique observation made so far. Inhibiting the 

transcription or the enzymatic activity of OAT by NO in the activated arginase metabolic 

pathway may have substantial therapeutic potential in reducing extracellular matrix accumulation 

during the course of glomerular inflammation.  

Thrombospondin-1 (TSP-1) has been shown to be an important activator of TGF β in vivo 

(Crawford et al., 1998). TSP1 is involved in numerous biological functions, probably attributable 

to its multiple domains and cell-surface receptors as well as its ability to act as either a soluble or 

matrix-bound factor. In our studies, treatment of MCs with high glucose and TGF β resulted in 

an increased basal level of TSP-1 which was strongly downregulated by NO stimulation. This 

observation is consistent with the results from the study published by Wang (Wang et al., 2002) 

in rat MC. Our results show that different NO donors in a dose and concentration-dependent 
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manner prevent increases in steady state TSP-1 mRNA and result in a decrease in TSP-1 protein 

levels in human MCs, suggesting that NO signaling might affect high glucose and TGF-β –

mediated TSP1 gene expression either by changing mRNA stability or regulating gene 

transcription. 

The observation that biglycan (BGN) is also a target of exogenous and endogenous NO in 

human MCs is consistent with studies by Schaefer (Schaefer et al., 2003), wherein they report 

that BGN is a NO-regulated gene in rat MCs both in vitro and in vivo and that it is involved in 

the modulation of the extent of adhesion, proliferation and survival of MCs. Biglycan is a 

member of small, leucine-rich repeat glycoproteins/proteoglycans (SLRPs), which are primarily 

considered to play a role as organizers of extracellular matrices (Hocking et al., 1998). 

Overexpression of BGN is found in advanced stages of glomerulosclerosis (Davies, 1995). BGN 

is capable of inhibiting the proliferation of MCs induced by PDGF-B, a major mitogenic growth 

factor frequently involved in glomerular disease (Blom et al., 2001; Schaefer et al., 2003). 

In our study with Connective tissue growth factor (CTGF), we observed a dose and time 

dependent decrease in the mRNA and protein expression with different NO donors. 

Downregulation of CTGF mRNA was also evident when endogenous NO release was stimulated 

by the activation of iNOS with INFγ and BH4 in human MCs. These data are consistent with the 

observations made by Keil (Keil et al., 2002) in rat MC. CTGF, a secreted protein (Kireeva et al., 

1997)  is a member of the CCN (CTGF, Cyr61, and Nov) family of proteins that promote 

angiogenesis, cell migration, and cell adhesion (Fan et al., 2000; Ivkovic et al., 2003). CTGF 

upregulation is an important factor in the pathogenesis of mesangial matrix accumulation and 

progressive glomerulosclerosis, acting downstream of TGF-β (Riser et al., 2000). CTGF is 

induced by TGF-β in fibroblasts and acts synergistically with TGF-β to promote sustained 

fibrosis (Leask et al., 2002). The induction of fibrosis by high glucose is thought to be mediated 

at least in part by TGF- β. However, increased CTGF expression has also been observed in 

cultured mesangial cells under high glucose conditions (Wahab et al., 2001).  

Our promoter studies using a CTGF-SEAP reporter construct demonstrate that NO acts at the 

transcriptional level to downregulate high glucose and TGF-β –mediated CTGF gene expression 

in both rat as well as human MCs. These results were also supported by mRNA half-life 
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experiments where NO had no effect on CTGF mRNA stability. CTGF expression has been 

shown to be differentially regulated depending on the cell type and condition. 

 

5.5. Activation of iNOS and the effects of endogenously generated 

NO in mesangial cells  
In nitrite assay experiments with human or rat MCs, we recorded a basal level of 2 ± 0.45 µM of 

nitrite content in the medium and an increase to 7 ± 0.8 µM of nitrite in INFγ + BH4 or 15  ± 

1.45 µM in cytokine mix treated MCs. This observation is consistent with the observation made 

by Prabhakar, 2000 in murine MCs. The amount of endogenously generated NO by the 

activation of iNOS after cytokine stimulation was sufficient to downregulate mRNA expression 

of type I collagen – COL1A1 and COL1A2, COL4A2, Biglycan, CTGF and TSP-1. Northern 

blot analysis demonstrated that CTGF and TSP-1 were downregulated by endogenously 

generated NO in response to iNOS activation by INFγ alone or INFγ in combination with 

tetrahydrobiopterin (BH4) – a co-factor for iNOS in human MCs. Treatment with a selective 

iNOS inhibitor, 1400W, rescued the downregulatory effects of both INFγ and the combination of 

INFγ+BH4 indicating that the downregulatory effects on CTGF and TSP-1 mRNA expression 

are NO- specific (Fig. 21a – Northern blot). However, in a real time PCR assay, INFγ alone did 

not downregulate COL1A1, COL1A2, COL4A2, and Biglycan expression significantly. The 

activation of iNOS by INFγ alone or INFγ in combination with tetrahydrobiopterin resulted in 

the induction of iNOS at both mRNA and protein levels. Moreover, INFγ treatment alone 

resulted in less iNOS mRNA and protein activation for 20 hours than did the combination of 

INFγ+BH4. Co-stimulation with 1400W resulted in the inhibition of mRNA, protein and nitrite 

levels in INFγ+BH4-treated cells. The activation of iNOS in rat MCs was achieved with a 

combination of bacterial endotoxin (LPS), TNF-α and IL-1β. This treatment resulted in the 

downregulation of COL1A2 mRNA which was rescued by the treatment of 1400W. 1400W 

significantly reduced iNOS mRNA levels over an extended priod of time. INFγ alone was able to 

induce iNOS expression at both mRNA and protein levels but did not generate significant levels 

of nitrite above base levels. INF-γ  is a known activator of iNOS and acts through well defined 

pathways to activate iNOS. INF-γ  has the potential to direct inflammatory responses by 

inhibiting production of pro-inflammatory IL-1 and IL-8, by upregulating the production of 
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cytokine antagonists such as IL-1Ra and IL-18BP, by inducing expression of members of the 

SOCS family of regulatory proteins, and by induction of apoptosis in leukocytes and local 

resident cells. These anti-inflammatory properties of the principally pro-inflammatory cytokine 

INF-γ  may be essential in order to fine-tune and control the extent of inflammatory conditions 

(Mühl and Pfeilschifter 2003). Our results indicate that the anti-inflammatory properties of INF-γ 

can also be attributed to its potential to activate the production of endogenous NO by stimulating 

the activation of iNOS. We used BH4 to stimulate human MCs in combination with INFγ 

because BH4 has been shown to contribute to cytokine induction of iNOS expression in human 

mesangial cells through the stabilization of iNOS mRNA (Saura et al., 1996). In addition, BH4 

availability has been demonstrated to be a limiting factor for iNOS activity in many cell types 

(Werner-Felmayer et al., 1990; Gross and Levi 1992; Schoedon et al., 1993). The intracellular 

levels of BH4 are determined by the activity of two different biosynthetic pathways: the de novo 

synthesis from GTP and the regeneration of BH4 from dihydropterins through a pterin salvage 

pathway (Nichol et al., 1985). The first enzyme in the de novo pathway is GTP cyclohydrolase I. 

Cytokines have been reported to stimulate potently the de novo synthesis of BH4 in several cell 

types through the induction of GTP cyclohydrolase I (Werner-Felmayer et al., 1993; Hattori and 

Gross 1993; Nakayama et al., 1994). In fact, expression of GTP cyclohydrolase I and iNOS 

appears to be regulated coordinately (Hattori and Gross 1993; Werner et al., 1993). This 

phenomenon has been interpreted previously as a mechanism to ensure an adequate supply of 

BH4 for the activity of cytokine-induced NOS (Werner-Felmayer et al., 1990; Gross and Levi 

1992; Schoedon et al., 1993; Werner et al., 1993). In addition to its catalytic role, BH4 has been 

reported to protect NOS from feedback inhibition of NO in vitro (Mühl and Pfeilschifter 1994; 

Hyun et al., 1995), and to stabilize the structure of both the macrophage and the neuronal NOS 

proteins (Giovanelli et al., 1991; Baek et al., 1993). In experiments, performed to determine the 

effects of various iNOS inhibitors on nitrite levels in human MCs treated with INFγ alone or 

INFγ+BH4, we observed a significant decrease in nitrite accumulation in the medium of cells 

simultaneously treated with 1400W and L-NIL (selective inhibitors of iNOS) and L-NMMA – a 

non selective inhibitor of iNOS. The nitrite levels after treatment with 1400W and L-NIL were 

decreased below the basal nitrite levels observed in unstimulated cells. However, L-NMMA 

treatment resulted in an increased nitrite production as compared to untreated control cells but 

was significantly decreased as compared to nitrite levels in cells treated with INFγ+BH4. This 
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observation that L-NMMA induces nitrite production in the cells is in agreement with the data 

published by (Hong et al., 2005) in RAW 264.7 Cells and by (Nicolson et al., 1993) in human 

mesangial cells. The investigators argue that the increase in nitrite above base levels may be due 

to the decomposition of the arginine analogue in the culture medium over time. We stimulated 

human MCs with 30mM glucose prior to cytokine stimulation to augment the effects of INFγ 

and BH4 on iNOS activation. Exposure of murine mesangial cells and macrophages to high 

glucose in presence of INFγ and LPS has been shown to enhance stimulation of iNOS message 

and iNOS activity (Sharma et al., 1995). High glucose has also been shown to enhance growth 

factor-stimulated NO production by cultured rat MCs (Trachtman et al., 1998). The investigators 

have suggested that high glucose effect can be protein kinase C (PKC)-mediated.  

5.6 Transcriptional Regulation of Gene Expression by NO 

Regulation of signal transduction and gene expression is a multifaceted process involving 

ligands, receptors, and second messengers that trigger cascades of protein kinases and 

phosphatases and propagate the signal to the nucleus to alter gene expression. NO is one of the 

powerful intra- and extracellular messenger that mediates diverse signaling pathways in target 

cells and is known to play an important role in many physiological processes. A classical 

example for the signaling effects of NO is the relaxation of vascular smooth muscle cells when 

exposed to NO produced by adjacent endothelial cells. This effect, which was the first function 

of NO to be discovered (Hibbs and Bastian, 1999), is due to the activation of the soluble isoform 

of guanylyl cyclase (sGC), the formation of cGMP and the subsequent activation of cGMP-

dependent ion channels and kinases (Zhao et al., 1999; Bellamy et al., 2000). The signaling 

cascades activated by NO operate in part through the redox-sensitive regulation of transcription 

factors (Bogdan C, 2001; Pfeilschifter et al., 2001 “a”; Marshall et al., 2002). Cross-

communication with other pro-oxidant or antioxidant mediators will critically influence the fate 

of a cell under pathologic conditions when inducible NOS is expressed. Once primed and 

activated by inflammatory cytokines such as INF-γ, IL-1β and TNF-α, most cells, including renal 

mesangial cells, co-produce NO and O2
- also known as reactive oxygen species ( ROS). The 

interaction of NO and O2
- is thought to be highly relevant to the regulation of gene expression 

(Pfeilschifter et al., 2001). A number of NO-regulated genes are also targeted by ROS 

(Pfeilschifter et al., 2001). Whereas certain genes are regulated in a coordinated manner by NO 
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and O2
- (Mühl and Pfeilschifter, 1995; Beck et al., 1998), others are affected in a contrasting 

manner (Eberhardt et al., 2000 “b”). The simultaneous generation of NO by many cells exposed 

to an inflammatory environment and the opposite effects of both radicals on certain genes may 

provide a genetic switch-like mechanism, with a subtle change in the O2
-/NO ratio resulting in 

dramatic changes in enzyme expression. A prominent group of target genes regulated in this way 

by NO and ROS are the extracellular matrix proteins and their metabolizing enzymes the matrix 

metalloproteinases (MMP) and plasminogen activators (PA), such as MMP-9 and t-PA 

(Eberhardt et al., 2000 “b” and 2001), and their endogenous inhibitors like tissue inhibitors of 

matrix metalloproteinase-1 and plasminogen activator inhibitor-1, respectively (Eberhardt et al., 

2001., Bouchie et al., 1998). In the kidney, accumulation of extracellular matrix is often a 

hallmark of chronic disease, eventually leading to the development of glomerulosclerosis. In this 

context, the coordinated expression of proteases and their inhibitors by inflammatory cytokines 

and NO will allow the fine-tuned regulation of tissue proteolysis and protect against 

overwhelming tissue destruction. NO also modulates the expression of major matrix components 

such as collagen, fibronectin, and laminin (Bouchie et al., 1998; Craven et al., 1997), which may 

also be important for tissue remodeling in chronic inflammatory kidney diseases. Recently, NO 

was found to inhibit the expression of another matrix protein, secreted protein acidic and rich in 

cysteine (SPARC; also known as BM-40 or osteonectin) (Walpen et al., 2000). The highly 

glycosylated SPARC protein has a variety of biologic activities, and its action as a scavenger of 

PDGF may be relevant in the course of glomerulonephritis. By modulating SPARC expression, 

NO may subsequently affect mesangial cell proliferation in the course of glomerular 

inflammation. In addition, NO up- or downregulates a heterogeneous set of gene products 

including protective mediators, proinflammatory mediators, chemokines and cytokines, adhesion 

molecules, growth factors, hormones, receptors, and signaling devices (for a review, see 

(Pfeilschifter et al., 2003)). Many genes targeted by NO share roles in common physiologic and 

pathophysiologic processes. NO might affect gene transcription by interfering with transcription 

factor translocation and binding to their cognate sequences on the promoter. A characteristic 

feature of many transcription factors is their remarkable redox sensitivity. NO has been shown to 

inhibit the DNA-binding activity of NF-kB through S-nitrosylation of a crucial cysteine residue 

within the p50 subunit (Matthews et al., 1996). Interestingly, in a recent study, NO was shown to 

inhibit MMP-2 expression in endothelial cells via the induction of transcription factor ATF3 
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(Chen and Wang 2004). Previous studies from our group have shown that NO inhibits DNA 

binding of transcription factor Egr-1 (Rupprecht et al., 2000). A potential mechanism by which 

NO inhibits DNA binding of Egr-1 is by interfering with the zinc-finger domains that establish 

the DNA contacts. Our present data that NO regulates CTGF gene expression at transcriptional 

level reveals a direct role for NO in gene regulation. Data from different groups discussed above 

strengthens the existing view that NO employs diverse signaling pathways or may act directly to 

regulate gene transcription however, an NO-responsive DNA element in a prokaryotic or a 

eukaryotic promoter has yet to be identified.  

5.7. CTGF as a candidate target gene for therapeutic intervention in 

diabetic nephropathy 

In the diabetic environment, the balance between the signaling activities of different growth 

factors involved in renal matrix homeostasis is shifted towards a pro-fibrotic state. This leads to 

matrix accumulation and fibrosis, and eventually contributes to the development of diabetic 

nephropathy. The special role CTGF appears to play in this process most probably relates to its 

capacity to modulate the signaling activity of other growth factors critically involved in renal 

response to injury. More specifically, the CTGF-induced stimulation of IGF-I and TGF-ß 

signaling, together with a decrease in BMP and VEGF signaling, might contribute significantly 

to the diabetes-related response to injury and adverse remodeling of the diabetic kidney. 

Restoring the balance of these growth factor signaling disturbances in the development of 

diabetic nephropathy by targeting CTGF might be more attractive than addressing individual 

growth factor signaling pathways. The first studies that have been performed so far suggest 

beneficial effects of CTGF inhibition in processes leading to renal fibrosis and mesangial matrix 

accumulation (Wahab et al., 2001); GBM thickening, glomerular hyperfiltration and renal 

hypertrophy (Roestenberg et 2004 “a”; Flyvbjerg et al., 2004); albuminuria and declining renal 

function (Gilbert et al., 2003; Roestenberg et al., 2004 “a”; Andersen et al., 2004; van 

Nieuwenhoven et al., 2004); and Interstitial fibrosis (Lam et al., 2003; Yokoi et al., 2004 “a”). 

To assess the possible suitability of CTGF as a target for therapeutic intervention in diabetic 

nephropathy, we need more extended studies with NO, CTGF-neutralizing antibodies and 

antisense ODNs, and studies in genetic animal models in which CTGF expression can be 
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conditionally disrupted. Ultimately, such studies will reveal whether CTGF is indeed more than 

just another factor in glomerular kidney diseases, and qualifies as a suitable target for therapeutic 

intervention.  

5.8. A novel role for NO in glomerular inflammation and fibrosis 

In conclusion, we propose a model describing a novel role for NO in glomerular inflammation 

and fibrosis on the basis of our findings. High glucose and TGF-β upregulation results in the 

inhibition of intracellular NO necessary to counteract the accumulation of matricellular gene 

products leading to fibrosis. Application of NO donors or endogenous generation of NO as a 

result of iNOS activation by interferon gamma (INFγ) and tretrahydrobiopterin (BH4) may result 

in a partly direct interference with the accumulation of extracellular matrix components thus 

moderating the course of glomerular fibrosis (Fig. 30). 

These findings provide evidence that NO is capable of down-regulating COL1A2, COL4A2, 

BGN, CTGF and TSP-1 gene expression particularly in human MCs. Using a series of NO-

donors we could show that in the case of CTGF this regulation occurred at the transcriptional 

level in a time- and concentration-dependent manner. These data further demonstrate that the 

downregulation of gene expression by endogenously generated NO was not caused by a direct 

cytokine effect, since 1400W, a selective inhibitor of iNOS, abrogated the NO effect. Moreover, 

we demonstrated that this NO- mediated downregulation is transcriptional in nature, however, 

the exact mechanism and NO- responsive cis- regulatory elements in the CTGF promoter are yet 

to be identified. Previous work from our group has indicated that Egr-1 is regulated by NO at the 

transcriptional level (Rupprecht et al., 2000) and that Egr-1 might be important for mesangial 

cell proliferation and matrix accumulation. Theses results together with previous observations 

from our laboratory that NO has an antiproliferative effect on MCs, suggest an important role for 

NO in regulating the expression of profibrotic and promitotic genes. Moreover, treatment 

strategies employing optimal intervention with exogenous NO donors might prove beneficial in 

certain diseases conditions with glomerular fibrosis. 
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Figure 30 Model for the direct role of NO- regulation of matricellular genes 
linked to glomerular fibrosis.  

 

 

 

 



 
 

 91  

Summary 

By means of their proliferative and secretory potential glomerular mesangial cells are thought to 

be important mediators of glomerular inflammation and fibrosis. Recent studies have established 

a direct role for NO in the regulation of gene expression in different cell types including 

mesangial cells. Representational difference analysis was used to investigate changes in gene 

expression elicited by the treatment of S-Nitroso-L-glutathione in rat mesangial cells. We 

identified 7 upregulated and 11 downregulated genes. Four out of 11 downregulated genes, 

connective tissue growth factor, thrombospondin-1, collagen type I alpha 1 and collagen type I 

alpha 2, are matricellular genes linked to inflammation and fibrosis of different organs including 

the kidney. Results were verified by using Northern blot analysis, quantitative real time PCR and 

protein analysis methods in human mesangial cells treated with a series of NO donors. We 

validated our findings by inducing endogenous NO production by cytokine stimulation. Real 

time PCR analysis showed that two additional matrix related genes, biglycan and collagen type 

IV alpha 2 are also downregulated by NO. Connective tissue growth factor promoter studies in 

mesangial cells demonstrated that NO acts at the transcriptional level to suppress gene 

expression. These results reveal a complex role of NO in regulating gene expression in 

mesangial cells and suggest an antifibrotic potential for NO.  
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Zusammenfassung 

Glomeruläre Mesangialzellen gelten wegen ihres proliferativen und sekretorischen Potentials als 

bedeutende Mediatoren glomerulärer Entzündungen und fibrotischer Erkrankungen. In neueren 

Studien wurde für Nitric oxide (NO) eine direkte Beteiligung an der Regulation der 

Genexpression in unterschiedlichen Zelltypen, darunter auch Mesangialzellen, nachgewiesen. 

Zur Untersuchung der von S-Nitroso-L-Glutathion induzierten Veränderungen der 

Genexpression in Ratten-Mesangialzellen wurde die Representational-Difference-Alalysis-

Methode eingesetzt. Damit konnten 7 hochregulierte und 11 herabregulierte Gene identifiziert 

werden. 4 dieser 11 herabregulierten Gene sind Zellmatrix-Gene, die an Entzüdungsprozessen 

und fibrotischen Erkrankungen in unterschiedlichen Organen, einschließlich Niere, beteiligt sind. 

Die Ergebnisse wurden mit Northern-Blot-Analyse, Quantitativer Real-Time-PCR sowie 

Protein-Analyse-Methoden in humanen Mesangialzellen unter Anwendung einer Reihe von NO-

Donoren erfolgreich überprüft. Diese Daten konnten ebenfalls bestätigt werden, wenn die 

endogene NO-Produktion durch Cytokin-Gabe induziert wurde. Eine Real-Time-PCR-Analyse 

ergab für 2 weitere Matrix-assoziierte Gene, Biglycan und Collagen-Type-IV-alpha-2, ebenfalls 

eine NO-induzierte Herabregulation. Wie in Connective-Tissue-Growth-Factor-Promoter-

Reporter-Gen Studien gezeigt, führt NO auf Transkriptionsebene zur Suppression der 

Genexpression. Diese Ergebnisse weisen NO eine komplexe Rolle in der Regulation der 

Genexpression in Mesangialzellen zu und lassen ein anti-fibrotisches Potential für NO vermuten. 
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