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Strong measure zero and meager-additive

sets through the prism of fractal measures

Ondřej Zindulka

In memory of Bohuslav Balcar

Abstract. We develop a theory of sharp measure zero sets that parallels Borel’s
strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay
theorem, namely that a set of reals has sharp measure zero if and only if it is
meager-additive. Some consequences: A subset of 2ω is meager-additive if and
only if it is E-additive; if f : 2ω → 2ω is continuous and X is meager-additive,
then so is f(X).

Keywords: meager-additive; E-additive; strong measure zero; sharp measure zero;
Hausdorff dimension; Hausdorff measure

Classification: 03E05, 03E20, 28A78

1. Introduction

99 years ago É. Borel in [5] conceived the notion of strong measure zero: by
his definition, a metric space X has strong measure zero (thereinafter Smz) if
for any sequence 〈εn〉 of positive numbers there is a cover {Un} of X such that

diamUn 6 εn for all n. In the same paper, É. Borel conjectured that every Smz

set of reals was countable. This statement known as Borel conjecture attracted
a lot of attention.

Borel conjecture. It is well-known that Borel conjecture is independent of
Zermelo–Fraenkel set theory with axiom of choice (ZFC), the usual axioms of
set theory. The proof of the consistency of its failure was settled in 1940 by
W. Sierpiński, see [30], who proved in 1928 that the continuum hypothesis yields
a counterexample, namely the Luzin set, and K. Gödel, who announced in 1938,
see [14], and published in 1940, see [15], the proof of the consistency of the con-
tinuum hypothesis.

The consistency of the Borel conjecture remained open until 1976 when R. Laver
proved in his ground-breaking paper [22] Borel conjecture to be indeed consistent
with ZFC.
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To complete the picture, T. J. Carlson in [6] proved in 1993 that the Borel
conjecture implies that every separable Smz metric space is countable.

Over time numerous characterizations of strong measure zero were discovered.
We are going to focus on (besides the definition itself) three such characterizations.

Hausdorff dimension. One way to characterize Smz is via Hausdorff dimension:
It is almost obvious that a Smz space has Hausdorff dimension zero. Since Smz

is preserved by uniformly continuous mappings, it follows that any uniformly
continuous image of a Smz space has Hausdorff dimension zero. It is not difficult
to prove that the latter property actually characterizes Smz. The essence of this
characterization can be traced back to A. S. Besicovitch’s papers [3], [4].

Galvin’s game. A characterization in terms of infinite games was recently pub-
lished by F. Galvin in [12] who attributes it to F. Galvin, J. Mycielski and
R.M. Solovay. Consider the following game: the playground is a subset X of
a σ-compact metric space. At the nth inning, Player I chooses εn > 0 and
Player II responds with a set Un ⊆ X such that diamUn 6 εn. Player II wins if
the sets Un form a cover of X , otherwise Player I wins. Denote this game G(X).

Theorem 1.1 ([12]). Let X be a subset of a σ-compact metric space. The set X
is Smz if and only if Player I does not have a winning strategy in the game G(X).

Galvin–Mycielski–Solovay theorem. Confirming Prikry’s conjecture, F. Gal-
vin, J. Mycielski and R.M. Solovay in [11] proved a rather surprising character-
ization of Smz subsets of the real line. Recall that for A,B ⊆ R, we define
A+B = {x+ y : x ∈ A, y ∈ B} (and likewise for other groups).

Theorem 1.2 ([11]). A set X ⊆ R is Smz if and only if X + M 6= R for each

meager set M ⊆ R.

We will refer to this result as the Galvin–Mycielski–Solovay theorem. Recently
M. Kysiak in [21], D.H. Fremlin in [9] and W. Wohofsky in [36] showed that
an analogous theorem holds for all σ-compact metrizable groups. The theorem
was further investigated by M. Hrušák, W. Wohofsky and O. Zindulka in [18]
and M. Hrušák and J. Zapletal in [19] who found, roughly speaking, that under
the continuum hypothesis the Galvin–Mycielski–Solovay theorem does not extend
beyond σ-compact metrizable groups.

In summary, we thus have four strikingly different descriptions of Smz:

◦ “combinatorial”—Borel’s definition;
◦ “fractal”—by Hausdorff dimension of images;
◦ “game-theoretic”—by Galvin’s game (restriction: subsets of σ-compact
spaces);

◦ “algebraic”— by the Galvin–Mycielski–Solovay theorem (restriction: sub-
sets of σ-compact metrizable groups).
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Sharp measure zero. Consider the characterization of Smz by Hausdorff di-
mension: X is Smz if and only if dimH f(X) = 0 for every uniformly continuous
mapping f . One may, just out of curiosity, ask what happens when the Hausdorff
dimension is replaced with some other fractal dimension. Here we will consider
the so called upper Hausdorff dimension dimH introduced in [39]. We will say

a metric space X has sharp measure zero (thereinafter Smz
♯) if dimH f(X) = 0

for every uniformly continuous mapping f .
It turns out that Smz

♯ sets can be characterized by a property very much like
Borel’s definition of Smz, and that properties of Smz

♯ sets nicely parallel those of
Smz sets. In particular, Smz

♯ is characterized by a slight modification of Galvin’s
game.

One of the highlights of Section 3 devoted to Smz
♯ is the following improvement

of a theorem of M. Scheepers, see [28, Theorem 1]: a product of a Smz set and

a Smz
♯ set is Smz.

Meager-additive sets. The Cantor set 2ω with the coordinatewise addition
modulo 2 is a second countable compact topological group.

Consider the following strengthening of the algebraic property of the Galvin–
Mycielski–Solovay theorem: say that a set X ⊆ 2ω is meager-additive if X+M is
meager for every meager set M ⊆ 2ω. The notion generalizes to other topological
groups, and in particular to finite cartesian powers of 2ω and R, in an obvious
way.

Meager-additive sets in 2ω have received a lot of attention. They were inves-
tigated by many, most notably by T. Bartoszyński and H. Judah in [1], J. Paw-
likowski in [26] and S. Shelah in [29]. Combinatorial properties of meager-additive
sets described by J. Pawlikowski in [26] and S. Shelah in [29] allow to prove a rather
surprising theorem that is one of the summits of the present paper.

Theorem 1.3. A set X ⊆ 2ω is Smz
♯ if and only if it is meager-additive.

In summary, we thus have four descriptions of Smz
♯ that perfectly parallel

those of Smz:

◦ “combinatorial”—a Borel-like definition, cf. Theorem 3.11 (and Defini-
tion 3.8);

◦ “fractal”—by upper Hausdorff measures, cf. Theorem 3.7;
◦ “game-theoretic”—by a Galvin-like game, this time without any restric-
tion, cf. Theorem 4.2;

◦ “algebraic”—by meager-additive sets (restriction: subsets of 2ω or Eu-
clidean spaces and their finite powers); cf. Corollary 5.10 and Theorem 6.4.

Consequences include, for instance:

◦ meager-additive sets are preserved by continuous mappings f : 2ω → 2ω;
◦ a product of a Smz and a meager-additive set is Smz;
◦ meager-additive sets are universally meager (cf. Proposition 6.11).

Besides meager-additive sets, we also consider the following notion: a set
X ⊆ 2ω is called E-additive if for every Fσ-set E ⊆ 2ω of (Haar) measure zero
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the set X + E is contained in an Fσ-set of (Haar) measure zero. We prove the
following:

Theorem 1.4. A set X ⊆ 2ω is meager-additive if and only if it is E-additive.
This theorem answers a question of A. Nowik and T. Weiss, see [25].
Some common notation used throughout the paper includes |A| for the car-

dinality of a set A, ω for the set of natural numbers, [ω]ω for the collection of
infinite subsets of ω, ωω for the family of all sequences of natural numbers, and
ω↑ω for the family of nondecreasing unbounded sequences of natural numbers.

2. Strong measure zero via Hausdorff measure

In this section we establish a few characterizations of strong measure zero
in terms of Hausdorff measures and dimensions based on a classical Besicovitch
result, see [3], [4], and derive some consequences.

Hausdorff measure. Before getting any further we need to review Hausdorff
measure and dimension. We set up the necessary definitions and recall relevant
facts.

Let X be a metric space. If A ⊆ X , then diamA denotes the diameter of A.
A closed ball of radius r centered at x is denoted by B(x, r).

A nondecreasing, right-continuous function h : [0,∞) → [0,∞) such as that
h(0) = 0 and h(r) > 0 if r > 0 is called a gauge. The following is the common
ordering of gauges, cf. [27]:

g ≺ h
def≡ lim

r→0+

h(r)

g(r)
= 0.

In the case when h(r) = rs for some s > 0 we write g ≺ s instead of g ≺ h.
Notice that for any sequence 〈hn〉 of gauges there is a gauge h such that h ≺ hn

for all n.
If δ > 0, a cover A of a set E ⊆ X is termed a δ-fine cover if diamA 6 δ for

all A ∈ A. If h is a gauge, the h-dimensional Hausdorff measure Hh(E) of a set
E ⊆ X is defined thus: For each δ > 0 set

Hh
δ (E) = inf

{∑

n∈ω

h(diamEn) : {En} is a countable δ-fine cover of E

}

and put Hh(E) = supδ>0 Hh
δ (E).

In the common case when h(r) = rs for some s > 0, we write Hs for Hh, and
the same licence is used for other measures and set functions arising from gauges.

Properties of Hausdorff measures are well-known. The following, including the
two lemmas, can be found e.g., in [27]. The restriction of Hh to Borel sets is
a Gδ-regular Borel measure. Recall that a sequence of sets 〈En : n ∈ ω〉 is termed
a λ-cover of E ⊆ X if every point of E is contained in infinitely many En’s.
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Lemma 2.1. The Hausdorff measure Hh(E) = 0 if and only if E admits a count-

able λ-cover 〈En〉 such that
∑

n∈ω h(diamEn) < ∞.

Lemma 2.2. (i) If Hh(X) < ∞ and h ≺ g, then Hg(X) = 0.
(ii) If Hh(X) = 0, then there is g ≺ h such that Hg(X) = 0.

We will also need a cartesian product inequality. Given two metric spaces X
and Y with respective metrics dX and dY , provide the cartesian product X × Y
with the maximum metric

(1) d((x1, y1), (x2, y2)) = max(dX(x1, x2), dY (y1, y2)).

A gauge h satisfies the doubling condition or h is doubling if

lim
r→0

h(2r)

h(r)
< ∞.

Lemma 2.3 ([20], [17]). Let X,Y be metric spaces, g a gauge and h a doubling

gauge. Then Hh(X)Hg(Y ) 6 Hhg(X × Y ).

The following lemma on Lipschitz images and its counterpart for uniformly
continuous mappings are well-known, see, e.g., [27, Theorem 29].

Lemma 2.4. Let f : (X, dX) → (Y, dY ) be a mapping.

(i) If f is uniformly continuous and a gauge g is its modulus, i.e.,

(2) dY (f(x), f(y)) 6 g(dX(x, y)), x, y ∈ X,

then Hh(f(X)) 6 Hh◦g(X) for any gauge h.
(ii) If f is Lipschitz with Lipschitz constant L, then Hs(f(X)) 6 LsHs(X) for

any s > 0.

Recall that the Hausdorff dimension of X is defined by

dimH X = sup{s > 0: Hs(X) = ∞} = inf{s > 0: Hs(X) = 0}.

Properties of Hausdorff dimension are well-known. In particular, dimH X = 0 if
X is countable; and it follows from Lemma 2.4 (ii) that if f : X → Y is Lipschitz,
then dimH f(X) 6 dimHX .

Theorem 2.5. Let X be a metric space. The following are equivalent.

(i) X is Smz;

(ii) Hh(X) = 0 for each gauge h;
(iii) dimH f(X) = 0 for each uniformly continuous mapping f on X ;

(iv) dimH(X, ̺) = 0 for each uniformly equivalent metric ̺ on X .

Proof: The equivalence of (i) and (ii) is due to A. S. Besicovitch, see [3], [4]. We
include an outline of the argument.
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(i) ⇒ (ii): Let h be a gauge. For each δ > 0 pick 〈εn〉 ∈ (0,∞)ω such that
h(εn) < δ2−n and let 〈Un〉 be an 〈εn〉-fine cover of X . Then

∑
h(diamUn) < δ,

which is enough.
(ii) ⇒ (i): Let 〈εn〉 ∈ (0,∞)ω. Pick a gauge h such that h(εn) > 1/n. There

is a countable cover {Un} such that
∑

h(diamUn) < 1. Pick δn > diamUn such
that

∑
h(δn) < 1. Since δn > 0, rearranging the sequence we may suppose that

δn decrease. Therefore nh(δn) 6
∑

i<n h(δn) < 1. It follows that h(δn) < 1/n <
h(εn) and consequently δn < εn. Hence {Un} is an 〈εn〉-fine cover of X .

(ii) ⇒ (iii): Let s > 0 be arbitrary. Let f : X → Y be uniformly continuous
and let g be the modulus of f . Define h(x) = (g(x))s. By (ii) Hh(X) = 0 and
thus Lemma 2.4 (i) yields Hs(f(X)) 6 Hh(X) = 0. Since this holds for all s > 0,
we have dimH f(X) = 0.

(iii) ⇒ (iv): This is trivial.
(iv) ⇒ (ii): Denote by d the metric of X . Let h be a gauge. Choose a strictly

increasing, convex (and in particular subadditive) gauge g such that g ≺ h. The
properties of g ensure that ̺(x, y) = g(d(x, y)) is a uniformly equivalent metric
on X . The identity map idX : (X, ̺) → (X, d) is of course uniformly continuous
and its modulus is g−1, the inverse of g. Hence by Lemma 2.4 (i) Hh(X, d) 6

Hh◦g−1

(X, ̺). Since H1(X, ̺) = 0 by assumption and h ◦ g−1 ≻ 1 by the choice

of g, we have Hh◦g−1

(X, ̺) = 0 by Lemma 2.2 (i). Thus Hh(X, d) = 0, as
required. �

Our next goal is to characterize Smz by behavior of cartesian products. We
need to recall first a few facts about the Cantor set.

Cantor set. The set of all countable binary sequences is denoted by 2ω. The
set of all finite binary sequences is denoted by 2<ω, i.e., 2<ω =

⋃
n∈ω 2n =

{f : n → 2: n ∈ ω}. For p ∈ 2<ω, let [[p]] = {x ∈ 2ω : p ⊆ x} denote the
cone determined by p. The family of all cones forms a basis for the topology
of 2ω and for T ⊆ 2<ω we let [[T ]] =

⋃
p∈T [[p]]. It is well-known that this topology

is second countable and compact. It also obtains from the so called least differ-
ence metric: For x 6= y ∈ 2ω, set n(x, y) = min{i ∈ ω : x(i) 6= y(i)} and define
d(x, y) = 2−n(x,y).

The coordinatewise addition modulo 2 makes 2ω a compact topological group.
Routine proofs show that in this metric, H1 coincides on Borel sets with its Haar
measure, i.e., the usual product measure on 2ω. In particular H1(2ω) = 1.

We consider the important σ-ideal E on 2ω generated by closed null sets, i.e.,
the ideal of all subsets of 2ω that are contained in an Fσ set of Haar measure
zero.

Lemma 2.6. (i) For each I ∈ [ω]ω, the set CI = {x ∈ 2ω : x↾I ≡ 0} is in E .
(ii) For each h ≺ 1 there is I ∈ [ω]ω such that Hh(CI) > 0.

Proof: (i) Let I ∈ [ω]ω. For each n ∈ ω, the family {[[p]] : p ∈ CI↾n} is obvi-
ously a 2−n-cover of CI of cardinality 2|n\I|. Therefore H1

2−n(CI) 6 2|n\I|2−n =

2−|n∩I|. Hence H1(CI) 6 limn→∞ 2−|n∩I| = 0.
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(ii) h ≺ 1 yields h(2−n)/2−n → ∞. Therefore there is I ∈ [ω]ω sparse enough
to satisfy 2|n∩I| 6 h(2−n)/2−n, i.e., 2−|n\I| 6 h(2−n) for all n ∈ ω. Consider
the product measure λ on CI given as follows: If p ∈ 2n and [[p]] ∩ CI 6= ∅, put
λ([[p]] ∩ CI) = 2−|n\I|. Straightforward calculation shows that h(diamE) > λ(E)
for each E ⊆ CI . Hence

∑
n h(diamEn) >

∑
n λ(En) > λ(CI) = 1 for each cover

{En} of CI and Hh(CI) > 1 follows. �

Theorem 2.7. The following are equivalent.

(i) X is Smz;

(ii) Hh(X×Y ) = 0 for every gauge h and every σ-compact metric space Y such

that Hh(Y ) = 0;
(iii) H1(X × E) = 0 for every E ∈ E ;
(iv) H1(X × CI) = 0 for every I ∈ [ω]ω.

Proof: (i)⇒ (ii): SupposeX is Smz. We may clearly suppose that Y is compact.
Fix η > 0. Since Hh(Y ) = 0 for each j ∈ ω there is a finite family Uj of (open)
covers such that

∑
U∈Uj

h(diamU) < 2−jη. We may also assume that diamU < η

for all U ∈ Uj .
Let εj = min{diamU : U ∈ Uj}. Choose a cover {Vj} of a metric space X such

that diamVj 6 εj and define

W = {Vj × U : j ∈ ω, U ∈ Uj}.

It is obvious that W is a cover of X × Y . Since diam(Vj × U) = diamU for all j
and U ∈ Uj by the choice of εj, we have

∑

W∈W

h(diamW ) =
∑

j∈ω

∑

U∈Uj

h(diamU) <
∑

j∈ω

2−jη = 2η.

Therefore Hh
η (X × Y ) < 2η, which is enough for Hh(X × Y ) = 0, as η was

arbitrary.
(ii) ⇒ (iii) ⇒ (iv): These are trivial.
(iv) ⇒ (i): Suppose X is not Smz. We will show that H1(X × CI) > 0 for

some I ∈ [ω]ω. By assumption and Theorem 2.5 there is a gauge h such that
Hh(X) > 0. Mutatis mutandis we may assume h be concave and h(r) >

√
r.

In particular, by concavity of h the function g(r) = r/h(r) is increasing and
h(r) >

√
r yields limr→0 g(r) = 0, i.e., g is a gauge, and g ≺ 1. Moreover,

g(2r) = 2r/h(2r) 6 2r/h(r) = 2g(r), i.e., g is doubling.
Use Lemma 2.6 (ii) to find I ∈ [ω]ω such that Hg(CI) > 0. Since g is doubling,

we may apply Lemma 2.3:

H1(X × CI) = Hh·g(X × CI) > Hh(X) · Hg(CI) > 0.

�

Corollary 2.8. If X is Smz, then dimH X × Y = dimH Y for every σ-compact

metric space Y .
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3. Sharp measure zero

In this section we develop the elementary theory of a notion a bit stronger
than that of strong measure zero. The following definition is inspired by Theo-
rem 2.5 (iii).

Definition 3.1. A metric space X has sharp measure zero (Smz
♯) if for every

uniformly continuous mapping f : X → Y into a complete metric space Y there
is a σ-compact set K ⊆ Y such that f(X) ⊆ K and dimH K = 0.

It is clear that Smz
♯ implies Smz and that every countable set is Smz

♯. It is also
obvious that Smz

♯ is a σ-additive property and that it is preserved by uniformly
continuous maps:

Proposition 3.2. (i) If X is a metric space, then the family of all Smz
♯ subsets

of X forms a σ-ideal.
(ii) If X is Smz

♯ and f : X → Y is a uniformly continuous mapping, then f(X)

is Smz
♯.

In this section we provide a few characterizations and describe a few properties
of sharp measure zero.

Upper Hausdorff measure. It turns out that sharp measure zero can be de-
scribed in terms of a fractal measure very similar to Hausdorff measure. It is
defined thus: Let h be a gauge. For each δ > 0 set

Hh
δ (E) = inf

{ N∑

n=0

h(diamEn) : {En : n 6 N} is a finite δ-fine cover of E

}
.

Then put Hh
0 (E) = supδ>0 Hh

δ (E). The only difference from Hh is that only finite

covers are taken into account. It is easy to check that Hh
0 is finitely subadditive,

but unfortunately it is not a measure, since it need not be σ-additive. To over-
come this difficulty we apply to Hh

0 the operation known as Munroe’s Method I

construction (cf. [23] or [27]):

Hh(E) = inf

{∑

n∈ω

Hh
0 (En) : E ⊆

⋃

n∈ω

En

}
.

Thus the defined set function is indeed an outer measure whose restriction to
Borel sets is a Borel measure.

Definition 3.3. The measure Hh is called the h-dimensional upper Hausdorff

measure.

We list some properties of Hh
0 and Hh. Some of them will be utilized below

and some are provided just to shed more light on the notion of upper Hausdorff
measure. The straightforward proofs are omitted. Denote Nσ(Hh

0 ) the family of
countable unions of sets E with Hh

0 (E) = 0. We also write EnրE to denote that
〈En〉 is an increasing sequence of sets with union E.
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Lemma 3.4. Let h be a gauge and E a set in a metric space.

(i) If Hh
0 (E) < ∞, then E is totally bounded.

(ii) Hh
0 (E) = Hh

0 (E).
(iii) Hh

0 (E) = Hh(E) if E is compact.

(iv) If E ∈ Nσ(Hh
0 ), then Hh(E) = 0.

(v) If X is complete, E ⊆ X and E ∈ Nσ(Hh
0 ), then there is a σ-compact set

K ⊇ E such that Hh(K) = 0.
(vi) If X is complete and E ⊆ X , then Hh(E) = inf{Hh(K) : K ⊇ E is σ-com-

pact}.
(vii) In particular Hh(E) = Hh(E) if E is σ-compact.

(viii) If g ≺ h and Hg(E) < ∞, then E ∈ Nσ(Hh
0 ); in particular, Hh(E) = 0.

(ix) If E ∈ Nσ(Hh
0 ), then there is a sequence EnրE such that Hh

0 (En) = 0 for

all n.
(x) If Hh(E) < s, then there is a sequence EnրE such that supHh

0 (En) < s.

We will also need lemmas that parallel Lemmas 2.3 and 2.4. As to the proofs,
Lemma 3.5 is proved in the Appendix and Lemma 3.6 is proved exactly the same
way as Lemma 2.4.

Lemma 3.5. Let X,Y be metric spaces and g a gauge and h a doubling gauge.

Then Hh(X)Hg(Y ) 6 Hhg(X × Y ).

Lemma 3.6. Let f : (X, dX) → (Y, dY ) be a mapping.

(i) If f is uniformly continuous and a gauge g is its modulus, i.e., satisfies (2),
then Hh(f(X)) 6 Hh◦g(X) for any gauge h.

(ii) If f is Lipschitz with Lipschitz constant L, then Hs(f(X)) 6 LsHs(X) for
any s > 0.

The corresponding upper Hausdorff dimension of X , introduced in [39], is
defined by

dimH X = sup{s > 0: Hs(X) = ∞} = inf{s > 0: Hs(X) = 0}.

SinceHh 6 Hh for each gauge h, it is clear that dimH X 6 dimHX . The inequality
may be strict, cf. examples in [39, Section 2] and [40, Example 4.2].

It follows from Lemma 3.4 (vi) that if X is a complete metric space and
E ⊆ X , then dimH E = inf{dimH K : K ⊇ E is σ-compact}. In particular, if
X is σ-compact, then dimH X = dimH X .

It follows from Lemma 3.6 (ii) that if f : X → Y is Lipschitz, then dimH f(X) 6
dimHX .

We now establish the Smz
♯ counterpart of Theorem 2.5.

Theorem 3.7. Let X be a metric space. The following are equivalent.

(i) X is Smz
♯;

(ii) Hh(X) = 0 for each gauge h;
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(iii) dimH f(X) = 0 for each uniformly continuous mapping f on X ;

(iv) dimH(X, ̺) = 0 for each uniformly equivalent metric ̺ on X .

Proof: (i) ⇒ (iii): This follows at once from Lemma 3.4 (vii).
(iii) ⇒ (iv): This is trivial.
(iv) ⇒ (ii) ⇒ (iii): These go exactly the same way as that in Theorem 2.5,

one has to employ Lemma 3.6 instead of Lemma 2.4. We show (ii) ⇒ (i). Let
f : X → Y be uniformly continuous, g its gauge (i.e., satisfies (2)), Y complete.

Let h′, h be gauges such that h′ ≺ h ≺ s for all s > 0. Since Hh′◦g(X) = 0

by (ii), Lemma 3.6 (i) yields Hh′

(f(X)) = 0. By Lemma 3.4 (viii) we have
f(X) ∈ Nσ(Hh

0 ). Therefore Lemma 3.4 (v) yields a σ-compact set K ⊇ f(X) such
that Hh(K) = 0. By Lemma 3.4 (viii) we have Hs(K) = 0 for each s > 0. �

Our next goal is to describe Smz
♯ in terms of covers. The characterization

parallels Borel’s original definition of Smz.

Definition 3.8. Let 〈Un〉 be a sequence of sets in X . Recall that 〈Un〉 is called
a γ-cover if each x ∈ X belongs to all but finitely many Un.

Recall that 〈Un〉 is called γ-groupable cover if there is a partition ω = I0 ∪
I1 ∪ I2 ∪ · · · into consecutive finite intervals (i.e. Ij+1 is on the right of Ij for
all j) such that the sequence

〈⋃
n∈Ij

Un : j ∈ ω
〉
is a γ-cover. The partition 〈Ij〉

will be occasionally called witnessing and the finite families {Un : n ∈ Ij} will be
occasionally called witnessing families.

The following is a counterpart of Lemma 2.1.

Lemma 3.9. The space E ∈ Nσ(Hh
0 ) if and only if E has a γ-groupable cover

〈Un〉 such that
∑

n∈ω h(diamUn) < ∞.

Proof: ⇒: Let EnրE, Hh
0 (En) = 0. For each n let Gn be a finite cover of En

such that
∑

G∈Gn
h(diamG) < 2−n. The required cover is G =

⋃
n Gn, with Gn

the witnessing families.
⇐ : Let Gj be the witnessing families. Put Ek =

⋂
j>k

⋃Gj . Then E =⋃
k∈ω Ek. Fix k. The set Ek is covered by each Gj , j > k, and

∑
G∈Gj

h(diamG)

is as small as needed if j is large enough. Hence Hh
0 (Ek) = 0. �

We often deal with sequences of positive real numbers. Instead of writing
always “let 〈εn〉 be a sequence of positive numbers” we briefly write “let 〈εn〉 ∈
(0,∞)ω”.

Let X be a metric space and let 〈Un : n ∈ ω〉 be a sequence of subsets of X .
Say that 〈Un : n ∈ ω〉 is 〈εn〉-fine if diamUn 6 εn holds for all n.

Lemma 3.10. (i) For each 〈εn〉 ∈ (0,∞)ω there exists a gauge h such that if

X is a metric space and Hh(X) = 0, then X admits an 〈εn〉-fine γ-groupable
cover.

(ii) For each gauge h there exists 〈εn〉 ∈ (0,∞)ω such that if X is a metric space

that admits an 〈εn〉-fine γ-groupable cover, then Hh(X) = 0.
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Proof: (i) Let 〈εn〉 ∈ (0,∞)ω. Choose a gauge g such that g(εn) > 1/n for all
n > 1 and then a gauge h ≺ g. Suppose X is a metric space such that Hh(X) = 0.
The goal is to find an 〈εn〉-fine γ-groupable cover of X .

By Lemma 3.4 (viii) we have X ∈ Nσ(Hg
0). By Lemma 3.9 there is a γ-

groupable cover 〈Gn〉 such that
∑

n g(diamGn) < ∞. Let {Ij : j ∈ ω} be the
witnessing partition and Gj = {Gn : n ∈ Ij} the witnessing families.

We plan to permute the cover so that diameters decrease. One obstacle is that
some of them may be 0. Another one is that permutation may break down the
witnessing families. We have to work around these difficulties.

For each n choose δn > diamGn so that
∑

n g(δn) < ∞. Then recursively
choose an increasing sequence 〈jk〉 such that for all k ∈ ω

(a)
∑{g(δn) : n ∈ Ijk} < 2−k−1;

(b) max{δn : n ∈ Ijk+1
} < min{δn : n ∈ Ijk} (this is possible since δn’s are

positive).

Let I =
⋃

k∈ω Ijk . Permute Gn’s within each Gjk so that δn does not increase
as n increases. Together with (b) this ensures that the sequence 〈δn : n ∈ I〉 is
nonincreasing. For each i ∈ ω let i∗ ∈ I be the unique index such that i = |I∩ i∗|
and define Hi = Gi∗ . It follows, with the aid of (a) and the definition of g, that
for all i ∈ ω

g(diamHi) = g(diamGi∗) 6 g(δi∗) 6
1

i

∑
{g(δm) : m ∈ I, m 6 i∗}

6
1

i

∑
{g(δm) : m ∈ I} 6

1

i
< g(εi)

and thus diamHi 6 εi, i.e., 〈Hi〉 is an 〈εi〉-fine sequence. Moreover, the fami-
lies Gjk , k ∈ ω, witness that 〈Hi〉 is a γ-groupable cover.

(ii) Let h be a gauge. Choose εn > 0 to satisfy
∑

n h(εn) < ∞. If X is a metric
space admitting an 〈εn〉-fine γ-groupable cover 〈Gn〉, then

∑
n h(diamGn) 6∑

n h(εn) < ∞. By Lemma 3.9 and Lemma 3.4 (iv) Hh(X) = 0. �

The Borel-like definition of Smz
♯ now follows at once from the above lemma

and Theorem 3.7.

Theorem 3.11. Let X be a metric space. The space X is Smz
♯ if and only if

for each 〈εn〉 ∈ (0,∞)ω, X has an 〈εn〉-fine γ-groupable cover.

Our next goal is to set up a counterpart to Theorem 2.7.

Theorem 3.12. Let X be a metric space. The following are equivalent.

(i) X is Smz
♯;

(ii) for each gauge h, Y ∈ Nσ(Hh
0 ) and each complete space Z ⊇ X there is

a σ-compact F , X ⊆ F ⊆ Z, such that Hh(F × Y ) = 0;
(iii) Hh(X × Y ) = 0 for each gauge h and Y ∈ Nσ(Hh

0 );
(iv) H1(X × E) = 0 for each E ∈ E ;
(v) H1(X × CI) = 0 for each I ∈ [ω]ω.
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Proof: The proof is similar to that of Theorem 2.7.
(iii) ⇒ (iv): This follows from E = Nσ(H1

0) which in turn follows from Lem-
ma 3.4 (iii) and (iv). The only nontrivial implications are (i) ⇒ (ii) and (v) ⇒ (i).

(i) ⇒ (ii): Let Z ⊇ X be a complete metric space. Suppose X is Smz
♯.

By Lemma 3.4 (vi), X is contained in a σ-compact set K ⊆ Z. Let h be
a gauge and Y ∈ Nσ(Hh

0 ). Lemma 3.9 yields a γ-groupable cover U of Y
such that

∑
U∈U h(diamU) < ∞. For each U ∈ U there is δU > diamU

such that
∑

U∈U h(δU ) < ∞. Denote by Uj the witnessing families. Let εj =
min{δU : U ∈ Uj}. Using Theorem 3.11 choose a γ-groupable cover 〈Vj〉 of X
such that diamVj 6 εj. We may assume that each Vj is a closed subset of Z.
Denote by Vk the witnessing families. Define

W = {Vj × U : j ∈ ω, U ∈ Uj},
F = K ∩

⋃

i∈ω

⋂

k>i

⋃
Vk.

The set F ⊆ Z is clearly an Fσ subset of K and is thus σ-compact. Also X ⊆ F .
It is easy to check that W is a γ-groupable cover of F × Y . Since diam(Vj ×
U) 6 δU for all j and U ∈ Uj by the choice of εj , we have

∑
W∈W h(diamW ) 6∑

U∈U h(δU ) < ∞. Using Lemma 3.9 it follows that F × Y ∈ Nσ(Hh
0 ) and in

particular Hh(F × Y ) = 0.

(v) ⇒ (i): Suppose X is not Smz
♯. We will show that H1(X × CI) > 0 for

some I ∈ [ω]ω. By assumption and Theorem 3.7 there is a gauge h such that
Hh(X) > 0. As well as in the proof of Theorem 2.7 suppose h is concave, and
find a doubling gauge g ≺ 1 such that g(r)h(r) = r. Then use Lemma 2.6 (ii) to
find I ∈ [ω]ω such that Hg(CI) > 0 and apply Lemma 3.5:

H1(X × CI) = Hh·g(X × CI) > Hh(X) · Hg(CI) > 0.

�

Corollary 3.13. If X is Smz
♯ then dimH X × Y = dimH Y for every metric

space Y . In particular, dimH X × Y = dimH Y if Y is σ-compact.

Products of Smz and Smz
♯ sets. It is well known that a product of two Smz

sets need not be Smz (cf. [9, 534P]). But if one of the factors is Smz
♯, the product

is Smz:

Theorem 3.14. (i) If X and Y are Smz
♯, then X × Y is Smz

♯.

(ii) If X is Smz and Y is Smz
♯, then X × Y is Smz.

Proof: Suppose Y is Smz
♯. By Theorem 3.7 (ii) and Lemma 3.4 (viii), Y ∈

Nσ(Hh
0 ) for all gauges h.

(i) If X is Smz
♯, then Theorem 3.12 (iii) yields Hh(X×Y ) = 0 for all gauges h,

which is by Theorem 3.7 (ii) enough.
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(ii) If X is Smz, then Lemma 3.4 (v) and Theorem 2.7 (ii) yield Hh(X×Y ) = 0
for all gauges h, which is by Theorem 2.5 (ii) enough. �

4. Galvin’s game

As already discussed in the introduction, F. Galvin in [12] succeeded to char-
acterize Smz sets in σ-compact metric spaces in terms of a game, cf. Theorem 1.1.

We consider a similar game and prove a counterpart of Galvin’s theorem for
Smz

♯ sets. Note the striking similarity with Galvin’s game.

Definition 4.1. Let X be a metric space. The game G♯(X) is played as follows:
At the nth inning, Player I chooses εn > 0 and Player II responds with a set
Un ⊆ X such that diamUn 6 εn. Player II wins if the sequence of sets 〈Un〉 forms
a γ-groupable cover of X , otherwise Player I wins.

Theorem 4.2. A metric space X is Smz
♯ if and only if Player I does not have

a winning strategy in G♯(X).

Note that, unlike in Galvin’s theorem, X is not a priori supposed to be a subset
of a σ-compact space.

Proof: The backwards implication is trivial: if X is not Smz
♯, then by Theo-

rem 3.11 there is 〈εn〉 ∈ (0,∞)ω such that X has no 〈εn〉-fine γ-groupable cover.
The winning strategy for Player I is of course to play εn at the nth inning.

For the forward implication we modify Galvin’s proof. Suppose thatX is Smz
♯.

By Theorem 3.7 (ii) Hh(X) = 0 for any gauge h and thus Lemma 3.4 (i) yields
an increasing sequence FnրX of totally bounded sets.

Let σ be a strategy for Player I. We will show that σ is not winning.
Recall [12, Lemma 1]: If F is totally bounded, then for every δ > 0 there is

a finite collection δ-fine B of sets, such that every subset of F of diameter at most

δ/3 is contained in some B ∈ B.
Using this fact, build recursively δn and Bn as follows:

(a) δn = min{σ(B0, B1, . . . , Bn−1) : Bi ∈ Bi, i < n};
(b) Bn is a finite δn-fine collection of subsets of Fn;
(c) if A ⊆ Fn and diamA 6 δn/3, then A ⊆ B for some B ∈ Bn.

Since X is Smz
♯, by Theorem 3.11 there is a 〈δn/3〉-fine γ-groupable cover 〈An〉

of X . By (c), for each n ∈ ω we may chooseBn ∈ Bn such that An∩Fn ⊆ Bn. Put
εn = σ(B0, B1, . . . , Bn−1). Since diamBn 6 δn 6 εn, the sequence 〈ε0, B1, ε2,
B2, . . . 〉 is played according to the strategy σ.

The sequence 〈Bn〉 is clearly 〈εn〉-fine. We claim that it is also a γ-groupable
cover of X . We know that 〈An〉 is a γ-groupable cover. Let 〈Ij〉 be the witnessing
partition of ω. Fix x ∈ X . We have ∀∞j ∃ k ∈ Ij x ∈ Ak and since FnրX ,
also ∀∞j ∀ k ∈ Ij x ∈ Fk. Therefore ∀∞j ∃ k ∈ Ij x ∈ Ak ∩ Fk ⊆ Bk. Thus the
partition 〈Ij〉 is also witnessing that 〈Bn〉 is a γ-groupable cover of X .

Consequently, σ is not a winning strategy. �
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5. Smz
♯-sets versus M-additive and E-additive sets

In this section we look closer at Smz
♯ subsets of the Cantor set 2ω. Inspired

by the Galvin–Mycielski–Solovay theorem, Theorem 1.2, we prove that Smz
♯ sets

in 2ω are meager-additive and vice versa. Recall that M denotes the ideal of
meager sets.

A set X ⊆ 2ω is called M-additive (or meager-additive) if ∀M ∈ M X +
M ∈ M. We also define a seemingly stronger notion: call X sharply M-additive

if ∀M ∈ M ∃F ⊇ X σ-compact F +M ∈ M.

Theorem 5.1. For any set X ⊆ 2ω, the following are equivalent.

(i) X is Smz
♯;

(ii) X is M-additive;

(iii) X is sharply M-additive;

(iv) ∀M ∈ M ∃F ⊇ X σ-compact F +M 6= 2ω.

Recall that E is the ideal of Haar null Fσ-sets in 2ω. We consider also E-
additive and sharply E-additive sets. A set X ⊆ 2ω is called E-additive if ∀M ∈
E X+M ∈ E and sharply E-additive if ∀M ∈ E ∃F ⊇ X σ-compact F +M ∈ E .
Theorem 5.2. For any set X ⊆ 2ω, the following are equivalent.

(i) X is Smz
♯;

(ii) X is E-additive;
(iii) X is sharply E-additive.
Proof: We shall prove now 5.1 (i) ⇒ 5.2 (ii) and 5.2 (iii) ⇒ 5.1 (iv) ⇒ 5.1 (iii)
⇒ 5.1 (ii). The remaining implications 5.1 (ii) ⇒ 5.1 (i) and 5.2 (ii) ⇒ 5.2 (iii)
are subject to standalone Propositions 5.4 and 5.7.

5.1 (i) ⇒ 5.2 (ii): Assume that X is Smz
♯. Let E ∈ E , i.e., E ∈ Nσ(H1

0).
We may suppose E is σ-compact. By Theorem 3.12 (ii) there is a σ-compact
set F ⊇ X such that H1(F × E) = 0. Since the mapping (x, y) 7→ x + y is
Lipschitz, Lemma 3.6 (ii) yields H1(F +E) = 0, which is enough, because F +E
is σ-compact.

5.2 (iii) ⇒ 5.1 (iv): Denote by N the ideal of Haar null sets in 2ω. We employ
a theorem of J. Pawlikowski, see [26] (or see also [1, Theorem 8.1.19]): For each

M ∈ M there exists E ∈ E such that for each Y ⊆ 2ω, if Y + E ∈ N , then

Y +M 6= 2ω.
Suppose X is sharply E-additive. Let M ∈ M. Let E ∈ E be the set guaran-

teed by Pawlikowski’s theorem. Since X is sharply E-additive, there is F ⊇ X
σ-compact such that F + E ∈ E ⊆ N . Therefore F + M 6= 2ω. Thus 5.1 (iv)
holds.

5.1 (iv) ⇒ 5.1 (iii): Suppose that 5.1 (iv) holds and let M ∈ M. We may
assume that M is σ-compact. Let Q ⊆ 2ω be a countable dense set. Clearly
Q+M is meager. Therefore there is F ⊇ X σ-compact such that Q+M+F 6= 2ω.
Choose z /∈ Q+M +F . Then, for all q ∈ Q, z /∈ q+M +F , i.e., z + q /∈ M +F .
Therefore (M + F ) ∩ (z +Q) = ∅. Since Q is dense, so is z + Q. Therefore the
complement of F +M is dense.
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Since F +M is a continuous image of the σ-compact set F ×M , it is σ-compact
as well. Since it has a dense complement, it is meager.

5.1 (iii) ⇒ 5.1 (ii): This is obvious. �

In order to prove that every M-additive set is Smz
♯ we need Shelah’s charac-

terization of M-additive sets in [29] (or see [1, Theorem 2.7.17]):

Lemma 5.3 ([29]). The space X ⊆ 2ω is M-additive if and only if

∀ f ∈ ω↑ω ∃ g ∈ ωω ∃ y ∈ 2ω ∀x ∈ X ∀∞n ∃ k
g(n) 6 f(k) < f(k + 1) 6 g(n+ 1) & x↾[f(k), f(k + 1)) = y↾[f(k), f(k + 1)).

Proposition 5.4. If X ⊆ 2ω is M-additive, then X is Smz
♯.

Proof: Let X ⊆ 2ω be M-additive. Let h be a gauge. By Theorem 3.7, it is
enough to show that Hh(X) = 0. Define recursively f ∈ ω↑ω to satisfy

2f(k) · h
(
2−f(k+1)

)
6 2−k, k ∈ ω.

By Lemma 5.3 there is g ∈ ωω and y ∈ 2ω such that

(3)
∀x ∈ X ∀∞n ∃ k

g(n) 6 f(k) < g(n+ 1) & x↾[f(k), f(k + 1)) = y↾[f(k), f(k + 1)).

Recall that if p ∈ 2<ω then [[p]] denotes the cone {f ∈ 2ω : p ⊆ f}. Define

Bk = {[[pay↾[f(k), f(k + 1))]] : p ∈ 2f(k)}, k ∈ ω,

Gn =
⋃

{Bk : g(n) 6 f(k) < g(n+ 1)}, n ∈ ω,

B =
⋃

k∈ω

Bk =
⋃

n∈ω

Gn.

With this notation (3) reads

(4) ∀x ∈ X ∀∞n ∃G ∈ Gn x ∈ G.

Since each of the families Gn is finite, it follows that Gn’s witness that B is a γ-
groupable cover of X . Using Lemma 3.9 (and Lemma 3.4 (iv)) it remains to
show that the Hausdorff sum

∑
B∈B h(diamB) is finite. Since |Bk| = 2f(k) and

diamB = 2−f(k+1) for all k and all B ∈ Bk, we have

∑

B∈B

h(diamB) =
∑

k∈ω

∑

B∈Bk

h(diamB) =
∑

k∈ω

2f(k) · h(2−f(k+1)) 6
∑

k∈ω

2−k < ∞.

�
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In order to prove that every E-additive set is sharply E-additive, we employ
a combinatorial description of closed null sets given by T. Bartoszyński and S. She-
lah in [2], see also [1, 2.6.A]. For f ∈ ω↑ω let

Cf =
{
〈Fn〉 : ∀n ∈ ω

(
Fn ⊆ 2[f(n),f(n+1)) &

|Fn|
2f(n+1)−f(n)

6
1

2n

)}

and for f ∈ ω↑ω and F = 〈Fn〉 ∈ Cf define

S(f, F ) = {z ∈ 2ω : ∀∞n ∈ ω z↾[f(n), f(n+ 1)) ∈ Fn}.

It is easy to check that S(f, F ) ∈ E for all f ∈ ω↑ω and F ∈ Cf . By [2, Theo-
rem 4.2] (or see [1, Lemma 2.6.3]), these sets actually form a base of E . We need
a little more:

Lemma 5.5. ∀E ∈ E ∀f ∈ ω↑ω ∃ g ∈ ω↑ω ∃G ∈ Cf◦g E ⊆ S(f◦g,G).

Proof: Let E ∈ E . We may suppose that EnրE with En’s compact. Recall
that for T ⊆ 2<ω we let [[T ]] =

⋃
p∈T [[p]]. It is easy to show that if C ⊆ 2ω is

a compact null set, then

∀ ε > 0 ∀∞n ∃T ⊆ 2n C ⊆ [[T ]] &
|T |
2n

< ε.

Therefore we may recursively define g ∈ ω↑ω in such a way that g(n+ 1) > g(n)
and

(5) ∃Tn ⊆ 2f◦g(n+1) En ⊆ [[Tn]] &
|Tn|

2f◦g(n+1)
<

1

4f◦g(n)
.

Write h = f ◦ g. For n ∈ ω define Gn = {s↾[h(n), h(n+ 1)): s ∈ Tn}. Obviously
|Gn| 6 |Tn|. Therefore (5) yields

|Gn|
2h(n+1)−h(n)

6
|Tn|

2h(n+1)
2h(n) 6

1

4h(n)
2h(n) 6

1

2h(n)
6

1

2n
.

Thus 〈Gn〉 ∈ Ch and since EnրE, we also have E ⊆ S(h,G), as desired. �

Lemma 5.6. Let f, g ∈ ω↑ω, F ∈ Cf and G ∈ Cf◦g. Then S(f, F ) ⊆ S(f◦g,G)
if and only if

(6) ∀∞n ∈ ω ∀ k ∈ [g(n), g(n+ 1)) Fk ⊆ {z↾[f(k), f(k + 1)): z ∈ Gn}.

Proof: Suppose condition (6) fails. Then there is I ∈ [ω]ω such that

(7) ∀n ∈ I ∃ kn ∈ [g(n), g(n+ 1)) ∃ zkn
∈ Fkn

∀ z ∈ Gn zkn
* z.

For each k /∈ {kn : n ∈ I} choose zk ∈ Fk and let z ∈ 2ω be a sequence that
extends simultaneously all zk’s (including those defined in (7)). Then obviously
z ∈ S(f, F ). On the other hand, condition (7) ensures that z /∈ S(f◦g,G). Thus
S(f, F ) ⊆ S(f◦g,G) yields (6). The reverse implication is straightforward. �
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Proposition 5.7. If X ⊆ 2ω is E-additive, then X is sharply E-additive.
Proof: Suppose X is E-additive. Let E ∈ E . We are looking for a σ-compact

set X̃ ⊇ X such that X̃ + E ∈ E .
There are f ∈ ω↑ω and F ∈ Cf such that E ⊆ S(f, F ). Since S(f, F ) ∈ E ,

we have X + S(f, F ) ∈ E . By Lemma 5.5 there are g and G ∈ Cf◦g such that
X + S(f, F ) ⊆ S(f◦g,G), i.e., x+ S(f, F ) ⊆ S(f◦g,G) for all x ∈ X .

The set X̃ we are looking for is

X̃ = {x ∈ 2ω : x+ S(f, F ) ⊆ S(f◦g,G)}.

Obviously X ⊆ X̃ . It is also obvious that X̃+E ⊆ X̃+S(f, F ) ⊆ S(f◦g,G) ∈ E .
Thus it remains to show that X̃ is Fσ.

For any x ∈ 2ω and k ∈ ω set

F x
k = {z + x↾[f(k), f(k + 1)): z ∈ Fk}

and consider the sequence F x = 〈F x
k 〉. Clearly F x ∈ Cf and S(f, F x) = x +

S(f, F ). Therefore X̃ = {x ∈ 2ω : S(f, F x) ⊆ S(f◦g,G)}. Use Lemma 5.6 to
conclude that

x ∈ X̃ ⇔ ∀∞n ∈ ω ∀ k ∈ [g(n), g(n+ 1)) F x
k ⊆ {z↾[f(k), f(k + 1)): z ∈ Gn}.

It follows that X̃ is Fσ as long as the sets

An,k = {x ∈ 2ω : F x
k ⊆ {z↾[f(k), f(k + 1)): z ∈ Gn}}

are closed for all n and all k ∈ [g(n), g(n+1)). Fix n ∈ ω and k ∈ [g(n), g(n+1)).
Decoding the definitions yields

x ∈ An,k ⇔ ∃ y ∈ 2[f(k),f(k+1)) y ⊆ x & ∀ z ∈ Fk ∃ t ∈ Gn z + y ⊆ t.

Since the set {y ∈ 2[f(k),f(k+1)) : ∀ z ∈ Fk ∃ t ∈ Gn z + y ⊆ t} is finite, the set
An,k is closed, as required. We are done. �

The proof of Theorems 5.1 and 5.2 is now complete. Here are a few consequences.
First of them is Theorem 1.4: X ⊆ 2ω is M-additive if and only if it is E-additive.

The next one follows easily from the equivalence of Smz
♯ and M-additivity

and (taking in account that a continuous map on 2ω is uniformly continuous)
Proposition 3.2 (ii).

Corollary 5.8. Let f : 2ω → 2ω be a continuous mapping. If X ⊆ 2ω is M-

additive, then so is f(X).

The following is a little surprising.

Corollary 5.9. If X ⊆ 2ω is E-additive, then ϕ(X ×E) ∈ E for each E ∈ E and

every Lipschitz mapping ϕ : 2ω × 2ω → 2ω.
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Proof: Let E ∈ E be σ-compact. Since X is E-additive, it is Smz
♯. By Theo-

rem 3.12 (ii), there is a σ-compact set K ⊇ X such that H1(K × E) = 0. By
Lemma 3.6 (ii), H1(ϕ(K × E)) = 0, i.e., ϕ(X × E) ∈ E . �

The notion of M-additive sets extends to finite cartesian powers of 2ω in the
obvious manner.

Corollary 5.10. A set X ⊆ (2ω)n is M-additive if and only if it is Smz
♯.

Proof: We provide the argument for n = 2. Let X ⊆ (2ω)2. Denote by X1, X2

the two projections of X . An easy application of Kuratowski–Ulam theorem
proves that if X is M-additive in (2ω)2, then both X1 and X2 are M-additive
in 2ω. (Hint: If M ⊆ 2ω is meager, then X + (M × 2ω) is meager in (2ω)2. Since
(X1+M)×2ω = X+(M×2ω), the set X1+M is meager, as required.) Therefore

they are Smz
♯ and by Theorem 3.14 (i) X1 ×X2 is Smz

♯. A fortiori, X is Smz
♯.

Now suppose X is Smz
♯. Then both X1 and X2, being Lipschitz images of X ,

are by Proposition 3.2 (ii) also Smz
♯ and thus M-additive in 2ω. By [32, Theo-

rem 1] a product of two M-additive sets in 2ω is M-additive. Therefore X1 ×X2

and a fortiori X is M-additive. �

6. Remarks

Smz
♯ sets on the line. It is clear how the notion of M-additive set extends to

other topological groups. The addition operations on 2ω and on the real line R
are so different that it was not understood for a long time if M-additive sets
on R behave the same way as those on 2ω. Finally T. Weiss in [33] found the
following solution. Let T : 2ω → [0, 1] be the standard mapping defined by T (x) =∑

n∈ω 2−n−1x(n).

Theorem 6.1 ([33, 1.10]). A set X ⊆ [0, 1] is M-additive in R if and only if

T−1(X) is M-additive in 2ω.

A similar (and much easier) result holds for Smz
♯ sets:

Proposition 6.2. A set X ⊆ [0, 1] is Smz
♯ if and only if T−1(X) is Smz

♯.

Proof: Lemma 3.5 of [31] asserts that for any set U ⊆ [0, 1] there are sets
U0, U1 ⊆ 2ω such that U0 ∪U1 = T−1(U) and diamUi 6 diamU for both i = 0, 1.
It follows that Hh(T−1(X)) 6 2Hh(X) for every gauge h. On the other hand,
since T is 1-Lipschitz, Hh(X) 6 Hh(T−1(X)) by Lemma 3.6 (i).

Use the two inequalities and Theorem 3.7 (ii) to conclude the proof. �

Theorem 6.3. A set X ⊆ R is M-additive if and only if it is Smz
♯.

Proof: Since both properties are σ-additive, we may clearly suppose X ⊆ [0, 1].
The proof is a straightforward application of Theorem 5.1 and the above theorem
and proposition. �
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This theorem extends to Rn: By [33, 11] a product of two M-additive sets
on R is M-additive on R2. Using this fact and the above Theorem 6.3 one can
repeat the proof of Corollary 5.10 to show:

Theorem 6.4. A set X ⊆ Rn is M-additive if and only if it is Smz
♯.

Corollary 6.5. Let X ⊆ R2. The following are equivalent.

(i) X is M-additive;

(ii) all orthogonal projections of X on lines are M-additive;

(iii) at least two orthogonal projections of X on lines are M-additive.

Proof in outline: Since orthogonal projections are uniformly continuous,
(i) ⇒ (ii) follows at once from Theorem 6.4 and Proposition 3.2 (ii).

(iii) ⇒ (i): Let L1, L2 be two nonparallel lines and π1, π2 the corresponding
orthogonal projections. Mutatis mutandis we may suppose that L1 is the x-axis
and L2 is the y-axis. Thus X ⊆ π1X × π2X . �

γ-sets. A. Nowik and T. Weiss in [25, Proposition 3.7] proved that every γ-set
of reals is M-additive. We will show a generalization of this result, namely that
all γ-sets are Smz

♯.
Recall the notion of γ-set, as introduced by J. Gerlits and Z. Nagy in [13].

A family U of open sets in a separable metric space X is called an ω-cover of X if
every finite subset of X is contained in some U ∈ U . A separable metric space X
is a γ-set if every ω-cover of X contains a γ-cover.

Proposition 6.6. Every γ-set is Smz
♯.

Proof: Let X be an infinite γ-set. We use Theorem 3.11 to show that X is Smz
♯.

Let 〈εn〉 ∈ (0,∞)ω. We may suppose 〈εn〉 is decreasing. We are looking for an
〈εn〉-fine γ-groupable cover. For n ∈ ω define δn = ε0+1+2+···+n. Let Q ⊆ X be
a countable dense set in X . Fix an infinite set {zn : n ∈ ω} ⊆ X \Q. For n ∈ ω
and F ∈ [Q]n put

F ◦ =
⋃

x∈F
B
(
x,

1

2
δn

)
\ {zn}.

The family {F ◦ : F ∈ [Q]<ω} is obviously an ω-cover. Therefore there is a se-
quence 〈Fk〉 of finite sets such that 〈F ◦

k 〉 is a γ-cover. If |F | = n, then F ◦

misses zn. It follows that the cardinalities of the Fk’s are unbounded. Thus we
may choose a subsequence 〈km〉 such that |Fk0

| < |Fk1
| < |Fk2

| < . . . . The
sequence 〈F ◦

km
: m ∈ ω〉 is still a γ-cover.

Write jm = |Fkm
|. Form a sequence 〈xi〉 as follows: First enumerate all points

in Fk0
, then continue with points of Fk1

and so on. Note that if xi ∈ Fkm
, then

i 6 j0 + j1 + · · · + jm 6 0 + 1 + · · · + jm and thus εi > ε0+1+···+jm = δjm .
Consequently F ◦

km
⊆ ⋃{B(xi, εi/2): xi ∈ Fkm

} and it follows that the families
Gm = {B(xi, εi/2): xi ∈ Fkm

} are witnessing that 〈B(xi, εi/2)〉 is an 〈εi〉-fine
γ-groupable cover. �
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Scheepers’ theorem. A metric space X has the Hurewicz property if for any
sequence 〈Un〉 of open covers there are finite families Fn ⊆ Un such that, letting
Fn =

⋃Fn, the sequence 〈Fn〉 is a γ-cover of X .
M. Scheepers in [28, Theorem 1, Lemma 3] proved that a product of a Smz

set and a Smz set with the Hurewicz property is Smz. It is straightforward that
a Smz space with the Hurewicz property is Smz

♯. Therefore Theorem 3.14 (ii)
improves Scheepers’ result. We claim that it is a proper extension: there is a CH
example of a Smz

♯ set that lacks the Hurewicz property.

Proposition 6.7. Assuming the continuum hypothesis, there is a Smz
♯ set that

does not have the Hurewicz property.

Proof: It follows from [10, Theorem 1] and its proof that under the continuum
hypothesis there is a γ-set X ⊆ 2ω that is concentrated on a countable set D. By
Proposition 6.6, X is Smz

♯. On the other hand, as proved in [24, Theorem 20],
the set X \D does not have the Hurewicz property and since it is a subset of X ,

it is Smz
♯. �

Corazza’s model. Theorem 3.14 (ii) also raises the question whether a space

whose product with any Smz set of reals is Smz has to be Smz
♯. The answer is

consistently no. A similar observation was noted without proof in [24] and also
in [34].

We choose “reals” to refer to 2ω, since by Proposition 6.2 it makes no difference
if we work in 2ω or R. The following argument came out from a discussion with
T. Weiss. P. Corazza in [7] constructs a forcing extension with the following
properties. Denote by X the set of ground model reals.

(a) X is not a meager set in the Corazza extension;
(b) |X | = ω1;
(c) a set of reals Y in the extension is Smz if and only if |Y | 6 ω1.

By (a), X is not M-additive and hence not Smz
♯. By (b) and (c), if Y is any Smz

set of reals, then |X × Y | 6 ω1. Since 2ω × 2ω is uniformly homeomorphic to 2ω,
X × Y is a uniformly continuous image of a set of cardinality at most ω1. Such
a set is Smz by (c) and thus X × Y is Smz as well. We proved the following:

Proposition 6.8. In the Corazza model there is a set X ⊆ 2ω that is not Smz
♯

and yet X × Y is Smz for each Smz set Y ⊆ 2ω.

However, the following question remains unanswered:

Question 6.9. Is it consistent that there is a metric space X such that X × Y
is Smz for every Smz metric space Y and yet X is not Smz

♯?

Dimension inequalities. By Corollaries 2.8 and 3.13, if Y is a σ-compact metric
space, then dimH X × Y = dimH Y if X is Smz, and dimHX × Y = dimH Y if X
is Smz

♯.
We note that the assumption of σ-compactness imposed upon Y cannot be

dropped:
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B. Tsaban and T. Weiss in [35, Theorem 4] construct, under p = c, a γ-set X

(that is by Proposition 6.6 Smz
♯) and a set Y ⊆ R such that dimH Y = 0 and yet

dimHX × Y = 1.

Universally meager sets. Recall that a separable metric space E is termed
universally meager, see [37], [38], if for any perfect Polish spaces Y,X such that
E ⊆ X and every continuous one-to-one mapping f : Y → X the set f−1(E) is

meager in Y . We show that Smz
♯ sets are universally meager.

Lemma 6.10. Let X,Y, Z be perfect Polish spaces and ϕ : Y → X a continuous

one-to-one mapping. Let F be an equicontinuous family of uniformly continuous

mappings of Z into X . If E ⊆ Z is Smz
♯, then there is a σ-compact set F ⊇ E

such that ϕ−1f(F ) is meager in Y for all f ∈ F .

Proof: Let {Un} be a countable base for Y . As ϕ is one-to-one the set ϕ(Un) is
analytic and uncountable for each n. Therefore it contains a perfect set and thus
is not Smz

♯, i.e., by Theorem 3.7 there is a gauge hn such that Hhn(ϕ(Un)) > 0.
Choose a gauge h such that h ≺ hn for all n, so that, by Lemma 3.4 (viii),
Hh(ϕ(Un)) > 0 for all n. Therefore Hh(ϕ(U)) > 0 for each nonempty set U open
in Y .

Since F is equicontinuous, there is a gauge g such that (2) is satisfied by each

f ∈ F . By Theorem 3.7 and Lemma 3.4 (viii), E ∈ Nσ(Hh◦g
0 ). Therefore Lem-

ma 3.4 (v) and (vii) yield a σ-compact set F ⊇ E such that Hh◦g(F ) = 0. Hence
Lemma 3.6 (i) guarantees that Hh(f(F )) = 0 for all f ∈ F . Therefore the Fσ-set
ϕ−1f(F ) is meager in Y : for otherwise it would contain an open set witnessing
Hh(f(F )) > 0. �

Apply this lemma with Z = X and F = {idX} to get

Proposition 6.11. Every Smz
♯ set is universally meager.

Meager-additive sets in topological groups. There is an obvious question:
how far beyond 2ω and R we can extend the equivalence of M-additive and Smz

♯.

Question 6.12. For what Polish groups are the notions of M-additive and Smz
♯

equivalent?

Null-additive sets. A set X ⊆ 2ω is termed null-additive if for every Haar null
set N the set X + N is Haar null. In a follow-up of the present paper we will
show that null-additive sets in 2ω can be described in terms of packing measures
and dimensions.

7. Appendix: Hausdorff measures on cartesian products

In this appendix, we prove a few integral inequalities needed for the proof of
Lemma 3.5. They generalize those proved by J.D. Howroyd in his famous thesis
in [16] and J.D. Kelly, see [20].
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We need a notion of a weighted Hausdorff measure. Let X be a metric space.
Say that a countable collection of pairs {(ci, Ei) : i ∈ I} is a weighted cover of
E ⊆ X if ci > 0 and Ei ⊆ X for all i ∈ I and

∑{ci : x ∈ Ei} > 1 for all x ∈ E.
We say it is δ-fine if the cover {Ei : i ∈ I} is δ-fine, i.e., if diamEi 6 δ for all
i ∈ I.

Let g be a gauge and E ⊆ X . For each δ > 0 set

λ
g
δ(E) = inf

{∑

i∈ω

cig(diamEi) : {(ci, Ei)} is a δ-fine weighted cover of E

}

and put λg(E) = supδ>0 λ
g
δ(E).

Properties of the weighted Hausdorff measures are discussed, e.g., in the two
mentioned papers [16], [20]. Trivially λ

g
6 Hg. The converse inequality holds if

g satisfies the doubling condition. It was proved in [8, 2.10.24] for compact sets
and in [16, 9.8] in full generality.

Theorem 7.1 ([16, 9.8]). If g is a doubling gauge, then λ
g = Hg.

The integrals in the following inequalities are the usual upper Lebesgue in-
tegrals: If µ is a Borel measure on a metric space X and f : X → [−∞,∞]
a function, then

∫ ∗

f dµ = inf

{∫
ϕdµ : ϕ > f Borel measurable

}
.

Let X,Y be metric spaces. Denote their respective metrics by dX and dY . Recall
that the cartesian product X × Y is equipped by the maximum metric (1). For
a set E ⊆ X×Y and x ∈ X , write Ex for the vertical section {y ∈ Y : (x, y) ∈ E}.
Theorem 7.2. Let X,Y be metric spaces and E ⊆ X × Y . Let g, h be gauges.

Then

(i)
∫ ∗

λ
g(Ex) dλ

h(x) 6 λ
gh(E);

(ii)
∫ ∗ Hg(Ex) dλ

h(x) 6 Hgh(E).

Proof: First of all, we may assume that E is Borel, since both Hausdorff and
weighted Hausdorff measures are Borel regular. It is also routine to check that if E
is Borel, then the integrands x 7→ λ

g(Ex) and x 7→ Hg(Ex) are Borel measurable.
Therefore both integrals are standard Lebesgue integrals.

We prove (i) first and then indicate how to get (ii) by the same proof. Approx-
imating the integrand from below by a simple function and replacing X with the
projection of E onto the x-axis reduces (i) to the following:

(8) If λg(Ex) > γ for all x ∈ X , then λ
gh(E) > γλh(X).

Fix ε > 0. For every x ∈ X there is δx > 0 such that λ
g
δx
(Ex) > γ. Therefore

there is δ̂ > 0 and a set X̂ ⊆ X such that λ
g

δ̂
(Ex) > γ for all x ∈ X̂ and



Strong measure zero and meager-additive sets 153

λ
h(X̂) > λ

h(X)− ε. Since λ
h can be approximated by λ

h
δ , there is δ∗ > 0 such

that λh
δ∗(X̂) > λ

h(X)− ε. So if we let δ = min{δ̂, δ∗}, we have

(a) λ
g
δ(Ex) > γ for all x ∈ X̂;

(b) λ
h
δ (X̂) > λ

h(X)− ε.

Let C = {(ci, Ei) : i ∈ I} be a δ-fine weighted cover of E. Denote by pX and
pY the respective projections. For each i ∈ I let di = (ci/γ)g(diam pY (Ei)) and
consider the family D = {(di, pX(Ei)) : i ∈ I}.

For each x ∈ X̂ we have

∑

x∈pX (Ei)

di =
1

γ

∑

x∈pX(Ei)

cig(diam pY (Ei)) >
1

γ

∑

(Ei)x 6=∅

cig(diam(Ei)x)

and since the family {(ci, (Ei)x) : (Ei)x 6= ∅} is obviously a δ-fine weighted cover
of Ex, the latter sum is estimated from below by λ

g
δ(Ex). Therefore (a) and

the above calculation shows that
∑

x∈pX(Ei)
di > 1 for all x ∈ X̂, i.e., that D is

a δ-fine weighted cover of X̂. Therefore

λ
h
δ (X̂) 6

∑
dih(diam pX(Ei)) 6

∑ ci
γ
g(diam pY (Ei))h(diam pX(Ei))

6
1

γ

∑
cig(diamEi)h(diamEi) =

1

γ

∑
ci(gh)(diamEi).

Multiplying with γ and taking the infimum over all δ-fine weighted covers of E

yields γλh
δ (X̂) 6 λ

gh
δ (E). It thus follows from (b) that

γ(λh(X)− ε) 6 γλh
δ (X̂) 6 λ

gh
δ (E) 6 λ

gh(E)

and (8) obtains on letting ε → 0.
(ii) follows from this proof simply by imposing an extra condition: require that

ci = 1 for all i ∈ I. �

Combining this theorem with Theorem 7.1 yields

Corollary 7.3. If h is a doubling gauge, then
∫ ∗ Hg(Ex) dHh(x) 6 Hgh(E).

Theorem 7.4. Let X,Y be metric spaces and E ⊆ X × Y . If g, h are gauges,

then

(i)
∫ ∗ Hg(Ex) dλ

h(x) 6 Hgh(E);

(ii) and if h is doubling, then
∫ ∗ Hg(Ex) dHh(x) 6 Hgh(E).

Proof: The second inequality follows at once from the first one and Theorem 7.1.
The first inequality obtains from Theorem 7.2 (ii) as follows: We may suppose
that X and Y are both complete metric spaces. Let K ⊇ E be a σ-compact set.
By Lemma 3.4 (vii) Hg(Ex) 6 Hg(Kx) = Hg(Kx) for all x, hence Theorem 7.2 (ii)
yields

∫ ∗

Hg(Ex) dλ
h(x) 6

∫ ∗

Hg(Kx) dλ
h(x) 6 Hgh(K).
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Apply Lemma 3.4 (vi) to conclude the proof. �

A particular choice of E = X × Y yields Lemmas 2.3 and 3.5.
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