Jan Chleboun; Judita Runcziková Hydrological applications of a model-based approach to fuzzy set membership functions

In: Jan Chleboun and Pavel Kůs and Petr Přikryl and Miroslav Rozložník and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Hejnice, June 24-29, 2018. Institute of Mathematics CAS, Prague, 2019. pp. 47–54.

Persistent URL: http://dml.cz/dmlcz/703071

Terms of use:

© Institute of Mathematics CAS, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

Programs and Algorithms of Numerical Mathematics 19 J. Chleboun, P. Kůs, P. Přikryl, M. Rozložník, K. Segeth, J. Šístek, T. Vejchodský (Eds.) Institute of Mathematics CAS, Prague 2019

HYDROLOGICAL APPLICATIONS OF A MODEL-BASED APPROACH TO FUZZY SET MEMBERSHIP FUNCTIONS

Jan Chleboun, Judita Runcziková

Faculty of Civil Engineering, Czech Technical University in Prague Thákurova 7, 166 29 Prague 6, Czech Republic jan.chleboun@cvut.cz, judita.runczikova@fsv.cvut.cz

Abstract: Since the common approach to defining membership functions of fuzzy numbers is rather subjective, another, more objective method is proposed. It is applicable in situations where two models, say M_1 and M_2 , share the same uncertain input parameter p. Model M_1 is used to assess the fuzziness of p, whereas the goal is to assess the fuzziness of the p-dependent output of model M_2 . Simple examples are presented to illustrate the proposed approach.

Keywords: fuzzy set, membership function, uncertainty quantification **MSC:** 03E72, 03E75

1. Introduction

This contribution deals with uncertain parameters represented by fuzzy sets, namely with a model-dependent definition of membership functions.

The membership function determines the membership grade of the elements of the corresponding fuzzy set [3], [4], [6], [7]. Unlike classical set theory, where the characteristic function range is limited to the bivalent set $\{0, 1\}$, the membership function range is an interval; without loss of generality, we can limit ourselves to [0, 1], the commonly used range.

For fuzzy numbers, triangular or trapezoidal membership functions are widely used, for instance; see Figure 1. They are directly defined by the analyst on the basis of his or her judgment. Inevitably, strong subjective factors influence the definition. A more objective approach to the definition of a membership function is possible in situations where P, a set of uncertain input parameters, appears in two associated models, say M_1 and M_2 , where the output of the model M_1 is measured and, through solving an inverse problem, enables the identification of the input parameters value. The goal is to assess the uncertainty of the output of the model M_2 via fuzzified input parameters P whose membership function is defined by means of the response of the model M_1 .

DOI: 10.21136/panm.2018.05

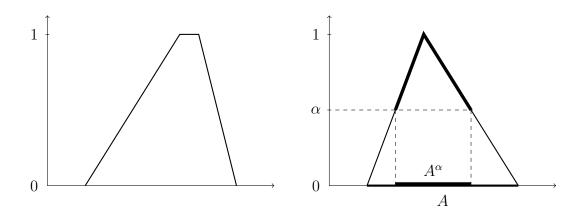


Figure 1: Left: A trapezoidal membership function. Right: A triangular membership function and an α -level set A^{α} .

Let us consider a space $S = \mathbb{R}^n$, where \mathbb{R} stands for the field of real numbers and *n* is a natural number. Let μ_A be a continuous membership function defined on *S* and such that its support (that is, the closure of $\{a \in S | \mu_A(a) > 0\}$) is equal to a compact convex subset *A* of *S*. Next, we define the α -cuts of *A* (α -level sets) as

$$A^{\alpha} = \{ a \in A | \ \mu_A(a) \ge \alpha \}, \quad \text{where } \alpha \in [0, 1].$$

Let us note that $A^0 \equiv A$. We assume that A^{α} is convex for any $\alpha \in [0, 1]$.

Figure 1 depicts two (nonsymmetric) membership functions where A and A^{α} are closed intervals. We also observe, see Figure 1 (right), that by knowing A^{α} for any $\alpha \in [0, 1]$, we can reconstruct μ_A . That is,

$$\mu_A(a) = \max\{\alpha \mid a \in A^\alpha\} \tag{1}$$

for any $a \in A \subset S$.

The same idea applied to a finite sequence $\{\alpha_i\}_{i=1}^n \subset [0,1]$ is used in numerical algorithms to approximate the membership function of a model output.

To this end, let us consider Φ , a quantity of interest whose value at a is continuously determined by an a-dependent mathematical or computational model. That is, we can view Φ as a (possibly rather complex) map from A to \mathbb{R} . If A is fuzzy, then $R_{\Phi} = \{y \in \mathbb{R} | \exists a \in A \ y = \Phi(a)\}$, the range of $\Phi|_A$, is also fuzzy and its membership function can be inferred by Zadeh's extension principle, see [3], [4], [7], for instance. The principle says that $\mu_{R_{\Phi}}$, the membership function of the fuzzy set R_{Φ} , can be obtained by applying the following rule

$$\mu_{R_{\Phi}}(y) = \max_{\{a \in A \mid y = \Phi(a)\}} \mu_A(a)$$
(2)

at each $y \in R_{\Phi}$.

Since R_{Φ} is an interval, it can be easier to obtain μ_{Φ} not directly from (2), but from (1) where A^{α} is replaced by R_{Φ}^{α} , the α -cut of R_{Φ} that coincides with the range of $\Phi|_{A^{\alpha}}$. By virtue of the convexity and compactness assumptions,

$$R^{\alpha}_{\Phi} = \left[\min_{a \in A^{\alpha}} \Phi(a), \max_{a \in A^{\alpha}} \Phi(a)\right];$$
(3)

see [4], for example.

Let us note that supremum appears in (1) and (2) in general if the assumptions on A and μ_A are weakened.

2. Model-driven membership function

Let us assume that a model M_1 is represented by $\psi(a, \cdot)$, a real continuous function dependent on a parameter $a \in B \subset S$. Moreover, let a be uncertain, let the output $\psi(a, \cdot)$ be measured at points $\{x_i\}_{i=1}^k$, and let the respective recorded values be denoted by $\{r_i\}_{i=1}^k$.

Next, let us identify the weighted least squares minimizer

$$a_{\min} = \underset{a \in B}{\operatorname{arg\,min}} \,\omega(a), \quad \text{where} \quad \omega(a) = \sum_{i=1}^{k} w_i (r_i - \psi(a, x_i))^2 \tag{4}$$

and w_i are positive weights. It is assumed that $\omega(a_{\min}) > 0$. The quantity ω will help to define the membership function describing the fuzziness of the input of the quantity of interest Φ that is determined by a model M_2 .

In [2], examples of membership functions are given, but more general options exist for the definition of the membership function. Take $0 < c_1, c_2, c_3, c_3$ odd, and

$$\mu_1(b) = 1 + c_1 \left(1 - \left(\frac{\omega(b)}{\omega(b_{\min})} \right)^{c_2} \right)^{c_3}, \quad \mu_2(b) = 1 + c_1 \left(\left(\frac{\omega(b_{\min})}{\omega(b)} \right)^{c_2} - 1 \right)^{c_3}, \quad (5)$$

for instance. We observe that $\omega(b)/\omega(b_{\min}) \geq 1$.

For a fixed c_1, c_2, c_3 and $i \in \{1, 2\}$, the fuzzy set A is then defined by

$$A = \{ a \in B | \ \mu_i(a) \in [0, 1] \}.$$
(6)

A natural choice might be $c_1 = 1$, $c_2 = 1/2$ or $c_2 = 1$, and $c_3 = 1$.

Once the ω -based fuzzy set A and its membership function μ_A are established, the membership function $\mu_{R_{\Phi}}$ associated with the quantity of interest Φ is determined by Zadeh's extension principle; see Section 1.

3. Examples

Let us illustrate the above theory by simple examples.

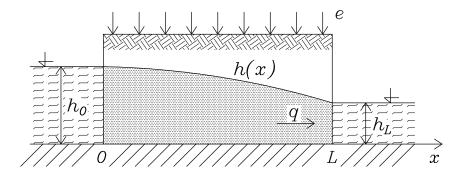


Figure 2: A permeable embandment separates two reservoirs and is subjected to infiltration or evaporation. The groundwater level function h is given by (8).

3.1. Two water levels separated by a permeable embankment

Figure 2 shows a cross section of an embankment separating two reservoirs. The embankment is L units wide and made of a permeable material. The water levels in reservoirs, namely h_0 and h_L , are different. We can assume that $h_0 > h_L$.

Due to head of water (difference of water levels), groundwater flow and also seepage through the embankment exist. The groundwater level is modeled by a smooth function h defined on the interval [0, L]. To add an external factor, let us introduce a constant e representing evaporation (e > 0) or infiltration (e < 0); see Figure 2, where e < 0.

A simple but commonly used approximation h of the true groundwater level in the embankment is based on Dupuit's postulates and solves

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(-Kh(x)\frac{\mathrm{d}h}{\mathrm{d}x}(x)\right) + e = 0, \quad h(0) = h_0, \quad h(L) = h_L, \tag{7}$$

where $0 < K \in \mathbb{R}$ is the saturated hydraulic conductivity; see [5]. Since (7) is equivalent to

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}h^2(x) = 2\frac{e}{K},$$

one can easily check that

$$h_{e,K}^2(x) = \frac{e}{K}x^2 + \left(\frac{h_L^2 - h_0^2}{L} - \frac{e}{K}L\right)x + h_0^2 \tag{8}$$

is the squared solution to (7).

We will assess seepage q (per unit length) and evaporation rate e in two steps.

3.1.1. Seepage

Seepage through the embankment at x = L and consistent with (8) is (see [5]) given by

$$\Phi(K) \equiv q(L) = -\frac{eL}{2} + K \frac{h_0^2 - h_L^2}{2L},$$
(9)

where Φ indicates that $q \equiv q(L)$ is the quantity of interest whose membership function $\hat{\mu}$ will be inferred.

We can apply (8) to obtain K. To this end, let us drill two vertical boreholes into the embankment at $x_1 = L/3$ and $x_2 = 2L/3$ and assess the groundwater level hthere. We obtain r_1 and r_2 , respectively. Since we do not know e in (8) and since it is easier to measure infiltration rate $e_{\rm in}$ than evaporation rate $e_{\rm ev}$, we measure $e_{\rm in}$ during rainfall and use $e = e_{\rm in}$ in (8). We assume that $e_{\rm in}$ is measured accurately, that is, known exactly, but the values r_1 and r_2 are burdened with errors.

Let us define

$$\omega(e_{\rm in}, K) = \sum_{i=1}^{2} (r_i - h_{e_{\rm in}, K}(x_i))^2, \quad \mu_1(K) = 2 - \sqrt{\frac{\omega(e_{\rm in}, K)}{\omega(e_{\rm in}, K_{\rm min})}}, \tag{10}$$

where K_{\min} is identified by the least squares method; see (4) where $h_{e_{in},K}(x_i)$ plays the role of $\psi(a, x_i)$. As a consequence, K is fuzzified and a fuzzy interval $A = \{K \in \mathbb{R} | \mu_1(K) \in [0, 1]\}$, see (6), is considered for the saturated hydraulic conductivity.

We observe that $\hat{\mu}$ is a shifted "multiple" of μ_1 in the sense that each α -cut of the fuzzy interval determined by $\hat{\mu}$ is obtained as the $(h_0^2 - h_L^2)/(2L)$ multiple of A^{α} shifted by $-e_{\rm in}L/2$; see (9). Consequently, there is no need to solve the minimization and maximization problems (3) to obtain α -cuts of the fuzzy quantity $q = \Phi(K)$ in this extremely simple example.

For L = 10, $h_0 = 4$, $h_L = 3$, $e_{in} = -3 \times 10^{-7}$, $r_1 = 4.41$, $r_2 = 4.09$, we obtain $\hat{\mu}$ as depicted in Figure 3 (left).

3.1.2. Evaporation

Let us pay attention to evaporation, a new quantity of interest. To evaluate the evaporation rate e_{ev} during a dry-weather period, we again assess h at x_1 and x_2 with the respective outputs \tilde{r}_1 and \tilde{r}_2 . Like in (10), we define

$$\widetilde{\omega}(e_{\text{ev}}, K) = \sum_{i=1}^{2} (\widetilde{r}_i - h_{e_{\text{ev}}, K}(x_i))^2$$
(11)

but, unlike (10), $e_{\text{ev}} \equiv e$ is not known. For each fixed K, an inverse problem can be solved, that is, the evaporation rate can be found that minimizes (11). However, since K is fuzzy, we have to consider $K \in A^{\alpha}$, where A^{α} are the α -cuts determined by μ_1 through r_i and e_{in} ; see (10). The model M_1 remains unchanged, but the model M_2 becomes the K-dependent inverse problem now.

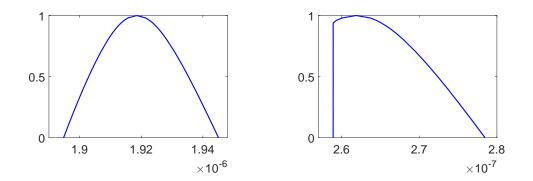


Figure 3: Left: The membership function $\hat{\mu}$ of q. Right: The membership function $\tilde{\mu}$ of e_{ev} . In both graphs, the vertical axis represents α and the horizontal axis represents the quantity of interest q and e_{ev} , respectively.

To get $R_{e_{\text{ev}}}^{\alpha} = [e_{\text{ev,min}}^{\alpha}, e_{\text{ev,max}}^{\alpha}]$, a parallel to (3), we solve

$$K_{\text{ev,min}}^{\alpha} = \underset{K \in A^{\alpha}}{\operatorname{arg\,min}} \min_{e_{\text{ev}} \in I_{e}} \widetilde{\omega}(e_{\text{ev}}, K) \text{ and } K_{\text{ev,max}}^{\alpha} = \underset{K \in A^{\alpha}}{\operatorname{arg\,max}} \min_{e_{\text{ev}} \in I_{e}} \widetilde{\omega}(e_{\text{ev}}, K), \quad (12)$$

where I_e is a chosen sufficiently large interval bounding the search. Then

$$e_{\text{ev,min}}^{\alpha} = \underset{e_{\text{ev}}\in I_e}{\arg\min}\,\widetilde{\omega}(e_{\text{ev}}, K_{\text{ev,min}}^{\alpha}) \text{ and } e_{\text{ev,max}}^{\alpha} = \underset{e_{\text{ev}}\in I_e}{\arg\min}\,\widetilde{\omega}(e_{\text{ev}}, K_{\text{ev,max}}^{\alpha}).$$
(13)

Since only a finite number of levels α is used in calculations, there is no need to solve (13) in practice. The values $e^{\alpha}_{\text{ev, min}}$ and $e^{\alpha}_{\text{ev, max}}$ are stored in the course of solving (12).

For $\tilde{r}_1 = 2.90$ and $\tilde{r}_2 = 2.60$ entering the calculations, the membership function $\tilde{\mu}$ of $e_{\rm ev}$ is depicted in Figure 3 (right).

The graph, which might seem strange at first glance, shows that e_{ev} is represented by a crisp value at the level $\alpha = 1$ because also the 1-cut of A is a singleton set comprising a unique K. If we start to increase the amount of uncertainty in K by decreasing α , we also decrease $e_{\text{ev,min}}^{\alpha}$ as the solution of the min-min problem (12)-(13). For $\alpha < 0.94$, the condition $K \in A^{\alpha}$ is no longer an active constraint in the minimization of $\tilde{\omega}$ with respect to e_{ev} and the minimizer $e_{\text{ev,min}}^{\alpha}$ is no longer dependent on α .

Problem (12) is, in fact, a sort of best- and worst-case scenario problems. Indeed, in the min-min problem, $e_{\rm ev}$ and K "cooperate" to minimize (11), whereas K is an "antagonist" of $e_{\rm ev}$ in the max-min problem (12) in which the minimizer of $\tilde{\omega}$ is sought under the worst conditions that K can produce.

4. Conclusions

The ideas presented in Section 1 are applicable to parameters belonging to other spaces than \mathbb{R} or \mathbb{R}^n . We can, for instance, take $S \subset C([d_1, d_2])$, where $C([d_1, d_2])$ stands for the space of continuous functions on an interval $[d_1, d_2]$, and consider a problem M_1 represented by, say, an ordinary differential equation (ODE) $D_a u = f$ supplemented by initial or boundary conditions, where D_a is an *a*-dependent differential operator, $a \in S$. Let us assume that inaccurate measurements $\{r_i\}_{i=1}^n$ are associated with $u_a(x_i)$, the ODE solution at $\{x_i\}_{i=1}^n$. Under some assumptions, a function $b_{\min} \in S$ can be identified by the least squares method as in (4). Consequently, the fuzzification of the identified parameter-function can be done as in Section 2.

If a scalar quantity of interest represents the output of an *a*-dependent Model 2, Zadeh's principle can again be applied to obtain the membership function associated with the the quantity of interest. Besides *a*, Model 2 can depend on other parameters either crisp or fuzzy. In calculations, *S* is approximated by a set of functions controlled by a finite number of parameters. As a consequence, the approximate problem is formulated in terms of finite dimensional fuzzy sets and their α -cuts. Dealing with the latter can still be a rather hard task because A^{α} will enter the minimization (maximization) problem (3) as a constraint determined by (5) and the Model 1 output. Such constraint can be (and usually will be) non-linear.

The common concept of membership functions is sometimes awkward. Traditionally, the range of membership functions is limited to (subsets of) [0, 1]. This limits flexibility in the grading of fuzzy uncertainty. To make things easier, we can adopt the approach presented in [1] within the framework of info-gap decision theory and use membership functions in an "upside down" form where the amount of uncertainty is minimal at $\alpha = 0$ and increases with increasing α . In this approach, the upper bound of α is not limited to 1, but can be arbitrary large and can even increase in the course of computing. An example can be inferred from μ_1 in (5) as follows

$$\widehat{\mu}_A(b) = c_1 \left(\left(\frac{\omega(b)}{\omega(b_{\min})} \right)^{c_2} - 1 \right)^{c_3},$$

where c_1 , c_2 , and c_3 are positive constants.

The α -cuts associated with such "upside down" membership functions are defined by $A^{\alpha} = \{a \in A \mid \mu_A(a) \leq \alpha\}.$

Acknowledgements

This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS 18/002/OHK1/1T/11.

References

- [1] Ben-Haim, Y.: Info-Gap Decision Theory; Decisions Under Severe Uncertainty, 2nd edition. Elsevier, Amsterdam, 2006.
- [2] Chleboun, J.: Uncertainty quantification through a model-based fuzzy set membership function. In: C. Fischer and J. Náprstek (Eds.), *Engineering Mechanics* 2018, 24th International Confrence, pp. 153–156. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018.
- [3] Dubois, D. and Prade, H.: *Fundamentals of Fuzzy Sets*. The Handbooks of Fuzzy Sets Series, vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
- [4] Möller, B. and Beer, M.: Fuzzy Randomness; Uncertainty in Civil Engineering and Computational Mechanics. Springer-Verlag, Berlin, 2000.
- [5] Valentová, J.: Groundwater Hydraulics, 3rd edition. Nakladatelství CVUT, Praha, 2007. (In Czech, Hydraulika podzemní vody)
- [6] Wikipedia: Fuzzy set, https://en.wikipedia.org/wiki/Fuzzy_set, visited on August 9, 2018.
- [7] Zimmermann, H.-J.: *Fuzzy Set Theory* and Its Applications, 4th edition. Kluwer Academic Publishers, Boston, 2001.