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KYBERNET IKA — VOLUME 5 4 ( 2 0 1 8 ) , NUMBER 2 , PAGES 3 6 3 – 3 7 4

STATIONARITY AND INVERTIBILITY OF A DYNAMIC
CORRELATION MATRIX

Michael McAleer

One of the most widely-used multivariate conditional volatility models is the dynamic condi-
tional correlation (or DCC) specification. However, the underlying stochastic process to derive
DCC has not yet been established, which has made problematic the derivation of asymp-
totic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical
properties of the QMLE of the DCC parameters have purportedly been derived under highly
restrictive and unverifiable regularity conditions. The paper shows that the DCC model can be
obtained from a vector random coefficient moving average process, and derives the stationarity
and invertibility conditions of the DCC model. The derivation of DCC from a vector random
coefficient moving average process raises three important issues, as follows: (i) demonstrates
that DCC is, in fact, a dynamic conditional covariance model of the returns shocks rather than
a dynamic conditional correlation model; (ii) provides the motivation, which is presently miss-
ing, for standardization of the conditional covariance model to obtain the conditional correlation
model; and (iii) shows that the appropriate ARCH or GARCH model for DCC is based on the
standardized shocks rather than the returns shocks. The derivation of the regularity conditions,
especially stationarity and invertibility, may subsequently lead to a solid statistical foundation
for the estimates of the DCC parameters. Several new results are also derived for univariate
models, including a novel conditional volatility model expressed in terms of standardized shocks
rather than returns shocks, as well as the associated stationarity and invertibility conditions.

Keywords: dynamic conditional correlation, dynamic conditional covariance, vector ran-
dom coefficient moving average, stationarity, invertibility, asymptotic proper-
ties

Classification: C22, C52, C58, G32

1. INTRODUCTION

Among multivariate conditional volatility models, the dynamic conditional correlation
(or DCC) specification of Engle [15] is one of the most widely used in practice. Both
multivariate conditional correlations and the associated conditional covariance mod-
els are very useful for determining optimal hedging strategies, volatility spillovers and
causality in volatility among financial commodities. Checking the underlying stochastic
properties, where they might exist, is crucial in examining the internal consistency of
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the models, as well as in deriving asymptotic properties of the associated parameter
estimates, for purposes of sensible empirical analysis.

These theoretical issues are especially important in empirical energy finance, where
the relationships among the prices, returns and volatility of fossil fuels, such as oil,
coal and gas, and the associated carbon emissions, are crucial for public and private
policy making. In this context, Chang and McAleer [6], Chang, McAleer and Tansuchat
[7, 8, 9, 10], Chang, McAleer and Zuo [12], and Chang, McAleer and Wang [11] have
discussed important practical issues arising in empirical finance, especially as they relate
to the pricing, returns and volatility of the primary sources of fossil fuel energy output,
the resulting volatility in pricing carbon emissions, and in related stock prices.

In order to calculate optimal hedging strategies (or risk insurance) to mitigate fi-
nancial risk, the two alternative models that have been used widely for estimating and
forecasting multivariate conditional correlations and conditional covariances have been
based on: (i) the diagonal and full BEKK models of Baba et al. [3] and Engle and
Kroner [16], which have been derived from an m-dimensional vector random coefficient
autoregressive process (see McAleer et al. [21] and Section 2 below); and (ii) the DCC
model, which was presented without an underlying stochastic specification in Engle [15].

The basic DCC modelling approach has been as follows: (i) estimate the univariate
conditional variances using the GARCH(1,1) model of Bollerslev [4], which are based on
the returns shocks; and (ii) estimate what is purported to be the conditional correlation
matrix of the standardized residuals.

The first step in the modelling approach is arbitrary as the conditional variances
could just as easily be based on the standardized residuals themselves, as will be shown
in Section 4 below. The second step is fatally flawed as the model can be derived from an
appropriate underlying stochastic process as a conditional covariance model rather than
as a conditional correlation model. However, as no regularity conditions were presented
in the presentation of the DCC model in Engle [15], no statistical properties have yet
been derived for the estimated parameters of the model.

A similar comment applies to the varying conditional correlation model of Tse and
Tsui [23], where the first stage is based on a standard GARCH(1,1) model using returns
shocks. The second stage is slightly different from the DCC formulation as the condi-
tional correlations are defined appropriately. However, as no regularity conditions are
presented, including invertibility, no statistical properties can be derived.

The DCC model has been analyzed critically in a number of papers as its underly-
ing stochastic process has not yet been established, which has made problematic the
derivation of the asymptotic properties of the Quasi-Maximum Likelihood Estimators
(QMLE). To date, the statistical properties of the QMLE of the DCC parameters have
been derived under highly restrictive and unverifiable regularity conditions, which in
essence amounts to proof by assumption.

This paper shows that the DCC specification can be obtained from a vector random
coefficient moving average process, and derives the sufficient conditions for stationarity
and invertibility of the DCC model. The derivation of regularity conditions may subse-
quently lead to a solid statistical foundation for the estimates of the DCC parameters.

The derivation of DCC from a vector random coefficient moving average process raises
three important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional
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covariance model of the returns shocks rather than a dynamic conditional correlation
model; (ii) provides the motivation, which is presently missing, for standardization of the
conditional covariance model to obtain the conditional correlation model; and (iii) shows
that the appropriate ARCH or GARCH model for DCC is based on the standardized
shocks rather than the returns shocks.

The remainder of the paper is organized as follows. In Section 2, the standard ARCH
model is derived from a random coefficient autoregressive process to provide a back-
ground for the remainder of the paper. The multivariate counterpart of ARCH is derived
from a vector random coefficient autoregressive process, which will explain intuitively
how the univariate results of Marek [20] on a random coefficient moving average process
can be extended to an m-dimensional vector counterpart. In Section 3, the DCC model
is presented and discussed. Section 4 presents and discusses a new vector random coef-
ficient moving average process that will be used as an underlying stochastic process in
order to derive DCC. Several new results are derived for the associated univariate mod-
els, including a novel conditional volatility model expressed in terms of standardized
shocks rather than returns shocks, as well as the associated stationarity and invertibility
conditions. In Section 5, DCC is demonstrated to be derived from the vector random
coefficient moving average process. The conditions for stationarity and invertibility of
DCC are derived in Section 6. Some concluding comments are given in Section 7.

2. RANDOM COEFFICIENT AUTOREGRESSIVE PROCESS

This section presents the underlying stochastic autoregressive processes for univariate
and multivariate GARCH processes, as compared with the multivariate moving average
process for the multivariate DCC process in the following section. Consider the following
random coefficient autoregressive process of order one:

εt = φtεt−1 + ηt (1)

where

φt ∼ iid(0, α),

ηt ∼ iid(0, ω), independent of {φt} .

The ARCH(1) model of Engle [14] can be derived as (see Tsay [22]):

ht = E(ε2t |It−1) = ω + αε2t−1, (2)

where ht is conditional volatility, and It−1 is the information set at time t-1. The use of
an infinite lag length for the random coefficient autoregressive process in equation (1)
leads to the Generalized ARCH (or GARCH) model of Bollerslev [4].

The diagonal version of the BEKK model of Baba et al. [3] and Engle and Kroner [16],
though not the Hadamard BEKK and full BEKK models, can be derived from a vector
random coefficient autoregressive process (see McAleer et al. [21]). As the statistical
properties of vector random coefficient autoregressive processes are well known, the
statistical properties of the parameter estimates of the ARCH, GARCH, and diagonal
BEKK models are straightforward to establish.
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3. DCC SPECIFICATION

This section presents the DCC model, as given in Engle [15], which does not have an
underlying stochastic specification that leads to its derivation. Let the conditional mean
of financial returns be given as:

yt = E(yt|It−1) + εt, (3)

where yt = (y1t, ..., ymt)
′, yit = ∆ logPit represents the log-difference in stock prices (Pit),

i = 1,. . . ,m, It−1 is the information set at time t-1, and εt is conditionally heteroskedas-
tic. Without distinguishing between dynamic conditional covariances and dynamic con-
ditional correlations, Engle [15] presented the DCC specification as:

Qt = (1− α− β)Q+ αηt−1η
′

t−1 + βQt−1, (4)

where Qt in (4) is purported to be a conditional correlation matrix, without proof, Q is
assumed to be positive definite with unit elements along the main diagonal, the scalar
parameters α and β are assumed to be non-negative and satisfy the stability condition,
α+β < 1, the standardized shocks, ηt = (η1t, ...,ηmt)

′, where ηit = εit/
√
hit, are assumed

to be iid, and Dt is a diagonal matrix with typical element
√
hit, i = 1,. . . ,m. If m is

the number of financial assets, the multivariate definition of the relationship between εt
and ηt is εt = Dtηt.

Define the conditional covariance matrix of εt as Qt. As the m × 1 vector, ηt, is
assumed to be iid for all m elements, the conditional correlation matrix of ηt is given
by Γt. Therefore, the conditional expectation of the covariance matrix of εt is defined
as:

Qt = Dt ΓtDt. (5)

Equivalently, the conditional correlation matrix, Γt, is defined as:

Γt = D−1t QtD
−1
t . (6)

Equation (5) is useful if a model of Γt is available for purposes of estimating Qt,
whereas equation (6) is useful if a model of Qt is available for purposes of estimating Γt.
Ling and McAleer [19] and McAleer et al. [21] provide general proofs of the asymptotic
properties of univariate and multivariate conditional volatility models based on satisfying
the regularity conditions in Jeantheau [18] for consistency, and in Theorem 4.1.3 in
Amemiya [2] for asymptotic normality.

In view of equations (5) and (6), as the matrix Qt in equation (4) does not satisfy
the definition of a correlation matrix, Engle [15] uses the following standardization for
Qt in equation (4):

Rt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2. (7)

There is no clear explanation given in Engle [15] for the standardization in equation
(7) or, more recently, in Aielli [1], especially as equation (7) does not satisfy the definition
of a correlation matrix, which is given in equation (6). The standardization in equation
(7) might make sense if the matrix Qt in equation (4) were the conditional covariance
matrix of εt or ηt though this is not made clear. It is worth noting that the unconditional
covariance matrix of εt is not analytically tractable.
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Despite the title of the paper, Aielli [1] also does not provide any stationarity condi-
tions for the DCC model, and does not mention invertibility. Indeed, in the literature
on DCC, it is not clear whether equation (4) refers to a conditional covariance or a
conditional correlation matrix, although the latter is presumed, without proof. Some
caveats regarding DCC are given in Caporin and McAleer [5].

4. VECTOR RANDOM COEFFICIENT MOVING AVERAGE PROCESS

The random coefficient moving average process will be presented in its original univariate
form in section 4.1, as in Marek [20], with an extension to its multivariate counterpart in
section 4.2, in order to derive the corresponding univariate and multivariate conditional
volatility models, respectively.

4.1. Univariate process

In an interesting and useful paper, Marek [20] proposed a linear moving average model
with random coefficients (RCMA), and established the conditions for stationarity and
invertibility. In this section, we extend the univariate results of Marek [20] using an m-
dimensional vector random coefficient moving average process of order p, which is used
as an underlying stochastic process to derive the DCC model, and prove the stationarity
and invertibility conditions. Several new results are also derived for the associated
univariate models, including a novel conditional volatility model expressed in terms of
standardized shocks rather than returns shocks, as well as the associated stationarity
and invertibility conditions.

Consider a univariate random coefficient moving average process given by:

εt = θtηt−1 + ηt, (8)

where ηt ∼ iid (0, ω). The sequence {θt} is supposed to be independent of ηt−1, ηt, ηt+1, . . .,
which is called the Future Independence Condition, with mean zero and variance α. It
is also assumed to be measurable with respect to It, where It is the information set gen-
erated by the random variable {εt,εt−1,...}. Furthermore, it is assumed that the process
{εt} is stationary and invertible, such that ηt ∈ It. For further details, see Marek [20].

Without the measurability assumption on {θt} it would be difficult to obtain results
on the invertibility of the model. However, an important special case of the model arises
when {θt} is iid, that is, not measurable with respect to It, in which case the conditional
and unconditional expectations of εt are zero, and the conditional variance of εt is given
by:

ht = E(ε2t |It−1) = ω + αη2t−1 (9)

which differs from the ARCH(1) model in equation (2) in that the returns shock is
replaced by the standardized shock. This is a new result in the conditional volatility
literature.

As ηt ∼ iid (0, ω), the unconditional variance of εt is given as:

E(ht) = (1 + α)ω.
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The use of an infinite lag length for the random coefficient moving average process in
equation (8), with appropriate restrictions on θt, would lead to a generalized ARCH
model that differs from the GARCH model of Bollerslev [4] as it would replace the
returns shock with a standardized shock.

The univariate ARCH(1) model in equation (9) is contained in the family of GARCH
models proposed by Hentschel [17], and the augmented GARCH model class of Duan
[13].

It can be shown from the results in Marek [20] that a sufficient condition for station-
arity is that the vector sequence υt = (ηt, θtηt−1)′ is stationary. Moreover, by Lemma
2.1 of Marek [20], a new sufficient condition for invertibility is that:

E [log |θt|] < 0. (10)

The stationarity of νt = (ηt, θt, ηt−1) and the invertibility condition in equation (10)
are new results for the univariate ARCH(1) model given in equation (9), as well as its
direct extension to GARCH models.

4.2. Multivariate process

Extending the analysis given above to the multivariate case and to a vector random
coefficient moving average (RCMA) model of order p, we can derive a special case of
DCC(p,q), namely DCC(p,0 ), as follows:

εt =

p∑
j=1

θjtηt−j + ηt, (11)

where εi and ηi are both m× 1 vectors and θjt, j = 1,. . . ,p are random m×m matri-
ces, independent of ηt−1, ηt, ηt+1, . . .. Under Assumption 1, it is possible to derive the
conditional covariance matrix of εi in equation (11):

Assumption 1.

1. E(ηt|It−1) = 0, E(ηtη
′
t|It−1) = Ω.

2. The random coefficient matrices θjt have the following properties: For all j = 1, . . . , p,
and t = 1, . . ., T , it is assumed that E(θjt|It−1)= 0 and E(θjt,klθ

′
jt,mn|It−1) =

Aj,klA
′
j,mn for appropriate matrices Aj,kl and Aj,mn that form the conditional

covariance matrix of θjt, and E(θjt,klθ
′
is,mn|It−1) = 0, i 6= j, and/or s 6= t.

This is similar to Proposition 1 of McAleer et al. [21] in that the conditional covariance
matrix is given by:

Ht = E(εtε
′
t|It−1) = Ω +

p∑
j=1

Ajηt−jη
′

t−jA
′
j

such that:

E(vec(Ht)) =

Im +

p∑
j=1

Aj ⊗Aj

 vec(Ω).
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This approach can easily be extended to include autoregressive terms. For example,
in a model analogous to GARCH(p,q), namely:

Ht = Ω +

p∑
i=1

Aiηt−iη
′

t−iA
′
i +

q∑
j=1

BjHt−jB
′
j ,

where the parameter matrices Bj are such that the maximum eigenvalue of
∑q

j=1Bj⊗Bj

is smaller than one in modulus, it follows that:

E(vec(Ht)) =

Im − q∑
j=1

Bj ⊗Bj

−1 Im +

p∑
j=1

Aj ⊗Aj

 vec(Ω).

The derivation given above shows that, as compared with the standard DCC formula-
tion, which is not based on an underlying stochastic process that leads to its derivation,
the formulation given above permits straightforward computation of the unconditional
variances and covariances via the derived models in equations .

It should also be noted that in Aielli’s [1] variation of the standard DCC model, it is
possible to calculate the unconditional expectation of the Qt matrix, as in equation (4),
but this is not equal to the unconditional covariance matrix of εt , which is analytically
intractable. This is an additional advantage of using the vector random coefficient
moving average process given in the above equations, as will be shown explicitly in the
following section

5. DERIVATION OF DCC

In this section, the DCC model will be derived from a vector random coefficient moving
average process as the underlying stochastic process. If θjt in equation (11) is given as:

θjt = λjtIm, with λjt ∼ iid(0, αj),

j = 1, . . . , p, where λjt is a scalar random variable, then the conditional covariance
matrix can be shown to be:

Ht = E(εtε
′

t|It−1) = Ω +

p∑
j=1

αjηt−jη
′

t−j . (12)

The DCC model in equation (4) is obtained by letting p→∞ in equations (11) and
(12), setting αj = αβj−1, and standardizing Ht in equation (12) to obtain a conditional
correlation matrix. For the case p = 1 in equation (12), the appropriate univariate
conditional volatility model is given in the new model in equation (9), which uses the
standardized shocks, rather than standard ARCH in equation (2), which uses the returns
shocks.

The derivation of DCC in equation (12) from a vector random coefficient moving
average process is important as it: (i) demonstrates that DCC is, in fact, a dynamic
conditional covariance model of the returns shocks rather than a dynamic conditional
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correlation model; (ii) provides the motivation, which is presently missing, for standard-
ization of the conditional covariance model to obtain the conditional correlation model;
and (iii) shows that the appropriate ARCH and GARCH models for DCC are based
on the standardized shocks rather than the returns shocks. Point (iii) provides novel
univariate ARCH and GARCH models.

It is worth noting that the derivation of the DCC model using the underlying vector
random coefficient moving average process is not argued to be unique as the latter
has not been shown to be a necessary condition. However, to date there has been no
derivation of the DCC model from an underlying stochastic process that leads to its
derivation.

6. DERIVATION OF STATIONARITY AND INVERTIBILITY OF DCC

The formulation of DCC given in the previous section is more natural than the standard
treatment as it can be derived from an underlying stochastic process which leads to its
derivation, and can be also analyzed in terms of mathematical and statistical properties,
such as stationarity, invertibility, and existence of moments.

This section derives the stationarity and invertibility conditions for the DCC model
in Theorem 1, based on Assumption 2:

Assumption 2.
E [log ‖Θt−k‖] < log

√
pm (13)

where ‖Θt‖ is the Frobenius norm, and Θt is given by:

Θt =


−θ1t −θ2t . . . −θpt

1 0 . . . 0
. . . .
0 . . . 1 0

 .

Theorem 1. A sufficient condition for stationarity is that the vector sequence:

υt = (ηt, θ1tηt−1, . . . , θptηt−p)
′

is stationary. Furthermore, under Assumption 2, the vector random coefficient moving
average process, εt, is invertible.

P r o o f . The proof of stationarity is similar to the sufficient condition for stationarity
of the univariate random coefficient moving average process, namely that the vector
sequence υt = (ηt, θtηt−1)′ is stationary. For invertibility, note that:

ηt = εt −
p∑

j=1

θjtηt−j

which can be written as:
η̃t = Θtη̃t−1 + ε̃t
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where η̃t = (ηt, ηt−1, . . . , ηt−p+1)
′

and ε̃t = (εt, εt−1, . . . , εt−p+1)
′
.

Hence,

η̃t =

n−1∑
j=0

(
j∏

k=1

Θt−k+1

)
ε̃t−j +

(
n−1∏
k=0

Θt−k

)
η̃t−n.

Now let:

η̃
(n)
t =

n∑
j=0

(
j∏

k=1

Θt−k+1

)
ε̃t−j .

Consider

1

n
log

1
√
pm
‖ η̃t − η̃nt ‖ =

1

n
log

1
√
pm

∥∥∥∥∥
(

n−1∏
k=1

Θt−k

)
η̃t−n

∥∥∥∥∥

≤ 1

n
log

1
√
pm

∥∥∥∥∥
n−1∏
k=1

Θt−k

∥∥∥∥∥+
1

n
log

1
√
pm
‖ η̃t−n‖

≤ 1

n

n∑
k=1

log
1
√
pm
‖Θt−k‖+

1

n
log

1
√
pm
‖ η̃t−n‖

−→
a.s.

E log
1
√
pm
‖Θt−k‖ < 0

as E log ‖Θt−k‖ <
√
pm, by assumption. This implies that ηt − ηnt −→

a.s.
0 and, hence,

ηt is asymptotically measurable with respect to {εt−1, εt−2, . . . }, and εt is invertible.
�

The derivation of the sufficient conditions for stationarity and invertibility of the
DCC model in Theorem 1 makes it more viable and understandable in practice, and
contributes toward a statistical analysis of the model for practical purposes, as discussed
in Section 1.

Note that a sufficient condition for equation (13) is that:

p∑
j=1

E ‖θjt‖2 < m (14)
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as

E log
1
√
pm
‖Θt−k‖ ≤ logE

1
√
pm
‖Θt−k‖

= logE
1
√
pm

√√√√ p∑
j=1

‖θjt‖2 + (p− 1)m

= logE

√√√√ 1
√
pm

p∑
j=1

‖θjt‖2 + (p− 1)/p

≤ log

√√√√ 1
√
pm

p∑
j=1

E ‖θjt‖2 + (p− 1)/p

< 0.

The condition given in equation (14) may be easier to check in practice than the con-
dition given in equation (13). The simplicity and convenience of equation (13) may be
important for the practical implementation of the DCC model.

For the special case θjt = λjtIm, with λjt ∼ iid(0, αj), j = 1, . . . , p, discussed in
Section 5 above, the condition in equation (14) simplifies to the well-known condition
on the long-run persistence to returns shocks, namely:

p∑
j=1

Eλ2jt =

p∑
j=1

αj < 1.

7. CONCLUSION

The paper was concerned with one of the most widely-used multivariate conditional
volatility models, namely the dynamic conditional correlation (or DCC) specification.
As the underlying stochastic process to derive the DCC model has not yet been estab-
lished, this has made problematic the derivation of the asymptotic properties of the
Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical properties of
the QMLE of the DCC parameters have been derived under highly restrictive and un-
verifiable regularity conditions.
The paper showed that the DCC specification could be obtained from a vector random
coefficient moving average process, and derived the sufficient stationarity and invert-
ibility conditions of the DCC model. The derivation of the regularity conditions may
eventually lead to a solid foundation for the statistical analysis of the QMLE estimates
of the DCC parameters.

The derivation of DCC demonstrated that DCC is, in fact, a dynamic conditional co-
variance model of the standardized shocks rather than a dynamic conditional correlation
model based on returns shocks, as presumed in Engle [15]. Moreover, the derivation of
the DCC model provided the motivation, which is presently missing, for standardizing
the conditional covariance model to obtain the conditional correlation model. The stan-
dardization of the estimated DCC models in practice does not satisfy the definition of a
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correlation matrix, which has always been problematic in interpreting the DCC model
(see, for example, Caporin and McAleer [5]).

The derivation of the DCC model also showed that the appropriate ARCH and
GARCH models underlying the DCC model are based on the standardized shocks rather
than the returns shocks. Several new results were also derived for univariate models,
including a novel conditional volatility model that was derived from an underlying uni-
variate random coefficient moving average process.
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