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KYBER NET IKA — VOLUM E 5 3 ( 2 0 1 7 ) , NUMBE R 6 , P AGES 9 8 5 – 9 9 1

ON RANDOM PROCESSES
AS AN IMPLICIT SOLUTION OF EQUATIONS

Petr Lachout

Random processes with convenient properties are often employed to model observed data,
particularly, coming from economy and finance. We will focus our interest in random processes
given implicitly as a solution of a functional equation. For example, random processes AR,
ARMA, ARCH, GARCH are belonging in this wide class. Their common feature can be ex-
pressed by requirement that stated random process together with incoming innovations must
fulfill a functional equation.

Functional dependence is linear for AR, ARMA. We consider a general functional depen-
dence, but, existence of a forward and a backward equivalent rewritings of the given functional
equation is required. We present a concept of solution construction giving uniqueness of as-
signed solution.

We introduce a class of implicit models where forward and backward equivalent rewritings
exist. Illustrative examples are included.

Keywords: econometric models, ARMA process, implicit definition

Classification: 62M10, 91B70

1. INTRODUCTION

Linear models are based on properties of the Hilbert space L2 and the calculus of poly-
nomials in the backward shift operator, see e. g. [1, 2, 3]. We will consider more complex
models written as a functional equation; see e. g. [4, 7, 8, 9, 10, 11]. This theoretical
description and consequent properties possess relevant impact to practice. Particularly,
modern analysis of financial and economic data is based on this setup.

Our realization is focused to models given as an implicit solution of a functional
equation. We start to treat this subject in [5] and continue in [6]. In the present paper,
we construct a solution in pointwise sense. The construction is actually a numerical
algorithm based on recurrent plugging in a forward or a backward formula. Finally, the
construction is adapted to derive all random solutions of a given equation with random
innovations.
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2. DESCRIPTION OF THE MODEL

We consider a random real vector time-series of dimension J ∈ N explained by random
real vector innovations of dimension K ∈ N. Spaces of their values will be denoted
Y = RJ , Z = RK . More precisely, we consider a random real vector time-series Y =
(Y (t) , t ∈ Z), where for each time t ∈ Z we have Y (t) = (Y1 (t) ,Y2 (t) , . . . ,YJ (t))>; i. e.
Y (t) ∈ Y. We suppose Y is tightly related to a series of innovations Z = (Z (t) , t ∈ Z),
where for each time t ∈ Z we have Z (t) = (Z1 (t) ,Z2 (t) , . . . ,ZK (t))>; i. e. Z (t) ∈ Z.
The relation is implicitly described by a functional equation

∀ t ∈ Z f (Y (t) ,Y (t− 1) , . . . ,Y (t− p) ; Z (t) ,Z (t− 1) , . . . ,Z (t− q)) = 0 ∈ Rr, (1)

where p ∈ N0, q ∈ N0, r ∈ N, f : Yp+1 ×Zq+1 → Rr is a function.
To abbreviate forthcoming formulas, we introduce a notation

Y (t} k) = Y (t) ,Y (t− 1) , . . . ,Y (t− k) , (2)
Z (t} k) = Z (t) ,Z (t− 1) , . . . ,Z (t− k) .

Hence, the relation (1) converts to an abbreviate form

∀ t ∈ Z f (Y (t} p) ; Z (t} q)) = 0 ∈ Rr. (3)

Since Z (t} q) is always appearing in one block we abbreviate our problem to

∀ t ∈ Z f (Y (t} p) ; Z (t)) = 0 ∈ Rr. (4)

Replacing Z (t) by Z (t} q) we immediately jump from (4) to (3).

3. MAIN RESULTS

We will introduce a case in which we are able to construct all solutions. It is the case if
we possess a forward and a backward equivalent rewriting of (1). Let us start with an
explanation of the term “equivalent rewriting”.

At first we consider two lists of statements.

Definition 3.1. Let n ∈ N0 and two lists of statements R = (R (t) , t ∈ Z), R̃ =
(R̃ (t) , t ∈ Z) be given. We say R is n-implying R̃ whenever for all t ∈ Z we have if
R (s) is true for all s ∈ {t− n, t− n+ 1, . . . , t+ n} then R̃ (t) is true.

Definition 3.2. Let two lists of statements R = (R (t) , t ∈ Z), R̃ = (R̃ (t) , t ∈ Z) be
given. We say R is shift-equivalent to R̃ if and only if there is n ∈ N0 such that R is
n-implying R̃ and R̃ is n-implying R.

Definition 3.3. Let two lists of statements R = (R (t) , t ∈ Z), R̃ = (R̃ (t) , t ∈ Z)
be given. We say R is 0-equivalent to R̃ if and only if R is 0-implying R̃ and R̃ is
0-implying R.

Equivalently, 0-equivalence is characterized by a property for all t ∈ Z we have R (t)
is true if and only if R̃ (t) is true.

The paper is based on shift-equivalence, but, former paper [6] is dealing with 0-
equivalence, only.
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3.1. Deterministic solution

At first, we discuss existence of a deterministic solution of

∀ t ∈ Z f (y (t} p) ; z (t)) = 0 ∈ Rr, (5)

where y = (y (t) , t ∈ Z) ∈ YZ and z = (z (t) , t ∈ Z) ∈ ZZ. The task is to construct y if
f and z are given.

For construction of a solution, we require shift-equivalent rewritings of (5). Forward
solution needs (6) and backward solution is based on (9).

3.1.1. Forward solution

Our construction of a forward solution of (5) is based on a shift-equivalent rewriting of
(5) into a form

∀ t ∈ Z y (t) = F (y ((t− 1)} (p− 1)) ; z (t)) . (6)

Let us call (6) a forward form of (5). Now, we will construct a forward solution of (5).
Fix z ∈ ZZ, τ ∈ Z and ξ ∈ Yp. Initial values of a solution are

y (τ) = ξ1, y (τ + 1) = ξ2, . . . , y (τ + p− 1) = ξp. (7)

Using recurrent plugging in (6), we prolong the sequence y (t) for all t ∈ Z, t ≥ τ + p by

y (t) = F (y ((t− 1)} (p− 1)) ; z (t)) . (8)

Hence for given z ∈ ZZ, τ ∈ Z and ξ ∈ Yp, a sequence y (t) is uniquely determined for
all t ∈ Z, t ≥ τ such that (6) is fulfilled for all t ∈ Z, t ≥ τ+p. Because (6) is n-implying
(5), (5) is fulfilled for all t ∈ Z, t ≥ τ + p+ n.

3.1.2. Backward solution

Our construction of a backward solution of (5) is based on a shift-equivalent rewriting
of (5) into a form

∀ t ∈ Z y (t− p) = G (y (t} (p− 1)) ; z (t)) . (9)

Let us call (9) a backward form of (5). Now, we will construct a backward solution of
(5).

Fix z ∈ ZZ, τ ∈ Z and ξ ∈ Yp. We set initial values of a solution

y (τ) = ξ1, y (τ + 1) = ξ2, . . . , y (τ + p− 1) = ξp. (10)

Using recurrent plugging in (9), we prolong the sequence y (t) for all t ∈ Z, t ≤ τ − 1 by

y (t) = G (y ((t+ p)} (p− 1)) ; z (t+ p)) . (11)

Hence for given z ∈ ZZ, τ ∈ Z and ξ ∈ Yp, a sequence y (t) is uniquely determined for
all t ∈ Z, t ≤ τ + p − 1 such that (9) is fulfilled for all t ∈ Z, t ≤ τ − 1. Because (9) is
n-implying (5), (5) is fulfilled for all t ∈ Z, t ≤ τ − n− 1.
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3.1.3. Both-side solution

Our construction of a solution of (5) requires existence of shift-equivalent rewritings (6),
(9). Assume n ∈ N0 such that (6) is n-implying (9).

For given z ∈ ZZ, τ ∈ Z and ξ ∈ Yp., we construct a solution of (5) in three steps:

Step 0 Set initial values

η (τ) = ξ1, η (τ + 1) = ξ2, . . . , η (τ + p− 1) = ξp.

Step 1 Using the forward construction (8), we are receiving a uniquely determined
sequence η (t), t ∈ Z, t ≥ τ such that (6) is fulfilled for all t ∈ Z, t ≥ τ + p.
Because (6) is n-implying (9), (9) is fulfilled for all t ∈ Z, t ≥ τ + p+ n.

Step 2 Set y (t) = η (t) for all t ∈ Z, t ≥ τ + p+n. Now we prolong this sequence using
backward construction (11). Now, our sequence y (t) is correctly determined for
all t ∈ Z, moreover, it fulfills (9) for all t ∈ Z.

The constructed sequence fulfills (5), (6), (9) for all t ∈ Z.

Theorem 3.4. Let (5) possess shift-equivalent rewritings (6) and (9). For given z ∈ ZZ,
τ ∈ Z and ξ ∈ Yp, our construction is giving a sequence y (t) uniquely determined for
all t ∈ Z and fulfilling (5), (6), (9) for all t ∈ Z.

P r o o f . Evidently, constructed sequence is uniquely defined. It remains to check (5).
Assume n ∈ N0 such that (6) is n-implying (9) and take t ∈ Z for that.

1. Let t ≥ τ + p+ n.
According to forward construction, we have (6) is true for all s ∈ {t − n, t − n +
1, . . . , t+ n}.
Because (6) is n-implying (9), (9) is fulfilled for this t.

2. Let t < τ + p+ n.
According to backward construction, (9) is fulfilled for this t.

We have checked the constructed sequence y fulfills (9) for all t ∈ Z.
Since (9) is shift-equivalent to (5), and (9) is shift-equivalent to (6), (5) and (6) are
fulfilled for all t ∈ Z. �

If n = 0, the initial vector ξ and the vector (y (τ) , y (τ + 1) , . . . , y (τ + p− 1)) must
coincide; see Theorem 2 in [6]. If n ∈ N, the initial vector ξ and the vector
(y (τ) , y (τ + 1) , . . . , y (τ + p− 1)) can differ.

Our construction is describing all solutions of (5).

Theorem 3.5. Let (5) possess shift-equivalent rewritings (6) and (9), z ∈ ZZ be given
and y be a solution of (5). Then for initials τ ∈ Z and
ξ = (y (τ) , y (τ + 1) , . . . , y (τ + p− 1)), our construction is giving back the sequence y.

P r o o f . We know (5) is shift-equivalent to (6), (5) is shift-equivalent to (9) and y is
fulfilling (5) for all t ∈ Z. Since, forward and backward constructions uniquely determine
values of constructed sequences, these values must coincide with original sequence y. �
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3.2. Random solution

Starting with random initials, our construction is giving all solutions of (1).

Theorem 3.6. Let (5) possess shift-equivalent rewritings (6) and (9). Let a random
sequence Z ∈ ZZ and a random vector ξ ∈ Yp be given. Let τ ∈ Z and functions F, G be
measurable. We apply our construction to each random elementary event ω to receive
a sequence Y(ω) = (Y (t, ω) , t ∈ Z). The procedure is giving to us Y = (Y (t) , t ∈ Z) a
sequence of random variables which is a solution of (1). Moreover, each solution of (1)
can be found by this procedure for a convenient choice of ξ.

P r o o f . Statement follows immediately Theorem 3.5 applied to random initials. Mea-
surability of received sequence follows since F, G are measurable. �

4. EXAMPLES

Here we present some examples.

Example 4.1. Consider an example with J = K = r = 1, p = 2, q = 1 given by a
linear equation connecting to an ARMA process:

y (t) +
2
3
y (t− 1)− 1

8
y (t− 2)− z (t) +

1
3
z (t− 1) = 0.

Forms of (6), (9) are straightforward:

y (t) = −2
3
y (t− 1) +

1
8
y (t− 2) + z (t)− 1

3
z (t− 1) ,

y (t− 2) = 8y (t) +
16
3

y (t− 1)− 8z (t) +
8
3
z (t− 1) .

Example 4.2. Consider an example with J = K = r = 2, p = 3, q = 2 given by two
equations:

y1 (t) + 2y1 (t− 1) y2 (t− 1) z1 (t)− y1 (t− 2) + z1 (t− 1) = 0,

y2 (t)− 2y2 (t− 1) y2 (t− 2) (z2 (t))2 − 5y2 (t− 2) z1 (t− 1) z2 (t− 2)
+y1 (t− 3)− y2 (t− 3) = 0.

Form of (6), is straightforward:

y1 (t) = −2y1 (t− 1) y2 (t− 1) z1 (t) + y1 (t− 2)− z1 (t− 1) ,

y2 (t) = 2y2 (t− 1) y2 (t− 2) (z2 (t))2 + 5y2 (t− 2) z1 (t− 1) z2 (t− 2)
−y1 (t− 3) + y2 (t− 3) .

Deriving a form of (9) needs a few steps:

y1 (t− 2) = y1 (t) + 2y1 (t− 1) y2 (t− 1) z1 (t) + z1 (t− 1) ,

y2 (t− 3) = y2 (t)− 2y2 (t− 1) y2 (t− 2) (z2 (t))2

−5y2 (t− 2) z1 (t− 1) z2 (t− 2) + y1 (t− 3) .
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y1 (t− 3) = y1 (t− 1) + 2y1 (t− 2) y2 (t− 2) z1 (t− 1) + z1 (t− 2) ,

y2 (t− 3) = y2 (t)− 2y2 (t− 1) y2 (t− 2) (z2 (t))2

−5y2 (t− 2) z1 (t− 1) z2 (t− 2) + y1 (t− 3) .

Finally, we are receiving a form of (9)

y1 (t− 3) = y1 (t− 1) + 2y1 (t− 2) y2 (t− 2) z1 (t− 1) + z1 (t− 2) ,

y2 (t− 3) = y2 (t)− 2y2 (t− 1) y2 (t− 2) (z2 (t))2

−5y2 (t− 2) z1 (t− 1) z2 (t− 2)
+y1 (t− 1) + 2y1 (t− 2) y2 (t− 2) z1 (t− 1) + z1 (t− 2) .

Example 4.3. Consider an example with J = 3, K = 2, r = 1, p = 3, q = 2 given by∥∥∥∥∥∥
 y1 (t)3

y2 (t)3

y3 (t)5

−
 y1 (t− 1)2 z1 (t)

y2 (t− 1)−3 y2 (t− 2)2 z2 (t)
y3 (t− 1)4 z1 (t)2 z2 (t− 1)−2

− 1
6

 y3 (t− 3)3

y1 (t− 3)−3

y2 (t− 3)−1

∥∥∥∥∥∥ = 0,

where ‖.‖ denotes Euclidean norm. Here a form of (6) is:

y1 (t) =
(

y1 (t− 1)2 z1 (t) +
1
6
y3 (t− 3)3

) 1
3

,

y2 (t) =
(

y2 (t− 1)−3 y2 (t− 2)2 z2 (t) +
1
6
y1 (t− 3)−3

) 1
3

,

y3 (t) =
(

y3 (t− 1)4 z1 (t)2 z2 (t− 1)−2 +
1
6
y2 (t− 3)−1

) 1
5

.

Here a form of (9) is:

y1 (t− 3) =
(

6y2 (t)3 − 6y2 (t− 1)−3 y2 (t− 2)2 z2 (t)
)− 1

3
,

y2 (t− 3) =
(

6y3 (t)5 − 6y3 (t− 1)4 z1 (t)2 z2 (t− 1)−2
)−1

,

y3 (t− 3) =
(

6y1 (t)3 − 6y1 (t− 1)2 z1 (t)
) 1

3
.

5. CONCLUSION

Implicit models with forward and backward shift-equivalent rewritings are convenient
for modeling. Random processes following such models always exist and are uniquely
determined by initial values. Moreover, we have found a full description of solutions of
these implicit formulas.
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