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Abstract. We consider the following quasilinear Neumann boundary-value problem of the
type



















−
N
∑

i=1

∂

∂xi
ai

(

x,
∂u

∂xi

)

+ b(x)|u|p0(x)−2u = f(x, u) + g(x, u) in Ω,

∂u

∂γ
= 0 on ∂Ω.

We prove the existence of infinitely many weak solutions for our equation in the anisotropic
variable exponent Sobolev spaces and we give some examples.

Keywords: Neumann problem; quasilinear elliptic equation; weak solution; variational
principle; anisotropic variable exponent Sobolev space

MSC 2010 : 35J20, 35J62

1. Introduction

Let Ω be a bounded open subset of RN , with boundary ∂Ω of class C1, and let γ

be the outward unit normal vector on ∂Ω.

Zhao, Zhao and Xie have studied in [15] the quasilinear boundary value problem

{

−div a(x,∇u) + |u|p−2u = λf(x, u) in Ω,

u = 0 on ∂Ω.

They have proved the existence of nontrivial weak solutions for this problem under

some assumptions on the Carathéodory function a(x, ξ) and growth conditions on
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the function f(x, s) with λ > 0. In the case of Neumann elliptic equations, Anello

and Cordaro have considered in [1] the following p-Laplacian problem

(1.1)







−∆pu+ λ(x)|u|p−2u = α(x)f(u) + β(x)g(u) in Ω,

∂u

∂γ
= 0 on ∂Ω.

They have shown the existence and multiplicity of weak solutions for this problem

under some growth conditions on functions f(·) and g(·).

In the framework of variable exponent, Fan and Ji have treated in [7] the problem

(1.2)







−∆p(x)u+ λ(x)|u|p(x)−2u = f(x, u) + g(x, u) in Ω,

∂u

∂γ
= 0 on ∂Ω,

where λ(·) ∈ L∞(Ω) is a positive function such that λ− = ess inf
x∈Ω

λ(x) > 0. They

have proved the existence of infinitely many weak solutions W 1,p(·)(Ω) by applying

the critical point theorem obtained by Ricceri in [13], which is a consequence of a

more general result of variational principle.

In the recent years, the anisotropic variable exponent Sobolev spaces have at-

tracted the attention of many mathematicians, physicists and engineers. The im-

pulse for this mainly came from their important applications in modeling real-world

problems in electrorheological and magnetorheological fluids (see for example [14]).

In [12], Mihãilescu and Morosanu have studied the boundary value problem of the

type










−
N
∑

i=1

∂

∂xi
ai

(

x,
∂u

∂xi

)

= f(x, u) in Ω,

u = 0 on ∂Ω,

where ai(x, t) are Carathéodory functions for i = 1, . . . , N , and the function f(x, s)

on the right-hand side satisfies some suitable growth conditions (see also [2], [3], [4],

[5], [8], [10]).

Our aim is to prove the existence of infinitely many weak solutions to the

anisotropic quasilinear p(x)-elliptic problem

(1.3)



















N
∑

i=1

∂

∂xi
ai

(

x,
∂u

∂xi

)

+ b(x)|u|p0(x)−2u = f(x, u) + g(x, u) in Ω,

∂u

∂γ
= 0 on ∂Ω.

We assume that ai : Ω× R 7→ R are Carathéodory functions for i = 1, . . . , N , satis-

fying some assumptions. In the particular case when we take ai(x, s) = |s|pi(x)−2s,
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we obtain the so-called ~p(·)-Laplace operator defined by

(1.4) ∆~p(x)u =
N
∑

i=1

∂

∂xi

(∣

∣

∣

∂u

∂xi

∣

∣

∣

pi(x)−2 ∂u

∂xi

)

.

This paper is organized as follows: In Section 2, we present some necessary prelim-

inary knowledge on the anisotropic variable exponent Sobolev spaces and we recall

some classical existence result. We introduce in Section 3 some assumptions on the

Carathéodory functions ai(x, ξi) and the two functions f(x, s) and g(x, s) for which

there are solutions for our problem. In Section 4, we prove the existence of infinitely

many weak solutions for our Neumann elliptic problem, followed by giving some

interesting examples.

2. Preliminaries

Let Ω be an open bounded subset of RN (N > 1). We define

C+(Ω) = {measurable function p(·) : Ω 7−→ R such that 1 < p− 6 p+ < ∞},

where

p− = ess inf{p(x) : x ∈ Ω} and p+ = ess sup{p(x) : x ∈ Ω}.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all mea-

surable functions u : Ω 7−→ R for which the convex modular

̺p(·)(u) :=

∫

Ω

|u|p(x) dx,

is finite. Then

‖u‖p(·) = inf
{

λ > 0: ̺p(·)

(u

λ

)

6 1
}

defines a norm in Lp(·)(Ω) called the Luxemburg norm. The space (Lp(·)(Ω), ‖·‖p(·))

is a separable and reflexive Banach space. Moreover, the space Lp(·)(Ω) is uniformly

convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω), where 1/p(x)+

1/p′(x) = 1. Finally, we have the generalized Hölder’s type inequality:

(2.1)

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

6

( 1

p−
+

1

(p′)−

)

‖u‖p(·)‖v‖p′(·)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).

An important role in manipulating the generalized Lebesgue spaces is played by

the modular ̺p(·) of the space L
p(·)(Ω). We have the following result.
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Proposition 2.1 (see [11]). If u ∈ Lp(·)(Ω), then the following properties hold

true:

(i) ‖u‖p(·) > 1 =⇒ ‖u‖p
−

p(·) < ̺p(·)(u) < ‖u‖p
+

p(·),

(ii) ‖u‖p(·) < 1 =⇒ ‖u‖p
+

p(·) < ̺p(·)(u) < ‖u‖p
−

p(·).

The Sobolev space with variable exponent is defined as

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)},

equipped with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).

The space (W 1,p(·)(Ω), ‖·‖1,p(·)) is a separable and reflexive Banach space.

R em a r k 2.1. Recall that the definition of these spaces requires only the mea-

surability of the exponent p(x). In this work, we do not need to use Sobolev and

Poincaré inequality. Note that the sharp Sobolev inequality is proved for p(x)-log-

Hölder continuous, while the Poincaré inequality requires only the continuity of p(x)

(see [6], [9]).

Now, we present the anisotropic variable exponent Sobolev space, used for the

study of the main problem.

Let p0(x), p1(x), . . . , pN (x) be N + 1 variable exponents in C+(Ω). We denote

~p(x) = (p0(x), . . . , pN(x)), D0u = u and Diu =
∂u

∂xi
for i = 1, . . . , N.

We define

(2.2) p = min{p−i , i = 0, 1, . . . , N} (then p > 1),

and

(2.3) p+ = max{p+i , i = 0, 1, . . . , N}.

The anisotropic variable exponent Sobolev space W 1,~p(·)(Ω) is defined as

W 1,~p(·)(Ω) = {u ∈ Lp0(x)(Ω) and Diu ∈ Lpi(x)(Ω) for i = 1, 2, . . . , N},

endowed with the norm

(2.4) ‖u‖1,~p(·) =

N
∑

i=0

‖Diu‖pi(·).
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The space
(

W 1,~p(·)(Ω), ‖·‖1,~p(·)
)

is separable and reflexive Banach space (cf. [3], [10]).

Lemma 2.1. Let Ω be a bounded open set in RN , then the following embeddings

are compact:

⊲ if p < N then W
1,~p(·)
0 (Ω) →֒→֒ Lq(Ω) for all q ∈ [p, p∗[, where 1/p∗ = 1/p− 1/N ,

⊲ if p = N then W
1,~p(·)
0 (Ω) →֒→֒ Lq(Ω) for all q ∈ [p,∞[,

⊲ if p > N then W
1,~p(·)
0 (Ω) →֒→֒ L∞(Ω) ∩ C0(Ω).

The proof of this lemma follows from the fact that the embedding W
1,~p(·)
0 (Ω) →֒

W
1,p

0 (Ω) is continuous, and from the classical embedding theorems of the Sobolev

spaces.

Now, we introduce the following theorem, which will be essential to establish the

existence of weak solutions for our main problem.

Theorem 2.1 (see [7], Theorem 2.2). Let X be a reflexive real Banach space and

let Φ,Ψ: X 7−→ R be two sequentially weakly lower semicontinuous and Gâteaux

differentiable functionals. Assume also that Ψ is (strongly) continuous and satisfies

lim
‖u‖X→∞

Ψ(u) = ∞. For each ̺ > inf
X

Ψ put

(2.5) ϕ(̺) = inf
u∈Ψ−1(]−∞,̺[)

Φ(u)− inf
v∈(Ψ−1(]−∞,̺[))w

Φ(v)

̺−Ψ(u)
,

where (Ψ−1(]−∞, ̺[))w is the closure of Ψ
−1(]−∞, ̺[) for the weak topology. Then

the following conclusions hold:

(a) If there exist ̺0 > inf
X

Ψ and u0 ∈ X such that

(2.6) Ψ(u0) < ̺0

and

(2.7) Φ(u0)− inf
v∈(Ψ−1(]−∞,̺0[))w

Φ(v) < ̺0 −Ψ(u0),

then the restriction of Ψ+Φ to Ψ−1(]−∞, ̺0[) has a global minimum.

(b) If there exists a sequence {rn} ⊂
(

inf
X

Ψ,∞
)

with rn → ∞ and a sequence

{un} ⊂ X such that for each n

(2.8) Ψ(un) < rn

and

(2.9) Φ(un)− inf
v∈(Ψ−1(]−∞,rn[))w

Φ(v) < rn −Ψ(un),
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and in addition

(2.10) lim inf
‖u‖→∞

Ψ(u) + Φ(u) = −∞,

then there exists a sequence {vn}n of local minima of Ψ + Φ such that

Ψ(vn) → ∞ as n → ∞.

(c) If there exists a sequence {rn} ⊂
(

inf
X

Ψ,∞
)

with rn → inf
X

Ψ and a sequence

{un} ⊂ X such that for each n conditions (2.8) and (2.9) are satisfied, and in

addition

(2.11) every global minimizer of Ψ is not a local minimizer of Φ+Ψ,

then there exists a sequence {vn} of pairwise distinct local minimizers of Φ+Ψ

such that lim
n→∞

Ψ(vn) = inf
X

Ψ and {vn} weakly converges to a global minimizer

of Ψ.

3. Essential assumptions

Let Ω be a bounded open subset of RN (N > 1) with boundary ∂Ω of class C1,

and let γ be the outward unit normal vector on ∂Ω. We assume that

(3.1) p > N.

Proposition 3.1. Since W 1,~p(·)(Ω) is continuously embedded in W 1,p(Ω) and

W 1,p(Ω) is compactly embedded in C0(Ω) (the space of continuous functions), thus

the embedding of W 1,~p(·)(Ω) in C0(Ω) is continuous and compact, we set

(3.2) C0 = sup
u∈W 1,~p(·)(Ω)\{0}

‖u‖L∞(Ω)

‖u‖1,~p(·)
.

We consider the quasilinear ~p(·)-elliptic problem of the type







Au+ b(x)|u|p0(x)−2u = f(x, u) + g(x, u) in Ω,

∂u

∂γ
= 0 on ∂Ω,

where A is a Leray-Lions operator acted from W 1,~p(·)(Ω) into its dual W−1,~p′(·)(Ω)

defined by the formula

Au = −

N
∑

i=1

∂

∂xi
ai

(

x,
∂u

∂xi

)

,
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where ai : Ω × R 7−→ R are Carathéodory functions which satisfy the following

assumptions:

(A1) The growth condition:

|ai(x, s)| 6 γi(di(x) + |s|pi(x)−1) for i = 1, . . . , N,

where di(·) is a nonnegative function in Lp′

i(·)(Ω) and γi > 0.

(A2) The coercivity condition: there exist two constants α, β > 0 such that

α|s|pi(x) 6 ai(x, s)s 6 βAi(x, s),

where the function Ai : Ω× R 7−→ R is defined by

Ai(x, s) =

∫ s

0

ai(x, t) dt.

(A3) The monotonicity condition:

(ai(x, s)− ai(x, t))(s − t) > 0.

Clearly as a consequence of (A2) and the continuity of the function ai(x, s) with

respect to s, we have

ai(x, 0) = 0.

The Carathéodory functions f, g : Ω× R 7−→ R satisfy condition

(3.3) sup
|t|6r

|f(x, t)| ∈ L1(Ω) and sup
|t|6r

|g(x, t)| ∈ L1(Ω) for any r > 0,

and we set

(3.4) F (x, t) =

∫ t

0

f(x, s) ds and G(x, t) =

∫ t

0

g(x, s) ds.

The function b(·) ∈ L∞(Ω) and there exists a constant b0 > 0 such that b(x) > b0
a.e. in Ω.

We introduce the functionals J(·),Ψ(·),Φ(·) : W 1,~p(·)(Ω) 7−→ R by

(3.5) J(u) =

N
∑

i=1

∫

Ω

Ai

(

x,
∂u

∂xi

)

dx+

∫

Ω

b(x)

p0(x)
|u|

p0(x) dx,

and

(3.6) Ψ(u) = J(u)−

∫

Ω

G(x, u) dx and Φ(u) = −

∫

Ω

F (x, u) dx.
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4. Main results

Definition 4.1. A function F (x, t) satisfies condition (S) if for each compact

subset E of R there exists ξ ∈ E such that

(4.1) F (x, ξ) = sup
t∈E

F (x, t) for a.e. x ∈ Ω.

Definition 4.2. A measurable function u ∈ W 1,~p(·)(Ω) is called a weak solution

of problem (1.3) if

N
∑

i=1

∫

Ω

ai

(

x,
∂u

∂xi

) ∂v

∂xi
dx+

∫

Ω

b(x)|u|p0(x)−2uv dx =

∫

Ω

f(x, u)v dx+

∫

Ω

g(x, u)v dx

for any v ∈ W 1,~p(·)(Ω).

It is clear that u ∈ W 1,~p(·)(Ω) is a weak solution of (1.3) if and only if u is a critical

point of the functional Ψ+Φ.

We take u0 and un in Theorem 2.1 as the constant value functions ξ0 and ξn. We

consider the assumption

(4.2) lim inf
|ξ|→∞

∫

Ω

( b(x)

p0(x)
|ξ|p0(x) −G(x, ξ) − F (x, ξ)

)

dx = −∞,

and the condition

(4.3)

∫

Ω

b(x)

p0(x)
|ξ|p0(x) dx−

∫

Ω

G(x, ξ) dx 6 d1|ξ|
p+
0 + d2 ∀ ξ ∈ R,

where d1 and d2 are two positive constants.

We assume that

(G1) There exists M > 0 and two measurable functions δ(·), θ(·) ∈ L1(Ω) with

‖δ(·)‖L1(Ω) > 0 such that

G(x, t) 6
C1δ(x)

p+0 C
p

0‖δ(·)‖L1(Ω)

|t|p + θ(x) a.e. in Ω for any |t| > M,

with C1 < p+0 /(N + 1)p−1min{α/β, b0/p
+
0 }.

(G2) There exist M > 0, ε ∈]0, 1] and θ
′

(·) ∈ L1(Ω) such that

G(x, t) 6
(1 − ε)b(x)

p0(x)
|t|p0(x) + θ

′

(x) a.e. in Ω for any |t| > M.
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It is easy to see that condition (4.3) is satisfied if assumption (G1) or (G2) hold true.

Our two main results are as follows.

Theorem 4.1. Assume that (A1)–(A3) hold true and the Carathéodory func-

tions f and g satisfy (3.3), (4.2), with F (x, ·) satisfying condition (S), and G(x, ·)

satisfying (G1) or (G2).

Suppose that {yn} and {zn} are two positive sequences such that

(4.4) lim
n→∞

zn = ∞ and lim
n→∞

y
p+
0

n

z
p
n

= 0.

If there exists a positive function h(·) ∈ L1(Ω) with ‖h(·)‖L1(Ω) 6= 0 such that for

each n we have

(4.5) F (x, yn) +
h(x)

‖h(·)‖L1(Ω)

(

d0

( zn
C0

)p

− d1y
p+
0

n − d2

)

> sup
t∈[yn,zn]

F (x, t) a.e. in Ω,

(4.6) F (x,−yn) +
h(x)

‖h(·)‖L1(Ω)

(

d0

( zn
C0

)p

− d1y
p+
0

n − d2

)

> sup
t∈[−zn,−yn]

F (x, t) a.e. in Ω,

where d0 is a positive constant, and the inequalities (4.5)–(4.6) are strict on a subset

of Ω with positive measure. Then there exists a sequence {vn} of local minima of

Ψ+Φ such that lim
n→∞

Ψ(vn) = ∞. Consequently, problem (1.3) admits an unbounded

sequence of weak solutions.

Theorem 4.2. Suppose that (A1)–(A3) hold true, and the function G(x, t) satisfy

(4.7) ∀ t ∈ R G(x, t) 6 0 a.e. in Ω,

and there exist two positive constants M and ε such that

(4.8) −G(x, t) 6 M |t|p
−

0 for t 6 ε and a.e. in Ω.

The functional F (x, ·) satisfies condition (S) with F (x, 0) = 0 and

(4.9) lim sup
|ξ|→0

∫

Ω
F (x, ξ) dx+

∫

Ω
G(x, ξ) dx

|ξ|p
>

∫

Ω

b(x)

p0(x)
dx.
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Suppose that there exist two positive sequences {yn} and {zn} such that

(4.10) lim
n→∞

zn = 0 and lim
n→∞

y
p−

0
n

zp
+

n

= 0,

and there exists a positive function h(·) ∈ L1(Ω) with ‖h(·)‖L1(Ω) 6= 0 such that for

each n we have

F (x, yn) +
h(x)

‖h(·)‖L1(Ω)

(

d4

( zn
C0

)p+

− d3y
p−

0
n

)

> sup
t∈[yn,zn]

F (x, t) a.e. in Ω,(4.11)

F (x,−yn) +
h(x)

‖h(·)‖L1(Ω)

(

d4

( zn
C0

)p+

− d3y
p−

0
n

)

> sup
t∈[−zn,−yn]

F (x, t) a.e. in Ω,(4.12)

and the inequalities (4.11) and (4.12) are strict on a subset of Ω with positive measure,

where

d3 =

∫

Ω

b(x)

p0(x)
dx+M |Ω| and d4 =

1

(N + 1)p̄+−1
min

{α

β
,
b0

p+0

}

.

Then there exists a sequence {vn} of pairwise distinct local minima of Ψ + Φ such

that vn → 0 inW 1,~p(·)(Ω). Consequently, problem (1.3) admits a sequence of nonzero

weak solutions which converges to 0 in W 1,~p(·)(Ω).

Proof of Theorem 4.1.

Step 1 : Technical Lemma.

Lemma 4.1 (see [4], Lemma 1). The functionals Ψ(·) and Φ(·) are well-defined

on W 1,~p(·)(Ω). In addition, Ψ(·) and Φ(·) are of class C1(W 1,~p(·)(Ω),R) and

〈Ψ′(u), v〉 =
N
∑

i=1

∫

Ω

ai

(

x,
∂u

∂xi

) ∂v

∂xi
dx+

∫

Ω

b(x)|u|p0(x)−2uv dx−

∫

Ω

g(x, u)v dx,

〈Φ′(u), v〉 = −

∫

Ω

f(x, u)v dx

for all u, v ∈ W 1,~p(·)(Ω).

Under assumptions (A1)–(A3) and (3.3), the functionals Ψ(·) and Φ(·) are sequen-

tially weakly lower semicontinuous (see [4], Lemma 3).

Step 2 : Coerciveness of the operator Ψ(·).

Proposition 4.1. Assume that G(x, t) satisfies (G1) or (G2). Then the func-

tional Ψ(·) is coercive, i.e.

Ψ(u) → ∞ as ‖u‖1,~p(·) → ∞ for u ∈ W 1,~p(·)(Ω).
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P r o o f. (i) Assume that condition (G1) is satisfied,

G(x, t) 6
C1δ(x)

p+0 C
p

0‖δ(·)‖L1(Ω)

|t|p + θ(x) a.e. in Ω for any |t| > M.

In view of (A2) and since C1 < p+0 (N + 1)1−p min{α/β, b0/p
+
0 },

Ψ(u) =

N
∑

i=1

∫

Ω

Ai

(

x,
∂u

∂xi

)

dx+

∫

Ω

b(x)

p0(x)
|u|

p0(x) dx−

∫

Ω

G(x, u) dx(4.13)

>
α

β

N
∑

i=1

∫

Ω

∣

∣

∣

∂u

∂xi

∣

∣

∣

pi(x)

dx+
b0

p+0

∫

Ω

|u|p0(x) dx

−
C1

p+0 C
p

0

∫

Ω

δ(x)|u|p

‖δ(·)‖L1(Ω)
dx−

∫

Ω

θ(x) dx

>
α

β

N
∑

i=1

(∥

∥

∥

∂u

∂xi

∥

∥

∥

p

pi(·)
− 1

)

+
b0

p+0
(‖u‖

p

p0(·)
− 1)−

C1

p+0 C
p

0

‖u‖
p

L∞(Ω) − ‖θ(·)‖L1(Ω)

>
1

(N + 1)p−1 min
{α

β
,
b0

p+0

}

( N
∑

i=1

∥

∥

∥

∂u

∂xi

∥

∥

∥

pi(·)
+ ‖u‖p0(·)

)p

−
C1

p+0
‖u‖

p

1,~p(·) − ‖θ(·)‖L1(Ω) −
αN

β
− b0

>

( 1

(N + 1)p−1 min
{α

β
,
b0

p+0

}

−
C1

p+0

)

‖u‖
p

1,~p(·)

− ‖θ(·)‖L1(Ω) −
αN

β
− b0.

(ii) Under condition (G2), we have

G(x, t) 6
(1− ε)b(x)

p0(x)
|t|p0(x) + θ′(x), a.e. in Ω for any |t| > M.

Thus

(4.14) Ψ(u) >

N
∑

i=1

∫

Ω

Ai

(

x,
∂u

∂xi

)

dx+

∫

Ω

b(x)

p0(x)
|u|

p0(x) dx

−

∫

Ω

(1 − ε)b(x)

p0(x)
|u|p0(x) dx−

∫

Ω

θ′(x) dx

>
α

β

N
∑

i=1

∫

Ω

∣

∣

∣

∂u

∂xi

∣

∣

∣

pi(x)

dx+ ε
b0

p+0

∫

Ω

|u|p0(x) dx− ‖θ′(·)‖L1(Ω)

>
1

(N + 1)p−1 min
{α

β
, ε

b0

p+0

}

‖u‖
p

1,~p(·) −
Nα

β
− b0 − ‖θ′(·)‖L1(Ω).
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Thanks to (4.13) and (4.14), we conclude that Ψ(·) is coercive. Moreover, there exist

two positive constants d0 and σ0 such that

(4.15) Ψ(u) > d0‖u‖
p

1,~p(·) for ‖u‖1,~p(·) > σ0.

�

Step 3 : A priori estimates. For r > inf
u∈W 1,~p(·)(Ω)

Ψ(u) we define

(4.16) K(r) = inf{σ > 0 such that Ψ−1(]−∞, r[) ⊂ B(0, σ)},

where B(0, σ) = {u ∈ W 1,~p(·)(Ω): ‖u‖1,~p(·) < σ} and B(0, σ) denotes the closure of

B(0, σ) in W 1,~p(·)(Ω) for the norm topology. We have that Ψ: W 1,~p(·)(Ω) 7−→ R is

coercive, then 0 < K(r) < ∞ for each r > inf
u∈W 1,~p(·)(Ω)

Ψ(u). In view of (4.15), we

have

Ψ(u) < d0‖u‖
p

1,~p(·) =⇒ ‖u‖1,~p(·) < σ0.

Thanks to (4.16), we have Ψ−1(]−∞, r[) ⊂ B(0,K(r)), then (Ψ−1(]−∞, r[))w ⊂

B(0,K(r)), and using (3.2), we get

‖u‖L∞(Ω) 6 C0‖u‖1,~p(·), then B(0,K(r)) ⊂ {u ∈ C(Ω): ‖u‖L∞(Ω) 6 C0K(r)}.

It follows that

(4.17) inf
v∈(Ψ−1(]−∞,r[))w

Φ(v) > inf
‖v‖1,~p(·)6K(r)

Φ(v) > inf
‖v‖L∞(Ω)6C0K(r)

Φ(v).

By taking u0 and un as constant value functions ξ0 and ξn in Theorem 2.1, and

using (4.17), we conclude the following Theorem 4.3, that relies on Theorem 2.1.

Theorem 4.3. Assume that (A1)–(A3) hold true, the Carathéodory functions f

and g satisfy (3.3), and consider that Ψ(·) and Φ(·) are defined as in (3.6). When Ψ(·)

is coercive, then

(a) If there exist ̺0 > inf
u∈W 1,~p(·)(Ω)

Ψ(u) and ξ0 ∈ R such that

(4.18)

∫

Ω

b(x)

p0(x)
|ξ0|

p0(x) dx−

∫

Ω

G(x, ξ0) dx := e0 < ̺0

and

(4.19)

∫

Ω

F (x, ξ0) dx+ (̺0 − e0) > sup
v∈C(Ω),‖v‖L∞(Ω)6C0K(̺0)

∫

Ω

F (x, v(x)) dx,

then the restriction of Ψ+Φ to Ψ−1(]−∞, ̺0[) has a global minimum.
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(b) If there exist a sequence {rn} ⊂
(

inf
u∈W 1,~p(·)(Ω)

Ψ(u),∞
)

with lim
n→∞

rn → ∞ and

a sequence {ξn} ⊂ R such that for each n

(4.20)

∫

Ω

b(x)

p0(x)
|ξn|

p0(x) dx−

∫

Ω

G(x, ξn) dx := en < rn

and

(4.21)

∫

Ω

F (x, ξn) dx+ (rn − en) > sup
v∈C(Ω),‖v‖L∞(Ω)6C0K(rn)

∫

Ω

F (x, v(x)) dx,

and in addition (4.2) holds, then there exists a sequence {vn} of local minima

of Ψ+Φ such that lim
n→∞

Ψ(vn) → ∞.

(c) If there exist a sequence {rn} ⊂
(

inf
u∈W 1,~p(·)(Ω)

Ψ(u),∞
)

with lim
n→∞

rn =

inf
u∈W 1,~p(·)(Ω)

Ψ(u) and a sequence {ξn} ⊂ R such that for each n conditions

(4.20) and (4.21) are satisfied, and in addition, condition (2.11) is satisfied,

then there exists a sequence {vn} of pairwise distinct local minima of Ψ + Φ

such that lim
n→∞

Ψ(vn) = inf
u∈W 1,~p(·)(Ω)

Ψ(u) (i.e, the sequence {vn} converges

weakly to the global minimizer of Ψ(·)).

P r o o f of Theorem 4.3. In view of (4.18), assume that ̺0 > inf
u∈W 1,~p(·)(Ω)

Ψ(u)

and ξ0 ∈ R such that
∫

Ω

b(x)

p0(x)
|ξ0|

p0(x) dx−

∫

Ω

G(x, ξ0) dx := e0 < ̺0 =⇒ Ψ(ξ0) < ̺0.

Then (2.6) holds. On the other hand, thanks to (4.19), we have
∫

Ω

F (x, ξ0) dx+ (̺0 − e0) > sup
v∈C(Ω),‖v‖L∞(Ω)6C0K(̺0)

∫

Ω

F (x, v) dx.

Then

̺0 −Ψ(ξ0) > −

∫

Ω

F (x, ξ0) dx+ sup
v∈C(Ω),‖v‖L∞(Ω)6C0K(̺0)

−Φ(v).

Using (4.17), we deduce that

̺0 −Ψ(ξ0) > Φ(ξ0)− inf
v∈(Ψ−1(]−∞,̺0[))w

Φ(v).

Therefore the hypotheses (2.6) and (2.7) of Theorem 2.1 (a) are satisfied. Thus, the

restriction of Ψ+Φ to Ψ−1(]−∞, ̺0[) has a global minimum.

Assuming that the hypotheses of Theorem 4.3 (b) and Theorem 4.3 (c) are sat-

isfied, using the same steps, we can prove that the assumptions of Theorem 2.1 (b)

and Theorem 2.1 (c) are satisfied, which concludes the proof of Theorem 4.3. �
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For condition (4.19) in Theorem 4.3 (a) we state the following proposition.

Proposition 4.2. Assume that ̺0 > inf
u∈W 1,~p(·)(Ω)

Ψ(u) and ξ0 ∈ R such that (4.18)

hold true. If there exists a positive function α(·) ∈ L1(Ω) with ‖α(·)‖L1(Ω) 6= 0 such

that

(4.22) F (x, ξ0) +
α(x)

‖α(·)‖L1(Ω)
(̺0 − e0) > sup

|t|6C0K(̺0)

F (x, t) for a.e. x ∈ Ω,

and inequality (4.22) is strict on a subset of Ω with positive measure, then (4.19)

holds.

P r o o f. Integrating (4.22) over Ω and noting that

∫

Ω

sup
|t|6C0K(̺0)

F (x, t) dx > sup
v∈C(Ω),‖v‖L∞(Ω)6C0K(̺0)

∫

Ω

F (x, v(x)) dx,

we obtain (4.19). �

Step 4 : Proof of statements (4.20) and (4.21).

Proposition 4.3. Assume that Ψ(·) is coercive and (4.15) holds. Then for

r > d0σ
p

0 ,

(4.23) K(r) 6
( r

d0

)1/p

.

P r o o f. Let r > d0σ
p

0 and u ∈ W 1,~p(·)(Ω) such that Ψ(u) < r. When

‖u‖1,~p(·) > σ0, by (4.15) one has

r > Ψ(u) > d0‖u‖
p

1,~p(·),

which implies that ‖u‖1,~p(·) 6 (r/d0)
1/p.

When ‖u‖1,~p(·) < σ0, it is clear that ‖u‖1,~p(·) 6 (r/d0)
1/p. By the definition

of K(r), inequality (4.23) holds. �

Now, we set rn = d0(zn/C0)
p, then lim

n→∞
rn → ∞, and thanks to (4.23) we obtain

(4.24) K(rn) 6
zn
C0

and then C0K(rn) 6 zn.

Since F (x, ·) satisfies condition (S), for each n there exists ξn ∈ [−yn, yn] such that

(4.25) F (x, ξn) = sup
t∈[−yn,yn]

F (x, t) a.e. in Ω.
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By (4.3), one has

en =

∫

Ω

b(x)

p0(x)
|ξn|

p0(x) dx−

∫

Ω

G(x, ξn) dx 6 d1|ξn|
p+
0 + d2 6 d1|yn|

p+
0 + d2.

It follows from (4.4) that for n large enough

d1|yn|
p+
0 + d2 < d0

( zn
C0

)p

= rn,

and consequently en < rn, that is (4.20) holds. Without loss of generality we may

assume that (4.20) holds for all n.

On the other hand, thanks to (4.25), we obtain

F (x, ξn) +
h(x)

‖h(·)‖L1(Ω)
(rn − en) > sup

|t|6yn

F (x, t) a.e. in Ω.

Therefore, having in mind (4.5) and (4.6), we deduce that

(4.26) F (x, ξn) +
h(x)

‖h(·)‖L1(Ω)
(rn − en) > sup

|t|6zn

F (x, t) a.e. in Ω,

and inequality (4.26) is strict on a subset of Ω with positive measure. Using (4.24)

and Proposition 4.2, we obtain (4.21).

Therefore all hypotheses of Theorem 4.3 (b) are satisfied, so the proof of the

Theorem 4.1 is concluded.

P r o o f of Theorem 4.2. Let us verify all the hypotheses of Theorem 4.3 (c).

Using (A2) and (4.7) we have

Ψ(u) = J(u)−

∫

Ω

G(x, u) dx

>

N
∑

i=1

∫

Ω

Ai

(

x,
∂u

∂xi

)

dx+

∫

Ω

b(x)

p0(x)
|u|

p0(x) dx

>
1

(N + 1)p−1 min
{α

β
,
b0
p+

}

‖u‖
p

1,~p(·) −
αN

β
− b0,

then the functional Ψ(·) is coercive, and there exist positive constants d3 and σ1 such

that

(4.27) Ψ(u) > d3‖u‖
p

1,~p(·) for ‖u‖1,~p(·) > σ1.
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Using (4.7) and (4.8), we have inf
u∈W 1,~p(·)(Ω)

Ψ(u) = Ψ(0) = 0 and 0 is the unique

global minimizer of Ψ(·). Thanks to (4.9), we obtain

lim sup
|ξ|→0

{Ψ(ξ) + Φ(ξ)} = lim sup
|ξ|→0

{
∫

Ω

b(x)

p0(x)
|ξ|p0(x) dx−

∫

Ω

G(x, ξ) dx−

∫

Ω

F (x, ξ) dx

}

6 lim sup
|ξ|→0

{
∫

Ω

b(x)

p0(x)
|ξ|p dx−

∫

Ω

G(x, ξ) dx−

∫

Ω

F (x, ξ) dx

}

< 0 = Ψ(0) + Φ(0).

Then 0 is not a local minimizer of the functional Ψ+Φ, so (2.11) is satisfied.

For u ∈ W 1,~p(·)(Ω) such that ‖u‖1,~p(·) 6 1 we have

Ψ(u) >
1

(N + 1)p−1 min
{α

β
,
b0
p+

}

‖u‖p
+

1,~p(·) > d4‖u‖
p+

1,~p(·).

For r > 0 sufficiently small the condition Ψ(u) < r implies that ‖u‖1,~p(·) <

(r/d4)
1/p+

, this shows that K(r) 6 (r/d4)
1/p+

.

Take rn = d4(zn/C0)
p+

. Then

(4.28) C0K(rn) 6 zn.

In view of (4.8) there exists a sequence (ξn)n ⊂ R with ξn ∈ [−yn, yn] such that for

each yn sufficiently small

(4.29) en =

∫

Ω

b(x)

p0(x)
|ξn|

p0(x) dx−

∫

Ω

G(x, ξn) dx

6

(
∫

Ω

b(x)

p0(x)
dx+M |Ω|

)

|ξn|
p−

0 = d3|ξn|
p−

0 6 d3|yn|
p−

0 .

It follows from (4.10) that for n large enough

d3|yn|
p−

0 < d4

( zn
C0

)p+

= rn.

Then (4.20) is obtained.

Noting that F (x, ·) satisfies condition (S), and thanks to (4.11), (4.12) and (4.25),

we can obtain that

(4.30) F (x, ξn) +
h(x)

‖h(·)‖L1(Ω)
(rn − en) > sup

|t|6zn

F (x, t) a.e. in Ω,
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and the inequality (4.30) is strict on a subset of Ω with positive measure. Thanks

to (4.28) and Proposition 4.2, we obtain (4.21). Therefore all the hypotheses of

Theorem 4.3 (c) are satisfied.

Consequently, there exists a sequence {vn} of pairwise distinct local minima of

Ψ + Φ such that Ψ(vn) → 0, which implies ‖vn‖1,~p(·) → 0, thus, the proof of Theo-

rem 4.2 is complete. �

Proposition 4.4. Assume that (A1)–(A3) and (3.3) are satisfied, the function

G(x, ·) satisfies (G1) or (G2), and let F (x, ·) satisfy condition (S).

If there exist two positive constants ̺0 > inf
u∈W 1,~p(x)(Ω)

Ψ(u) and ξ0 ∈ R such that

(4.31) e0 = Ψ(ξ0) < ̺0

and

(4.32)

∫

Ω

F (x, ξ0) dx+ (̺0 − e0) > sup
v∈C(Ω),‖v‖L∞(Ω)6C0K(̺0)

∫

Ω

F (x, v(x)) dx,

then the restriction of Ψ+Φ to Ψ−1(]−∞, ̺0[) has a global minimum. Consequently,

problem (1.3) has at least one weak solution u ∈ W 1,~p(·)(Ω).

P r o o f. The proof of Proposition 4.4 can be deduced from Theorem 4.3 (a), and

using the same steps in the proof of Theorem 4.1. �

E x am p l e s 4.1. Let p > N . Taking b(·) ≡ 1 and g(x, ·) ≡ 0 in problem (1.3),

we obtain

(4.33)



















−

N
∑

i=1

∂

∂xi
ai

(

x,
∂u

∂xi

)

+ |u|p0(x)−2u = f(x, u) in Ω,

∂u

∂γ
= 0 on ∂Ω.

We have G(x, t) ≡ 0, and the operator Ψ(·) is coercive, i.e.

Ψ(u) = J(u) >
1

(N + 1)p−1 min
{α

β
,
1

p+

}

‖u‖
p

1,~p(·)−
αN

β
−1 → ∞ as ‖u‖1,~p(·) → ∞,

with d0 = d4 = (2(N + 1)p−1)−1 min{α/β, 1/p+} and d1 = d2 = |Ω|/p, also we have

Ψ(u) > d4‖u‖
p+

1,~p(·) for ‖u‖1,~p(·) 6 1.
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(a) Taking f(x, t) ≡ h(x) ∈ L1(Ω), we have F (x, t) = h(x)t satisfying the assump-

tions of Proposition 4.4. Then in view of Proposition 4.4 the problem

(4.34)



















−

N
∑

i=1

∂

∂xi
ai

(

x,
∂u

∂xi

)

+ |u|p0(x)−2u = h(x) in Ω,

∂u

∂γ
= 0 on ∂Ω,

has at least one weak solution u ∈ W 1,~p(·)(Ω).

(b) Now, we set f(x, t) ≡ α(x)f1(t), with α(·) ∈ L1(Ω) being a positive function

such that ‖α(·)‖L1(Ω) 6= 0, and let f1(·) be a continuous function such that

f1(t) = F ′
1(t) and F1(−t) = F1(t). We have F (x, t) = α(x)F1(t). Choose two

positive sequences {yn} and {zn} such that y1 > 1, z
p
n = ny

p+
0

n , and yn+1 > zn

for every n. Define F1(yn) = y
p+
0 +1

n and F1(zn) such that

F1(yn) < F1(zn)(4.35)

<
1

‖α‖L1(Ω)

( 1

(N + 1)p−1 min
{α

β
,
1

p+0

}( zn
C0

)p

−
|Ω|

p
(|yn|

p+
0 + 1)

)

+ F1(yn).

Take rn = (N + 1)1−p min
{

α/β, 1/p+0 }(zn/C0)
p and ξn = yn. Since

∫

Ω

1

p0(x)
|yn|

p0(x) dx−

∫

Ω

α(x)F1(yn) dx 6
|Ω|

p
|yn|

p+
0 − ‖α(·)‖L1(Ω)y

p+
0 +1

n → −∞

as n → ∞, conditions (4.2) and (4.4) hold true. Taking h(x) = α(x), and in

view of (4.35) we can conclude conditions (4.5) and (4.6).

The hypotheses of Theorem 4.1 are satisfied, so the problem (4.34) admits a

sequence of weak solutions (un)n in W 1,~p(·)(Ω) such that lim
n→∞

‖un‖1,~p(·) = ∞.

(c) Take f(x, t) ≡ α(x)f1(t) defined as in (b), and choose two positive sequences

{yn} and {zn} such that y
p−

0
n = n−1zp

+

n and zn+1 < yn. We define the func-

tion F1(·) such that F1(0) = 0, F1(yn) = y
p−

0 +1
n and

F1(yn) < F1(zn)(4.36)

<
1

‖α‖L1(Ω)

( 1

(N + 1)p−1 min
{α

β
,
1

p+0

}( zn
C0

)p+

− d3|yn|
p−

0

)

+ F1(yn).

By taking rn = (N + 1)1−p min{α/β, 1/p+0 }(zn/C0)
p and ξn = yn, we have

∫

Ω

F (x, yn) dx−

∫

Ω

1

p0(x)
|yn|

p dx >

∫

Ω

α(x)y
p−

0 +1
n dx−

|Ω|

p+0
|yn|

p−

0 → 0 as n → ∞,
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therefore (4.7)–(4.10) hold true. By taking h(x) = α(x) and using (4.36) we

conclude conditions (4.11) and (4.12). Thus, all the assumptions of Theorem 4.2

are satisfied, so the problem (4.34) admits a sequence of weak solutions (un)n
in W 1,~p(·)(Ω) such that lim

n→∞
‖un‖1,~p(·) = 0.
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