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DENSITY OF SOLUTIONS TO QUADRATIC CONGRUENCES
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Abstract. A classical result in number theory is Dirichlet’s theorem on the density of
primes in an arithmetic progression. We prove a similar result for numbers with exactly
k prime factors for k > 1. Building upon a proof by E.M.Wright in 1954, we compute
the natural density of such numbers where each prime satisfies a congruence condition. As
an application, we obtain the density of squarefree n 6 x with k prime factors such that
a fixed quadratic equation has exactly 2k solutions modulo n.

Keywords: Dirichlet’s theorem; asymptotic density; primes in arithmetic progression;
squarefree number
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1. Introduction

The theory of solving a quadratic equation modulo p for p prime has been well

studied. Investigating whether a given quadratic equation has solutions, how many

there are and calculating what the solutions are, has led to beautiful theorems such

as the law of quadratic reciprocity. A related question is the following:

Suppose we fix a quadratic equation f(x) = x2+ bx+ c, where b, c ∈ Z, and would

like to know how often the equation f(x) = 0 has solutions modulo N if we vary N

in a certain range. Let us first look at the case where we vary over primes p not

exceeding x. Dirichlet, in 1837, showed that solutions would exist for approximately

half the primes. In 1896, this was made precise by de la Vallée-Poussin. Noting that

f(x) has exactly two solutions if and only if the discriminant D = b2− 4c is a square

mod p, what Dirichlet and de la Vallée-Poussin showed was essentially the following:

The research of the author is supported by a PhD scholarship from the National Board
for Higher Mathematics, India.
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Proposition 1.1. For a fixed non-square integer D, as x → ∞,

1

π(x)
#
{

p 6 x, p prime :
(D

p

)

= 1
}

∼
1

2

and
1

π(x)
#
{

p 6 x, p prime :
(D

p

)

= −1
}

∼
1

2
,

where (D
·
) is the Kronecker-Legendre symbol and π(x) denotes the number of primes

not exceeding x.

The main ideas that go into the proof of this result are two classical results: Gauss’s

law of quadratic reciprocity and the natural density version of Dirichlet’s theorem on

the infinitude of primes in an arithmetic progression. Dirichlet proved the original

theorem around 1836. Later, de la Vallée-Poussin proved the statement about natural

density. See Chapter 4, Section IV of [6]. He proved that for positive integers a, q

with gcd(a, q) = 1, the set of primes congruent to a mod q has natural density 1/ϕ(q).

In other words, the number of primes p 6 x such that p ≡ a mod q is asymptotic

to π(x)/ϕ(q) as x → ∞. Since then, there have been analogues of this theorem

in various settings. For example, by applying the Chebotarev density theorem to

the case of cyclotomic extensions Q(ζn) of Q, we obtain Dirichlet’s theorem. The

analogue in the case of function fields was proved by Kornblum and Landau in [2]. It

is natural to ask if we can extend the result to numbers with k prime factors, k > 1.

In order to do so, we first need to talk about the analogue of π(x) for numbers with

k prime factors, which is defined as

τk(x) :=
∑

n6x
n=p1p2...pk

1,

where n = p1p2 . . . pk is the prime factorization of n, with p1 6 p2 6 . . . 6 pk. If we

add an additional condition that the primes dividing n must be distinct, then we are

counting the number of squarefree positive integers not exceeding x, having exactly

k prime factors, and this quantity is denoted by πk(x).

In 1900, Landau in [3] proved that

(1.1) πk(x) ∼ τk(x) ∼
x(log log x)k−1

(k − 1)! log x
.

In 1954, Wright gave a simpler proof of this in [7], which appears as Theorem 437

in [1]. There have been several attempts since then at deriving a precise estimate

with error terms. An exposition of this can be found in Section 7.4 of [4]. With this

in mind, it is natural to ask if we can say something analogous to Proposition 1.1

when n varies over squarefree numbers. In this paper, we prove the following:
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Theorem 1.2. Let D ∈ Z be a non-square integer and k ∈ N. Fix a k-tuple

ε = (ε1, . . . , εk) where εi = ±1 for each i = 1, . . . , k. Then

1

πk(x)
#
{

n 6 x : n = p1p2 . . . pk with p1 < p2 < . . . < pk,

(D

pi

)

= εi for each i
}

∼
1

2k
,

where πk(x) denotes the number of squarefree numbers less than x with k prime

factors.

The proof involves an analogous version of Dirichlet’s theorem, which is the fol-

lowing:

Let us fix N, k ∈ N and consider a k-tuple

m[k] = (m1,m2, . . . ,mk)

where each mi belongs to (Z/NZ)×, the multiplicative group of units in Z/NZ. The

mi’s are not necessarily distinct.

Consider positive integers n 6 x with k prime factors, counted with multiplicity.

Represent such n as n = p1p2 . . . pk with p1 6 p2 6 . . . 6 pk. Let τk,m[k]
(x) denote

the number of positive integers n 6 x with k prime factors satisfying pi ≡ mi mod N

for each i = 1, . . . , k. If the primes are distinct, then n is squarefree. Let πk,m[k]
(x)

denote the number of such squarefree n 6 x. Then we prove

Theorem 1.3.

πk,m[k]
(x) ∼ τk,m[k]

(x) ∼
1

ϕ(N)k
x(log log x)k−1

(k − 1)! log x
, k > 2.

Remark. Note that for k = 1, Theorem 1.3 is exactly the statement of Dirichlet’s

density theorem. The prime number theorem, the non-vanishing of L(1, χ) and the

orthogonality relations satisfied by Dirichlet characters are the key results that are

used in the proof. Similarly, in the proof of Theorem 1.3, Dirichlet’s density theorem

and Landau’s result stated in equation (1.1) play a significant role. In fact, we

essentially use the technique used by Wright in [7] and an orthogonality relation

satisfied by the Dirichlet characters to obtain the result.

The paper is divided as follows. We start by proving Theorem 1.3. The second

section sets the stage by introducing functions and notation that will be used in

the proof. In Section 3 we prove the nontrivial part of the proof of Theorem 1.3 in

detail. With Section 4, we wrap up the proof of this theorem. After that, the proof
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of Proposition 1.1 is given for the sake of completeness and finally, Theorem 1.2

is presented, which uses Proposition 1.1 and Theorem 1.3. We also include two

corollaries of the theorem.

2. Preliminaries

The following notation will be used in the proof of Theorem 1.3:

(1) We write m[k] to denote a k-tuple (m1,m2, . . . ,mk).

(2) We use mi
[k−1] to denote the tuple m[k] under consideration, with the ith coor-

dinate removed.

(3) Henceforth, the sum
∑

p1p2...pk6x

is taken over all sets of primes {p1, p2, . . . , pk}

such that p1p2 . . . pk 6 x, two sets being considered different even if they differ

only in the order of primes.

(4) For a fixed m[k], we write

∑

p1p2...pk6x

χm[k]

:=
∑

p1p2...pk6x

∑

σ∈S′

k

∑

χ

χ(mσ(1))χ(p1)
∑

χ

χ(mσ(2))χ(p2) . . .
∑

χ

χ(mσ(k))χ(pk)

where

1. the set S′
k is the subset of the symmetric group on k symbols con-

sisting of those permutations that give rise to distinct permutations of

{m1,m2, . . . ,mk};

2. the sum
∑

χ
runs over the Dirichlet characters modulo N .

Note. We have the following orthogonality relation satisfied by Dirichlet charac-

ters mod N :
∑

χ

χ(m)χ(n) =

{

ϕ(N) if m ≡ n mod N,

0 otherwise.

It is easy to see that, for a fixed n = p1p2 . . . pk and σ ∈ S′
k, the product

∑

χ

χ(mσ(1))χ(p1)
∑

χ

χ(mσ(2))χ(p2) . . .
∑

χ

χ(mσ(k))χ(pk)

is nonzero if and only if pi ≡ mσ(i) for all i = 1, . . . , k. The orthogonality relation tells

us that this nonzero quantity is ϕ(N) for each i. Therefore, for each n = p1p2 . . . pk,

the inner double sum is ϕ(N)k if, for some σ ∈ S′
k, we have pi ≡ mσ(i) for every i and

zero otherwise. Observe that this can happen for at most one permutation σ ∈ S′
k.
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The following are auxiliary functions that will appear in the proof:

1. Πk,χ,m[k]
(x) =

1

ϕ(N)k

∑

p1p2...pk6x

χm[k]
;

2. ϑk,χ,m[k]
(x) =

1

ϕ(N)k

∑

p1p2...pk6x

log(p1p2 . . . pk)χm[k]
;

3. Lk,χ,m[k]
(x) =

1

ϕ(N)k

∑

p1p2...pk6x

1

(p1p2 . . . pk)
χm[k]

.

By Dirichlet’s theorem, we know that for i 6= j the number of primes p ≡

mσ(i) mod N is asymptotically the same as the number of primes p ≡ mσ(j) mod N .

Thus, if we fix a permutation of {m1,m2, . . . ,mk}, then the number of ordered sets

{p1, p2, . . . , pk} such that pi ≡ mi mod N is equal to Πk,χ,m[k]
(x)/M , whereM is the

number of distinct permutations of the multiset {m1,m2, . . . ,mk}.

3. Towards a generalization of Dirichlet’s density theorem

The proof of Theorem 1.3 comes down to proving

Proposition 3.1. For k > 2,

ϑk,χ,m[k]
(x) ∼

M

ϕ(N)k
kx(log log x)k−1.

The proof of this proposition will follow after a series of lemmas.

First, we prove a recursive relation for ϑk,χ,m[k]
(x):

Lemma 3.2. For k > 1,

kϑk+1,χ,m[k+1]
(x) = (k + 1)

∑

p6x

1

ϕ(N)

∑′

i

(

∑

χ

χ(mi)χ(p)ϑk,χ,mi
[k]

(x

p

)

)

,

where the dash on top of the second summation symbol denotes that only those

i = 1, . . . , k are counted for which the mi
[k+1] are distinct.
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P r o o f.

(k + 1)ϑk+1,χ,m[k+1]
(x)

=
1

ϕ(N)k+1

∑

p1p2...pk+16x

(k + 1) log(p1p2 . . . pk+1)χm[k+1]

=
1

ϕ(N)k+1

∑

p1p2...pk+16x

χm[k+1]
(log p1 + log(p2p3 . . . pk+1) + log p2

+ log(p1p3 . . . pk+1) + . . .+ log pk+1 + log(p1p2 . . . pk))

=
1

ϕ(N)k+1

∑

p1p2...pk+16x

log(p1p2 . . . pk+1)χm[k+1]

+
1

ϕ(N)k+1

∑

p1p2...pk+16x

(log(p2p3 . . . pk+1) + . . .+ log(p1p2 . . . pk))χm[k+1]

=
1

ϕ(N)k+1

∑

p1p2...pk+16x

log(p1p2 . . . pk+1)χm[k+1]

+
(k + 1)

ϕ(N)k+1

∑

p1p2...pk+16x

log(p2p3 . . . pk+1)χm[k+1]
.

The first sum is just ϑk+1,χ,m(x) and this reduces the left hand side to kϑk+1,χ,m(x).

In the second sum, observe that the χm[k+1]
appearing there is a (k + 1)-tuple.

Collecting the terms corresponding to p1 in χm[k+1]
, the second sum can be written

as

∑

p1p2...pk+16x

log(p2p3 . . . pk+1)χm[k+1]

=
∑′

i

∑

p1p2...pk+16x

log(p2p3 . . . pk+1)χmi
[k]

(

∑

χ

χ(mi)χ(p1)

)

.

Simplifying, we get

kϑk+1,χ,m[k+1]
(x) = (k + 1)

∑

p6x

1

ϕ(N)

∑′

i

(

∑

χ

χ(mi)χ(p)ϑk,χ,mi
[k]

(x

p

)

)

.

�

Similarly, we prove a recursion formula for the function Lk,χ,m[k]
(x):
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Lemma 3.3. Let L0,χ,m[0]
(x) = 1. Then for k > 1,

Lk,χ,m[k]
(x) =

∑

p6x

1

p

∑′

i

1

ϕ(N)

∑

χ

χ(mi)χ(p)Lk−1,χ,mi
[k−1]

(x

p

)

,

where the dash on top of the second summation symbol is as defined in Lemma 3.2.

This follows directly from the definitions.

Let

(3.1) fk,χ,m[k]
(x) = ϕ(N)kϑk,χ,m[k]

(x) − xkϕ(N)k−1
∑′

i
Lk−1,χ,mi

[k−1]
(x).

The idea is to first estimate fk,χ,m[k]
(x) and Lk,χ,m[k]

(x). Plugging in these estimates

into equation (3.1) will then give an asymptotic formula for θk,χ,m[k]
(x) thus proving

Proposition 3.1. With this in mind, we first prove a recursion formula for fk,χ,m[k]
(x).

Lemma 3.4.

kfk+1,χ,m[k+1]
(x) = (k + 1)

∑

p6x

∑′

i

∑

χ

χ(mi)χ(p)fk,χ,mi
[k]

(x

p

)

.

P r o o f. From the definition of fk,χ,m[k]
(x), we have

kfk+1,χ,m[k+1]
(x) = kϕ(N)k+1ϑk+1,χ,m[k+1]

(x)− xk(k + 1)ϕ(N)k
∑′

i
Lk,χ,mi

[k]
(x).

We evaluate the two summands using Lemma 3.2 and Lemma 3.3 proved above.

By Lemma 3.2 we have

kϕ(N)k+1ϑk+1,χ,m[k+1]
(x)

= ϕ(N)k+1(k + 1)
∑

p6x

1

ϕ(N)

∑′

i

(

∑

χ

χ(mi)χ(p)ϑk,χ,mi
[k]

(x

p

)

)

,

which simplifies to

(k + 1)
∑

p6x

∑′

i

∑

χ

χ(mi)χ(p)
[

ϕ(N)kϑk,χ,mi
[k]

(x

p

)]

.

Also using Lemma 3.3,

∑′

i
Lk,χ,mi

[k]
(x) =

k+1
∑

i=1

∑

p6x

1

p

∑′

j

1

ϕ(N)

∑

χ

χ(mj)χ(p)Lk−1,χ,mi,j
[k−1]

(x

p

)

,
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where mi,j
[k−1] denotes m

i
[k] with the jth coordinate removed and

∑′

j denotes that

only distinct mi,j
[k−1] are counted.

Therefore,

xk(k + 1)ϕ(N)k
∑′

i
Lk,χ,mi

[k]
(x)

= (k + 1)
∑

p6x

∑′

i

∑

χ

χ(mi)χ(p)

[

kϕ(N)k−1 x

p

∑′

j
Lk−1,χ,mi,j

[k−1]

(x

p

)

]

.

Putting the two summands together, we obtain the result. �

Next, we use Lemma 3.4 to get an estimate for fk,χ,m[k]
(x).

Lemma 3.5. Let k > 1. Then

fk,χ,m[k]
(x) = o{x(log log x)k−1}.

P r o o f. By induction on k.

When k = 1, writing m[1] = m,

f1,χ,m(x) = ϕ(N)ϑ1,χ,m(x)− x.

From Dirichlet’s theorem on the density of primes in an arithmetic progression,

ϑ1,χ,m(x) ∼ x/ϕ(N) and so

f1,χ,m(x) = o(x).

Suppose the claim is true for k = K, where K > 1. This means for any ε > 0, there

exists x0 = x0(K, ε) such that

|fK,χ,m[K]
(x)| < εx(log log x)K−1, x > x0.

Also, for 1 6 x < x0, from the definition of fK,χ,m[K]
, we can find a real number D

depending on K, ε such that

|fK,χ,m[K]
(x)| < D.

Using the above we deduce

(1) For p 6 x/x0,

∑

p6x/x0

∣

∣

∣

∣

K+1
∑

i=1

∑

χ

χ(mi)χ(p)fK,χ,mi
[K]

(x

p

)

∣

∣

∣

∣

< (K + 1)ϕ(N)ε(log log x)K−1
∑

p6x/x0

x

p

< (K + 2)ϕ(N)εx(log log x)K for x large enough.
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(2) For x/x0 < p 6 x,

∑

x/x0<p6x

∣

∣

∣

∣

K+1
∑

i=1

∑

χ

χ(mi)χ(p)fK,χ,mi
[K]

(x

p

)

∣

∣

∣

∣

< (K + 1)ϕ(N)Dπ(x) < (K + 1)ϕ(N)Dx.

Hence, using Lemma 3.4 and the simple inequality K + 1 < 2K for K > 1, we have

K|fK+1,χ,m[K+1]
(x)| < 2Kϕ(N)x((K + 2)ε(log log x)k + (K + 1)D).

Thus, for x > x1(D, ε,K) we conclude

|fK+1,χ,m[K+1]
(x)| < 2(K + 2)ϕ(N)εx(log log x)K .

Since ε was arbitrary, the claim follows for all k ∈ N by induction. �

To complete the proof of Proposition 3.1, it suffices to prove

Lemma 3.6.

Lk,χ,m[k]
(x) ∼

M

ϕ(N)k
(log log x)k.

P r o o f. Recall that

Lk,χ,m[k]
(x) =

1

ϕ(N)k

∑

p1p2...pk6x

1

(p1p2 . . . pk)
χm[k]

=
1

ϕ(N)k

∑

p1p2...pk6x

1

(p1p2 . . . pk)

×
∑

σ∈Sk

∑

χ

χ(mσ(1))χ(p1)
∑

χ

χ(mσ(2))χ(p2) . . .
∑

χ

χ(mσ(k))χ(pk)

and that M is the number of permutations of the (possible) multiset {m1,m2, . . . ,

mk}.

We observe that the following holds: Given a squarefree number n with k factors,

if each prime p dividing n satisfies p 6 x1/k then n 6 x. This leads us to write

Lk,χ,m[k]
(x) > M

k
∏

i=1

∑

p6x1/k

1

p

( 1

ϕ(N)

∑

χ

χ(mi)χ(p)
)

,

i.e.,

Lk,χ,m[k]
> M

k
∏

i=1

∑

p6x1/k

p≡mi mod N

1

p
.
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Similarly, if n = p1p2 . . . pk is less than x then pi 6 x for i = 1, . . . , k, which gives us

an upper bound:

Lk,χ,m[k]
(x) 6 M

k
∏

i=1

∑

p6x

1

p

(

1

ϕ(N)

∑

χ

χ(mi)χ(p)

)

= M

k
∏

i=1

∑

p6x
p≡mi mod N

1

p
.

It is known (see for example [5]) that for any a coprime to N ,

∑

p6x
p≡a mod N

1

p
∼

1

ϕ(N)
log log x.

Thus, Lk,χ,m[k]
(x) is bounded below and above by functions that are each asymptotic

to Mϕ(N)−k(log log x)k, implying that

Lk,χ,m[k]
(x) ∼

M

ϕ(N)k
(log log x)k.

�

Finally, Proposition 3.1 follows by using Lemma 3.5 and Lemma 3.6 in equa-

tion (3.1).

Remark. Some care needs to be taken while applying Lemma 3.6. The term
k
∑

i=1

Lk−1,χ,mi
[k−1]

(x) appearing in equation (3.1) involves the number of distinct per-

mutations of mi
[k−1], whereas M appearing in Proposition 3.1 is the number of dis-

tinct permutations of m[k]. This is resolved by using the following simple fact:

Let k1 + k2 + . . .+ km = n. Then

n!

k1! k2! . . . km!
=

(n− 1)!

(k1 − 1)! k2! . . . km!
+

(n− 1)!

k1! (k2 − 1)! . . . km!
+. . .+

(n− 1)!

k1! k2! . . . (km − 1)!
.

We are now ready to prove the theorem.
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4. Proof of Theorem 1.3

By partial summation we have

ϑk,χ,m[k]
(x) = Πk,χ,m[k]

(x) log x−

∫ x

2

Πk,χ,m[k]
(t)

t
dt.

Clearly, Πk,χ,m[k]
(t) = O(t) and therefore,

∫ x

2

Πk,χ,m[k]
(t)

t
dt = O(x).

Hence, for k > 2, by Proposition 3.1,

Πk,χ,m[k]
(x) =

ϑk,χ,m[k]
(x)

log x
+O

( x

log x

)

∼
M

ϕ(N)k
kx(log log x)k−1

log x
.

Thus,

(4.1)
1

M
Πk,χ,m[k]

(x) ∼
1

ϕ(N)k
kx(log log x)k−1

log x
.

We now relate this to the functions πk,m[k]
(x) and τk,m[k]

(x). It is easy to see that

k!πk,m[k]
(x) 6

1

M
Πk,χ,m[k]

(x) 6 k! τk,m[k]
(x).

We have two cases to consider.

Case 1 : The units m1,m2, . . .mk are distinct. Then χm[k]
= 0 unless p1, p2, . . . , pk

are all distinct. This forces the equality

k!πk,m[k]
(x) =

1

M
Πk,χ,m[k]

(x) = k! τk,m[k]
(x),

so using equation (4.1) we are done.

Case 2 : At least two of the mi are equal. Certainly, in this case we include those

n = p1 . . . pk such that at least two of the primes are equal. The number of such

n 6 x is τk,m[k]
(x) − πk,m[k]

(x). These n can be expressed in the form n = p1 . . . pk

with pk−1 = pk and m[k] with mk−1 = mk. Therefore, we have

τk,m[k]
(x)− πk,m[k]

(x) 6
1

M

∑

p1p2...p2
k−16x

1

ϕ(N)k
χm[k]

6
1

M

∑

p1p2...pk−16x

1

ϕ(N)k−1
χm[k]

=
1

M
Πk−1,χ,m[k−1]

(x).
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Since Πk−1,χ,m[k−1]
(x)/M is o(Πk,χ,m[k]

(x)/M), from our observation above we have

πk,m[k]
(x) ∼ τk,m[k]

(x) ∼
1

ϕ(N)k
x(log log x)k−1

(k − 1)! log x
, k > 2

thus proving the theorem in this case as well. �

5. Proofs of Proposition 1.1 and Theorem 1.2

In order to prove Proposition 1.1, we note that it suffices to prove the result for

p odd, since 2 is the only even prime and the density of finite sets is zero. Thus we

will assume that p is odd in the proof.

P r o o f of Proposition 1.1. Let D = ±qa1
1 qa2

2 . . . qam
m be the decomposition of D.

Then, by the multiplicative property of the Legendre symbol, we have

(D

p

)

=
(±1

p

)(q1
p

)a1
(q2
p

)a2

. . .
(qm

p

)am

= ±
(q1
p

)(q2
p

)

. . .
(qm

p

)

.

We have two possibilities:

Case (i): 2 ∤ D. Then, either p ≡ 1 mod 4 or p ≡ 3 mod 4. If p ≡ 1 mod 4 then by

quadratic reciprocity,
(

qi
p

)

=
(

p
qi

)

. Also,
(

±1
p

)

= 1. If p ≡ 3 mod 4, then
(

±1
p

)

= −1

and
(

qi
p

)

= ±
(

p
qi

)

, depending on whether qi ≡ 1 or 3 mod 4. In general, we can write

(D

p

)

= ±
( p

q1

)( p

q2

)

. . .
( p

qm

)

.

Since p ∤ q, we know that p is a unit mod q, so it is congruent to one of the q−1 units

in Z/qZ. We also know that if q is an odd prime, then there are (q − 1)/2 squares

in (Z/qZ)×, therefore we conclude that for each qi, the equations

( p

qi

)

= 1

and
( p

qi

)

= −1

each have (qi − 1)/2 solutions for p mod qi.

Let S+
i denote the set of (qi − 1)/2 congruences mod qi that solve

(

p
qi

)

= 1 and

S−

i denote the set of (qi − 1)/2 congruences mod qi that solve
(

p
qi

)

= −1.

Clearly,

(5.1)
(D

p

)

= 1 ⇔
( p

q1

)( p

q2

)

. . .
( p

qm

)

= 1.
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Now, the equations

x1x2 . . . xm = 1 and x1x2 . . . xm = −1

each have M = 2m−1 solutions in {−1, 1}m.

Let us enumerate them as

X1 = (x11, x12, . . . , x1m),

X2 = (x21, x22, . . . , x2m),

...

XM = (xM1, xM2, . . . , xMm),

and

Y1 = (y11, y12, . . . , y1m),

Y2 = (y21, y22, . . . , y2m),

...

YM = (yM1, yM2, . . . , yMm),

where each of the xij , yij are 1 or −1. Depending on whether we need the product

in equation (5.1) to be 1 or −1, we solve using Xi’s or Yj ’s, respectively.

Without loss of generality let us assume that we need the product to be 1.

Then, for each solution Xj, j = 1, . . . ,M we need to solve the system:

p ≡ 1 mod 4,
( p

qi

)

= xji, i = 1, . . .m.

For each i, the equation
(

p
qi

)

= xji will involve choosing a congruence relation from

S±

i depending on the parity of xji. This gives us a total of
m
∏

i=1

(qi − 1)/2 systems of

congruences for each Xj . By the Chinese remainder theorem, each system will give

rise to a unique solution. Thus, the total number of solutions we obtain is

M

m
∏

i=1

qi − 1

2
= 2m−1

m
∏

i=1

qi − 1

2
=

1

2

m
∏

i=1

(qi − 1).

Similarly we get 1
2

m
∏

i=1

(qi − 1) solutions coming from the parallel case of p ≡

3 mod 4.

So, in total we have
m
∏

i=1

(qi − 1) of solutions (mod 4q1q2 . . . qm).

If we denote Q = 4q1q2 . . . qm, then
(

D
p

)

= 1 has 1
2ϕ(Q) of solutions modQ.

Case (ii): 2 | D. Without loss of generality, we may assume that q1 = 2 and qi is

odd for i = 2, . . . , k.

Therefore, we need to find solutions to the equation

(D

p

)

= ±
(2

p

)(q2
p

)

. . .
(qm

p

)

= ±
(2

p

)( p

q2

)

. . .
( p

qm

)

.
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The only difference in this case is that instead of considering the congruence p ≡ 1

or 3 mod 4, we further consider congruences mod 8:

If p ≡ 1 mod 4, we have

(2

p

)

=

{

1 if p ≡ 1 mod 8,

−1 if p ≡ 5 mod 8.

Thus in this case, for each i = 2, . . .m, we have (qi − 1)/2 of congruences mod qi
and one congruence mod 8 corresponding to i = 1. Therefore, for every Xj (or Yj ,

depending on whether we need the product to be 1 or −1), we get
m
∏

i=2

(qi − 1)/2 of

solutions. Hence the total number of solutions is

m
∏

i=2

(qi − 1).

Similarly, if p ≡ 3 mod 4, then we use

(2

p

)

=

{

1 if p ≡ 7 mod 8,

−1 if p ≡ 3 mod 8

and obtain another set of
m
∏

i=2

(qi − 1) solutions.

So we have a total of

2

m
∏

i=2

(qi − 1) =
1

2
ϕ(4q1q2 . . . qm) =

1

2
ϕ(Q)

solutions, which is the same number as in Case (i).

To summarize, for a fixed number D, the number of odd primes p mod Q such

that
(

D
p

)

= 1 is 1
2ϕ(Q). Coming back to our problem, we wish to calculate

#
{

primes p 6 x :
(D

p

)

= 1
}

.

By Dirichlet’s density theorem, we know that for any positive integer a which is

coprime to n,

#{ primes p 6 x : p ≡ a mod n} ∼
1

ϕ(n)
π(x).

Let B(1) := {bi : i = 1, . . . , bϕ(Q)/2} denote the set of solutions modQ obtained from

the discussion above and B(−1) := {b′i : i = 1, . . . , b′ϕ(Q)/2} denote the remaining

residue classes that correspond to the primes p mod Q such that
(

D
p

)

= −1. Then,
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(

D
p

)

= 1 if and only if p is congruent to any one of the elements in the set B(1). So

we have

#
{

primes p 6 x :
(D

p

)

= 1
}

=

ϕ(Q)/2
∑

i=1

#{p 6 x, p prime : p ≡ bi mod Q}

∼

ϕ(Q)/2
∑

i=1

1

ϕ(Q)
π(x) =

1

2
π(x).

Hence, the asymptotic density of primes p for which
(

D
p

)

= 1 is 1
2 .

Using the set B(−1), the same proof can be used to show that

#
{

primes p 6 x :
(D

p

)

= −1
}

∼
1

2
π(x),

implying that the density of primes p for which f(x) has no solution mod p is 1
2 . �

We now use this proposition to prove Theorem 1.2.

Remark. From the statement of Proposition 1.1 and Theorem 1.2, it is clear

that we are counting only those squarefree numbers with k-prime factors which are

coprime to the discriminant D of f(x).

P r o o f of Theorem 1.2. We first prove the statement for n odd.

In this case, using Proposition 1.1 we conclude that the condition

(D

pi

)

= εi for each i

will hold if and only if every prime pi dividing n belongs to the set B(εi).

Let us represent the (odd) squarefree number as a k-tuple (p1, p2, . . . , pk) with

p1 < p2 < . . . < pk and choose any k-tuple (m1,m2, . . . ,mk) where each mi ∈ B(εi).

Since |B(±1)| = ϕ(Q)/2, the number of k-tuples such that

(5.2) (p1, p2, . . . , pk) ≡ (m1,m2, . . . ,mk) mod Q

component-wise is (ϕ(Q)/2)k. Therefore, appplying Theorem 1.3, we have

#
{

odd n 6 x, n = p1p2 . . . pk with p1 < p2 < . . . < pk :
(D

pi

)

= εi for each i

}

∼
1

ϕ(Q)k
x(log log x)k−1

(k − 1)! logx

(ϕ(Q)

2

)k

,

setting the odd case.
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Note. Even n are counted only if D is odd.

The even case follows by counting the number of odd squarefree n 6 x/2 with

k − 1 prime factors. From the argument for the odd case, we have

#
{

n 6 x, n = 2p2 . . . pk, with 2 = p1 < p2 < . . . < pk :
(D

pi

)

= εi for each i
}

∼
1

ϕ(Q)k−1
πk−1(x/2)

(ϕ(Q)

2

)k−1

.

Noting that πk−1(x/2)/2
k−1 = o

(

πk(x)/2
k
)

, the result follows. �

Corollary 5.1. The density of squarefree numbers n with k prime factors such

that a quadratic equation has exactly 2k solutions modn is 1/2k.

P r o o f. This easily follows from Theorem 1.2 by taking D as the discriminant of

the quadratic equation and ε with εi = 1 for each i. �

Note. We may ask what happens when n has k prime factors counted with

multiplicity, i.e., when n = p1p2 . . . pk is not necessarily squarefree. We observe

that in this case, the k-tuple m will neccesarily have mi = mj whenever pi = pj .

Therefore, for such n, the number of k-tuples satisfying equation 5.2 will be bounded

by
(

ϕ(Q)/2
)k
and equal to it if and only if n is squarefree. Hence, we deduce the

following:

Corollary 5.2. Let D ∈ Z − {0} and k ∈ N. For any k-tuple ε = (ε1, . . . , εk)

where each εi = ±1 for each i = 1, . . . , k, we have

#
{

n 6 x : n = p1p2 . . . pk with p1 6 p2 6 . . . 6 pk,

(D

pi

)

= εi for each prime pi | n
}

= O
( 1

2k
τk(x)

)

,

where τk(x) is the function defined in the introduction.
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