
ApplMath 2013

Jaroslav Považan; Beloslav Riečan
Fuzzy sets and small systems

In: Jan Brandts and Sergej Korotov and Michal Křížek and Jakub Šístek and Tomáš Vejchodský (eds.): Applications
of Mathematics 2013, In honor of the 70th birthday of Karel Segeth, Proceedings. Prague, May 15-17, 2013.
Institute of Mathematics AS CR, Prague, 2013. pp. 185–187.

Persistent URL: http://dml.cz/dmlcz/702945

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702945
http://dml.cz


Conference Applications of Mathematics 2013

in honor of the 70th birthday of Karel Segeth.

Jan Brandts, Sergey Korotov, Michal Kř́ıžek,
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Abstract

Independently with [7] a corresponding fuzzy approach has been developed in [3–5]
with applications in measure theory. One of the results the Egoroff theorem has been
proved in an abstract form. In [1] a necessary and sufficient condition for holding the
Egoroff theorem was presented in the case of a space with a monotone measure. By
the help of [2] and [6] we prove a variant of the Egoroff theorem stated in [4].

1. Introduction

In [7] the notion of a fuzzy subset A of a space X has been defined as a mapping
A : X → [0, 1]. Especially, if A : X → {0, 1}, then A can be identified with a classical
set B ⊂ X by the help of the equality A = χB.

Almost at the same time the notion of a set of small measure has been character-
ized in [3–5] using a sequence (Nn)

∞

n=1 of subfamilies of a σ-algebra S ⊂ 2X satisfying
the following properties:

(i) ∅ ∈ Nn,Nn+1 ⊂ Nn for every n ∈ N,

(ii) if A ∈ Nn, B ∈ S and B ⊂ A, then B ∈ Nn,

(iii) if A,B,C ∈ Nn, then A ∪ B ∪ C ∈ Nn−1,

(iv) if Ai ⊃ Ai+1 (i = 1, 2, · · ·) and
⋂

i

Ai = ∅, then to every n ∈ N there is i such

that Ai ∈ Nn.

The classical Egoroff theorem states that if a sequence (fn)n of real measurable
functions converges to a measurable function f almost everywhere, then it converges
almost uniformly, i.e. ∀ε > 0 ∃A ∈ A such that µ(A) < ε and (fn)n converges
uniformly to f on X − A.

Definition. We say that a sequence (fn)n converges to f almost everywhere,
if {x ∈ X ; fn(x) does not converge to f(x)} ∈ Nn for every n. We say that (fn)n
converges to f almost uniformly, if for any n ∈ N there exists A ∈ Nn such that (fn)
converges uniformly to f on X −A.
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2. Egoroff theorem

Theorem. Let (Nn)n be a small system of subfamilies of a measurable space
(X,S). Let (fn)n converges to f almost everywhere. Then (fn)n converges to f

almost uniformly.

Proof. First we use a result from [6]: If (Nn)n satisfies (i)–(iv), then there exists
a monotone continuous function µ : S → [0, 1] such that

Nn = {A ∈ S;µ(A) < 3−n},

n = 1, 2, 3, . . . In [1] the following theorem has been proved: A monotone function
µ : S → [0, 1] satisfies the Egoroff theorem if and only if it satisfies the following
condition (E):

For every double sequence
{

E
(m)
n

}

of measurable sets which satisfies

E(m)
n ց E(m) (n → ∞) , µ

(

∞
⋃

m=1

E(m)

)

= 0

there exist increasing sequences {ni}
∞

i=1 and {mi}
∞

i=1 of natural numbers such that

lim
k→∞

µ

(

∞
⋃

i=k

E(mi)
ni

)

= 0.

We are going to prove that the monotone continuous set function µ satisfies

condition (E). Let
{

E
(m)
n

}

is double sequence of measurable sets for which

E(m)
n ց E(m) (n → ∞) , µ

(

∞
⋃

m=1

E(m)

)

= 0.

From the monotonicity it follows that

0 = µ(∅) ≤ µ
(

E(m0)
)

≤ µ

(

∞
⋃

m=1

E(m)

)

= 0.

We have proven that µ
(

E(m)
)

= 0 for arbitrary m. From this it follows that there is
a natural number n1 for which

µ
(

E(1)
n1

)

≤
1

3
.

Similarly there is a number n2 > n1 for which

µ
(

E(2)
n2

)

≤
1

32
,
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etc. Putting mi = i, we get

µ

(

∞
⋃

i=k

E(mi)
ni

)

≤
∞
∑

i=k

1

3i
=

1
3k

1− 1
3

=
1

2 · 3k−1
.

From this it follows that

lim
k→∞

µ

(

∞
⋃

i=k

E(mi)
ni

)

= 0.

3. Conclusion

We presented a new proof of the Egoroff theorem for small systems [4]. It follows
from a representation theorem in [6] and the Egoroff theorem for monotone measures
in [2].
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