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An introduction to loopoids

Janusz Grabowski

Abstract. We discuss a concept of loopoid as a non-associative generalization

of Brandt groupoid. We introduce and study also an interesting class of more
general objects which we call semiloopoids. A differential version of loopoids is
intended as a framework for Lagrangian discrete mechanics.

Keywords: group; Brandt groupoid; Lie group; loop; transversals; discrete me-
chanics

Classification: Primary 20L05, 20N05, 22A22; Secondary 22E15, 22E60, 58H05

1. Introduction

Compared to the theory of groups, the theory of quasigroups is considerably
older, dating back at least to Euler’s work on orthogonal Latin squares. But later,
the theory of quasigroups was eclipsed by the phenomenal development of the
theory of groups and Lie groups. With the initial completion of the classification
of the finite simple groups, however, attention is once again becoming more evenly
divided between the two theories. Also the theory of smooth quasigroups and
loops started to find interesting applications in geometry and physics.

We refer to the books [3], [2], [22], [23] and the survey articles [4], [24], [25] if
terms and concepts from non-associative algebra, especially loops, are concerned.
However, for completeness and reader’s convenience, we recall basic definitions.

Let us recall that a quasigroup is an algebraic structure < G, · > with a binary
operation (written usually as juxtaposition, a · b = ab) such that rg : x 7→ xg (the
right translation) and lg : x 7→ gx (the left translation) are permutations of G,
equivalently, in which the equations ya = b and ax = b are soluble uniquely for
x and y, respectively. If we assume only that left (resp., right) translations are
permutations, we speak about a left quasigroup (resp., right quasigroup). A left

loop is defined to be a left quasigroup with a right identity e, i.e. xe = x, while a
right loop is a right quasigroup with a left identity, ex = x. A loop is a quasigroup
with a two-sided identity element, e, ex = xe = x. A loop < G, ·, e > with identity
e is called an inverse loop if to each element a in G there corresponds an element
a−1 in G such that

a−1(ab) = (ba)a−1 = b
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for all b ∈ G. It can be easily shown that in an inverse loop < G, ·,−1, e > we
have, for all a, b ∈ G,

aa−1 = a−1a = e, (a−1)−1 = a, and (ab)−1 = b−1a−1.

Loops, or more generally left loops, appear naturally as algebraic structures on
transversals or sections of a subgroup of a group. This observation, going back to
R. Baer [1] (cf. also [6], [17]), lies at the heart of much current research on loops,
also in differential geometry and analysis.

Example 1.1. Let G be a group with the unit e, H be a subgroup, and S ⊂ G
be a left transversal to H in G, i.e. S contains exactly one point from each coset
gH in G/H . This means that any element g ∈ G has a unique decomposition
g = sh, where s ∈ S and h ∈ H . This produces an identification G = S × H of
sets. Let pS : G → S be the projection on S determined by this identification. If
we assume that e ∈ S, then S with the multiplication

s ◦ s′ = pS(ss′)

and e as a right unit is a left loop.
Indeed, as e ◦ s = s ◦ e = pS(s) = s, e is the unit for this multiplication. For

a, b ∈ S, there is h ∈ H such that pS(a−1b) = a−1bh. Hence,

pS(apS(a−1b)) = pS(aa−1bh) = pS(bh) = b ,

that shows that pS(a−1b) is a solution of the equation a ◦ x = b. If c, c′ are two
such solutions, then pS(ac) = pS(ac′), so there is h ∈ H such that ac = ac′h, so
c = c′h and c = c′, since S is transversal to H .

In this paper, we would like to propose a concept of loopoid, defined as a nonas-
sociative generalization of a groupoid. Note that here and throughout the paper,
by groupoid we understand a Brandt groupoid, i.e. a small category in which
every morphism is an isomorphism, and not an object called in algebra also a
magma. These are loops which can be considered as nonassociative generaliza-
tions of groups. In the case of genuine groupoids, however, the situation is more
complicated, because the multiplication is only partially defined, so the axioms of
a loop must be reformulated.

A convenient way is to think about groupoids as being defined exactly like
groups but with the difference that all objects/maps in the definition are relations,
like it has been done by Zakrzewski [28]. In particular, the unity is a relation
ε : {e} −− ⊲ G, associating to a point e a subset M = ε(e) ⊂ G, the set of units.
Using this idea, we define semiloopoids, as well as more specific objects which we
will call loopoids.

We want to stress that our motivation comes from discrete mechanics, where Lie
groupoids have been recently used for a geometric formulation of the Lagrangian
formalism [5], [14], [15], [19], [20], [26], [27]. Infinitesimal parts of Lie groupoids
are Lie algebroids and the corresponding ‘Lie theory’ is well established (cf. [18]).
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We believe that this can be extended to a differential version of the concept of
(semi)loopoid, a differential (semi)loopoid .

As the infinitesimal version of associativity is the Jacobi identity, the corre-
sponding ‘brackets’ will not satisfy the latter. Note that in the literature there
are already natural various generalizations of Lie algebroids, e.g. skew algebroids,
almost Lie algebroids, or Dirac algebroids [7], [8], [9], [11], [12], where no Jacobi
identity is assumed. For instance, the skew algebroid formalism is very useful
in describing the geometry of nonholonomic systems [10]. We believe that we
can obtain skew and/or almost Lie algebroids as infinitesimal parts of differential
loopoids and that standard geometric constructions of the tangent and cotangent
groupoid for a given Lie groupoid can be extended to this category. We postpone,
however, these questions to a separate paper.

Note finally, that after writing the first version of these notes, we learned that
the term loopoid has appeared already in a paper by Kinyon [16] in a similar
context. The motivating example, however, built as an object ‘integrating’ the
Courant bracket on TM ⊕M T

∗M , uses the group of diffeomorphisms of the mani-
fold M as integrating the Lie algebra of vector fields on M , not the pair groupoid
M × M as ‘integrating’ the Lie algebroid TM .

2. Groupoids

Definition 2.1. A groupoid over a set M is a set G equipped with source and

target mappings α, β : G → M , a multiplication map m from G2
def

= {(g, h) ∈
G × G| β(g) = α(h)} to G, an injective units mapping ǫ : M → G, and an
inversion mapping ι : G → G, satisfying the following properties (where we write
gh for m(g, h) and g−1 for ι(g)):

• (associativity) g(hk) = (gh)k in the sense that, if one side of the equation
is defined, so is the other, and then they are equal;

• (identities) ǫ(α(g))g = g = gǫ(β(g));
• (inverses) gg−1 = ǫ(α(g)) and g−1g = ǫ(β(g)).

The elements of G2 are sometimes referred to as composable (or admissible)
pairs. A groupoid G over a set M will be denoted G ⇒ M . Note that the full
information about the groupoid is contained in the multiplication relation which
is a subset G3 ⊂ G × G × G,

(1) G3 = {(x, y, z) ∈ G × G × G | (x, y) ∈ G2 and z = xy} .

Example 2.2 (pair groupoid). Let M be a set and G = M × M and

α(u, v) = u , β(u, v) = v.

Then, M × M is a groupoid over M with the source and target maps α, β, units
mapping ε(u) = (u, u), and the partial composition by (u, v)(v, z) = (u, z). In
other words,

G3 = {(u, v, v, z, u, z) ∈ G × G × G | u, v, z ∈ M} .
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Remark 2.3. We can regard M , via the embedding ε, as a subset in G, and thus
ε as the identity, that simplifies the picture, since α, β become just projections
in G. Indeed, in view of associativity,

(ε(α(g)))2g = (ε(α(g)))ε(α(g))g) = ε(α(g))g ,

so that (ε(α(g)))2 = ε(α(g)) = ε(α(ε(α(g))))ε(α(g)) and, consequently

ε(α(ε(α(g)))) = ε(α(g)) ,

i.e. ε ◦ α is a projection, (ε ◦ α)2 = ε ◦ α. Similarly, ε ◦ β is a projection. We will
use this convention in the sequel.

3. Semiloopoids

Following Zakrzewski’s idea of obtaining the definition of a groupoid by replac-
ing the objects in the definition of a group by relations, we propose the following.

Definition 3.1. A semiloopoid over a set M is a structure consisting of a set G
together with projections α, β : G → M onto a subset M ⊂ G (set of units) and
a multiplication relation G3 ⊂ G × G × G such that, for each g ∈ G,

(2) (α(g), g, g) ∈ G3 and (g, β(g), g) ∈ G3 ,

and the relations lg, rg ⊂ G × G defined by

(h1, h2) ∈ lg ⇔ (g, h1, h2) ∈ G3 ,(3)

(h1, h2) ∈ rg ⇔ (h1, g, h2) ∈ G3,(4)

are injective. If we forget condition (4) (resp., (3)), then we speak about a left

(resp. right) semiloopoid.
A semiloopoid morphism between semiloopoids G, H over M, N , respectively,

is a pair of maps (Φ, φ), where Φ : G → H and φ : M → N , satisfying

Φ|M = φ , αH ◦ Φ = φ ◦ αG , βH ◦ Φ = φ ◦ βG ,

and such that (Φ, Φ, Φ) : G × G × G → H × H × H maps G3 into H3. The last
condition means that

(5) Φ(gh) = Φ(g)Φ(h) ,

provided (g, h) ∈ G2.

Denote the range of the projection of G3 onto the first two factors G × G
with G2. Condition (3) (or (4)) implies that G3 is actually the graph of a map
m : G2 → G, so we can write z = m(g, h), or simply z = gh, instead of (g, h, z) ∈
G3. In particular, in the above notation, α(g)g = g and gβ(g) = g.

Consequently, we will write lgh = z and rgh = z instead of (h, z) ∈ lg and
(h, z) ∈ rg, respectively. We can therefore view lg and rg as bijections defined
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on their domains, Dl
g and Dr

g onto their ranges, Rl
g and Rr

g, respectively. The
definition of a semiloopoid can be therefore reformulated in a more instructive
way as follows.

Definition 3.2 (alternative). A semiloopoid over a set M is a structure consisting
of a set G including M and equipped with

• a partial multiplication m : G × G ⊃ G2 → G, m(g, h) = gh, such that,
for all g ∈ G,

(6) lg : Dl
g → Rl

g , lgh = gh ,

is a bijection from Dl
g = {h ∈ G | (g, h) ∈ G2} onto Rl

g = {gh |(g, h) ∈
G2}, and

(7) rg : Dr
g → Rr

g , rgh = hg ,

is a bijection from Dr
g = {h ∈ G | (h, g) ∈ G2} onto Rr

g = {hg |(h, g) ∈
G2};

• a pair of projections α, β : G → M such that, for all g ∈ G,

(8) α(g)g = g , gβ(g) = g.

Remark 3.3. Note that in a semiloopoid all the structural maps, α, β, m, are
determined by just G3 (cf. (2)).

Example 3.4 (trivial semiloopoid over M). On a set G including M let us choose
projections α, β : G → M and put

G2 = {(α(g), g) | g ∈ G} ∪ {(g, β(g)) | g ∈ G}.

The map m : G2 → G, given by m(α(g), g) = g = m(g, β(g)), establishes on G a
structure of a semiloopoid over M .

Example 3.5. We can make the above example more complicated, choosing
g0 ∈ G\M , a subset A ⊂ G, A∩M = {β(g0)} and an injective map l0 : A → G\M
such that l(β(g0)) = g0. Then, we obtain a semiloopoid by putting

G2 = {(α(g), g) | g ∈ G} ∪ {(g, β(g)) | g ∈ G} ∪ {(g0, h) |h ∈ A} ,

and the partial multiplication m : G2 → G which, besides the unity property (8),
satisfies

m(g0, h) = l0(h) , for h ∈ B.

Definition 3.6. A semiloopoid will be called a left inverse semiloopoid if there is
a left inversion map ιl : G → G such that for each (g, h) ∈ G2 also (ιl(g), gh) ∈ G2

and ιl(g)(gh) = h. A right inverse semiloopoid can be defined analogously.
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A semiloopoid will be called an inverse semiloopoid if there is an inversion map

ι : G → G, to be denoted simply by ι(g) = g−1, such that, for each (g, h), (u, g) ∈
G2, also (g−1, gh), (ug, g−1) ∈ G2 and

g−1(gh) = h , (ug)g−1 = u.

Proposition 3.7. In any inverse semiloopoid the following hold true:

(9) g−1g = β(g) = α(g−1), gg−1 = α(g) = β(g−1) ,
(

g−1
)−1

= g , (gh)−1 = h−1g−1 .

The latter condition means that one side of the equality makes sense if and only

if the other makes sense (the elements are composable) and they are equal.

Proof: By definition of the inverse, g−1g = g−1(gβ(g)) = β(g) and, similarly,
gg−1 = α(g). Now,

(

g−1
)−1

β(g) =
(

g−1
)−1

(g−1g) = g .

But also gβ(g) = g, thus g =
(

g−1
)−1

and

β(g)g−1g = g−1
(

g−1
)−1

= α(g−1) .

Consequently, β(g−1) = α(g) and, finally,

(gh)−1 = h−1(h(gh)−1) = h−1
(

(g−1(gh))(gh)−1
)

= h−1g−1 . �

Example 3.8. In Example 3.4 we can use an involutive bijection ι of G, inter-
twining α and β, for extending the partial multiplication so that we will obtain
an inverse semiloopoid.

4. Tranversals

In the context of semiloopoids, we want to define transversals, similar but
more general than these described in Example 1.1, to produce new examples of
semiloopoids.

Definition 4.1. Let G be a semiloopoid. A pair (T, π), where T ⊂ G and
π : G → T is a projection, is called a transversal in G if

(10) α(T ), β(T ) ⊂ T ,

and for t ∈ T , the relations lTt , rT
t ⊂ T × G, reducing the relations lt, rt

to T × G, i.e.

(t′, g) ∈ lTt ⇔ (t, t′, g) ∈ G3 ,(11)

(t′, g) ∈ rT
t ⇔ (t′, t, g) ∈ G3 ,(12)
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are transversal to π in the sense that the composition relations π ◦ lt, π ◦
rt ⊂ T × T are injective. In other words, for t, t′, u, u′ ∈ T , if tt′ and uu′

are different elements in the same fiber of π, then t 6= t′ and u 6= u′.

If we forget condition (12) (resp. (11)), then we speak about a left (resp. right)
transversal.

Example 4.2. The transversal described in Example 1.1 is an example of a left
transversal in G in the above sense. In this case, T = S and π = pS . The first
condition of Definition 4.1 means that e ∈ S. Condition (11), in turn, means
that, for s, s′, s′′ ∈ S, if pS(ss′) = pS(ss′′), then s′ = s′′. It is clearly satisfied,
since pS(ss′) = pS(ss′′) implies that there is h ∈ H such that ss′′ = ss′h, thus
s′′ = s′h. From the uniqueness of the decomposition G = SH we get s′′ = s′.

Proposition 4.3. If (T, π) is a (left, right) transversal in a semiloopoid G with

the source and target maps α, β : G → M , then T is a (left, right) semiloopoid

itself with the source and target maps

α|T , β|T : T → MT := α(T ) = β(T ) ⊂ T

and the partial multiplication mT : T2 := G2 ∩ (T × T ) → T

t • t′ = π(tt′) .

Proof: Since α(β(T )) = β(T ) ⊂ T , we have trivially α(T ) = β(T ) as the set of
units in T . The injectivity of the left and/or right translations follows from the
corresponding transversality properties. �

5. Loopoids

As Example 3.5 shows, the maps α, β can be rather pathological, if their general
properties are concerned. Let us assume now, that a semiloopoid G over M , with
a partial multiplication m and projections α, β : G → M , satisfies a very weak
associativity condition, hereafter called unities associativity:

(13) (xy)z = x(yz) if one of x, y, z is a unit (i.e. belongs to M) .

The above condition has to be understood as follows: if one side of equation
(13) makes sense, the other makes sense and we have equality. The following
proposition shows that the condition of unities associativity for a semiloopoid
over M implies that the anchor map (α, β) : G → M × M has nice properties,
similar to these for groupoids.

Proposition 5.1. A semiloopoid G over M satisfies the unities associativity

condition if and only if

(14) G2 = {(g, h) ∈ G × G | β(g) = α(h)}
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and

(15) (α, β) : G → M × M

is a semiloopoid morphism into the pair groupoid M × M , i.e.

(16) α(gh) = α(g) and β(gh) = β(h) .

Proof: If (g, h) ∈ G2, then according to (13),

g(α(h)h) = gh = (gβ(g))h = g(β(g)h) ,

so, in view of injectivity of lg, we have h = α(h)h = β(g)h and, consequently,
β(g) = α(h). Similarly,

α(gh)(gh) = gh = (α(g)g)h = α(g)(gh) ,

so α(gh) = α(g). Analogously we can prove β(gh) = β(h).
Conversely, let e ∈ M be such that e(gh) makes sense. Then,

e = β(e) = α(gh) = α(g) .

Hence

(17) e(gh) = α(gh)(gh) = gh = (α(g)g)h = (eg)h .

If this is (eg)h that makes sense, then

e = β(e) = α(g) = α(gh)

and we have (17) again. Similarly we prove (ge)h = g(eh) and (gh)e = g(he). �

The inverse images of points under the source and target maps we call α- and
β-fibres. The fibres through a point g, will be denoted by Fα(g) and Fβ(g),
respectively. The unities associativity assumption implies that each element g
of G determines the left and right translation maps

(18) lg : Fα(β(g)) → Fα(α(g)) , rg : Fβ(α(g)) → Fβ(β(g)) ,

which are injective.

Definition 5.2. A semiloopoid satisfying the unities associativity assumption
and such that the maps (18) are bijective will be called a loopoid.

Remark 5.3. In a loop, the multiplication is globally defined, so the unity asso-
ciativity is always satisfied by properties of the unity element. In this sense, loops
are loopoids over one point.
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Proposition 5.4. Let G be a loopoid over M with the source and target maps

α, β : G → M . Then, for each u ∈ M , the multiplication in G induces a loop

structure on the set

Gu = {g ∈ G |α(g) = β(g) = u}

.

Proof: Gu is clearly closed with respect to the multiplication and this multipli-
cation is globally defined, Gu ⊂ G2. As u is the only unit in Gu, we have only one
α/β-fiber on which translations act as bijections, thus we deal with a loop. �

The loop Gu above will be called the isotropy loop of u ∈ M . A direct conse-
quence of the above proposition is the following.

Corollary 5.5. A loopoid over a single point is a loop.

Example 5.6. If the anchor map in a loopoid is diagonal (trivial), i.e. α = β,
then the loopoid is a bundle of loops. Conversely, any bundle of loops, i.e. a
surjection τ : G → M whose each fiber carries a loop structure, is canonically
a loopoid, with M embedded in G as the section of unit elements in each loop-
fiber, α = β = τ , and the partial multiplication being the loop multiplication
in each fiber. As a more specific example we can take the unit octonion bundle

τ : UOM → M over a 7-dimensional Riemannian manifold M equipped with a
G2-structure, as defined in [13, Definition.3.11]. It is the bundle of unit vectors
in a vector bundle, the octonion bundle TM ×R, whose fibers have the structure
of octonions. Since the unit vectors in octonions, geometrically the 7-sphere S7,
form a Moufang loop, the unit octonion bundle UOM is a bundle of loops, so an
example of a loopoid.

Example 5.7. Let X be a loop with the unit e and N be a set. On G = X×N×N
we have an obvious structure of a loopoid as a product structure of the loop X
and the pair groupoid N × N over M = {(e, s, s) | s ∈ N} ⊂ G. The anchor map
is

(α, β)(x, s, t) = (e, s, t)

and the partial multiplication reads

(x, s, t) • (y, t, r) = (xy, s, r) .

If X is an inverse loop, then G is an inverse loopoid with the inverse ι(x, s, t) =
(x−1, t, s). In this example X is the isotropy loop Gu at each u ∈ M .

Note that we can consider slightly weaker objects than loopoids.

Definition 5.8. A left loopoid (resp., right loopoid) is a semiloopoid satisfying
G2 = {(g, h) ∈ G×G | β(g) = α(h)} and such that, for each g ∈ G, the left trans-
lation lg is a bijection from Fα(β(g)) onto Fα(α(g)) (resp., the right translation
rg is a bijection from Fβ(α(g)) onto Fβ(β(g))).
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Example 5.9. Let us finish with an interesting example of a left loopoid which is
not a loopoid and can be regarded as a toy example of the intended left differential

loopoid. Consider the pair groupoid G = R2 × R2 with the standard source and
target maps α(u, v) = (u, u), β(u, v) = (v, v) and composition (u, v)(v, z) = (u, z).
For a diffeomorphism φ : R → R being an odd function, φ(−x) = −φ(x), define a
submanifold

(19) G = {((a1, b1), (a2, b2)) ∈ G : a1 − a2 = φ(b1 − b2)} .

It is a semiloopoid, with the source and target maps inherited from G, and the
partial multiplication

(20) ((a1, b1), (a2, b2)) • ((a2, b2), (a3, b3)) = ((a1, b1), (a1 + φ(b3 − b1), b3)) .

Indeed, for fixed (a1, b1) ∈ R2 the map (a3, b3) 7→ (a1 + φ(b3 − b1), b3) is a
diffeomorphism, so the left translations l(a1,b1) are smooth immersions. The right
translations are smooth immersions trivially. For G we have α(gh) = α(g), but
generally, for non-linear φ, we have β(gh) 6= β(h), so G is not a loopoid.

It is interesting that G has a left inverse

ιl((a1, b1), (a2, b2)) = ((a2, b2), (a1, b1)).

Indeed,

((a2, b2), (a1, b1)) • (((a1, b1), (a2, b2)) • ((a2, b2), (a3, b3)))

= ((a2, b2), (a1, b1)) • ((a1, b1), (a1 + φ(b3 − b1), b3))

= ((a2, b2), (a2 + φ(b3 − b2), b3)) = ((a2, b2), (a3, b3)) .

The last equality follows from the fact that ((a2, b2), (a3, b3)) ∈ G, so by (19)

a2 − a3 = φ(b2 − b3) = −φ(b3 − b2) .

All this implies that G is a left (inverse) loopoid.

Remark 5.10. Note that G is actually a (Lie) groupoid if φ is linear and that G is
obtained as a transversal in the groupoid G with respect to a projection π : G → G
given by

π ((a1, b1), (a2, b2)) = ((a1, b1)(a1 + φ(b2 − b1), b2)) .

Indeed, the subset of units (the diagonal) belongs to G (as 0 = a1−a1 = φ(b1−b1)),
so α(G) = β(G) ⊂ G. Moreover, if ((a1, b1), (a2, b2)) , ((a2, b2), (a3, b3)) ∈ G, then

π (((a1, b1), (a2, b2)) · ((a2, b2), (a3, b3))) = π ((a1, b1), (a3, b3))

= ((a1, b1)(a1 + φ(b3 − b1), b3)) ,

so we recover the multiplication in G.

Acknowledgments. The author thanks Michael Kinyon for his useful comments
on an earlier draft of this work.
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