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PINNING LAG SYNCHRONIZATION BETWEEN TWO
DYNAMICAL NETWORKS WITH NON-DERIVATIVE
AND DERIVATIVE COUPLINGS

Zhi-wei Li, Zhe-yong Qiu and Wei-gang Sun

In this paper, we study lag synchronization between two dynamical networks with non-
derivative and derivative couplings via pinning control. We design two types of pinning control
schemes, including linear and adaptive feedback controllers. With the corresponding control
algorithms, we obtain two theorems on the lag synchronization based on Schur complement and
Barbalat’s lemma. In addition, we obtain the domain for the linear feedback gains. Finally,
we provide two numerical examples to show the efficiency of the proposed schemes and apply
random and high-degree chosen pinning schemes.
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1. INTRODUCTION

During the past few decades, complex dynamical networks have received considerable
attention and been extensively applied in the fields of sciences and humanities. Many real
systems in nature can be described by complex dynamical networks, including internet,
World Wide Web, electrical power grids, social networks and so forth [1, 2, 9, 17, 10].
Presently synchronization of dynamical networks has been widely studied [6, 7, 21, 24,
29, 30]. Generally speaking, synchronization appearing inside a network is referred
as inner synchronization. On the criteria for inner synchronization [18], the master
stability function and linear matrix inequality are two ways. Apart from the inner
synchronization, we call the synchronization happening between two or more dynamical
networks as outer synchronization, which is more complicated because of the diverse
interconnected actions between two networks. An example of outer synchronization is
the outer and inner doors simultaneously open or close in subway systems when the
trains arrive at the platform.

When the synchronization of dynamical networks does not appear under some appro-
priate node dynamics and topological structures, many controlling (e. g., the adaptive
and pinning control) methods have been designed to achieve synchronization [12, 23, 25,
26, 28] and many references cited therein. When the control is employed for every node
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in realizing the synchronization, it would take a great cost. To reduce the control cost,
we use the pinning control method, namely, controlling a small fraction of nodes. Chen
et al. used a single controller to synchronize the network [4]. The synchronization of de-
layed and non-delayed complex dynamical networks via pinning control was investigated
in [12].

In the above mentioned works, they all studied the complete inner or outer synchro-
nization. Recently lag synchronization [15, 16, 19] between two networks has attracted
increasing attention, which is referred as the coincidence of the state vectors, where one
of the networks follows another network with time delay. Pinning lag synchronization
between two dynamical networks was studied in [22], where the linear and adaptive feed-
back control schemes were provided. Shi et al. studied the lag outer synchronization
of complex networks with noise coupling and showed the effect of noise on the synchro-
nization [20]. Since the complexity of network structures, it needs more information to
characterize the network, e. g., considering the effect of the velocity in nodes to other
nodes. Xu et al. pioneered in studying the synchronization in a complex dynamical
network with non-derivative and derivative couplings [26]. Afterwards, Deng et al. used
the pinning control to realize synchronization inside a network with non-derivative and
derivative couplings [5]. To the best of our knowledge, few theoretical results involve the
lag synchronization between two networks with non-derivative and derivative couplings
by the pinning control.

Inspired by the above discussions, we use the pinning control schemes to study the
lag synchronization between two dynamical networks with non-derivative and derivative
couplings. With the proposed linear and adaptive feedback controllers, we obtain two
theorems on the lag synchronization in the sense of Lyapunov stability. For the linear
feedback control, we also obtain the domain of feedback gains. Numerical simulation
results show that the proposed control algorithms are effective.

The outline of the rest of this paper is organized as follows. The network models
and some necessary preliminaries are described in Section 2. Two criteria on the lag
synchronization are given in Section 3. Section 4 provides the numerical examples to
verify the obtained theoretical results. Conclusions are drawn in Section 5.

Throughout this paper, some notations are first introduced. A−1 denotes the inverse
of a matrix. T is the transpose of a vector or a matrix. If A is a symmetric matrix,
λmax(A) denotes its largest eigenvalue. In is an identity matrix of order n. The symbol
⊗ denotes the Kronecker product, A > 0(< 0) means that the matrix A is positive
(negative) definite.

2. MODEL DESCRIPTION AND PRELIMINARIES

In this section, we introduce the network model and provide some mathematical prelim-
inaries. On the basis of network model, we propose the model between two dynamical
networks with non-derivative and derivative couplings, which is given by

ẋi(t) = f(xi(t)) + c
∑N
j=1 aijxj(t) + c

∑N
j=1 bij ẋj(t),

i = 1, 2, . . . , N,

ẏi(t) = f(yi(t)) + c
∑N
j=1 aijyj(t) + c

∑N
j=1 bij ẏj(t) + ui,

i = 1, 2, . . . , N,

(1)
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where xi(t), yi(t) ∈ Rn denote the node state variables in networks X and Y . The
node dynamical function f : Rn → Rn is a continuously differentiable vector-valued
function, c > 0 is the coupling strength. A and B are outer coupling configuration
matrices representing the topological structures and coupling strength among nodes.
They satisfy the zero-sum rows and the elements of A and B are defined as follows: if
there is a link between node i and node j(j 6= i), then aij = aji > 0 and bij = bji > 0,
otherwise, aij = aji = 0, bij = bji = 0(j 6= i). In this paper, we assume that A and
B are irreducible, which shows that the networks are connected and have no isolated
nodes. ui(i = 1, 2, . . . , N) are the controllers to be designed.

Remark 2.1. In the above mentioned network model, the derivative of state variables
ẋi(t), ẏi(t) are regarded as the velocity of transmitting information. In interconnected
networks, the velocity of transmitting information in one network may affect its dynamics
or the synchronized behavior of another network. Throughout the rest of this paper,
the definition, assumption and lemmas are presented.

Definition 2.2. For a positive time delay τ , the lag synchronization of networks (1) is
achieved if

lim
t→∞

‖yi(t)− xi(t− τ)‖ = 0,∀ x, y ∈ Rn, i = 1, 2, . . . , N.

Assumption 2.3. Suppose that there exists a positive constant L > 0 such that the
nonlinear function f(x) holds:

(y − x)T (f(y)− f(x)) ≤ L(y − x)T (y − x), ∀ x, y ∈ Rn.

It has been verified that many typical benchmark chaotic systems, such as Lorenz
system, Chen system, Lü system and unified chaotic system satisfy Assumption 2.3.

Lemma 2.4. (Schur Complement [3]) The following liner matrix inequality(
A(x) B(x)
BT (x) C(x)

)
> 0

where A(x) = (A(x))T , C(x) = (C(x))T , if and only if

A(x) < 0 and C(x)−B(x)TA(x)−1B(x) < 0;
C(x) < 0 and A(x)−B(x)C(x)−1B(x)T < 0.

Lemma 2.5. (Barbalat Lemma [11]) If the function φ(t) is uniformly continuous, and
limt→∞

∫ τ
0
|φ(τ)|dτ is bounded, then φ(t)→ 0 when t→∞.
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3. PINNING LAG SYNCHRONIZATION BETWEEN TWO COUPLED NETWORKS

3.1. Lag synchronization via linear feedback control

In this subsection, we design the liner feedback control to achieve lag synchronization.
Suppose the first m(1 ≤ m < N) nodes are controlled in network Y . Then, the pinning
linear feedback controllers are designed as follows:{

ui = −cdiei(t), i = 1, 2, . . . ,m,
ui = 0, i = m+ 1, . . . , N,

where ei(t) = yi(t) − xi(t − τ), di(i = 1, 2, . . . ,m) > 0 are feedback gains. Using the
designed controllers, we obtain the lag synchronization error of networks (1), that is,

ėi(t) = f(yi(t))− f(xi(t− τ)) + c
∑N
j=1 aijej(t) + c

∑N
j=1 bij ėj(t)− cdiei(t),

i = 1, 2, . . . ,m,

ėi(t) = f(yi(t))− f(xi(t− τ)) + c
∑N
j=1 aijej(t) + c

∑N
j=1 bij ėj(t),

i = m+ 1,m+ 2, . . . , N.

(2)

Then we rewrite (2) in a compact form,

ė(t) = [(IN − cB)⊗ In]−1 [F (Y )− F (X)τ + c(A−D)⊗ Ine(t)] , (3)

where e(t) = (eT1 (t), eT2 (t), . . . , eTN (t))T , F (X)τ = (fT (x1(t− τ)), fT (x2(t− τ)), . . .
. . . , fT (xN (t− τ)))T , F (Y ) = (fT (y1(t)), fT (y2(t)), . . . , fT (yN (t)))T ,
D = diag(d1, d2, . . . , dm, 0, 0, . . . , 0).

Theorem 3.1. Suppose that Assumption 1 holds and A =
(

A1 A3

AT
3 A2

)
is a symmetric

matrix. The lag synchronization of the networks (1) is realized if

λmax(A2) < −L/c,
di > λmax(Q1 −Q3Q

−1
2 QT3 )/c, i = 1, 2, . . . ,m,

where Q1 = LIm + cA1, Q2 = LIN−m + cA2, Q3 = cA3.

P r o o f . Construct a Lyapunov function as follows,

V (t) =
1
2
eT (t)[(IN − cB)⊗ In]e(t).

The derivative of V (t) along Eq. (3) yields

V̇ (t) = eT (t)[(IN − cB)⊗ In]ė(t)
= eT (t)[F (Y )− F (X)τ + c(A−D)⊗ Ine(t)]
≤ eT (t)[(LIN + c(A−D))⊗ In]e(t).
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Using A =
(

A1 A3

AT
3 A2

)
, then

Q = LIN + c(A−D) =
(
Q1 − cD1 Q3

QT3 Q2

)
,

where D1 = diag(d1, d2, . . . , dm). According to λmax(A2) < −L/c, we have Q2 < 0.
Because di > λmax(Q1−Q3Q

−1
2 QT3 )/c, we obtain Q1−cD1−Q3Q

−1
2 QT3 < 0. By Lemma

2.4, we have Q < 0 and Q⊗ In < 0. Then V̇ (t) ≤ eT (t)(Q⊗ In)e(t) = −eT (t)Me(t) ≤ 0.
Further,

0 ≤ λmin(M)‖e(t)‖2 ≤ eT (t)Me(t) ≤ −V̇ (t),

where λmin(M) > 0 is the minimal eigenvalue of matrix M .
Since V (t) > 0, then∫ t

0

λmin(M)‖e(s)‖2 ds ≤ −
∫ t

0

V̇ (s) ds = V (0)− V (t) ≤ V (0) < +∞.

By lemma 2.5, we obtain limt→∞ ‖e(t)‖2 = 0, showing that the lag synchronization of
networks (1) is achieved. �

Remark 3.2. From the pinning condition, we see that the feedback gains vary with
the number of pinned nodes. In addition, the feedback gains may be much bigger than
the needed values. In the following subsection, by avoiding the large values of feedback
gains, we apply the adaptive feedback control to achieve the lag synchronization.

3.2. Lag synchronization via adaptive feedback control

In this subsection, we design the pinning adaptive feedback controllers to realize the lag
synchronization, which is given by

ui = −cdi(t)ei(t), i = 1, 2, . . . ,m,

ḋi(t) = ξie
T
i (t)ei(t), i = 1, 2, . . . ,m,

ui = 0, i = m+ 1, . . . , N,

where ξi are positive constants. Then the synchronization errors read as

ėi(t) = f(yi(t))− f(xi(t− τ)) + c
∑N
j=1 aijej(t) + c

∑N
j=1 bij ėj(t)− cdi(t)ei(t),

i = 1, 2, . . . ,m,

ḋi(t) = ξie
T
i (t)ei(t), i = 1, 2, . . . ,m,

ėi(t) = f(yi(t))− f(xi(t− τ)) + c
∑N
j=1 aijej(t) + c

∑N
j=1 bij ėj(t),

i = m+ 1,m+ 2, . . . , N.
(4)

Theorem 3.3. Suppose that Assumption 1 holds. If λmax(A2) < −L/c, then the lag
synchronization under the designed adaptive feedback controllers is achieved.
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P r o o f . Define a Lyapunov function as

V (t) =
1
2
eT (t)[(IN − cB)⊗ In]e(t) +

1
2

m∑
i=1

c

ξi
(di(t)− d∗i )2,

where d∗i (i = 1, 2 · · · ,m) are positive constants to be determined below.
The derivative of V (t) with respect to Eq. (4) gives

V̇ (t) = eT (t)[(IN − cB)⊗ In]ė(t) +
m∑
i=1

c(di(t)− d∗i )eTi (t)ei(t)

≤ eT [(LIN + c(A−D∗))⊗ In]e(t),

where D∗ = diag(d∗1, d
∗
2, . . . , d

∗
m, 0, . . . , 0). If λmax(A2) < −L/c, we obtain Q∗2 < 0. By

Lemma 2.4, we choose the suitable positive constants d∗i > λmax(Q∗1−Q∗3Q∗2
−1Q∗T3 )/c, i =

1, 2, . . . ,m, which satisfies Q∗ = LIN + c(A−D∗) < 0. By the similar proof of Theorem
3.1, we obtain limt→∞ ‖e(t)‖ = 0, which implies that the lag synchronization of networks
(1) is achieved. �

4. NUMERICAL SIMULATIONS

In this section, we present numerical examples to verify the theoretical results obtained in
the previous section. The node dynamics follows the Chua’s circuits, which is described
as, 

ẋi1(t) = α(xi2(t)− xi1(t))− φ(xi1(t)),
ẋi2(t) = xi1(t)− xi2(t) + xi3(t),
ẋi3(t) = −βxi3(t),

where φ(xi1(t)) = bxi1(t) + 1
2 (a − b)(|xi1(t) + 1| − |xi1(t) − 1|). When a = −1.27,

b = −0.68, α = 10, β = 14.87, it has a chaos attractor. According to the result in [22],
we choose a positive constant L = 11.435 such that Assumption 2.3 holds.

In the numerical simulations, the initial values are randomly given in the interval
(−7, 7), τ = 0.03. To measure the extent to which the lag synchronization, we introduce
ei1(t) = |yi1(t) − xi1(t − τ)|, ei2(t) = |yi2(t) − xi2(t − τ)|, ei3(t) = |yi3(t) − xi3(t − τ)|,
i = 1, 2, . . . , N, t ∈ [0,+∞).

4.1. Linear feedback control

In this subsection, we apply the liner feedback control. The controlled networks become

ẋi(t) = f(xi(t)) + c
∑12
j=1 aijxj(t) + c

∑12
j=1 bij ẋj(t), i = 1, 2, . . . , 12,

ẏi(t) = f(yi(t)) + c
∑12
j=1 aijyj(t) + c

∑12
j=1 bij ẏj(t) + ui, i = 1, 2, . . . , 12,

(5)

and the feedback controllers are{
ui = −cdiei(t), i = 1, 2,
ui = 0, i = 3, 4, · · · , 12.
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For the coupling matrices, we set A = B and A is chosen as

A =



−3 0 0 1 1 0 0 1 0 0 0 0
0 −4 0 0 0 1 1 0 1 1 0 0
0 0 −5 0 0 1 1 1 0 1 0 1
1 0 0 −6 0 1 1 0 1 0 1 1
1 0 0 0 −4 0 1 0 1 1 0 0
0 1 1 1 0 −5 0 1 1 0 0 0
0 1 1 1 1 0 −6 0 0 1 0 1
1 0 1 0 0 1 0 −4 0 0 1 0
0 1 0 1 1 1 0 0 −4 0 0 0
0 1 1 0 1 0 1 0 0 −4 0 0
0 0 0 1 0 0 0 1 0 0 −3 1
0 0 1 1 0 0 1 0 0 0 1 −4



.

For L = 11.435, we obtain λmax(A2) = −0.6170 and λmax(Q1−Q3Q
−1
2 QT3 ) = 6.3961,

then we choose the coupling strength c = 18.54 and feedback gains di = 2.5(i = 1, 2),
satisfying the pinning condition. The first two nodes are chosen as the pinned nodes.
In the process of simulations, Figures 1 – 3 show the errors of lag synchronization of two
dynamical networks (5), which shows that the lag synchronization is realized under the
linear feedback controllers.
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9

10

t

e i
1
(t

)

Fig. 1. Lag synchronization errors ei1(t)(i = 1, 2, . . . , 12) with linear

feedback control and m = 2, τ = 0.03.

4.2. Adaptive feedback control

The dynamical networks with adaptive feedback controllers become

ẋi(t) = f(xi(t)) + c
∑100
j=1 aijxj(t) + c

∑100
j=1 bij ẋj(t), i = 1, 2, . . . , 100,

ẏi(t) = f(yi(t)) + c
∑100
j=1 aijyj(t) + c

∑100
j=1 bij ẏj(t) + ui, i = 1, 2, . . . , 100,

(6)
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Fig. 2. Lag synchronization errors ei2(t)(i = 1, 2, . . . , 12) with linear

feedback control and m = 2, τ = 0.03.
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Fig. 3. Lag synchronization errors ei3(t)(i = 1, 2, . . . , 12) with linear

feedback control and m = 2, τ = 0.03.

and the adaptive feedback controllers are
ui = −cdi(t)ei(t), i = 1, 2, 3, 4,

ḋi(t) = ξie
T
i (t)ei(t), i = 1, 2, 3, 4,

ui = 0, i = 5, . . . , 100.

For this numerical example, we choose the coupling matrix A = B as a scale-free
network [1] with m0 = m = 8. By simple calculations, λmax(A2) = −0.8588, then
the coupling strength satisfies c > 13.315, and we choose the coupling strength c = 20
and ξi = 1, i = 1, . . . , 4 for simulation. We rearrange the node degrees from high to
low and choose four nodes with the highest degree as the pinned nodes. The errors
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of lag synchronization of networks (6) are shown in Figures 4 – 6. In addition, for the
coupling strength in 13.315 < c < 20, the lag synchronization also happens with different
synchronized time. Figure 7 gives the orbits of the updated feedback strength di(t)(i =
1, 2, 3, 4).

In the above mentioned numerical examples, when the coupling strength c is fixed,
we consider the effect of lag time τ on the synchronization. We randomly choose the
values of τ in (0.01, 2) for simulation and see that the lag synchronization also happens,
which shows that the designed feedback controllers are robust.
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Fig. 4. Lag synchronization errors ei1(t)(i = 1, 2, . . . , 100) with

adaptive feedback control and m = 4, τ = 0.03.
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Fig. 5. Lag synchronization errors ei2(t)(i = 1, 2, . . . , 100) with

adaptive feedback control and m = 4, τ = 0.03.
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Fig. 6. Lag synchronization errors ei3(t)(i = 1, 2, . . . , 100) with

adaptive feedback control and m = 4, τ = 0.03.
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Fig. 7. Evolution of feedback gains di(t) with ξi = 1, i = 1, 2, 3, 4.

5. CONCLUSIONS

In the present study, we have studied the lag synchronization between two dynamical
networks with non-derivative and derivative couplings. By designing the pinning linear
and adaptive feedback controllers, we have obtained the pinning conditions on the lag
synchronization by Schur complement and Barbalat’s lemma. The number of pinned
nodes is related to the node dynamics and the coupling strength. For the linear feedback
control, we have derived the domain of feedback gains. In the numerical examples, we
have provided two numerical examples to show the efficiency of the designed controllers.
Compared to the linear feedback control, the adaptive feedback control is better for
realizing the lag synchronization. In the future, we will study the consensus dynamics
of multi-agents systems [8, 13, 14] by pinning and optimal control.
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