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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 4 , P AGES 5 3 1 – 5 5 7

LINEAR OPTIMIZATION WITH BIPOLAR
MAX-PARAMETRIC HAMACHER FUZZY RELATION
EQUATION CONSTRAINTS

Samaneh Aliannezhadi, Ali Abbasi Molai and Behnaz Hedayatfar

In this paper, the linear programming problem subject to the Bipolar Fuzzy Relation Equa-
tion (BFRE) constraints with the max-parametric hamacher composition operators is studied.
The structure of its feasible domain is investigated and its feasible solution set determined.
Some necessary and sufficient conditions are presented for its solution existence. Then the
problem is converted to an equivalent programming problem. Some rules are proposed to re-
duce the dimensions of problem. Under these rules, some of the optimal variables are found
without solving the problem. An algorithm is then designed to find an upper bound for its
optimal objective value. With regard to this algorithm, a modified branch and bound method
is extended to solve the problem. We combine the rules, the algorithm, and the modified branch
and bound method in terms of an algorithm to solve the original problem.

Keywords: bipolar fuzzy relation equations, bipolar variables, linear optimization, modi-
fied branch and bound method, max-parametric hamacher compositions

Classification: 90-xx, 90Cxx, 90C70

1. INTRODUCTION

The main idea of Fuzzy Relation Equations (FREs) was firstly proposed by Sanchez
[29] in 1976 and then extended by Pedrycz [26, 27] and Miyakoshi and Shimbo [25].
Its structure of solution set was determined by Sanchez [30] in 1977 and extended to
max-T FREs by Di Nola et al. [5, 7]. The complete solution set of a consistent finite
system of max-T FREs can be determined by a maximum solution and a finite number of
minimal solutions. The computation of the maximum solution is not difficult and can be
applied to check the consistency of the system. However, the detection of all the minimal
solutions is equivalent to the set covering problem and hence it is an NP-hard problem
[2, 3, 23, 24]. Various approaches have been designed to compute the minimal solutions.
A comprehensive review about analytical approaches of FRE resolution can be found in
[4, 8]. Good overviews about theory and applications of FREs can also be found in [6, 12,
13, 16, 18, 26, 27, 28]. The problem of minimizing a linear function with max-min FRE
constraints was first investigated by Fang and Li [9] in 1999. To solve it, they decomposed
the problem into two subproblems by separating the nonnegative and negative cost
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coefficients with the same constraints. The optimal solution of the original problem
can be found by combining the optimal solutions of the sub-problems. The second
subproblem obtains its optimum at the maximum solution and the first subproblem
assumes its optimum at one of the minimal solutions of its feasible domain which can
be determined by solving a 0-1 integer programming problem. The branch and bound
method with jump-tracking technique was applied to solve the integer programming
problem. This problem was improved by Wu et al. [35] and Wu and Guu [34] by
providing the proper upper bounds for the branch and bound procedure. Fang and Li’s
problem was studied with the max-product composition by Loetamonphong and Fang
[22]. They applied a similar idea to Fang and Li’s idea to solve the problem. Guu and
Wu [14] provided a necessary condition for an optimal solution in terms of the maximum
solution derived from FREs. This necessary condition was adopted to provide an efficient
procedure for resolution of the problem. The necessary condition was extended to the
situation with max-strict t-norm composition [33]. This linear optimization problem has
been studied by many researchers with other operators. Some other generalizations on
this linear optimization problem can be found in [15, 31, 32, 36].

In the above problems, the fuzzy relation compositions create FRE constraints which
are increasing with respect to each variable.

In certain fields of applications, for instance, in the covering and investing problem,
where the human judgment plays a central role, there is a need for variables with a
bipolar character that they should satisfy FRE constraints with two kinds of different
composition operators, simultaneously. This kind of system is called Mixed Bipolar
Fuzzy Relation Equations (MBFREs). Recently, Li et al. [17] investigated a kind of
nonlinear programming problem with a non-differential objective function subject to a
system of MFREs with the max-min and the max-product composition operator. They
presented some properties of the optimization problem and designed a polynomial-time
algorithm to solve this problem based on the properties. Feng et al. [10] then studied a
similar problem to Li et al.’s problem with the max-min and the max-average operators
and its properties. Then a polynomial-time algorithm was proposed for its resolution.
Abbasi Molai [1] studied the linear optimization problem with the Mixed Fuzzy Relation
Inequality (MFRI) constraints with two max-pseudo t-norms. He investigated to the
structure of its feasible domain and designed an algorithm to solve the problem. On
the other hands, Freson et al. [11] first described and investigated the system of bipolar
max-min fuzzy relation equations and the associated linear minimization problem with a
potential application of product public awareness in revenue management. They showed
that the solution set of their system can be characterized by a finite set of maximal
and minimal solution pairs. Li and Jin [20] also showed that the determination of its
consistency is NP-complete. Consequently, the resolution of the optimization problem
is NP-hard. Li and Liu [21] discussed the problem with max-T composition, where the
involved triangular norm is the Lukasiewicz t-norm. This problem can be equivalently
reformulated in polynomial time into a 0-1 integer linear optimization problem and then
solved by integer programming techniques.

With regard to the importance of MFREs [1, 10, 17] and BFREs [11, 20, 21], we
consider the linear optimization problem with BFRE constraints with max-parametric
hamacher composition operators and bipolar variables, simultaneously. In this problem,
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the composition operator of each its constraint can be associated to a different members
of the parametric hamacher family. We firstly investigate the structure of its feasible
domain and determine its feasible solution set. Some necessary and sufficient conditions
are presented for its solution existence. Then the original problem is converted to an
equivalent programming problem. Also, some simplification procedures or rules are
proposed to reduce the dimensions of the optimization problem. Under the rules, some
of the optimal variables are found without solving the problem. Finally, the reduced
problem is solved by integer programming techniques.

The rest of this paper is organized as follows. Section 2 introduces the linear opti-
mization with the bipolar max-parametric hamacher fuzzy relation equation constraints
and investigates the characterizations of its feasible domain. In Section 3, we present
an equivalent problem to the optimization problem and propose five rules to simplify
and reduce it. Also, we suggest an algorithm to compute an initial upper bound on the
optimal objective value of the equivalent problem. In Section 4, an algorithm for solving
the problem is designed. In Section 5, the algorithm is outlined and illustrated by two
examples. Finally, conclusions are presented in Section 6.

2. LINEAR OPTIMIZATION WITH BIPOLAR MAX-PARAMETRIC HAMACHER
FUZZY RELATION EQUATION CONSTRAINTS

This section is divided to two subsections. In the first subsection, we formulate the lin-
ear optimization problem with bipolar max-parametric hamacher fuzzy relation equation
constraints. In the second subsection, we investigate its feasible domain.

2.1. Problem formulation

In this subsection, we formulate the linear optimization problem with bipolar max-
parametric hamacher fuzzy relation equation constraints as follows:

Minimize Z(x) =
n∑
j=1

cjxj ,

Subject to a+
i ◦γi

x ∨ a−i ◦γi
¬x = di, i = 1, . . . ,m,

x ∈ [0, 1]n, (1)

where a+
i =

(
a+
ij

)
1×n and a−i =

(
a−ij
)

1×n are fuzzy relation vectors on [0, 1]. Also,
assume that di ∈ [0, 1], for i ∈ I = {1, . . . ,m}, and c = (c1, . . . , cn) is a vector of cost
coefficients where cj > 0, for each j ∈ J = {1, . . . , n}.

Moreover, x = (x1, . . . , xn)T is a vector of decision variables to be determined and
¬x denotes the negation of x, i. e., ¬x = (1− x1, . . . , 1− xn)T . The operations “◦γi”,
i = 1, . . . ,m, represent the max-parametric hamacher compositions with the parameters
γi ≥ 0.
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2.2. The characterizations of its feasible domain

Now, the structure of the feasible domain of problem (1) will briefly be discussed. The
constraint part of problem (1) is to find a set of solution vectors x ∈ [0, 1]n for the
following system of bipolar fuzzy relation equations

a+
1 ◦γ1 x ∨ a

−
1 ◦γ1 ¬x = d1

...
...

a+
m ◦γm x ∨ a−m ◦γm ¬x = dm,

(2)

which can be rewritten as follows:

max
j∈J

max

(
a+
ijxj

γi + (1− γi)
`
a+
ij + xj − a+

ijxj
´ , a−ij (1− xj)
γi + (1− γi)

`
a−ij + (1− xj)− a−ij (1− xj)

´) = di,

(3)
for each i ∈ I, or equivalently

max
j∈J

max

(
a+
ijxj

γi + (1− γi)
`
a+
ij + xj − a+

ijxj
´ , a−ij (1− xj)
γi + (1− γi)

`
a−ijxj + 1− xj

´) = di, (4)

for each i ∈ I, where γi is a parameter and γi ≥ 0, for each i ∈ I.
Let A+ =

(
a+
ij

)
m×n, A− =

(
a−ij
)
m×n, and d = (d1, . . . , dm)T be fuzzy relation matri-

ces on [0, 1] and γ = (γ1, . . . , γm)T where γi ≥ 0, for each i ∈ I. A system of bipolar
max-parametric hamacher fuzzy relation equations is called consistent if its solution set,
i. e., S = X (A+, A−, γ, d) , is nonempty and inconsistent otherwise.

Now, we will discuss on the necessary and sufficient conditions for existence of solution
of bipolar fuzzy relation equations (4).

Lemma 2.1. A vector x ∈ [0, 1]n is a solution for a system of bipolar max-parametric
hamacher fuzzy relation equations (4) if and only if the following conditions are satisfied.

1. max
{

a+
ijxj

γi+(1−γi)(a+
ij+xj−a+

ijxj) ,
a−ij(1−xj)

γi+(1−γi)(a−ijxj+1−xj)

}
≤ di, with parameter γi ≥ 0,

for each i ∈ I and j ∈ J .

2. For each i ∈ I with parameter γi ≥ 0, there exists ji ∈ J such that

max
{

a+
iji
xji

γi+(1−γi)
“
a+

iji
+xji

−a+
iji
xji

” , a−iji
(1−xji)

γi+(1−γi)
“
a−iji

xji
+1−xji

”} = di.

P r o o f . It is obvious. �

Now, we are ready to discuss on the bipolar fuzzy relation equations (4).

Remark 2.2. For any a+, a−, d ∈ [0, 1], and γ ≥ 0, if a+ = 0 and γ = 0, then
x = 0 cannot be a feasible solution for the inequality a+x

γ+(1−γ)(a++x−a+x) ≤ d. Also,
if a− = 0 and γ = 0, then x = 1 cannot be a feasible solution for the inequality

a−(1−x)
γ+(1−γ)(a−x+1−x) ≤ d. So, we can remove these cases from our consideration due to
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Lemma 2.1. Note that if a+ 6= 0 and a− 6= 0, then d cannot be zero due to the inequal-
ity max

{
a+x

γ+(1−γ)(a++x−a+x) ,
a−(1−x)

γ+(1−γ)(a−x+1−x)

}
≤ d. Therefore, for any i ∈ I with

γi = 0, we can assume that a+
ij 6= 0 and a−ij 6= 0, for each j ∈ J . Also, if for a fixed i ∈ I,

there exists j ∈ J such that a+
ij 6= 0 and a−ij 6= 0, then we can assume that di 6= 0. Hence,

we exclude the case γi = a+
ij = a−ij = 0, for each i ∈ I and j ∈ J from our consideration

in this paper.

Remark 2.3. For any a+, a−, d ∈ [0, 1], and γ ≥ 0, if a+ ≤ d, then we set 1 instead of
d(γ+(1−γ)a+)

a+−d(1−γ)(1−a+) . Also, if a− ≤ d, then we set zero instead of a−−d
a−−d(1−γ)(1−a−) .

Lemma 2.4. For any a+, a−, d ∈ [0, 1], and γ ≥ 0, the inequality

max
{

a+x

γ + (1− γ) (a+ + x− a+x)
,

a− (1− x)
γ + (1− γ) (a−x+ 1− x)

}
≤ d,

holds if and only if

a− − d
a− − d (1− γ) (1− a−)

≤ x ≤ d (γ + (1− γ) a+)
a+ − d (1− γ) (1− a+)

.

P r o o f . It is obvious that max
{

a+x
γ+(1−γ)(a++x−a+x) ,

a−(1−x)
γ+(1−γ)(a−x+1−x)

}
≤ d, holds if

and only if a+x
γ+(1−γ)(a++x−a+x) ≤ d and a−(1−x)

γ+(1−γ)(a−x+1−x) ≤ d, which are considered in
the following cases.

Case 1:
a+x

γ + (1− γ) (a+ + x− a+x)
≤ d.

Since a+ ∈ [0, 1], x ∈ [0, 1], and γ ≥ 0, we have γ + (1− γ) (a+ + x− a+x) =
(a+ + x− a+x) + γ (1− (a+ + x− a+x)) ≥ 0. So, with regard to Remark 2.2, the in-
equality a+x

γ+(1−γ)(a++x−a+x) ≤ d implies that

x
(
a+ − d (1− γ)

(
1− a+

))
≤ d

(
γ + (1− γ) a+

)
. (5)

Now, we consider relation (5) in the following subcases.

1. If a+ > d, then a+ − d + γd + a+d − γa+d > γd + a+d − γa+d. Since γd +
a+d − γa+d = d (a+ + γ (1− a+)) ≥ 0, we have a+ − d (1− γ) (1− a+) = a+ −
d + γd + a+d − γa+d > 0. Therefore, the relation (5) can be simplified to x ≤
d(γ+(1−γ)a+)

a+−d(1−γ)(1−a+) < 1. Hence, in subcase (1), the relation (5) is satisfied for each

x ∈
[
0,

d(γ+(1−γ)a+)
a+−d(1−γ)(1−a+)

]
.

2. If a+ = d, then a+−d+γd+a+d−γa+d = γd+a+d−γa+d. Since γd+a+d−γa+d ≥
0, we have a+ − d (1− γ) (1− a+) ≥ 0. If a+ − d (1− γ) (1− a+) > 0, it follows
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easily that x ≤ d(γ+(1−γ)a+)
a+−d(1−γ)(1−a+) = 1. If a+ − d (1− γ) (1− a+) = 0, the relation

(5) is satisfied for any x ∈ [0, 1]. Thus, in subcase (2), the relation (5) is satisfied
for any x ∈ [0, 1].

3. If a+ < d, then a+ − d + γd + a+d − γa+d < γd + a+d − γa+d. So, one of the
following cases occurs a+ − d (1− γ) (1− a+) > 0, or a+ − d (1− γ) (1− a+) < 0,
or a+ − d (1− γ) (1− a+) = 0. Considering a+ − d (1− γ) (1− a+) > 0, we have
d(γ+(1−γ)a+)

a+−d(1−γ)(1−a+) > 1 and also considering a+ − d (1− γ) (1− a+) < 0, we have
d(γ+(1−γ)a+)

a+−d(1−γ)(1−a+) ≤ 0. Therefore, in subcase (3), the relation (5) is satisfied for
each x ∈ [0, 1].

Hence, the inequality a+x
γ+(1−γ)(a++x−a+x) ≤ d holds if and only if 0 ≤ x ≤ d(γ+(1−γ)a+)

a+−d(1−γ)(1−a+)

with regard to Remark 2.3.

Case 2:
a− (1− x)

γ + (1− γ) (a−x+ 1− x)
≤ d.

Since a− ∈ [0, 1], x ∈ [0, 1], and γ ≥ 0, we have

γ + (1− γ)
(
a−x+ 1− x

)
=
(
a−x+ 1− x

)
+ γ

(
1−

(
a−x+ 1− x

))
≥ 0.

So, with regard to Remark 2.2, the inequality a−(1−x)
γ+(1−γ)(a−x+1−x) ≤ d implies that

x
(
a− − d (1− γ)

(
1− a−

))
≥ a− − d. (6)

In this case, since d (a− + γ (1− a−)) ≥ 0, then

a− − d (1− γ)
(
1− a−

)
= a− − d+ d

(
a− + γ

(
1− a−

))
≥ a− − d.

The remaining proof for this case is similar to the proof of Case 1. Therefore, the
inequality a−(1−x)

γ+(1−γ)(a−x+1−x) ≤ d holds if and only if a−−d
a−−d(1−γ)(1−a−) ≤ x ≤ 1 with

regard to Remark 2.3.
Considering Cases 1 and 2, for any a+, a−, d ∈ [0, 1], and γ ≥ 0, the inequality
max

{
a+x

γ+(1−γ)(a++x−a+x) ,
a−(1−x)

γ+(1−γ)(a−x+1−x)

}
≤ d, holds if and only if

a− − d
a− − d (1− γ) (1− a−)

≤ x ≤ d (γ + (1− γ) a+)
a+ − d (1− γ) (1− a+)

.

�

Lemma 2.5. Assume that point x0 is the meeting place of two curves
f1(x) = a+x

γ+(1−γ)(a++x−a+x) and f2(x) = a−(1−x)
γ+(1−γ)(a−x+1−x) and c = f1(x0) = f2(x0). For

any a+, a−, d ∈ [0, 1], and γ ≥ 0 the equation

max
{

a+x

γ + (1− γ) (a+ + x− a+x)
,

a− (1− x)
γ + (1− γ) (a−x+ 1− x)

}
= d,



Linear optimization with bipolar max-parametric hamacher FRE 537

has a solution if and only if c ≤ d ≤ max {a+, a−}, in which case its solution set
X (a+, a−, γ, d) is determined by

Case 1: If a− < d ≤ a+, then X (a+, a−, γ, d) =
{

d(γ+(1−γ)a+)
a+−d(1−γ)(1−a+)

}
;

Case 2: If a+ < d ≤ a−, then X (a+, a−, γ, d) =
{

a−−d
a−−d(1−γ)(1−a−)

}
;

Case 3: If c ≤ d ≤ min{a+, a−}, then

X (a+, a−, γ, d) =
{

d(γ+(1−γ)a+)
a+−d(1−γ)(1−a+) ,

a−−d
a−−d(1−γ)(1−a−)

}
.

i) Case 0 ≤ γ < 1

ii) Case γ = 1

iii) Case γ > 1

Fig. 1. The illustration of function

max


a+x

γ+(1−γ)(a++x−a+x)
, a−(1−x)
γ+(1−γ)(a−x+1−x)

ff
.

P r o o f . For given a+, a− ∈ [0, 1], and γ ≥ 0, the range of the function max {f1(x), f2(x)}
can be observed from Figure 1 and can be easily determined. �

Remark 2.6. If a+ = a− = 0 and γ > 0, then c = 0. So, if a+ = a− = d = 0 and
γ > 0, then we define X (a+, a−, γ, d) = [0, 1].

Now, considering Lemmas 2.1 and 2.4, the lower and upper bound on the solutions
for the bipolar fuzzy relation equations (4) can be obtained in the following lemma. Note
that the value of γi can be different for each i ∈ I.
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Lemma 2.7. Considering Remark 2.3, the vector x̌ = (x̌1, . . . , x̌n)T is the lower bound
on the solution set of equations (4), where

x̌j = max
i∈I

{
a−ij − di

a−ij − di (1− γi)
(
1− a−ij

)} .
Also, the vector x̂ = (x̂1, . . . , x̂n)T is the upper bound on the solution set of equations
(4), where

x̂j = min
i∈I

{
di
(
γi + (1− γi) a+

ij

)
a+
ij − di (1− γi)

(
1− a+

ij

)} .
P r o o f . It is obvious with regard to Lemmas 2.1 and 2.4. �

Remark 2.8. If max
{

a+
ijxj

γi+(1−γi)(a+
ij+xj−a+

ijxj) ,
a−ij(1−xj)

γi+(1−γi)(a−ijxj+1−xj)

}
= di > 0, holds

for some xj with x̌j ≤ xj ≤ x̂j , it holds by Lemma 2.5 and Remark 2.2 that

max
{

a+
ijxj

γi+(1−γi)(a+
ij+xj−a+

ijxj) ,
a−ij(1−xj)

γi+(1−γi)(a−ijxj+1−xj)

}
= di = 0, for all i ∈ M0 where

M0 = {i ∈ I | di = 0}. Consequently, the equations with zero right-hands can be dis-
carded once x̌ and x̂ have been obtained.

Remark 2.9. If S 6= ∅, then x̌ ≤ x̂. Moreover, if x ∈ S, then x̌ ≤ x ≤ x̂. But its
converse is not true.

Remark 2.10. If there exists some j ∈ J such that x̌j = x̂j , then xj takes the unique
value in any possible solution. Therefore, the variable xj and the equations for which

max

{
a+
ij x̂j

γi + (1− γi)
(
a+
ij + x̂j − a+

ij x̂j
) , a−ij (1− x̌j)
γi + (1− γi)

(
a−ij x̌j + 1− x̌j

)} = di,

can be deleted in further analysis. In such a case, the system of bipolar max-parametric
hamacher fuzzy relation equations can be reduced to a system with a smaller dimension
and different lower and upper bound on the solution set.

Without loss of generality, assume that di > 0, for each i ∈ I and x̌j < x̂j , for each
j ∈ J with regard to Remarks 2.8 and 2.10. Considering Lemma 2.1, we should focus
on the values that they satisfy the equations in the set S. Since those equations hold
only at the values specified in x̌ and x̂, a generalized matrix Q̃ = (q̃ij)m×n, called the
characteristic matrix, can be constructed to record such information where

q̃ij =



{x̌j}, if
a−ij(1−x̌j)

γi+(1−γi)(a−ij x̌j+1−x̌j) = di 6=
a+

ij x̂j

γi+(1−γi)(a+
ij+x̂j−a+

ij x̂j) ,

{x̂j}, if
a−ij(1−x̌j)

γi+(1−γi)(a−ij x̌j+1−x̌j) 6= di =
a+

ij x̂j

γi+(1−γi)(a+
ij+x̂j−a+

ij x̂j) ,

{x̌j , x̂j}, if
a−ij(1−x̌j)

γi+(1−γi)(a−ij x̌j+1−x̌j) = di =
a+

ij x̂j

γi+(1−γi)(a+
ij+x̂j−a+

ij x̂j) ,

∅, otherwise,

(7)

for each i ∈ I and j ∈ J .
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Theorem 2.11. Consider the system of bipolar fuzzy relation equations (4). A vector
x ∈ [0, 1]n is a solution for these equations if and only if x̌ ≤ x ≤ x̂ and the induced
binary matrix Qx =

(
qxij
)
m×n has no any zero rows, where

Qx = (qxij)m×n =

{
1, if xj ∈ q̃ij ,
0, otherwise.

P r o o f . The proof is similar to the proof of Theorem 1 in [21]. �

Since each nonempty element in the characteristic matrix Q̃ contains at most two
distinct values, Theorem 2.11 suggests that we can focus on the vectors that their com-
ponent values are only from those in x̌ and x̂ in order to determine the consistency of the
system of bipolar fuzzy relation equations (4). Let {y1, y2, . . . , yn} be a set of boolean
variables. For each j ∈ J , label the value x̂j with the positive literal yj and the value
x̌j with the negative literal ¬yj , respectively. Subsequently, for each i ∈ I, denote

N+
i = {j ∈ J | x̂j ∈ q̃ij} and N−i = {j ∈ J | x̌j ∈ q̃ij} , (8)

and the clause
Ci =

∨
j∈N+

i

yj ∨
∨

j∈N−i

¬yj . (9)

The clause Ci is nothing but an alternative representation of the ith row of Q̃ according
to the construction of Q̃. Consequently, Q̃ can be represented by the boolean formula
C =

∧
i∈ICi, called the characteristic boolean formula of the bipolar fuzzy relation

equations (4), and Theorem 2.11 can be rewritten accordingly.

Theorem 2.12. A system of bipolar fuzzy relation equations (4) is consistent if and
only if its characteristic boolean formula C =

∧
i∈I Ci is well-defined and satisfiable.

P r o o f . The proof is similar to the proof of Theorem 2.5 in [19]. �

Note that in C =
∧
i∈ICi, it is possible that N+

i ∩N
−
i 6= ∅ for some i ∈ I. In such a

case, the corresponding clause Ci contains both yj and ¬yj for j ∈ N+
i ∩N

−
i and hence

it becomes a tautology. It is clear that such a clause can be omitted to simplify the
analysis if only the satisfiability of the characteristic boolean formula is concerned.

Note that for a system of bipolar fuzzy relation equations (4), all the critical infor-
mation is expressed by the lower bound x̌, the upper bound x̂, and the characteristic
matrix Q̃. So, we can convert matrix Q̃ into two binary characteristic matrices Q+ and
Q− in the following definition.

Definition 2.13. Define Q+ =
(
q+
ij

)
m×n and Q− =

(
q−ij
)
m×n such that for each i ∈ I

and j ∈ J ,

q+
ij =

{
1, if x̂j ∈ q̃ij ,
0, otherwise,
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and

q−ij =

{
1, if x̌j ∈ q̃ij ,
0, otherwise.

Notation 2.14. Considering Definition 2.13, we can also define N+
i and N−i for each

i ∈ I in relation (8) as follows:

N+
i = {j ∈ J | q+

ij = 1} and N−i = {j ∈ J | q−ij = 1}. (10)

Definition 2.15. For the matrix Q+, define

I+
j (x) =

{
i ∈ I | xj = x̂j and q+

ij = 1
}

and
J+
i (x) =

{
j ∈ J | xj = x̂j and q+

ij = 1
}
,

for each i ∈ I and j ∈ J . Also, for the matrix Q−, define

I−j (x) =
{
i ∈ I | xj = x̌j and q−ij = 1

}
and

J−i (x) =
{
j ∈ J | xj = x̌j and q−ij = 1

}
,

for each i ∈ I and j ∈ J . Furthermore, set Ij(x) = I+
j (x) ∪ I−j (x), for each j ∈ J .

Notation 2.16. Let I+
j = I+

j (x̂), J+
i = J+

i (x̂), I−j = I−j (x̌) and J−i = J−i (x̌) for each
i ∈ I and j ∈ J .

Corollary 2.17 can be easily derived from Theorem 2.11 and Notation 2.16.

Corollary 2.17. For each x ∈ S and i ∈ I, we must have at least one of the following
cases.

Case 1: There exists j ∈ J+
i such that xj = x̂j ,

Case 2: There exists j ∈ J−i such that xj = x̌j .

We will introduce an equivalent problem to the optimization problem (1) and present
some rules to reduce it in the next section.

3. SIMPLIFICATION OPERATIONS

In this section, we will introduce an equivalent problem to the optimization problem
(1) and we will then present some rules for reducing the size of this problem. Applying
these rules, we will determine some of the optimal variables of the equivalent problem
(or problem (1)) without solving it. Then, we will develop an algorithm to compute an
initial upper bound on the optimal objective value of the equivalent problem. With this
upper bound, the optimal solution can eventually be obtained in a smaller search space.

In the rules and lemmas of this section, we assume that the bipolar system is consis-
tent or equivalently, S 6= ∅. Moreover, we display the optimal solution with the notation
x∗ = (x∗1, . . . , x

∗
n)T .

The following lemma states that each component of an optimal solution x∗ of problem
(1) can be selected among the components of x̌ and x̂.
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Lemma 3.1. Consider the optimization problem (1). Then there exists an optimal
solution x∗ = (x∗1, . . . , x

∗
n)T such that for each j ∈ J either x∗j = x̂j or x∗j = x̌j .

P r o o f . The proof is similar to the proof of Lemma 4 in [21]. �

Considering Lemma 3.1, an equivalent problem to the optimization problem (1) can
be stated as follows.

Minimize Z ′(x) =
n∑
j=1

cj (xj − x̌j) ,

Subject to a+
i ◦γi x ∨ a−i ◦γi ¬x = di, i = 1, . . . ,m,
x ∈ [0, 1]n, (11)

where x̌ is defined in Lemma 2.7.
It is not difficult to see that solving problem (1) is equivalent to solving problem (11).

Note that there exists only a difference (
∑
j∈J

cj x̌j) between the optimization problems (1)

and (11). So, we focus on solving the optimization problem (11).

Remark 3.2. For any solution x ∈ S, each equation in the bipolar fuzzy relation equa-
tions (4) only needs to be satisfied by at least one of the values x̌j or x̂j . Once one
equation is satisfied by one of these components, it is not considered again and can be
deleted from the bipolar fuzzy relation equations (4). Furthermore, if the kth component
of an optimal solution x∗ is selected in the process of solving problem (11), then x∗k = x̌k
or x∗k = x̂k with regard to Lemma 3.1. Therefore, if x∗k = x̌k is selected, then the row(s)
i ∈ I−k and the column k can be deleted from the matrices Q+ and Q−. Also, if x∗k = x̂k
is selected, then the row(s) i ∈ I+

k and the column k can be deleted from the matrices
Q+ and Q−.

Now, we are ready to present some rules to reduce the size of problem (11) (or problem
(1)) by fixing the decision variables.

Rule 1. If there exists some K ⊆ J such that
⋃
k∈K

I+
k ⊆

⋃
k∈K

I−k , then x∗k = x̌k for each

k ∈ K.

P r o o f . With regard to Lemma 3.1, we have x∗j = x̂j or x∗j = x̌j for each j ∈ J .

Let x∗ be any optimal solution. Then we have x∗k = x̌k for each k ∈ K. Otherwise,
there exists an index set ∅ 6= K0 ⊆ K such that x∗k = x̂k for each k ∈ K0. Without loss
of generality, suppose that x∗k = x̌k for each k ∈ K \K0. We will establish a solution
with a better objective value than x∗. A solution x∗∗ can be built by putting x∗∗k = x̌k
for each k ∈ K0 and x∗∗j = x∗j for each j ∈ J \K0. It is obvious that x̌ ≤ x∗∗ ≤ x̂. Since⋃
k∈K0

I+
k ⊆

⋃
k∈K

I+
k ⊆

⋃
k∈K

I−k and
⋃

k∈K\K0

I−k ⊆
⋃
k∈K

I−k , we have:



542 S. ALIANNEZHADI, A. ABBASI MOLAI AND B. HEDAYATFAR

⋃
j∈J

Ij(x∗) =

 ⋃
j∈J\K

Ij(x∗)

 ∪
 ⋃
k∈K\K0

I−k

 ∪( ⋃
k∈K0

I+
k

)

⊆

 ⋃
j∈J\K

Ij(x∗)

 ∪( ⋃
k∈K

I−k

)
=
⋃
j∈J

Ij(x∗∗).

Since the matrix Qx
∗

has no any zero rows and
⋃
j∈J

Ij(x∗∗) ⊇
⋃
j∈J

Ij(x∗), then the matrix

Qx
∗∗

has no any zero rows. So, x∗∗ is a solution for the system of bipolar fuzzy relation
equations (4) with regard to Theorem 2.11. Furthermore, we have:∑

j∈J
cjx
∗
j =

∑
j∈J\K

cjx
∗
j +

∑
k∈K\K0

ckx̌k +
∑
k∈K0

ckx̂k

>
∑

j∈J\K

cjx
∗
j +

∑
k∈K\K0

ckx̌k +
∑
k∈K0

ckx̌k =
∑
j∈J

cjx
∗∗
j .

The last inequality is derived from ck > 0 and x̂k > x̌k for each k ∈ K0. Therefore, we
have Z ′(x∗) > Z ′(x∗∗). This result is a contradiction with the optimality of vector x∗.

�

Lemma 3.3. If there exists K ⊂ J and t ∈ J \K such that I+
t ⊆

⋃
k∈K

I+
k , then x∗t = x̌t

or there exists an index set ∅ 6= K0 ⊆ K such that x∗k = x̌k for each k ∈ K0.

P r o o f . Let x∗ be an optimal solution. If there exists at least one ∅ 6= K0 ⊆ K such
that x∗k = x̌k, for each k ∈ K0, then the result is obtained. Otherwise, assume that
x∗k = x̂k for each k ∈ K. Since x∗k = x̂k for each k ∈ K, I+

t ⊆
⋃
k∈K

I+
k , ck > 0, and

the problem is minimization, then we have to assign the possible minimum value to the
variable x∗t , i. e. x∗t = x̌t. �

Now, we use Lemma 3.3 in the proof of Rule 2.

Rule 2. If there exists K ⊂ J and t ∈ J \K such that I+
t ⊆

⋃
k∈K

I+
k , I−t ⊇

⋃
k∈K

I−k , and

ct (x̂t − x̌t) >
∑
k∈K

ck (x̂k − x̌k), then x∗t = x̌t.

P r o o f . Let x∗ be any optimal solution. If x∗t = x̌t, then the result is correct. Now,

suppose to the contrary that x∗t = x̂t. Then with regard to Lemma 3.3, there exists
∅ 6= K0 ⊆ K such that x∗k = x̌k for each k ∈ K0. Without loss of generality, suppose
that x∗k = x̂k for each k ∈ K \K0. We will establish a solution with a better objective
value than x∗. A solution x∗∗ can be built by putting x∗∗t = x̌t and x∗∗k = x̂k for each
k ∈ K0 and x∗∗j = x∗j for each j ∈ J \K0, j 6= t. It is obvious that x̌ ≤ x∗∗ ≤ x̂. Since
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⋃
k∈K\K0

I+
k ⊆

⋃
j∈J\K0

j 6=t

Ij(x∗) and
⋃

k∈K0

I−k ⊆
⋃
k∈K

I−k ⊆ I
−
t , we have:

⋃
j∈J

Ij(x∗) =

 ⋃
j∈J\K0

j 6=t

Ij(x∗)

 ∪ I+
t ∪

( ⋃
k∈K0

I−k

)
⊆

 ⋃
j∈J\K0

j 6=t

Ij(x∗)

 ∪
( ⋃
k∈K

I+
k

)
∪ I−t

=

 ⋃
j∈J\K0

j 6=t

Ij(x∗)

 ∪
( ⋃
k∈K0

I+
k

)
∪ (

⋃
k∈K\K0

I+
k ) ∪ I−t

⊆

 ⋃
j∈J\K0

j 6=t

Ij(x∗)

 ∪
( ⋃
k∈K0

I+
k

)
∪ I−t =

⋃
j∈J

Ij(x∗∗).

Since the matrix Qx
∗

has no any zero rows and
⋃
j∈J

Ij(x∗∗) ⊇
⋃
j∈J

Ij(x∗), then the matrix

Qx
∗∗

has no any zero rows. So, x∗∗ can be a solution for the system of bipolar fuzzy
relation equations (4) with regard to Theorem 2.11. Furthermore, we have:∑

j∈J
cjx
∗
j =

∑
j∈J\K0

j 6=t

cjx
∗
j +

∑
k∈K0

ckx̌k + ctx̂t

>
∑

j∈J\K0

j 6=t

cjx
∗
j +

∑
k∈K0

ckx̂k + ctx̌t =
∑
j∈J

cjx
∗∗
j .

The last inequality is derived from ct (x̂t − x̌t) >
∑
k∈K

ck (x̂k − x̌k) ≥
∑
k∈K0

ck (x̂k − x̌k).

Therefore, we have Z ′(x∗) > Z ′(x∗∗). This result is a contradiction with the optimality
of vector x∗. �

Rule 3. If there exists i0 ∈ I and j0 ∈ J such that the following conditions are satisfied.

1. q+
i0j0

= q−i0j0 = 0,

2. I+
j0
\ I−j0 ⊆ I

+
j for each j ∈ J+

i0
,

3. I+
j0
\ I−j0 ⊆ I

−
j for each j ∈ J−i0 ,

then x∗j0 = x̌j0 .

P r o o f . Since every optimal solution is a feasible solution, then we must have at least
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one of the following cases:

Case 1: There exists k ∈ J+
i0

such that x∗k = x̂k,

Case 2: There exists k ∈ J−i0 such that x∗k = x̌k,

with regard to Corollary 2.17. If Case 1 occurs, then the row(s) i ∈ I+
k can be deleted

from the matrices Q+ and Q− and if Case 2 occurs, then the row(s) i ∈ I−k can be
deleted from the matrices Q+ and Q− with regard to Remark 3.2. Now, consider condi-
tions 2 and 3. With regard to the above cases, there exists j ∈ J+

i0
such that the row(s)

i ∈ I+
j can be deleted or there exists j ∈ J−i0 such that the row(s) i ∈ I−j can be deleted

from the matrices Q+ and Q−. Therefore, after updating the sets I+
j0

and I−j0 , we have
I+
j0
\ I−j0 = ∅. Hence, we have I+

j0
⊆ I−j0 and x∗j0 = x̌j0 with regard to Rule 1. �

Rule 4 can be easily derived from Corollary 2.17 and Rule 3.

Rule 4. If there exists i ∈ I such that |J+
i | + |J

−
i | = 1, i. e., J+

i = {j1} and J−i = ∅
(or J−i = {j1} and J+

i = ∅), then

a) x∗j1 = x̂j1 (or x∗j1 = x̌j1),

b) Under the above assumptions, if there exists k ∈ J \ {j1} such that I+
k \ I

−
k ⊆ I

+
j1

(or I+
k \ I

−
k ⊆ I

−
j1

), then x∗k = x̌k.

Now, we are ready to develop an algorithm to compute an initial upper bound on
the optimal objective value of problem (11). In this algorithm, we first begin with one
feasible solution x = (x1, . . . , xn)T which can easily be obtained by the characteristic
boolean formula C =

∧
i∈I
Ci in conjunctive normal form. Then, we determine an index

set J ′ = {j ∈ J | xj = x̂j} and try to convert the components x̂j in the feasible solution
x to x̌j (if possible) where j ∈ J ′ such that the vector x remains a feasible solution for
the optimization problem (11). To do this, the index j ∈ J ′ is selected such that the
value cj (x̂j − x̌j) have had the most value. We are now ready to present an algorithm
to compute an initial upper bound on the objective optimal value of problem (11) based
on the above points.

First of all, we express the following definition.

Definition 3.4. Suppose that H := {hj = cj (x̂j − x̌j) | j ∈ J ′} and max
j∈J′

hj = L.

Then we define
arg max

j∈J′
hj = {j ∈ J ′ | hj = L} .

Algorithm 1. An algorithm for computing an initial upper bound on the optimal
objective value of problem (11).
Step 1. Obtain a feasible solution x from the reduced matrices Q+ and Q− applying
characteristic boolean formula C =

∧
i∈I
Ci in conjunctive normal form and relations (9)

and (10).
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Step 2. Obtain the index set J ′ = {j ∈ J | xj = x̂j}.
Step 3. If J ′ = ∅, then go to Step 7. Otherwise, go to Step 4.
Step 4. Compute cj (x̂j − x̌j) for each j ∈ J ′.
Step 5. H := {hj = cj (x̂j − x̌j) | j ∈ J ′}. Go to the Procedure Decreasing order (H).
Step 6. For k = 1 : |J ′| do

6.1. If I−sk
∪

( ⋃
j∈J\{sk}

Ij(x)

)
= I, then set xsk

= x̌sk
.

Step 7. Compute the initial upper bound for the optimization problem (11) as follows:

U =
∑
j∈J

cj (xj − x̌j) .

Step 8. End.

The used procedure in the Algorithm 1 is presented below.

Procedure. Decreasing order (H).
Step 1. k = 1.
Step 2. If H = ∅, then stop and return {sk | k = 1, . . . , |J ′|}.
Step 3. If |arg max

j∈J′
hj | = 1, then choose sk from arg max

j∈J′
hj .

Step 4. If |arg max
j∈J′

hj | > 1, then sk = min(arg max
j∈J′

hj).

Step 5. Let J ′ := J ′ \ {sk} and update H.
Step 6. k := k + 1.
Step 7. Go to Step 2.

Theorem 3.5. The obtained vector x at end of Algorithm 1 is a feasible solution and
U is an upper bound on the optimal objective value of problem (11).

P r o o f . In this algorithm, we first obtain a feasible solution x (Step 1). This vector x
can change only in the during Step 6 of the algorithm. We prove that x remains feasible
even if it changes. If x changes, then there exists some k ∈ J such that x̂k decreases to
x̌k. So, the resulting vector remains feasible because

I−k ∪

 ⋃
j∈J\{k}

Ij(x)

 = I.

Furthermore, since the vector x is a feasible solution for the system of bipolar fuzzy
relation equations (4), its objective value U =

∑
j∈J

cj (xj − x̌j) is an upper bound on the

optimal objective value of problem (11). �

From the theorem given, one has the following rule.

Rule 5. If there exists k ∈ J such that ck (x̂k − x̌k) > U , then x∗k = x̌k.

P r o o f . It is obvious. �
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4. AN ALGORITHM FOR RESOLUTION OF PROBLEM (1)

In this section, we define a value matrix M using the matrices Q+ and Q−. After
it, we explain the modified branch and bound (B&B) method with the jump-tracking
technique to solve the optimization problem (11). Then we present an algorithm for
resolution of problem (1). At first, we need to express the following theorem.

Theorem 4.1. Let x̌ and x̂ be the lower and upper bound, respectively. Then

Ij(x) ⊆ I+
j ∪ I

−
j , ∀x ∈ S, ∀j ∈ J.

Exactly, we have Ij(x)=I+
j (when xj = x̂j) or Ij(x)=I−j (when xj = x̌j) or Ij(x) = ∅

(when x̌j < xj < x̂j).

P r o o f . It is obvious from Definition 2.15 and the definition of Q̃ in relation (7) . �

It follows from Lemma 3.1 that x∗j = x̂j or x∗j = x̌j for each j ∈ J . If x∗j = x̂j , then
Ij (x∗)=I+

j and if x∗j = x̌j , then Ij (x∗)=I−j for each j ∈ J with regard to Theorem 4.1.
Since Ij (x∗)=I+

j or Ij (x∗)=I−j for each j ∈ J , we can restrict our search within I+
j and

I−j , to which we now turn. To do this, we have to determine the index set Ij (x∗) for
each j ∈ J to compute the components x∗j .

Define the value matrix M=(mij)m×2n based on the optimization problem (11) where

mi,2j−1 =

{
cj (x̂j − x̌j) , if q+

ij = 1,
∞, otherwise,

and mi,2j =

{
0, if q−ij = 1,
∞, otherwise,

(12)

for each i ∈ I and j ∈ J .
Consider the value matrix M. Apply the branch and bound method with the jump-

tracking technique on matrix M to solve the optimization problem (11). In this approach,
we have to consider one modification on this method as follows:

1. If we select x̂j (or x̌j) to branch from one node to another node, then we never
use x̌j (or x̂j) to branch further on the current node.

Which further details will be illustrated in Example 5.1.
Based on the concepts discussed above, we now propose an algorithm to find an

optimal solution of the optimization problem (1).

Algorithm 2. An algorithm for resolution of problem (1)

Step 1. Compute the lower and upper bound x̌ and x̂ using Lemma 2.7.
Step 2. If d > 0 and x̌ < x̂, then go to Step 3. Otherwise, use Remarks 2.8 and 2.10.
Step 3. Generate matrices Q+ and Q− using Definition 2.13.
Step 4. Check the consistency of the system of bipolar fuzzy relation equations (4). If
it is inconsistent, then stop! Otherwise, go to Step 5.
Step 5. Compute the index sets I+

j , I−j , J+
i , and J−i using Definition 2.15 and Notation

2.16.
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Step 6. Define the optimization problem (11) and apply Rules 1-4 to reduce it and find
corresponding optimal variables (if possible). Then remove their corresponding row(s)
and column(s) from the matrices Q+ and Q− according to Remark 3.2 and reformulate
the objective function removing the determined variables by Rules 1-4 (reduced prob-
lem).
Step 7. Compute the initial upper bound U on the optimal objective value of reduced
problem using Algorithm 1.
Step 8. Apply Rule 5. If there exists k ∈ J such that ck(x̂k − x̌k) > U , then set
x∗k = x̌k and reduce problem (11) by Rules 1-4 again (if possible). Also, remove their
corresponding row(s) and column(s) from the matrices Q+ and Q− according to Remark
3.2.
Step 9. If Q+=Q−=∅, then assign x̌j to x∗j and go to Step 12.
Step 10. Generate the value matrix M using relation (12).
Step 11. Employ the modified branch and bound method with the jump-tracking tech-
nique on the matrix M to solve the optimization problem (11). In addition, the initial
upper bound U will be improved by a better solution during the procedure.
Step 12. Produce the optimal solution x∗ and the optimal objective value Z ′(x∗) of the
optimization problem (11). Then x∗ is an optimal solution of the optimization problem
(1) with the optimal objective value Z(x∗) = Z ′(x∗) +

∑
j∈J

cj x̌j . End.

5. NUMERICAL EXAMPLES

We now illustrate our algorithm by two examples.

Example 5.1. Consider the following optimization problem:

Minimize Z(x) = x1 + 2x2 + 6x3 + 2x4 + 5x5 + 3x6 + 3x7 + x8

Subject to a+
i ◦γi

x ∨ a−i ◦γi
¬x = di, i = 1, . . . , 10,

x ∈ [0, 1]8. (13)

Where

A+ =



0.4 1 0.3 0.2 0.6 0.41 0.35 0.42
0.11 0.4 0.36 0.1 0.15 0.07 0.1 0.16
0.6 0.1 0.15 0.24 0.32 0.2 0.13 0.4
0.9 0.3 0.2 0.36 0.25 0.33 0.45 0.6
0.1 0.08 0.3 0.12 0.04 0.13 0.2 0.1
0.6 0.3 0.7 0.25 0.6 0.7 1 0.1
0.55 0.1 0.2 0.12 0.3 0.25 0.1 1
0.3 1 1 0.05 0.25 0.2 0.08 0.5
1 0.05 0.4 0.4 0.25 0.2 0.06 0.1

0.95 0.25 0.1 0.4 0.6 0.15 0.3 0.45


,
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A− =



0.3 0.1 0.5 0.4 0.33 0.05 0.2 0.43
0.12 0.24 0.1 0.24 0.17 0.03 0.15 0.12
0.24 0.2 0.15 0.11 0.23 0.4 0.48 0.25
0.1 0.04 0.3 0.22 0.45 0.35 0.72 0.33
0.03 0.2 0.1 0.07 0.09 0.14 0.05 0.01
0.7 0.25 0.45 0.1 0.3 1 0.6 0.35
0.6 0.4 0.1 1 0.54 0.35 0.7 0.25
0.8 0.3 1 0.65 0.38 0.1 0.7 1
0.2 0.4 0.24 0.35 0.25 0.2 0.31 0.27
0.31 0.27 0.42 0.35 1 0.2 1 0.32


,

γ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)T , d = (0.45, 0.18, 0.24, 0.36, 0.15, 0.7, 0.6, 0.9, 0.4, 0.5)T , and
x = (x1, x2, x3, x4, x5, x6, x7, x8)T . Now, we want to solve this example by Algorithm 2.

Step 1. In this example the lower and upper bound x̌ and x̂ are as follows:
x̌ = (0, 0.25, 0.1, 0.4, 0.5, 0.4, 0.5, 0.1)T and x̂ = (0.4, 0.45, 0.5, 1, 0.75, 1, 0.7, 0.6)T .

Step 2. Since d > 0 and x̌ < x̂, we go to Step 3.

Step 3. The matrices Q+ and Q− can be obtained as follows:

Q+ =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
9
10



0 1 0 0 1 0 0 0
0 1 1 0 0 0 0 0
1 0 0 1 1 0 0 1
1 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0


and

Q− =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
9
10



0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0


.

Step 4. The system of bipolar fuzzy relation equations is consistent. So, we go to Step 5.
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Step 5. The index sets I+
j and I−j , for all j ∈ J, can be computed as follows:

I+
1 = {3, 4, 9}, I+

2 = {1, 2}, I+
3 = {2, 5}, I+

4 = {3, 4, 9}, I+
5 = {1, 3, 10}, I+

6 =
{6}, I+

7 = {6}, I+
8 = {3, 4, 7}, I−1 = {3, 6, 7}, I−2 = {2, 5}, I−3 = {1, 8}, I−4 =

{7}, I−5 = {10}, I−6 = {3}, I−7 = {3, 4, 10}, and I−8 = {8}.
Also, the index sets J+

i and J−i , for all i ∈ I, can be computed as follows:
J+

1 = {2, 5}, J+
2 = {2, 3}, J+

3 = {1, 4, 5, 8}, J+
4 = {1, 4, 8}, J+

5 = {3}, J+
6 =

{6, 7}, J+
7 = {8}, J+

8 = ∅, J+
9 = {1, 4}, J+

10 = {5}, J−1 = {3}, J−2 = {2}, J−3 =
{1, 6, 7}, J−4 = {7}, J−5 = {2}, J−6 = {1}, J−7 = {1, 4}, J−8 = {3, 8}, J−9 = ∅, and
J−10 = {5, 7}.

Step 6. Consider the following equivalent optimization problem:

Minimize Z ′(x) = x1 + 2x2 + 6x3 + 2x4 + 5x5 + 3x6 + 3x7 + x8 − 7.2

Subject to a+
i ◦γi

x ∨ a−i ◦γi
¬x = di, i = 1, . . . , 10,

x ∈ [0, 1]8, (14)

where A+, A−, γ, d, and x are defined before. Now, we are ready to apply Rules 1-4 to
reduce problem (14).

a) Since I+
2 ∪ I

+
3 ⊆ I−2 ∪ I

−
3 , according to Rule 1, x∗2 = x̌2 = 0.25 and x∗3 = x̌3 = 0.1.

Also, the columns 2, 3, and the rows 1, 2, 5, and 8 can be deleted from the matrices Q+

and Q−.

b) Since I+
1 ⊆ I+

4 , I−1 ⊇ I−4 and c1(x̂1 − x̌1) = 0.4 ≯ 1.2 = c4(x̂4 − x̌4), we cannot use
Rule 2 in this case. Also, we cannot use this rule for the variables x6 and x7. But the
conditions of Rule 3 are satisfied, i. e., q+

45 = q−45 = 0 and I+
5 \ I

−
5 = {3} is a subset of

I+
1 , I

+
4 , I

−
7 , and I+

8 . So, we can set x∗5 = x̌5 = 0.5. Also, the column 5 and the row 10
can be deleted from the matrices Q+ and Q−. Note that we can also use this rule for
i0 = 9 and j0 = 5 and give the same results. After reduction of the parts (a) and (b),
the matrices Q+ and Q− are converted as follows:

Q+ =

1 4 6 7 8
3
4
6
7
9


1 1 0 0 1
1 1 0 0 1
0 0 1 1 0
0 0 0 0 1
1 1 0 0 0

 and Q− =

1 4 6 7 8
3
4
6
7
9


1 0 1 1 0
0 0 0 1 0
1 0 0 0 0
1 1 0 0 0
0 0 0 0 0

 .

The matrices Q+ and Q− cannot be reduced further applying Rules 1-4. So, we can re-
formulate the objective function removing the determined variables x∗2 = 0.25, x∗3 = 0.1,
and x∗5 = 0.5. Hence, the reduced objective function is as follows: x1 + 2x4 + 3x6 +
3x7 + x8 − 3.6.

Step 7. Compute the initial upper bound U on the optimal objective value of the
reduced objective function using Algorithm 1. First, we begin with the feasible solution
x = (x̌1, x̂4, x̂6, x̂7, x̂8)T . It is clear that J ′ = {4, 6, 7, 8} and the set {6, 4, 7, 8} returns
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from the Procedure Decreasing order (H). After using Algorithm 1, we obtain the feasi-
ble solution x = (x̌1, x̂4, x̌6, x̌7, x̌8)T with the initial upper bound U = c4 (x̂4 − x̌4) = 1.2.

Step 8. Since c6 (x̂6 − x̌6) = 1.8 > 1.2 = U , according to Rule 5, x∗6 = x̌6 = 0.4.
Moreover, the row 3 and the column 6 can be deleted from the matrices Q+ and Q−.
So, the matrices Q+ and Q− can be simplified as follows:

Q+ =

1 4 7 8
4
6
7
9


1 1 0 1
0 0 1 0
0 0 0 1
1 1 0 0

 and Q− =

1 4 7 8
4
6
7
9


0 0 1 0
1 0 0 0
1 1 0 0
0 0 0 0

 .

Since the matrices Q+ and Q− cannot be reduced further applying Rules 1-4, we go to
Step 9.

Step 9. Since the matrices Q+ 6= ∅ and Q− 6= ∅, we go to Step 10.

Step 10. For the reduced matrices Q+ and Q−, the value matrix M can be gener-
ated as follows:

M =

1 4 7 8
4
6
7
9


0.4 ∞ 1.2 ∞ ∞ 0 0.5 ∞
∞ 0 ∞ ∞ 0.6 ∞ ∞ ∞
∞ 0 ∞ 0 ∞ ∞ 0.5 ∞
0.4 ∞ 1.2 ∞ ∞ ∞ ∞ ∞

 .

Step 11. Now, we are ready to use the modified branch and bound method with
the jump-tracking technique on the matrix M . The details of steps within Step 11 is
summarized in Figure 2. On each node, the branching process should be stopped when
its objective value is larger than the current upper bound. We begin from the first
equation. {x̂1, x̂4, x̌7, x̂8} are four candidates for satisfying the first equation. If we
select x̂1 (node 1), then the objective value is 0.4. Note that we never use x̌1 to branch
further on node 1. If we select x̂4 (node 2), then the objective value is 1.2. Also, we
never use x̌4 to branch further on node 2. If we select x̌7 (node 3), then the objective
value is 0. Also, we never use x̂7 to branch further on node 3. If we select x̂8 (node 4),
then the objective value is 0.5. Also, we never use x̌8 to branch further on node 4. We
can see four branches generated from node 0 in Figure 2.

Consider the index set Jk as follows:
Jk = {j ∈ J | xj has been selected along the branches from node 0 to node k} . Along
the branches to each node k, we need to check whether the selected variables xj for each
j ∈ Jk together with x̌j for each j ∈ J \ Jk satisfy all equations or not. Therefore, if it
satisfies, then we do not branch further on this node. Furthermore, the jump-tracking
technique requires to branch on the node with least objective value.

Since x̂4 with x̌1, x̌7, and x̌8 satisfy all equations, we do not branch further on node 2.
Now, we have three nodes to select for the next branching process. By the jump-tracking
technique, we select node 3 to branch further because of least objective value there.
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Consider node 3. {x̌1, x̂7} are two candidates for satisfying the second equation. But
we cannot use x̂7 to branch further on node 3 because we select x̌7 along node 0 to node
3. Therefore, {x̌1} is the only candidate for satisfying the second equation here. If we
select x̌1 (node 5), then the objective value remains 0. Now, we have three nodes (nodes
1, 4, and 5) to select for the next branching process. By the jump-tracking technique,
we select node 5 to branch further.

Consider node 5. {x̌1, x̌4, x̂8} are three candidates for satisfying the third equation.
If we select x̌1 (node 6), x̌4 (node 7), and x̂8 (node 8), then the objective value is 0, 0,
and 0.5, respectively. Along the branches to each node 6, 7, and 8, all equations cannot
be satisfied. Now, we select node 6 for the next branching process. {x̂4} is the only
candidate for satisfying the fourth equation. If we select x̂4 (node 9), then the objective
value is updated to 1.2. Note that we cannot branch further on node 7 because we do not
have any candidate for satisfying the fourth equation. So, we have three nodes (nodes
1, 4, and 8) to select for the next branching process. Considering the jump-tracking
technique, we select node 1 to branch further.

Consider node 1. {x̂7} is the only candidate for satisfying the second equation. If
we select x̂7 (node 10), then the objective value is 1. Since x̂1 and x̂7 with x̌4 and x̌8

satisfy all equations, we do not branch further on this node (node 10). Hence, x̂1, x̌4, x̂7,
and x̌8 is a solution with the objective value 1, which is better than the initial upper
bound 1.2. We update the current upper bound as 1. Continuing this process, a tree
with 18 nodes is generated as Figure 2. Hence, the optimal solution of problem (14) is
as x∗1 = 0.4, x∗2 = 0.25, x∗3 = 0.1, x∗4 = 0.4, x∗5 = 0.5, x∗6 = 0.4, x∗7 = 0.7, and x∗8 = 0.1
with the objective value Z ′(x∗) = 1.

Fig. 2. Modified branch and bound method.

Step 12. The final optimal solution x∗ of problem (13) is given as follows:
x∗ = (0.4, 0.25, 0.1, 0.4, 0.5, 0.4, 0.7, 0.1)T with the optimal objective value Z(x∗) =
Z ′(x∗) + 7.2 = 8.2.
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Example 5.2. Consider the following optimization problem:

Minimize Z(x) = x1 + 2x2 + 7x3 + 4x4 + 3x5 + 4x6

Subject to a+
i ◦γi

x ∨ a−i ◦γi
¬x = di, i = 1, . . . , 7,

x ∈ [0, 1]6. (15)

Where

A+ =



0.9 0.5 0.21 0.3 0.6 0.4
0.25 0.3 0.26 0.27 0.14 0.45
0.03 0.15 0.02 0.18 0.24 0.07
0.12 0.35 0.24 0.3 0.2 0.1
0.1 0.28 0.4 0.75 0.52 0.45
0.04 0.75 0.36 1 0.53 1
0.9 0.6 0.9 0.8 1 0.3


,

A− =



0.25 0.42 0.35 0.15 0.4 0.3
0.3 0.2 0.14 0.36 0.25 0.07
0.08 0.2 0.15 0.04 0.1 0.36
0.24 0.4 0.45 0.3 0.6 0.72
0.2 0.5 0.35 0.75 0.42 1
1 0.35 0.75 0.27 1 0.3

0.5 0.9 0.24 0.4 0.32 0.51


,

γ = (1, 1, 1, 1, 0, 0, 0)T , d = (0.45, 0.27, 0.18, 0.36, 0.6, 0.75, 0.9)T , and
x = (x1, x2, x3, x4, x5, x6)T . Now, we want to solve this example by Algorithm 2.

Step 1. The lower and upper bound x̌ and x̂ are as follows:
x̌ = (0.25, 0.1, 0.2, 0.25, 0.4, 0.5)T and x̂ = (0.5, 0.9, 1, 0.75, 0.75, 0.6)T .

Step 2. Since d > 0 and x̌ < x̂, we go to Step 3.

Step 3. The matrices Q+ and Q− are as follows:

Q+ =

1 2 3 4 5 6
1
2
3
4
5
6
7



1 1 0 0 1 0
0 1 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 1 0 0 0


and Q− =

1 2 3 4 5 6
1
2
3
4
5
6
7



0 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 1
0 1 1 0 1 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 0


.

Step 4. The system of bipolar fuzzy relation equations is consistent. So, we go to Step 5.

Step 5. The index sets I+
j and I−j , for all j ∈ J, are as follows:

I+
1 = {1}, I+

2 = {1, 2}, I+
3 = {7}, I+

4 = {5, 6}, I+
5 = {1, 3}, I+

6 = {2}, I−1 = {6},
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I−2 = {3, 4}, I−3 = {4}, I−4 = {2, 5}, I−5 = {4}, and I−6 = {3, 4}.
Also, the index sets J+

i and J−i , for all i ∈ I, are as follows:
J+

1 = {1, 2, 5}, J+
2 = {2, 6}, J+

3 = {5}, J+
4 = ∅, J+

5 = {4}, J+
6 = {4}, J+

7 = {3},
J−1 = ∅, J−2 = {4}, J−3 = {2, 6}, J−4 = {2, 3, 5, 6}, J−5 = {4}, J−6 = {1}, and J−7 = ∅.

Step 6. Consider the following equivalent optimization problem:

Minimize Z ′(x) = x1 + 2x2 + 7x3 + 4x4 + 3x5 + 4x6 − 6.05

Subject to a+
i ◦γi

x ∨ a−i ◦γi
¬x = di, i = 1, . . . , 7,

x ∈ [0, 1]6, (16)

where A+, A−, γ, d, and x are defined before. Now, we are ready to apply Rules 1-4 to
reduce problem (16)

a) Since I+
2 ⊆ I+

5 ∪ I
+
6 , I−2 ⊇ I−5 ∪ I

−
6 , and c2 (x̂2 − x̌2) = 1.6 > 1.45 = c5 (x̂5 − x̌5) +

c6 (x̂6 − x̌6), according to Rule 2, x∗2 = x̌2 = 0.1. Also, the rows 3, 4, and the column 2
can be removed from the matrices Q+ and Q−.

b) Since I+
7 = {3} and I−7 = ∅, then we can set x∗3 = x̂3 = 1 with regard to Rule 4.

Therefore, the row 7 and the column 3 can be deleted from the matrices Q+ and Q−.
After deletion in the parts (a) and (b), the matrices Q+ and Q− can be updated as
follows:

Q+ =

1 4 5 6
1
2
5
6


1 0 1 0
0 0 0 1
0 1 0 0
0 1 0 0

 and Q− =

1 4 5 6
1
2
5
6


0 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0

 .

Note that I+
1 ⊆ I+

5 , I−1 ⊇ I−5 , and c1 (x̂1 − x̌1) = 0.25 ≯ 1.05 = c5 (x̂5 − x̌5). So, we
cannot use Rule 2 in this case. The matrices Q+ and Q− cannot be reduced further. So,
we can reformulate the objective function removing the determined variables x∗2 = 0.1
and x∗3 = 1. Hence, the reduced objective function is as follows: x1+4x4+3x5+4x6−4.45.

Step 7. Compute the initial upper bound U on the optimal objective value of the
reduced objective function using Algorithm 1. First, we begin with the feasible so-
lution x = (x̌1, x̂4, x̂5, x̂6)T . After using Algorithm 1, we obtain the feasible solution
x = (x̌1, x̌4, x̂5, x̌6)T with the initial upper bound U = c5 (x̂5 − x̌5) = 1.05.

Step 8. Since c4 (x̂4 − x̌4) = 2 > 1.05 = U , according to Rule 5, x∗4 = x̌4 = 0.25.
So, the rows 2, 5, and the column 4 can be deleted from the matrices Q+ and Q−. After
deletion, the matrices Q+ and Q− can be updated as follows:

Q+ =
1 5 6

1
6

(
1 1 0
0 0 0

)
and Q− =

1 5 6
1
6

(
0 0 0
1 0 0

)
.

Now, we can reduce the optimization problem (16) by Rules 1-4 again.



554 S. ALIANNEZHADI, A. ABBASI MOLAI AND B. HEDAYATFAR

a) Since I+
6 ⊆ I

−
6 , then we can set x∗6 = x̌6 = 0.5 and the column 6 can be deleted from

the matrices Q+ and Q− with regard to Rule 1.
b) Since J−6 = {1} and J+

6 = ∅, with regard to Rule 4, we set x∗1 = x̌1 = 0.25. Also, the
row 6 and the column 1 can be deleted from the matrices Q+ and Q−. After reduction
of the matrices Q+ and Q−, we can use Rule 4 again. So, we can set x∗5 = x̂5 = 0.75
and go to Step 9.

Step 9. Since Q+ = ∅ and Q− = ∅, we go to Step 12.

Step 12. The final optimal solution x∗ of problem (15) is given as follows:
x∗ = (0.25, 0.1, 1, 0.25, 0.75, 0.5)T with the optimal objective value Z(x∗) = Z ′(x∗) +
6.05 = 12.7.

6. CONCLUSIONS

The linear optimization subject to the bipolar fuzzy relation equation constraints with
the max-parametric hamacher operators was studied. The structure of its feasible do-
main was determined by a finite number of maximal and minimal solution pairs. A
necessary and sufficient condition was given for solution existence. The problem was
converted to an equivalent programming problem. Some simplification procedures were
presented for reduction of the problem. An algorithm was designed to find an upper
bound for its optimal objective value. We modified the branch and bound method to
solve the problem with regard to the upper bound. An algorithm was designed to solve
the original problem with regard to the simplification procedures, the above algorithm,
and the modified branch and bound method.
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