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Abstract. Consider the n×nmatrix with (i, j)’th entry gcd (i, j). Its largest eigenvalue λn
and sum of entries sn satisfy λn > sn/n. Because sn cannot be expressed algebraically as
a function of n, we underestimate it in several ways. In examples, we compare the bounds
so obtained with one another and with a bound from S.Hong, R.Loewy (2004). We also
conjecture that λn > 6π−2n log n for all n. If n is large enough, this follows from F.Balatoni
(1969).
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1. Introduction

Given n > 1, let An = (aij) be the greatest common divisor (gcd) matrix on

{1, 2, . . . , n}, that is, aij = gcd (i, j), i, j = 1, 2, . . . , n. Let λn be its largest eigen-

value and sn the sum of its entries. Denote by en the n-vector with each entry one.

Applying the Rayleigh quotient and noting that en is not an eigenvector correspond-

ing to λn, we have

(1) λn >
e
T
nAnen

eTnen
=

sn
n

=: ln,

see [5], Theorem 4.2.2. The lower bound for the largest eigenvalue of a Hermitian

matrix, obtained in this way, is often quite good if the matrix is positive definite

and (entrywise) positive. Because An is positive definite, see [3], Theorem 2, we are

motivated to a closer look at ln.
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The study of gcd matrices traces back to Smith in [7] but did not attract much

attention until recent decades. Hong and Loewy in [4] may be regarded as initiators

of studying eigenstructures of gcd and related matrices. For a brief historical survey

on this topic with references, see Altınışık et al. [1].

Because sn cannot be expressed algebraically as a function of n, we underestimate

it; then we are actually studying lower bounds for ln. The simplest way is to replace

all off-diagonal entries of An by 1; let Bn = (bij) be the matrix so obtained. Since

the sum of its entries is

n(n+ 1)

2
+ n(n− 1) =

3n2 − n

2
=: tn,

we have

λn >
tn
n

=
3n− 1

2
=: un.

Our task is to find for λn better bounds than un. Because we are interested also

in asymptotic bounds, we will first (Section 2) take a look at the asymptotics of λn

and ln. Thereafter (Sections 3–7) we will improve un. We will take a suitable nonzero

and (entrywise) nonnegative matrix En = (eij) with the following properties:

(i) Its all diagonal entries are zero.

(ii) Its all off-diagonal entries satisfy bij + eij 6 aij .

(iii) The sum of its entries, denoted by τn, is easy to calculate.

Then

sn > tn + τn > tn,

which implies, by (1),

(2) λn > un +
τn
n

> un.

Different choices of En give different improvements. We will finally in examples

compare our bounds with one another (Section 8) and with a bound of Hong and

Loewy in [4] (Section 9). Concluding remarks (Section 10) complete our paper.

2. Asymptotics of λn and ln

It is well-known, see [8], equation (25), that

sn =
6

π
2
n2 logn+O(n2),

so

ln =
6

π
2
n logn+O(n).
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Experiments make us conjecture that

(3) λn >
6

π
2
n logn =: vn.

It is also well-known, see [2], Theorem, that

(4) λn = O(n1+ε)

for all ε > 0 but

(5) λn 6= O(n(log n)k)

for all k > 1. Therefore (3) is true if n is large enough. In fact, vn is then a very

poor bound, because

lim
n→∞

vn
λn

= 0

by (4) and (5).

3. First attempt: eij = 1 if i 6= j and aij > 2

We obtained the bound un by replacing all off-diagonal entries of An by one. To

improve it, we replace by two all of them that are at least two. In other words, we

define En by setting eij = 1 if i 6= j and aij > 2, and eij = 0 otherwise. The number

of ones before the diagonal is i − 1 − ϕ(i), where i > 1 and ϕ is the Euler totient

function. Hence

τn = 2

n∑

i=2

(i− 1− ϕ(i)) = n2 − n+ 2(1− Φ(n)),

where

Φ(n) =
n∑

i=1

ϕ(i).

By (2),

λn >
3n− 1

2
+ n− 1 + 2

1− Φ(n)

n
=

5n− 3

2
+ 2

1− Φ(n)

n
=: wn.

Asymptotically, see [6], Section I.21,

Φ(n) =
3

π
2
n2 +O(nδ)
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for some δ with 1 < δ < 2; hence

wn =
(5
2
−

6

π
2

)
n+O(nδ)

for some δ with 0 < δ < 1.

4. Second attempt: Restrict i and j even

To find a (weaker) bound without Φ(n), we restrict i and j to be even. So we set

eij = 1 if i and j are different and even, and eij = 0 otherwise. Then

τn =
⌊n
2

⌋(⌊n
2

⌋
− 1

)
.

By (2),

λn >
3n− 1

2
+

1

n

⌊n
2

⌋(⌊n
2

⌋
− 1

)
=: xn.

If n is even, then

xn =
3n− 1

2
+

1

2

(n
2
− 1

)
=

7n

4
− 1.

If n is odd, then

xn =
3n− 1

2
+

n− 1

2n

(n− 1

2
− 1

)
=

7n

4
−

3

2
+

3

4n
.

Asymptotically

xn =
7n

4
+O(1).

5. Third attempt: Change eij = 2 if i 6= j and 3 | i, j

If i and j are multiples of three and i 6= j, then aij > 3 but bij = 1. The number

of such pairs (i, j) is ⌊n
3

⌋(⌊n
3

⌋
− 1

)
=: αn.

“Old En” (i.e., En constructed in the previous section) has then either eij = 0 or

eij = 1. We change all these entries into two. Call “new En” the matrix effecting

so.

If i 6= j and 6 | i, j, then old eij = 1. The number of such pairs (i, j) is

⌊n
6

⌋(⌊n
6

⌋
− 1

)
=: βn.
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If i 6= j and 3 | i, j but not 6 | i, j, then old eij = 0. The number of such pairs is

αn − βn. Therefore we obtain “new τn” by adding

2(αn − βn) + βn = 2αn − βn

to “old τn”. Hence, by (2),

λn >
3n− 1

2
+

1

n

[⌊n
2

⌋(⌊n
2

⌋
− 1

)
+ 2

⌊n
3

⌋(⌊n
3

⌋
− 1

)
−
⌊n
6

⌋(⌊n
6

⌋
− 1

)]
=: x′

n.

The polynomial expression of x′

n depends on the remainder

r = n− 6
⌊n
6

⌋
.

If r = 0, then
⌊
1
2n

⌋
= 1

2n,
⌊
1
3n

⌋
= 1

3n,
⌊
1
6n

⌋
= 1

6n; so

x′

n =
3n− 1

2
+

1

n

[n
2

(n
2
− 1

)
+ 2

n

3

(n
3
− 1

)
−

n

6

(n
6
− 1

)]
=

35n

18
−

3

2
.

If r = 1, then
⌊
1
2n

⌋
= 1

2 (n− 1),
⌊
1
3n

⌋
= 1

3 (n− 1),
⌊
1
6n

⌋
= 1

6 (n− 1); so

x′

n =
3n− 1

2
+

1

n

[n− 1

2

(n− 1

2
− 1

)
+ 2

n− 1

3

(n− 1

3
− 1

)
−

n− 1

6

(n− 1

6
− 1

)]

=
35n

18
−

43

18
+

13

9n
.

We continue similarly. If r = 2, then

x′

n =
35n

18
−

41

18
+

16

9n
.

If r = 3, then

x′

n =
35n

18
−

11

6
.

If r = 4, then

x′

n =
35n

18
−

31

18
−

2

9n
.

If r = 5, then

x′

n =
35n

18
−

47

18
+

13

9n
.

This procedure can be pursued further. The next step is to change eij = 3 if

i and j are multiples of four and i 6= j. But we stop here, because the calculations

become complicated.
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6. Fourth attempt: ei,ki = eki,i = i− 1

Denote ni = ⌊n/i⌋. The entries

ai,2i = ai,3i = . . . = ai,nii = i,

a2i,i = a3i,i = . . . = anii,i = i, i = 2, 3, . . . , n2,

are greater than one, but the corresponding entries are bij = 1. In order to give

them their original values, we define En by

ei,2i = ei,3i = . . . = ei,nii = i− 1,

e2i,i = e3i,i = . . . = enii,i = i− 1, i = 2, 3, . . . , n2,

and eij = 0 otherwise. Then

τn =

n2∑

i=2

2

ni∑

k=2

ei,ki =

n2∑

i=2

2(ni − 1)(i− 1)

= 2[(n2 − 1) + (n3 − 1) · 2 + (n4 − 1) · 3 + . . .+ (nn2−1 − 1)(n2 − 2) + 1 · (n2 − 1)]

= 2{[1 + . . .+ (n2 − 1)
]
+
[
1 + . . .+ (n3 − 1)] + . . .+

[
1 + . . .+ (nn2−1 − 1)] + 1}

= 2

n2∑

k=2

[1 + 2 + . . .+ (nk − 1)] =

n2∑

k=2

nk(nk − 1),

which is tedious to compute. So we underestimate it.

Because

nk >
n

k
− 1,

we have

τn >

n2∑

k=2

(n
k
− 1

)(n
k
− 2

)
=

n2∑

k=2

(n2

k2
− 3

n

k
+ 2

)

= n2
n2∑

k=2

1

k2
− 3n

n2∑

k=2

1

k
+ 2(n2 − 1).

Hence, by (2),

(6) λn >
3n− 1

2
+ n

n2∑

k=2

1

k2
− 3

n2∑

k=2

1

k
+

2(n2 − 1)

n
=: yn.
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If n is even, then

yn =
3n− 1

2
+ n

n/2∑

k=2

1

k2
− 3

n/2∑

k=2

1

k
+

2(12n− 1)

n

=
3n

2
+ n

n/2∑

k=2

1

k2
− 3

n/2∑

k=2

1

k
+

1

2
−

2

n
.

If n is odd, then

yn =
3n− 1

2
+ n

(n−1)/2∑

k=2

1

k2
− 3

(n−1)/2∑

k=2

1

k
+

2(12 (n− 1)− 1)

n

=
3n

2
+ n

(n−1)/2∑

k=2

1

k2
− 3

(n−1)/2∑

k=2

1

k
+

1

2
−

3

n
.

Since
n∑

k=1

1

k
= O(log n)

and

(7)

n∑

k=1

1

k2
=

π
2

6
+O

( 1

n

)
,

we have asymptotically

yn =
3n

2
+ n

(
π
2

6
− 1 +O

( 1

n

))
+O(log n) =

(
π
2

6
+

1

2

)
n+O(log n).

7. Fifth attempt: Underestimate yn

We underestimate yn in order to find a polynomial expression. We apply the

inequalities
n∑

k=1

1

k
< log n,

n∑

k=1

1

k2
>

2n(2n− 1)

(2n+ 1)2
π
2

6
.

The first inequality is easy to show. The second is from Wikipedia, where it is shown

in order to prove (7). A reference to Yaglom and Yaglom [9] is given there. Now

n

n2∑

k=2

1

k2
− 3

n2∑

k=2

1

k
> n

[2n2(2n2 − 1)

(2n2 + 1)2
π
2

6
− 1

]
− 3 logn2,

1033



which implies, by (6),

λn >
3n− 1

2
+

[2n2(2n2 − 1)

(2n2 + 1)2
π
2

6
− 1

]
n− 3 logn2 +

2(n2 − 1)

n

=
[2n2(2n2 − 1)

(2n2 + 1)2
π
2

6
+

1

2

]
n−

1

2
− 3 logn2 +

2(n2 − 1)

n
=: y′n.

If n is even, then

y′n =
[2 · 1

2n(2 ·
1
2n− 1)

(2 · 1
2n+ 1)2

π
2

6
+

1

2

]
n−

1

2
− 3 log

n

2
+

2(12n− 1)

n

=
n2(n− 1)

(n+ 1)2
π
2

6
+

n+ 1

2
− 3 log

n

2
−

2

n
.

If n is odd, then

y′n =
[2 · 1

2 (n− 1)(2 · 1
2 (n− 1)− 1)

(2 · 1
2 (n− 1) + 1)2

π
2

6
+

1

2

]
n−

1

2
− 3 log

n− 1

2
+

2(12 (n− 1)− 1)

n

=
(n− 1)(n− 2)

n

π
2

6
+

n+ 1

2
− 3 log

n− 1

2
−

3

n
.

Asymptotically

y′n =
(

π
2

6
+

1

2

)
n+O(log n).

8. Examples

In the asymptotic expression of all our bounds (excluding the conjectured

bound vn), the main term is of the form cn. The coefficient c (with four digits

precision) is

for un : c = 3
2 = 1.5,

for xn : c = 7
4 = 1.75,

for wn : c = 5
2 − 6/π

2 = 1.892,

for x′

n : c = 35
18 = 1.944,

for y′n, yn : c = 1
6π

2 + 1
2 = 2.145.

Therefore, and since vn = O(n log n) by definition, we have

(8) un < xn < wn < x′

n < y′n < yn < vn

when n is large.
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Example 1. n = 3, λ3 = 4.214, l3 = u3 = 4. Since B3 = A3, there is nothing to

be improved.

Example 2. n = 4, λ4 = 6.421, l4 = 6, u4 = 5.5. In all our procedures,

B4 +E4 = A4. So w4 = x4 = x′

4 = 6 = l4, but y4 = 5.5 = u4. The benefit obtained

in changing B4 is then lost in computing y4. The bound y
′

4 = 3.079. The conjectured

bound v4 = 3.371.

Example 3. n = 5, λ5 = 7.770, l5 = 7.4, u5 = 7. Again all procedures work

completely; so w5 = x5 = x′

5 = 7.4 = l5. The bound y5 = 7.15 is better than u5.

The gain in changing B5 is thus larger than the loss in computing y5. The bound

y′5 = 4.268. The conjectured bound v4 = 4.892.

Example 4. n = 6, λ6 = 11.05, l6 = 10.17, u6 = 8.5. The bound w6 = 9.833.

The procedure of Section 5 yields B6+E6 = A6, but that in Section 4 does not. We

have x6 = 9.5 and x′

6 = 10.17 = l6. The bound y6 = 8.833 is better than u6. The

bound y′6 = 5.913. The conjectured bound v6 = 6.536.

Example 5. n = 20, λ20 = 49.62, l20 = 44, u20 = 29.5. In the previous examples,

the bound y′n and the conjectured bound vn are the poorest, but they improve when n

increases. The bound y20 = 35.61 is better than x20 = 34 but worse than x′

20 = 36.71.

The bound y′20 = 31.84 is better than u20 but worse than x20. The bound w20 = 35.8.

The conjectured bound v20 = 36.42.

Example 6. n = 50, λ50 = 156.73, l50 = 134.5, u50 = 74.5. We have x50 = 86.5

and x′

50 = 94.98. The bound y50 = 97.30 is better than x′

50. The bound y′50 = 93.28

is better than x50 but worse than x′

50. The bound w50 = 92.58. The conjectured

bound v50 = 118.91. The ordering

u50 < x50 < w50 < y′50 < x′

50 < y50 < v50

is almost the same as the asymptotic ordering (8). Only y′50 and x′

50 are reversed.

Example 7. n = 150, λ150 = 617.0, l150 = 498.3, u150 = 224.5. Now x150 =

261.5, w150 = 282.1, x′

150 = 290.2, y′150 = 304.4, y150 = 308.5, v150 = 456.9 are in

the asymptotic ordering.
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9. Comparison with a bound of Hong and Loewy

Hong and Loewy proved as a special case of [4], Theorem 4.7 (ii), that

λn >
ne−γ

logn

(
1−

c

logn

)
,

where γ is Euler’s constant and c is a certain positive number. Since c is unknown

and cannot easily be overestimated, this bound is useless in comparison.

These authors actually studied power gcd matrices. So let A
(p)
n denote the en-

trywise p’th power of An with largest eigenvalue µn. A special case of [4], Theo-

rem 4.7 (i), states that if p > 1, then

µn >
np

ζ(p)
=: hn,

where ζ is the Riemann zeta function. We use this bound in comparison in two ways.

First, because A
(p)
n > An (entrywise), we have

µn > λn,

see [5], Theorem 8.1.18. Hence our bounds apply also to µn but are poor unless p is

near to one. On the other hand, if p → 1, then ζ(p) → ∞ and so hn → 0. Therefore

hn is poor if p is near to 1, which favors our bounds unless n is very large.

Second, applying to A(p) the procedures described in Sections 1 and 3, we obtain

µn >
1

n

n∑

k=1

kp + n− 1 =: ũn,

µn >
1

n

n∑

k=1

kp + n− 1 + (2p − 1)
(
n− 1 + 2

1− Φ(n)

n

)
=: w̃n.

If p is an integer, the power sum can be expressed polynomially by using Faulhaber’s

formula in [10].

We compare our bounds with hn for p = 2, 1.5, 1.1. If p is not an integer and n is

not small, the bounds ũn and w̃n are tedious to compute with a non-programmable

calculator. Therefore we consider these bounds only in case of p = 2. We denote by

fn and gn the best and, respectively, the worst of the bounds presented in Sections 1

and 3–7.

Example 8. p = 2, µ4 = 17.514, µ5 = 25.37, µ6 = 40.30. The bound ũ4 = 10.5 is

better than h4 = 9.727, but h5 = 15.20 is better than ũ5 = 15. The bound w̃5 = 15.4

is better than h5, but h6 = 21.89 is better than w̃6 = 21.50. The bound hn is better

than our bounds if n > 6, and remarkably better if n is large.
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Example 9. p = 1.5, µ6 = 19.36, µ20 = 125.65, µ150 = 3050.2. Again our bounds

are better for small n. For example, g6 = y′6 = 5.913 is better than h6 = 5.626. As

n increases, hn begins to do better, but the range of n where our bounds succeed is

wider than in Example 8. The bound h20 = 34.24, for example, beats g20 = u20 =

29.50 but loses to f20 = x′

20 = 36.71. Again hn is remarkably better if n is large.

Example 10. p = 1.1, µ4 = 6.918, µ20 = 58.09, µ150 = 810.63. Now our

bounds are better for all matrices of reasonable size. For example, g4 = y′4 = 3.079,

h4 = 0.434, g150 = u150 = 224.5, h150 = 23.39. Even for n = 1.01 · 1012 the bound

gn = un = 1.5150 · 1012 is better than hn = 1.5139 · 1012, but for n = 1.02 · 1012 the

ordering changes: gn = un = 1.5300 · 1012, hn = 1.5304 · 1012.

10. Conclusions and remarks

We expected that ln = sn/n is a quite good lower bound for λn. By underesti-

mating sn, we found several easily computable bounds. We compared them with one

another and studied their asymptotical behavior. We also noted that λn > vn if n

is large, and conjectured this for all n. The examples suggest a stronger conjecture

that actually ln > vn. We also compared our bounds with a bound of Hong and

Loewy. For this purpose, we extended un and wn to concern the largest eigenvalue

of A
(p)
n , p > 1.

By using the vector Anen instead of en in the Rayleigh quotient, we obtain

λn >
(Ane)

T
An(Anen)

eTnen
=

suA3
n

suA2
n

,

where su denotes the sum of entries. This bound is better than ln but seems difficult

to be underestimated for our purpose.
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