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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 51 (2015), 153–161

COMMENTS ON THE FRACTIONAL PARTS

OF PISOT NUMBERS

Toufik Zaïmi, Mounia Selatnia, and Hanifa Zekraoui

Abstract. Let L(θ, λ) be the set of limit points of the fractional parts {λθn},
n = 0, 1, 2, . . . , where θ is a Pisot number and λ ∈ Q(θ). Using a description
of L(θ, λ), due to Dubickas, we show that there is a sequence (λn)n≥0 of
elements of Q(θ) such that Card (L(θ, λn)) < Card (L(θ, λn+1)), ∀ n ≥ 0.
Also, we prove that the fractional parts of Pisot numbers, with a fixed degree
greater than 1, are dense in the unit interval.

1. Introduction

A well-known theorem, due to Pisot and Vijayaraghavan (see, e.g., [3]), asserts
that if the sequence of fractional parts {λθn}, n = 0, 1, 2, . . . , where λ is a non-zero
real number and θ is an algebraic number greater than 1, has a finite number of
limit points, then θ is a Pisot number and λ ∈ Q(θ). A Pisot number is a real
algebraic integer greater than 1 whose other conjugates are of modulus less than 1,
and the set of such numbers is usually noted S, [1].

From now on suppose θ ∈ S, λ ∈ Q(θ) and λ 6= 0. Let σ1, σ2, . . . , σd be the
distinct embeddings of Q(θ) into C, and let

Mθ(x) = (x− θ1)(x− θ2) . . . (x− θd) = xd − ad−1x
d−1 − · · · − a0

be the minimal polynomial of θ, where θ1 = σ1(θ) = θ, θ2 = σ2(θ), . . . , θd = σd(θ).
Considering the inverse problem, Dubickas showed, in [4], many results about

the set, say L = L(θ, λ), of limit points of the sequence ({λθn})n≥0, and the
first one implies immediately that L(θ, λ) is finite. Hence, the above mentioned
theorem of Pisot and Vijayaraghavan is a characterization of the elements of the set
{(θ, λ) | θ ∈ S, λ ∈ Q(θ) andλ 6= 0} among all pairs having a first coordinate which
is a real algebraic number greater than 1, and a non-zero real second coordinate.

Also, Theorem 4 of [4], asserts that for a given θ, there is λ such that
Card (L(θ, λ)) = 1, if and only if θ is a strong Pisot number or |Mθ(1)| ≥ 2. Recall
that the Pisot number θ is said to be strong if d = 1, or if d ≥ 2 and θ has a real
positive conjugate, say θ2, which is greater than the absolute values of its d − 2
remaining conjugates [2]; similarly as in [8], we denote by Sst the set of strong Pisot

2010 Mathematics Subject Classification: primary 11J71; secondary 11R06, 11R04.
Key words and phrases: Pisot numbers, fractional parts, limit points.
Received February 16, 2015, revised May 2015. Editor R. Kučera.
DOI: 10.5817/AM2015-3-153

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2015-3-153


154 T. ZAÏMI, M. SELATNIA AND H. ZEKRAOUI

numbers. The aim of this note is to collect some partial answers to the following
question:

Let θ ∈ S and c ∈ N. Does there exist λ such that Card (L(θ, λ)) = c? (Q)
Clearly, by the above mentioned result of Dubickas we have a complete answer

to (Q) when c = 1. Moreover, a simple calculation gives a positive answer to (Q),
when the degree of θ is one, as asserted by the following proposition.

Proposition 1. We have L(2, 1) = {0}, and if d = 1 and (θ, c) 6= (2, 1), then
L(θ, 1/(θc − 1)) = {1/(θc − 1), θ/(θc − 1), . . . , θc−1/(θc − 1)} .

The corollaries below yield also some partial answers to (Q). These corollaries are
deduced from our main result, presented in Theorem 1 together with Proposition 2,
and proved in the next section. To state this result we shall follow the same scheme
as in the introduction of [4], with some modifications. More precisely, for a fixed
θ, we associate to each λ all pairs (T = T (θ, λ),m) ∈ £θ × N, where £θ is the
group of linear recurrence sequences with rational integer terms and companion
polynomial Mθ, satisfying mλ ∈ Z[θ]/M ′θ(θ) = {β/M ′θ(θ) | β ∈ Z[θ]} (M ′θ(θ) is the
usual derivative of Mθ evaluated at θ), and T = (Trace (mλθn))n≥0.

Corollary 1. The quantity Card (L(θ, λ)) takes infinitely many values when λ
runs through the field Q(θ).

Another immediate consequence of Theorem 1, is obtained for strong Pisot
numbers.

Corollary 2. Suppose θ ∈ Sst. Then, there exists λ such that Card (L(θ, λ)) = c
if and only if there is ((gn)n≥0, k) ∈ £θ × N satisfying s((gn)n≥0, k) = c, where
s((gn)n≥0, k) is the number of distinct terms of the sequence (gn mod k)n≥0, occur-
ring infinitely often.

For example, if Mθ(x) = x2 − 3x + 1, then θ = (3 +
√

5)/2 ∈ Sst, and ∀
((gn)n≥0, k) ∈ £θ × N the sequence (gn mod k)n≥0 is purely periodic, because θ
is a unit (for more details see the next section). By considering, for instance, the
element (gn)n≥0 ∈ £θ defined by the relation (g0, g1) = (2, 3) (and gn+2 = 3gn+1−
gn), we obtain (gn mod 1)n≥0 = 0, (gn mod 2)n≥0 = 011, (gn mod 3)n≥0 = 2010,
(gn mod 6)n≥0 = 231053435013, (gn mod 7)n≥0 = 23045403 and (gn mod 10)n≥0 =
237873, where the equality (gn mod k)n≥0 = x1 . . . xp for some p ∈ N, means that
gi+np mod k = xi+1 ∀ i ∈ {0, . . . , p − 1} and ∀ n ≥ 0. Hence, s((gn)n≥0, 1) =
1, s((gn)n≥0, 2) = 2, s((gn)n≥0, 3) = 3, s((gn)n≥0, 6) = 6, s((gn)n≥0, 7) = 5,
s((gn)n≥0, 10) = 4, and so by Corollary 2, for each c ∈ {1, . . . , 6}, there is λ such
that Card (L(θ, λ)) = c. To obtain an element λ such that Card (L(θ, λ)) = c,
where c ≥ 7, we have to consider the sequence (gn mod k)n≥0, where k ≥ 11,
since (gn mod 4)n≥0 = 233, (gn mod 5)n≥0 = 23, (gn mod 8)n≥0 = 237273, and
(gn mod 9)n≥0 = 237026762073, or another element (g′n)n≥0 ∈ £θ (by modifying
the initial conditions) having c residues mod k, for some k ≥ 7. We are unable
to prove that for any c ≥ 7 there is ((g′n)n≥0, k) ∈ £θ × N, such that sequence
(g′n mod k)n≥0 has exactly c residues.
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We may also use Theorem 1 and Proposition 2, to obtain another proof of
Theorem 4 of [4].

Corollary 3 (Dubickas). For a fixed Pisot number θ, the following assertions are
equivalent.

(i) There is a non-zero element λ of the field Q(θ) (or equivalently of the field
R) such that Card (L(θ, λ)) = 1.

(ii) θ ∈ Sst or |Mθ(1)| 6= 1.

It is easy to see, from the computation in the beginning of Section 2, that
L(θ, λ) = {0, 1} ∀λ ∈ Z[θ]/M ′θ(θ), except when θ ∈ Sst; in this last case we have,
by Corollary 2, Card (L(θ, λ)) = 1. Moreover, we may deduce from Theorem 1 the
following consequence.

Corollary 4. If θ ∈ Sst and |Mθ(−1)| ≥ 3, then there is λ ∈ Q(θ) such that
Card (L(θ, λ)) = 2.

To complete this last result we have to consider the case where θ ∈ Sst and
|Mθ(−1)| ∈ {1, 2}, or to prove the inequality |Mθ(−1)| > 2 for all θ ∈ Sst. It is
easy to verify that |Mθ(−1)| ≥ 3 when the degree of the strong Pisot number θ is
less than 4, or when θ belongs to the families defined by Theorem 2 of [8]. Also,
we are unable to find θ ∈ Sst with |Mθ(−1)| ∈ {1, 2}.

Among a large amount of the structure of the set of Pisot numbers is understood
(see for instance [1]), the following result seems to be unknown.

Theorem 2. Let d be a rational integer greater than 1. Then, the fractional parts
of Pisot numbers with degree d are dense in the unit interval.

A Salem number is a real algebraic integer greater than one whose other conju-
gates are of modulus at most 1, and with a conjugate with modulus one [2]. It is
well known that the powers of a Salem number are dense modulo one [1]. Hence,
if θ is a Salem number with degree d, then the fractional parts of Salem numbers
which belong to the field Q(θ), with degree d, are dense in the unit interval. In
the proof of Theorem 2, we shall show an analogue of this last mentioned assertion
only for quadratic Pisot numbers. This proof and the ones of the corollaries are,
respectively, exhibited in the last and third sections.

2. The main result

As mentioned in the introduction for a fixed θ, we associate to each λ all elements
(T = T (θ, λ),m) of the set £θ ×N, defined as follows. Let m = m(λ, θ) ∈ N be
such that mM ′θ(θ)λ ∈ Z[θ]. Then, mλ ∈ Z[θ]/M ′θ(θ), and so by Lemma 2 of [7], we
obtain

tn := Trace (mλθn) ∈ Z , ∀n ≥ 0 .
Since θn+d = ad−1θ

n+d−1 + · · ·+ a0θ
n, we see that

mλθn+d = ad−1mλθ
n+d−1 + · · ·+ a0mλθ

n
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and

tn+d := ad−1tn+d−1 + · · ·+ a0tn , ∀n ≥ 0 ;
thus T := (tn)n≥0 ∈ £θ. Moreover, as

Trace (mλθn) =
d∑
i=1

σi(mλθn) = m

d∑
i=1

σi(λ)θni ,

we have

{λθn} = tn
m
− [λθn]−

d∑
i=2

θni σi(λ) ,(1)

where [ · ] is the integer part function.
Recall also that for every ((gn)n≥0, k) ∈ £θ × N, the sequence (gn mod k)n≥0

is eventually periodic (there are k possible values mod k, for each component of
the vectors (gn, gn+1, . . . , gn+d−1)) and so there are two rational integers p =
p((gn)n≥0, k) ≥ 1 and q ≥ 0 such that gn+p ≡ gn mod k, for all n ≥ q.
Setting b1b2 . . . bp for the period of (gn mod k)n≥0, we deduce that the set R =
R((gn)n≥0, k) := {r1, . . . , rs((gn)n≥0,k)} of distinct terms of the sequence
(gn mod k)n≥0, occurring infinitely often, satisfies R = {b1, . . . , bp} ⊆ {0, 1, . . . ,
k − 1}.

Finally, notice that in a similar manner as in the proof of Theorem 2 of [4],
which uses a result of Smyth [6], saying that the conjugates of a Pisot number with
the same modulus are complex conjugates, we easily obtain from (1) the following
assertion.

Proposition 2. With the above notation, where R = R(T,m) and R/m :=
{r1/m, . . . , rs(T,m)/m}, the relations below are true.

(i) If r ∈ R�{0}, then r/m ∈ R/m, and so 0 /∈ R⇒ L = R/m.
(ii) θ ∈ Sst ⇒ L = R/m or L = R/m ∪ {1}�{0}.
(iii) Suppose θ /∈ Sst, 0 ∈ R and p is even with ri = rj = 0 ⇒ i ≡ jmod 2,

∀(i, j) ∈ {1, . . . , p}2 (resp. and p is odd, or p is even with ri = rj = 0 for some
(i, j) ∈ {1, . . . , p}2 satisfying i 6= jmod 2). Then, L = R/m or L = R/m∪{1}�{0}
(resp. Then, L = R/m ∪ {1}).

It follows, in particular, that L equals R/m or R/m ∪ {1} or R/m ∪ {1}r {0},
and so
(2) 1 ≤ s(T,m) ≤ Card

(
L(θ, λ)

)
≤ s(T,m) + 1 ≤ min{m+ 1, p(T,m) + 1} .

The result below yields that the converse of the above defined correspondence
between the elements of the field Q(θ) and the pairs of the set £θ ×N holds too.

Theorem 1. If (G, k) ∈ £θ × N, then there is λ ∈ Q(θ) such that
G = (Trace (kλθn))n≥0 and kλ ∈ Z[θ]/M ′θ(θ). Moreover, we have

Card
(
L(θ, λ)

)
∈ {s(G, k), s(G, k) + 1} .
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Proof. It is clear that Z[θ]/M ′θ(θ) and £θ are, respectively, subgroups of the
additive groups Q(θ) and ZN. Let ϕ be the mapping defined from Z[θ]/M ′θ(θ) to
£θ, by the equality

ϕ(γ) = (Trace
(
γθn)

)
n≥0 ∀γ ∈ Z[θ]/M ′θ(θ) .

Then, we claim that the isomorphic image of Z[θ]/M ′θ(θ) by ϕ is £θ. Indeed, by
the above, the mapping ϕ is well defined and is a group homomorphism, since
the function Trace is linear. Moreover, for each (gn)n≥0 ∈ £θ there are complex
numbers γ1, . . . , γd such that

gn =
d∑
i=1

γiθ
n
i ∀n ≥ 0 ,

and again by Lemma 2 of [7] we have that γi = σi(γ), ∀i ∈ {1, . . . , d}, where
γ1 = γ ∈ Z[θ]/M ′θ(θ); thus (gn)n≥0 = ϕ(γ) and ϕ is onto. Finally, if γ ∈ kerϕ, then
(Trace (γθn))n≥0 is the zero sequence, and the equalities Trace (γθn) = 0, where
n ∈ {0, 1, . . . , d− 1}, , yield to an homogenous linear system whose determinant,
namely det[θij−1]1≤i,j≤d, is non-zero, as the quantity ∆θ := (det[θij−1]1≤i,j≤d)2

is the discriminant of the polynomial Mθ; thus γ = 0 and the claim is proved. It
follows when (G, k) ∈ £θ ×N, that G = (Trace (γθn))n≥0 for some γ ∈ Z[θ]/M ′θ(θ),
and so

G =
(

Trace (kλθn)
)
n≥0 ,

where λ = γ/k ∈ Q(θ) and kλ ∈ Z[θ]/M ′θ(θ). The second assertion in Theorem 1 is
an immediate corollary of Proposition 2 (or the relation (2)). �

Remark. Since each element of the subgroup Z[θ] of Z[θ]/M ′θ(θ), can be written
k0 + · · ·+ kd−1θ

d−1, for some (k0, . . . , kd−1) ∈ Zd, and ϕ(k0 + · · ·+ kd−1θ
d−1) =

(k0sn+· · ·+kd−1sn+d−1)n≥0, where sn := Trace (θn), we deduce that the isomorphic
image of Z[θ] by ϕ, is a subgroup Dθ of £θ, whose elements are those (gn)n≥0 ∈ £θ

satisfying the following equalities:

(3)


k0s0 + k1s1 + · · ·+ kd−1sd−1 = g0

...
k0sd−1 + k1sd + · · ·+ kd−1s2d−2 = gd−1 ,

for some (k0, . . . , kd−1) ∈ Zd. Since the determinant of the the system (3) satisfies
det([si+j−2]1≤i,j≤d) = ∆θ > 1, [5], we see immediately that Dθ  £θ. However, it
is easy to see that {(gn modm)n≥0 | (gn)n≥0 ∈ Dθ} = {(gn modm)n≥0 | (gn)n≥0 ∈
£θ} for any m ∈ N satisfying gcd(∆θ,m) = 1.

3. Proof of the corollaries

Proof of Corollary 1. First we claim that there exists (gn)n≥0 ∈ £θ such that
0 < gn < gn+1, ∀n ≥ 0. Indeed, consider the element (hn)n≥0 of £θ which is
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defined by the equation (h0, . . . , hd−2, hd−1) = (0, . . . , 0, ε), where ε ∈ {−1, 1} and
satisfies

ε(−1)d−1(det[θij−1]1≤i,j≤d)
∏

2≤i<j≤d
(θj − θi) > 0 .

Similarly as in the proof of Theorem 1, we have that there is γ ∈ Q(θ) such that

(4) hn =
d∑
i=1

σi(γ)θni ∀n ≥ 0.

Since det[θj−1
i ]1≤i,j≤d is the determinant of the linear system

hn =
d∑
i=1

σi(γ)θni n ∈ {0, 1, . . . , d− 1},

we see that the product γ(det[θij−1]1≤i,j≤d) equals

det


h0 1 1 . . . 1
h1 θ2 θ3 . . . θd
...

...
...

...
hd−1 θd−1

2 θd−1
3 . . . θd−1

d

= (−1)d−1εdet


1 1 . . . 1
θ2 θ3 . . . θd
...

...
...

θd−2
2 θd−2

3 . . . θd−2
d



= (−1)d−1ε
∏

2≤i<j≤d
(θj − θi) ,

and so γ > 0. Hence, there is N1 ∈ N such that hn > 0 for all n ≥ N1, because
the relation (4) yields limn→∞ hn/θ

n = γ. Also, if N2 ∈ N and satisfies θN2 >

2(
∑d
i=2 |σi(γ)|)/γ(θ − 1), then we have, by (4),

hn+1 − hn = γθn(θ − 1) +
d∑
i=2

σi(γ)(θn+1
i − θni )

≥ γθN2(θ − 1) +
d∑
i=2

σi(γ)(θn+1
i − θni ) ∀n ≥ N2 ,

and so

hn+1 − hn > 2
( d∑
i=2
|σi(γ)|

)
+

d∑
i=2

σi(γ)(θn+1
i − θni ) > 0 ;

thus (hn)n≥N2 is strictly increasing, the sequence G = (gn)n≥0 := (hn)n≥max(N1,N2)
satisfies the desired property, and the claim is proved.

Now define the numbers kn inductively by k1 := g1, and kn+1 := gkn , for all
n ≥ 1. It is clear that 2 ≤ s(G, k1) ≤ k1,

kn + 1 ≤ s(G, kn+1) ≤ kn+1
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and so

s(G, kn) ≤ kn < kn + 1 ≤ s(G, kn+1) .

It follows by Theorem 1, that there are some elements λ1, λ2, λ3, . . . of Q(θ) such
that Card (L(θ, λn)) ∈ {s(G, kn), s(G, kn) + 1}, for all n ≥ 1, and the result follows
immediately by considering (for instance) the sequence (Card (L(θ, λ2n+1)))n≥0,
since the sequence (s(G, kn))n≥1 is strictly increasing. �

Proof of Corollary 2. Let θ ∈ Sst and c ∈ N. Suppose that there is λ ∈ Q(θ)
such that Card (L(θ, λ)) = c. We have already seen that there is an element (T,m) ∈
£θ × N, satisfying mλ ∈ Z[θ]/M ′θ(θ) and T = (Trace (mλθn))n≥0. Moreover, by
Proposition 2 (ii), we have L(θ, λ) = R(T,m)/m or L(θ, λ) = R(T,m)/m∪{1}�{0}
and so c = s(T,m). The converse follows trivially from the first assertion in
Theorem 1. �

Proof of Corollary 3. It is clear, by Proposition 2, that Card (L(θ, λ)) = 1 ⇒
(s = 1 and θ ∈ Sst) or (s = 1 and R 6= {0}), where s = s(Trace (mλθn),m) and
mλ ∈ Z[θ]/M ′θ(θ), because s = 1 ⇒ p = 1 ⇒ p odd and so Card(L) = 2 > 1
when R = {0} and θ /∈ Sst. Since, the condition R = {r} 6= {0}, implies that
m ≥ 2 and (tn modm)n≥q = r, for some q ≥ 0, it follows by the relation r ≡
ad−1r + · · ·+ a0rmodm, or equivalently rMθ(1) ≡ 0 modm, that |Mθ(1)| 6= 1, as
0 < r < m. Conversely, a simple calculation gives L(θ,−1) = {0} when θ ∈ Sst.
Suppose |Mθ(1)| 6= 1, set m = |Mθ(1)| and consider the element (gn)n≥0 of £θ

defined by the equalities: g0 = · · · = gd−1 = 1. Then, gd = ad−1 + · · · + a0 =
1−Mθ(1) ≡ 1 modm, and a simple induction gives that gn ≡ 1 modm for all n ≥ 0.
Now, by the first assertion in Theorem 1 and Proposition 2 (i), we immediately
see that there is λ ∈ Q(θ) such that L(θ, λ) = {1/ |Mθ(1)|}, as (gn modm)n≥0 = 1,
and 1 6= 0. �

Proof of Corollary 4. It is clear that Corollary 4 is true when d = 1. Suppose d ≥
2, set m = |Mθ(−1)| and consider the element (gn)n≥0 of £θ defined by the relations
g2k = 1, (resp. g2k+1 = m− 1) where k ∈ {0, . . . , (d− 1)/2} (resp. k ∈ {1, . . . , (d−
2)/2}). Then, a simple calculation shows that the sequence (gn modm)n≥0 is purely
periodic, and takes alternatively the values 1 and m − 1. It follows by the first
assertion in Theorem 1 and Proposition 2 (i), that there is λ ∈ Q(θ) such that
L(θ, λ) = {1/ |Mθ(−1)| , 1− 1/ |Mθ(−1)|}, and so Corollary 4 holds. �

4. Proof of Theorem 2

Consider the polynomial

M(x) = xd − (bn+ 1)xd−1 + n(b− a)xd−2 + 1 ,

where the rational integers a, b, d and n satisfy the inequalities 1 ≤ a < b, 3 ≤ d
and 2 ≤ n. Then, the relations∣∣(bn+ 1)zd−1∣∣ = bn+ 1 > 2 + n(b− a) ≥

∣∣zd + 1 + n(b− a)zd−2∣∣ ,
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where z is a complex number with modulus one, yield, by Rouché’s theorem, that the
roots of the polynomial M are all of modulus less than one, except one, say θ. A short
computation gives, for n sufficiently large, M(nb+ a

b ) = a
b (nb+ a

b )d−2(ab −1)+1 < 0,

M(nb+ a

b
+ 1
n

) = (nb+ a

b
+ 1
n

)d−2(b+ a

b
( 2
n
− 1 + a

b
) + 1

n
( 1
n
− 1)) + 1 > 0

and so

(5) nb+ a

b
< θ < nb+ a

b
+ 1
n

;

thus, the algebraic integer θ is a Pisot number and the minimal polynomial of θ
is M . Furthermore, we see by (5) that we may, again, choose n sufficiently large,
in a way to make the fractional part of θ arbitrarily close to a/b, and the result
follows immediately, when the fixed degree d is greater than 2, since the rational
numbers a/b are dense in the unit interval. To complete the proof of Theorem 2, it
remains to consider the quadratic case. In fact it is easy to show that the following
proposition is true: If K is a real quadratic extension of Q, then the fractional
parts of quadratic Pisot numbers, belonging to K, are dense in the unit interval.
Indeed, set K := Q(

√
D), where D is a square-free positive rational integer. Then,

for each y ∈ N, there is x ∈ Z such that x + y
√
D > 1 and −1 < x − y

√
D < 1

(choose for instance x = [y
√
D]), and so the element θy := x + y

√
D of K, is a

quadratic Pisot number such that {θy} = {y
√
D}. Since the fractional parts of the

numbers of the form y
√
D, when y runs through N, are dense in the unit interval,

the above cited assertion follows immediately.
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