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A note on normal generation and generation of groups

Andreas Thom

Abstract. In this note we study sets of normal generators of finitely pre-
sented residually p-finite groups. We show that if an infinite, finitely pre-
sented, residually p-finite group G is normally generated by g1, . . . , gk with
order n1, . . . , nk ∈ {1, 2, . . . } ∪ {∞}, then

β
(2)
1 (G) ≤ k − 1−

k∑
i=1

1

ni
,

where β(2)
1 (G) denotes the first `2-Betti number of G. We also show that

any k-generated group with β
(2)
1 (G) ≥ k − 1 − ε must have girth greater

than or equal 1/ε.

1 Introduction
In the first part of this note we want to prove estimates of the number of normal
generators of a discrete group in terms of its first `2-Betti number. It is well-known
that if a non-trivial discrete group is generated by k elements, then

β
(2)
1 (G) ≤ k − 1. (1)

The proof of this statement is essentially trivial using the obvious Morse inequality.
The following conjecture was first formulated in [13].

Conjecture 1. Let G be a torsionfree discrete group. If G is normally generated
by elements g1, . . . , gk, then

β
(2)
1 (G) ≤ k − 1.

If G is finitely presented, residually p-finite for some prime p, then Conjecture 1,
i.e., the inequality β(2)

1 (G) ≤ k−1 is known to be true, see Remark 2. In this note,
we give a proof of a variation of this conjecture, which also applies to the non-
torsionfree case. In Theorem 7 we show the following result
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Theorem 7. Let G be an infinite, finitely presented, residually p-finite group for
some prime p. If G is normally generated by a subgroup Λ, then

β
(2)
1 (G) ≤ β(2)

1 (Λ).

In particular, if G is normally generated by elements g1, . . . , gk ∈ G of order
n1, . . . , nk ∈ {1, 2, . . . } ∪ {∞}, then

β
(2)
1 (G) ≤ k − 1−

k∑
i=1

1

ni
.

The proof is based on some elementary calculations with cocycles on G tak-
ing values in C[G/H], for H ⊂ G a normal subgroup of finite index, and Lück’s
Approximation Theorem [10].

In Section 5 we prove in Theorem 8 that if a k-generated group G satisfies
β

(2)
1 (G) ≥ k−1−ε, then the shortest relation in terms of the generators must have

length at least 1/ε. A theorem of Pichot [15] already implied that the girth of the
Cayley graph of G with respect to the natural generating set becomes larger and
larger if ε is getting smaller and smaller. Our main result is a quantitative estimate
that implies this qualitative result. We prove in Theorem 8:

Theorem 8. Let G be a finitely generated group with generating set S. Then,

girth(G,S) ≥ 1

k − 1− β(2)
1 (G)

.

The main tool is an explicit uncertainty principle for the von Neumann dimen-
sion.

2 Residually p-finite groups
In this section we want to recall some basic results on the class of residually p-finite
groups and show that various natural classes of groups are contained in this class
of groups. Let us first recall some definitions.

Definition 1. Let p be a prime number. A group G is said to be residually p-finite,
if for every non-trivial element g ∈ G, there exists a normal subgroup H ⊂ G of
p-power index such that g 6∈ H. A group G is called virtually residually p-finite if
it admits a residually p-finite subgroup of finite index.

The following result relates residually p-finiteness to residual nilpotence and
gives a large class of examples of groups which are residually p-finite.

Theorem 2 (Gruenberg). Let G be a finitely generated group. If G is torsionfree
and residually nilpotent, then it is residually p-finite for any prime p.

Another source of residually p-finite groups is a result by Platonov, see [16],
which says that any finitely generated linear group is virtually residually p-finite
for almost all primes p. In [1], Aschenbrenner-Friedl showed that the same is true



A note on normal generation and generation of groups 3

for fundamental groups of 3-manifolds. Gilbert Baumslag showed [3] that any one-
relator group where the relator is a p-power is residually p-finite. For any group,
its image in the pro-p completion is residually nilpotent.

We denote the group ring of G with coefficients in a ring R by RG. Its elements
are formal finite linear combinations of the form

∑
g agg with ag ∈ R. The natural

multiplication on G extends to RG. The natural homomorphism ε : RG→ R given
by

ε

(∑
g∈G

agg

)
:=
∑
g∈G

ag

is called augmentation. We denote by ωR the kernel of ε : RG → R; the so-called
augmentation ideal.

In the proof of our main result, we will use the following characterization of
finite p-groups that was obtained by Karl Gruenberg, see [7] and also [8], [5], will
play an important role.

Theorem 3 (Gruenberg). Let G be a finite group and let ωZ ⊂ ZG be the aug-
mentation ideal. The group G is of prime-power order if and only if

∞⋂
n=1

ωn = {0}.

3 `2-invariants of groups
3.1 Some definitions

`2-invariants of fundamental groups of compact aspherical manifolds where intro-
duced by Atiyah in [2]. A definition which works for all discrete groups was given
by Cheeger-Gromov in [4]. Later, a more algebraic framework was presented by
Lück in [10]. We want to stick to this more algebraic approach.

Let G be a group and denote by CG the complex group ring. Note that the
ring CG comes with a natural involution f 7→ f∗ which is given by the formula(∑

g∈G
agg

)∗
=
∑
g∈G

āgg
−1.

We denote by τ : CG→ C the natural trace on CG, given by the formula

τ

(∑
g∈G

agg

)
= ae.

It satisfies τ(f∗f) ≥ 0 for all f ∈ CG and the associated GNS-representation
is just the Hilbert space `2G with orthonormal basis {δg | g ∈ G} on which G
(and hence CG) acts via the left-regular representation. More explicitly, there
exists a unitary representation λ : G → U(`2G) and λ(g)δh = δgh. Similar to the
left-regular representation, there is a right-regular representation ρ : G→ U(`2G),
given by the formula ρ(g)δh = δhg−1 .



4 Andreas Thom

The group von Neumann algebra of a group is defined as

LG := B(`2G)ρ(G) = {T ∈ B(`2G) | ρ(g)T = Tρ(g),∀g ∈ G}.

It is obvious that λ(CG) ⊂ LG, in fact it is dense in the topology of pointwise
convergence on `2G. Recall that the trace τ extends to a positive and faithful
trace on LG via the formula

τ(a) = 〈aδe, δe〉.

For each ρ(G)-invariant closed subspace K ⊂ `2G, we denote by pK the orthogonal
projection onto K. It is easily seen that pK ∈ LG. We set dimGK := τ(pK) ∈
[0, 1]. The quantity dimGK is called Murray-von Neumann dimension of K. Lück
proved that there is a natural dimension function

dimLG : LG-modules → [0,∞]

satisfying various natural properties, see [10], such that dimLGK = dimGK for
every ρ(G)-invariant subspace of `2G.

We can now set

β
(2)
1 (Γ) := dimLΓH

1(Γ, LΓ),

where the group on the right side is the algebraic group homology of Γ with co-
efficients in the left ZΓ-module LΓ. Since the cohomology group inherits a right
LΓ-module structure a dimension can be defined.

Remark 1. The usual definition of `2-Betti numbers uses the group homology
rather than the cohomology. Also, usually `2G is used instead of LG. That the
various definitions coincide was shown in [14].

3.2 Lück’s Approximation Theorem

A striking result, due to Lück, states that for a finitely presented and residually
finite group, the first `2-Betti number is a normalized limit of ordinary Betti num-
bers for a chain of subgroups of finite index, see [10] for a proof. The result says
more precisely:

Theorem 4 (Lück). Let G be a residually finite and finitely presented group. Let

· · · ⊂ Hn+1 ⊂ Hn ⊂ · · · ⊂ G

be a chain of finite index normal subgroups such that
⋂∞
n=1Hn = {e}. Then,

β
(2)
1 (G) = lim

n→∞

rk((Hn)ab)

[G : Hn]
= lim
n→∞

dimC H
1(G,Z[G/Hn])⊗Z C

[G : Hn]
.

This result has numerous applications and extensions, we call it Lück’s Approx-
imation Theorem.
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3.3 Lower bounds on the first `2-Betti number

It is well known that the first `2-Betti number of a finitely generated group G is
bounded from above by the number of generators of the group minus one. A more
careful count reveals that a generator of order n counts only 1 − 1

n . Similarly,
lower bounds can be found in terms of the order of the imposed relations in some
presentation. More precesily, we find:

Theorem 5. Let G be an infinite countable discrete group. Assume that there
exist subgroups G1, . . . , Gn, such that

G = 〈G1, . . . , Gn | rw1
1 , . . . , rwk

k , . . . 〉,

for elements r1, . . . , rk ∈ G1 ∗ · · · ∗Gn and positive integers w1, . . . , wk. We assume
that the presentation is irredundant in the sense that rli 6= e ∈ G, for 1 < l < wi
and 1 ≤ i <∞. Then, the following inequality holds:

β
(2)
1 (G) ≥ n− 1 +

n∑
i=1

(
β

(2)
1 (Gi)−

1

|Gi|

)
−
∞∑
j=1

1

wj
.

A proof of this result was given in [14]. It can be used in many cases already if
the groups Gi are isomorphic to Z or Z/pZ, see for example [13].

Another result says that the set of marked groups with first `2-Betti number
greater or equal so some constant is closed in Grigorchuk’s space of marked groups,
see [15] for definitions and further references. More precisely, we have:

Theorem 6 (Pichot, see [15]). Let ((Gn, S))n∈N be a convergent sequence of
marked groups in Grigorchuk’s space of marked groups. Then,

β
(2)
1 (G) ≥ lim sup

n→∞
β

(2)
1 (Gn).

This applies in particular to limits of free groups and shows that they all have
a positive first `2-Betti number. In particular, there is an abundance of finitely
presented groups with positive first `2-Betti number.

4 Normal generation by torsion elements
The first main result in this note extends the trivial upper bound from Equation
(1) (under some additional hypothesis) to the case where the group is normally
generated by a certain finite set of elements. The additional hypothesis is that
the group G be finitely presented and residually p-finite for some prime p. More
precisely:

Theorem 7. Let G be an infinite, finitely presented, residually p-finite group for
some prime p. If G is normally generated by a subgroup Λ, then

β
(2)
1 (G) ≤ β(2)

1 (Λ).
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In particular, if G is normally generated by elements g1, . . . , gk ∈ G of order
n1, . . . , nk ∈ {1, 2, . . . } ∪ {∞}, then

β
(2)
1 (G) ≤ k − 1−

k∑
i=1

1

ni
. (2)

Proof. Let {gi | i ∈ N} be a generating set for Λ. Let H be a finite index normal
subgroup of G, such that G/H is of p-power order. We consider Z1(G,Z[G/H]),
the abelian group of 1-cocycles of the group G with values in the G-module Z[G/H].
In a first step, we will show that the restriction map

σ : Z1(G,Z[G/H])→ Z1(Λ,Z[G/H])

is injective.
Note that there is a natural injective evaluation map

π : Z1(Λ,Z[G/H])→ Z[G/H]⊕∞

which sends a 1-cocycle c to the values on the gi, i.e. c 7→ (c(gi))
∞
i=1.

We claim that π ◦σ is injective. Indeed, assume that c ∈ ker(π ◦σ) and assume
that c(g) ∈ ωm for all g ∈ G, where m is some integer greater than or equal zero.
Since g is in the normal closure of {gi | i ∈ N}, there exists some natural number
l ∈ N and h1, . . . hl ∈ G, such that

g =

l∏
i=1

hig
±1
q(i)h

−1
i ,

for some function q : {1, . . . , l} → N. Computing c(g) using the cocycle relation
and c(g±i ) = 0, for 1 ≤ i ≤ k, we get

c(g) =

l∑
i=1

(i−1∏
j=1

hjg
±
q(j)h

−1
j

)(
1− hig±q(i)h

−1
i

)
c(hi).

By hypothesis c(hi) ∈ ωm for 1 ≤ i ≤ l and we conclude that c(g) ∈ ωm+1. This
argument applies to all g ∈ G. Since the hypothesis c(g) ∈ ωm is obviously satisfied
for m = 0, we finally get by induction that c(g) ∈ ωm for all m ∈ N and hence

c(g) ∈
∞⋂
m=1

ωm, ∀g ∈ G.

By Theorem 3 and since G/H is of prime power order, we know that
⋂∞
m=1 ω

m =
{0}. Hence, c(g) = 0 for all g ∈ G. This proves that the map π ◦ σ and hence σ is
injective.

Note that

dimCH
1(G,C[G/Hn]) = dimC Z

1(G,C[G/Hn])− [G : H] + 1
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and also

dimCH
1(Λ,C[G/Hn]) = dimC Z

1(Λ,C[G/Hn])− [G : H] + 1,

as Λ surjects onto G/H, using that a finite p-group cannot be normally generated
by a proper subgroup.

Now, by assumption, there exists a chain

· · · ⊂ Hn+1 ⊂ Hn ⊂ · · · ⊂ G

of finite index subgroups with p-power index such that

∞⋂
n=1

Hn = {e}.

The claim is now implied by Lück’s Approximation Theorem (see Theorem 4).
Indeed, Lück’s Approximation Theorem applied to the chain of finite index sub-
groups of p-power index gives:

β
(2)
1 (G) = lim

n→∞

dimC H
1(G,C[G/Hn])

[G : Hn]
≤ lim
n→∞

dimC H
1(Λ,C[G/Hn])

[G : Hn]
≤ β(2)

1 (Λ).

Here, we used Kazhdan’s inequality in the last step (see [12, Theorem 1.1] for
a proof). This finishes the proof of the first inequality.

The second claim follows from a simple and well-known estimate for the first
`2-Betti number (see for example Theorem 3.2 in [14]) that we apply to Λ. More
directly, for each H, we can estimate the dimension of the image of π ⊗Z C. Since
gi has order ni, we compute

0 = c(gni
i ) =

ni−1∑
j=0

ḡji

 c(gi),

where we denote by ḡi the image of gi in G/H. If the order of the image of ḡi is
mi, then n−1

i

∑ni−1
j=0 ḡji is a projection of normalized trace m−1

i such that

dimC (im(π)⊗Z C) ≤ [G : H] ·
k∑
i=1

(
1− 1

mi

)
≤ [G : H] ·

k∑
i=1

(
1− 1

ni

)
.

This implies that

dimC H
1(Λ,Z[G/H])⊗Z C ≤ [G : H] ·

k∑
i=1

(
1− 1

ni

)
− [G : H] + 1.

We now apply the first result. This finishes the proof, again using Lück’s Approx-
imation Theorem. �
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Remark 2. Let G be an infinite, residually p-finite group. It follows from Proposi-
tion 3.7 in [9] in combination with Lück’s Approximation Theorem that

β
(2)
1 (G) ≤ dimZ/pZH

1(G,Z/pZ)− 1.

This implies that β(2)
1 (G) ≤ k− 1 in the situation that G is normally generated by

g1, . . . , gk. Our result improves this estimate in the case when some of the elements
g1, . . . , gk have finite order.

Remark 3. Consider G = PSL(2,Z) = 〈a, b | a2 = b3 = e〉. Then, β(2)
1 (G) = 1

6 6= 0
and G is normally generated by the element ab ∈ G. Hence, the assumption that
G is residually a p-group cannot be omitted in Theorem 7.

5 An uncertainty principle and applications
In this section we want to prove a quantitative estimate on the girth of a marked
group in terms of its first `2-Betti number. In [13], Osin and the author constructed
for given ε > 0 a k-generated simple groups with first `2-Betti number greater
than k− 1− ε. The construction involved methods from small cancellation theory
and in particular, those groups did not admit any short relations in terms of the
natural generating set. This in fact follows already from the main result in [15]. If

(Gi, Si)i∈N is a sequence of marked groups with |Si| = k and lim
i→∞

β
(2)
1 (Gi) = k−1,

then necessarily
lim
i→∞

girth(Gi, Si) =∞,

where girth(G,S) denotes the length of the shortest cycle in the Cayley graph of G
with respect to the generating set S. Indeed, by [15], any limit point (G,S) of

the sequence (Gi, Si)i∈N satisfies β(2)
1 (G) = k − 1 and hence is a free group on

the basis S. (This last fact is well known and is also a consequence of our next
theorem.) In this section, we want to prove a quantitative version of this result.

Theorem 8. LetG be a finitely generated group with generating set S = {g1, . . . , gk}.
Then,

girth(G,S) ≥ 1

k − 1− β(2)
1 (G)

.

In order to prove this theorem, we need some variant of the so-called uncertainty
principle. We denote by ‖.‖ the usual operator norm on B(`2G) and use the same
symbol to denote the induced norm on CG, i.e., ‖f‖ = ‖λ(f)‖ for all f ∈ CG. The
1-norm is denoted by ‖

∑
g agg‖1 =

∑
g|ag|. For f =

∑
g agg we define its support

as supp := {g ∈ G | ag 6= 0}.

Theorem 9. Let G be a group and f ∈ CG be a non-zero element of the complex
group ring. Then,

dimLG(f · LG) · |supp(f)| ≥ 1.
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Proof. First of all we have dimLG(f · LG) = τ(pK), where K is the closure of the
image of λ(f) : `2G→ `2G.

τ(f∗f) ≤ dimLG(f · LG) · ‖f‖2 (3)

since

τ(f∗f) = τ(ff∗) = τ(pKff
∗) ≤ τ(pK) · ‖ff∗‖ = dimLG(f · LG) · ‖f‖2.

Secondly, using the fact that ‖f‖22 = τ(f∗f), we see that

‖f‖21 ≤ |supp(f)| · τ(f∗f) (4)

by the Cauchy-Schwarz inequality applied to f ·χsupp(f), where the product here is
the pointwise product of coefficients and ‖f‖1 denotes the usual 1-norm on C[G].
Combining Equations (3) and (4) we conclude

dimLG(f · LG) · |supp(f)| ≥
(
‖f‖1
‖f‖

)2

. (5)

Now, since each group element acts as a unitary, and hence with operator norm
1 on `2G, we get ‖f‖1 ≥ ‖f‖. This proves the claim and finishes the proof. �

The preceding result and the following corollary were proved as result of a
question by Efremenko on MathOverflow.

Corollary 1. LetG be a finite group and f ∈ C[G] be an arbitrary non-zero element.
Then,

dimC(f · C[G]) · |supp(f)| ≥ |G|.

We are now ready to prove Theorem 8.

Proof. (Theorem 8) Again, we study the map π : Z1(G,LG) → LG⊕k, which is
given by c 7→ (c(gi))

k
i=1. If w ∈ Fk is some word such that w(g1, . . . , gk) = e in G,

then

0 = c
(
w(g1, . . . , gk)

)
=

k∑
i=1

∂i(w)(g1, . . . , gk) · c(gi),

where ∂i : Z[Fk] → Z[Fk] denotes the i-th Fox derivative for 1 ≤ i ≤ k. Thus, the
image of π lies is annihilated by the LG-linear map

(ξ1, . . . , ξk) 7→
k∑
i=1

∂i(w)(g1, . . . , gk)ξi .

In particular, the image of π does not intersect with K := ker(∂1(w)) ⊕ 0 ⊕
· · · ⊕ 0. The number of summands in ∂1(w) is equal to the number of occurences
of the letters g±1 in w. Thus, we have and im(π) ∩ K = {0} and dimLG(K) ≥
|supp(∂1(w))|−1. Thus

dimLG im(π) ≤ k − |supp(∂1(w))|−1 ≤ k − 1

`(w)
.

For any infinite group β(2)
1 (G) = dimLG Z

1(G,LG)−1. This implies that β(2)
1 (G) ≤

k − 1− 1/`(w) and finishes the proof. �
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