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Abstract. We prove L2-maximal regularity of the linear non-autonomous evolutionary
Cauchy problem

u̇(t) + A(t)u(t) = f(t) for a.e. t ∈ [0, T ], u(0) = u0,

where the operator A(t) arises from a time depending sesquilinear form a(t, ·, ·) on a Hilbert
space H with constant domain V. We prove the maximal regularity in H when these
forms are time Lipschitz continuous. We proceed by approximating the problem using
the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-
Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance
criterion for convex and closed sets of H.

Keywords: sesquilinear form; non-autonomous evolution equation; maximal regularity;
convex set
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1. Introduction

In this paper we study non-autonomous evolutionary linear Cauchy problems

(1.1) u̇(t) +A(t)u(t) = f(t), u(0) = u0,

where the operators A(t), t ∈ [0, T ], arise from sesquilinear forms on Hilbert spaces.

More precisely, throughout this work H and V are two separable Hilbert spaces.

The scalar products and the corresponding norms on H and V will be denoted by

(·|·), (·|·)V , ‖·‖ and ‖·‖V , respectively. We assume that V →֒
d

H ; i.e., V is densely

embedded into H and

(1.2) ‖u‖ 6 cH‖u‖V , u ∈ V

for some constant cH > 0.
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Let V ′ denote the antidual of V. The duality between V ′ and V is denoted by 〈·, ·〉.

As usual, we identify H with H ′. It follows that V →֒ H ∼= H ′ →֒ V ′ and so V is

identified with a subspace of V ′. These embeddings are continuous and

(1.3) ‖f‖V ′ 6 cH‖f‖, f ∈ V ′

with the same constant cH as in (1.2) (see, e.g., [6]).

With a non-autonomous form

a : [0, T ]× V × V 7→ C

such that a(t, ·, ·) is sesquilinear for all t ∈ [0, T ], a(·, u, v) is measurable for all

u, v ∈ V,

|a(t, u, v)| 6 M‖u‖V ‖v‖V , t ∈ [0, T ], u, v ∈ V

and

Re a(t, u, u) + ω‖u‖2 > α‖u‖2V , t ∈ [0, T ], u ∈ V

for some α > 0, M > 0 and ω ∈ R, for each t ∈ [0, T ] we can associate a unique

operatorA(t) ∈ L(V, V ′) such that a(t, u, v) = 〈A(t)u, v〉 for all u, v ∈ V. It is a known

fact that −A(t) with domain V generates a holomorphic semigroup (Tt(s))s>0 on V
′.

Observe that ‖A(t)u‖V ′ 6 M‖u‖V for all u ∈ V and all t ∈ [0, T ]. It is worth

mentioning that the mapping t 7→ A(t) is strongly measurable by the Dunford-Pettis

Theorem in [1] since the spaces are assumed to be separable and t 7→ A(t) is weakly

measurable. Thus t 7→ A(t)u is Bochner integrable on [0, T ] with values in V ′ for all

u ∈ V.

The following well known maximal regularity result is due to J. L. Lions.

Theorem 1.1. Given f ∈ L2(0, T ;V ′) and u0 ∈ H, there is a unique solution

u ∈ MR(V, V ′) := L2(0, T ;V ) ∩H1(0, T ;V ′) of

(1.4) u̇(t) +A(t)u(t) = f(t), u(0) = u0.

Note that MR(V, V ′) →֒
d

C([0, T ];H) (see [17], page 106), so the condition u(0) =

u0 in (1.4) makes sense and the solution is continuous on [0, T ] with values in H.

The proof of Theorem 1.1 can be given by an application of the Lions Representation

Theorem in [13] (see also [17], page 112, and [20], Chapter 3) or by Galerkin’s method

in [7], XVIII Chapter 3, page 620. We refer also to an alternative proof given by

Tanabe in [19], Section 5.5.

In Section 3, we give another proof by using the approach of frozen coefficient

developed in [8], [12] and [11], from which we derive the criterion for invariance of
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convex closed sets established (see [4]) and also the recent result given in [3] for

Lipschitz continuous forms.

Let Λ := (0 = λ0 < λ1 < . . . < λn+1 = T ) be a subdivision of [0, T ]. We

approximate (1.1) by (1.5), obtained when the generators A(t) are frozen on the

interval [λk, λk+1[. More precisely, let AΛ : [0, T ] → L(V, V ′) be given by

AΛ(t) :=

{

Ak for λk 6 t < λk+1,

An for t = T,

with

Akx :=
1

λk+1 − λk

∫ λk+1

λk

A(r)u dr, u ∈ V, k = 0, 1, . . . , n.

Note that the integral on the right hand side makes sense since the mapping t 7→ A(t)

is, as mentioned above, strongly Bochner-integrable.

We show (see Theorem 3.2) that for all u0 ∈ H and f ∈ L2(0, T ;V ′) the non-

autonomous problem

(1.5) u̇Λ(t) +AΛ(t)uΛ(t) = f(t), uΛ(0) = u0

has a unique solution uΛ ∈ MR(V, V ′) which converges in MR(V, V ′) as |Λ| → 0, and

u := lim
|Λ|→0

uΛ solves (1.4) uniquely.

Let C be a closed convex subset of the Hilbert space H and let P : H → C be the

orthogonal projection onto C. As a consequence of Theorem 3.2 we obtain: If u0 ∈ C,

P (V ) ⊂ V and

(1.6) Re a(t, Pv, v − Pv) > 0

for almost every t ∈ [0, T ] and for all v ∈ V, then u(t) ∈ C for all t ∈ [0, T ], where

u is the solution of (1.4) with f = 0. In the autonomous case condition (1.6) is also

necessary for the invariance of C, see [15]. More recently, for f 6= 0 the invariance of

C under the solution of (1.4) was proved by Arendt, Dier and Ouhabaz in [4] provided

that

(1.7) Re a(t, Pv, v − Pv) > 〈f(t), v − Pv〉

for almost every t ∈ [0, T ] and for all v ∈ V.

Theorem 1.1 establishes L2-maximal regularity of the Cauchy problem (1.4) in V ′

assuming only that t 7→ a(t, u, v) is measurable for all u, v ∈ V . However, in applica-

tions to boundary value problems, only the part A(t) of A(t) in H does realize the
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boundary conditions in question. Thus one is interested in L2-maximal regularity

in H :

Problem 1.2. If f ∈ L2(0, T ;H) and u0 ∈ V , does the solution of (1.5) belong

to MR(V,H) := L2(0, T ;V ) ∩H1(0, T ;H)?

This Problem 1.2 was asked (for u0 = 0) by Lions [13], page 68, and is, to our

knowledge, still open. Note that if a (or equivalently A) is a step function and

symmetric the answer to Problem 1.2 is affirmative. In fact, for u0 ∈ V and f ∈

L2(0, T ;H) the solution uΛ of (1.5) belongs toMR(V,H)∩C([0, T ];V ) (see Section 3).

Thus, for symmetric forms Problem 1.2 can be reformulated as follows:

Problem 1.3. If f ∈ L2(0, T ;H) and u0 ∈ V , does the solution of (1.5) converge

in MR(V,H) as |Λ| → 0?

For general forms, an affirmative answer of Problem 1.2 is given under an addi-

tional regularity assumption (with respect to t) on a(t, ·, ·). For symmetric forms,

Lions proved L2-maximal regularity in H for u0 = 0 (respectively for u0 ∈ D(A(0)))

provided a(·, u, v) ∈ C1[0, T ] (respectively a(·, u, v) ∈ C2[0, T ]) for all u, v ∈ V,

(see [13], page 68 and page 94). Moreover, a combination of [13], Theorem 1.1,

page 129, and [13], Theorem 5.1, page 138, shows that if a(·, u, v) ∈ C1[0, T ] for

all u, v ∈ V , then (1.5) has L2-maximal regularity in H. Bardos [5] gave also an

affirmative answer to Problem (1.2) under the assumptions that the domains of

both A(t)1/2 and A(t)∗1/2 coincide with V and that A(.)1/2 is continuously differen-

tiable with values in L(V, V ′). We mention also a result of Ouhabaz and Spina [16]

and Ouhabaz and Haak [9]. They proved L2-maximal regularity for (possibly non-

symmetric) forms such that a(·, u, v) ∈ Cα[0, T ] for all u, v ∈ V and some α > 1/2.

The result in [16] concerns the case u0 = 0 and the one in [9] concerns the case u0

in the real-interpolation space (H,D(A(0)))1/2,2.

In Section 4, we are concerned with a recent result obtained in [3]. Assume that the

sesquilinear form a can be written as a(t, u, v) = a1(t, u, v) + a2(t, u, v) where a1 is

symmetric, bounded (i.e. a1(t, u, v) 6 M1‖u‖‖v‖, M1 > 0) and coercive as above

and piecewise Lipschitz-continuous on [0, T ] with Lipschitz constant L1, whereas

a2 : [0, T ]× V ×H 7→ C satisfies |a2(t, u, v)| 6 M2‖u‖V ‖v‖H and a2(·, u, v) is mea-

surable for all u ∈ V , v ∈ H . Furthermore, let B : [0, T ] → L(H) be strongly

measurable such that ‖B(t)‖L(H) 6 β1 for all t ∈ [0, T ] and 0 < β0 6 (B(t)g | g)H for

g ∈ H , ‖g‖H = 1, t ∈ [0, T ]. Then, the following result is proved in [3], Corollary 4.3:

Theorem 1.4. Let u0 ∈ V , f ∈ L2(0, T ;H). Then there exists a unique u ∈

MR(V,H) satisfying

u̇(t) +B(t)A(t)u(t) = f(t) a.e., u(0) = u0.
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Moreover,

(1.8) ‖u‖MR(V,H) 6 C[‖u0‖V + ‖f‖L2(0,T ;H)],

where the constant C depends only on β0, β1, M1, M2, α, T , L1 and γ.

In the special case where B = I and a = a1 (or equivalently a2 = 0) we prove that

Problem 1.3 has an affirmative answer.

We emphasize that our result on approximation may be applied to concrete linear

evolution equations. For example, to the evolution equation governed by the elliptic

operator in nondivergence form on a domain Ω with time depending coefficients











u̇(t)−
∑

i,j

∂iaij(t, ·)∂ju(t) = f(t),

u(0) = u0 ∈ H1(Ω)

with an appropriate Lipschitz continuity property on the coefficients with respect

to t and boundary conditions such as Niemann or non-autonomous Robin boundary

conditions.

2. Preliminary

Consider a continuous and H-elliptic sesquilinear form a : V × V 7→ C. This

means, respectively,

|a(u, v)| 6 M‖u‖V ‖v‖V for some M > 0 and all u, v ∈ V,(2.1)

Re a(u) + ω‖u‖2 > α‖u‖2V for some α > 0, ω ∈ R and all u ∈ V.(2.2)

Here and in the following we shortly write a(u) for a(u, u). The operatorA ∈ L(V, V ′)

associated with a on V ′ is defined by

〈Au, v〉 = a(u, v), u, v ∈ V.

Seen as an unbounded operator on V ′ with domain D(A) = V, the operator −A gen-

erates a holomorphic C0-semigroup T on V ′. The semigroup is bounded on a sector

if ω = 0, in which case A is an isomorphism. Denote by A the part of A on H ; i.e.,

D(A) := {u ∈ V ; Au ∈ H},

Au = Au.
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It is a known fact that −A generates a holomorphic C0-semigroup T on H and

T = T|H is the restriction of the semigroup generated by −A to H. Then A is the

operator induced by a on H. We refer to [10], [14] and [19], Chapter 2.

Remark 2.1. The sesquilinear form a satisfies condition (2.2) if and only if the

form aω given by

aω(u, v) := a(u, v) + ω(u | v)

is coercive. Moreover, if Tω and Aω denote, respectively, the semigroup and the

operator associated with aω, then Tω(t) = e−ωtT (t) and Aω = ω + A for all t > 0.

Then it is possible to choose, without loss of generality, a coercive (i.e. ω = 0).

The following maximal regularity results are well known: If u0 ∈ H , f ∈

L2(a, b;V ′) then the function

u(t) = T (t)u0 +

∫ t

a

T (t− r)f(r) dr

belongs to L2(a, b;V ) ∩ H1(a, b;V ′) and is the unique solution of the autonomous

initial value problem

(2.3) u̇(t) +Au(t) = f(t), for a.e. t ∈ [a, b] ⊂ [0, T ], u(a) = u0.

Recall that the maximal regularity space

(2.4) MR(a, b;V, V ′) := L2(a, b;V ) ∩H1(a, b;V ′)

is continuously embedded in C([a, b], H) and if u ∈ MR(a, b;V, V ′) then the function

‖u(·)‖2 is absolutely continuous on [a, b] and

(2.5)
d

dt
‖u(·)‖2 = 2Re〈u̇, u〉,

see e.g. [17], Chapter III, Proposition 1.2, or [19], Lemma 5.5.1. For [a, b] = [0, T ]

we shortly denote MR(a, b;V, V ′) by MR(V, V ′) in (2.4).

Furthermore, if (f, u0) ∈ L2(a, b;H) × V then the solution u of (2.3) belongs to

the maximal regularity space

(2.6) MR(a, b;D(A), H) := L2(a, b;D(A)) ∩H1(a, b;H)

which is equipped with the norm ‖·‖MR given for all u ∈ MR(a, b;D(A), H) by

(2.7) ‖u‖2MR :=

∫ b

a

‖u(t)‖2 dt+

∫ b

a

‖u̇(t)‖2 dt+

∫ b

a

‖Au(t)‖2 dt.

480



The maximal regularity space MR(a, b;D(A), H) is continuously embedded into

C([a, b];V ), (see [7], Example 1, page 577). If the form a is symmetric, then for each

u ∈ MR(a, b;D(A), H), the function a(u(·)) belongs to W 1,1(a, b) and the following

product formula holds:

(2.8)
d

dt
a(u(t)) = 2(Au(t) | u̇(t)) for a.e. t ∈ [a, b],

for the proof we refer to [2], Lemma 3.1.

The next lemma gives a locally uniform estimate for the solution of the autonomous

problem. This estimate will play an important role in the study of the convergence

in Theorem 5.1.

Lemma 2.2 ([2], Theorem 3.1). Let a be a continuous and H-elliptic sesquilinear

form. Assume the form a is symmetric. Let f ∈ L2(a, b;H) and u0 ∈ V. Let

u ∈ MR(a, b;D(A), H) be such that

(2.9) u̇(t) +Au(t) = f(t), for a.e. t ∈ [a, b] ⊂ [0, T ], u(a) = u0.

Then there exists a constant c1 > 0 such that

(2.10) sup
s∈[a,b]

‖u(s)‖2V 6 c1[‖u(a)‖
2
V + ‖f‖2L2(a,b;H)]

where c1 = c1(M,α, ω, T ) > 0 is independent of f , u0 and [a, b] ⊂ [0, T ].

For the sake of completeness, we include here a simpler proof in the non restrictive

case ω = 0.

P r o o f. We use the same technique as in the proof of [2], Theorem 3.1. For

simplicity and according to Remark 2.1 we may assume without loss of generality

that ω = 0 in (2.2). For almost every t ∈ [a, b]

(u̇(t) | u̇(t)) + (Au(t) | u̇(t)) = (f(t) | u̇(t)).

The rule formula (2.8) and the Cauchy-Schwartz inequality together with the Young

inequality applied to the term on the right-hand side of the above equality imply

that, for almost every t ∈ [a, b],

1

2
‖u̇(t)‖2 +

1

2

d

dt
a(u(t)) 6

1

2
‖f(t)‖2.

Integrating this inequality on [a, t], it follows that

∫ t

a

‖u̇(s)‖2 ds+ a(u(t)) 6 a(u(a)) +

∫ t

a

‖f(s)‖2 ds.
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Thus, by (2.1) and (2.2),

(2.11)

∫ t

a

‖u̇(s)‖2 ds+ α‖u(t)‖2V 6 M‖u(a)‖2V + ‖f‖2L2(a,b;H)

for almost every t ∈ [0, T ]. It follows that

(2.12) sup
t∈[a,b]

‖u(t)‖2V 6
1

α
(M‖u(a)‖2V + ‖f‖2L2(a,b;H)),

which gives the desired estimate. �

Remark 2.3. Lemma 2.2 says that the constant c1 in (2.12) depends only onM ,

α, ω and T, but does not depend on the subinterval [a, b] or on a itself.

3. Well-posedness in V ′

Let H,V be the Hilbert spaces introduced in the previous sections. Let T > 0 and

let

a : [0, T ]× V × V 7→ C

be a non-autonomous form, i.e., a(t, ·, ·) is sesquilinear for all t ∈ [0, T ], a(·, u, v) is

measurable for all u, v ∈ V,

(3.1) |a(t, u, v)| 6 M‖u‖V ‖v‖V , t ∈ [0, T ], u, v ∈ V

and

(3.2) Re a(t, u, u) + ω‖u‖ > α‖u‖2V , t ∈ [0, T ], u ∈ V

for some α > 0, M > 0 and ω ∈ R.

We recall that for all t ∈ [0, T ] we denote by A(t) ∈ L(V, V ′) the operator associ-

ated with the form a(t, ·, ·) in V ′ and by Tt the analytic C0-semigroup generated by

−A(t) on V ′. Consider the non-autonomous Cauchy problem

(3.3) u̇(t) +A(t)u(t) = f(t) for a.e. t ∈ [0, T ], u(0) = u0.

In this section, we are interested in the well-posedness of (3.3) in V ′ with L2-maximal

regularity. The case where a is independent of t is described in the previous section.

The case where a is a step function is also easy to describe. In fact, let Λ = (0 =

λ0 < λ1 < . . . < λn+1 = T ) be a subdivision of [0, T ]. Let

ak : V × V → C for k = 0, 1, . . . , n
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be a finite family of continuous and H-elliptic forms. The associated operators are

denoted by Ak ∈ L(V, V ′). Let Tk denote the C0-semigroup generated by −Ak on V
′

for all k = 0, 1 . . . , n. The function

(3.4) aΛ : [0, T ]× V × V → C

defined by aΛ(t;u, v) := ak(u, v) for λk 6 t < λk+1 and aΛ(T ;u, v) := an(u, v) is

strongly measurable on [0, T ]. Let

AΛ : [0, T ] → L(V, V ′)

be given by AΛ(t) := Ak for λk 6 t < λk+1, k = 0, 1, . . . , n, and AΛ(T ) := An. For

each subinterval [a, b] ⊂ [0, T ] such that

λm−1 6 a < λm < . . . < λl−1 6 b < λl

we define the operators PΛ(a, b) ∈ L(V ′) by

(3.5) PΛ(a, b) := Tl−1(b−λl−1)Tl−2(λl−1 −λl−2) . . . Tm(λm+1 −λm)Tm−1(λm − a),

and for λl−1 6 a 6 b < λl by

(3.6) PΛ(a, b) := Tl−1(b− a).

It is easy to see that for all u0 ∈ H and f ∈ L2(a, b, V ′) the function

(3.7) uΛ(t) = PΛ(a, t)u0 +

∫ t

a

PΛ(r, t)f(r) dr

belongs to MR(a, b;V, V ′) and is the unique solution of the initial value problem

u̇Λ(t) +AΛ(t)uΛ(t) = f(t), for a.e. t ∈ [a, b] ⊂ [0, T ], uΛ(a) = u0.

The product given by (3.5)–(3.6) and also the existence of a limit of this product as

|Λ| converges to 0 uniformly on [a, b] ⊂ [0, T ], were studied in [8], [11] and [12]. This

leads to a theory of product integral, comparable to that of the classical Riemann

integral. The notion of product integral was introduced by V.Volterra at the end of

the 19th century. We refer to A. Slavík [18] and the references therein for a discussion

on the work of Volterra and for more details on the product integration theory.

Consider now the general case where a : [0, T ]× V × V → C is a non-autonomous

form and let A(t) ∈ L(V, V ′) be the associated operator with a(t, ·, ·) on V ′.We want
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to approximate a and A by step functions. Let Λ := (0 = λ0 < λ1 < . . . < λn+1 = T )

be a subdivision of [0, T ] and let aΛ : [0, T ]×V ×V → C and AΛ : [0, T ] → L(V, V ′)

be as above where Ak are associated with the sesquilinear forms

(3.8) ak(u, v) :=
1

λk+1 − λk

∫ λk+1

λk

a(r;u, v) dr for u, v ∈ V, k = 0, 1, . . . , n.

Note that since ak satisfies (3.1) and (3.2), k = 0, 1, . . . , n, we have for all u ∈ V

(3.9) Aku :=
1

λk+1 − λk

∫ λk+1

λk

A(r)u dr.

Let u0 ∈ H and f ∈ L2(0, T ;V ′) and let uΛ ∈ MR(V, V ′) denote the unique solution

of

(3.10) u̇Λ(t) +AΛ(t)uΛ(t) = f(t), for a.e. t ∈ [0, T ], uΛ(0) = u0.

Recall that uΛ is given explicitly by (3.5)–(3.7).

For simplicity and according to Remark 2.1, we may assume without loss of gener-

ality that ω = 0 in (3.2). In fact, let uΛ ∈ MR(V, V ′) and vΛ(t) := e−wtuΛ(t). Then

uΛ satisfies (3.10) if and only if vΛ satisfies

(3.11) v̇Λ(t) + (ω +AΛ(t))vΛ(t) = e−wtf(t) for a.e. t ∈ [0, T ], vΛ(0) = u0.

In the sequel ω = 0 will be our assumption. The following lemma is the key to the

main result.

Lemma 3.1. Let u0 ∈ H and f ∈ L2(0, T ;V ′). Let uΛ ∈ MR(V, V ′) be the

solution of (3.10). Then there exists a constant c2 > 0 independent of f, u0 and Λ

such that

(3.12)

∫ t

0

‖uΛ(s)‖
2
V ds 6 c2

[
∫ t

0

‖f(s)‖2V ′ ds+ ‖u0‖
2

]

for a.e. t ∈ [0, T ].

P r o o f. Since uΛ ∈ MR(V, V ′), it follows from (2.5) that

d

dt
‖uΛ(t)‖

2 = 2Re〈u̇Λ(t), uΛ(t)〉 = 2Re〈f(t)−AΛ(t)uΛ(t), uΛ(t)〉

= −2ReaΛ(t, uΛ(t), uΛ(t)) + 2Re〈f(t), uΛ(t)〉
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for almost every t ∈ [0, T ]. Integrating this equality on (0, t), by coercivity of the

form a and the Cauchy-Schwartz inequality we obtain

‖uΛ(t)‖
2 + 2α

∫ t

0

‖u‖Λ(s)
2
V ds 6 2

∫ t

0

‖f(s)‖V ′‖u‖Λ(s)V ds+ ‖u0‖
2.

Inequality (3.12) follows from this estimate and the standard inequality

ab 6
1

2

(a2

ε
+ εb2

)

, ε > 0, a, b ∈ R.

�

Let |Λ| := max
j=0,1,...,n

(λj+1 −λj) denote the mesh of the subdivision Λ of [0, T ]. The

main result of this section is

Theorem 3.2. Let f ∈ L2(0, T ;V ′) and u0 ∈ H. Then the solution uΛ of (3.10)

converges weakly in MR(V, V ′) as |Λ| → 0 and u := lim
|Λ|→0

uΛ is the unique solution

of (1.4).

P r o o f. To prove that limuΛ exists as |Λ| → 0, it suffices, by the compactness

of bounded sets of L2(0, T, V ), to show that it exists u ∈ MR(V, V ′) such that every

convergent subsequence of uΛ converges to u. We begin with the uniqueness.

Uniqueness: Let u ∈ MR(V, V ′) be a solution of (1.4) with f = 0 and u(0) = 0.

Then

d

dt
‖u(t)‖2 = 2Re〈u̇(t), u(t)〉 = −2Re〈A(t)u(t), u(t)〉 = −2Rea(t, u(t), u(t)).

Hence
d

dt
‖u(t)‖2 6 −2α‖u(t)‖2V

and since u(0) = 0, it follows that u(t) = 0 for a.e. t ∈ [0, T ].

Existence: Let u0 ∈ H and f ∈ L2(0, T ;V ′). Let uΛ ∈ MR(V, V ′) be the solution

of (3.10). Since uΛ is bounded in L2(0, T ;V ) by Lemma 3.1, we can assume (after

passing to a subsequence) that uΛ ⇀ u in L2(0, T ;V ) as |Λ| goes to 0. Let now

g ∈ L2(0, T ;V ). We have A∗
Λg → A∗g in L2(0, T ;V ′) (see [12], Lemma 2.3 and

Lemma 3.1). Since

∫ T

0

〈AΛ(s)uΛ(s), g(s)〉ds =

∫ T

0

〈uΛ(s),A
∗
Λ(s)g(s)〉ds,

it follows that

∫ T

0

〈AΛ(s)uΛ(s), g(s)〉ds →

∫ T

0

〈A(s)u(s), g(s)〉ds
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or, in other words, AΛuΛ ⇀ Au in L2(0, T ;V ′) and so u̇Λ converges weakly in

L2(0, T ;V ′) by (3.10).

Thus, letting |Λ| → 0 in (3.10) shows that

u̇(t) +A(t)u(t) = f(t) for a.e. t ∈ [0, T ],

Since MR(V, V ′) →֒ C([0, T ];H), we have also that uΛ ⇀ u in C([0, T ];H) and in

particular uΛ(0) ⇀ u(0) in H, so that u satisfies (1.4). This completes the proof. �

4. Invariance of convex sets

We use the same notation as in the previous sections. We consider a non-

autonomous form a : [0, T ] × V × V → C. Let A(t) ∈ L(V, V ′) be the associated

operator. In this section we give an other proof of a known invariance criterion for

the non-autonomous homogeneous Cauchy-problem

(4.1) u̇(t) +A(t)u(t) = 0 for a.e. t ∈ [0, T ], u(0) = u0.

Let C be a closed convex subset of the Hilbert space H and let P : H → C be the

orthogonal projection onto C; i.e., for x ∈ H, Px is the unique element xC in C such

that

Re(x− xC | y − xC) 6 0 for all y ∈ C.

Recall that the closed convex set C is invariant for the Cauchy problem (4.1) (in

the sense of [4], Definition 2.1) if for each u0 ∈ C the solution u of (4.1) satisfies

u(t) ∈ C for all t ∈ [0, T ]. Recently, Arendt et al. [4] proved that C is invariant for

the inhomogeneous Cauchy problem (1.4) provided that PV ⊂ V and

Re a(t, Pv, v − Pv) > Re〈f(t), v − Pv〉

for all v ∈ V and for a.e. t ∈ [0, T ].

As a consequence of our approach, we obtain easily Theorem 2.2 in [4] for the

homogeneous Cauchy problem from Theorem 3.2.

Theorem 4.1. Let a be a non-autonomous form on V. Let C be a closed convex

subset ofH. Then the convex set C is invariant for the Cauchy problem (4.1) provided

that PV ⊂ V and Re a(t, Pv, v − Pv) > 0 for all v ∈ V and a.e. t ∈ [0, T ].
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P r o o f. Let u0 ∈ C and let uΛ ∈ MR(V, V ′) be the solution of (4.1). The function

uΛ is given explicitly by (3.5)–(3.6). From Theorem 2.1 in [15] (or Theorem 2.2

in [14]), it follows easily that uΛ(t) ∈ C if and only if PV ⊂ V and

Re ak(Pv, v − Pv) > 0 for all v ∈ V and k = 0, 1, . . . , n.

Recall that ak is given by (3.8). The above inequality holds if and only if

Re a(t, Pv, v − Pv) > 0 for a.e. t ∈ [0, T ]. Let now u be the solution of (4.1).

By Theorem 3.2 we have uΛ ⇀ u in MR(V, V ′) →֒
d

C([0, T ], H). The claim follows

from the fact that the weak closure of the convex set C is equal to its norm closure.

�

Theorem 4.2. Assume that the non-autonomous form a is symmetric and ac-

cretive. The convex set C is invariant for the homogeneous Cauchy problem (4.1)

provided that PV ⊂ V and a(t, Pv, Pv) 6 a(t, v, v) for a.e. t ∈ [0, T ].

P r o o f. Let uΛ ∈ MR(V, V ′) be the solution of (4.1). By Theorem 2.2 in [14],

we have uΛ(t) ∈ C if and only if PV ⊂ V and

ak(Pv, Pv) > ak(v, v) for all v ∈ V and k = 0, 1, . . . , n.

This inequality holds if and only if Re a(t, Pv, Pv) > a(t, v, v) for a.e. t ∈ [0, T ] and

for all v ∈ V. The claim follows from the fact that uΛ converge weakly in C([0, T ], H)

to the solution of (4.1). �

5. Well-posedness in H

Recall that V,H denote two separable Hilbert spaces and a : [0, T ]× V × V → C

is a non-autonomous form introduced in the previous section. We adopt here the

notation of Section 3. Assume that the form a is symmetric, i.e.,

(5.1) a(t, u, v) = a(t, v, u), t ∈ [0, T ], u, v ∈ V.

We consider the Hilbert space

MR(V,H) := L2(0, T ;V ) ∩H1(0, T ;H)

with the norm

‖u‖2MR(V,H) := ‖u‖2L2(0,T ;V ) + ‖u‖2H1(0,T ;H).

487



Let Λ be a subdivision of [0, T ] and let f ∈ L2(0, T ;H) and u0 ∈ V. The solution

uΛ of (3.10) belongs to MR(V,H) and uΛ ∈ C([0, T ], V ). In fact, let Ak be given

by (3.9) and let Ak be the part of Ak in H. Then it is not difficult to see that

(5.2) uΛ|[λk,λk+1[
∈ MR(λk, λk+1;D(Ak), H), k = 0, 1, 2, . . . , n.

Note that on each interval [λk, λk+1[ the solution uΛ coincides with the solution of

the autonomous Cauchy problem

u̇k(t) +Akuk(t) = f(t) for a.e. t ∈ (λk, λk+1), uk(λk) = uk−1(λk) ∈ V

which belongs to MR(λk, λk+1;D(Ak), H), see Section 2.

In addition we assume that a is Lipschitz continuous, i.e., there exists a positive

constant L such that

(5.3) |a(t, u, v)− a(s, u, v)| 6 L|t− s|‖u‖V ‖v‖V , t, s ∈ [0, T ], u, v ∈ V.

For simplicity, we assume in the following that the subdivision Λ of [0, T ] is uniform,

i.e., λi+1 − λi = λj+1 − λj for all (i, j) ∈ {0, 1, 2, . . . , n}2.

Theorem 5.1 below shows that the solution uΛ of (3.10) converges weakly in

MR(V,H) and so the limit u, which is the solution of (1.4), belongs to the max-

imal regularity space MR(V,H). This gives another proof of Theorem 5.1 in [3] with

a symmetric and B = Id.

Theorem 5.1. Assume that a is symmetric and Lipschitz continuous. Let

(f, u0) ∈ L2(0, T ;H) × V. Then uΛ, the solution of (3.10), converges weakly in

MR(V,H) as |Λ| → 0 and u := lim
|Λ|→0

uΛ is the unique solution of (1.4). Moreover,

(5.4) ‖u‖MR(V,H) 6 c[‖u0‖V + ‖f‖L2(0,T ;H)],

where the constant c depends merely on α, cH , M and L.

P r o o f. Let (f, u0) ∈ L2(0, T ;H) × V. Let uΛ ∈ MR(V,H) be the solution

of (3.10). According to the proof of Theorem 3.2, it remains to prove that uΛ is

bounded in MR(V,H). We estimate first the derivative u̇Λ. Using (2.8) and (5.2) we
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obtain

∫ T

0

‖u̇Λ(t)‖
2 dt =

∫ T

0

Re(−AΛ(t)uΛ(t) | u̇Λ(t)) dt+

∫ T

0

Re(f(t) | u̇Λ(t)) dt

=

n−1
∑

k=0

∫ λk+1

λk

Re(−AΛ(t)uΛ(t) | u̇Λ(t)) dt+

∫ T

0

Re(f(t) | u̇Λ(t)) dt

=

n−1
∑

k=0

∫ λk+1

λk

Re(−AkuΛ(t) | u̇Λ(t)) dt+

∫ T

0

Re(f(t) | u̇Λ(t)) dt

= −

n−1
∑

k=0

∫ λk+1

λk

1

2

d

dt
ak(uΛ(t)) dt+

∫ T

0

Re(f(t) | u̇Λ(t)) dt.

For the first term on the right-hand side of the above equality we have

−

n−1
∑

k=0

∫ λk+1

λk

d

dt
ak(uΛ(t)) dt = −

n−1
∑

k=0

(ak(uΛ(λk+1))− ak(uΛ(λk)))

= −

(n−1
∑

k=0

ak(uΛ(λk+1))−

n−2
∑

k=−1

ak+1(uΛ(λk+1))

)

= −

n−2
∑

k=0

(ak(uΛ(λk+1))− ak+1(uΛ(λk+1))) − an−1(uΛ(λn)) + a0(uΛ(0))

6 −
n−2
∑

k=0

(ak(uΛ(λk+1))− ak+1(uΛ(λk+1))) +M‖uΛ(0)‖
2
V .

Now, using integration by substitution and Lipschitz continuity of a we obtain

(5.5) |ak(uΛ(λk+1))− ak+1(uΛ(λk+1))| 6 L(λk+1 − λk)‖uΛ(λk+1))‖
2
V

for every k = 0, 1, . . . , n− 2.

Let k = 0, 1, 2, . . . , n − 2 and tk ∈ [λk, λk+1[ be arbitrary. Then uΛ|[tk,λk+1[
belongs

to MR(tk, λk+1;D(Ak), H) and

(5.6) ‖uΛ(λk+1)‖
2
V 6 c[‖uΛ(tk)‖

2
V + ‖f‖2L2(tk,λk+1;H)]

where the constant c depends only onM , ω, α, cH and T (see Lemma 2.2). Inserting

(5.6) into (5.5) we obtain then for every k = 0, 1, . . . , n− 2

|ak(uΛ(λk+1))− ak+1(uΛ(λk+1))|

6 c(λk+1 − λk)‖uΛ(tk)‖
2
V + c(λk+1 − λk)‖f‖

2
L2(0,T ;H)

6 c

∫ λk+1

λk

‖uΛ(s)‖
2
V ds+ c(λk+1 − λk)‖f‖

2
L2(0,T ;H).
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For the last inequality, tk is chosen such that

(λk+1 − λk)‖uΛ(tk)‖
2
V =

∫ λk+1

λk

‖uΛ(s)‖
2
V ds

using the mean value theorem and the fact that tk ∈ [λk, λk+1[ is arbitrary. Thus

(5.7)

n−2
∑

k=0

|ak(uΛ(λk+1))− ak+1(uΛ(λk+1))| 6 c[‖uΛ‖
2
L2(0,T ;V ) + ‖f‖2L2(0,T ;H)]

for some c = c(M,ω, α, cH , T, L) (possibly different from the previous one). It follows

that

∫ T

0

‖u̇Λ(t)‖
2 dt 6 c

[

‖uΛ‖
2
L2(0,T ;V ) + ‖f‖2L2(0,T ;H)

]

+

∫ T

0

Re(f(t) | u̇Λ(t)) dt+M‖u0‖
2
V .

Finally, from this inequality, the estimate (3.12) in Lemma 3.1, the Cauchy-Schwarz

and the Young inequalities applied to the third term on the right-hand side, it follows

that there is a constant c = c(M,ω, α, cH , T, L) such that

∫ T

0

‖u̇Λ(t)‖
2 dt+

∫ T

0

‖uΛ(t)‖
2
V dt 6 c(‖u0‖

2
V + ‖f‖2L2(0,T ;H)).

This completes the proof. �
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