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Chapter I 

I N T R O D U C T I O N 

§ 1. Sets and set operations 

1.1. The theory of sets has a central position in the whole of modern mathematics. 
A detailed logical analysis of the notion of a set would hardly be useful for a beginner, 
for whom the present book is primarily intended. For our purposes, it suffices to say 
simply that a set is a collection of some things, which are called the elements of the 
set. A set is fully determined by its elements; if two sets A and B have the same 
elements, they are identical or equal and we write A = B. 

As a rule, sets will be denoted by upper case Roman letters and their elements 
will be denoted by lower case Roman letters. However, there will be frequent excep-
tions from this rule. I shall describe one of these at once. The object of our conside-
rations will be, as a rule, some family S of sets, which will be denoted by upper case 
Roman letters; besides the sets of the family S, we frequently meet with sets, the 
elements of which are sets themselves, namely sets from the family S. These sets 
of sets will be, as a rule, denoted by upper case German letters. Instead of a set 
of sets we shall rather use the term system of sets. 

Examples of sets: [1] the set of all the words printed in the present book; [2] the 
set of all the primes with five figures; [3] the set of all primes of the form 22" + 1 
(n = 5,6,7, . . . ) ; [4] the set of all natural numbers 1 ,2 ,3 ,4 , . . . ; [5] the set of 
all tangents to a given circle; [6] the set of all points common to two given 
spheres. 

It is useful to consider also the void set, which has no elements at all. Since any 
set is fully determined by its elements, there is only one void set; we shall denote 
it by the symbol 0. Many authors denoted the void set by the cipher 0; some of them 
by the symbol A. If we did not introduce the void set, we would not know whether 
the set [3] exists, and the set [6] would exist for certain positions of the spheres 
only. 

If a is an arbitrary thing, (a) designates the set consisting of the unique element, 
namely the element a. The set 0 has no elements, while the set (0) has one element, 
namely the set 0. 

If A and B are any propositions, there are four possibilities excluding each other: 
[1] A is valid, B is valid, [2] A is not valid, B is not valid* [3] A is not valid, B is valid; 
[4] A is valid, B is not valid. Whenever any of the first three possibilities occur, we 
say that the proposition A implies the proposition B and write 

A = > B , (1) 
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e.g. 1 < 2=> 1 < 2; 1 > 2=> 1 > 2; 1 > 2=> 1 < 2; but not 1 < 2 1 > 2. 
Whenever one of the first two possibilities occurs, we write 

A o B . (2) 

Thus, A o B means that simultaneously both A => B and B => A. If A t , A2, B 
are three propositions, then 

A l s A2=> B 

means that the simultaneous validity of the propositions Al and A2 implies the 
proposition B; similarly for an arbitrary number of propositions. 

If A and B are two propositions and (1) holds, we also say that the validity, of A 
is a sufficient condition for the validity of B, or that the validity of B is a necessary 
cor&lition for the validity of A. Since (2) means that simultaneously A => B and 
B => A, we read (2) also as follows: the validity of A is a necessary and sufficient 
condition for the validity of B; (2) is also read: A is valid if and only if B is valid. 

i 
/Y< 

1.2. To indicate briefly that a thing a is an element of a set A, we write 
ae A. 

The Greek letter epsilon appiate'in the present book in two types, e and e. The 
first type is reserved for the use just described. 

]f,A and B are two sets, we say that the former set is a subset or part of the 
latter one, if 

a- e A => x e B , 

i.e., if the set A has no element which is not also an element of the set B. To 
expresss this concisely, we write 

A A B or BID A . 

For arbitrary sets, the following simple rules hold 

0 c A ; A cz A ; A a 0 => A = 0 ; 

A cz B cz C=>A c C; *) 

A cz B cz A=> A = B. 

The last rule is, in spite of its simplicity, very important. If we have to prove that 
two sets A and B are identical, we proceed usually in the following way: we prove 
first that 

x e A => x e B 
and then that 

x e B => x e A . 

*) A <= B <= C means, of course, that simultaneously A B and B c C. 
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V 

Many authors write A £ B instead of A c= B, using the symbol A c B for the 
case os a subset A distinct from the set B. 

1.3^The object of consideration is frequently a fixed set P and its subsets. If V(.V) 
is a property which is meaningful for every xeP (i.e., for every „x eP , V(.v) is either 
valid or not) we denote by 

E [V(x)] 
JC 

the subset of all xeP which have the property V(x). Similarly 

E [ V ( X ) , W ( * ) ] 
JC 

is the subset of all x eP which have simultaneously both properties V(x) and W(,y). 
If there is danger of confusion regarding P, we write more precisely 

E[xeP, V(x)] instead of E[V(x)] . 
X X 

E.g. if P is the set of all real numbers, then 

E[0 <x < \] 
X 

is the open interval with the end points 0 and 1, 

1] 
X 

is the closed interval with the end points 0 and 1, while 

E[0 > x > \] = 0 . 

1.4. If A and B are given sets,*) then: [1] the set of all the elements x such that 
either xe A or xeB**) is called their union and denoted by A u B; [2] the set 
of all the elements x such that simultaneously both xe A and xe B is called their 
intersection and denoted by A n B. 

More generally, with every element z of a given set C 4= 0 let there be associated 
a set A(z). Then: [1] the set consisting of all the elements x such that there is 
a zeC with x e A(z) is called the union of all the sets A(z) and denoted by 

I ) A ( z ) or LM(z) or \ J A ( Z ) ; 
z z e c 

*) We do not assume A 4= B; such an assumption would be stated expressly. 

**) A U B contains also the elements for which simultaneously both xeA and x £ B. Generally, 
if A and B are propositions, then "A or B" means that out of the four possibilities stated 
in 1.1, the first, third or fourth holds. 
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[2] the set consisting of all the elements x for which x e A(z) for every ze C is 
called the intersection of all the sets A(z) and denoted by 

n A(z) or f)A(z) or f l A(z). 
Z 16 C 

The case of C being the set of all natural numbers is particularly frequent; 
if An is the set associated with the number then the union and intersection of 
all the sets An is denoted by 

00 00 

(J An and f j An respectively. 
n=1 n=1 

With this notation, it is not necessary to write out in detail what we mean by e.g. 
3 

u An = At u A2 u A3 
n = 1 

or 
4 

fl A„ = A1 n A2 n A3 n A4. 
/» = I 

Sets A and B are said to be disjoint if A n B = 0. A system of sets 91 is said to 
be disjoint, if 

Bell, A * B => ¿n£ = 0. 

A union (J /i(z) is said to be disjoint, or, to have disjoint summands, if 
zeC 

z e C , z ' e C , z + z ' => ^(z) n ¿(z') = 0 . 
' ' 

If A and B are given sets, then the set consisting of all the elements belonging 
to A and not belonging to B is called the difference of A and B and denoted by 
A — B. Many authors use the symbol A — B only in the case of A => B. 

Exercises*) 

1.1. AVB = BKJ A; A nB = B nA; {AKJB)KJC = AKJ{BKJC) = AUB\JC\ 
(A r\B)r\C = An(BriC) = AnBnC. 

1.2. AVA=AnA;AV0 = A— 0=A;An0 = 0 — A = 0. 
1.3. A<^BoA=AnBoAKJB = BoA— B = 0. 
1.4. A U (A n B) = A, A n (A U B) = A. 
1.5. (A u B) n C = (A n C) u (B n C); (/i n B) u C = (/i u C) n u C). 

*) The exercises referred to later in the text are denoted by an asterisk. However, a beginner 
reader should go carefully through all the exercises, in order to penetrate into the discussed 
material. The simple results of the exercises for § 1 are used in the text without explicit 
reference; therefore they are not marked by an asterisk. 
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1.6. A —B = (A B) —B - A —A n B; A — (A — B) — A r\ B. 
1.7. C—(AKJB) -= (C—A) n (C— B); C — A n £ - (C — A) KJ (C — B). 
1.8. C - ( J /t(z) - f ^ C — p | A(z) ( J [C-A{z)]. 
1.9. A — (B V C) --- {A — B) — C; (A — B) C\ C = A n C—B n C = A nC—B; 

(AKJ B)—C - (/i — C) U (Z? — C); AnB—C = An(B — C) = 
- (A-C)n(B— C). 

1.10. A — (B—C) = (A — B)vAnC. 
1.11. C — * 0 ,4 — (/? — C) * (/4 — Z?) u C. 
1.12. A C > A — (B — C) = (/I — 5) U C. 
1.13. /I - (/I — B) U (/I n B); A U £ (A — B) U ( f i — A) V (A n B); 

the unions on the right-hand side are disjoint. 

1.14. U A„ = U B„ f H „ = n c„ w h e r c Bn - U Ai< cn = f \ Ai• 
n=l n=l n=l n=l n=l n=1 

1.15. Sets A and 0 are disjoint. 
1.16. Sets A and B A are disjoint if and only if A 0. 
1.17. A(=) c= B(z) -> | J A(z) c ( J B{=)% f | A(z) <= f | B(z). 
1.18. A <= B > C—A 3 C—B. 
1.19. If a set A has a finite number n ^ 0 of elements, then A has 2" subsets. 

§ 2. Mappings 

2.1. Let A and B be two given sets. The set of all pairs (.v, y), where A* e A, y e B 
jfif x e A n B, y e A n B, x 4= y, the pair (A*, y) is taken as distinct from the pair 
(>\ x)J is said to be their cartesian product and denoted by AxB. The term cartesian 
product, introduced by Kuratowski,*) reminds us of the important particular 
case where A = B is the set of all real numbers and A x B is the arithmetical 
equivalent of the plane: every point is represented by its cartesian coordinates. 
The term combinatoriarproduct for Ax B is also customary. 
- Similarly, if A, B, C are three given sets, we say that their cartesian product, 

denoted by A x B x C, is the set of all triples (A% y, z), where x e A, y e B, z e C. 
Similarly for an arbitrary finite number of given sets. 

Remark: The sets CA X B) X C, A X (B X C) and A x B x C are distinct. 
The first one consists of the pairs (č, z), where £ is a pair (.y, y), xe A, ye B, and 
z e C: the second one consists of the pairs (A% r]), where xe A and t] = (>\ R), 
y e B, z,e C; the third consists of the triples (A, y, z), where x e Ay y e B, zeC. 
Nevertheless, it is possible to see that the differences between these three sets are 
merely formal and we shall for brevity neglect them. Hence, for our purposes 
(A x B) x C = A x (B x C) = A x B x C. More generally, we will have 
P x Q = R whenever P = A{ x A2 x ... x Am, Q = Am+i x Am + 2 x ... x 
x Am + n, R = At x A2 x ... x Am+n. On the other hand, we shall distinguish 
A x B from B x A. 

*) Topologie I, p. 7. 
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2.2. Let A and B be two given sets. Let / be a subset of the set A x B such that 
for every xe A there is just one y e B with (A\ V) e / Then we say that / is a mapping 
of the set A into the set B. Besides the term mapping, the terms transformation, 
operation, correspondence are used; there is also the term function, which we use, 
however, in a narrower sense (see 2.3). If / i s a mapping of a set A into a set B, 
then every element xe A determines uniquely the element y e B with (A, y) e /; 
we write, as a rule, y = /(A) and say that y is the image of the element A (under 
the mapping / ) . 

If / i is a mapping of a set At into a set B{ and if f2 is a mapping of a set A2 

into a set B2 then j\ = f2 if and only if [1] A] = A2; [2] xeAj implies fx(x) = 

If / is a mapping of a set A into a set B and if y e B, there need not exist any 
element xeA with /(A) = y; there may be more, possibly an infinite number of 
such elements. If C is the set of all y e B such that there is at least one xe A with 
image v, we say that / is a mapping of the set A onto the set C. « 

2.3. Throughout the whole book, the symbol R denotes the set of all real numbers 
augmented by two elements: oo = +oo and -co . A mapping of an arbitrary set A 
into the set R is said to be a function (on A). The set A is called the domain of the 
function/ The image /(A) of an arbitrary xe A under the function/is called the 
value of the function / a t the element A. If neither oo nor — oo appear among the 
values of a function / , we say that / is a finite function. If, moreover, there is a real 
number c such that | /(A) | ^ c for every xe A, we say that / is a bounded function. 

Let P be a given set. With every set A c P we may associate a function XA o n P» 
for which 

XA(x) = 1 f° r xeA, xA(x) = 0 for xeP - A . 

The function XA called the characteristic function of the set A (with domain P). 

2.4. If / is a mapping of a set A into a set B and if there is given a set M <= A, we 
define the partial mapping fM of the set M into the set B by the formula 

fM = (M x B) n / ; 

thus if xe My then /M(*) = /(*), while for xe A — M the symbol fM(x) is 
meaningless. If B = R, we speak about partial junction. 

2.5. Let / be a mapping of a set A into a set B; let be the system of all subsets 
of A, and similarly let © be the system of all subsets of B. The mapping/determines 
a mapping F of the system 91 into the system 93, and also a mapping (p of the system 93 
into the system 91. These two new mappings are defined as follows: [1] if M e9I, 
then F(M) is the set of all the images under / of all xe M; [2] if Ne 93, then <p(N) 
is the set of all xe A such that f{x) e N. 
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The mappings will be denoted by \ it ts also denoted / \ The mapping F 
will be, without fear of misunderstanding, denoted simply by / Thus, for M c: A 

f(M) = E[y=f(x\xeM] y 

and for N c B 
/-iON) = E[f(x) e N]. 

X 

2.6. Let / be a mapping of a set A into a set B. We say that the mapping / is 
one-to-one, if 

x E A, ye A , x 4= y imply f(x) * f ( y ) . 

Let C = f(A). If yeC, there is only one xe A with f(x) = y; if we write .v = g(y)> 
then g is evidently a one-to-one mapping of the set C onto the set A. We say that 
the mapping g is the inverse mapping to the mapping/. Thus, this hotion is defined 
only for a one-to-one mapping/. An inverse mapping g to a one-to-one mapping/will 
be denoted by / _ ! (it is also denoted/_ 1) ; the reader will easily determine that it 
is not in contradiction with the symbol /_ j introduced in 2.5. Obviously = / . 

Exercises 

2.1. (A U 5 ) x ( C U D) = (AxC)U(AxD) U (Bx C) u (BxD). 
2.2. A n CxB n D = (AxB) n(CxD). 
2.3. (A — B)xC = (AxC)-(BxC). 
2.4. A c B, C c D => (AxC) c (BxD). If A * 0 * C, we may write <s> instead of =>. 
2.5. (PxQ)-(AxB) = (P — A)xQ KJ Px(Q — B). 
2.6. A ^ P, B <=• Q => AxB = (AxQ) n(PxB). 

In exercises 2.7—2.18, / is a mapping of a set /i into a set 

2.7. A / , c m 2 C ^ f ( M x ) c / ( M 2 ) . 
2.8. M(z) <=A r > / [ ( J M(z)] = (J f[M(z)]. 

z % 
2.9. Mi A, M2 ^ A => / (A/ j ) — / ( M 2 ) c / ( M x — A/2). 
2.10. M(r) A => / [ Q A/(z)] = f | / W ( z ) ] . 

z Z 

2.11. NiaN1czB ^ / . i C ^ i ) <=f_i(N2). 
2.12. AT(z) ^ ^ - / - J f l Mz)] = f V - 1 ^ ) ] . 

x z 

2.13*. .Vj <= B, N2 c = f - ! ^ , ) - / . , ^ ) . 
2.14. 7V(z) <= B ^ / . j f l = 0 / - . ( " < * ) ) • 

z z 
2.15. If the m a p p i n g / is one-to-one, on the left-hand side of 2.9 and 2.10 we may write 

instead of <=. 
2.16. If JV c B, then / - i M = 0 implies N nf(A) = 0. 
2.17. I f i V c 5 , then / ( / ^ W ) = N nf(A). 
2.18. I f A / c ^ , then i / ^ . j W = M nf_x(N). 
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In exercies 2.19—2.24 %A is the characteristic function of A z> P (P is the domain of the function 
%A); similarly X b for B 3 P etc. The letter x denotes an arbitrary element of the set P. 

2-19- XahbW = XAM- XBW = min [XAM> XBWb *> 
2.20. xAUB(x) = max \XA(X), X B ( X ) ] . 

2.21. If A nB = 0, then ^ u b ( A ) = XA(X) + 
2.22. _ B(x) = max [0, X A ( X ) - XB(X)] ; if B ^ Ay then _ B(x) = X a ( X ) - X B ( X ) . 

2.23. If An An + l , A = Q then = lim £,„(*). 
n = 1 

2.24. If + = Q 4 , . then - lim 

2 . 2 5 . X A U B ( X ) = 1 - [1 - X a ( X ) 1 . [1 -

§ 3. Countable sets 

3.1. In this paragraph N denotes the set of all natural numbers 1 ,2 ,3 , . . . . 
A mapping of the set N (into an arbitrary set) is called a sequence. The image of 

a natural number n in a sequence is denoted, as a rule, by an (or bn, Ani etc.) 
and is termed the 72-th term of the sequence. The sequence is then denoted by {an} 
or {anor A sequence an is one-to-one (in the sense of section 2.6), if: 
m e N, n e N, m 4= n imply am #= an. If the terms of a sequence {An} are sets, we 
say that the sequence is disjoint, whenever: / / I E N , N E N , / « 4= n imply Am n An 4= 0. 

The sequences just defined are sometimes called more precisely infinite sequences. 
By a finite sequence we understand a mapping of the set of all the natural numbers 
less than or equal to /?, where /? is a given natural number; notation {an}\ etc. 

If {/„} is an increasing (i.e. in < /n+1) sequence of natural numbers (i.e. ine N) 
and if {an}̂ °=i is an arbitrary sequence, we say that the sequence is 
a subsequence of the sequence Obviously a subsequence of a subsequence 
of a sequence {a„} is again a subsequence of {¿z„}. 

To define a sequence, it is sufficient: [1] to define the first term ax, [2] for every n 
to define an9 by using the terms a{,az, Such a definition of a sequence 
is said to be recursive. 

3.2. A set A is said to be finite, if it has a finite number of elements; otherwise, 
it is said to be infinite. The void set 0 is taken as finite. 

Every finite set is termed countable. An infinite set A is said to be countable if 
there exists a one-to-one mapping of the set N onto the set A; i.e. if there is a 
sequence {an}f such that a„e A and such that, for every a e A there is a unique 
index n such that a„ = a. A set A is said to be uncountable if it is not countable. 
Many authors reserve the term countable for infinite countable sets only. 

*) The sense of the sign min (and similarly for max in the following) is obvious. Also, see 
section 4.10. 
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3.3. 3.3.1. Every subset C of the set N is countable. 

This is evident for finite C. If C is infinite, there is a one-to-one increasing sequence 
{/„} such that C consists exactly of its terms. 

3.3.2. Every subset B of a countable set A is countable. 

This is evident for a finite set B. If B is infinite, the set A is also infinite, hence 
there is a one-to-one sequence {an} such that A consists exactly of its terms. Siftce B 
is infinite, the set C of the numbers n with aneB is infinite and hence, by 3.3.1, 
there is a subsequence of the sequence {an} (hence, one-to-one) such that its 
terms form exactly the set B. 

3.4. 3.4.1. Let A be a countable set. Let there exist a mapping f of the set A onto 
a set B. Then B is a countable set. 

This is evident for a finite set B. If B is infinite, then let us choose, for every 
ye A, exactly one x e A with / (x ) = y. Let C be the set of the chosen xe A. We 
have C cz A and, hence, the set C is countable by 3.3.2. Evidently cp = fc (see 2.4) 
is a one-to-one mapping of the set C onto B. Since B is infinite and since cp is 
one-to-one, the set C is also infinite. Since C is countable, there is a one-to-one 
sequence {an} such that its terms form exactly the set C. Then {(p(an)} is a one-to-one 
sequence such that its terms form exactly the set B. 

If we put A = N in 3.4.1, we get 

3.4.2. The set of all terms of an arbitrary sequence is countable. 

3.5. 3.5.1. N x N is an infinite countable set. 

Proof: For (m, n) e N x N put/(w, n) = 2",+" + m. Since 0 < m < 2m < 2m+n, 
we have 2m+n < f(m,ri) < 2m+n + 1, so that a value f(m,n) determines the values 
m -h n, m (and also n). Hence, / is a one-to-one mapping of the set N x N into 
the set N. If C = / ( N x N), then / _ , is a (one-to-one) mapping of the (by 3.3.1) 
countable set C onto the set N x N, and hence the set N x N is countable by 3.4.1. 
Of course, the set N x N is infinite. 

If we assign the number mjn to every {m, n ) e N x N, we obtain the following 
result: 

3.5.2. The set of all positive rational numbers is countable. 

3.6. Let C 4= 0 be a countable set. Let, for every z e C, A(z) be a countable set. Then 
(J A(z) is countable. 

zeC 
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Proof: If U A(z) = 0, this is evident. Hence, let there exist an a e (J A(z) (we 
choose a arbitrarily, but fixed). Since C =t= 0 is a countable set, there is a one-to-one 
(finite or infinite) sequence {cw}J, = 1 (pe N) or {cm}®=1 such that C consists exactly 
of all the terms of the sequence. If the set A(cm) is infinite, there is a one-to-one 
infinite sequence {amn}™=1 consisting exactly of the elements of A(cm); if the set 
A(cm) is finite, there exists a sequence (not one-to-one this time) {amn}^Llf 

consisting exactly of the elements of the set A(cm) u (a). If the set C is finite and if 
m> p, put amn = a. For (m, n) e N x N put f(m, n) = amn. Then / is a mapping 
of the countable (by 3.5.1) set N x N onto the set |J A{z), and hence this last set 
is countable by 3.4.1. 2 6 c 

3.7. Uncountable sets exist. For: 

3.7.1. Countable sets of real numbers contain no intervals.] 

Proof: Let there exist, on the contrary, real numbers a and b such that a < b, 
and also a sequence {c„} of real numbers containing every real number x such that 
a < x <b. Let us determine an index Vj such that: [1] a < cVi < b, [2] vt is the 
least index with this property. Put ut = cVl. Let us determine an index such that: 
[1] fl <LWi < c/ll < b9 [2] is the least index with this property. Put vi = c^. 
We proc'eect recursively to construct sequences {wn}J°, so that, for every n: 
a < un < vn < b (as was the case for n = 1). If, for some p > 1, all the members un 

and vn have been constructed for all n < p 9 we determine the index vp for which [1] 
a < up-i < cvp < V

P-1 < b, [2] vp is the least index with this property; put up = cVp. 
Further, let us determine an index pp for which: [1] a < up < c^p < vp_x < b, 
12] pp is the least index with this property; put vp = c/ip. Then, for every n, a < 
< un < wn+1 < r n + 1 < vn, and hence {«„} is an increasing bounded sequence of 
real numbers and hence, by a well-known theorem from the theory of real numbers, 
there exists lim un = a. We have a < ut ^ a ^ Dj < b. Hence, there is an index k 
with a = ck. For every n, un < ck < vn. Since v„ and /zn were always the least indices, 
we have k > vn for every n, which is impossible, since evidently v„ < pn < vn+1 

and hence lim v„ = oo. 

Exercises 

3.1.* The set of all rational numbers is countable. 
3.2. The set of all irrational numbers contained in an interval is uncountable. 
3.3. If A and B are countable sets, then A xB is countable. 
3.4. The system of all finite subsets of a countable set is countable. 
3.5. The set of all numbers of the form £ 2~ n , where A varies over all the non-void subsets 

neA 
of N, coincides with the interval E[0 < t ^ 1]. 
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3.6. The system of all subsets of the set N is uncountable. 
3.7. Every infinite set contains an infinite countable subset. 
3.8. The system of all subsets of an infinite set is uncountable. 
3.9. The system of all infinite subsets of an infinite set is uncountable. 

p 
3.10. The system of all polynomials £ akxk with integral coefficients ak = 0, ± 1 , ± 2 , a p 4= 0, 

is countable. fc = 0 

3.11. The set of all real algebraic numbers is countable. 
3.12. Real transcendental numbers exist. 
3.13. The set of all transcendental numbers in a given interval is uncountable. 
3.14.* Let A be a countable set such that 0 e A. Let 91 be the system of all sequences {tf„}f such 

that: [1] an e A for every n, [2] there is an index p such that an = 0 for every n > p. Then 
the system is countable. 

§ 4. Ordered sets 

4.1. To order a set P means to give a rule by which we decide whether an element 
aeP precedes an element b eP or not; such a rule must satisfy the following three 
conditions: 

[1] if a precedes b, then b does not precede a; 
[2] if neither a precedes b, nor b precedes a, then a = b; 
[3] if a precedes b and b precedes c, then a precedes c. 

By [1], a never precedes a. If a precedes b, we say that b follows a. If either simulta-
neously a precedes b and b precedes c, or simultaneously a follows b and b follows c, 
we say that b is between a and c (or between c and a). We say that aeP is the first 
element, if no xeP precedes a; we say that aeP is the last element, if no A e P 
follows a. By [2] there is at most one first element and at most one last element. 

A set P may certainly be ordered in various ways. If it is ordered by a given rule, 
we obtain a new ordering by stating that in the new sense, a precedes b if and only 
if a followed b in the former one. The new ordering is called the inverse ordering 
to the previous one. We say also that the two orderings are mutually inverse. 

If a set P is ordered by some rule, then the rule also orders an arbitrary subset 
A cz P, If we speak about an ordering of a subset A of an ordered set P, we mean, 
of course, the ordering of A determined by the ordering of the set P. 

The symbol EA denotes throughout the present book the set of all real numbers. 
R denotes, as stated above (in section 2.3), the set augmented by two elements, 
one of which is denoted by -foo or simply oo and the second by — oo. If x e R, 
ye R, then the assertion "A precedes means A < y, where (throughout all the 
book) we put: 

— 00 < 0 0 , —OO < C , C < 00 

for every ceEt. This defines the so called natural ordering of the set R, which 
determines the natural ordering of each of its subsets. — oo is the first, + oo the last 
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element of the set R in its natural ordering; this contrasts with the naturally ordered 
E1? which has neither first nor last element. 

4.2. Let P and O be two ordered sets. We say that they are similarly ordered or 
that their given orderings are similar*), if there exists a mapping/of the set P onto 
the set Q such that for aeP, be P 

a precedes b=> f(a) precedes f(b). 

In this sense we also say that / is a similar mapping of the set P onto the set Q. 
If a eP, b e P, a 4= b, then either a precedes b or b precedes a\ hence either j\a) 
precedes j\b) or f(b) precedes f(a) and hence j\a) 4= f{b). Thus the mapping / is 
one-to-one, so that there exists an inverse mapping/. l of the set Q onto the set P. 
The reader may prove easily that / _ j is a similar mapping of the set Q onto the 
set P. 

4.3. Let P be an ordered set. We say that P is well ordered if for every A, 0 4= 
4= A cz P, there is a first element xeA, i.e. there is an element xeA such that 

y e A, y 4= x => A* precedes y. 

The natural ordering of the set of all natural numbers 1,2,..., or of any of its 
subsets, is a well ordering. The theory of well ordered sets has numerpus applications, 
many of them following from the famous Zermelo theorem, asserting that every 
set may be well ordered. Nevertheless, we shall not occupy ourselves with this theory. 
[An introduction to the theory of well ordered sets may be found, e. g., in the book 
A. Fraenkel, Abstract Set Theory, Amsterdam, 1958. Ed.] 

4.4. If P is an ordered set, a e P, b e P, a precedes b and if there is no x e P between 
a and b, we say that a immediately precedes b or that b immediately follows a. 

Remark: If P is an ordered set, ae P, b eP, a precedes b and the number of points 
A e P between a and b is finite 0), then there exists an element x which immediately 
follows a, and an element r which immediately precedes b. 

Let us, e.g., prove the first statement (the second one may be proved similarly, 
or it may be reduced to the first by using the inverse ordering): Let xeP following a 
be such that between a and x there is the least possible number of elements. Since b 
follows a and there is only a finite number of elements between a and b9 such 
an x exists. If x does not immediately follow a, there is a yeP between a and A. 
Every element which is between a and y is also between a and A\ but between a 
and y there are less elements than between a and x. This is a contradiction, so 
that x immediately follows a. 

*) The term commonly used today is isomorphic (Ed.). 
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The natural ordering of the: set of all integers 0, ±1, ±2 , . . . and the natural 
ordering of each its subset P have the property that for every pair aeP, beP 
there is only a finite number of elements between a and b. Conversely: 

4.4.1. Let a set P 4= 0 be ordered in such a manner that whenever aeP, b e P, there 
is only a finite number of elements xeP between a and b. Let us distinguish the 
following four cases: [1] P has both first and last elements, [2] P has a first element 
and no last element, [3] P has no first element and has a last element, [4] P has neither 
last nor first element. Then the given ordering of the set P is similar to the natural 
ordering of: [1] the set of natural numbers less than or equal top, where p is the number 
of the elements of the set P, [2] the set of all natural numbers, [3] the set of all negative 
integers, [4] the set of all integers. *) 

Proof: Let us begin with the cases in which the first element exists and denote 
it by a{. If an is defined for some n and if an is not the last element, then there 
is an element b following an. Since there is a finite number of elements between an 

and b by the previous remark there exists an an + l following immediately ari. There 
are two possibilities: either (case a) we obtain a finite sequence {an}{ such that ar 

is the last element of the set P, or (case /?) we obtain an infinite sequence {a„}f. 
It is easy to show that, in both cases, the sequence {«„} is one-to-one. Let us prove 
that in both cases the set of all terms of the sequence {an} is equal to the whole set P. 
If we assume the contrary, there exists an xeP distinct from every an. Since ax 

is the first element, x follows ax. The element A cannot follow every an, in the 
case a because ap is the last element, in the case P because there is only a finite 
number of elements between ai and A. Hence, there is a term an of the sequence {i7„J 
(1 ^ n < p in the case a) such that x follows an but x does not follow an + i; hence A 
is between an and an+1. This is a contradiction, since an+l immediately follows an. 
Thus, P is exactly the set of all terms of the sequence {an}. Putting f(an) = n we 
obtain, as one sees easily, a similar mapping of the set P onto the set of all natural 
numbers less then or equal to p (case a) or onto the set of all natural numbers 
(case P). We also see that in the case p the set P has no last element. 

Let us turn to the case where P has a last element. This case may be reduced, 
with the aid of the inverse ordering, to the previous one. Thus, if P has no first and 
has a last element, we construct a sequence such that on putting f(bn) = —n 
we obtain a similar mapping of the set P onto the set of all negative integers. 

There remains the case where P has neither first nor last element. Choose arbitrarily 
a0 E P. Define Pj c P and P2 c= P as follows: 

Px = E[a0 precedes A], P2 = B[«o follows A] . 
X X 

Since a0 is neither first nor last element, Px 4= 0 4= P2- Moreover, 

P = (a0) u P, u P2 

*) Case [1] obtains, of course, if and only if the set P is finite. 
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with disjoint summands. Both the sets Px and P2 have the property that between 
any two of their elements there is only a finite number of elements. Moreover, 
we see easily that Px has a first and has no last element, whereas P2 has no first 
and has a last element. Hence, there are two sequences and {tf _„}? such that Pi 

is the set of all terms of the sequence {an}?, that P2 is the set of all terms of the 
sequence and such that 

1 ^ m < n => am precedes an, a_n precedes a_m. 

Putting f(an) — n for n = 0, ±1, ± 2 , w e obtain a similar mapping of the set P 
onto the set of all integers. 

4.5. Let P be an ordered set. We say that P is densely ordered, or, that the given 
ordering is dense, if P contains at least two distinct elements and if there is no pair 
aeP, beP such that a immediately precedes b. Every densely ordered set P is infinite. 
Moreover, by the remark in section 4.4, if a eP, beP, a 4= bt the set of all xeP 
between a and b is infinite. 

The natural ordering of the set of all rational numbers is dense. Let us recollect 
(see ex. 3.1) that this set is countable. 

4.6. 4 .6 .1. Let P be a countable ordered set. Let H be a densely ordered set. Then 
there is a set Q cz H such that P and Q are similarly ordered. (The ordering of the 
set Q is, of course, determined by the given ordering of the set H Q by 4.1.) 

Proof: If P = 0, it suffices to put 2 = 0. Hence, let P 4= 0. P is either finite 
{case a) or infinite (case /?). In the case a there exists a finite one-to-one sequence 
{an}[, in the case ft an infinite one-to-one sequence such that, in both cases, 
P is exactly the set of all terms of,the sequence {an}. Since H is densely ordered, 
it is infinite, and hence we may choose a bt e H such that bt is neither the first nor 
the last element of the set H. (We do not at all assert that there is a first or last 
element in HI) For a given q = 1, 2, 3, . . . (in the case a let q < p), let there be 
constructed elements bn e H (1 ^ n g q) in such a way that none of them is first 
nor last in 77, and that, for 1 g m ^ q, 1 ^ n g q> 

am precedes an o bm precedes bn. (1) 

(This is satisfied for q = 1.) We shall prove that it is possible to choose an element 
bQ+1 e H which is neither first nor last in H, such that (1) holds for 1 ^ m ^ q + 1, 
1 ^ n ^ q 4- 1. Let us distinguish three cases: [1] Let aq+1 precede an for 1 ^ n ^ q. 
Evidently there is an index m (1 ^ m ^ q) such that 

1 ^ w ^ q, n 4= m if and only if am precedes an. 

Since bm is not the first element in / /and since His densely ordered, there is a bq+leH 
such that bq+1 is not first in H and precedes bm. It is easy to see that is not the 
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last element in H and that (1) holds for 1 g m g q + 1, 1 ^ n ^ q + 1. [2] Let 
follow an for 1 ^ n ^ q. We construct a bq+l in a way similar to that in the 

previous case. [3] Let there be at least one index n such that 1 ^ n ^ q and that 
aq+] precedes ani and let there also be at least one index n such that 1 ̂  n ^ q and 
that aq + x follows an. Evidently, there is an index h (1 ^ h g q) such that 
precedes ah and that 

1 g n ^ q, n =|= //, aq+i precedes an => ah precedes an. 

Similarly, there is an index k (1 ^ k ^ q) such that aq+l follows ak and that 

1 ^ n ^ q, n 4= k, aq + l follows an => ak follows an. 

Since H is densely ordered, there is a bq+l e H between bh and bk\ it is easy to see 
that bq+l is neither first nor last in H and that (1) holds for 1 fg m ^ q + 1, 
1 ^ n ^ q +}. 

Proceeding in this way, we construct in the case a a finite sequence {6„}i and 
in the case /? an infinite sequence such that, putting f(an) = bn, we obtain 
in both cases a similar mapping / of the set P onto the set Q c H of all terms of 
the sequence {&„}. 

Putting the naturally ordered set of rational numbers for H in 4.6.1, we obtain 
the following theorem: 

4.6.2. Let P be a countable ordered set. There exists a set Q such that: [I] the elements 
of the set Q are rational numbers; [2] the given ordering of the set P is similar to the 
natural ordering of Q. 

4.7. 4.7.1. Let P and Q be densely ordered sets without first and last elements. Then P 
and Q are similarly ordered. 

Proof: As P and Q are densely ordered, they are infinite. Thus, there are one-to-one 
sequences and {/>„}? such that the sets of all their terms are P and Q respectively. 
We shall construct recursively two new one-to-one sequences {un} and {vn} as follows: 
Let ux = al9 vt = bx. For a certain q = 1, 2, 3, . . . let there be constructed terms 
unsP and vn e Q (1 ^ n q) such that, for 1 ^ m ^ q, 1 ^ n g q, 

um precedes un if and only if vm precedes vn. (1) 

Let us distinguish two cases. First, if q is odd, we choose uq+i = ah where h is the 
least index such that ah 4= w„ for 1 ^ n ^ q\ then we put vq+l = bk9 where k is 
chosen so that (1) holds for 1 ^ m g q, 1 g n ^ q. That such a bk exists may be 
deduced in the same jvay as in the analogous consideration in the preceding proof. 
Secondly, if q is even, we choose vq+i = bh9 where h is the least index such that 
bh =t= vn for 1 ^ n ^ q; then we put uq + x = ak, where k is chosen so that (1) holds 
for 1 ^ /w ^ <7 + 1, I ^ n ^ q + I. In this way we obtain two one-to-one sequ-
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ences {un}™ a n d {vn}?- Since the index h was always chosen the least possible, the 
set of all terms of the sequence {un} is the set P and similarly for and Q. The 
relation (1) holds for all natural numbers m and n; consequently, putting f(un) = vn. 
we obtain a similar mapping / of the set P onto the set Q. 

If we put the naturally ordered set of all rational numbers for Q in 4.7.1, we 
obtain the theorem: 

4.7.2. Let P be a countable densely ordered set without, the first and last elements. Then P 
is ordered similarly to the naturally ordered set of all rational numbers. 

4.8. Let P be an ordered set. We define a cut of the (ordered) set P to be any 
couple a = (Al9 A2) where Ai u A2 = P and 

A*t precedes x2 whenever x1eAlf X2GA2. (1) 

Notice that condition (1) implies A1 n A2 = 0. We call the set At the lower class 
of the cut and the set A2 the upper class of the cut. 

An important case of a cut is the following. We choose an aeP and define Av 

and A2 as follows: 

A precedes a => x e Ax, x follows a => x e A2, 

while the point a will be included in either A1 or A2, certainly in only one of them. 
In either case, (Alf A2) is a cut of the set P; in both cases we say that (Ax, A2) is 
a cut generated by the element a. If a e Ax, the element a is the last element in the 
lower class; if aeA2, the element« is the first element in the upper class. Conversely, 
if a = (A j, A2) is a cut such that there is a last element in A x, then a is generated 
by this element, and if a = (At, A2) is a cut such that there is a first element in A2. 
then G: is generated by this element. 

A cut a = (A l, A2) is called a jump, if there exist both a last element of the lower 
class a{ and a first element of the upper class a2; the cut a is then generated by 
both al and a2. Conversely, a cut which may be generated by two distinct elements 
is a jump. If there were an element xeP between av and a2, it could be neither 
in Aj nor in A2; thus, ax precedes a2 immediately. Therefore, a densely ordered 
set has no jumps. 

A cut a = (i4j, A2) is said to be a gap, if A1 =1= 0 =# A2 and if there is neither 
a last element of the lower class, nor a first element of the upper class. A gap can 
be generated by no a e P. 

The couple a t = (P, 0) is a cut of the set P. If there exists a last element of the 
set P, <x{ is generated by it; if there is none, a t can be generated by no as P. The 
couple a2 = (0, P) is a cut of the set P. If there exists a first element of the set P, 
a2 is generated by it; if there is none, a2 can be generated by no a e P . 
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If an ordered set has both first and last element and if it has no gaps, then each 
of its cuts can be generated by an aeP. If, moreover, P is densely ordered, then 
every cut is generated by a unique a e P . 

4.9. Let M be the set of all rational numbers. If a is an irrational number and if we put 

A! = E [.v e M, x < A], A2 = E [.Y G M, X > A], 
X X 

then (A i, A2) is a gap of the naturally ordered set M. It is said to be (in a áomíewhat 
different serfse than in 4.8, since a is not an element of M) generated by the irra-
tional number a. Distinct irrational numbers generate distinct gaps of the set M. It is 
well known from the theory of irrational numbers that, conversely, every gap of 
the set M is generated by a unique irrational number; in the Dedekind theory, 
the irrational numbers are defined as the gaps of the set M. The naturally ordered 
set Ex of all real numbers (both rational and irrational) has then no gaps.*) These 
facts form, as is well-known, the fundament of an exact construction of the whole 
of mathematical analysis. We shall deduce here their abstract basis. 

Let P be an ordered set and let Q be the set of all its gaps. For clarity, we shall 
denote the elements of P by lower- case Roman letters and the elements of Q, i.e. 
the gaps of P, by lower- case Greek letters, putting a = (Ax, A2), ft = (Bl, B2) etc. 
Evidently P n Q = 0. We know what is meant by "a precedes ¿>" (aeP , b gP). 
Further, we say that [1] a precedes a [a e P, a = (Al9 A2) e Q] if a e A {; [2] a precedes 
a if aeA2; [3] a precedes p [a = (Au A2\ p = {Bi9B2)] if Al c P, * Ax. We 
must prove three statements in order to show that we have defined an ordering 
of the set P u Q (see 4.1): 

I. Given two elements of P u 0, the first of them cannot precede the second one, 
if the second one precedes the first one. We know it is never the case that simultane-
ously a precedes b and b precedes a. If a precedes a and a precedes a, we have ae AJf 

ae A29 wjiilst Ay n A2 = 0. If a precedes p and p precedes a, then A{ c B{ 4= At, 
Bx c- Av #= Bl9 which is also impossible. 

II. If one element of P u Q does not precede another one and the latter does 
not precede the former, then these elements are equal. First, we know that if neither a 
precedes b9 nor b precedes a, then a = b. Secondly, let us prove that the assumption 
that a does not precede a and a does not precede a leads to a contradiction; really, 
such an assumption implies that neither a e Ax nor a e A2 while a eP = Ax u A2. 
Thirdly, let neither a precede P nor P precede a; we have to show that a = p. Since 
A2 — P — Al9 B2 = P - P , , it suffices to show that A{ = P , . Let A{ 4-By. 
As a does not precede p, A, is not a subset of Bx and hence there is an as Ax — B{; 

*) Certainly, the set R consisting of the elements of Ej and of the first element —oo and the 
last element + oo also has no gaps. 
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similarly, there is a beBx - Ai9 since P does not precede a. We have aeAx-Bx = 
= Al n (P — Bi) = At n B2 and similarly b e A2 n Bx. As ae Al9 b e A2, a pre-
cedes b; on the other hand, a e B2, b e arid hence b precedes a. This is a contra-
diction. 

III. Let some three elements of P u Q have the property that the first one precedes 
the second one, and the second one precedes thp thjrd one. We have to prove that 
the first one precedes the third one. We must investigate eight cases: [1] a precedes b, 
b precedes c: We know that then a precedes c. [2] a precedes b, b precedes c: Since a 
precedes b, we have be A2. If there were c e Al9 c would precede b9 since (Ax, A2) 
is a cut. Thus, ce Al9 i.e. a precedes c. [3] a precedes P, p precedes c: Then ae Bl9 

ceB2 and hence a precedes c. [4] a precedes b9 b precedes y: Since b precedes y, 
we have b e C x . If a e C2, then a follows b; thus, c e C l 5 i.e. a precedes y. [5] a 
precedes (1, P precedes c: Since P precedes c, we have c e B 2 . Since a precedes /?, 

cz Bt and hence A2 = P — Ay P — Bt = i?2, and hence ceA2, i.e. a prece-
des c. a precedes b, b precedes 7: Hence, If a did not precede y, 
we eithet would have (see II above) a = y or y would precede a, so that Ct cz Ai 

and hence b e A2 n CL cz Ai n A2 4= 0; this is a contradiction. [7] a precedes p, 
P precedes y: We have aeBx c C , , hence aeCl9 i.e. a precedes y. [8] a precedes 
P precedes y: We have ^ c cz Q 4= and hence At cz C t 4= Al9 i.e. a prece-
des y. 

Thus, we have really constructed an ordering of the set P u Q which determines 
the previously given ordering of the set P. This ordering has the following four 
properties: 

[1] Every cce Q follows some a eP9 namely every ae Ax. 
[2] Every aeQ precedes some a e P, namely every a e A2. 
[3] If a e (2, P e Q and a 4= P, then there is always some aeP between a and P. 

Let a precede p. Then c B^ 4= At and hence 0 4= £1 — Ax = A2 n Z^. Choo-
sing an a e A2 n Bx we see that a follows a and precedes P9 i.e. a is between a and p. 

\4\ J/ a e P , a e Q , then ifiere is always some beP between a and a. Let, e.g., a 
precede a, hence aeA±. Since a = (y4t, A2) is a gap in P, there is no last element 
in Ai, and hence there is a b e At following a. As b e Al9 b precedes a. As, moreover, 
b follows a, b is between a and a. 

The ordering of the set P u Q just constructed has no gaps. 

Proof: Let ($ll9
 S2I2) be a cut of the set P u 2 and let 4= 0 * 2l2- W e h a v e 

to prove that either there is a last element of the class , or there is a first element 
of the class 9I2. Put ^ = P n s 2 l 1 , A2 = P n 2 1 2 . Obviously a = (^ 1 } / l 2 ) is 
a cut of the set P. As 4= 0> there exists a p ESIJ. If p e P we have Pe Av \ if 
PeQ we know that there is a b e P preceding J8. Since precedes P and P es2ll9 

b is not an element of SU2. Thus, b e ; as b e P, we have b e At. Thus, in both 
cases Ax 4= 0. Similarly we may prove that A2 4= 0. Let us distinguish three cases: 
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First, let there be a last element b in the set Ax. Let us assume that b is not the 
last element of the set Then there is a PeSHt following As P n i l ^ ^ , 
and as P follows the last element of the set AY, P is not in P and hence P e Q. As b 
precedes P, there is, by the property [4] above, a ce P which is between b and P, 
i.e. which follows b and precedes p. Since c lies in P and follows the last element 
of the set Al9 c is not in At. Since c precedes PeSHl9 c does not belong to s2lz. 
Therefore ce^il9 and it follows ceP n ^ ; i.e., we have ce At. This is a contra-
diction. Thus, b is the last element of the set . 

Secondly, let there be a first element b of the set A2. We may show that b is the 
first element of the set 3l2 in the same way as we did in the first case. 

Thirdly, let there be neither a last element in Al9 nor a first element in A2. As 
Ax #= 0 =1= Al9 a = (Al9 A2) is a gap of the set P and hence a e Q. Let PeP vj Q 
precede a. If p e P9 we have P e At and hence p e ^ . If P e Q9 then, by the property 
[3] above, there is an a eP between a and P, i.e., a follows P and precedes a. Since 
a eP precedes a, we have a e Al9 and hence a e . Since p precedes a, p is not in 
St2, and hence p G ^ . Thus, for p eP u Q it holds that 

P precedes a => p e j. 

Similarly we may prove that 

P follows a=> PeSl\2. 

As ^Ij u 2 = P u we have either a G3(a or a e$l2 . I n the first case, a is the 
last element in in the second one, a is the first element in 

4.10. Let us finish this section recollecting some well known consequences of the 
fact that the natural ordering of the set R has neither jumps nor gaps. 

Let an arbitrary set M C R be given. Denote by A 2 the set of all A G R such that 

y e M => y < x9 

and put A\ = R — A2. We see easily that (Al9 A2) is a cut of the naturally ordered 
set R. By the remark at the end of 4.8 there is exactly one a e R generating the cut 
(Al9 A2). It is easy to prove that the number a is characterized by the following 
two properties: 

[1] if p e R and P < a, there i s a j e M such that y ^ P; 
[2] pe R, P > a, yeM=>y < p. 
Following Hausdorf f , this number a is called the supremum of the set M and 

it is denoted by 
sup A/.*) 

*) If / i s a function on P, then s u p / W is also denoted by s u p / O ) ; similarly for infimum. 
xeP 
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Instead of the term supremum, one uses sometimes the term least upper bound. 
If a e M, then a is evidently the greatest number contained in the set M ; it is then 
called the maximum of the set M and sometimes denoted by 

max M.*) 

If a e R — My the maximum of the set M does not exist. 
Similarly, for every M c: R there exists a number a' e R characterized by the pro-

perties: 

[\'] if p e R and p > a', there is a ye M such that y ^ p; 
[2'] p eR, p < OL\ y e M => y > p. 

This number a' is called the infimum of the set M and is denoted by 

inf M. 

Instead of the term infimum, one uses sometimes the term greatest lower bound. 
If a' e M, then a' is termed the minimum of the set M and is sometimes denoted by 

min M. 

According to our definition we have 

sup 0 = —oo, inf 0 = oo. 
On the other hand, 

if M * 0, then sup M ^ inf M. 

Suppose, on the contrary, that a < a'. Choose a ye M. By [2] we have y < a'; 
putting P = y in [2'] we obtain the contradiction y > y. 

A set M is said to be bounded, if sup M < oo and inf M > — oo ; otherwise it is 
said to be unbounded. We see easily that M is bounded if and only if there is a ce Et 

^uch that 
— c < x < c for every x e M. 

I f / is a function on P, then f(P) is a bounded set in the sense just defined if and 
only i f / i s bounded in the sense of 2.3. 

Exercises 

4.1. A finite set with n elements has n\ orderings (this is true also for n 0, since 0! - I, 
and for n = 1). 

*) max (a, b) denotes the maximum of the set consisting of two points a e R and he R; 
similarly for minimum. 
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4.2. The set of all orderings of the set of all natural numbers is uncountable. 

4.3. Let P and Q be two ordered sets. Then their cartesian product may be ordered as follows: 
C*i>.Vi) precedes ( x 2 , y 2 ) ^ a n (* only if either xl precedes x2, or simultaneously xt = x2 

and yt precedes y2. 
4.4. For every element z of an ordered set C 4= 0 let there be an ordered set A(z) and let the 

union ( J A(z) be disjoint. Then the set M = ( J A(z) may be ordered as follows: If 
x e C x e C 

xt eM, x2 e M, there exist elements zx e C, z2 e C with xt e/lCzj), x2 eA(z2); xt precedes 
x2 if and only if either zx precedes z 2 , or simultaneously Zj = z2 and x<L precedes x2 in A^z^. 
If the given orderings of C and of all the sets A(z) are well orderings, we obtain a well 
ordering of the set M. 

4.5. The natural ordering of the set of all decadic rationals, or of the set of all rational numbers x 
with a < x < P (a e R, p e R, a < /?), or of the set of all algebraic numbers, is similar to 
the natural ordering of all rational numbers. 

4.6. Let P be a densely ordered countable set. Then P is ordered similarly with the naturally 
ordered set of all rational numbers contained in the interval: [1] E[0 < x < 1], if P has 

X 

neither a first nor a last element, [21 E[0 ^ x < 1], if P has the first but has no last element, 
X 

[3] E[0 < x ^ 1], if P has no first, but has a last element, [4] E[0 ^ x ^ 1], if P has both the 
X X 

first and last elements. 
4.7. The condition (1) in the definition of a cut at the beginning of 4.8. may be replaced by either 

of the following conditions: 
precedes x2t x2 e At => xt e Ait 

xx precedes x2t xt e A2 => x2 e A2. 

4.8. Let (Alf A2) be a cut of an ordered set P. Then ( A 2 , Ax) is a cut of the inversely ordered 
set P. If (A{, A2) is a jump or a gap, then ( A 2 , At) is also a jump or a gap respectively. 

4.9. Let P and P' be ordered sets; let / be a similar mapping of P onto P'. Let Q and Q' be the 
sets of all gaps of the sets P and P' respectively. Let us order the sets P u Q and P' KJ Q' 
as in 4.9. Then there exists exactly one similar mapping (p of P U Q onto P' U Q' such that 
<pP = f (in the sense of 2.4). 

4.10. Let Q be a densely ordered set which has neither first nor last element and which has no 
gaps. Let P ^ Q be a countable set. For every x e Q — P and y eQ —P, x 4= y, let there 
eb an a e P between x and y. Then there exists a similar mapping / of the set Q onto the (na-
turally ordered) set such that f(P) is the set of all rational numbers. 

4.11. Let P be a given set containing at least two elements. Let there be given a s e t M c P x P x P 
such that 

[1] (a, c, b) e M a 4= b\ 
[2] (a, c, b) e M => (b, cy a) e M; 
[3] (a, c, b) e M => a * c\ 
[4] (a, dt c) 6 M, (a, c,b)e M ^ (a, b) e M; 
[5] (a, d, c) e M, (d, c, b) e M => (a, c, b) e M; 
[6] (A, X, b) e M, (A, yt b) e M, X 4= y => either (a, JC, y) e M or (a, y, x) e M; 
[7] (a, c, x) e M, (a, c, y) e M, x 4= y => either (c, x,y)e M or (c, y, x) e M; 
[ 8 ] a 4 = 6 4 = c 4 = a = > either (a, b, c) e M or (6, c, a) e M or (c, a, b) e M. 

Then there are exactly two orderings of the set P such that c is between a and b if and only 
if (a, c, b) G M. These orderings are mutually inverse. 
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§ 5. Cyclically ordered sets*) 

5.1. We may define the ordering of a set P a s a subset U of P x P satisfying certain 
conditions, namely, as the set E [x precedes y\. Similarly, we define the cyclical 

(x,y) 
ordering of a set P a s a subset C of the set P x P x P satisfying the following four 
conditions: 

[1] (a, b, c)eC=>(b, c,a)eC; 
[2] (<a, b,c)e C and (b, a, c)eC never hold simultaneously; 
[3] if neither (a, b,c)eC nor (,b, a, c) 6 C, then some two of the elements a, b9 c 

are equal; 
[4] (a, b9 c) E C, (a, c,d)eC=> (a, b9 d) G C. 
[1] and [2] yield:; 

[5] if (a, b, c) e C, then (b9 c, a) eC and (c, a, ¿>) g C, while we have neither 
(b, c , c ) e C nor (c, a) e C nor (a, c, Z>) e C. 

[5] yields: 
[6] {a, b, c) E C => a 4= b 4= c 4= a. 
[3] and [5] yield: 
[7] if aY 4= a2 4= ct3 4= al9 then (aii9 ai2, ah) e C holds for exactly three of the 

six permutations ii9 il9 i3 of the indices 1, 2, 3. 

Finally, the following analogy of condition [4] holds: [8] (a, b, d) e C, (b, c, c/) e 
e C => (a, c, d) e C. In fact, by [5] we have (d9 a, 6) e C, (d, b,c)e C and hence, 
by [4], a, c) G C and hence (a, c,d)eC by [1]. 

5.2. Let P be a cyclically ordered set and let aeP. If xeP — (a), yeP — (a), we 
say that x precedes if and only if (a, x,y)e C. , 

To prove that we have defined an ordering, we must find out whether the three 
conditions stated at the beginning of 4.1 are satisfied. 

I. Let x precede y. Then (a, X, y) G C. By [5] (a, y9 x) does not belong to C, i.e., 
y does not precede x. 

II. Let neither x precede y, nor y precede x; then neither (a, x, y) e C, nor (a, y, x) e 
e C and hence, by [3] and [5], some two of the elements a, x, y are equal. Since 
xGP — (a), yeP — (a), we have x = y. 

III. Let x precede y and y precede z. Then (a, x, y) e C, (a, y,z)eC and hence, 
by [4], (<a, x, z) e C, i.e. x precedes z. 

Thus, we have actually defined an ordering of the set P — (a). This ordering will 
be denoted by U(a), or, more precisely, by Uc(a). 

*) The beginner is recommended to omit this section for the time being. The results will not 
be used until the last chapters of this book. 
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Conversely: 

5.2.1. Let aeP and let there be given an ordering of the set P — (a). Then there is 
exactly one cyclical ordering C of the set P such that the given ordering of the set 
P — (a) coincides with Uc(a). 

Proof: I. If such a cyclical ordering C exists, then, by [1], [6] and by the definition 
of the ordering Uc(a) 

(a, .v, j ) e C o (A% y9 a) E C o (y9 a, x) E C o x E P — (a), y eP — (a), A precedes y. 

Now, let A*, y and z be three elements of the set P — (a) such that x precedes z, 
i.e. {a, x, z) E C. If (A, y9 z) e C, then, by [8], (a, y, z) e C, i.e. y precedes z. We have 
(A, y, z) E C and, by [1], (A, Z, a) E C, SO that, by [4], (A, y, a) e C, and hence, by [5], 
(a, x, y) E C, i.e. A precedes y. Thus, y is between x and z. On the other hand, let y 
be between A and z. Since x precedes z, y follows A and precedes z, i.e. (a, A, y) E C, 
(a9 y, z) E C. Therefore, by [5], (y, z, a) E C, (y, a, A) e C, hence, by [4], (;>, z, x) E C 
and hence, by [5], (A, y, z) E C. 

Finally, let A, y and z be three elements of the set P — (a) such that A follows z. 
Then z precedes A, SO that 

(z, y, A) E C if and only if y is between A and z. 

On the other hand, by [5], [6] and [7], (A, y,z)E C if and only if A 4= y 4= z 4= x 
and (z, y, x) is not an element of C. 

Thus, if A, v, r are elements of P — (a), then (A, y, Z)e C if and only if either 

A precedes y, y precedes Z, 
or 

y precedes z , z precedes A , 
or 

z precedes A , A precedes y. 

Thus, the set C is fully determined by the given ordering of P — (a), 

II. It remains to show that C is a cyclical ordering of the set P, i.e. that the con-
ditions [1] — [4] are satisfied. In fact, the given ordering of the set P — (a) coincides 
with Uc(a) by the construction of C. 

First, let (A, y, z) E C. We see easily that (,y, z, A) e C. 
Secondly, we see easily that we never have both (A, y, Z) E C and (>', z, A) e C. 
Thirdly, let neither (A, y, Z) E C nor (y9 x, z) e C. Investigating individually the 

cases x = a, y = ay z = a, x we find out that we never have 
* + y =r Z * .v. 

Fourthly, let (A, y, z) e C, (A, Z, u) e C. Investigating individually the cases A = a9  

y = a, z = a9 u = a, x a 4= y 4= a 4= z 4= a 4= u, we find that we always have 
(A, y9 u) e C. 
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5.3. Let P be a cyclically ordered set and let a e P, b e P, a 4= b. Denote by J(a9 b) 
[more exactly, by /c(a> ¿0] the set E [(<a, x, tí) e C] and call this set an interval of the 

X 

(cyclically ordered) set P, with the beginning a and the end b.If x e J(a, b), y e J{a9 b)9 

then a 4= * 4= b9 a 4= y 4= b, so that the elements * and y are in both sets P — (a) 
and P — (b). If x precedes j; with respect to the ordering U(a) of the set P — (a), 
we have (a9x9y)e C; since also (a9y9b)e C, we have, by [5], {y9b9a)eC9 

(y9 a, x) G C, and hence, by [4], (Y, x) e C. Thus, by [1], (b9 x9 y) e C, so that x 
precedes y with respect to the ordering U(6) of the set P — (b). Conversely, if x 
precedes y with respect to the ordering U(¿>) of the set P - (b)9 we have (b9 x, y)e C; 
since also (a9 x9 b) e C, we have, by [5], (y9 b9 x) e C, (b9 a9 x) e C. Therefore, by [8], 
(y9 a, x) e C, and hence, by [1], (a9 x9 y) e C, i.e. x precedes y with respect to the 
ordering U(a) of P — (a). 

Thus, the orderings of J(a9 b) determined by the orderings U(a) of P — (a) and 
U(Z>) of P — (b) coincide. The ordering thus obtained is denoted by U(a9 b)9 more 
precisely, by Uc(a, b). 

Evidently 

P = (a) u (b) u J(a9 b) u J(b9 a) 

with disjoint summands. On the other hand: 

5.3.1. Let 
P = (a) u (é) u A u B 

with disjoint summands. Let the sets A and B be ordered. Then there is exactly one 
cyclical ordering C of the set P such that: [1] A = J(a9 b)9 B = J(b9 a); [2] the given 
orderings of the sets A and B coincide with Uc(a, b) and Uc(6, a) respectively. 

Proof: I. Let the required cyclical ordering exist. It determines an ordering U(a) 
of the set P — (a) = (b) u A u B. If x G A9 y e A or x e B9 y e B9 then x precedes y 
with respect to the ordering U(a) if and only if x precedes y with respect to the given 
ordering of the set A9 B respectively. If xe A, then (a, x, b) e C, so that x precedes b 
with respect to the ordering U(a). If yeB, then (b9y9a)e C and hence, by [5], 
(a9 b9 y) G C, hence b precedes y with respect to the ordering U(A). Finally, if x G Ay 

yeB, we have (a9 x9b)e C, (6, y, a) e C, hence (by [1]) (a9 x, b) e C, (a, b9 y) e C, 
hence (by [4]) (a9 x9y)eC and hence x precedes y with respect to the ordering U(a). 
Thus, the ordering U(a) of the set P — (a) is uniquely determined. 

II. By 5.2.1 there is exactly one cyclical ordering C of the set P such that the 
ordering just constructed of the set P — (a) coincide with Uc(a). If xeJ(a9b)9 

then (a9 x, b)e C; thus, x G P — (a) and x precedes b with respsct to U(a) and hence 
xe A. Conversely, if xe A, we have xe P — (a) and x precedes b with respect 
to U(a), hence (a, x, b) e C, i.e. x G J(a9 b). Thus, A = J(a9 b) and we may prove 
similarly that B = J(b9 a). The given ordering of the set A is a part of the ordering 
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U(tf) of the set P — (a) zd A9 hence, it coincides with the ordering U(o, b). Similarly, 
the given ordering of the set B coincides with U(6, a). 

5.4. Let C be a cyclical ordering of a set P. Define C* c PxPxP as follows: 

(a, b, C ) E C * O (C, b9d)e C . 

Then C* is a cyclical ordering of the set P. 
We must show that the four conditions stated at the beginning of section 5.1 

are satisfied. 
I. Let (a, b, c) e C*. Then (c, b9 a) e C, so that, by [5], (a, c9b)eC and hence 

(b9 c9 a) e C* . 

II. If we have simultaneously (<a9 b, c) e C* and (b9 a9 c) e C*, we have (c, bya)eC 
and (c9 a9 b) e C, which is, by [5], impossible. 

III. If neither (a, b, c) E C* nor (b9 a9 c) e C*, then we have neither (c, b, A) E C, 
nor (c, i/, ¿?) E C. Thus, by [5], we have neither (b9 a, c) e C nor (a, b9 c) e C, so 
that, by [3], seme two of the elements a9 b, c are equal. 

IV. If (a9 b9 c) G C*, (a, c9 d) G C*, then (d9 c, a) G C, (C9 b9 a) G C, SO that, by [8], 
(d9 b9 a) G C, i.e. (a, b, d) G C* . 

The cyclical ordering C* is termed the inverse cyclical ordering to C. Of course, 
conversely, C is inverse to C*. We also say that C and C* are mutually inverse. 

If aeP, beP9 a =1= b9 we have evidently 

Jc*(a9 b) = Jc(b9a). 

5.5. Let P be a cyclically ordered set. If a e P, b e P9 a 4= b9 then 

J(a9 b) u J(b9 a) = P - [(a) u (b)], J(a9 b) n J(b9 a) - 0 . 

5.5.1. If ce J (a, b)9 then 
J(a9 b) = (r) u J(a9 c) u J(c9 b) 

with disjoint summands. 

Proof: Let .vG J(a9 b), x 4= c. Since ceP — (a)9 xeP — (a)9 exactly one of the 
two following statements holds: ".v precedes c" or "c precedes x", with respect 
to the ordering U(a) of the set P — (a). First, if x precedes c, we have (a, x, c) G C, 
i.e. x G J(a, c). Secondly, if c precedes x, we have (a9 c9 x) e C; as x G J(a9 b), we have 
(a,x,b)eC. By [5], (x,b,a)e C, (x, a, C)GC and hence, by [4], (x, b, c) G C; 
thus, by [5], (c, x, 6)G C, i.e. xeJ(c, b). We have proved that 

, = (c) u [J(a, b) n c)] u [J(a, b) n A)] 
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with disjoint summands.*) It remains to prove that J(a, c) u J(c, b) c J(a, b). 
First, if xeJ(a, c\ we have (a, x, C)GC. Since ceJ(a, b)y we have (a, c,b)e C; 
thus, by [4], (a, x,b)eC, i.e. xeJ(a9b). Secondly, if xeJ(c,b), we have 
e C. Since (a, cf b) e C, (c, x, 6) e C, we have, by [8], (a, x, b) e C, i.e. .v e /(a, b). 

On the other hand: 

5.5.2. Lei a ¿ef P have at least three distinct elements. With every pair (a, b) of dis-
tinct elements ot the set P let there be associated two subsets A and B of the set P 
such that 

A u B = P - [(a) u 0b)], A nB= 0. 

Let the subsets associated with (b, a) be the same as those associated with (a, b). 
If A and B are associated with a pair (a, b) and if ce A (and hence a 4= c 4= b), 
then let one of the two subsets associated with the pair (a, c) (denote it by Cx) and 
one of the two subsets associated with the pair (c, b) (denote it be C2) be such that 

[A = (c) u C t u C 2 

with disjoint summands. Then there are exactly two cyclical orderings C of the set P 
such that for every pair (a, b) (a 4= b) the associated subsets coincide with J(af b), 
J(by a). These two cyclical orderings are mutually inverse. 

Proof: I. Choose a fixed aeP and a b e P and denote by A and B the two subsets 
associated with (a, b). I(F suffices to show that there is exactly one cyclical ordering C 
of the set P satisfying the conditions above such that 

A = Jc(a,b). (1) 

It then follows that there exists exactly one cyclical ordering C' of the set P satisfying 
the conditions above such that 

A = Jc'(b,a). (2) 

Moreover, every cyclical ordering of the set P satisfying the conditions above satisfies 
exactly one of the conditions (1), (2). Further, if C satisfies the conditions above 
and condition (1), the inverse cyclical ordering C* satisfies the conditions above and 
condition (2). Thus, C' = C*. 

II. If xe A, then one of the two sets associated with the pair (a, x) — denote it by 
FL(A:) — and one of the two sets associated with the pair (b, x) — denote it by 
F2(X) — are such that 

A = (x) u i^OO u F2(X) with disjoint summands. (3) 

*) Actually, if there were an x with xeJ(a,c) nJ(c,b), we would obtain, by [I] and [8], 
(a, xy c) e C, (c, x, b) e C, hence (a, j c , c ) e C and (x f 6, c) e C, hence (a, by c) e C, hence 
(c, ¿7, b) e C. This would be, by [2], in contradiction with c e J(a, b)t i.e. with (a, c> b) e C. 
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The second one of the two sets associated with the pair (a, x) is then 

Gl(x) = P-[(a)v(x)vFi(x)]; 

since beP — A, we have, by (3), b e Gx(x). The second one of the two sets associated 
with the pair (b, x) is 

G2(X) = P- [(b) u (x) u F2(x)]; 

as aeP — A, we have, by (3), a e G2(x). Since neither a nor b belongs to the set A, 
the relation (3) loses validity, if we replace F^x) by Gx(x) and F2(x) by G2(x). Thus, 
the sets Fx(x) and F2(x) are uniquely determined. 

If xeB, then one of the two sets associated with the pair (a, x) — denote it by 
Fi(x) — and one of the two sets associated with the pair (b, x) — denote it by F2(x) — are 
such that 

B = (x) u FL(x) u F2(X) with disjoint summands. (4) 

Again, the sets F,(x) and F2(x) are uniquely determined. 

III. Let x e A, y e A, x 4= y> By (3), there occurs exactly one of the cases y e Ft(x), 
yeF2(x). First, let yeFx(x). By the assumption we obtain 

where Hx{y) is equal to either FiO>) or (7i0>), and H2(y) is one of the two sets associa-
ted with the pair (.x,y). Since beGx{y\ beP - Fx(x), we have Hx(y) = Fx(y), 
and hence 

xeA, yeFx{x) => (y) u Fx(y) c Fx(x). (5) 

Secondly, let y G /^M- By the assumption we obtain 

F2(x) = (y)uKx(y)uK2(y), 
where XiOO is one of the two sets associated with the pair (x, y) and K2(y) is equal 
to either F2(y) or G2(y). Since a e G2(y), aeP - F2(x), we have K2(y) = F2(y) 
and hence F2(x) ZD (3;) u F2(y). By the relation (3), which is'valid for both x and y, 
we obtain that 

xeA, yeF2(x) => (x) u Fx(x) cz Fx(y). (6) 

It follows from relations (3), (5), (6) that, for x e A, y e A, exactly one of the following 
relations holds: x = y, (x) u Fx(x) cz Fx(y), 00 u ^(j*) <= Fj(x). Let "x precedes 
mean that (x) u Fx(x) cz Fx(y). We see easily that in this way we have defined 
an ordering of the set A, which will be denoted by Vx. Similarly we prove that 
there is an ordering V2 of the set B in which x precedes y if and only if x 4= y and 
Ft(x) Fx(y). 

IV. Let the required cyclical ordering C of the set P exist. We have A = J(a, b), 
so that C determines (see section 5.3) an ordering U(a, b) of the set A. If xeA, 
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we have either F^x) = J(a, x) or Gx(x) = J(a, x). Since b e G^x), we would have 
in the second case beJ(a,x), i.e. (a, b, x )eC; this is impossible by [5], since 
x e J(a, i.e. (a, x, Z>) g C. Thus, xe A implies Fx(x) = J(a, x). Let x g y e A. 
First, if x precedes >> with respect to the ordering Vl9 then (x) u Fx(x) c= Fx(y), 
hence, x g F ^ ) = J(a, y), hence (a, x j ) g C and consequently x precedes y with 
respect to the ordering U(a, b). Secondly, if x precedes y with respect to the ordering 
U(a, b), we have (a, x9y)e C and hence x g J(a9 y) = F^y), so that, by [5], (x) u 
u F^x) cz Fi(y); thus, x precedes y with respect to the ordering Vi. Thus, the 
ordei ings Vx and U(a, b) of the set A = J(a9 b) coincide. Similarly it can be proved 
that the orderings V2 and U(6, a) of the set B = J(b9 a) coincide. Thus, by 5.3, 
the cyclical ordering C is uniquely determined. 

V. It remains to be shown that the cyclical ordering C of the set P = (a) u (b) u 
u A u B, determined (by 5.3.1) by the conditions A = J(a9 b)9 B = J(b9 a), Vt = 
= U(a9 b)9 V2 = U (b9 a), has the property that for every pair (x, y), where xeP, 
y eP9 x 4= y, the two sets associated with the pair (x, y) are J(x,y) and J(y, x). 
First, this is evident for the pair (a, b). Secondly, let us investigate a pair (a, x) with 
x g A. J(a9 x) is the set of all y g J(a, b) for which y precedes x with respect to the 
ordering U (a, b). Fj(x) is the set of all ye A for which y precedes x with respect 
to the ordering V{. Since A = J(a, b), Vt = U(a, b), we have J(a, x) = Ft(x). 
As P = (a) u (x) u J(a, x) u J(x, a) = (a) u (x) u Fx(x) u Gx(x) with disjoint sum-
mands, we have J(x9 a) = G1(x). The third case o f^ pair (ib, x) with x e A, and simi-
larly, the fourth and fifth cases of pairs (a9 x), (b9 x), respectively, with x e B, may 
be trfated in the same way as was the second. Let us investigate the sixth case of 
a pair (x, y) with x e A, yeB. Let Ct and C2 be the two sets associated with the 
pair (x, >>). As P = (x) u (jy) u Ct u C2 with disjoint summands, we m^y assume 
that a e Ct. By the assumption, CA = (a) u H u AT with disjoint summands, where H 
is one of the two sets associated with the pair (a9 x) and K is one of the two sets 
associated with the pair (a9 y). We have either H = Fx(x) or H = G^x), and either 
K = Fx{y) or K = Gx(y). As ye B a Gj(x), xeAcz Gt(y) and as neither x nor y 
is contained in Ci9 we obtain H = Fx(x), K = Fx(y) and hence = (a) u Fx(x) u 
u F\(y) = («) u J(a> x) u a)- Since xe A = J(a, b), yeB= J(b9 a), we have 
(a, x, b) e C, (b, y9a)eC and hence, by [5], (a, b, y) e C, so that, by [4], (a, x, y) e C. 
Thus, by [5], (y, ¿7, x) g C, hence a g J(y, x), so that (a) u /(;>, a) u J(a, x) = /(x, 
and hence = /(x, y). Since P = (x) u (y) u Q u C2 = (x) u (>>) u J(x, y) u 
u with disjoint summands, we have C2 = J(y, x). There remains the case 
of a pair (x, y) with either (x) u (y) <= A or (x) u (y) B to be discussed. Let, e.g., 
(x) KJ (y) A; similarly as in III, let us distinguish two subcases: yeFx(x) and 
y e F2(X). If ye Fj(x), we saw in III that Fx(x) = (y) u F^y) u H2(y) with disjoint 
summands, where H2(y) is one of the two sets associated with (x, y). We have Fj(x) = 
= J(a, x), Ft(y) = J(a, y), y e Fx(x), hence J (a, x) = (y) u J(a, y) u //2M with 
disjoint summands; thus, by 5.5.1, H2(y) = J(y, x). The second set associated with 
the pair (x, y) is, of course, P - [(x) u (y) u H2(y)] = P - [(x) u (y) u J(y, x)] = 
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= J(x,y). If yeF2(x), then, by III, F2(x) = (y) u F2(y) u Kx(y), where K,(y) 
is one from the two sets associated with the pair (x, y). We have F2(x) = J(x9 b)9 

F2(y) = J(y, b), >> e P2(x), so that J(x, b) = 0>) u / ( j , b) u HfjOO with disjoint 
summands; hence, by 5.5.1, Kt(y) = J(x, y). The second set associated with the 
pair (x, y) is, of course, P - [(x) u (>>) u /^(y)] = P - [(*) u (y) u 7)] = 
= J(y,x). 

Exercises 

5.1. A finite set with n > 0 elements has (n — 1)! cyclical orderings. All these cyclical orderings 
are mutually similar, if we define the similarity of cyclical orderings analogously as we did 
with orderings in 4.2. 

5.2. The set of all cyclical orderings of the set of all natural numbers is uncountable. 
5.3. Let C be a cyclical ordering of a set P. Let us define, for n = 3,4, 5,...» subsets Cn of 

P x P x . . . x P (with n factors) as follows: [1] C 3 = C, [2] C n + 1 is the set of all (ait a2,..., 
an + l ) such that (ax, a 2 , . . . , an) e Cn and (a{, an, a n + e C. If (al9a2, ...,an) e Cn and if 
1 ^ i < j < k ^ n, we have (ah ay, ak) e C. 

5.4. Let P be a cyclically ordered set. Let J (a, b) 4= 0 for every a e P, b e P, a * b. Then all the 
sets J(a, b) are infinite. 

5.5. Let K be the set of all complex numbers x + iy with x2 + y2 — 1. Denote by Im(x H- i>) 
B—oc 

the term y. If a e K, ¡1 e AT, 7 e K then let (a, fi,y) e C mean that fi + 7 and Im > 0. 
y — P 

Then C is a cyclical ordering of the set K. 
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