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Chapter I
INTRODUCTION

§ 1. Sets and set operations

1.1. The theory of sets has a central position in the whole of modern mathematics.
A detailed logical analysis of the notion of a set would hardly be useful for a beginner,
for whom the present book is primarily intended. For our purpuoses, it suffices to say
simply that a set is a collection of some things, which are calied the elements of the
set. A set is fully determined by its elements; if two sets 4 and B have the same
elements, they are identical or equal and we write 4 = B.

As a rule, sets will be denoted by upper case Roman letters and their elements
will be denoted by lower case Roman letters. However, there will be frequent excep-
tions from this rule. I shall describe one of these at once. The object of our conside-
rations will be, as a rule, some family S of sets, which will be denoted by upper case
Roman letters; besides the sets of the family S, we frequently meet with sets, the
elements of which are sets themselves, namely sets from the family S. These sets
of sets will be, as a rule, denoted by upper case German letters. Instead of a set
of sets we shall rather use the term system of sets.

Examples of sets: [1] the set of all the words printed in the present book; [2] the
set of all the primes with five figures; [3] the set of all primes of the form 22" + 1
(n=25,6,7,..); [4] the set of all nmatural numbers 1,2, 3,4, ...; [5] the set of
all tangents to a given circle; [6] the set of all points common to two given
spheres. ‘

It is useful to consider also the void set, which has no elements at all. Since any
set is fully determined by its elements, there is only one void set; we shall denote
it by the symbol #. Many authors denoted the void set by the cipher 0; some of them
by the symbol A. If we did not introduce the void set, we would not know whether
the set [3] exists, and the set [6] would exist for certain positions of the spheres
only.

If a is an arbitrary thing, (a) designates the set consisting of the unique element,
namely the element a. The set § has no elements, while the set (#) has one element,
namely the set @.

If A and B are any propositions, there are four possibilities excluding each other:
[1] A is valid, B is valid, [2] A is not valid, B is not valid, [3] A is not valid, B is valid;
[4] A is valid, B is not valid. Whenever any of the first three possibilities occur, we
say that the proposition A implies the proposition B and write

A=B, m
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eg 1<2=1<2; 1>2=1>2; 1>2=1<2; but not 1 <2=1>2.
Whenever one of the first two possibilities occurs, we write

A<= B, (2)

Thus, A <+ B means that simultaneously both A= B and B=A. If A, A,, B

are three propositions, then
A,A,->B

means that the simultaneous validity of the propositions A, and A, implies the
proposition B; similarly for an arbitrary number of propositions.
IfAand B are two propositions and (1) holds, we also say that the valtdtty of A
isa su}ﬁcwfnt condition for the validity of B, or that the validity of B is a necessary
ition for the validity of A. Since (2) means that simultaneously A = B and
B = A, we read (2) also as follows: the validity of A is a necessary and sufficient
condition for the validity of B; (2) is also read: A is valid if and only if B is valid.
P
1.2. To indicate l;'r‘ieﬂy that a thing a is an element of a set 4, we write

acA.

The Greek letter epsilon abﬁl‘:%‘is'in the present book in two types, € and ¢. The
first type is reserved for the use just described.
f,A and B are two sets, we say that the former set is a subset or part of the
Tatter one, if
xeA=>x€ehB,

i.e., if the set A has no element which is not also an element of the set B. To
expresss this conciscly, we write

[N

AcB or Bo A.

For arbitrary sets, the following simp]é rules hold
JcAd; AcA; AcO=>A=0;
AcBcC=>A4cC; ¥
AcBc A=A =B.
The last rule is, in sf;i‘ic“of its siinplicity, very important. If we have to prove that
two sets 4 and B are identical, we proceed usually in the following way: we prove

first that
xeA=>xeB

and then that
xeEB=>xeA.

*) A © B < C means, of course, that simultaneously A = Band B < C.
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Many authors write 4 = B instead of A B, using the symbol 4 = B for the
case os a subset A distinct from the set B.

1.3, The object of consideration is frequently a fixed set P and its subsets. If V(x)
is a property which is meaningful for every x € P (i.e., for every x € P, V(x) is either
valid or not) we denote by o

1;3 A {69)]

the subset of all x € P which have the property V(x). Similarly
E [V(x), W(x)]
is the subset of all x € P which have simultaneously both properties V(x) and W(x).

If there is danger of vcionfusion regarding P, we write more precisely

E[x e P, V(x)] instead of E[V(x)].

E.g. if P is the set of all real numbers, then

E[0 < x < 1]

is the open interval with the end points O and 1,

E0<x<1]

is the closed interval with the end points O and 1, while

E[0> x> 1] =0.

1.4. If A and B are given sets,*) then: [1] the set of all the elements x such that
either xe 4 or x e B **) is called their union and denoted by 4 U B; [2] the set
of all the elements x such that simultaneously both x € 4 and x € B is called their
intersection and denoted by 4 n B. .

More generally, with every element z of a given set € & (J let thére be associated
a set A(z). Then: [1] the set consisting of all the elements x such that there is
a z € € with x € A(z) is called the union of all the sets A(z) and denoted by

UAE) or UAiE) or U 4@2);

zeC

*) We do not assume A + B; such an assumption would be stated expressly.

**) A U Bcontains also the elements for which simultaneously both x € 4 and x € B. Generally,
if A and B are propositions, then “A or B” means that out of the four possibilities stated
in 1.1, the first, third or fourth holds.
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{2] the set consisting of all the elements x for which x € 4(z) for every ze C is
called the intersection of all the sets A(z) and denoted by

NA@Z or NAGE) or N Az).

zeC

The case of C being the set of all natural numbers is particularly frequent;
if A, is the set associated with the number n, then the union and intersection of
all the sets A, is denoted by

U 4, and () 4, respectively.
n=1

n=1

With this notation, it is not necessary to write out in detail what we mean by e.g.

3
UA"=A1UA2UA3
n=1

or
4

n A"=AlhAzﬁA3r\A4.

n=1

Sets A and B are said to be disjoint if A n B = (). A system of sets A is said to
be disjoint, if
AeWN, BeN, A+B = AnB=0.
A union |J A(2) is said to be disjoint, or, to have disjoint sur;imands, if
zeC

zeC,z’eC,z+z = AR NAZ)=0.
Act -
1.54 If 4 and B are given sets, then the set consisting of all the elements belonging
to A and not belonging to B is called the difference of A and B and denoted by
A — B. Many authors use the symbol A — B only in the case of 4 > B.

Exercises*)

1.1. AUB=BUA; ANB=BNA; AVUBIUC=4AUBUC)=AUBUC;
ANBINC=ANBNC)=ANBNC.

12. AUA=ANA, AV =A—0=A4;, ANG=0—A=4.

13. A€cBsA=ANB<s>AUYUB=B<A—B=4.

14, AUMANB)=A, AN(AUB)=A.

15. AUBINC=ANCOOUVBNC;,(ANBUC=(AVCIN(BYVCO).

*) The exercises referred to later in the text are denoted by an asterisk. However, a beginner
reader should go carefully through all the exercises, in order to penetrate into the discussed
material. The simple results of the exercises for § 1 are used in the text without explicit
reference; therefore they are not marked by an asterisk.
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16 A—B=(AYB)—B=A—ANB, A—(A—B)=ANB,

1.7. C—(AUVUB)=(C-—A)N(C—B); C—ANB=(C—A)V(C—B).

18. C—J 4@ = N [C—A4@); C— ) 4G) = | [C— A@)].

19 A—(BYC):=:(4—B)—C;, (A—B)NC=ANC—BNC=ANC—B;
(AUB)—C=UA—C)UB—C). ANB—C=ANB—C)=
=(A—C)N(B—CO).

1.10. A—(B—C)=(A—B)vANC

111. C—A+00=>A—B—C)+(A—B)V C.

112. ADC>A—(B—C)=(A--B) v C.

113. A=A—B)VANB), AUB -~ (A—B)U(B— A) V(4 N B);
the unions on the right-hand side are disjoint.

g @ o0 w n n
Lt J4,=UB,. NA,=NGC, where B,=: U4, C,=N4
n=1 n=1 n=1 n=1 n=1 n=1
1.15. Sets A and (J are disjoint.
1.16. Sets A and B © A are disjoint if and only if 4 = 0.
117, A(:) = B(z) -» | 4() = | Bz), () A < N BE:).
1.18. A< B>C—A>C—B.
1.19. If a set A4 has a finite number n = 0 of elements, then 4 has 2" subsets.

§ 2. Mappings

2.1. Let A and B be two given sets. The set of all pairs (x, y), where xe 4, ye B
ﬁf xeAn B, yeAn B, x £y, the pair (v, y) is taken as distinct from the pair
o, \J is said to be their cartesian product and denoted by A x B. The term cartesian
product, introduced by Kuratowski,*) reminds us of the important particular
case where A = B is the set of all real numbers and 4 x B is the arithmetical
equivalent of the plane: every point is represented by its cartesian coordinates.
The term combinatorial product for A x B is also cusfomany

- Similarly, if A, B, C arc threc given sets, we say that their cartesian product,
denoted by 4 x B x C, is the set of all triples (v, y, z), where xe 4, ye B, ze C.
Similarly for an arbitrary finite number of given sets.

Remark: The sets (4 x B) x C, A x (B x C) and 4 x B x C are distinct.
The first one consists of the pairs (&, ), where & is a pair (x, y), x€ 4, ye B, and
ze C: the second one consists of the pairs (x,n), where xe 4 and 5 = (3, 2),
y€ B, ze C; the third consists of the triples (x,y, z), where xe 4, ye B, zeC.
Nevertheless, it is possible to see that the dlﬁerences betwcen these three sets are
merely formal and we shall for brevity neglect them. Hence, for our purposes
(AXxB)yx C=Ax(BxC)=4x Bx C. More generally, we will have
Px Q=R whenever P=A; X Ay X ... X Ay O = Ay X Apyar X .o %
X Apsny R=A;, x A, x ... x A,4+,.- On the other hand, we shall distinguish
A x B from B x A. ST

*) Topolognel p. 7.
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2.2. Let 4 and B be two given sets. Let f be a subset of the set 4 x B such that
for every x € A there is just one y € B with (x, y) € f. Then we say that f'is a mapping
of the set A into the set B. Besides the term mapping, the terms transformation,
operation, correspondence are used; there is also the term function, which we use,
however, in a narrower sense (see 2.3). If fis a mapping of a set A into a set B,
then every element x € 4 determines uniquely the element ye B with (x,y)ef;
we write, as a rule, y = f(x) and say that y is the image of the element x (under
the mapping f).

If f, is a mapping of a set 4, into a set B, and if f, is a mapping of a set 4,
into a set B, then f; = f, if and only if [I] 4, = 4,; [2] x € 4, implies f,(x) =
= f2(x).

If fis a mapping of a set A into a set B and if y € B, there need not exist any
element x € A with f(x) = y; there may be more, possibly an infinite number of
such elements. If C is the set of all y € B such that there is at least one x € 4 with
image y, we say that f'is a mapping of the set 4 onto the set C. '

2.3. Throughout the whole book, the symbol R denotes the set of all real numbers
augmented by two elements: ©0 = +o0 and —c0. A mapping of an arbitrary set A4
into the set R is said to be a function (on A). The set A4 is called the domain of the
function f. The image f(x) of an arbitrary x € 4 under the function f is called the
value of the function f at the element x. If neither oo nor —oo dppear among the
values of a function f, we say that f is a finite function. If, moreover, there is a real
number c¢ such that |f(x)| < ¢ for every x € A, we say that f is a bounded function.

Let P be a given set. With every set A = P we may associate a function x, on P,
for which '

xa(x)=1 for xed, y x)=0 for xeP—A.

The function y, is called the characteristic function of the set A (with domain P).

2.4. If f is a mapping of a set A4 into a set B and if there is given a set M < 4, we
define the partial mapping f, of the set M into the set B by the formula

y fu=Mx B)nf;

thus if xe M, then fy(x) = f(x), while for xe 4 — M the symbol fy(x) is
meaningless. If B = R, we speak about partial function.

2.5. Let f be a mapping of a set 4 into a set B; let 9 be the system of all subsets
of A, and similarly let B be the system of all subsets of B. The mapping f determines
a mapping F of the system 2 into the system B, and also a mapping ¢ of the system B
into the system . These two new mappings are defined as follows: [1] if M e,
then F(M) is the set of all the images under f of all x € M; [2] if N € B, then ¢p(N)
is the set of all x € 4 such that f(x) e N.
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The mapping ¢ will be denoted by f_,; it ts also denoted f =, The mapping F
will be, without fear of misunderstanding, denoted simply by f. Thus, for M = A

J(M) = E[y = f(x), xe M]
y

and for Nc B
S-1(N) = E[f(x) e N].

2.6. Let f be a mapping of a set 4 into a set B. We say that the mapping f is
one-to-one, if
xed,yed, x+y imply f(x)=+/()).

Let C = f(A). If y € C, there is only one x € A with f(x) = y; if we write x = g(»)>
then g is evidently a one-to-one mapping of the set C onto the set 4. We say that
the mapping g is the inverse mapping to the mapping f. Thus, this hotion is defined
only for a one-to-one mapping f. An inverse mapping g to a one-to-one mapping f will
be denoted by f_; (it is also denoted f~'); the reader will easily determine that it
is not in contradiction with the symbol f_, introduced in 2.5. Obviously (f_,)_, = f.

Exercises

21. (AUB)X(CUD)=(AxC)V (AxD)VU (BxC)wy (BxXD).

22. ANCXBND=(AXB)N(CxD).

23. (A— B)XC = (AXC)— (BXC).

24. A<B C<D=>(AXC)<(BxD). If A+ 0+ C, we may write <> instead of =.
25. (PXQ)—(AXB) =P — A)xQ U PX(Q— B).

26. AP, B< Q = AXB = (AxQ) N (PxB).

In exercises 2.7—2.18, fis a mapping of a set A into a set B.

27. M; © M, < A = f(M)) < f(M,).
28. M@ < 4 = fIlUMD] = fIMz).

29. M, S A, M, < A = f(M) —f(M,) < f(M; — M,).
210. M(z) < A = f[n M@) = ﬂf [M(2)].

211. Ny N, B =>f 1(Ny) CI 1(V2).
2.12. Nz) < B = f_{[N N2 = N f-1ING)).

2.13* N, © B, N, € B= f_{(N; — N3) = f_;(Ny) — f_1(N).
2.14. N(z) < B= [, [N N@ = () f-1(N(2)).

2.15. If the mapping f is one-to-one, on the left-hand side of 2.9 and 2.10 we may write ==
instead of <.

2.16. If N < B, then f_(N) = 0 implies N N f(4) = 0.

2.17. If N < B, then f(f—{(N)) = N N f(A).

218. If M © A, N < B, then (fy);(N)= M N f_(N).
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In exercies 2.19—2.24  , is the characteristic function of 4 > P (P is the domain of the function
%4); similarly xp for B o P ctc. The letter x denotes an arbitrary element of the set P.

2.19. %4000 = 24(x). xg(x) = min [x4(x), x5(x)]. *)

2.20. x,up(®) = max [y ,(x), x5(x)].

221 If AN B =0, then x,yp(x) = % 4(x) + 25(%).

2.22. y,4-p(x) = max [0, y ,(x) — xp(x)}; if B < 4, then z,_g(x) = 7,(x) — x5(x).

223. 11 4, S Ay 1y A= U 4, then y,(x) = lim z4,(x).
n=1

9
224. If A, 2 Apy1s A =) A,, then y,(x) = lim x4, (x).
n=1
2.25. XAUB("') =1— [l - XA(X)] . n - Xn(x)]

§ 3. Countable sets

3.1. In this paragtaph N denotes the set of all natural numbers 1,2,3,....
A mapping of the set N (into an arbitrary set) is called a sequence. The image of
a natural number n in a sequence is denoted, as a rule, by a, (or b,, 2,, 4,, etc.)
and is termed the n-th term of the sequence. The sequence is then denoted by {a,}
or {a,}¥ or {a,}n=1. A sequence qa, is one-to-one (in the sense of section 2.6), if:
meM, ne N, m £ n imply a, * a,. If the terms of a sequence {4,} are sets, we
say that the sequence is disjoint, whenever: me N, ne N, m + nimply 4,, 0 4, + 0.
The sequences just defined are sometimes called more precisely infinite sequences.
By a finite sequence we understand a mapping of the set of all the natural numbers
less than or equal to p, where p is a given natural number; notation {a,}] etc.
If {i,} is an increasing (i.e. i, < i,,,) sequence of natural numbers (i.e. i, € N)
and if {a,},=, is an arbitrary sequence, we say that the sequence {a;},=; is
a subsequence of the sequence {a,},~,. Obviously a subsequence of a subsequence
of a sequence {a,} is again a subsequence of {a,}.
Tq_ define a sequence, it is sufficient: [1] to define the first term a,, [2] for every n
to define a,, by using the terms a,, a,, ..., a,-,. Such a definition of a sequence
is said to be recursice.

3.2. A set A is said to be finite, if it has a finite number of elements; otthWise,
it is said to be infinite. The void set (J is taken as finite.

Every finite set is termed countable. An infinite set A is said to be countable if
there exists a one-to-one mapping of the set N onto the set A4; i.e. if there is a
sequence {a,}7 such that a, e 4 and such that, for every ae A4 there is a unique
index » such that a, = a. A set A is said to be uncountable if it is not countable.
Many authors reserve the term countable for infinite countable sets only.

*) The sense of the sign min (and similarly for max in the following) is obvious. Also, see
section 4.10.



3. Countable sets 21

3.3. 3.3.1. Every subset C of the set N is countable.

This is cvident for finite C. If C is infinite, there is a one-to-one increasing sequence
{i,} such that C consists exactly of its terms.

3.3.2. Every subset B of a countable set A is countable.

This is evident for a finite set B. If B is infinite, the set A4 is also infinite, hence
there is a one-to-one sequence {a,} such that A consists exactly of its terms. Since B
is infinite, the set C of the numbers n with «, € B is infinite and hence, by 3.3.1,
there is a subsequence {a; } of the sequence {a,} (hence, one-to-one) such that its

in

terms form exactly the set B.

3.4. 3.4.1. Let A be a countable set. Let there exist a mapping J of the set A onto
a set B. Then B is a countable set.

This is evident for a finite set B. If B is infinite, then let us choose, for every
y € A4, exactly one x € A with f(x) = y. Let C be the set of the chosen x e A. We
have C = A and, hence, the set C is countable by 3.3.2. Evidently ¢ = f (see 2.4)
is a one-to-one mapping of the set C onto B. Since B is infinite and since ¢ is
one-to-one, the set C is also infinite. Since C is countable, there is a one-to-one
sequence {a,} such that its terms form exactly the set C. Then {¢(a,)} is a one-to-one
sequence such that its terms form exactly the set B.

If we put 4 =N in 3.4.1, we get

3.4.2. The set of all terms of an arbitrary sequence is countable.

3.5. 3.5.1. N x N is an infinite countable set.

Proof: For (m,n)e N x N put f(m,n) = 2"*" + m. Since 0 < m < 2™ < 2™*",
we have 2"*" < f(m,n) < 2"*"*! 5o that a value f(m, n) determines the values
m + n, m (and also n). Hence, f is a one-to-one mapping of the set N x N into
the set N. If C = f(N x N), then f_, is a (one-to-one) mapping of the (by 3.3.1)
countable set C onto the set N x N, and hence the set N x N is countable by 3.4.1.
Of course, the set N x N is infinite.

O
If we a’ssign the number m/n to every (m,n)e N x N, we obtain the following
result:

3.5.2. The set of all positive rational numbers is countable.

3.6. Let C & (J be a countable set. Let, for every z € C, A(z) be a countable set. Then
U A(2) is countable.

ze C
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Proof: If U A(z) = 0, this is evident. Hence, let there exist an a e |J A(z) (we
choose « arbitrarily, but fixed). Since € # () is a countable set, there is a one-to-one
(finite or infinite) sequence {c,}n=1 (p € N) or {c,}m=1 such that C consists exactly
of all the terms of the sequence. If the set A(c,) is infinite, there is a one-to-one
infinite sequence {a,,}.=; consisting exactly of the elements of A(c,); if the set
A(c,) is finite, there exists a sequence (not one-to-one this time) {a,,}n=1,
consisting exactly of the elements of the set A(c,,) U («). If the set C is finite and if
m > p, put a,,, = a. For (m,n)e N x N put f(m, n) = a,,. Then f is a mapping
of the countable (by 3.5.1) set N x N onto the set {J 4(z), and hence this last set
is countable by 3.4.1. zeC

3.7. Uncountable sets exist. For:

3.7.1. Countable sets of real numbers contain no intervals.']

Proof: Let there exist, on the contrary, real numbers @ and b such that a < b,
and also a sequence {c,} of real numbers containing every real number x such that
a < x < b. Let us determine an index v, such that: [I] @ < ¢, < b, [2] v, is the
least index with this property. Put #; = c,,. Let us determine an index y, such that:
[1] a < < ¢ < b, [2] p, is the least index with this property. Put v, = ¢,,
We procecd recursively to construct sequences {u,}7, {v,}; so that, for every n
a < u, < v, < b (as was the case for n = 1). If, for some p > 1, all the members u,
and v, have been constructed for all n < p, we determine the index v, for which (1]
a<u,.;<c,,<v,_<b,[2] v, is the least index with this property, put u,=c,,.
Further, let us determme an 1ndex u, for which: (1] a<u, <c,, <v,_y <b,
[2] p, is the least index with this property; put v, = c,,. Then, for every n, a <
< U, < Upyy < Upyq <V, and hence {u,} is an increasing bounded sequence of
real numbers and hence, by a well-known theorem from the theory of real numbers,
there exists limu, = «. We have a < u; < « < v; < b. Hence, there is an index k
with @ = ¢,. For every n, u, < ¢, < v,. Since v, and p, were always the least mdnces,
we have k > v, for every n, which is impossible, since evidently v, < p, < v 4
and hence lim v, = 0.

Exercises

3.1.* The set of all rational numbers is countable.

3.2. The set of all irrational numbers contained in an interval is uncountable.
3.3. If 4 and B are countable sets, then 4 X B is countable.

3.4. The system of all finite subsets of a countable set is countable.

3.5. The set of all numbers of the form Z 27" where A varies over all the non-void subsets
neAd
of N, coincides with the interval E[0 < ¢ < 1].
]
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3.6. The system of all subsets of the set N is uncountable.

3.7. Every infinite set contains an infinite countable subset.

3.8. The system of all subsets of an infinite set is uncountable.

3.9. The system of all infinite subsets of an infinite set is uncountable.

p

3.10. The system of all polynomials Z a,‘x" with integral coefficients a, =0, 1, :1.2, ..., a, 0,
is countable. k=0

3.11. The set of all real algebraic numbers is countable.

3.12. Real transcendental numbers exist.

3.13. The set of all transcendental numbers in a given interval is uncountable.

3.14.* Let 4 be a countable set such that 0 € 4. Let A be the system of all sequences {a,,}‘{° such
that: [1] a, € A for every n, [2] there is an index p such that @, = 0 for every n > p. Then
the system [ is countable.

§ 4. Ordered sets

4.1. To order a set P means to give a rule by which we decide whether an element
a € P precedes an element b € P or not; such a rule must satisfy the following three
conditions:

[1] if a precedes b, then b does not precede a;
[2] if neither a precedes b, nor b precedes a, then a = b;
[3] if a precedes b and b precedes c, then a precedes c.

By [1), a never precedes a. If a precedes b, we say that b follows a. If either simulta-
neously a precedes b and b precedes ¢, or simultaneously a follows b and b follows c,
we say that b is between a and c (or between ¢ and a). We say thata e P is the first
element, if no x € P precedes a; we say that ae P is the Jast element, if no xe P
follows a. By [2] there is at most ore first element and at most one last element.

A set P may certainly be ordered in various ways. If it is ordered by a given rule,
we obtain a new ordering by stating that in the new sense, a precedes b if and only
if a followed b in the former one. The new ordering is called the inverse ordering
to the previous one. We say also that the two orderings are mutually inverse.

If a set P is ordered by some rule, then the rule also orders an arbitrary subset
A < P. If we speak about an ordering of a subset 4 of an ordered set P, we mean,
of course, the ordering of A4 determined by the ordering of the set P.

The symbol E; denotes throughout the present book the set of all real numbers.
R denotes, as stated above (in section 2.3), the set E, augmented by two elements,
one of which is denoted by + oo or simply oo and the second by —co. If xeR,
y€R, then the assertion “x precedes y”’ means x < y, where (throughout all the
book) we put:

-0 <, —0<C, c<®©

for every ce E,. This defines the so called natural ordering of the set R, which
determines the natural ordering of each of its subsets. —oo is the first, + co the last



24 I. Introduction

element of the set R in its natural ordering; this contrasts with the naturally ordered
E,, which has neither first nor last element.

4.2. Let P and QO be two ordered sets. We say that they are sumlmly ordered or
that their given ordermgs are similar*), if there exists a mapping f of the set P onto
the set Q such that for ae P, be P

a precedes b => f(a) precedes f(b).

In this sense we also say that f is a similar mapping of the set P onto the set Q.
If ae P, be P, a + b, then either a precedes b or b precedes a; hence either f(a)
precedes f(b) or f(b) precedes f(a) and hence f(a) + f(b). Thus the mapping f is
one-to-one, so that there exists an inverse mapping f_, of the set Q onto the set P.
The reader may prove easily that f_, is a similar mapping of the set Q onto the
set P.

4.3. Let P be an ordered set. We say that P is well ordered if for every A, 0 +
+ A < P, there is a first element x € A4, i.e. there is an element x € A such that

yeAd, y + x=x precedes y.

The natural ordering of the set of all natural numbers 1,2,..., or of any of its
subsets, is a well ordenng The theory of well ordered sets has numerous applications,
many of them followmg from the famous Zermelo theorem, asscrtmg that every
set may be well ordered. Nevertheless, we shall not occupy ourselves with this thecry.
[An introduction to the theory of well ordered sets may be found, €. g., in the book
A. Fraenkel, Abstract Set Theory, Amsterdam, 1958. Ed.]

4.4. If P is an ordered set, ¢ € P, b € P, a precedes b and if there is no x € P between
a and b, we say that a im;‘fiediately precedes b or that b immediately follows a.

Remark: If P is an ordered set, a € P, b € P, a precedes b and the number of points
x € P between @ and b is finite (= 0), then there exists an element x which immediately
follows a, and an element = which immediately precedes b.

Let us, e.g., prove the first statement (the second one may be proved similarly,
or it may be reduced to the first by using the i inversc ordering): Let x € P following a
be such that between a and x there is the /east povs:ble number of elements. Since b
follows a and there is only a finite number of elements between a and b, such
an x exists. If x does not immediately follow q, there is a y € P between a and x.
Every element which is between a and y is also between a and x. but between a
and y there are less elements than between a and x. This is a contradiction, so
that x immediately follows a.

*) The term commonly used today is isomorphic (Ed.).
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The natural ordering of the set of all integers 0, +1, +2,... and the natural
ordering of each its subset P have the property that for every pair ae P, be P
there is only a finite number of elements between a and b. Conversely:

4.4.1. Let a set P & U be ordered in such a manner that whenever ae P, b € P, there
is only a finite number of elements x € P between a and b. Let us dis'iingz'[ish the
Sfollowing four cases: [1] P has both first and last elements, [2] P has a first element
and no last element, [3] P has no first element and has a last element, [4] P has neither
last nor first element. Then the given ordering of the set P is similar to the natural
ordering of : [1] the set of natural numbers less than or equal to p, where p is the number
of the elements of the set P, [2] the set of all natural numbers, [3] the set of all negatice
integers, [4] the set of all integers.*)

Proof: Let us begin with the cases in which the first element exists and denote
it by a,. If a, is defined for some » and if a, is not the last element, then there
is an element b following a,. Since there is a finite number of elements between a,
and b by the pres)ibus remark there exists an a,,, following immediately a,. There
are two possibilities: either (case o) we obtain a finite sequence {a,}{ such that a,
is the last element of the set P, or (case f§) we obtain an infinite sequence {a,}{.
It is easy to show that, in both cases, the sequence {a,} is one-to-one. Let us prove
that in both cases the set of all terms of the sequence {a,} is equal to the whole set P.
If we assume the contrary, there exists an x € P distinct from every a,. Since a,
is the first element, x follows a,. The element x cannot follow every a,, in the
case o because a, is the last element, in the case f8 because there is only a finite
number of elements between a; and x. Hence, there is a term a, of the sequence {a,}
(1 = n < pin the case a) such that x follows a, but x does not follow a,, ; hence x
is between a, and a,, . This is a contradiction, since g,,, immediately follows a,.
Thus, P is exactly the set of all terms of the sequence {a,}. Putting f(a,) = n we
obtain, as one sees easily, a similar mapping of the set P onto the set of all natural
numbers less then or equal to p (case %) or onto the set of all natural numbers
(case f§). We also see that in the case f§ the set P has no last element. ‘

Let us turn to the case where P has a last element. This case may be reduced.
with the aid of the inverse ordering, to the previous one. Thus, if P has no first and
has a last element, we construct a sequence {,}{ such that on putting f(b,) = —n
we obtain a similar mapping of the set P onto the set of all negative integers.

There remains the case where P has neither first nor last element. Choose arbitrarily
ay € P. Define P; < P and P, < P as follows:

P, = Ela, precedes x], P, = E[a, follows x].

Since a, is neither first nor last element, P, &+ (J & P,. Morebver,
P = (ay) U P, VP,

*) Case [1] obtains, of course, if and only if the set P is finite.
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with disjoint summands. Both the sets P; and P, have the property that between
any two of their elements there is only a finite number of elements. Moreover,
we see easily that P, has a first and has no last element, whereas P, has no first
and has a last element. Hence, there are two sequences {a,}7 and {a_,}{ such that P,
is the set of all terms of the sequence {a,}{’, that P, is the set of all terms of the
sequence {a_,}7’, and such that

1 £ m < n= a, precedes a,, a_, precedes a_,,.

Putting f(a,) = nforn =0, +1, +2,..., we obtain a similar mapping of the set P
onto the set of all integers.

4.5. Let P be an ordered set. We say that P is densely ordered, or, that the given
ordering is dense, if P contains at least two distinct elements and if there is no pair
a € P, b e P such that a immediately precedes b. Every densely ordered set P is infinite.
Moreover, by the remark in section 44, if aeP, be P, a % b, the set of all xe P
between a and b is i}lﬁnite.

The natural ordering of the set of all rational numbers is dense. Let us recollect
(see ex. 3.1) that this set is countable.

4.6. 4.6.1. Let P be a countable ordered set. Let H be a densely ordered set. Then
there is a set Q = H such that P and Q are similarly ordered. (The ordering of the
set Q is, of course, determined by the given ordering of the set H > Q by 4.1.)

Proof: If P = @, it suffices to put O = @J. Hence, let P + . P is either finite
{case a) or infinite (case ). In the case « there exists a finite one-to-one sequence
{a,}}, in the case B an infinite one-to-one sequence {a,}7 such that, in both cases,
P is exactly the set of all terms of the sequence {a,}. Since H is densely ordered,
it is infinite, and hence we may choose a b, € H such that b, is neither the first nor
the last element of the set H. (We do not at all assert that there is a first or last
element in H!) For a given ¢ = 1,2, 3, ... (in the case a let g < p), let there be
constructed elements b,€ H (1 £ n £ g) in such a way that none of them is first
nor last in H, and that,for 1 £m<¢q,1<n=<g,

a,, precedes a, <> b,, precedes b,,. )]

(This is satisfied for g = 1.) We shall prove that it is possible to choose an element
b,+, € H which is neither first nor last in H, such that (1) holdsfor1 £ m < q + 1,
1£n<qg+ 1 Letus dist'i‘nguish three cases: [1] Let a,,, precede a,for1 < n < q.
Evidently there is an index m (1 £ m < ¢q) such that

1=n=<gq, n+m ifandonlyif a, precedes a,.

Since b,, is not the first element in H and since H is densely ordered, thereisa b,,, € H
such that by 44 is not first in H and precedes b,,. It is easy to see that b+, is not the
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last element in H and that (1) holds for 1 < m < g+ 1,1 £n<q+ 1. [2] Let
a4, follow a, for 1 £ n < ¢q. We construct a b,,, in a way similar to that in the
previous case. [3] Let there be at least one index n such that 1 £ n < ¢ and that
a,,, precedes a,, and let there also be at least one index » such that1 < n < gand
that a,,, follows a,. Evidently, there is an index # (1 </ £ q) such that a,,,
precedes a, and that

1=n<gq, n+h ay, precedes a, = a, precedes a,.

Similarly, there is an index k£ (1 £ k < ¢q) such that a,,, follows g, and that

1<n=<gq, n*k, a;, followsa, = a; follows a,.

Since H is densely ordered, there is a b,,, € H between b, and b,; it is easy to see
that b,,, is meither first nor last in H and that (1) holds for 1 S m < q + 1,
1<n § q +Jl.

Proceeding in this way, we construct in the case « a finite sequence {b,}{ and
in the case B an infinite sequence {b,}{ such that, putting f(a,) = b,, we obtain
in both cases a similar mapping f of the set P onto the set Q = H of all terms of
the sequence {b,}.

Putting the naturally ordered set of rational numbers for H in 4.6.1, we obtain
the following theorem:

4.6.2. Let P be a countable ordered set. There exists a set Q such that: [1] the elements
of the set Q are rational numbers; [2] the given ordering of the set P is similar to the
natural ordering of Q.

4.7. 4.7.1. Let P and Q be densely ordered sets without first and last elements. Then P
and Q are similarly ordered.

Proof: As P and Q are densely ordered, they are infinite. Thus, there are one-to-one
sequences {a,}7 and {b,}{ such that the sets of all their terms are P and Q respectively.
We shall construct recursively two new one-to-one sequences {#,} and {v,} as follows:
Let u, = a,, v; = b,. For a certain ¢ = 1, 2, 3, ... let there be constructed terms
u,ePand r,eQ (1 Sn=<gq)suchthat,forl<m=<gq,1=n=<g,

u,, precedes u, if and only if v, precedes v,. ))

Let us distinguish two cases. First, if ¢ is odd, we choose u,,, = a, where A is the
least index such that a, #+ u, for 1 < n < q; then we put v, = b;, where k is
chosen so that (1) holds for 1 £ m £ ¢q, 1 £ n £ q. That such a b, exists may be
deduced in the same way as in the analogous consideration in the preceding proof.
Secondly, if q is even, we choose Ug+1 = by, where h is the least index such that
b, + v, for 1 < n < q; then we put u,,, = a,, where k is chosen so that (1) holds
for1<m<q+1,1=n<q+ 1. In this way we obtain two one-to-one sequ-
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ences {u,}7 and {v,}7. Since the index & was always chosen the least possible, the
set of all terms of the sequence {u,} is the set P and similarly for {v,} and Q. The
relation (1) holds for all natural numbers m and n; consequently, putting f(u,) = v,.
we obtain a similar mapping f of the set P onto the set Q.

If we put the naturally ordered set of all rational numbers for Q in 4.7.1, we
obtain the theorem:

4.7.2. Let P be a countable densely ordered set without the first and last elements. Then P
is ordered similarly to the naturally ordered set of all rational numbers.

4.8. Let P be an ordered set. We define a cut of the (ordered) set P to be any
couplea = (A4,, A,) where 4, U A, = P and

x, precedes x, whenever x, € 4, x, € A4,. 0))

Notice that condition (1) implies A; N A, = 0. We call the set 4, the lower class
of the cut and the set A4, the upper class of the cut.

An important case of a cut is the following. We choose an a € P and define 4,
and A, as follows:

x precedes a = xe A,, x follows a= x€ A4,,

while the point a will be included in either 4, or 4;, certainly in only one of them.
In either case, (A4, A,) is a cut of the set P; in both cases we say that (4,, 4,) is
a cut generated by the element a. If ae A,, the element a is the last element in the
lower class; if ae 4,, the element « is the first element in the upper class. Cbnversely,
if &« = (A4, A,) is a cut such that there is a last element in 4,, then « is generated
by this element, and if « = (4,, A,) is a cut such that there is a first element in A, .
then ¢ is generated by this clement.

Acuta = (A4,, 4,) is called a jump, if there exist both a last element of the lower
class @, and a first element of the upper class a,; the cut x is then generated by
both a, and a,. Conversely, a cut which may be generated by two distinct elements
is a jump. If there were an element x € P between a; and a,, it could be neither
in A, nor in A,; thus, a, precedes a, immediately. Therefore, a densely ordered
set has no jumps. .

A cut o = (4,, 4,) is said to be a gap, if A, += (0 &+ A, and if there is neither
a last element of the lower class, nor a first element of the upper class. A gap can
be generated by no ae P.

The couple 2, = (P, {J) is a cut of the set P. If there exists a last element of the
set P, a, is generated by it; if there is none, o, can be generated by no a € P. The
couple «, = (J, P) is a cut of the set P. If there exists a first element of the set P,
o, is generated by it; if there is none, a, can be generated by no ae P.
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If an ordered set has both first and last element and if it has no gaps, then each
of its cuts can be generated by an a € P. If, moreover, P is densely ordered, then
every cut is generated by a unique a € P. "

4.9. Let M be the set of all rational numbers. If « is an irrational number and if we put

A, =E[xeM, x < q, A, =E[xeM, x > 2],

then (4,, 4,) is a gap of the naturally ordered set M. It is said to be (in a Somewhat
different serise than in 4.8, since « is not an element of M) generated by the irra-
tional number «. Distinct irrational numbers generate distinct gaps of the set M. It is
well known from the theory of irrational numbers that, conversely, every gap of
the set M is generated by a unique irrational number; in the Dedekind theory,
the irrational numbers are defined as the gaps of the set M. The naturally ordered
set E; of all real numbers (both rational and irrational) has then no gaps.*) These
facts form, as is well-known, the fundament of an exact construction of the whole
of mathematical analysis. We shall deduce here their abstract basis.

Let P be an ordered set and let Q be the set of all its gaps. For clarity, we shall
denote the elements of P by lower- case Roman letters and the elements of Q, ie.
the gaps of P, by lower- case Greek letters, putting x = (4,, 4,), § = (B,, B,) etc.
Evidently P n @ = (J. We know what is meant by “a precedes b (¢e P, be P).
Further, we say that [1] a precedes a [a € P, o = (4,, 4,) € Q] ifa € A,; [2] « precedes
a if ae Ay; [3] o precedes B [o¢ = (44, Ay), B = (By, B,)] if A, =« B, + A;. We
must prove three statements in order to show that we have defined an ordering
of the set P u Q (see 4.1):

1. Given two elements of P U Q, the first of them cannot precede the second one,
if the second one precedes the first one. We know it is never the case that simultane-
ously a precedes b and b precedes a. If a precedes « and « precedes a, we haveae 4,
ae A,, whilst A; n A, = (). If a precedes B and f8 precedes «, then A, = B, + A,
B, < A, ¥ B,, which is also impossible.

I1. If one element of P U Q does not precede another one and the latter does
not precede the former, then these elements are equal. First, we know that if neither a
precedes b, nor b precedes a, then a = b. Secondly, let us prove that the adsumptlon
that a does not precede « and « does not precede a leads to a contradiction; really,
such an assumption implies that neither ae A, nor ae A, while ae P = 4, U A4,.
Thlrdly let neither o precede f§ nor B precede «; we have to show that « = f. Since

=P—A4,, B,=P— B, it suffices to show that A, = B,. Let A, * B,.
As o does not precede f3, A, is not a subset of B, and hence there isanae 4, — B,;

*) Certainly, the set R consisting of the elements of E; and of the first element —co and the
last element + oo also has no gaps.
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similarly, thereisa b € By — A, since 8 does not precede «. We haveae 4, — B, =
=A,n(P— B;) = A, 0 B, and similarly he A, " B,. Asaec A,, be A,, a pre-
cedes b; on the other hand, a € B,, b € B, and hence b precedes a. This is a contra-
diction.

III. Let some three elements of P u O have the property that the first one precedes
the second one, and the second one precedes the th;rd one. We have to prove that
the first one precedes the third one. We must mVestlgate eight cases: [1] a precedes b,
b precedes ¢: We know that then a precedes c. [2] o precedes b, b precedes c: Since a
precedes b, we have b € A,. If there were ce 4,, ¢ would precede b, since (4, 4,)
is a cut. Thus, ¢ € 4,, i.e. a precedes c. [3] a precedes 8, § precedes c¢: Then a < B,
c € B, and hence a precedes c. [4] a precedes b, b precedes y: Since b precedes 7,
we have be Cy. If ae C,, then a follows b; thus, ae C,, i.e. a precedes 7. [5] «
precedes f§, f§ precedes c¢: Since f precedes ¢, we have ce€ B,. Since o precedes f3,
A, = By and hence 4, = P — A, o P — B, = B,, and hence ce€ 4,, i.e. a prece-
des c. [6] o precedes b, b precedes y: Hence, be A, C,. If a did not precede ,
we elthe} would havé (see II above) a = y or y would precede «, so that C; = 4,
and hence beA,nCy « A, n A, + J; this is a contradiction. [7] a precedes f,
p precedes y: We have ae B, = C, hence ae C,, i.e. a precedes . [8] « precedes S,
p precedes y: We have A, « B, < C, % B, and hence 4, = C, + A,, i.e. « prece-
des 7.

Thus, we have really constructed an ordering of the set P u Q which determines

the previously given ordering of the set P. This ordering has the following four
properties:

[1] Every o € Q follows some a € P, namely every ac A,.

[2] Every o € Q precedes some a € P, namely every ac A,.

[B1If a€ Q, B Q and o + B, then there is always some ae€ P between a and f.
Let o precede ff. Then 4, = B, & 4, and hence § & B, — 4, = 4, n B,. Choo-
sing an a € A, N B, we see that a follows o and precedes f3, i.e. a is between « and f.

W\ If ae P, o€ Q, then there is always some b € P between a and «. Let, e.g., a
precede 4, hence ae 4,. Since a = (4,, 4,) is a gap in P, there is no last element
in A,, and hence thereis a b € A, following a. As b € A, b precedes a. As, moreover,

b follows a, b is between a and «.

The ordering of the set P U Q just constructed has no gaps.

Proof: Let (U,,A,) be a cut of the set P U Q and let A, &+ @ + A,. We have
to prove that ither there is a last element of the class A, , or there is a first element
of the class A,. Put 4, =PnA,;, 4,=PnU,. 0bv1ously o= (4y,4,) is
a cut of the set P. As U, + (, there exists-a feU,. If feP we have fe 4,; if
f € O we know that there is a b e P preceding . Since b precedes  and f e,
b is not an element of 2,. Thus, beA,; as be P, we have be 4,. Thus, in both
cases A, #+ (. Similarly we may prove that 4, # J. Let us distinguish three cases:
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First, let there be a last element b in the set A4,. Let us assume that b is not the
last element of the set ;. Then there is a f e U, following b. As Pn A, = 4,
and as B follows the last element of the set A, f§ is not in P and hence f € Q. As b
precedes f3, there is, by the property [4] above, a ¢ € P which is between b and S,
i.e. which follows b and precedes B. Since c lies in P and follows the last element
of the set A,, ¢ is not in A,. Since ¢ precedes fe U, ¢ does not belong to A,.
Therefore ¢ € U,, and it follows ce P n A, ; i.e., we have c e 4,. This is a contra-
diction. Thus, b is the last element of the set 2, .

Secondly, let there be a first element b of the set 4,. We may show that b is the
first element of the set 2, in the same way as we did in the first case.

Thirdly, let there be neither a last element in A4, nor a first element in 4,. As
A, #+U + 4,, o = (4,, A,) is a gap of the set P and hence ac Q. Let feP U Q
precede a. If f € P, we have ff € A, and hence f§ € U,;. If f € Q, then, by the property
[3] above, there is an a € P between « and f3, i.e., a follows § and precedes «. Since
a e P precedes o, we have a € A, and hence a € ;. Since # precedes 4, § is not in
2,, and hence feU,. Thus, for f € P U Q it holds that

B precedes o= feU,.
Similarly we may prove that
B follows a= feA,.

As U, VA, = PuU Q, we have either a €A, or « € A,. In the first case, o is the
last element in A, ; in the second one, « is the first element in 2U,.

4.10. Let us finish this section rec'ollécting some well known consequences of the
fact that the natural ordering of the set R has neither jumps nor gaps.
Let an arbitrary set M < R be given. Denote by 4, the set of all x € R such that

YEM=y <x,

and put 4; = R — A,. We see easily that (4,, 4,) is a cut of the naturally ordered
set R. By the remark at the end of 4.8 there is exactly onc a € R generating the cut
(A,, 4,). It is easy to prove that the number o is characterized by the following
two properties:

[11if Be R and B < a, there is a y € M such that y = B;
R1feR,f>0a yeM=y<p.
Following HausdorfT, this number « is called the supremum of the set M and

it is denoted by
sup M.*)

*) If fis a function on P, then sup f(P) is also denoted by sup f(x); similarly for infimum,
x€P
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Instead of the term supremum, one uses sometimes the term least upper bound.
If @ € M, then « is evidently the greatest number contained in the set M; it is then
called the maximum of the set M and sometimes denoted by

max M.*)

1f « €e R — M, the maximum of the set M does not exist.

Similarly, for every M < R there exists a number o’ € R characterized by the pro-
perties:

[1'7if fe R and § > o, there is a y € M such that y < f3;

R1BeR, < ad,yeM=y > f.

This number o' is called the infimum of the set M and is denoted by

inf M.

Instead of the term infimum, one uses sometimes the term greatest lower bound.
If 2" e M, then o is termed the minimum of the set M and is sometimes denoted by

min M.

According to our definition we have

sup () = —oo0, inf 0 = 0.
On the other hand,

if M=%(, then sup M = inf M.

Suppose, on the contrary, that « < «’. Choose a ye M. By [2] we have v < 2';
putting 8 = y in [2'] we obtain the contradiction y > y.

A set M is said to be bounded, if sup M < oo and inf M > —o0; otherwuse it is
said to be unbounded. We see easily that M is bounded if and only if there isa ce E,
such that

—c<x<c forevery xeM.

If fis a function on P, then f(P) is a bounded set in the sense just defined if and
only if £ is bounded in the sense of 2.3.

Exercises

4.1. A finite set with n clements has »n! orderings (this is true also for n -=0, since 0! - 1,
and for n =1).

*) max (a, b) denotes the maximum of the set consisting of two points a € R and b € R;
similarly for minimum.
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The set of all orderings of the set of all natural numbers is uncountable.

Let P and Q be two ordered sets. Then their cartesian product may be ordered as follows:
(xy,¥y) precedes (x,, y,) if and only if cither x, precedes x,, or simultaneously x; = x,
and y, precedes y,.

For every element z of an ordered set € + { let there be an ordered set A(z) and let the
union (J A(z) be disjoint. Then the set M = |J A(z) may be ordered as follows: If

xeC xeC

Xy € M, x, € M, there exist elements z; € C, z, € C with x; € A(z;), x, € A(z,); x; precedes
X, if and only if either z, precedes z,, or simultaneously z;, = z, and x, precedes x, in A(z;).
If the given orderings of € and of all the sets A(z) are well orderings, we obtain a well
ordering of the set M.

The natural ordering of the set of all decadic rationals, or of the set of all rational numbers x
with x < x < B (x €R, BeR, a < f), or of the set of all algebraic numbers, is similar to
the natural ordering of all rational numbers.

Let P be a densely ordered countable set. Then P is ordered similarly with the naturally
ordered set of all rational numbers contained in the interval: [1] E[0 < x < 1], if P has

x
neither a first nor a last element, [2] E[0 < x < 1], if P has the first but has no last element,
x
[3] E[0 < x = 1], if P has no first, but has a last element, [4] E[0 = x < 1], if P has both the
x x

first and last elements.

The condition (1) in the definition of a cut at the beginning of 4.8. may be replaced by either
of the following conditions:

Xy precedes x,, x, €4y = x; €A,

x; precedes x,, x; € Ay = x; € 4,.

Let (A4,, A;) be a cut of an ordered set P. Then (4,, A,) is a cut of the inversely ordered
set P. If (A}, A,) is a jump or a gap, then (4,, 4;) is also a jump or a gap respectively.

Let P and P’ be ordered sets; let f be a similar mapping of P onto P’. Let Q and Q’ be the
sets of all gaps of the sets P and P’ respectively. Let us order the sets P U Q and P’ U Q'
as in 4.9. Then there exists exactly one similar mapping ¢ of P U Q onto P’ U Q' such that
@p = f (in the sense of 2.4).

Let Q be a densely ordered set which has neither first nor last element and which has no
gaps. Let P < O be a countable set. For every x e Q — P and y € Q —P, x + y, let there
eb an a € P between x and y. Then there exists a similar mapping f of the set 0 onto the (na-
turally ordered) set E; such that f(P) is the set of all rational numbers.

Let P be a given set containing at least two elements. Let there be given a set M < PXPXP
such that

1) @, c,b)eM = a =+ b;

[2] (@,¢c,b) eM = (b,c,a) eM;

[31 (a,c,b)eM = a + c;

4] (a,d,c)eM, (a,c,b) eM = (a,d, b) eM;

[5] (a,d,c) €M, (d,c,b) eM = (a,c,b) e M;

[6] (a, x,b) €M, (a,y,b) €M, x + y = either (a, x,y) €M or (a,y, x) EM;
M (a,c,x) €M, (a,c,y) €M, x *+ y = either (¢, x,») €M or (c,y, x) EM;
[8] a + b + ¢ + a= ecither (@, b,c) €M or (b,c,a) €M or (c,a,b) eM.

Then there are exactly two orderings of the set P such that ¢ is between a and b if and only
if (a, ¢, b) € M. These orderings are mutually inverse.



34 L. Introduction
§ 5. Cyclically ordered sets*)

5.1. We may define the ordering of a set P as a subset U of P x P satisfying certain

conditions, namely, as the set E [x precedes y]. Similarly, we define the cyclical
(x,5)
ordering of a set P as a subset € of the set P x P x P satisfying the following four

conditions:

[ (a,b,c)e €= (b,c,a)eC;

[2] (a, b, ¢) € € and (b, a, ¢) € € never hold simultaneously;

[3] if neither (a, b, ¢) € € nor (b, a, ¢) € C, then some two of the elements a, b, ¢

are equal;

[4]1 (@,b,c)eC,(a,c,d)e C=(a,b,d)eC.

[1] and [2] yield:, -

[51if (a,b,c)eC, then (b,c,a)e C and (c, a, b) e C, while we have neither
(b, a,c)e C nor (c, b,a) € C nor (a,c,b) e C.

[5] yields:

[6] (@, b,c)eC=>a+b+c+a

[3] and [5] yield:

[71if a; + a, % a3 + a,, then (a;,, a;,, a;,) € € holds for exactly three of the
six permutations i,, i,, i3 of the indices 1, 2, 3.

Finally, the following analogy of condition [4] holds: [8] (@, b,d)e C, (b,c,d) €
€ C=(a,c,d)e C. In fact, by [5] we have (d,a,b)e C, (d,b, c)e € and hence,
by [4], (d, a, ¢) € € and hence (a, ¢, d) € C by [1].

5.2. Let P be a cyclically ordered set and let ae P. If xe P — (a), ye P — (a), we
say that x precedes y if and only if (g, x, y) € C. !

To prove that we have defined an ordering, we must ﬁnd out whether the three
conditions stated at the beginning of 4.1 are satisfied.

I. Let x precede y. Then (a, x, y) € C. By [5] (a, y, x) does not belong to C, i.e.,
y does not precede x.

11. Let neither x precede y, nor y precede x; then neither (a, x, y) € C, nor (a, y, x) €
€ C and hence, by [3] and [5], some two of the elements q, x, y are equal. Since
xeP — (a), ye P — (a), we have x = y.

III. Let x precede y and y precede z. Then (a, x, y) € C, (a, y, z) € C and hence,
by [4], (a, x, z) € C, i.e. x precedes z.

Thus, we have actilallly defined an ordering of the set P — (a). This ordering will
be denoted by U(a), or, more precisely, by Uc(a).

*) The beginner is recommended to omit this section for the time being. The results will not
be used until the last chapters of this book.
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Conversely:

5.2.1. Let a€ P and let there be given an ordering of the set P — (a). Then there is
exactly one cyclical ordering C of the set P such that the given ordering of the set
P — (a) coincides with U¢(a).

Proof: 1. If such a cyclical ordering C exists, then, by [1], [6] and by the definition
of the ordering U(a)

(a,x,3)eC<(x,y,a) e C<>(y,a,x) e C<>xeP — (a), ye P — (a), x precedes y.

Now, let v, y and z be three elements of the set P — (@) such that x precedes z,
i.e. (a, x,2) e C. If (x, y, z) € C, then, by [8], (a, y, z) € C, i.e. y precedes z. We have
(x, »,z) € € and, by [1], (x, z, a) € C, so that, by [4], (x, y, a) € C, and hence, by [5],
(a, x, y) € C, i.e. x precedes y. Thus, y is between x and z. On the other hand, let y
be between x and z. Since x precedes z, y follows x and precedes z, i.e. (a, x, y) € C,
(a, y, z) € C. Therefore, by [5], (, z, a) € C, (3, a, x) € €, hence, by [4], (3,2, x)e C
and hence, by [5], (x,y,2z)e C.

Finally, let x, y and z be three elements of the set P — (a) such that x follows z.
Then z precedes x, so that

(z,y,x)e € ifand only if y is between x and :.

On the other hand, by [5], [6] and [7], (x,y,z)eC if and only if x £y & z + x
and (z, y, x) is not an element of C.
Thus, if x, y, = are elements of P — (a), then (x, y, z) € C if and only if either

x precedes y, y precedes z,
or

y precedes z, =z precedes x,
or

z precedes x, x precedes y.

Thus, the set € is fully determined by the given ordering of P — (a),

II. It remains to show that C is a cyclical ordering of the set P, i.e. that the con-
ditions [1]—[4] are satisfied. In fact, the given ordering of the set P — (a) coincides
with Uc(a) by the construction of C.

First, let (x, y, z) e C. We see easily that (y, z, x) e C.

Secondly, we see easily that we never have both (x,,z)e C and (3, z, x) e C.

Thirdly, let neither (x, y, z) € C nor (3, x, z) € C. Investigating individually the
cases x =a, y=a, z=a, x +a +y + a+z we find out that we never have
xfy+IZFx

Fourthly, let (x, y, z) € C, (x, z, u) € C. Investigating individually the cases x = a,
y=a :z=a u=a x+a+y+a%z+a+u we find that we always have
(X, Vs u) € c.
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5.3. Let P be a cyclically ordered set and let ae P, be P, a + b. Denote by J(a, b)
[more exactly, by Je(a, b)] the set E [(q, x, b) € €] and call this set an interval of the

(cyclically ordered) set P, with the beginning a and the end b.If x € J(a, b), y € J(a, b),
then a & x £ b, a &+ y % b, so that the elements x and y are in both sets P — (a)
and P — (b). If x precedes y with fespect to the ordering U(a) of the set P — (a),
we have (a,x,y)eC; since also (a,y,b)eC, we have, by [5], (5, b,a)eC,
(», a, x) € C, and hence, by [4], (», b, x) € C. Thus, by [1], (b, x, ¥) € C, so that x
precedes y with respect to the ordering U(b) of the set P — (b). Conversely, if x
precedes y with respect to the ordering U(b) of the set P — (b), we have (b, x, y) € C;
since also (a, x, b) € C, we have, by [5], (3, b, x) € C, (b, a, x) € C. Therefore, by [8],
(», a, x) € C, and hence, by [1], (@, x, y) € C, i.e. x precedes y with respect to the
ordering U(a) of P — (a).

Thus, the orderings of J(a, b) determined by the orderings U(a) of P — (a) and
U(b) of P — (b) coincide. The ordering thus obtained is denoted by U(a, b), more
precisely, by U (g, b).

Evidently

P = (a) v (b) U J(a, b) U J(b, a)

with disjoint summands. On the other hand:

5.3.1. Let
P=(@u@B)uAduB

with disjoint summands. Let the sets A and B be ordered. Then there is exactly one
cyclical ordering C of the set P such that: [1] A = J(a, b), B = J(b, a); [2] the given
orderings of the sets A and B coincide with Uc(a, b) and U (b, a) respectively.

Proof: L Let the réquired cyclical ordering exist. It determines an ordering U(a)
oftheset P— (@) = (b))u AU B. If xe A, ye A or xe B, y e B, then x precedes y
with respect to the ordering U(a) if and only if x precedes y with respect to the given
ordering of the set 4, B respectively. If x € 4, then (a, x, b) € C, so that x precedes b
with respect to the ordering U(a). If y € B, then (b, y, @) € C and hence, by [5],
(a, b, y) € C, hence b precedes y with respect to the ordering U(a). Finally, if x € 4,
ye B, we have (a, x, b) eC, (b, y, a) € C, hence (by [1]) (q, x,b)e C, (a, b, y) e C,
hence (by [4]) (4, x, ) € C and hence x precedes y with respect to the ordering U(a).
Thus, the ordering U(a) of the set P — (a) is uniquely determined.

II. By 5.2.1 there is exactly one cyclical ordering € of the set P such that the
ordering just constructed of the set P — (@) coincide with Uc(a). If x e J(a, b),
then (a, x, b) € C; thus, x e P — (a) and x precedes b with respzct to U(a) and hznce
x e A. Conversely, if xe A, we have xe P — (a) and x precedes b with respzct
to U(a), hence (a, x, b) e C, i.e. x e J(a, b). Thus, 4 = J(a, b) and we may prove
similarly that B = J(b, a). The given ordering of the set A is a part of the ordering
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U(a) of the set P — (a) o A, hence, it coincides with the ordering U(a, b). Similarly,
the given ordering of the set B coincides with U(b, a).

5.4. Let C be a cyclical ordering of a set P. Define C* <« PxPx P as follows:
(@a,b,c0)e C* <= (c,b,a)e C.

Then C* is a cyclical ordering of the set P.
We must show that the four conditions stated at the beginning of section 5.1
are satisfied.

I. Let (a, b, c) e C*. Then (¢, b, a) e C, so that, by [5], (4, ¢, b)) € C and hence
(b, ¢, a) € C*,

II. If we have simultaneously (a, b, ¢) e C* and (b, a, ¢) € C*, we have (¢, b,a) e C
and (c, a, b) € C, which is, by [5], impossible.

I1I. If neither (a, b, ¢) € €* nor (b, a, ¢) € C*, then we have neither (c, b, a) € C,
nor (c,a, b) e C. Thus, by [5], we have neither (b,a,c)e € nor (a,b,c)eC, so
that, by [3], scme two of the elements a, b, ¢ are equal.

1V. If (a, b, ¢) € C*, (a, ¢, d) € C*, then (d, ¢, a) € C, (c, b, a) € C, so that, by [§],
d,b,a)eC, ie. (a,b,d) e C*

The cyclical ordering C* is térmed the inverse cyclical ordering to €. Of course,

conversely, € is inverse to €*. We also say that C and C* are mutually inverse.
IfaeP, be P, a + b, we have evidently

Jee(a, b) = Jc(b, a).
5.5, Let P be a cyclically ordered set. If ae P, be P, a % b, then
Ja, b) v J(b,a) = P — [(a) u (b)], J@a, b) n J(b,a) = 0.

5.5.1. If c € J(a, b), then
J(a, b) = (c) v J(a, c) U J(c, b)
with disjoint summands.

Proof: Let x e J(a, b), x % ¢. Since ce P — (a), x€ P — (a), exactly one of the
two following statements holds: “x precedes ¢ or “c precedes x”’, with respect
to the ordering U(a) of the set P — (a). First, if x precedes ¢, we have (g, x, c) e C,
i.e. x € J(a, ¢). Secondly, if ¢ precedes x, we have (a, ¢, x) € C; as x € J(a, b), we have
(a, x, b)e C. By [5], (x,b,a)eC, (x,a,¢c)eC and hence, by [4], (v, b, ¢c)eC;
thus, by [5], (¢, x, b)e C, i.e. xe J(c, b). We have proved that

J(a, b) = (¢) u [J(a, b) n J(a, O] v [J(a, b) n J(c, b)]
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with disjoint summands.*) It remains to prove that J(a, ¢) u J(c, b) = J(a, b).
First, if xe J(a, c), we have (a, x, ¢)e C. Since c€J(a, b), we have (a,c, b)e C;
thus, by [4], (@, x, b)€ C, i.e. xeJ(a,b). Secondly, if xe J(c, b), we have (¢, x,b)e
e C. Since (a, ¢, b)e C, (c, x, b) € C, we have, by [8], (g, x, b)e C, i.e. xeJ(a,b).

On the other hand:

5.5.2. Let a set P have at least three distinct elements. With every pair (a, b) of dis-
tinct elements ot the set P let there be associated two subsets A and B of the set P
such that

AuB=P—-[a@u@®), AnB=0.

Let the subsets associated with (b, a) be the same as those associated with (a, b).
If A and B are a$socidted with a pair (a, b) and if ce A (and hence a + ¢ + b),
then let one of the two subsets associated with the pair (a, ¢) (denote it by C,) and
one of the two subsets associated with the pair (c, b) (denote it be C,) be such that

‘A=()uC,uC,

with disjoint summands. Then there are exactly two cyclical orderings € of the set P
such that for every pair (a,b) (a & b) the associated subsets coincide with J(a, b),
J(b, a). These two cyclical orderings are mutually inverse.

Proof: 1. Choose a fixed ae P and a b € P and denote by A and B the two subsets
associated with (a, b). I€ suffices to show that there is exactly one cyclical ordering C
of the set P satisfying the conditions above such that

A= Je(a,b). (1)

It then follows that there exists exactly one cyclical ordering C’ of the set P satisfying
the conditions above such that
A= Je(b,a). 03]

Moreover, every cyclical ordering of the set P satisfying the conditions above satisfies
exactly one of the conditions (1), (2). Further, if C satisfies the conditions above
and condition (1), the inverse cyclical ordering C* satisfies the conditions above and
condition (2). Thus, C' = C*, ’

IL. If x € A, then one of the two sets associated with the pair (a, x)—denote it by
F,(x¥) — and one of the two sets associated with the pair (b, x) — denote it by
F,(x)—are such that

A = (x) U Fi(x) u F,(x) with disjoint summands. 3)
*) Actually, if there were an x with x € J(a, ¢) N J(c, b), we would obtain, by [1] and [8],

(a,x,¢)€C, (c,x,b)eC, hence (a,x,c) €eC and (x, b, c) € C, hence (a, b, c) € C, hence
(c, a, b) € C. This would be, by [2], in contradiction with ¢ € J(a, b), i.e. with (a, ¢, b) € C.
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The second one of the two sets associated with the pair (a, x) is then
Gi(¥)=P—[(@v v FX];

since b € P — A, we have, by (3), b € G,(x). The second one of the two sets associated
with the pair (b, x) is
G(x) = P = [(B) v (x) U F,(x)];

as ae P — A, we have, by (3), a e G,(x). Since neither a nor b belongs to the set 4,
the relation (3) loses validity, if we replace F,(x) by G,(x) and F,(x) by G,(x). Thus,
the sets F,(x) and F,(x) are uniquely determined.

If x € B, then one of the two sets associated with the pair (@, x)—denote it by
Fy(x)—and one of the two sets associated with the pair (b, x) —denote it by F,(x)—are
such that

B = (x) U F|(x) U Fy(x) with disjoint summands. 4

Again, the sets F;(x) and F,(x) are uniquely determined.

Il.LetxeA4d,ye 4, x £+ y. By (3), there occurs exactly one of the cases y € F(x),
y € Fy(x). First, let y € F(x). By the assumption we obtain

Fi(x) = () v Hi(») v Hy(»),

where H,(») is equal to either F;(») or G,(»), and H,(y) is one of the two sets associa-
ted with the pair (x, y). Since be G,(»), be P — F,(x), we have H,(y) = F,(»),
and hence

xed, yeF(x) = (»)vF(()c F(x). (5)

Secondly, let y € Fy(x). By the assumption we obtain

Fy(x) = (y) v K1(») v K3(0),

where K;(») is one of the two sets associated with the pair (x, y) and K,(») is equal
to either F,(») or G,(y). Since ae Gy(¥), ae P — Fy(x), we have K,(y) = F,(»)
and hence F,(x) o (y) U F,(»). By the relation (3), which is valid for both x and y,
we obtain that

xed, yeF,(x) = (x)u Fi(x) = F,(). 6)

It follows from relations (3), (5), (6) that, for x € 4, y € 4, exactly one of the following
relations holds: x = y, (x) U Fi(x) = F,(»), () v F;(») = F,(x). Let “x precedes y”
mean that (x) U Fi(x) = Fy(y). We see easily that in this way we have defined
an ordering of the set 4, which will be denoted by V. Similarly we prove that
there is an ordering V, of the set B in which x precedes y if and only if x + y and
Fi(x) = F ().

IV. Let the required cyclical ordering € of the set P exist. We have 4 = J(a, b),
so that C determines (see section 5.3) an ordering U(a, b) of the set A. If xe 4,
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we have either F;(x) = J(a, x) or G,(x) = J(a, x). Since b € G,(x), we would have
in the second case be J(a, x), i.e. (a, b, x) € C; this is impossible by [5], since
x € J(a, b), i.e. (a, x, b) € C. Thus, x € A implies F;(x) = J(a, x). Let xe€ A4, y € A.
First, if x precedes y with respect to the ordering V,, then (x) U F,(x) = F,(y),
hence, x € F,(y) = J(a, y), hence (a, x, y) € € and consequently x precedes y with
respect to the ordering U(a, b). Secondly, if x precedes y with respect to the ordering
U(a, b), we have (g, x, y) € € and hence x € J(a, y) = F,(»), so that, by [5], (x) U
v F,(x) = F,(y); thus, x precedes y with respect to the ordering V. Thus, the
orderings ¥, and U(a, b) of the set 4 = J(a, b) coincide. Similarly it can be proved
that the orderings V, and U(b, a) of the set B = J(b, a) coincide. Thus, by 5.3,
the cyclical ordering C is uniquely determined.

V. It remains to be shown that the cyclical ordering € of the set P = (a) u (b) U
U A U B, determined (by 5.3.1) by the conditions 4 = J(a, b), B = J(b,a), V; =
= U(q, b), V, = U(b, a), has the property that for every pair (x, y), where x € P,
y€eP, x +y, the two sets associated with the pair (x, y) are J(x, y) and J(y, x).
First, this is evident fot the pair (a, b). Secondly, let us investigate a pair (g, x) with
xe A. J(a, x) is the set of all y € J(a, b) for which y precedes x with respect to the
ordering U(a, b). F,(x) is the set of all y € A for which y precedes x with respect
to the ordering V,. Since 4 = J(a, b), V; = U(a, b), we have J(a, x) = F,(x).
As P = (a) U (x) U J(a, x) U J(x, a) = (a) U (x) U F,(x) u G,(x) with disjoint sum-
mands, we have J(x, @) = G,(x). The third case of a pair (b, x) with x € 4, and simi-
larly, the fourth and fifth cases of pairs (a, x), (b, x), respectively, with x € B, may
be tréted in the same way as was the second. Let us investigate the sixth case of
a pair (x,y) with xe 4, ye B. Let C, and C, be the two sets associated with the
pair (x,¥). As P = (x) u (y) u C; U C, with disjoint summands, we may assume
that a € C,. By the assumption, C, = (a) v H u K with disjoint summands, where H
is one of the two sets associated with the pair (a, x) and K is one of the two sets
associated with the pair (@, y). We have either H = F;(x) or H = G,(x), and either
K = F,(») or K= G,()). As ye B = G(x), xe A = Gy(») and as neither x nor y
is contained in C,, we obtain H = F;(x), K = F,(y) and hence C; = (a) U Fy(x) v
U F,(») = (@) U J(a, x) v J(»,a). Since xe A = J(a, b), ye B = J(b,a), we have
(@, x, b) € C, (b, y, a) € C and hence, by [5], (a, b, ¥) € C, so that, by [4], (a, x, y) € C.
Thus, by [5], (3, a, x) € C, hence a € J(», x), so that (@) U J(y, a) U J(a, x) = J(x, y)
and hence C;, = J(x,)). Since P=(x)u () CuC,=xv)uJxy) v
U J(y, x) with disjoint summands, we have C, = J(y, x). There remains the case
of a pair (x, y) with either (x) v (») = 4 or (x) U (¥) = B to be discussed. Let, e.g.,
(x) U (») = A; similarly as in III, let us distinguish two subcases: y e F;(x) and
Y€ Fy(x). If y € Fy(x), we saw in III that F,(x) = (y) u F,(y) u H,(y) with disjoint
summands, where H,(y) is one of the two sets associated with (x, y). We have F,(x) =
= J(a, x), F,(y) = J(@a,y), yeF,(x), hence J(a, x) = (y) u J(a, y) v Hy(y) with
disjoint summands; thus, by 5.5.1, H,(y) = J(», x). The second set associated with
the pair (x, y) is, of course, P — [(x) U (y) U Hy(»)] = P — [(x) v (») v J(», X)] =
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= J(x,y). If yeF,y(x), then, by IIl, F,(x) = (y) u Fy(y) u K,(y), where K,(»)
is one from the two sets associated with the pair (x, y). We have F,(x) = J(x, b),
Fy(y) = J(3, b), yeFy(x), so that J(x,b) = (y) v J(y,b) U K,(y) with disjoint
summands; hence, by 5.5.1, K (») = J(x, y). The second set associated with the
pair (x,y) is, of course, P —[(x)uv ()UK =P - [(x) v () v Jx )] =
= J(y’ X).

Exercises

5.1. A finite set with n > 0 elements has (n — 1)! cyclical orderings. All these cyclical orderings
are mutually similar, if we define the similarity of cyclical orderings analogously as we did
with orderings in 4.2.

5.2. The set of all cyclical orderings of the set of all natural numbers is unccuntable.

5.3. Let C be a cyclical ordering of a set P. Let us define, for n = 3,4, 5, ..., subsets C, of
PxPx ... XP (with n factors) as follows: [1] C; = C, [2] C ., is the set of all (a, a,,...,
a,.4) such that (a;,a;,...,a) €C, and (a,,q,,a,,,) € C. If (a;,a,,...,,a,) €C, and if
1=i<j<kz=n,wehave (a,-,aj,a,‘)ec.

5.4. Let P be a cyclically ordered set. Let J(a, b) + (0 for every a€ P, b € P, a + b. Then all the
sets J(a, b) are infinite.

5.5. Let K be the set of all complex numbers x + iy with 2+ y2 = 1. Denote by Im(x 4 iy)

the term y. If x € K, f§ € K, y € K then let («, 3,7) € C mean that # + ;> and Im ﬁ—t; > 0.
y—

Then € is a cyclical ordering of the set K.
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