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Abstract

The article is devoted to the simulation of viscous incompressible fluid flow based
on solving the Navier-Stokes equations. As a numerical model we chose isogeometrical
approach. Primary goal of using isogemetric analysis is to be always geometrically ex-
act, independently of the discretization, and to avoid a time-consuming generation of
meshes of computational domains. For higher Reynolds numbers, we use stabilization
techniques SUPG and PSPG. All methods mentioned in the paper are demonstrated
on a standard test example – flow in a lid-driven cavity.

1. Introduction

Typically in engineering practice, design is done in CAD systems and meshes,
needed for the finite element analysis, are generated from CAD data. Primary goal
of using isogeometric analysis is to be geometrically exact, independently of the
discretization. Then we do not need to create any other mesh - the mesh of the
so-called “NURBS elements” is acquired directly from CAD representation. Further
refinement of the mesh or increasing the order of basis functions are very simple,
efficient and robust.

2. NURBS Surfaces

NURBS surface of degree p, q is determined by a control net P (of control points
Pi,j, i = 0, . . . , n, j = 0, . . . ,m), weights wi,j of these control points and two knot
vectors U = (u0, . . . , un+p+1), V = (v0, . . . , vm+q+1) and is given by a parametrization

S(u, v) =

∑n
i=0

∑m
j=0 wi,jPi,jNi,p(u)Mj,q(v)∑n

i=0

∑m
j=0wi,jNi,p(u)Mj,q(v)

=
n∑
i=0

m∑
j=0

Pi,jRi,j(u, v). (1)
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B-spline basis functions Ni,p(u) and Mj,q(v) are determined by knot vectors U and V
and degrees p and q, respectively, by a formula (for Ni,p(u), Mj,q(v) is constructed
by the similar way)

Ni,0(u) =

{
1 ui ≤ t < ui+1

0 otherwise

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u). (2)

Knot vector is a non-decreasing sequence of real numbers which determines the dis-
tribution of a parameter on the corresponding curve/surface. B-spline basis functions
(see Figure 1) of degree p are Cp−1-continuous in general. Knot repeated k times in
the knot vector decreases the continuity of B-spline basis functions by k−1. Support
of B-spline basis functions is local – it is nonzero only on the interval [ti, ti+p+1] in the
parameter space and each B-spline basis function is non-negative, i.e., Ni,p(t) ≥ 0,∀t.
See [7] for more information.

T = (0, 1, 2, . . . , 7), p = 1 T = (0, 1, 2, . . . , 7), p = 3

T = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) T = (0, 0, 0, 1, 2, 2, 3, 3, 3)

Figure 1: B-spline basis functions

3. Stationary Navier-Stokes equations

The model of viscous flow of an incompressible Newtonian fluid can be described
by the Navier-Stokes equations in the common form

∇p+ u · ∇u− ν∆u = f,
∇ · u = 0,

(3)

where u = u(x) is the vector function describing flow velocity, p = p(x) is the pres-
sure normalized by density function, ν describes kinematic viscosity and f additional
body forces acting on the fluid. The boundary value problem is considered as the
system (3) together with boundary conditions

u = w on ∂ΩD (Dirichlet condition)

ν
∂u

∂n
− np = 0 on ∂ΩN (Neumann condition).

(4)
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If the velocity is specified everywhere on the boundary, then the pressure solution is
only unique up to a (hydrostatic) constant.

Let V be a velocity solution space and V0 be the corresponding space of test
functions, i.e.,

V = {u ∈ H1(Ω)d|u = w on ∂ΩD}
V0 = {v ∈ H1(Ω)d|v = 0 on ∂ΩD}.

(5)

Then a weak formulation of the boundary value problem is: find u ∈ V and p ∈ L2(Ω)
such that

ν

∫
Ω

∇u : ∇v +

∫
Ω

(u · ∇u)v −
∫

Ω

p∇ · v =

∫
Ω

f · v ∀v ∈ V0∫
Ω

q∇ · u = 0 ∀q ∈ L2(Ω)

3.1. Approximation using isogeometric analysis

We define the finite-dimensional spaces V h ⊂ V , V h
0 ⊂ V0, W

h ⊂ L2(Ω) and their
basis functions. We want to find uk+1

h ∈ V h and pk+1
h ∈ W h such that for all vh ∈ V h

0

and qh ∈ W h it holds

ν

∫
Ω

∇uk+1
h : ∇vh +

∫
Ω

(ukh · ∇uk+1
h )vh −

∫
Ω

pk+1
h ∇ · vh =

∫
Ω

f · vh, (6)∫
Ω

qh∇ · uk+1
h = 0. (7)

This approach is based on the Picard’s method (fixed point iteration). For isogeo-
metric analysis, basis functions of V h

0 and W h are NURBS basis functions obtained
from the NURBS description of the computational domain (for velocity and pres-
sure). We can express ukh and pkh as a linear combination of the basis functions (2)
(we use the values p = 3, q = 3 for the velocity and p = 2, q = 2 for the pressure in
the follow-up examples). These linear combinations are substituted to (6) and (7).
Linearization is done with help of Picard’s iteration and we obtain a sequence of
solutions (ukh, p

k
h) ∈ V h × W h, which converges to the weak solution. We obtain

a matrix formulation of the problem in the form A + N (uk) 0 −B>1
0 A + N (uk) −B>2
B1 B2 0

 uk+1
1

uk+1
2

pk+1

 =

 f1 − (A∗ + N ∗(uk)) · u∗1
f2 − (A∗ + N ∗(uk)) · u∗2
−B∗1 · u∗1 −B∗2 · u∗2

 ,
(8)

where

A =
[
Aij
]

1≤i≤nu
d ,1≤j≤n

u
d

, A∗ =
[
Aij
]

1≤i≤nu
d ,n

u
d+1≤j≤nu

v
,

N (u) =
[
Nij(u)

]
1≤i≤nu

d ,1≤j≤n
u
d

, N ∗(u), =
[
Nij(u)

]
1≤i≤nu

d ,n
u
d+1≤j≤nu

v
,

Bk =
[
Bkij

]
1≤i≤np,1≤j≤nu

d

, B∗k =
[
Bkij

]
1≤i≤np,nu

d+1≤j≤nu
v
,

(9)
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Aij = ν

∫
Ω

(∇Ru
i · J−1) · (∇Ru

j · J−1)| det J |,

Nij(u) =

∫
Ω

Ru
i

[(
nu
v∑

l=1

(u1l, u2l)R
u
l

)
· (∇Ru

j · J−1)

]
| det J |,

Bkij =

∫
Ω

Rp
i

[
(∇Ru

j · J−1) · ek
]
| det J |.

(10)

Here nud is the number of points where the Dirichlet boundary condition is not de-
fined and u∗1,u

∗
2 are fixed coefficient so that the Dirichlet boundary condition is

satisfied. J is the Jacobi matrix of a mapping from parametric domain to the com-
putational domain. The initial nonlinear Navier-Stokes problem was transformed to
the sequential solving of linear systems.

In the follow-up examples, we use strong imposition of Dirichlet boundary con-
ditions. If the given function w belongs to V h, Dirichlet boundary condition is
prescribed directly on control points describing ∂ΩD. Otherwise, we have to find an
approximation wh of w in V h and again prescribe this condition directly on control
points.

3.2. LBB (Ladyženskaja-Babuška-Brezzi) condition

In general, it is not possible to use an arbitrary combination of discretizations for
pressure and velocity for solving Stokes problem in order for given discretizations to
be stable, it needs to satisfy the so-called LBB condition (or inf-sup condition). It
can be shown that one of such suitable choices of discretizations is represented by
spaces with basis function of degree p (for pressure) and degree p + 1 (for velocity)
obtained with the help of p-refinement (see [1] for more details).

4. Stabilization methods

The solving of Navier-Stokes equations leads to numerical nonstability for high
Reynolds numbers. We review two methods to reduce nonphysical oscillations based
on the construction of test functions in special forms (see for example [6]).

4.1. SUPG - Streamline Upwind/Petrov-Galerkin

The first equation (3) is multiplied by test function v in the form

v = v + τSu · ∇v, (11)

where

τS =
h

2 deg(u)‖u‖

(
cothP − 1

P

)
, (12)

h is the element diameter in the direction of the u and P = ‖u‖h
2ν

is the local Péclet
number which determines whether the problem is locally convection dominated or
diffusion dominated. Then we integrate over Ω and use Picard’s linearization method.
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The first equation has the form

ν

∫
Ω

∇uk+1 : ∇v

︸ ︷︷ ︸
A

+

∫
Ω

uk · ∇uk+1

︸ ︷︷ ︸
N(u)

−
∫
Ω

pk+1∇ · v

︸ ︷︷ ︸
B

−ν
∫
Ω

∆uk+1τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

+

∫
Ω

(uk · ∇uk+1)τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

∫
Ω

∇pk+1τSu
k · ∇v

︸ ︷︷ ︸
SUPG

=

∫
Ω

f · v. (13)

4.2. PSPG (Pressure Stabilized/Petrov-Galerkin)

In this case we multiply the first equation (3) by the test function in the form

v = v + τSu · ∇v + τP∇q, (14)

where 0 ≤ τP ≤ τS and integrate over Ω. By application of Picard’s method we have

ν

∫
Ω

∇uk+1 : ∇v

︸ ︷︷ ︸
A

+

∫
Ω

uk · ∇uk+1

︸ ︷︷ ︸
N(u)

−
∫
Ω

pk+1∇ · v

︸ ︷︷ ︸
B

− (15)

−ν
∫
Ω

∆uk+1τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

∫
Ω

(uk · ∇uk+1)τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

∫
Ω

∇pk+1τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

+

∫
Ω

τP∇pk+1∇q

︸ ︷︷ ︸
PSPG

− ν
∫
Ω

τP∆uk+1∇q

︸ ︷︷ ︸
PSPG

+

∫
Ω

(uk · ∇uk+1)τP∇q︸ ︷︷ ︸
PSPG

=

∫
Ω

f · v

If we use these stabilization techniques, the LBB condition need not be satisfied.

5. Non-stationary Navier-Stokes problem

For the simplicity we solve the homogeneous problem

∂u

∂t
+∇p+ u · ∇u− ν∆u = 0 in Ω× (0, T )

∇ · u = 0 v Ω
(16)

with the initial and boundary conditions

u(x, t) = w(x, t) on ∂Ω× [0, T ],
u(x, 0) = u0(x) in Ω.

(17)

A method described in [4] is used. It is given u0, θ ∈ (0, 1
2
), α ∈ (0, 1), β ∈ (0, 1)

and we search for u1,u2, . . ., un by the following three steps:
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1. step
un+θ − un

θ∆t
+∇pn+θ − αν∆un+θ = βν∆un − un · ∇un

∇ · un+θ = 0
un+θ = gn+θ on ∂Ω

(18)

2. step

un+1−θ − un+θ

(1− 2θ)∆t
− βν∆un+1−θ + u∗ · ∇un+1−θ = αν∆un+θ −∇pn+θ

un+1−θ = gn+1−θ on ∂Ω
(19)

3. step

un+1 − un+1−θ

θ∆t
+∇pn+1 − αν∆un+1 = βν∆un+1−θ − u∗ · ∇un+1−θ

∇ · un+1 = 0
un+1 = gn+1 on ∂Ω

(20)

This is a self-starting scheme. Choosing α = β = 1
2

or setting θ = 1 − 1√
2

with

α + β = 1 gives second-order accuracy as ∆t→ 0. In particular, setting θ = 1− 1√
2

and α = 1−2θ
1−θ , β = θ

1−θ gives a method which is second-order accurate in time,
unconditionally stable and has good asymptotic properties.

6. Examples

We present test example, which is symmetric to the well-known test problem, the
so-called lid-driven cavity flow in 2D. The only difference is that the moving wall is
situated at the bottom of the cavity. This change has no compelling reason, the test
problem is sufficient for testing the solver and comparing the results with benchmark
ones.

It should be noted that the presented solver uses both presented stabilization
techniques, it means that the degree of basis functions for pressure is one less than
the degree of velocity basis functions and the PSPG stabilization technique is also
used. Using only one technique is sufficient for the stable solution and we tested
both of them as well as their combination.

6.1. Stationary flow

The first experiment is devoted to the stationary flow. So we solve stationary
Navier-Stokes equations (3) with the bottom boundary moving from left to right
(u = (ux, 0)) and no-slip boundary condition on the other walls. Figure 2 shows
the solutions with the three different Reynolds numbers and instability for higher
ones. The solution of the same problem where the stabilization methods are used
is illustrated on Figure 3. It is known (see for example [5]), that the solution of
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Re = 2000 Re = 5000 Re = 10000

Figure 2: Stationary Navier-Stokes problem. Solution without stabilization tech-
niques. Velocity is illustrated at the upper figures, pressure is illustrated at lower
figures.

Re = 10000 Re = 10000 Re = 50000
SUPG SUPG+PSPG SUPG+PSPG

Figure 3: Stationary Navier-Stokes problem. Solution with stabilization techniques.
Velocity is illustrated at the upper figures, pressure is illustrated at lower figures.

29



this test example has a stable solution only for much smaller Reynolds numbers
than presented Re = 50000. So the result for the Re = 50000 is not very physically
meaningful, it is rather an example of the used stabilization techniques. It should
be also noted, that the NURBS discretization uses fewer elements than the finite
element discretization in general. This coarse discretization causes more artificial
viscosity.

6.2. Non-stationary flow

The second example is devoted to the non-stationary flow. We solve non-station-
ary Navier-Stokes equations (16) with the same boundary conditions as in the first
example. Initial condition is described by the zero velocity inside the cavity (u = 0).
Solution with Reynolds number Re = 1000 is illustrated at Figure 4.

5s 15s 25s

Figure 4: Non-stationary Navier-Stokes problem. Solution with stabilization tech-
niques. Velocity is illustrated at the upper figures, pressure is illustrated at lower
figures.

7. Conclusion

We developed and tested an isogeometric analysis based solver for solving sta-
tionary and nonstationary flow based on Navier-Stokes equations. The presented
results show that the isogeometric analysis is a suitable tool for solving such com-
plex problems. Iterative solution of stationary Navier-Stokes equations converges
only for relatively low Reynolds numbers. Therefore, it is necessary to use stabiliza-
tion methods (e.g. SUPG, PSPG, see [2]). The problems with oscillations can be
solved by the SOLD methods [6]. The presented scheme for solving non-stationary
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Navier-Stokes equations is currently enlarged by turbulence model. The turbulence
is included by the RANS equations using k − ω model [3].
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