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Abstract. The paper studies nilpotent n-Lie superalgebras over a field of characteristic
zero. More specifically speaking, we prove Engel’s theorem for n-Lie superalgebras which
is a generalization of those for n-Lie algebras and Lie superalgebras. In addition, as an
application of Engel’s theorem, we give some properties of nilpotent n-Lie superalgebras
and obtain several sufficient conditions for an n-Lie superalgebra to be nilpotent by using
the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.
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1. Introduction

The nilpotent theories of many algebras attract more and more attention. For

example: In [5], [14], [15], the authors study nilpotent Leibniz n-algebras, nilpo-

tent Lie and Leibniz algebras, nilpotent n-Lie algebras, respectively; D.W.Barnes

discusses Engel subalgebras of Leibniz algebras in [3], and so on. In 1996, the con-

cept of n-Lie superalgebras was first introduced by Yu.Daletskii and V.Kushnirevich

in [11]. Moreover, N.Cantarini and V.G.Kac gave a more general concept of n-Lie

superalgebras again in 2010 in [6]. n-Lie superalgebras are generalizations of n-Lie

algebras and Lie superalgebras. As the structural properties of n-Lie superalgebras

mostly remain unexplored and motivated by the investigation on Engel’s theorem

and nilpotency of n-Lie algebras [4], [8], [9], [13], [15] and Leibniz n-algebras [1],

[5], [7], [12], it is natural to ask about the extension of these properties to the n-Lie
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superalgebras category. As is well known, for n-Lie algebras and Leibniz n-algebras,

Engel’s theorem and nilpotency play a predominant role in Lie theory. Analogously,

Engel’s theorem and nilpotency for n-Lie superalgebras will also play an important

role in Lie theory.

The goal of the present paper is to study Engel’s theorem and nilpotency for n-

Lie superalgebras. We first prove Engel’s theorem for n-Lie superalgebras, which

will generalize Engel’s theorems for n-Lie algebras and Lie superalgebras, then we

research some properties of nilpotent n-Lie superalgebras, and moreover, we give

several sufficient conditions for an n-Lie superalgebra to be nilpotent.

Definition 1.1 ([6]). An n-Lie superalgebra is an anti-commutative n-super-

algebra A of parity α, such that all endomorphisms D(a1, . . . , an−1) of A(a1, . . . ,

an−1 ∈ A), defined by

D(a1, . . . , an−1)(an) = [a1, . . . , an−1, an],

are derivations of A, i.e., the following Filippov-Jacobi identity holds:

[a1, . . . , an−1, [b1, . . . , bn]] = (−1)α(p(a1)+...+p(an−1))([[a1, . . . , an−1, b1], b2, . . . , bn]

+ (−1)p(b1)(p(a1)+...+p(an−1))[b1, [a1, . . . , an−1, b2], b3, . . . , bn] + . . .

+ (−1)(p(b1)+...+p(bn−1))(p(a1)+...+p(an−1))[b1, . . . , bn−1, [a1, . . . , an−1, bn]]).

From the above definition, we may see that p([a1, . . . , an]) = α +
n∑

i=1

p(ai) and

[a1, . . . , ai, ai+1, . . . , an]=−(−1)p(ai)p(ai+1)[a1, . . . , ai+1, ai, . . . , an]for all ai ∈ A, 1 6

i 6 n, where p([a1, . . . , an]) and p(ai) denote the degrees of [a1, . . . , an] and ai,

respectively. Moreover, since the n-Lie superalgebra A is related to α, it is also

denoted by (A,α).

Analogously to the n-Lie algebras (see [13]), we have the following definition:

Definition 1.2. Let A = A0̄ ⊕ A1̄ be an n-Lie superalgebra and I a subspace

of A.

(i) I is called a vector superspace, if I = I0̄ ⊕ I1̄, where I0̄ = I ∩A0̄, I1̄ = I ∩A1̄.

(ii) A vector superspace I ⊆ A is called a subalgebra, if [I, I, . . . , I, I] ⊆ I.

(iii) A vector superspace I ⊆ A is called an ideal (I ⊳ A), if [A,A, . . . , A, I] ⊆ I.

(iv) A vector superspace I ⊆ A is called a weak ideal, if [A, I, . . . , I, I] ⊆ I.

(v) An ideal I is called abelian, if [A,A, . . . , A, I, I ] = 0.

(vi) An ideal I of an algebra A is called nilpotent, if Iv = 0 for some v > 0, where

I1 = I, Is+1 = [A, . . . , A, I, Is].

In the sequel, let F be a field of characteristic zero and A a finite-dimensional n-Lie

superalgebra over a field F.
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2. Engel’s theorem of n-Lie superalgebras

Definition 2.1. Let A = A0̄ ⊕ A1̄ be an n-Lie superalgebra over a field F.

A vector superspace V over F is called an A-module if on the direct sum of vector

spaces V ⊕ A = B the structure of an n-Lie superalgebra is defined such that A is

a subalgebra of B and V is an abelian ideal of B.

Definition 2.2. Let A = A0̄ ⊕ A1̄ be a vector superspace over a field F and

(A,α) an n-Lie superalgebra over F. We define a multilinear mapping ̺ : A×(n−1) =

A×A× . . .×A
︸ ︷︷ ︸

n−1

→ End V , (x1, x2, . . . , xn−1) 7→ ̺(x1, . . . , xn−1). Then ̺ is called

a representation and V is called an A-module, if the following relations are satisfied:

̺(a1, . . . , ai, ai+1, . . . , an−1)(2.1)

= −(−1)p(ai)p(ai+1)̺(a1, . . . , ai+1, ai, . . . , an−1), ai ∈ A.

̺(b)̺(a) = (−1)p(a)(p(b)+α)̺(a)̺(b) +

n−1∑

i=1

(−1)p(b)(
∑i−1

j=1
p(aj)+α)(2.2)

× ̺(a1, . . . , D(b)(ai), . . . , an−1),

where a = (a1, . . . , an−1), b = (b1, . . . , bn−1), ai, bi ∈ A.

̺(a1, . . . , an−2, [b1, . . . , bn])(c)(2.3)

=

n∑

i=1

λi̺(b1, . . . , b̂i, . . . , bn)̺(a1, . . . , an−2, bi)(c),

where

λi = (−1)n−i(−1)p(a)
∑

n
j=1,j 6=i

p(bj)+(p(bi)+α)
∑

n
j=i+1

p(bj)(−1)α(p(a1)+p(a2)+...+p(an−2)),

p(a) =
n−2∑

i=1

p(ai), b̂i denotes bi is omitted, and ai, bi, c ∈ A.

(2.4) ̺(a)(Vθ) ⊆ Vθ+β ,

where a = (a1, . . . , an−1), θ ∈ Z2, β = p(a) =
n−1∑

i=1

p(ai), ai ∈ A.

Remark 2.3. Definition 2.2 is equivalent to Definition 2.1. Definition 2.2 can

imply Definition 2.1. In fact, let ̺ be a representation of A and let V be an A-

module. Then ̺ is a linear transformation on V . We can define on the direct sum

of linear spaces V ⊕A a skew-super-symmetric n-ary operator

[x1, . . . , xn−2, v1, v2] := 0, [x1, . . . , xn−1, v] := ̺(x1, . . . , xn−1)(v) ∈ V,
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where x1, . . . , xn−2 ∈ A, v1, v2, v ∈ V . For x1, . . . , xn−1, y1, . . . , yn−1 ∈ A, v ∈ V , by

(2.1) we have

[x1, . . . , xn−1, [y1, . . . , yn−1, v]] = ̺(x)̺(y)(v) = (−1)p(y)(p(x)+α)̺(y)̺(x)(v)

+
n−1∑

i=1

(−1)p(x)(
∑i−1

j=1
p(yj)+α)̺(y1, . . . , D(x)(yi), . . . , yn−1)(v)

= (−1)p(x)(p(y)+α)[y1, . . . , yn−1, [x1, . . . , xn−1, v]]

+

n−1∑

i=1

(−1)p(x)(α+
∑i−1

j=1
p(yj))[y1, . . . , yi−1, [x1, . . . , xn−1, yi], yi+1, . . . , yn−1, v]

= (−1)p(x)α
{ n−1∑

i=1

(−1)p(x)
∑i−1

j=1
p(yj)[y1, . . . , yi−1, [x1, . . . , xn−1, yi], yi+1, . . . , yn−1, v]

+ (−1)p(x)p(y)[y1, . . . , yn−1, [x1, . . . , xn−1, v]]

}

,

where p(x) =
n−1∑

i=1

p(xi), p(y) =
n−1∑

i=1

p(yi), that is, the above formula satisfies the

Filippov-Jacobi identity. Hence V ⊕A is an n-Lie superalgebra on the above operator

such that A is a subalgebra of V ⊕A and V is an abelian ideal of V ⊕A.

Definition 2.1 can also imply Definition 2.2. In fact, for any a1, . . . , an−1 ∈ A,

there is a corresponding linear transformation ̺(a1, . . . , an−1) of V , where ̺(a1, . . . ,

an−1)(v) = [a1, . . . , an−1, v]. Then the operators ̺(a) satisfy the formulas (2.1), (2.2)

and (2.3). It is clear that (2.1) holds. Further,

̺(b)̺(a)(c) = [b1, . . . , bn−1, [a1, . . . , an−1, c]]

= (−1)αp(b)
{ n−1∑

i=1

(−1)p(b)
∑i−1

j=1
p(aj)[a1, . . . , ai−1, [b1, . . . , bn−1, ai], ai+1, . . . , an−1, c]

+ (−1)p(b)p(a)[a1, . . . , an−1, [b1, . . . , bn−1, c]]

}

= (−1)p(b)(p(a)+α)̺(a)̺(b)(c)

+

n−1∑

i=1

(−1)p(b)(
∑i−1

j=1
p(aj)+α)̺(a1, . . . , D(b)(ai), . . . , an−1)(c),

where D(b) = D(b1, . . . , bn−1), that is, (2.2) holds. Finally,

(−1)α(p(c)+
∑n−2

i=1
p(ai))̺(a1, . . . , an−2, [b1, . . . , bn])(c)

= (−1)α(p(c)+
∑n−2

i=1
p(ai))[a1, . . . , an−2, [b1, . . . , bn], c]

= (−1)α(p(c)+
∑n−2

i=1
p(ai))

{
−(−1)p(c)(α+

∑
n
j=1

p(bj))[a1, . . . , an−2, c, [b1, . . . , bn]]
}
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= −(−1)
p(c)(α+

∑n
i=1

p(bi))
n∑

j=1

(−1)(p(c)+
∑n−2

k=1
p(ak))

∑j−1

l=1
p(bl)

× [b1, . . . , bj−1, [a1, . . . , an−2, c, bj ], bj+1, . . . , bn]

= (−1)n+1+αp(c)+(p(a1)+...+p(an−2))(p(b2)+...+p(bn))+(p(b1)+α)(p(b2)+...+p(bn))

× [b2, . . . , bn, [a1, . . . , an−2, b1, c]]

+ (−1)n+αp(c)+(p(a1)+...+p(an−2))(p(b1)+p(b3)+...+p(bn))+(p(b2)+α)(p(b3)+...+p(bn))

× [b1, b3, . . . , bn, [a1, . . . , an−2, b2, c]]

+ (−1)n−1+αp(c)+(p(a1)+...+p(an−2))(p(b1)+p(b2)+p(b4)+...+p(bn))

× (−1)(p(b3)+α)(p(b4)+...+p(bn))[b1, b2, b4, . . . , bn, [a1, . . . , an−2, b3, c]] + . . .

+ (−1)2+αp(c)+(p(a1)+...+p(an−2))(p(b1)+...+p(bn−1))[b1, . . . , bn−1, [a1, . . . , an−2, bn, c]]

=

n∑

i=1

(−1)n−i+αp(c)(−1)
∑n−2

j=1
p(aj)

∑n
j=1,j 6=i

p(bj)+(p(bi)+α)
∑n

j=i+1
p(bj)

× ̺(b1, . . . , b̂i, . . . , bn)̺(a1, . . . , an−2, bi)(c),

that is, (2.3) holds.

A special case of the representation is the regular representation a 7→ D(a), where

D(a) = D(a1, . . . , an−1), D(a)(an) = [a1, . . . , an−1, an], ai ∈ A. The subspace

ker ̺ = {x ∈ A ; ̺(A, . . . , A, x) = 0} is called the kernel of the representation ̺.

It follows from (2.1) that ker ̺ ⊳ A. If ker ̺ = 0, then the representation ̺ is called

faithful. A subset S ⊆ A will be called homogeneous multiplicatively closed (h.m.c.),

if for any x, x1, . . . , xn ∈ S, λ ∈ F, we have λx ∈ S, [x1, . . . , xn] ∈ S. We denote the

linear span of a h.m.c. set S by F (S), it is clear that F (S) is equal to the subalgebra

generated by the set S.

Theorem 2.4 (Engel’s Theorem). Suppose that ̺ is a representation on an n-Lie

superalgebra A in a finite-dimensional space V , S is a h.m.c. subset of A and the

operators ̺(a1, . . . , an−1) are nilpotent for any a1, . . . , an−1 ∈ S. Then the algebra

S∗
̺ generated by these operators is nilpotent. In addition, if the representation ̺ is

faithful, the algebra F (S) is also nilpotent and acts nilpotently on A.

P r o o f. By considering the quotient algebraA/ ker ̺, we may assume with no loss

of generality that ̺ is faithful. With any subset X ⊆ S we associate the subalgebra

X∗
̺ 6 A∗

̺ generated by the operators ̺(a1, . . . , an−1), ai ∈ X . Suppose that X is

a maximal h.m.c. subset of S and its corresponding algebra X∗
̺ is nilpotent. Our

aim is to prove that X = S.

Suppose (X∗
̺ )

s = 0. Put C = F (X), C0 = A, Ci+1 = [C, . . . , C, Ci] for i > 0. We

introduce an abbreviated notation for certain subspaces of A∗
̺ :

̺(A, . . . , A, Ci) = ̺(A,Ci), ̺(C, . . . , C,A) = ̺(C,A), ̺(C, . . . , C) = ̺(C),
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etc. By induction on k, we will show that for any k > 0,

(2.5) ̺(C,Ck) ⊆

k∑

i=0

̺i(C)̺(C,A)̺k−i(C).

In fact, it follows from (2.2) that

̺(C,Ck+1) = ̺(C, [C, . . . , C, Ck]) ⊆ ̺(C,Ck)̺(C) + ̺(C)̺(C,Ck).

This enables us to complete the inductive passage from k to k + 1 in relation (2.4),

it is trivial for k = 0. It follows from (2.2) that

(2.6) ̺(A,Ck+1) = ̺(A, [C, . . . , C, Ck]) ⊆ ̺(C,Ck)̺(A,C) + ̺(C)̺(A,Ck).

Again using induction on k and (2.4), we see that for k > 1

̺(A,Ck) ⊆ ̺k(C)̺(A) +
∑

i+j=k−1

̺i(C)̺(C,A)̺j (C)̺(A,C).

Since ̺s(C) = 0, we obtain ̺(A,Ck) = 0 for k > 2s, i.e., Ck ⊆ ker ̺, hence Ck = 0.

This means that C acts nilpotently on A by left multiplications, in particular, the

algebra C is itself nilpotent.

If S 6= X , it follows easily from the preceding that S \ X contains an element b

such that

(2.7) [X, . . . , X, b] ⊆ X.

Then Y = Fb ∪ X is a h.m.c. subset of S strictly containing X . We will show that

the algebra Y ∗
̺ is nilpotent, which is contrary to the maximality of X . Any element

of ̺(Y ) lies either in ̺(X) or in ̺(X, b). Suppose U ∈ ̺(Y )m, m > 0. If in the

word U the operators in ̺(X) occur at least s times, then in view of (2.1) and (2.6),

U can be transformed into a sum of words in which the operators in ̺(X) appear

consecutively and the number of them is at least s, therefore U = 0.

On the other hand, if in U the operators in ̺(X) occur l 6 s − 1 times, then U

has the form U1̺1U2̺2 . . . Ul̺lUl+1, where ̺i ∈ ̺(X), Ui are products of elements

̺(X, b), and some of the words Ui can be empty.

Let us view A as an (n− 1)-Lie superalgebra Ab with operation

[a1, . . . , an−1]b = [a1, . . . , an−1, b]
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and V as an Ab-module on which the representation ˜̺ of the algebra

Ab : ˜̺(a1, . . . , an−2) = ̺(a1, . . . , an−2, b)

acts. It follows from (2.6) that X is a h.m.c. set in Ab. Since the operators in ˜̺(X) =

̺(X, b) are nilpotent, the induction assumption with respect to n is applicable to the

triple (Ab, X, ˜̺) and the algebra X∗
˜̺ is nilpotent, suppose that (X

∗
˜̺)

t = 0. When

n = 2, since the algebra X∗
˜̺ is generated by the nilpotent operator ̺(b), X

∗
˜̺ is

nilpotent, which provides the basis for the induction.

If the ̺-length of Ui is greater than or equal to t, then Ui = 0, 1 6 i 6 l + 1.

Consequently, when m > st all words U ∈ ̺(Y )m are zero, i.e., (Y ∗
̺ )

st = 0 as

required. This contradiction shows that X = S. The second assertion of the theorem

has already been proved, since C = F (X) = F (S). �

Corollary 2.5. Suppose A is a finite-dimensional n-Lie superalgebra in which

all left multiplication operators D(a) are nilpotent, where D(a) = D(a1, . . . , an−1),

ai ∈ A, 1 6 i 6 n− 1. Then A is nilpotent.

P r o o f. Let ̺ be the regular representation and A = V = S. By Theorem 2.4,

we obtain A is nilpotent. �

3. Nilpotency of n-Lie superalgebras

Definition 3.1. The Frattini subalgebra, F (A), of A is the intersection of all

maximal subalgebras of A. The maximal ideal of A contained in F (A) is denoted

by ϕ(A).

The next proposition contains results analogous to the corresponding ones for n-Lie

algebras, their proof is similar to those for n-Lie algebras (see [2], Proposition 2.1).

Proposition 3.2. Let A be an n-Lie superalgebra over F. Then the following

statements hold:

(1) If B is a subalgebra of A such that B + F (A) = A, then B = A.

(2) If B is a subalgebra of A such that B + ϕ(A) = A, then B = A.

Lemma 3.3. Let A be an n-Lie superalgebra over F. Then F (A) ⊆ A2; in

particular, if A is abelian, then F (A) = 0.

P r o o f. If A = A2 = [A, . . . , A], then F (A) ⊆ A2; if A 6= A2 and F (A) * A2,

then there exists x ∈ F (A), x /∈ A2 and a subalgebra B of A such that A2 ⊆ B,

x /∈ B and dimB = dimA − 1. Hence B is a maximal subalgebras of A which does

not contain x. This contradicts x ∈ F (A). Therefore, F (A) ⊆ A2. �
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Lemma 3.4 ([10]). Let f be an endomorphism of a finite-dimensional vector

superspace V over F and let χ be a polynomial such that χ(f) = 0. Then the

following statements hold:

(1) If χ = q1q2 and q1, q2 are relatively prime, then V is decomposed into a direct

sum of f -invariant subspaces V = U ⊕W such that q1(f)(U) = 0 = q2(f)(W ).

(2) V is decomposed into a direct sum of f -invariant subspaces V = V0 ⊕ V1, for

which f |V0
is nilpotent and f |V1

is invertible.

Remark 3.5. Note that, in the case where V is finite-dimensional, we may choose

χ to be the characteristic polynomial of f . The decomposition (2.2) is called the

Fitting decomposition with respect to f . Subspaces V0, V1 are referred to as the

Fitting-0 and Fitting-1 components of V , respectively.

Definition 3.6. An n-Lie superalgebra A satisfies condition (∗) if the only sub-

algebra K of A with the property K +A2 = A is K = A, where A2 = [A,A, . . . , A];

an n-Lie superalgebra satisfies condition (∗∗) if ai ∈ A0(D(a1, . . . , an−1)) for some

1 6 i 6 n − 1 for arbitrary ai ∈ A, where A0(D(a1, . . . , an−1)) = {x ∈ A ;

Dr(a1, . . . , an−1)(x) = 0 for some r}.

Theorem 3.7. Let A be an n-Lie superalgebra over F. Then the following state-

ments hold:

(i) If A satisfies condition (∗∗) and any maximal subalgebraM of A is a weak ideal

of A, then A is nilpotent.

(ii) If A is nilpotent, then every maximal subalgebra M of A is an ideal of A.

P r o o f. (i) Assume that A is not nilpotent. Then there exists a non-nilpotent

left multiplication operator D(a1, . . . , an−1). Put D(a) := D(a1, . . . , an−1). Since

D(a) is non-nilpotent, the Fitting-0 component satisfies A0(D(a)) 6= A. Let M

be a maximal subalgebra of A containing A0(D(a)). Then ai ∈ A0(D(a)) ⊆ M

for some 1 6 i 6 n − 1 by assumption. Since the maximal subalgebra M of A is

a weak ideal of A, D(a)(A) ⊆ M . Since D(a) is an automorphism on the Fitting-1

component A1(D(a)), we obtain that A1 = D(a)(A1) = A1 ∩M . Hence A1 ⊆ M .

Then A = A0 ⊕ A1 ⊆ M 6= A. This is a contradiction. Thus all left multiplication

operators are nilpotent. Therefore, by Corollary 2.5, A is nilpotent.

(ii) We assume that A is nilpotent andM is any maximal subalgebra of A. Then R

also acts nilpotently on A for all R ∈ D(A), whereD(A) is the vector space generated

by all left multiplications of A. Thus R acts nilpotently on A/M for all R ∈ D(A).

Then there is a v 6= 0 ∈ A/M such that R(v) = 0 for all R ∈ D(A). This means

R(v) ∈ M and hence v ∈ NA(M), where NA(M) = {x ∈ A ; [x,M,A, . . . , A] ∈ M},

1026



but since v 6= 0 ∈ A/M , we have that v is not in M , hence M ⊂ NA(M). By the

maximality of M , then NA(M) = A, i.e., M is an ideal of A. �

Corollary 3.8. Let A be an n-Lie algebra over F. Then A is nilpotent if and

only if every maximal subalgebra M of A is a weak ideal of A.

Remark 3.9. An n-Lie superalgebra with condition (∗∗) does exist. For example,

let (A,α) be an n-Lie superalgebra with basis {b, c}, A = A0̄⊕A1̄, A0̄ = Fc, A1̄ = Fb,

α = 0̄, and let its multiplication be as follow: [b, . . . , b, c] = 0, [b, . . . , b] = c, then

b, c ∈ A0(D(b, . . . , b, c)).

Definition 3.10. An ideal I of an n-Lie superalgebra A is called the Jacobson

radical, if I is the intersection of all maximal ideals of A, denoted by J(A).

Proposition 3.11. For any n-Lie superalgebra A, J(A) ⊆ A2.

P r o o f. The proof is similar to that of Lemma 3.3. �

Definition 3.12. The ideal I of an n-Lie superalgebra A is called k-solvable

(2 6 k 6 n) if I(r) = 0 for some r > 0, where I(0) = I,

I(s+1) = [I(s), I(s), . . . , I(s)
︸ ︷︷ ︸

k

, A, . . . , A
︸ ︷︷ ︸

n−k

]

for some s > 0. When A = I, A is called a k-solvable n-Lie superalgebra. Clearly,

if A is nilpotent, then it is k-solvable (k > 2).

Lemma 3.13. Let an algebra A be a k-solvable n-Lie superalgebra (k > 2), then

J(A) = A(1).

P r o o f. According to Proposition 3.11, J(A) ⊆ A(1). We merely need to verify

A(1) ⊆ J(A). Let I be an ideal of A. As A is k-solvable, A/I is k-solvable and

does not contain any proper ideal of A/I, hence [A/I, . . . , A/I] = 0, thus A(1) ⊆ I,

and by the definition of the Jacobson radical, we have A(1) ⊆ J(A). Then we get

J(A) = A(1). �

Theorem 3.14. Let A be a nilpotent n-Lie superalgebra over F. Then F (A) =

A(1) = ϕ(A) = J(A).

P r o o f. Since A is nilpotent, by Theorem 3.7 (ii), any maximal subalgebra T is

an ideal of A, A/T is a nilpotent n-Lie superalgebra, and A/T has no proper ideal,

thus [A/T, . . . , A/T ] = 0, A(1) ⊆ T , and A(1) ⊆ F (A). By Lemma 3.3, F (A) = A(1).

Since A is nilpotent, A is k-solvable, and by Lemma 3.13, J(A) = A(1). Therefore,

F (A) = ϕ(A) = J(A) = A(1). The proof is complete. �
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Theorem 3.15. Let A be an n-Lie superalgebra over F. Then the following

statements hold:

(1) If A satisfies conditions (∗∗) and (∗), then A is nilpotent.

(2) If A is nilpotent, then the condition (∗) holds in A.

P r o o f. (1) Suppose that the condition (∗) holds in A. Let M be any maximal

subalgebra of A. Since M + A2 6= A, A2 ⊆ M , and M is an ideal in A. It follows

from Theorem 3.7 (i) that A is nilpotent.

(2) Suppose that A is nilpotent. By Theorem 3.14, we have A2 = F (A). Then

K +A2 = K + F (A) = A implies K = A by Proposition 3.2. �

Corollary 3.16. Let A be an n-Lie algebra over F. Then A is nilpotent if and

only if the condition (∗) holds in A.

Definition 3.17. A subalgebra T of an n-Lie superalgebra A is called subinvari-

ant if there exist subalgebras Ti such that A = T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Tn−1 ⊃ Tn = T

where Ti is an ideal in Ti−1 for i = 1, 2, . . . , n. It is also denoted by T = Tn ⊳

Tn−1 ⊳ Tn−2 ⊳ . . . ⊳ T1 ⊳ T0 = A.

An upper chain, Ck, of length k consists of subalgebras U0, U1, . . . , Uk in A such

that U0 = A and each Ui is maximal in Ui−1 for i = 1, 2, . . . , k. The subinvariance

number of Ck, s(Ck), is defined to be the number of Ui 6= U0 = A which are

subinvariant in A; the invariance number of Ck, v(Ck), is defined as k − s(Ck) if

s(Ck) 6= 0, and as k otherwise. Then the invariance number of A, v(A), is the

maximum of v(Ck) for all Ck of A.

Lemma 3.18. Let A be a nonzero n-Lie superalgebra and V a maximal subalge-

bra of A. If V is not an ideal in A, then v(A) > v(V ).

P r o o f. Suppose Cn : V = V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃ Vn is an upper chain of length

n in V . Then A ⊃ V = V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃ Vn is an upper chain Cn+1 of length

n+ 1 in V . If Vi, 1 6 i 6 n, is subinvariant in A, then we have

A = U0 ⊃ U1 ⊃ U2 ⊃ . . . ⊃ Uk = Vi,

where Ui is an ideal in Ui−1 for i = 1, 2, . . . , k. We also have

V = A ∩ V = U0 ∩ V ⊇ U1 ∩ V ⊇ . . . ⊇ Uk ∩ V = Vi.

Since Ui is an ideal in Ui−1, Ui ∩ V is an ideal in Ui−1 ∩ V and Vi is subinvariant

in V . Hence, if Vi, 1 6 i 6 n, is subinvariant in A, then it is subinvariant in V .

Since V is not an ideal in A, s(Cn+1) 6 s(Cn). If s(Cn+1) > 0, then v(Cn+1) =

(n + 1) − s(Cn+1) > (n + 1) − s(Cn) > n − s(Cn) = v(Cn). If s(Cn+1) = 0, then

v(Cn+1) = n+ 1 > n > v(Cn). Hence, v(A) > v(V ). �
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Theorem 3.19. Let A be an n-Lie superalgebra over F. Then the following

statements hold:

(1) If A satisfies condition (∗∗) and v(A) = v(U) for every proper subalgebra U

in A, then A is nilpotent.

(2) If A is nilpotent, then for every proper subalgebra U in A, v(A) = v(U).

P r o o f. (1) Suppose that dim(A) = n. Let V be any maximal subalgebra of A

such that v(V ) = v(A). Then by Lemma 3.18, V is an ideal in A. It follows from

Theorem 3.7 (i) that A is nilpotent.

(2) If A is nilpotent, then every subalgebra of A is subinvariant. Hence v(A) = 1.

Since every subalgebra of A is also nilpotent, v(V ) = 1, hence v(A) = v(V ). �

Corollary 3.20. Let A be an n-Lie algebra over F. Then A is nilpotent if and

only if v(A) = v(U) for every proper subalgebra U in A.

Theorem 3.21. Let U be a subinvariant subalgebra of n-Lie superalgebra A

and K an ideal of U such that K ⊆ F (A). If U/K is nilpotent, then U is nilpotent.

P r o o f. We have a chain of subalgebras U = Ur ⊳ Ur−1 ⊳ . . . ⊳ U1 ⊳ U0 = A.

Let ai ∈ U , 1 6 i 6 n − 1, and D(a) = D(a1, . . . , an−1). Then D(a)Ui−1 ⊆ Ui

since Ui ⊳ Ui−1. Hence D
r(a)A ⊆ U . But U/K is nilpotent, so Ds(a)U ⊆ K for

some s. Thus, if dim(A) = t, we have Dt(a)A ⊆ K. Moreover, A = ℑ(Dt(a)) ⊕

Ker(Dt(a)). In fact, we set I :=
∞⋂

i=1

Di(a)(A) and B :=
∞⋃

i=1

Bi, where {Bi =

x ∈ A ; Di(a)(x) = 0}. Since D(a) is a linear transformation of A, we have

A ⊇ D(a)(A) ⊇ . . . ⊇ Dm(a)(A) ⊇ . . . .

As dimA < ∞, there exists a positive integer s such that Ds(a)(A) = Ds+1(a)(A),

and one gets I =
∞⋂

i=1

Di(a)(A) = Ds(a)(A) and I = D(a)(I). Similarly

0 ⊆ B1 ⊆ . . . ⊆ Bj ⊆ . . . .

There exists a positive integer k such that Bk = Bk+1. Thus B = Bk. Let m =

max{s, k}. Then I = Dm(a)(A), B = Bm = {x ∈ A ; Dm(a)(x) = 0}. It is clear that

I ∩ B = 0, and for any x ∈ A, if Dm(a)(x) = 0, then Dm(a)(x) ∈ I = D2m(a)(A).

There exists y ∈ A such that Dm(a)(x) = D2m(a)(y), hence Dm(a)(x−Dm(a)(y)) =

0. Put z := x−Dm(a)(y), then z ∈ B. Therefore A = I ⊕B. In particular, we may

take m = t. We get A = ℑ(Dt(a))⊕Ker(Dt(a)).

So A = K + EA(D(a)), where EA(D(a)) = {x ∈ A ; Dr(a)(x) = 0 for some r}.

But K ⊆ F (A), so this implies that EA(D(a)) = A. Thus every D(a) for all ai ∈ U ,

1 6 i 6 n− 1, is nilpotent and U is nilpotent by Corollary 2.5. �
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Example 3.22. Let (A,α) be an n-Lie superalgebra with basis {b, c}, A = A0̄ ⊕

A1̄, A0̄ = Fc, A1̄ = Fb, α = 0̄, and let its multiplication be as follow: [b, . . . , b, c] = 0,

[b, . . . , b] = c. Then A is nilpotent, however dim(A/A2) = 1.

The above example shows the definition of the S∗ algebra for an n-Lie superalgebra

is analogous to the case of a Leibniz algebra, thus we give the following definition:

Definition 3.23. An n-Lie superalgebraA is called an S∗ algebra if every proper

non-abelian subalgebra H of A either has dim(H/H2) > 2 or is nilpotent and gen-

erated by one element.

Lemma 3.24. Let A be a non-abelian nilpotent n-Lie superalgebra. Then we

have either dim(A/A2) > 2 or A is generated by one element.

P r o o f. Since A is nilpotent, by Theorem 3.14 one gets A2 = F (A). It is clear

that dim(A/A2) 6= 0 since A is nilpotent. If dim(A/A2) = 1, then A is generated by

one element. Otherwise dim(A/A2) > 2. �

Lemma 3.25. Let A be a non-nilpotent n-Lie superalgebra. If all proper subal-

gebras of A are nilpotent, then dim(A/A2) 6 1.

P r o o f. Suppose that dim(A/A2) > 2. Then there exist distinct maximal subal-

gebrasM and N which contain A2. HenceM and N are nilpotent ideals, A = M+N

is nilpotent, which is a contradiction. �

Theorem 3.26. An n-Lie superalgebra A is an S∗ algebra if and only if it is

nilpotent.

P r o o f. If A is nilpotent, then every subalgebra of A is nilpotent, so A is an S∗

algebra by Lemma 3.24. Conversely, suppose that there exists an S∗ algebra that

is not nilpotent. Let A be the smallest dimensional and non-nilpotent. All proper

subalgebras of A are S∗ algebras, hence they are nilpotent. Thus dim(A/A2) 6 1

by Lemma 3.25. Since A is an S∗ algebra, it is generated by one element and it is

nilpotent, which is a contradiction. �

Theorem 3.27. Let (A,α) be an n-Lie superalgebra and D a derivation of A.

For x1, . . . , xn ∈ A, then Dk[x1, . . . , xn] =
∑

i1+...+in=k

a
(k)
i1,...,in

[Di1 (x1), . . . , D
in(xn)],

where a
(k)
i1,...,in

∈ F.

P r o o f. We proceed by induction on k. If k = 1, then

D[x1, x2, . . . , xn]

= (−1)p(D)α[D(x1), x2, . . . , xn] + (−1)p(D)(p(x1)+α)[x1, D(x2), x3, . . . , xn]

+ . . .+ (−1)p(D)(p(x1)+...+p(xn)+α)[x1, x2, . . . , xn−1, D(xn)]
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and the base case is satisfied. We now assume that the result holds for k and consider

k + 1. Then

Dk+1[x1, . . . , xn]

= D

(
∑

i1+...+in=k

a
(k)
i1,...,in

[Di1(x1), . . . , D
in(xn)]

)

=
∑

i1+...+in=k

a
(k)
i1,...,in

{
(−1)p(D)α[Di1+1(x1), . . . , D

in(xn)]

+ . . .+ (−1)p(D){p(x1)+...+p(xn)+α+(i1+...+in−1)p(D)}[Di1(x1), . . . , D
in+1(xn)]

}

=
∑

j1+...+jn=k+1

a
(k+1)
j1,...,jn

[Dj1(x1), . . . , D
jn(xn)].

The last equality holds because if we suppose that the array (j1, . . . , jn) satisfies

j1 + . . . + jn = k + 1, then there must exist an array (i1, . . . , in) such that i1 +

. . . + in = k and for m ∈ {1, . . . , n} it satisfies i1 = j1, . . ., im−1 = jm−1, im +

1 = jm, im+1 = jm+1, . . ., in = jn, that is, (i1, . . . , im−1, im + 1, im+1, . . . , in) =

(j1, . . . , jm−1, jm, jm+1, . . . , jn). This proves the theorem. �

Theorem 3.28. Let A be an n-Lie superalgebra over F. Suppose that B is an

ideal of A and C is an ideal of B such that C ⊆ B ∩ F (A). If B/C is nilpotent,

then B is nilpotent.

P r o o f. Take any element xi of B, 1 6 i 6 n− 1. By Remark 3.5, A = A0 +A1

is the Fitting decomposition relative to D(x), where D(x) = D(x1, . . . , xn−1) is

nilpotent in A0 and D(x) is an isomorphism of A1. So A1 ⊂ B. Since B/C is

nilpotent, there exists an integer n such that A1 = Dn(x)(A1) ⊂ C. Then A =

A0 + F (A). If A0 is a subalgebra of A, by Proposition 3.2 it implies that A = A0.

Hence, D(x) is nilpotent for any element xi ∈ B, 1 6 i 6 n − 1. Therefore, B is

nilpotent by virtue of Corollary 2.5.

It remains to show that A0 is a subalgebra of A. For x1, . . . , xn ∈ A, by Theo-

rem 3.27 we have

D(x)k[x1, . . . , xn] =
∑

i1+...+in=k

a
(k)
i1,...,in

[D(x)i1 (x1), . . . , D(x)in(xn)].

If x1, . . . , xn ∈ A0, then D(x)k[x1, . . . , xn] = 0 for an integer k big enough, hence

[x1, . . . , xn] ∈ A0. �
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Corollary 3.29. Let A be an n-Lie superalgebra withB ⊳ A such thatB ⊆ F (A).

Then B is nilpotent. In particular, ϕ(A) is a nilpotent ideal of A.

Definition 3.30. A nilpotent n-Lie superalgebra A is said to be of class t if

At+1 = 0 and At 6= 0. We also denote cl(A) = t.

Put AN i = [A, . . . , A,N i] and AjN i = [A, . . . , A,Aj−1N i] for some j > 1.

Lemma 3.31. Let A be an n-Lie superalgebra with N ⊳ A and let A/N2 be

nilpotent. If Am+1 ⊂ N2 for some minimal m, then AuN r ⊂ N r+1 for r > 0 where

u = (r − 1)(n− 1)(m− 1) +m.

P r o o f. We proceed by induction on r. If r = 1, then A(1−1)(n−1)(m−1)+mN1 =

AmN ⊆ Am+1 ⊂ N2 and the base case is satisfied. We now assume that the result

holds for r and consider r + 1.

Let s = r(n−1)(m−1)+m and u = (r−1)(n−1)(m−1)+m. By Theorem 3.27,

we obtain

AsN r+1 = As[N r, N,A, . . . , A] =
∑

s1+...+sn=s

[As1N r, As2N,As3A, . . . , AsnA].

Suppose that s1 > u. Then by the induction hypothesis, As1N r ⊂ N r+1 and
∑

s1+...+sn=s

[As1N r, As2N,As3A, . . . , AsnA] ⊂ [N r+1, N,A, . . . , A] ⊂ N r+2.

Suppose that s1 < u. We claim there exists sk > m. Assume that sj < m for all j.

We obtain s = (s1) + (s2 + . . .+ sn) < u+ (n− 1)(m− 1) = (r− 1)(n− 1)(m− 1) +

m+ (n− 1)(m− 1) = r(n− 1)(m− 1) +m = s. But this is impossible. Hence there

exists sk > m for some k. As a result AskN ⊂ N2 and using the Filippov-Jacobi

identity and skew super-symmetry, we obtain

[As1N r, As2N,As3A, . . . , AskA, . . . , AsnA]

= [N r, N,A, . . . , A,N2, A, . . . , A]

= [N r, N,A, . . . , A,A, . . . , A,N2]

= [N r, N,A, . . . , A,A, . . . , A, [N, . . . , N ]]

= [[N r, N,A, . . . , A,N, ], N, . . . , N ] + [N, [N r, N,A, . . . , A,N, ], N, . . . , N ]

+ . . .+ [N, . . . , N, [N r, N,A, . . . , A,N, ]]

⊆ [N r+1, N,N, . . . , N ]

⊆ [N r+1, N,A, . . . , A]

= N r+2.

This proves the lemma. �
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Theorem 3.32. Let A be an n-Lie superalgebra with N ⊳ A. If N t+1 = 0 and

(A/N2)m+1 = 0, then cl(A) 6 tm+ 1
2 t(t− 1)(m− 1)(n− 1).

P r o o f. Using Lemma 3.31, we observe that Am+1 ⊂ N2, Am+(n−1)(m−1)N2 ⊂

N3, . . ., Am+(t−1)(n−1)(m−1)N t ⊂ N t+1 = 0. By summing the exponents on the

left-hand side, we see that Aω = 0, where ω = tm+ 1
2 t(t− 1)(m− 1)(n− 1) + 1.

The proof is complete. �

Definition 3.33. Let A be a nonzero n-Lie superalgebra and S a subset of A

such that S ⊇ {0}. The normal closure of S in A, SA, is the smallest ideal in A

containing S.

Theorem 3.34. Let A be a nonzero n-Lie superalgebra over F. Then:

(i) If A satisfies condition (∗∗), then there exists a nonzero nilpotent subalgebra

N in A such that NA = A.

(ii) A is nilpotent if and only if the subalgebra N in (i) is A.

P r o o f. (i) If A is nilpotent, then we may take N = A and NA = AA = A.

Consider the case that A is not nilpotent. We use induction on the dimension

of A. A non-nilpotent n-Lie superalgebra of lowest dimension is two-dimensional,

namely, A = A0̄ ⊕ A1̄, A0̄ = Fx, A1̄ = Fy, with a bilinear skew super-symmetric

bracket multiplication [x, x, y] = y defined on A. The normal closure of the one

dimensional subalgebra Fx is L. Assume that the theorem holds for all non-nilpotent

n-Lie superalgebras whose dimension is less than n. Consider the case that A is an

n-dimensional non-nilpotent n-Lie superalgebra. Then by Theorem 3.7 (i), there

exists a maximal subalgebra M in A such that M is not an ideal in A. Since the

dimension of M is less than n, by our inductive hypothesis there exists a nilpotent

subalgebra N in M such that NM = M . We claim that NA ⊇ M . Since NA is

an ideal in A, [A, . . . , A,NA] ⊆ NA. In particular, [M, . . . ,M,NA] ⊆ NA. Since

M is a subalgebra, [M, . . . ,M,NA ∩ M ] ⊆ NA ∩ M and NA ∩ M is an ideal in

M containing N . Since NM is the smallest ideal in M containing N , we have

NA ∩M ⊇ NM , i.e., we have NA ⊇ NA ∩M ⊇ NM = M . Since M is not an ideal

of A and NA is an ideal of A, NA ⊃ M . Now NA = A follows from the fact that M

is a maximal subalgebra in A.

(ii) If A = N and N is nilpotent, A is nilpotent. Conversely, suppose that {0} 6=

N 6= A. Then either N is a maximal subalgebra of nilpotent n-Lie superalgebra

A or N is contained in a maximal subalgebra M of A. By Theorem 3.7 (ii), every

maximal subalgebra in A is an ideal, NA ⊆ M 6= A. This is a contradiction. Hence

N = A. The proof is complete. �
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