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Abstract. Let FG be a group algebra of a group G over a field F and U (FG) the unit
group of FG. It is a classical question to determine the structure of the unit group of
the group algebra of a finite group over a finite field. In this article, the structure of the
unit group of the group algebra of the non-abelian group G with order 21 over any finite
field of characteristic 3 is established. We also characterize the structure of the unit group
of FA4 over any finite field of characteristic 3 and the structure of the unit group of FQ12
over any finite field of characteristic 2, where Q12 = 〈x, y;x6 = 1, y2 = x3, xy = x−1〉.
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1. Introduction and notations

Let FG be a group algebra of a group G over a field F and U (FG) the unit

group of the group algebra FG. It is a classical question to determine the structure

of the unit group of the group algebra of a finite group over a finite field. Recently

there are quite a few papers which characterize the structures of unit groups of group

algebras of certain small groups over finite fields (see for example [3], [5], [4], [6], [7],

[9], [8], [10], [11], [15], [2], [16]). Most recently, in [2] Tang et al. determined the

structures of unit groups of group algebras FG of any groups of order 21 over finite

fields except for the case when G is the non-abelian group of order 21 and F is a field

of characteristic 3. The first goal of this paper is to study this remaining case. We

shall determine the structure of the Jacobson radical for this group algebra and then

establish the structure of its unit group.

This research was supported in part by a Discovery Grant from the Natural Sciences
and Engineering Research Council of Canada, the National Science Foundation of China
(11161006, 11171142), the Guangxi Natural Science Foundation (2011GXNSFA018139)
and the Guangxi New Century 1000 Talents Project.
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There are three non-abelian groups of order 12: A4, D12 and Q12. In 2007,

R. Sharma, J. Srivastava and M.Khan ([15]) characterized the unit group of FA4 over

a finite field. In the case when the characteristic of F is 2 or 3, they provided only

a preliminary description of the unit group. In [8], J.Gildea established a complete

characterization of the unit group of FA4 over a finite field of characteristic 2. In [11],

Gildea and Monaghan established the structure of unit groups of FD12 and FQ12

over a finite field of characteristic 3. Our second goal is to determine the structure of

the group algebra FA4 over a finite field of characteristic 3 and establish a complete

characterization of the unit group of this group algebra. In 2011, Tang and Gao

([16]) described the structure of the unit group of the group algebra FQ12. We

shall determine the structure of the Jacobson radical of FQ12 over a finite field of

characteristic 2 and provide a better characterization of the unit group of FQ12. We

note that other unit groups of group algebras of the groups of order 12 have been

completely characterized (see [11], [15], [16] for details).

Throughout this paper, A4 denotes the alternating group of degree 4, Q12 =

〈x, y;x6 = 1, y2 = x3, xy = x−1〉, Cn denotes the cyclic group of order n, F is a finite

field of characteristic p of order pn, and F ∗ is the multiplicative group of F . We also

denote by M(n, F ) and GL(n, F ) the ring of all n × n matrices over a field F and

the general linear group of degree n over a field F , respectively. Denote by Z(FG)

the center of FG.

Recall that the ring homomorphism ε : FG → F given by

ε

(

∑

g∈G

agg

)

=
∑

g∈G

ag

is called the augmentation mapping of FG and its kernel, denoted by ∆(G), is called

the augmentation ideal of FG. For a subgroup H of G, we shall denote by ∆(G,H)

the left ideal of FG generated by the set {h− 1; h ∈ H}. That is,

∆(G,H) =

{

∑

h∈H

αh(h− 1); αh ∈ FG

}

.

If H is a normal subgroup of G, then ∆(G,H) is a two-sided ideal. Note that the

ideal ∆(G,G) coincides with the ideal ∆(G).
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2. The unit group of F3nG over the non-abelian group of order 21

In this section, we characterize the structure of the unit group of the group algebra

FG of the non-abelian group G of order 21 over a finite field of characteristic 3, where

G = 〈x, y;x7 = y3 = 1, xy = x2〉. We first state a useful definition and establish

a lemma regarding the Jacobson radical of a group algebra.

Definition 2.1. Let p be a prime number and let Sp denote the set of all p-

elements of a group G including the identity, i.e., Sp = {g ∈ G ; g is a p-element}.

Define a map T : G → F by T (g) = 1 if g ∈ Sp and T (g) = 0, otherwise. We now

extend T linearly to a map from FG to F given by T (α) =
∑

aiT (gi) =
∑

aigi ∈ FG

for all α, which is the sum of all coefficients of p-elements including 1 in α. Define

KerT = {α ∈ FG ; T (αg) = 0 ∀g ∈ G}.

Lemma 2.2. Let F be a finite field of characteristic p > 0, G be a finite group,

and T be the function defined above. Then

(1) J(FG) ⊆ KerT .

(2) KerT = Ann(c), where c =
∑

g∈Sp

g = Ŝp.

(3) J(FG) ⊆ Ann(c).

P r o o f. (1) Let α ∈ J(FG). Since αg ∈ J(FG) for all g ∈ G and J(FG) is

nilpotent, αg is nilpotent. By Passman [13, Lemma 3.3], we have T (αg) = 0 for all

g ∈ G. Thus α ∈ KerT and so J(FG) ⊆ KerT , proving the first statement.

(2) This follows from the proof of [1, Lemma 3.2] that KerT = Ann(c).

(3) This follows immediately from (1) and (2) that J(FG) ⊆ Ann(c). �

We now state our main result in this section.

Theorem 2.3. LetG be the group of order 21 described above and let F be a finite

field of characteristic 3 of order 3n. Then either FG ∼= M(3, F ) ⊕ M(3, F ) ⊕ FC3

when n is even, or FG ∼= M(3, F2) ⊕ FC3 when n is odd, where F2 is the degree 2

extension field of F . Therefore, either U (FG) ∼= GL(3, F ) × GL(3, F ) × F ∗ × C2n
3

when n is even, or U (FG) ∼= GL(3, F2)× F ∗ × C2n
3 when n is odd.

P r o o f. Let H = 〈x〉 and e = 1

|H| Ĥ. Since H is a normal subgroup of G, e = e2

is a central idempotent. Thus FG = FG(1 − e) ⊕ FG(e) ∼= ∆(G,H) ⊕ FC3 since

FG(1 − e) = ∆(G,H) and FG(e) ∼= F (G/H) ∼= FC3 (see [14, Proposition 3.6.7]

for the details). We next show that ∆(G,H) ∼= ∆(G)/J(FG) is semisimple and

determine the structure of ∆(G,H). To do so, we compute the Jacobson radical

J(FG) of FG. By Lemma 2.2 (3), we know that J(FG) ⊆ Ann(c) where c =
∑

g∈S3

g = Ŝ3, so we first compute Ann(c).
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A direct computation shows that G has five conjugacy classes as follows:

b0 = {1}, b1 = {x, x2, x4}, b2 = {x3, x5, x6},

b3 = {y, xy, x2y, x3y, x4y, x5y, x6y} = 〈x〉y,

and

b4 = {y2, xy2, x2y2, x3y2, x4y2, x5y2, x6y2} = 〈x〉y2.

Now we have c = 1 + b̂3 + b̂4 = 1 + x̂y + x̂y2, which is the sum of all 3-elements

including 1. Let α =
4
∑

i=0

αi ∈ Ann(c) where supp(αi) ⊆ bi for i = 0, 1, 2, 3, 4. Then

αc = 0, and thus
( 4
∑

i=0

αi

)

(1 + x̂y + x̂y2) = 0, so 0 =
4
∑

i=0

αi + (α0 + α1 + α2)x̂y +

α3x̂y+α4x̂y+(α0+α1+α2)x̂y
2+α3x̂y

2+α4x̂y
2 = (α0+α1+α2+α4x̂y+α3x̂y

2)+

(α3 + (α0 + α1 + α2)x̂y + α4x̂y
2) + (α4 + α3x̂y + (α0 + α1 + α2)x̂y

2) = (α0 + α1 +

α2 + ε(α3+α4)x̂)+ (α3+ ε(α0+α1+α2 +α4)x̂y)+ (α4+ ε(α0+α1+α2 +α3)x̂y
2).

This gives that α0 + α1 + α2 = −ε(α3 + α4)x̂, α3 = −ε(α0 + α1 + α2 + α4)x̂y and

α4 = −ε(α0+α1+α2+α3)x̂y
2. Set a1 = −ε(α3+α4) and a2 = −ε(α0+α1+α2+α4).

Since ε(α) = ε(α0 + α1 + α2 + α3 + α4) = 0, we have −ε(α0 + α1 + α2 + α3) =

ε(α4) = −(a1 + a2). Thus Ann(c) = {a1x̂ + a2x̂y − (a1 + a2)x̂y
2 ; a1, a2 ∈ F} and

dimF (Ann(c)) = 2.

We now show that Ann(c)3 = 0, so Ann(c) ⊆ J(FG). This together with

Lemma 2.2 gives that J(FG) = Ann(c). Note that (a1x̂+a2x̂y−(a1+a2)x̂y
2)(c1x̂+

c2x̂y− (c1 + c2)x̂y
2)(d1x̂+ d2x̂y− (d1 + d2)x̂y

2) = (a1 − a2)(c1 − c2)Ĝ(d1x̂+ d2x̂y−

(d1 + d2)x̂y
2) = (a1 − a2)(c1 − c2)(d1 + d2 − (d1 + d2))Ĝ = 0 (as charF = 3). Thus

Ann(c)3 = 0 and J(FG) = Ann(c).

Next we show that ∆(G) = ∆(G,H) ⊕ J(FG). Note that both ∆(G,H) and

J(FG) are contained in ∆(G), and dimF ∆(G,H) + dimF J(FG) = 18 + 2 = 20 =

dimF ∆(G). We now show that ∆(G,H) ∩ J(FG) = 0. Let β ∈ ∆(G,H) ∩ J(FG).

Then β = α(x − 1) where α ∈ FG (as β ∈ ∆(G,H) and H = 〈x〉), and also

β = a1x̂ + a2x̂y − (a1 + a2)x̂y
2 for some a1, a2 ∈ F (as β ∈ J(FG)). Thus βx̂ =

α(x − 1)x̂ = 0. On the other hand, βx̂ = (a1x̂ + a2x̂y − (a1 + a2)x̂y
2)x̂ = β as

x̂x̂ = x̂. So we have β = βx̂ = 0, showing that ∆(G,H) ∩ J(FG) = 0. Therefore,

∆(G) = ∆(G,H)⊕ J(FG) and thus ∆(G,H) ∼= ∆(G)/J(FG). Since FG/J(FG) is

semisimple and ∆(G)/J(FG) is an ideal of FG/J(FG), we conclude that ∆(G,H) ∼=

∆(G)/J(FG) is semisimple as desired.

Now we show that Z(∆(G,H)) ⊆ Z(FG) and compute Z(∆(G,H)). Let α =

α1(x − 1) ∈ Z(∆(G,H)). Then α(x − 1) = (x− 1)α, so

(∗) αx = xα.
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We next show that α also commutes with y, and therefore, α is in the center of

FG. Note that αy(x − 1) = y(x − 1)α as y(x − a) ∈ ∆(G,H). By (∗), we have

(αy−yα)(x−1) = 0. Similarly, we have (x−1)(αy−yα) = 0 as (x−1)y ∈ ∆(G,H).

Thus αy − yα ∈ Ann(x − 1) = Ann(∆(G,H)) = (FG)x̂, so αy − yα = βx̂ where

β ∈ FG. Since αx̂ = α1(x− 1)x̂ = 0, we conclude that (αy− yα)x̂ = αx̂y− yαx̂ = 0.

On the other hand, (αy−yα)x̂ = βx̂x̂ = βx̂ = αy−yα. This gives that αy−yα = 0, so

αy = yα, implying α ∈ Z(FG). Thus Z(∆(G,H)) ⊆ Z(FG). Let α ∈ Z(∆(G,H)) ⊆

Z(FG). Then α = a0 + a1b̂1 + a2b̂2 + a3b̂3 + a4b̂4. Since αx̂ = 0, we obtain that

αx̂ = (a0+3a1+3a2)x̂+7a3b̂3+7a4b̂4 = a0x̂+a3b̂3+a4b̂4 = 0, so a0 = a3 = a4 = 0.

Thus Z(∆(G,H)) = {(a1b̂1 + a2b̂2) | a1 ; a2 ∈ F} and dimF Z(∆(G,H)) = 2.

Note also that for all α ∈ Z(∆(G,H)), α3 = (a1b̂1 + a2b̂2)
3 = a31b̂2 + a32b̂1, so

α3
n

= a1b̂
3
n

1 + a2b̂
3
n

2 . If n is even, then α3
n

= α; if n is odd, then α3
2n

= α, but in

general

(∗∗) α3
n

6= α.

Finally, we determine the structure of FG. Since ∆(G,H) is semisimple,

dimF (∆(G,H)) = 18, and dimF Z(∆(G,H)) = 2, by (∗∗) we conclude that ei-

ther ∆(G,H) ∼= M(3, F )⊕M(3, F ) when n is even, or ∆(G,H) ∼= M3(F2) when n

is odd, where F2 is the degree 2 extension field of F . This gives that either FG ∼=

∆(G,H)⊕FC3
∼= M(3, F )⊕M(3, F )⊕FC3 when n is even, or FG ∼= M3(F2)⊕FC3

when n is odd. Therefore, either U (FG) ∼= GL(3, F )×GL(3, F )× F ∗ × C2n
3 when

n is even, or U (FG) ∼= GL(3, F2) × F ∗ × C2n
3 when n is odd. This completes the

proof. �

3. Unit groups of F3nA4 and F2nQ12

As mentioned in the introduction, in 2007, R. Sharma, J. Srivastava and M.Khan

provided a preliminary characterization of the unit group of FA4 over a finite field of

characteristic 3. In this section, we first determine the structure of the group algebra

FA4 over a finite field of characteristic 3. As a consequence, we establish a complete

characterization of the unit group of this group algebra. Our first main result is as

follows:

Theorem 3.1. Let F be a finite field of characteristic 3 with order 3n and

A4 the alternating group of degree 4. Then FA4
∼= ∆(A4,K4) ⊕ F (A4/K4) ∼=

M(3, F ) ⊕ FC3 where K4 is the normal subgroup of order 4 in A4. Moreover,

U (FA4) ∼= GL(3, F )× F ∗ × C2n
3 .
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P r o o f. Note that A4 = K4 ⋊ C3, where K4 = {1, (12)(34), (13)(24), (14)(23)}

and C3 = 〈y〉 = 〈(123)〉. A direct computation shows that A4 has 4 conjugacy classes:

b1 = {1}, b2 = {(12)(34), (13)(24), (14)(23)}, b3 = {(123), (134), (142), (243)} =

K4(123) = K4y, b4 = {(132), (143), (124), (234)} = K4(123)
2 = K4y

2. Since K4 is

a normal subgroup of A4, e = (1/|K4|)K̂4 = e2 is a central idempotent. Thus we

have the decomposition FA4 = FA4(1− e)⊕ FA4(e) ∼= ∆(A4,K4)⊕ FC3. We next

show that ∆(A4,K4) is semisimple and determine the structure of ∆(A4,K4). Our

proof is similar to that of Theorem 2.3 and we shall include a complete proof for the

convenience of the reader.

We first compute the Jacobson radical J(FA4) of this group algebra. As mentioned

before, J(FA4) ⊆ Ann(c) where c = 1 + b̂3 + b̂4 = 1 + K̂4y + K̂4y
2. Let α =

2
∑

i=0

αi ∈ Ann(c) where supp(αi) ⊆ K4y
i, i = 0, 1, 2. Since αc = 0, we obtain that

(α0 + α1 + α2)(1 + K̂4y + K̂4y
2 = (α0 + ε(α1 + α2)K̂4) + (α1 + ε(α0 + α2)K̂4y) +

(α2 + ε(α0 + α1)K̂4y
2) = 0. Thus α0 = −ε(α1 + α2)K̂4, α1 = −ε(α0 + α2)K̂4y and

α2 = −ε(α0 + α1)K̂4y
2. Let a1 = −ε(α1 + α2) and a2 = −ε(α0 + α2). Since ε(α) =

ε(α0+α1+α2) = 0, we conclude that −ε(α0+α1) = ε(α2) = −(a1+a2). Therefore,

Ann(c) = {a1K̂4+a2K̂4y−(a1+a2)K̂4y
2 ; a1, a2 ∈ F} = {(a1(1+y)+a2y)(1−y)K̂4 ;

a1, a2 ∈ F}. We now show that Ann(c)3 = 0. Indeed, for all α, α′, α′′ ∈ Ann(c),

αα′α′′ = ((a1(1+y)+a2y)(1−y)K̂4)((a
′
1(1+y)+a′2y)(1−y)K̂4)((a

′′
1 (1+y)+a′′2y)×

(1− y)K̂4) = (a1(1 + y) + a2y)(a
′
1(1 + y) + a′2y)(a

′′
1(1 + y) + a′′2y)(1 − y)3(K̂4)

3 = 0

as (1− y)3 = 1− y3 = 0. As before, we obtain that J(FA4) = Ann(c), J(FA4)
3 = 0

and dimF J(FA4) = 2.

Next we show that ∆(A4) = ∆(A4,K4)⊕J(FA4). First we show that ∆(A4,K4)∩

J(FA4) = 0. Let α ∈ ∆(A4,K4) ∩ J(FA4). Since α ∈ ∆(A4,K4), we have

αK̂4 = 0. On the other hand, since α ∈ J(FA4), α = (a1(1 + y) + a2y)×

(1 − y)K̂4, so αK̂4 = α. Thus α = αK̂4 = 0, proving ∆(A4,K4) ∩ J(FA4) = 0.

Since both ∆(A4,K4) and J(FA4) are contained in ∆(A4), dimF ∆(A4,K4) +

dimF J(FA4) = 9 + 2 = dimF ∆(A4) and ∆(A4,K4) ∩ J(FA4) = 0, we conclude

∆(A4) = ∆(A4,K4)⊕J(FA4), so ∆(A4,K4) ∼= ∆(A4)/J(FA4). Since FA4/J(FA4)

is semisimple and ∆(A4)/J(FA4) is an ideal of FA4/J(FA4), we obtain that

∆(A4,K4) ∼= ∆(A4)/J(FA4) is semisimple as desired.

We now show that Z(∆(A4,K4)) ⊆ Z(FA4) and determine the structure of

Z(∆(A4,K4)). Let α ∈ Z(∆(A4,K4)). Then α(x− 1) = (x− 1)α, for all x ∈ K4 (as

x−1 ∈ ∆(A4,K4)), so αx = xα. Recall that y = (123) and y(x−1) ∈ ∆(A4,K4), for

all x ∈ K4. Hence αy(x−1)−y(x−1)α = (αy−yα)(1−x), so αy−yα ∈ Annl(x−1),

for all x ∈ K4. Similarly, since (x − 1)y ∈ ∆(A4,K4), as before we can show that

αy−yα ∈ Annr(x−1), for all x ∈ K4. Thus αy−yα ∈ Ann(∆(A4,K4)) = (FA4)K̂4,

so αy − yα = βK̂4, implying αy − yα = (αy − yα)K̂4. On the other hand,
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(αy − yα)K̂4 = αK̂4y − yαK̂4 = 0 (as αK̂4 = 0 because α ∈ ∆(A4,K4)). Thus

αy − yα = 0, implying α ∈ Z(FA4) and Z(∆(A4,K4)) ⊆ Z(FA4). Let α ∈

Z(∆(A4,K4)). Then α = a1+a2b̂2+a3b̂3+a4b̂4 = a1+a2b̂2+a3K̂4y+a4K̂4y
2 where

ai ∈ F . Since αK̂4 = 0, we have a1K̂4 + a3K̂4y + a4K̂4y
2 = 0, so a1 = a3 = a4 = 0.

Hence Z(∆(A4,K4)) = {a2b̂2 ; a2 ∈ F}. Finally, since ∆(A4,K4) is semisimple with

dimension 9 and dimF Z(∆(A4,K4)) = 1, we conclude that ∆(A4,K4) ∼= M(3, F ).

Therefore, FA4
∼= ∆(A4,K4) ⊕ F (A4/K4) ∼= M(3, F ) ⊕ FC3. Consequently, we

obtain that U (FA4) ∼= GL(3, F )× F ∗ × C2n
3 . This completes the proof. �

As mentioned earlier, in [16] Tang and Gao described the unit group of FQ12,

where F is a finite field of order 2n and Q12 = 〈x, y;x6 = 1, y2 = x3, xy = x−1〉. It

was shown that the group V1 = 1+J(FQ12) is nilpotent of class at most 2; however,

the structure of the Jacobson radical J(FQ12) was not established. In what follows,

we shall establish the structure of the Jacobson radical J(FQ12) and show that the

group V1 = 1 + J(FQ12) is, in fact, abelian. As a consequence, we provide a better

characterization of the the unit group of FQ12.

Theorem 3.2. Let F be a a finite field of order 2n and G = Q12 be the group of

order 12 defined above. Then FQ12
∼= ∆(Q12, Q

′
12)⊕ FC4. Moreover,

(1) U (FQ12)/V1
∼= GL(2, F )× F ∗, where V1 = 1+ J(FQ12) ∼= C5n

2 × Cn
4 .

(2) U (FQ12) ∼= U (∆(Q12, Q
′
12))⊕U (FC4) whereU (FC4) ∼= C2n−1×Cn

2 ×Cn
4 and

U (∆(Q12, Q
′
12))/(1+J(∆(Q12, Q

′
12)))

∼= GL(2, F ) where 1+J(∆(Q12, Q
′
12))

∼=

C4n
2 .

P r o o f. Let H = Q′
12 = {1, x2, x4} = 〈x2〉 and e = Ĥ/|H | = Ĥ which is

a central idempotent. Then FQ12 = FQ12(1 − e) ⊕ FQ12(e) ∼= ∆(Q12, H) ⊕ FC4.

We remark that unlike the case discussed before ∆(Q12, H) is no longer semisimple.

It is routine to check that Q12 has six conjugacy classes: b1 = {1}, b2 = {x2, x4},

b3 = {x, x5}, b4 = {x3}, b5 = {y, x2y, x4y} = Hy, b6 = {xy, x3yx5y} = Hxy.

We first compute the Jacobson radical J(FQ12). As before, we can show that

J(FQ12) = Ann(c) where c = 1+ b̂4 + b̂5 + b̂6. Let α =
6
∑

i=1

aix
i−1 +

6
∑

i=1

ai+6x
i−1y ∈

Ann(c). Rewrite α =
6
∑

i=1

αi such that supp(αi) ⊆ bi for i = 1, 2, . . . , 6, i.e., α1 = a1,

α2 = a3x
2 + a5x

4, α3 = a2x + a6x
5, α4 = a4x

3, α5 = a7y + a9x
2y + a11x

4y and

α6 = a8xy + a10x
3y + a12x

5y. Since αc = 0, we obtain αc = α+ αx3 + αb̂5 + αb̂6 =

((α1 +α2 +α3 +α4)(1 + x3)+ ε(α5 +α6)(1 + x)Ĥ) + (α5 +α6x
3 + ε(α1 +α2 +α3 +

α4)b̂5) + (α6 + α5x
3 + ε(α1 + α2 + α3 + α4)b̂6) = 0. Thus

(α1 + α2 + α3 + α4)(1 + x3) + ε(α5 + α6)(1 + x)Ĥ = 0,

α5 + α6x
3 + ε(α1 + α2 + α3 + α4)b̂5 = 0
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and

α6 + α5x
3 + ε(α1 + α2 + α3 + α4)b̂6 = 0.

Simplifying these equations gives

a1 + a4 + ε(α5 + α6) = 0,

a2 + a5 + ε(α5 + α6) = 0,

a3 + a6 + ε(α5 + α6) = 0,

a7 + a10 + ε(α1 + α2 + α3 + α4) = 0,

a8 + a11 + ε(α1 + α2 + α3 + α4) = 0,

a9 + a12 + ε(α1 + α2 + α3 + α4) = 0.

Further simplification gives a5 = a1 + a2 + a4, a6 = a1 + a3 + a4, a10 = a1 + a4 +

a7, a11 = a1 + a4 + a8, and a12 = a1 + a4 + a9. Thus, J(FQ12) = Ann(c) =

{(a1 + a2x + a3x
2 + a7y + a8xy + a9x

2y)(1 + x3) + (a1 + a4)(x
3 + x4 + x5)(1 + y) ;

a1, a2, a3, a4, a7, a8, a9 ∈ F} and dimF J(FQ12) = 7.

We next show that J(FQ12)
4 = Ann(c)4 = 0. Let α = (a1 + a2x + a3x

2 + a7y +

a8xy+a9x
2y)(1+x3)+(a1+a4)(x

3+x4+x5)(1+y) and β = (d1+d2x+d3x
2+d7y+

d8xy+d9x
2y)(1+x3)+(d1+d4)(x

3+x4+x5)(1+y) be any two elements of J(FQ12).

Then αβ = ((a1+a4)(d1+d2+d3+d7+d8+d9)+ (d1+d4)(a1+a2+a3+a7+a8+

a9))Q̂12 + (a1 + a4)(d1 + d4)x̂ (as (1+ x3)2 = 0, (x3 + x4 + x5)(1 + y)(1+ x3) = Q̂12,

and (x3 + x4 + x5)(1 + y)(x3 + x4 + x5)(1 + y) = x̂). Thus αβ = βα, implying

J(FQ12) is commutative. Since x̂x̂ = 0, x̂Q̂12 = 0, Q̂12Q̂12 = 0, we have αβγs = 0,

for all α, β, γ, s ∈ J(FQ12), so J(FQ12)
4 = 0.

Finally, we determine the structure of the unit group of FQ12. Note that for all α ∈

J(FQ12), if α
2 = 0, then a1+a4 = 0, so α = (a1+a2x+a3x

2+a7y+a8xy+a9x
2y)×

(1 + x3). Thus the number of elements in J(FQ12) with this property is |F |6 = 26n.

So the number of elements α in J(FQ12) for which α
4 = 0, but α2 6= 0, is |F |7−|F |6 =

27n−26n. This together with the fact that J(FQ12) is commutative and J(FQ12)
4 =

0 gives that 1+J(FQ12) ∼= C5n
2 ×Cn

4 . Since FQ12/J(FQ12) ∼= ∆(Q12)/J(∆(Q12))⊕

F , we conclude that dimF ∆(Q12)/J(∆(Q12)) = 4, so ∆(Q12)/J(∆(Q12)) ∼=

M(2, F ) as it is non-commutative and semisimple (note that in ∆(Q12)/J(∆(Q12)),

(1 + x2) + J(FQ12), (1 + x2)y + J(FQ12) do not commute). Note also that since

FQ12
∼= ∆(Q12, Q

′
12) ⊕ FC4, FQ12/J(FQ12) ∼= ∆(Q12, Q

′
12)/J(∆(Q12, Q

′
12)) ⊕

FC4/J(FC4) ∼= ∆(Q12, Q
′
12)/J(∆(Q12, Q

′
12)⊕F , so ∆(Q12, Q

′
12)/J(∆(Q12, Q

′
12))

∼=

∆(Q12)/J(∆(Q12)) ∼= M(2, F ). Thus FQ12/J(FQ12) ∼= M(2, F ) ⊕ F . Therefore,

U (FQ12)/V1
∼= U (FQ12/J(FQ12)) ∼= GL(2, F ) × F ∗, where V1 = 1 + J(FQ12) ∼=

C5n
2 × Cn

4 , proving (1).
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Since FQ12
∼= ∆(Q12, Q

′
12) ⊕ FC4, U (FQ12) ∼= U (∆(Q12, Q

′
12)) × U (FC4)

and J(FQ12) ∼= J(∆(Q12, Q
′
12)) ⊕ J(FC4). It follows from [12, Theorem 3.3] that

U (FC4) ∼= C2n−1 × Cn
2 × Cn

4 . As before, U (∆(Q12, Q
′
12))/(1 + J(∆(Q12, Q

′
12)))

∼=

U (∆(Q12, Q
′
12)/J(∆(Q12, Q

′
12)))

∼= GL(2, F ). Since J(FQ12) ∼= J(∆(Q12, Q
′
12)) ⊕

J(FC4), 1 + J(FQ12) ∼= C5n
2 × Cn

4 and 1 + J(FC4) ∼= Cn
2 × Cn

4 , we conclude that

1 + J(∆(Q12, Q
′
12))

∼= (1 + J(FQ12))/(1 + J(FC4)) ∼= C4n
2 , proving (2). �
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