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Ultracompanions of subsets of a group

I. Protasov, S. Slobodianiuk

Abstract. Let G be a group, βG be the Stone-Čech compactification of G endowed
with the structure of a right topological semigroup and G∗ = βG\G. Given any
subset A of G and p ∈ G∗, we define the p-companion ∆p(A) = A∗ ∩ Gp of A,
and characterize the subsets with finite and discrete ultracompanions.

Keywords: Stone-Čech compactification; ultracompanion; sparse and discrete
subsets of a group

Classification: 54D35, 22A15, 20F69

1. Introduction

Given a discrete space X , we take the points of βX , the Stone-Čech com-
pactification of X , to be the ultrafilters on X , with the points of X identified
with the principal ultrafilters, so X∗ = βX \ X is the set of all free ultrafilters
on X . The topology on βX can be defined by stating that the sets of the form
A = {p ∈ βX : A ∈ p}, where A is a subset of X , form a base for the open sets.
We note the sets of this form are clopen and that for any p ∈ βX and A ⊆ X ,
A ∈ p if and only if p ∈ A. For any A ⊆ X , we denote A∗ = A∩G∗. The univer-
sal property of βX states that every mapping f : X → Y , where Y is a compact
Hausdorff space, can be extended to the continuous mapping fβ : βX → Y .

Now let G be a discrete group. Using the universal property of βG, we can
extend the group multiplication from G to βG in two steps. Given g ∈ G, the
mapping

x 7→ gx : G → βG

extends to the continuous mapping

q 7→ gq : βG → βG.

Then, for each q ∈ βG, we extend the mapping g 7→ gq defined from G into βG
to the continuous mapping

p 7→ pq : βG → βG.

The product pq of the ultrafilters p, q can also be defined by the rule: given a
subset A ⊆ G,

A ∈ pq ↔ {g ∈ G : g−1A ∈ q} ∈ p.
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To describe a base for pq, we take any element P ∈ p and, for every x ∈ P , choose
some element Qx ∈ q. Then

⋃
x∈P xQx ∈ pq, and the family of subsets of this

form is a base for the ultrafilter pq.
By the construction, the binary operation (p, q) 7→ pq is associative, so βG is

a semigroup, and G∗ is a subsemigroup of βG. For each q ∈ βG, the right shift
x 7→ xq is continuous, and the left shift x → gx is continuous for each g ∈ G.

For the structure of a compact right topological semigroup βG and plenty of
its applications to combinatorics, topological algebra and functional analysis see
[2], [4], [5], [19], [21].

Given a subset A of a groupG and an ultrafilter p ∈ G∗ we define a p-companion

of A by

∆p(A) = A∗ ∩Gp = {gp : g ∈ G,A ∈ gp},

and say that a subset S of G∗ is an ultracompanion of A if S = ∆p(A) for some
p ∈ G∗.

Clearly, A is finite if and only if ∆p(A) = ∅ for every p ∈ G∗, and ∆p(G) = Gp
for each p ∈ G∗.

We say that a subset A of a group G is

• sparse if each ultracompanion of A is finite;
• disparse if each ultracompanion of A is discrete.

In fact, the sparse subsets were introduced in [3] with rather technical definition
(see Proposition 5) in order to characterize strongly prime ultrafilters in G∗, the
ultrafilters from G∗ \G∗G∗.

In this paper we study the families of sparse and disparse subsets of a group,
and characterize in terms of ultracompanions the subsets from the following basic
classification.

A subset A of G is called

• large if G = FA for some finite subset F of G;
• thick if, for every finite subset F of G, there exists a ∈ A such that Fa ⊆ A;
• prethick if FA is thick for some finite subset F of G;
• small if L \A is large for every large subset L;
• thin if gA ∩ A is finite for each g ∈ G \ {e}, e is the identity of G.

In the dynamical terminology [5], the large and prethick subsets are called
syndetic and piecewise syndetic respectively. For references on the subset combi-
natorics of groups see the survey [12].

We conclude the paper with discussions of some modifications of sparse subsets
and a couple of open questions.

2. Characterizations

Proposition 1. For a subset A of a group G and an ultrafilter p ∈ G∗, the

following statements hold:

(i) ∆p(FA) = F∆p(A) for every finite subset F of G;

(ii) ∆p(Ah) = ∆ph−1(A) for every h ∈ G;
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(iii) ∆p(A ∪B) = ∆p(A) ∪ ∆p(B).

Proposition 2. A subset A of a group G is large if and only if ∆p(A) 6= ∅ for

every p ∈ G∗.

Proof: Suppose that A is large and pick a finite subset F ofG such thatG = FA.
We take an arbitrary p ∈ G∗ and choose g ∈ F such that gA ∈ p so A ∈ g−1p and
∆p(A) 6= ∅.

Assume that ∆p(A) 6= ∅ for each p ∈ G∗. Given any p ∈ G∗, we choose gp ∈ G
such that A ∈ gpp. Then we consider a covering of G∗ by the subsets {g−1

p A : p ∈

G∗} and choose its finite subcovering g−1
p1

A, . . . , g−1
pn

A. SinceG\(g−1
p1

A∪· · ·∪g−1
pn

A)
is finite, we see that A is large. �

Proposition 3. For an infinite subset A of a group G the following statements

hold:

(i) A is thick if and only if there exists p ∈ G∗ such that ∆p(A) = Gp;
(ii) A is prethick if and only if there exists p ∈ G∗ and a finite subset F of G

such that ∆p(FA) = Gp;
(iii) A is small if and only if, for every p ∈ G∗ and each finite F of G, we have

∆p(FA) 6= Gp;
(iv) A is thin if and only if |∆p(A)| ≤ 1 for each p ∈ G∗.

Proof: (i) We note that A is thick if and only if G \ A is not large and apply
Proposition 2.

(ii) follows from (i).
(iii) We note that A is small if and only if A is not prethick and apply (ii).
(iv) follows directly from the definitions of thin subsets and ∆p(A). �

For n ∈ N, a subset A of a group G is called n-thin if, for every finite subset F
of G, there is a finite subset H of G such that |Fg ∩ A| ≤ n for every g ∈ G \H .

Proposition 4. For a subset A of a group G, the following statements are equiv-

alent:

(i) |∆p(A)| ≤ n for each p ∈ G∗;

(ii) for every distinct x1, . . . , xn+1 ∈ G, the set x1A ∩ · · · ∩ xn+1A is finite;

(iii) A is n-thin.

Proof: We note that x1A ∩ · · · ∩ xn+1A is infinite if and only if there exists
p ∈ G∗ such that x−1

1 p, . . . , x−1
n+1p ∈ A∗. This observation proves the equivalence

(i)⇔(ii).
(ii)⇒(iii) Assume that A is not thin. Then there are a finite subset F of G

and an injective sequence (gm)m<ω in G such that |Fgm ∩ A| > n. Passing to
subsequences of (gm)m<ω, we may suppose that there exist distinct x1, . . . , xn+1 ∈
F such that {x1, . . . , xn+1}gm ⊆ A so x−1

1 A ∩ · · · ∩ x−1
n+1A is infinite.

(iii)⇒(i) Assume that x1A ∩ · · · ∩ xn+1A is infinite for some distinct x1, . . . ,
xn+1 ∈ G. Then there is an injective sequence (gm)m<ω in x1A ∩ · · · ∩ xn+1A
such that {x−1

1 , . . . , x−1
n+1}gm ⊂ A so A is not n-thin. �
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By [7], a subset A of a countable group G is n-thin if and only if A can
be partitioned into ≤ n thin subsets. The following statements are from [15].
Every n-thin subset of an Abelian group of cardinality ℵm can be partitioned into
≤ nm+1 thin subsets. For each m ≥ 2 there exist a group G of cardinality ℵn,

n = m(m+1)
2 and a 2-thin subset A of G which cannot be partitioned into m thin

subsets. Moreover, there is a group G of cardinality ℵω and a 2-thin subset A of
G which cannot be finitely partitioned into thin subsets.

Recall that an ultrafilter p ∈ G∗ is strongly prime if p ∈ G∗ \G∗G∗.

Proposition 5. For a subset A of a group G, the following statements are equiv-

alent:

(i) A is sparse;

(ii) every ultrafilter p ∈ A∗ is strongly prime;

(iii) for every infinite subset X of G, there exists a finite subset F ⊂ X such

that
⋂

g∈F gA is finite.

Proof: The equivalence (ii)⇔(iii) was proved in [3, Theorem 9].
To prove (i)⇔(ii), it suffices to note that ∆p(A) is infinite if and only if ∆p(A)

has a limit point qp, q ∈ G∗ in A∗. �

Proposition 6. A subset A of a group G is sparse if and only if, for every

countable subgroup H of G, A ∩H is sparse in H .

Proof: Assume that A is not sparse. By Proposition 5(iii), there is a countable
subset X = {xn : n < ω} of G such that for any n < ω x0A∩ · · · ∩xnA is infinite.
For any n < ω, we pick an ∈ x0A∩· · ·∩xnA, put S = {x−1

0 an, . . . , x
−1
n an : n < ω}

and denote by H the subgroup of G generated by S ∪X . By Proposition 5(iii),
A ∩H is not sparse in H . �

A family I of subsets of a group G is called an ideal in the Boolean algebra
PG of all subsets of G if A,B ∈ I implies A ∪B ∈ I, and A ∈ I, A′ ⊂ A implies
A′ ∈ I. An ideal I is left (right) translation invariant if gA ∈ I (Ag ∈ I) for each
A ∈ I.

Proposition 7. The family SpG of all sparse subsets of a group G is a left and

right translation invariant ideal in PG.

Proof: Apply Proposition 1. �

Proposition 8. For a subset A of a group G, the following statements are equiv-

alent:

(i) A is disparse;

(ii) if p ∈ A∗ then p /∈ G∗p.

Recall that an element s of a semigroup S is right cancelable if, for any x, y ∈ S,
xs = ys implies x = y.

Proposition 9. A subset A of a countable group G is disparse if and only if each

ultrafilter p ∈ A∗ is right cancelable in βG.
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Proof: By [5, Theorem 8.18], for a countable group G, an ultrafilter p ∈ G∗ is
right cancelable in βG if and only if p /∈ G∗p. Apply Proposition 8. �

Proposition 10. The family dSpG of all disparse subsets of a group G is a left

and right translation invariant ideal in PG.

Proof: Assume that A∪B is not disparse and pick p ∈ G∗ such that ∆P (A∪B)
has a non-isolated point gq. Then either gp ∈ A∗ or gp ∈ B∗ so gp is non-isolated
either in ∆p(A) or in ∆p(B).

To see that dSpG is translation invariant, we apply Proposition 1. �

For an injective sequence (an)n<ω in a group G, we denote

FP (an)n<ω = {ai1ai2 . . . ain : i1 < · · · < in < ω}.

Proposition 11. For every disparse subset A of a group G, the following two

equivalent statements hold:

(i) if q is an idempotent from G∗ and g ∈ G then qg /∈ A∗;

(ii) for each injective sequence (an)n<ω in G and each g ∈ G, FP (an)n<ωg\A
is infinite.

Proof: The equivalence (i)⇔(ii) follows from two well-known facts. By [5, The-
orem 5.8], for every idempotent q ∈ G∗ and every Q ∈ q, there is an injective
sequence (an)n<ω in Q such that FP (an)n<ω ⊆ Q. By [5, Theorem 5.11], for
every injective sequence (an)n<ω in G, there is an idempotent q ∈ G∗ such that
FP (an)n<ω ∈ q.

Assume that qg ∈ A∗. Then q(qg) = qg so qg ∈ G∗qg and, by Proposition 8,
A is not disparse. �

Proposition 12. For every infinite group G, we have the following strong inclu-

sions

SpG ⊂ dSpG ⊂ SmG,

where SmG is the ideal of all small subsets of G.

Proof: Clearly, SpG ⊆ dSpG. To verify dSpG ⊆ SmG, we assume that a subset
A of G is not small. Then A is prethick and, by Proposition 2(ii), there exist
p ∈ G∗ and a finite subset F of G such that ∆p(FA) = Gp. Hence, G∗p ⊆ (FA)∗.
We take an arbitrary idempotent q ∈ G∗ and choose g ∈ F such that qp ∈ (gA)∗.
Since q(qp) = qp so q ∈ G∗qp and, by Proposition 8(ii), gA is not disparse. By
Proposition 10 A is not disparse.

To prove that dSpG \ SpG 6= ∅ and SmG \ dSpG 6= ∅, we may suppose that G
is countable. We put F0 = {e} and write G as an union of an increasing chain
{Fn : n < ω} of finite subsets.

1. To find a subset A ∈ dSpG \ SpG, we choose inductively two sequences
(an)n<ω, (bn)n<ω in G such that

(1) Fnbn ∩ Fn+1bn+1 = ∅, n < ω;
(2) Fiaibj ∩ Fkakbm = ∅, 0 ≤ i ≤ j < ω, 0 ≤ k ≤ m < ω, (i, j) 6= (k,m).
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We put a0 = b0 = e and assume that a0, . . . , an, b0, . . . , bn have been chosen. We
choose bn+1 to satisfy Fn+1bn+1 ∩ Fibi = ∅, i ≤ n and

⋃

0≤i≤j<ω

Fiaabi ∩ (
⋃

o≤i≤n

Fiai)bn+1 = ∅.

Then we pick an+1 so that

Fn+1an+1bn+1 ∩ (
⋃

0≤i≤j<ω

Fiaibj) = ∅, Fn+1an+1bn+1 ∩ (
⋃

0≤i≤n

Fiaibn+1) = ∅.

After ω steps, we put A = {aibj : 0 ≤ i ≤ j < ω}, choose two free ultrafilters
p, q such that {ai : i < ω} ∈ p, {bi : i < ω} ∈ q and note that A ∈ pq. By
Proposition 5(ii), A /∈ SpG.

To prove that A ∈ dSpG, we fix p ∈ G∗ and take an arbitrary q ∈ ∆p(A). For
n < ω, let An = {aibj : 0 ≤ i ≤ n, i ≤ j < ω}. By (1), the set {bj : j < ω}
is thin. Applying Proposition 2(iv) and Proposition 1, we see that An is sparse.
Therefore, if An ∈ q for some n < ω then q is isolated in ∆p(A). Assume that
An /∈ q for each n < ω. We take an arbitrary g ∈ G \ {e} and choose m < ω such
that g ∈ Fm. By (2), g(A \Am) ∩ A = ∅ so gq /∈ A∗. Hence, ∆p(A) = {q}.

2. To find a subset A ∈ SmG \ dSpG, we choose inductively two sequences
(an)n<ω, (bn)n<ω in G such that, for each m < ω, the following statement holds:

(3) bmFP (an)n<ω ∩ Fm(FP (an)n<ω) = ∅.

We put a0 = e and take an arbitrary g ∈ G \ {e}. Suppose that a0, . . . , am and
b0, . . . , bm have been chosen. We pick bm+1 so that

bm+1FP (an)n≤m ∩ Fm+1(FP (an)n≤m) = ∅

and choose an+1 such that

bm+1(FP (an)n≤m)an+1 ∩ Fm+1(FP (an)n≤m) = ∅,

bm+1(FP (an)n≤m) ∩ Fm+1(FP (an)n≤m)an+1 = ∅.

After ω steps, we put A = FP (an)n<ω. By Proposition 11, A /∈ dSpG. To see
that A ∈ SmG, we use (3) and the following observation. A subset S of a group
G is small if and only if G \ FS is large for each finite subset F of G. �

Proposition 13. Let G be a direct product of some family {Gα : α < κ} of

countable groups. Then G can be partitioned into ℵ0 disparse subsets.

Proof: For each α < κ, we fix some bijection fα : Gα \ {eα} → N, where eα is
the identity of Gα. Each element g ∈ G \ {e} has the unique representation

g = gα1
gα2

. . . gαn
, α1 < α2 < · · · < αn < κ, gαi

∈ Gαi
\ {eαi

}.
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We put suptg = {α1, . . . , αn} and let SeqN denote the set of all finite sequence
in N. We define a mapping f : G \ {e} → SeqN by

f(g) = (n, fα1
(gα1

), . . . , fαn
(gαn

))

and put Ds = f−1(s), s ∈ SeqN.
We fix some s ∈ SeqN and take an arbitrary p ∈ G∗ such that p ∈ D∗

s . Let
s = {n,m1, . . . ,mn}, g ∈ Ds and i ∈ suptg. It follows that, for each i < κ, there
exists xi ∈ Gi such that xiHi ∈ p, where Hi = ⊗{Gi : j < κ, j 6= i}. We choose
i1, . . . , ik, k < n such that

{i1, . . . , ik} = {i < κ : xiHi ∈ p, xi 6= ei},

put P = xi1Hi1 ∩· · ·∩xikHik ∩Ds and assume that gp ∈ P ∗ for some g ∈ G\{e}.
Then suptg ∩ {i1, . . . , ik} = ∅. Let suptg = {j1, . . . , jt}, H = Hj1 ∩ · · · ∩ Hjt .
Then H ∈ p but g(H ∩P ) ∩Ds = ∅ because |suptgx| > n for each x ∈ H ∩ P . In
particular, gp /∈ P ∗. Hence, p is isolated in ∆p(Ds). �

By Proposition 13, every infinite group embeddable in a direct product of
countable groups (in particular, every Abelian group) can be partitioned into ℵ0

disparse subsets.

Question 1. Can every infinite group be partitioned into ℵ0 disparse subsets?

By [9], every infinite group can be partitioned into ℵ0 small subsets. For an
infinite group G, η(G) denotes the minimal cardinality κ such that G can be
partitioned into η(G) sparse subsets. By [11, Theorem 1], if |G| > (κ+)ℵ0 then
η(G) > κ, so Proposition 12 does not hold for partition of G into sparse subsets.
For partitions of groups into thin subsets see [10].

3. Comments

1. A subset A of an amenable group G is called absolute null if µ(A) = 0
for each Banach measure µ on G, i.e. finitely additive left invariant function
µ : PG → [0, 1]. By [6, Theorem 5.1] and Proposition 5, every sparse subset of an
amenable group G is absolute null.

Question 2. Is every disparse subset of an amenable group G absolute null?

To answer this question in affirmative, in view of Proposition 8, it would be
enough to show that each ultrafilter p ∈ G∗ such that p /∈ G∗p has an absolute null
member P ∈ p. But that is not true. We sketch a corresponding counterexample.

We put G = Z and choose inductively an injective sequence (an)n<ω in N such
that, for each m < ω and i ∈ {−(m + 1), . . . ,−1, 1, . . . ,m + 1}, the following
statements hold:

(∗) (
⋃

n>m(an + 2anZ)) ∩ (i +
⋂

n>m(an + 2anZ)) = ∅.

Then we fix an arbitrary Banach measure µ on Z and choose an ultrafilter
q ∈ Z

∗ such that 2nZ ∈ q, n ∈ N and µ(Q) > 0 for each Q ∈ q. Let p ∈ G∗ be
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a limit point of the set {an + q : n < ω}. Clearly, µ(P ) > 0 for each P ∈ p. On
the other hand, by (∗), the set Z+ p is discrete so p /∈ Z

∗ + p.
In [18], for a group G, S. Solecki defined two functions σR, σL : PG → [0, 1] by

the formulas

σR(A) = inf
F

sup
g∈G

F ∩ Ag

|F |
, σL(A) = inf

F
sup
g∈G

|F ∩ gA|

|F |
,

where inf is taken over all finite subsets of G.
By [1] and [20], a subset A of an amenable group is absolute null if and only if

σR(A) = 0.

Question 3. Is σR(A) = 0 for every sparse subset A of a group G?

To answer this question positively it suffices to prove that if σR(A) > 0 then
there is g ∈ G \ {e} such that σR(A ∩ gA) > 0.

2. The origin of the following definition is in asymptology (see [16], [17]).
A subset A of a group G is called asymptotically scattered if, for any infinite
subset X of A, there is a finite subset H of G such that, for any finite subset F
of G satisfying F ∩H = ∅, we can find a point x ∈ X such that Fx ∩ A = ∅. By
[13, Theorem 13] and Propositions 5 and 6, a subset A is sparse if and only if A
is asymptotically scattered.

We say that a subset A of G is weakly asymptotically scattered if, for any subset
X of A, there is a finite subset H of G such that, for any finite subset F of G
satisfying F ∩H = ∅, we can find a point x ∈ X such that Fx ∩X = ∅.

Question 4. Are there any relationships between disparse and weakly asymp-

totically scattered subsets?

3. Let A be a subset of a group G such that each ultracompanion ∆p(A) is
compact. We show that A is sparse. In view of Proposition 6, we may suppose
that G is countable. Assume the contrary: ∆p(A) is infinite for some p ∈ G∗.
On one hand, the countable compact space ∆p(A) has an injective convergent
sequence. On the other hand, G∗ has no such a sequence.

4. Let X be a subset of a group G, p ∈ G∗. We say that the set Xp is uniformly
discrete if there is P ∈ p such that xP ∗ ∩ yP ∗ = ∅ for all distinct x, y ∈ X .

Question 5. Let A be a disparse subset of a groupG. Is ∆p(A) uniformly discrete

for each p ∈ G∗?

5. Let F be a family of subsets of a group G, A be a subset of G. We denote
δF (A) = {g ∈ G : gA ∩ A ∈ F}. If F is the family of all infinite subsets of G,
δF (A) was introduced in [14] under the name combinatorial derivation of A. Now
suppose that δp(F) 6= ∅, pick q ∈ A∗ ∩ Gp and note that δp(A) = δq(A). Then
δq(A) = (δq(A))

−1q.
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