
Acta Universitatis Carolinae. Mathematica et Physica

Z. Hlávka
On nonparametric estimators of location of maximum

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 52 (2011), No. 1, 5--13

Persistent URL: http://dml.cz/dmlcz/143663

Terms of use:
© Univerzita Karlova v Praze, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/143663
http://project.dml.cz


5

2011	acta  universitatis carolinae – mathematica et physica�vol.  52, No. 1

On Nonparametric Estimators of Location of Maximum

Zdeněk Hlávka

Praha

Received April 30, 2010
Revised June 19, 2010

An estimator of the maximum of a regression function and its location is often of greater
interest than an estimator of the regression curve itself. We review properties of nonpara-
metric estimators of the location of maximum and investigate the influence of the density
of design points on the asymptotic distribution of the estimator. Classical calculus of vari-
ations is used to find the optimal distribution of the design points for the nonparametric
kernel estimator of the location of maximum.

1. I n t r o d u c t i o n

Let us consider the nonparametric regression model Yi = m(xi)+εi, where the fixed
design points 0 = x1 < x2 < · · · < xn = 1 are such that FX(xi) − FX(xi−1) = 1/(n − 1),
for some distribution function FX(.). The symbol fX(.) denotes the corresponding
probability density function if it exists.

Our investigations will be based on the Gasser-Müller (GM) kernel regression es-
timate [1]:

m̂(x) =
1
bn

n∑
i=1

∫ si

si−1

K
(

x − u
bn

)
du Yi, (1)

where si−1 =
1
2 (xi + xi−1), bn is the bandwidth and K(.) the kernel function.

The parameter of interest, θ, is the location of the maximum of the regression func-
tion m(.), i.e., θ = arg maxx∈(0,1) m(x). The natural estimator of the location of maxi-
mum is the so-called empirical location of the maximum, i.e., θ̂n = arg maxx∈(0,1) m̂(x),
see [3].
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In Section 2, we review the effect of the distribution of design points on the asymp-
totic distribution of the estimator. The optimal design of the experiment is derived in
Section 3. A simulation study is carried out in Section 4 and Section 5 concludes.

2. N o n p a r a m e t r i c e s t i m a t o r o f l o c a t i o n o f m a x i m u m

In order to investigate the dependency of the asymptotic distribution of the empir-
ical location of the maximum, θ̂n, on the density of the design points, fX , we need
some assumptions on the regression function m(.), the kernel function K(.), and the
bandwidth bn:

(A1) Assume that m(.) has unique maximum in θ ∈ (0, 1), m(.) is four times con-
tinuously differentiable, and there exist xl < θ < xu, c > 0, and ρ ≥ 1 such
that m(.) is increasing on 〈xl, θ〉 and decreasing on 〈θ, xu〉 and |m(t) − m(θ)| >
> c|t − θ|ρ for t ∈ 〈xl, xu〉.

(A2) The kernel function K(.) is of order (0, 2), cf. [1, 3], i.e., B0 =
∫

K(u)du = 1,
B1 =

∫
K(u)udu = 0, and B2 = (1/2)

∫
K(u)u2du is finite. Assume that

the kernel K(.) is two times continuously differentiable and that K(2)(.) is
Lipschitz continuous.

(A3) Assume that lim inf
n→∞

nb4
n > 0, nb5

n/ log n → ∞ and that for some r > 2 the

conditions E|ε1|r < ∞ and lim inf
n→∞

bnn1−2/r/ log n > 0 are satisfied.

Lemma 1 Assume that assumptions (A1)–(A3) hold and that the design points are
uniformly distributed. If nb7

n → d2 ≥ 0 then

(nb3
n)1/2(θ̂n − θ)

D→ N
(
−dm(3)(θ)B2

m(2)(θ)
,
σ2V ′

{m(2)(θ)}2

)
,

where V ′ =
∫
{K(1)(u)}2du.

Proof. See Theorem 3.1(B) in [3] with k = 2 and ν = 0. �
Thus, choosing bn such that nb7

n → 0, for example bn = n−1/6, and denoting
by u1−α/2 the 1 − α/2 quantile of the standard Normal distribution, we obtain an
approximate 1 − α confidence interval for θ as

θ̂n −
u1−α/2√

nb3
n

σ
√

V ′

m(2)(θ)
, θ̂n +

u1−α/2√
nb3

n

σ
√

V ′

m(2)(θ)

 . (2)

The simulated example in Figure 1 provides a simple illustration. For two band-
widths, the true regression curve m(x) = cos{2π(x − 0.3)} and its estimate, m̂(x), are
denoted by the dotted and the solid line, respectively. Similarly, the dotted and solid
vertical lines denote respectively the true location of maximum θ and the empirical
location of maximum θ̂n. The asymptotic 95% confidence intervals for the location of
maximum are plotted as two dashed vertical lines in each plot. For both bandwidths

F 1. Two estimates of the location of the maximum with uni-
formly distributed design points and different bandwidths. The true
regression line and the true location of maximum are denoted by dotted
lines. Solid lines denote the GM kernel regression estimates and the
corresponding empirical location of maxima, dashed lines mark 95%
confidence intervals for the location of maximum

in Figure 1, the approximate 95% confidence intervals cover the true location of max-
imum θ = 0.3. Notice that the shorter confidence interval on the right-hand side plot
in Figure 1 covers the true value of the parameter θ although the regression function
estimate m̂(x) is highly biased due to large bandwidth.

2.1 Non-uniformly distributed design points

Let us now investigate the influence of the distribution of design points on the
asymptotic behavior of the empirical location of maximum.

First, we summarize and reformulate some already known results [2, 3] concern-
ing the variance of the nonparametric GM kernel regression estimator, m̂(x), and the
variance of its derivative, m̂(1)(x).

Lemma 2 Assume that assumptions (A1)–(A3) hold and that the design points are
distributed according to a probability density fX(.) satisfying assumption (A4):

(A4) The density of the design points, fX(.), is strictly positive and there exists
γ ∈ (0, 1〉 and L > 0 such that | f (x1)− f (x2)| ≤ L|x1−x2|γ for all x1, x2 ∈ 〈0, 1〉.

Then

Var{m̂(x)} = σ
2

nbn

[∫ 1

−1
K2(u)du{ f (x)}−1 + o(1)

]
.

If the first derivative of the kernel function, K(1)(.), is Lipschitz continuous then

Var{m̂(1)(x)} = σ
2

nb3
n

[∫ 1

−1
{K(1)(u)}2du{ f (x)}−1 + o(1)

]
,
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where m̂(1)(x) = 1
b2

n

∑n
i=1

∫ si

si−1
K(1){(x − u)/bn}duYi.

Proof. See page 288 in [2] and pages 225–226 in [3]. �
The asymptotic distribution of the empirical location of maximum with non-

uniformly distributed design points may be derived by proceeding similarly as in [3].

Theorem 1 Assume that assumptions (A1)–(A3) hold and that the design points
are distributed according to fX(.) satisfying assumption (A4). If nb7

n → d2 ≥ 0 then

(nb3
n)1/2(θ̂n − θ)

D→ N
(
−dm(3)(θ)B2

m(2)(θ)
,

σ2V ′

{m(2)(θ)}2 fX(θ)

)
.

Proof. In the same way as in the proof of Theorem 3.1 in [3] it can be shown that,
for any 0 < δ < 1/2, supt∈〈δ,1−δ〉 |m̂(2)(t) − m(2)(t)| → 0 a.s. and by Lemma 2.3 in [3] it
follows that |m̂(2)(θ̂n) − m(2)(θ)| → 0 a.s.

Notice that m̂(1)(θ̂n) = m(1)(θ) = 0 by definition and m(2)(θ) < 0 by (A1). Next,
from the Taylor expansion of m̂(1)(θ̂n) it follows that:

θ̂n − θ =
m̂(1)(θ̂n) − m̂(1)(θ)

m̂(2)(θ∗)

=
m(1)(θ) − m̂(1)(θ)

m(2)(θ)

{
m̂(2)(θ∗) + m(2)(θ) − m̂(2)(θ∗)

m̂(2)(θ∗)

}

=
m(1)(θ) − m̂(1)(θ)

m(2)(θ)
+ Rn,

for some θ∗ ∈ (θ, θ̂n) with the remainder term:

Rn = {m(1)(θ) − m̂(1)(θ)}{m(2)(θ) − m̂(2)(θ∗)}/{m(2)(θ)m̂(2)(θ∗)}.
Finally, the second part of Lemma 2 implies that

Var{m̂(θ)(1)} = σ
2

nb3
n

[∫ 1

−1
{K(1)(u)}2du{ f (t)}−1 + o(1)

]

and the result follows as in the proof of Theorem 3.1 in [3]. �
Theorem 1 describes the dependency of the variance of the empirical location of

maximum, θ̂n, on the distribution of the fixed design points fX(.). In the following
Section 3, we address the naturally occurring practical question of finding the optimal
design of the experiment and we propose a density of design points minimizing the
variability of the empirical location of maximum.

3. O p t i m a l d i s t r i b u t i o n o f d e s i g n p o i n t s

The problem of finding the optimal distribution of design points in nonparametric
kernel regression has been previously addressed in [2] from the point of view of the
integrated mean squared error (IMSE) of the GM kernel regression estimator m̂(x).

Choosing a probability measure H with a positive and continuous density h(.) on
〈0, 1〉 and considering:

IMS E = E
∫
{m̂(x) − m(x)}dH(x) ≈ 1

nbn

∫
K2(u)du

∫
h(x)
f (x)

dx,

the AIMSE (asymptotic IMSE) optimal density of the design points f ∗X(x) = h(x)1/2/∫
h(u)1/2du ∝ h(x)1/2 has been derived in [2].
Unfortunately, the AIMSE optimal design is very difficult to interpret and almost

impossible to apply in practice because the probability measure H lacks any clear
interpretation. In the following Section 3, we overcome this obstacle by obtaining
similar designs that minimize the variability of the empirical location of maximum.

3.1 Optimal distribution of design points for the estimation
of the location of maximum

In practical problems concerning the estimation of the location of maximum, we
may be able to gather a prior information concerning the location of the maximum.
Such information might stem from a preliminary stage of the experiment or from
past experience of other researchers. Let the symbol A denote a probability measure
corresponding to the prior distribution of the location of the maximum and let us
assume that A has a positive and continuous density a(.) such that:

(A5) There exists δ > 0 such that a(x) > δ, for all x ∈ 〈0, 1〉.
For simplicity, we assume throughout this section that σ2 and m(2)(θ) are constant.

The following Theorem 2 suggests the optimal choice of the design points using the
information contained in the prior density, a(.), of the location of maximum θ.

Theorem 2 Assume that (A1)–(A3) and (A5) hold, 0 < σ2 < ∞, and that m(2)(θ) =
= m2 does not depend on the location of maximum θ.

(1) Assuming that the prior density a(.) satisfies (A4), the density of design points
fV (x) ∝ a1/2(x) minimizes the expectation of the asymptotic variance of the
empirical location of maximum,

∫
Var(θ̂n|θ = u)a(u)du, with respect to the

prior density a(.).
(2) Assuming that a4/3(.) satisfies (A4), the density of design points fL(x) ∝

a2/3(x) minimizes the expected length of confidence intervals with respect to
the prior density a(.).

Proof. We prove only the first part because the second part is very similar. At
first, we recall that for a density of design points fX(.) satisfying (A4) it follows from
Theorem 1 that Var(θ̂n|θ = x) = c f −1

X (x), where c is a constant depending on n, bn,
K(.), σ2, and m2.

The minimization problem
fV = arg min fX

∫ 1
0 Var(θ̂n|θ = x)a(x)dx = arg min fX

∫ 1
0 f −1

X (x)a(x)dx belongs to the
classical calculus of variations. Denoting F(x, y, y′) = F(x, FX , fx) = f −1

X (x)a(x), the
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neccessary condition for an extreme of I( fX) = I(y′) =
∫ 1

0 F(x, y, y′)dx is F′y− d
dx F′y′ =

= 0, see e.g. [4, 6]. In our setup, F′y = 0 and F′y′(x) = − f −2
X (x)a(x) and the above

condition thus implies that the optimal density of design points fV (.) has to satisfy
d
dx { f −2

V (x)a(x)} = 0, i.e., f −2
V (x)a(x) = constant.

Next, let f �V (x) ∝ a1/2(x) denote the candidate solution and notice that it satis-
fies (A4) because a1/2(x1)−a1/2(x2) < {a1/2(x1)−a1/2(x2)}{a1/2(x1)+a1/2(x2)}/δ1/2 =
= {a(x1) − a(x2)}/δ1/2 by (A5) and a(.) satisfies (A4) by our assumptions.

It remains to verify that the candidate solution f �V (.) minimizes the expected vari-
ance. Considering another probability density functions fY and fZ = α fY + (1 − α) f �V
for α ∈ 〈0, 1〉 and defining k = {

∫ 1
0 a1/2(u)du}−1 and Z(α) =

∫ 1
0 f −1

Z (x)a(x)dx =

=
∫ 1

0 [α{ fY (x) − ka1/2(x)} + ka1/2(x)]−1a(x)dx, it is easy to verify that Z(α) is con-
tinuously differentiable, Z′(0) = 0 and, if fY and f �V are not equal A-a.e., Z(2)(α) > 0,
for α ∈ 〈0, 1〉. This implies that Z′(α) > 0 for α ∈ (0, 1〉 and, therefore, I( fY ) =
=
∫

f −1
Y (x)a(x)dx = Z(1) > Z(0) =

∫
{ f �V (x)}−1a(x)dx = I( f ∗V ) and the assertion

follows. �

4. S i m u l a t i o n s t u d y

The simulation study was implemented in the statistical computing environment
R [5]. All simulation results are based on the Gasser–Müller (GM) kernel regression
estimator using the quartic kernel and 2500 simulations.

In order to avoid boundary problems, we consider periodic regression functions on
〈0, 1〉 and we calculate the GM estimator as if the design was circular, i.e., as if the
design points were located on a circle.

Throughout the simulation study, the prior distribution of the location of maximum
is θ ∼ N(0.4, 0.01) restricted to the interval 〈0, 1〉. More precisely, the prior density
of the location of maximum is:

a(θ) ∝ exp{−5(θ − 0.4)2}I(θ ∈ 〈0, 1〉),

where I(.) denotes the indicator function.
The density of the design points in the simulation study will be controlled by a

parameter r: for a fixed value of the parameter r, the density of the design points,
fX,r(.), is proportional to the r-th power of the prior density a(.), i.e., fX,r(x) ∝ ar(x).
For example, the value r = 0 corresponds to uniformly distributed design points,
fX,0(x) = I(x ∈ 〈0, 1〉). The value r = 1 would mean that the density of design points
is equal to the prior density of the location of maximum, fX,1(x) = a(x). Higher
values of the parameter r mean that the design points are more concentrated in the
neighborhood of the mode of the prior distribution a(θ).

In each step of the simulation, for a fixed sample size n, the standard deviation
σ ∈ {0.1, 0.01}, the bandwidth bn ∈ 〈0.02, 0.50〉, and the parameter controlling the
density of design points r ∈ 〈0, 1.2〉, we:

(1) calculate the design points according to the density fX,r(x) ∝ ar(x),
(2) simulate the responses Yi = m(xi) + σεi, where m(.) is a chosen regression

function and εi are iid N(0, 1) (pseudo-)random variables,
(3) calculate the empirical location of maximum using the GM estimator with

bandwidth bn and function optimise() in R [5].
For each sample size n, standard deviation σ, the bandwidth bn, and each value of the
parameter r, we then calculate the Mean Squared Error (MSE) and the Mean Absolute
Deviation (MAD) of the empirical location of maximum from 2500 simulations. In
all tables, the MSE and MAD are presented only for the best value of the parameter r
(denoted as ropt) for each bandwidth. The bandwidths with the smallest MSE or MAD
are denoted by �. For example, in Table 1, for n = 20 observations and σ = 0.1, the
MSE is minimized for the bandwidth bn = 0.15 and the density of design points
proportional to a0.2(x) (ropt = 0.20).

In Table 1, we investigate the regression function:

m1(x) = cos{2π(x − θ)},

where the location of maximum is equal to the parameter θ. In this situation, Theo-
rem 1 implies that for bandwidths decreasing with the sample size at an appropriate
rate, the empirical location of maximum θ̂n is an asymptotically unbiased estimator
of θ since m(3)

1 (θ) = 0. However, contrary to our expectations and also contrary to
assumptions of Theorem 1, we observe in Table 1 that the optimal bandwidth actu-
ally increases with the sample size. This strange behavior could be caused by the
symmetry of the regression function m1(.) in the neighborhood of the location of
the maximum that favors larger bandwidths – this phenomenon is visible also in the
right-hand side plot in Figure 1 where the oversmoothed estimator leads to a shorter
confidence interval even if the corresponding nonparametric regression function esti-
mator is seriously biased.

In order to investigate also a possibly biased estimator of the location of maximum,
we use the regression function:

m2(x) = θ−2 cos{2π(x2 − θ2)}.

Note that the third derivative m(3)
2 (θ) � 0 and that the second derivative m(2)

2 (θ) =
= −16π2 does not depend on the location of maximum θ.

The setup of the simulation study for the regression function m2(.) remains the
same, the only difference is that the results are calculated on a modified grid of band-
widths from 0.01 to 0.10.

The simulation results for the regression function m2(.) are summarized in Table 2.
In this case, we observe that the optimal bandwidth decreases with increasing sample
size. For the simulated sample size n = 2500, the optimal values of the parameter r
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T 1. Results of 2500 simulations using the regression function
m1(.): the powers ropt of the prior density defining the distribution
of design points with the smallest MSE and MAD for sample sizes
n = 20 and 200, standard deviations σ = 0.1 and 0.01, and bandwidths
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observed in the simulation study (0.8 and 0.575 for MAD and 0.5 and 0.4 for MSE)
are already reasonably close to theoretical values (2/3 for MAD and 1/2 for MSE)
provided by Theorem 2.

5. C o n c l u s i o n

The density of design points derived in Theorem 2 increases the precision of the
nonparametric kernel estimator of the location of maximum. Compared to existing
literature [2], we obtain an easily interpretable and applicable result and we show
that the AIMSE optimal design, f ∗X ∝ a1/2(x), is also the MSE optimal design for
the location of maximum. Moreover, in Theorem 2 we show that a density of design
points proportional to a2/3(x) is optimal from a point of view of the expected length
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of confidence intervals. Finally, a small simulation study suggests that our theoretical
findings are appropriate for larger sample sizes and that the optimal density of design
points and the bandwidth are intrinsically related.
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