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k-DIRAC OPERATOR AND THE CARTAN-KÄHLER THEOREM

Tomáš Salač

Abstract. We apply the Cartan-Kähler theorem for the k-Dirac operator
studied in Clifford analysis and to the parabolic version of this operator.
We show that for k = 2 the tableaux of the first prolongations of these two
operators are involutive. This gives us a new characterization of the set of
initial conditions for the 2-Dirac operator.

1. Introduction

1.1. k-Dirac operator. Let g be the Euclidean product on Rn with an ortho-
normal basis {ε1, . . . , εn}. We denote by Rn the Clifford algebra for (Rn, g) with
the defining relation εαεβ + εβεα = −2gαβ and by M(n, k,R) the affine space of
matrices of size n × k. We assume throughout this paper that k ≥ 2 and n ≥ 3.
For i = 1, . . . , k set

(1) ∂iψ =
n∑
α=1

εα · ∂αiψ

where ψ is a smooth Rn-valued function on M(n, k,R). Here ∂αi are the coordinate
vector fields on M(n, k,R). We call the operator ∂ = (∂1, . . . , ∂k) the k-Dirac
operator in the Euclidean setting or just the k-Dirac operator. The k-Dirac operator
is an overdetermined, constant coefficient system of PDEs. A solution of ∂ψ = 0 is
called a monogenic function or a monogenic spinor in the Euclidean setting. More
to this operator can be found for example in [3] and [7].

In this paper we will show that the tableau associated to the first prolongation of
the 2-Dirac operator is involutive. This is Theorem 1. This gives new characterization
of the set of initial conditions. See Theorem 2.

We will use representation theory of symmetry group SL(k,R)× Spin(n) of the
operator ∂, see [10]. We denote this group by G̃ss

0 . The notation for the symmetry
group will be explained later. The group G̃ss

0 is a semi-simple Lie group with Lie
algebra sl(k,R) ⊕ so(n). We will work with complex representations of G̃ss

0 and
its Lie algebra. In particular, we consider the complex spinor representations of
so(n) rather then the real Clifford module Rn. For n odd, there is only one spinor
module S. If n is even there are two non-isomorphic spinor modules S+ and S−. In
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this case we set S := S+ ⊕ S−. We denote by s the dimension of the corresponding
spinor module S. Thus s = 2m if n = 2m+ 1 or n = 2m.

1.2. Parabolic k-Dirac operator. The parabolic k-Dirac operator D is an inva-
riant first order operator which lives in the world of parabolic geometries. For the
purpose of this paper we will give a coordinate definition of this operator. Put
U = M(n, k,R)×A(k,R) where M(, n, k,R) is the affine space of matrices of size
n× k while A(k,R) is the affine space of skew-symmetric matrices of size k. We
write coordinates as (xαi, yrs) where xαi, resp. yrs are coordinates on M(n, k,R),
resp. on A(k,R). We write ∂αi = ∂xαi , ∂rs = ∂yrs . We use the convention that
∂rs = −∂sr. The set U is isomorphic to an open affine subset of the Grassmannian
of isotropic k-planes in Rk,n+k. The Grassmannian is a flat model for a particular
type of parabolic geometries. For k = 2 this geometry is refered to as Lie contact
structures, see [2].

For α = 1, . . . , n and i = 1, . . . , k put Lαi := ∂αi − 1
2xαj∂ji where we sum over

the repeated index. We will call these vector fields left invariant vector fields. Lie
bracket is

(2) [Lαi, Lβj ] = gαβ∂ij .

These vector fields span a non-integrable distribution on U which is the essence of
the parabolic geometry. The (graded) tangent bundle of the Grassmannian variety
has a natural reduction of the structure group to G0 := GL(k,R) × SO(n). We
get a principal G0-bundle over U which we denote by G0. This is the notation
commonly used in [2]. We may (uniquely) lift the trivial bundle G0 to a principal
G̃0 := GL(k,R)× Spin(n)-bundle G̃0. As G̃0 is a 2 : 1-covering of G0 the natural
projection G̃0 → G0 is a 2 : 1-covering. The groups G0, G̃0 are reductive groups
whose semi-simple parts are isomorphic to Gss

0 , G̃
ss

0 respectively. We extend the
action of G̃ss

0 on S to the action of G̃0 by the choice of a generalised conformal
weight, i.e. we specify the action of the center of GL(k,R), as in [9]. By associating
S to the bundle G̃0 we get the spinor bundle S := G̃0 ×G̃0

S over U .
The set of vector fields {Lαi, ∂rs|α = 1, . . . , n; i = 1, . . . , k; 1 ≤ r < s ≤ k}

defines a section of G0 and we lift it to a section of G̃0. This trivializes the spinor
bundle S over U and thus a section ψ ∈ Γ(S) becomes a spinor valued function
over U . With the choice of the very flat Weyl connection we can write in this
trivialization Dψ = (D1ψ, . . . ,Dkψ) where

(3) Diψ =
n∑
α=1

εα · Lαiψ .

Comparing this to (1) we see that we have just replaced each ∂αi by the corres-
ponding left invariant vector field Lαi. A solution of Dψ = 0 is called a (parabolic)
monogenic spinor.

There is a strong and very interesting link which leads from the operator (3)
to (1). First of all, a parabolic monogenic spinor ψ which does not depend on
y-coordinates can be naturally viewed as a solution of ∂ψ = 0. A bit of work shows
that there is a (unique) locally exact sequence of invariant operators starting with
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the operator D. We can do the same move for the whole sequence as we did with
the monogenic spinors, i.e. we work only with the real analytic sections which in
the preferred trivialization do not depend on y-coordinates on which we act by the
invariant operators. Then we get a new sequence of operators which is still locally
exact and thus descends to a resolution of ∂. This can be found in [8].

1.3. Motivation and summary of results. Motivation for this paper is hidden
in the set of initial conditions for these two systems of PDEs. It is not hard to see
that any monogenic spinor (in the Euclidean setting) ψ is uniquely determined by
its restriction to the set M(n− 1, k,R) ∼= {x11 = x12 = . . . = x1k = 0}. Moreover
on this set the restriction ψ|M(n−1,k,R) has to satisfy for each i, j = 1, . . . , k:

(4) [∂̃i, ∂̃j ]ψ|M(n−1,k,R) = 0

where ∂̃i =
∑n
α=2 εα∂αi. This is a consequence of the fact that the coordinate vector

fields commute. On the other hand given a real analytic spinor valued function ϕ on
M(n− 1, k,R) converging on open neighbouhood of x ∈M(n− 1, k,R) and which
satisfies (4) then there is a unique monogenic spinor on M(n, k,R) converging on
some open neighbouhood of x whose restriction to M(n− 1, k,R) coincides with ϕ.

Conjecture 1. Given arbitrary real analytic spinor ψ in xαi-variables with α ≥ 2
converging on some open subset V of M(n− 1, k,R) there is a unique (parabolic)
monogenic spinor Ψ, i.e. DΨ = 0, converging on some open neighbouhood of V
in U whose restriction to the set M(n − 1, k,R) ∼= {x11 = · · · = x1k = y12 · · · =
yk−1,k = 0} coincides ψ.

If Conjecture 1 is true then the system (3) will have a nicer set of initial
conditions then (1). Starting with the k-Dirac operator in the Euclidean setting
and looking for a new system of PDEs such that any quadratic real analytic spinor
on M(n − 1, k,R) extends to a unique solution of the new system then one can
derive the Lie bracket (2) and the right dimension of the set U . This is already a
link from the operator (1) to the operator (3). The only question is how good this
link is?

I hoped this result would follow from the Cartan-Kähler theorem. Unfortunatelly
it does not. Nevertheless the Cartan-Kähler theorem gives us some other interesting
results. In this paper we show that both systems are involutive after the first
prolongation if k = 2. These are Theorems 1 and 3. For k ≥ 3 this is no longer
true and one has to continue on prolongating. I do not know when the involutivity
is attained. A closer look on the proof of involutivity for the parabolic 2-Dirac
operator also explains why the Cartan-Kähler theorem does not give Conjecture 1.
We will comment more on this in Remark 1 at the very end of the paper.

In the next section we cover basic machinery and terminology needed for the
Cartan-Kähler theorem. This short summary is taken mostly from [5]. For more on
the Cartan-Kähler theorem and exterior differential systems see [1].

We will simply refer to the k-Dirac operator if it is clear from the context
whether we mean D or ∂. Similarly we say just a monogenic spinor ψ whether it is
clear if we mean ∂ψ = 0 or Dψ = 0.
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2. Exterior differential systems

We assume throughout the paper that all structures are real analytic. Then we
can apply the machinery of the Cartan-Kähler theorem.

Let M be a manifold. An exterior differential system (EDS) on M is a graded
differential ideal I ⊂ Ω∗(M). Recall that Ω∗(M) is naturally graded by the degree
of differential forms. A graded differential ideal is a graded ideal closed under the de
Rham differential. We denote the k-th homogeneous piece by Ik. We are interested
in integral manifolds of I. These are submanifolds i : N ↪→M such that i∗α = 0
for any α ∈ I. Many interesting problems can be formulated in the language of
EDSs and integral manifolds. For a fixed x ∈M , the set of integral elements for I
of rank k at x is the set {E ⊂ TxM : dim(E) = k, ∀α ∈ Ik : α|E = 0}.

We will be interested in EDSs with independence condition. An independence
condition for I is given by a set of 1-forms {ω1, . . . , ωn}. We consider only those
integral manifolds of I for which i∗(ω1 ∧ . . . ∧ ωn) is a non-vanishing form on N .

We will be interested only in the differential ideals with an independence
condition which are (locally) generated as differential ideals by a set of linearly
independent 1-forms. We will call such a differential ideal a Pfaffian system. Let
I be a Pfaffian system with a generating set of linearly independent 1-forms
{θ1, . . . , θs}. We denote by I the subbundle of T ∗M spanned by these forms. We
may assume that {ω1, . . . , ωn, θ1, . . . , θs} is a set of everywhere linearly independent
1-forms on M . This set spans a subbundle of T ∗M which we denote by J . So I is a
subbundle of J . Let {π1, . . . , πt} be a set of 1-forms such that the set {ωi, θj , πε}
with i = 1, . . . , n, j = 1, . . . , s, ε = 1 . . . , r gives a basis of T ∗xM for each x ∈ M .
Let us now fix x ∈M . We put V∗ := (J/I)x,W∗ := Ix. We write vi = ωix, w

j = θjx
and denote the dual elements by vi and wj . We call the Pfaffian system I a linear
Pfaffian system if

(5) dθa = Aaεiπ
ε ∧ ωi + T aijω

i ∧ ωj

holds for some functions Aaεb, T aij modulo the algebraic ideal in Ω∗(M) generated by
I. The tableau at the point x is equal to Ax := 〈Aaεivi ⊗ wa ⊂ V∗ ⊗W|1 ≤ ε ≤ r〉.
Here 〈 〉 denotes the linear span. We drop the subscript x and write A instead of
Ax.

Let δ : V∗ ⊗ V∗ ⊗W → Λ2V∗ ⊗W be the natural projection. Set H0,2(A) :=
Λ2V∗ ⊗W/δ(V∗ ⊗ A). The torsion of (I, J) at x is defined as the class [T ]x :=
[T aij(x)vi ∧ vj ⊗ wa] ∈ H0,2(A). If [Tx] = 0 we say that the torsion is absorable
at x. This means that we can replace πε by new forms π′ε, ε = 1, . . . , t such that
{ωi, θj , π′ε} is still a basis of T ∗xM for each x ∈M and T ′aij = 0 for all a, i, j at the
point x with respect to the new basis. Later on we will need the following lemma.

Lemma 1. For a linear Pfaffian system on M with an independence condition,
the necessary and sufficient condition for vanishing of the torsion [Tx] at a point
x ∈M is that there is an integral element over x ∈M satisfying the independence
condition.

Proof. See Proposition 5.14. from [1]. �
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If follows from Lemma 1 that the torsion is a primary obstruction for existence
of integral manifolds. Suppose that [T ] = 0 on an open neighbouhood of x. Put
Ak := A ∩ 〈vk+1, . . . , vn〉 ⊗W for k = 1, . . . , n. Put A(1) := S2V∗ ⊗W ∩ V∗ ⊗ A.
We call A(1) the (first) prolongation of the tableau A. Then we have the inequality

(6) dim(A(1)) ≤ dim(A) + dim(A1) + · · ·+ dim(An−1) .
We say that the tableau is involutive if the equality holds for some choice of a basis
of V∗. It is convenient to introduce the Cartan characters s1, . . . , sn of the tableau
by requiring that dim(A) − dim(Ak) = s1 + · · · + sk holds for each k = 1, . . . , n.
Then the inequality (6) becomes

(7) dim(A(1)) ≤ s1 + 2s2 + · · ·+ nsn .

If the tableau is involutive then the Cartan-Kähler theorem applies. The
Cartan-Kähler theorem guarantees existence of n-dimensional integral manifolds
passing through x satisfying the independence condition. Moreover we can read
from the Cartan characters “how many” such local manifolds there are.

If the tableau is not involutive one has to start over on the pullback of the
canonical system on the Grassmann bundle to the space of integral elements. In
calculation this means that we add elements from A(1) as new variables and add
new forms θai := Aaεiπ

ε − paijωj where paijvi ⊗ vj ⊗ wa ∈ A(1) to the ideal I.
EDSs naturally arise with PDEs. Suppose that we are given a system of PDEs

of order k. Then we take M to be the space of k-jets of solutions of the PDE and
we pull back the canonical system which lives on the space of jets of vector valued
functions.

Computation simplifies in the case of a constant coefficient system. The torsion
vanishes and in the case of a linear, constant coefficient, homogeneous system of
PDEs the tableau A is at any point isomorphic to the space of linear solutions of
this system. The first prolongation of the tableau is naturally isomorphic to the
space of quadratic solutions. Set A(0) := A and inductively for j = 1, 2, . . . put
A(j) := SjV∗⊗W∩V∗⊗A(j−1). Then A(j) is naturally isomorphic the to space of
homogeneous solutions of the system of homogeneity j + 1 and A(j+1) ∼= (A(j))(1).
For more see [5].

3. k-Dirac operator (in the Euclidean setting) and the
Cartan-Kähler theorem

For this paper we will need to understand the space of linear, quadratic and
cubic monogenic spinors. Recall that S is the complex spinor representation of so(n)
defined in Section 1. There is an isomorphism M(k, n,R)⊗R S ∼= M(k, n,C)⊗C S.
We will work with complex representations of Lie algebra of G̃ss

0 and take tensor
product over complex numbers. We will denote the Cartan product by �. This is
the irreducible subspace with the highest weight in the tensor product of irreducible
representations.

Let E, resp. F be the defining representation of sl(k,C), resp. of so(n,C). We
choose a basis {e1, . . . , ek} of E. We denote by {ε1, . . . , εn} an orhonormal basis
of F. Let g be the SO(n,C)-invariant scalar product on F. If n = 2m is even we
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denote by {v1, . . . , vm, w1, . . . , wm} a null basis of F such that g(vi, wj) = δij . If
n = 2m+ 1 is odd we denote by {v1, . . . , vm, w1, . . . , wm, u} a basis such that the
relations on vi, wj are same as for n = 2m and g(u, u) = 1, g(u,wi) = g(u, vj) = 0.

In the case of the k-Dirac operator we have that (Vx)C := (V∗x)⊗R C ∼= E⊗ F
and Wx

∼= S for each x ∈ M(n, k,R). The tableau is isomorphic to Ax ∼= E ⊗ T
where T ∼= F � S is the Cartan component. We will drop the subscript x. We call
T the twistor representation of so(n). The subspace T is invariantly defined as the
kernel of the canonical projection π : F⊗S→ S which is on decomposable elements
given by the Clifford multiplication π(ε⊗ s) = ε · s. By induction on i we get that
A(i) is the intersection of Si+1(E⊗ F)⊗ S with the kernel of the projection

(8) E⊗
i+1
⊗ F⊗

i+1
⊗ S IdM⊗π−−−−−→ E⊗

i+1
⊗ F⊗

i

⊗ S

where M = E⊗
i+1
⊗ F⊗

i

.

3.1. The space of polynomials on M(n, k,C) as a GL(k,C)×GL(n,C)-module.
Let us consider the action of GL(k,C)×GL(n,C) on the space of polynomials on
M(n, k,C) given by ((g, h)·f)(x) = f(hxgT ) where g ∈ GL(k,C), h ∈ GL(n,C), x ∈
M(n, k,C) and f is a polynomial on M(n, k,C). The space of linear polynomials
is isomorphic to E′ ⊗ F′ where E′,F′ is the defining representation of GL(k,C),
resp. of GL(n,C). The space of quadratic polynomials is then isomorphic to
S2(E′⊗F′) ∼= S2E′⊗S2F′⊕Λ2E′⊗Λ2F′. The set {ei� ej ⊗ εα� εβ , ei ∧ ej ⊗ εα ∧
εβ |i, j = 1, . . . , k;α, β = 1, . . . , n} is a basis of S2(E′ ⊗ F′). Here we are using the
bases introduced in the previous paragraph. The corresponding polynomials are
xαixβj + xβixαj ∈ S2E′ ⊗ S2F′, resp. xαixβj − xβixαj ∈ Λ2E′ ⊗ Λ2F′.

With respect to the usual choices on Lie algebra of the semi-simple part of
GL(k,C) × GL(n,C), i.e. the Cartan subalgebra consists of diagonal matrices
and positive roots span the strictly upper triangular matrices, the polynomials
x11, x11x22 − x12x21 are highest weight vectors of E′ ⊗ F′, resp. of Λ2E′ ⊗ Λ2F′. If
k = 2 then Theorem 5.2.7 on GL(k,C)×GL(n,C)-duality from [4] shows that any
highest weight polynomial of an GL(k,C)×GL(n,C)-irreducible subspace is up to
a scalar multiple a product of x11 and x11x22 − x12x21.

3.2. Non-involutivity of the tableau of the k-Dirac operator. Recall that
we have denoted by {ε1, . . . , εn} an orthonormal basis of Cn. We consider it also
as an orthonormal basis of Rn and {e1, . . . , ek} as a basis of Rk. Then {ei ⊗ εα}
is a basis of V∗. Let us order it by {e1 ⊗ ε1, . . . , e1 ⊗ εk, e2 ⊗ ε1, . . . , en ⊗ εk}. Let
{sµ|µ = 1, . . . , s} be a basis of S. Then {εα ⊗ sµ + εn ⊗ εn.εα.sµ|α < n} is a basis
of T. In particular dim(T) = s(n− 1). The Cartan characters with respect to the
ordered basis of V∗ are equal to s1 = . . . = sk(n−1) = s, sk(n−1)+1 = . . . = snk = 0.
It is clear that these characters minimaze the right hand side of (7). So the right
hand side in (7) is equal to s

(
k(n−1)+1

2
)
.

We now have to compute the dimension dim(A(1)). We know that A(1) is
naturally isomorphic to the space of quadratic monogenic spinors.
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Lemma 2. The dimension of A(1) is equal to s
(
k(n−1)+1

2
)
− s
(
k
2
)
. In particular

dimA(1) < s
(
k(n−1)+1

2
)

and the tableau associated to the k-Dirac operator is not
involutive.

Proof. First let us consider the piece A(1) ∩ S2E ⊗ S2F ⊗ S. Let aµijαβ ∈ C
with α, β > 1 be artibrary such that aµijαβ = aµijβα = aµjiαβ . Consider the element
aµijαβei�ej⊗(εα�εβ⊗sµ+εα�ε1⊗ε1 ·εβ ·sµ+εβ�ε1⊗ε1 ·εα ·sµ−2δαβε1⊗ε1⊗sµ).

Then from (8) it follows that this is an element of S2E⊗ S2F⊗ S ∩A(1) with
prescribed components aµijαβei � ej ⊗ εα � εβ ⊗ sµ where α, β > 1. On the other
hand any element of S2E⊗S2F⊗S∩A(1) is uniquely determined by the coefficients
aµijαβ ∈ C with α, β > 1. This shows that dim(S2E⊗ S2F⊗ S∩A(1)) = s

(
n
2
)(
k+1

2
)
.

As a sl(k,C)⊕ so(n,C)-module this piece is isomorphic to S2E⊗ S2
0F � S where

S2
0F denotes the trace-free part of S2F.

Let aµijαβ ∈ C with α, β > 1 be such that aµijαβ = −aµijβα = −aµjiαβ . Then the
element aµijαβei ∧ ej ⊗ (εα ∧ εβ ⊗ sµ + εα ∧ ε1 ⊗ ε1 · εβ · sµ − εβ ∧ ε1 ⊗ ε1 · εα · sµ)
belongs to A(1) iff for all i, j = 1, . . . , k :

∑
αβ a

µ
ijαβεα · εβ · sµ = 0. These are s

(
k
2
)

linearly independent equations. This shows that dim(Λ2E ⊗ Λ2F ⊗ S ∩ A(1)) =
s(
(
k
2
)(
n−1

2
)
−
(
k
2
)
). As a sl(k,C) ⊕ so(n,C)-module this piece is isomorphic to

Λ2E⊗Λ2F�S. This space is irreducible if n > 4. If n = 4 it is the direct sum of two
irreducible pieces. Summing up we get that dim(A(1)) = s

(
k(n−1)+1

2
)
− s
(
k
2
)
. �

3.3. Involutivity of the tableau of the first prolongation for k = 2. Now
we show that the tableau associated to the first prolongation is involutive when
k = 2. We replace A by A(1) and A(1) by A(2) and repeat the algorithm. This
means that we have to compare the sum of the Cartan characters with respect to
a suitable filtration on the space of quadratic monogenic spinors (right hand side
of (7)) to the dimension of the space of cubic monogenic spinors.

According to Section 3.1 the space of homogeneous polynomials of degree 3
on M(n, 2,C) decomposes into S3E′ ⊗ S3F′ ⊕ (E′ � Λ2E′) ⊗ (F′ � Λ2F′) as a
GL(2,C) × GL(n,C)-module. If we restrict S3F′ to so(n,C) then it decomposes
into S3

0F ⊕ F where S3
0F is the trace-free part of S3F. The trace-free part is

the kernel of the canonical contraction. If n > 4 then Λ2F′ is irreducible also
under the action of so(n,C). If n = 4 then so(4,C) ∼= so(3,C) ⊕ so(3,C) and
the defining representation C4 is isomorphic C4 ∼= C2 ⊗ C2 where we use that
so(3,C) ∼= sl(2,C). The space Λ2C4 decomposes into Λ2C2⊗S2C2⊕S2C2⊗Λ2C2.
This is a splitting of 2-forms into self-dual and anti-self-dual part. The spinor
representations are S+ ∼= C2⊗C, S− ∼= C⊗C2, i.e. it is the defining representation
of one summand times the trivial representation of the second summand. The
projection π : (C2 ⊗ C2)⊗ S+ → S− is then the obvious skew-symmetrization in
the first factor times the identity on the latter factor. Similarly for S−.

Lemma 3. Let us write n = 2m if n is even and n = 2m + 1 if n is odd.
The space of cubic monogenic spinors contains the following list of irreducible
sl(2,C)⊕ so(n,C)-modules
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n ≥ 3 : S3E⊗ (S3
0F � S) 2m+1(n+1)n(n−1)

3
n ≥ 5 : (E � Λ2E)⊗ ((Λ2F � F) � S) 2m−1(n+1)(n−1)(n−3)

3
where on the right is the dimension of the module. For n = 4 there is also the
module (E � Λ2E)⊗ (C2 ⊗ S4C2 ⊕ S4C2 ⊗ C2).
Proof. Let v1 ∈ F be the first basis element introduced in Section 3. Then v1 is
null and we may assume that it is a highest weight vector in F. Let s ∈ S be a
highest weight vector. Then v1 · s = 0. This shows that S3E⊗ (S3F � S) ⊂ A(1) if
n ≥ 3. If n = 4 then F⊗ Λ2F contains two unique pieces C2 ⊗ S3C2 ⊕ S3C2 ⊗ C2.
Then S3C2 ⊗ C2 � S+ ∼= S4C2 ⊗ C2 is in the kernel of the map (8). Similarly
for S−. This shows that (2, 1) ⊗ (C2 ⊗ S4C2 ⊕ S4C2 ⊗ C2) belongs to A(1). If
n > 4 and v2 ∈ Cn is the second basis from Section 3. Then with the usual
convention v1 ∧ v2 ∈ Λ2F is a highest weight vector and v2 · s = 0. This shows that
(E � Λ2E)⊗ ((Λ2F � F) � S) ⊂ A(1). This proves the first part of the lemma. Now
we use the Weyl dimension formula to compute the dimension of each module from
the list.

The Weyl dimension formula works for semi-simple complex Lie algebras. We
denote by Φ+ the set of all positive roots, by ρ the lowest form. Let Vλ be an
irreducible module with highest weight λ. The Weyl dimension formula is

(9) dim(Vλ) =
∏
α∈Φ+〈ρ+ λ, α〉∏
α∈Φ+〈ρ, α〉

.

We will use the same notation as in [2]. Suppose that n = 2m. Then Φ+ =
{ei ± ej |1 ≤ i < j ≤ m} and ρ = (m − 1,m − 2, . . . , 1, 0). The denominator is∏
α∈Φ+〈ρ, α〉 = (2m − 3)!(2m − 5)! . . . 3!1!(m − 1)!. Suppose that m ≥ 3. The

highest weight of Vλ = S3F � S+ is (3 + 1
2 ,

1
2 , . . . ,

1
2 ). Thus the nominator is∏

α∈Φ+〈λ+ ρ, α〉 = 1
6 (2m+ 1)!(2m− 4)!(2m− 6)! . . . 2!. So we get that dim(S3F �

S+) = 2m−2

3 (2m+ 1)(2m)(2m− 1). The highest weight of Vµ = F � Λ2F � S+ is
µ = (2 + 1

2 , 1 + 1
2 ,

1
2 , . . . ,

1
2 ). Then

∏
α∈Φ+〈µ+ ρ, α〉 = 1

6 (2m+ 1)(2m− 1)!(2m−
3)!(2m− 6)!(2m− 8)! . . . 2!. This gives that dim(Vµ) = (2m+1)(2m−1)(2m−3)2m−1

3 .
Let us now consider the case n = 2m+1. Then Φ+ = {ei±ej , ei|1 ≤ i < j ≤ m}

and ρ = (m − 1
2 ,m −

3
2 , . . . ,

3
2 ,

1
2 ). The denominator is

∏
α∈Φ+〈ρ, α〉 = (2m −

2)!(2m−4)! . . . 2!(m− 1
2 )(m− 3

2 ) . . . 3
2

1
2 . Suppose that m ≥ 2. The highest weight of

Vσ = S3F�S is (3+ 1
2 ,

1
2 , . . . ,

1
2 ). Thus the nominator is

∏
α∈Φ+〈σ+ρ, α〉 = 1

6 (2m+
2)!(2m−3)!(2m−5)! . . . 3!1!. So we get that dim(S3F�S) = 2m

6 (2m+2)(2m+1)2m.
The highest weight of Vν = F � Λ2F � S is ν = (2 + 1

2 , 1 + 1
2 ,

1
2 , . . . ,

1
2 ). Then∏

α∈Φ+〈ν + ρ, α〉 = 1
3 (2m+ 2)(2m)!(2m− 2)!(2m− 5)!(2m− 7)! . . . 3!1!. This gives

that dim(Vν) = (m+1)m(m−1)2m+3

3 . �

Now we need to find the Cartan characters.
Lemma 4. Let k = 2 and n ≥ 3. Then the sequence of Cartan characters is equal
to (2n− 2)s, (2n− 3)s, . . . , 3s, 2s, 0, 0, 0.
Proof. Let us first consider the case n = 3. Let us choose the ordered basis e1⊗ε1,
e2 ⊗ ε2, (e1 + e2) ⊗ ε3, (e1 − e2) ⊗ ε3, e2 ⊗ ε1, e1 ⊗ ε2 of V∗. The corresponding
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affine coordinates are

(10) (t1, . . . , t6) 7→

 t1 t5
t6 t2

1
2 (t3 + t4) 1

2 (t3 − t4)

 .

We have to show that the corresponding Cartan characters are 8, 6, 4, 0, 0, 0.
The proof of Lemma 2 shows that the space of quadratic monogenic spinors is an
irreducible sl(2,C)× so(3,C)-module isomorphic to S2E⊗ (S2

0F � S). The complex
dimension of this module is equal to 18. From the description of this module given
in Lemma 2. follows that the first two Cartan characters are equal to 8, 6. It
suffices to show that the last three Cartan characters are zero. That is: there is no
monogenic quadratic spinor in the variables t4, t5, t6.

The description of the basis of S2E ⊗ S2F given in Lemma 2 shows that a
polynomial f ∈ S2E⊗S2F∩C[t4, t5, t6] is necessarily of the form f = at24 +bt25 +ct26
for a, b, c ∈ C. So we have to consider a spinor of the form (aµ(e1 − e2) � (e1 −
e2)⊗ ε3 � ε3 + bµe2 � e2 ⊗ ε1 � ε1 + cµe1 � e1 ⊗ ε2 � ε2)⊗ sµ where µ = 1, 2. This
element belongs to the kernel of the map (8) iff all coefficients aµ, bµ, cµ are zero.
This proves the claim for n = 3.

For n > 3 we choose the ordered basis e1 ⊗ ε1, e2 ⊗ ε1, e1 ⊗ ε2, . . ., e2 ⊗ εn−3,
e1⊗ εn−2, e2⊗ εn−1, (e1 + e2)⊗ εn, (e1− e2)⊗ εn, e2⊗ εn−2, e1⊗ εn−1. The affine
coordinates are then

(11) (t1, t2, t3, . . . , t2n) 7→


t1 t2
t3 . . .
. . . . . .
t2n−5 t2n−1
t2n t2n−4

1
2 (t2n−3 + t2n−2) 1

2 (t2n−3 − t2n−2)

 .

The claim follows from the description of the space of quadratic monogenic spinors
in the proof of Lemma 2 and the case n = 3. �

Theorem 1. The first prolongation of the tableau associated to the 2-Dirac operator
is involutive.

Proof. By the previous lemma the right hand side of the Cartan test (7) is equal
to s

∑2(n−1)
i=1 i(2n− 1− i)− 2s(n− 1) = s

(2n
3
)
− 2s(n− 1).

We used that
∑n
i=1 i(n + 1 − i) =

(
n+2

3
)
. Now we use the lower bound on

dim(A(1)) from Lemma 3. Recall that s = dim(S+ ⊕ S−) = 2m where n = 2m
if n is even while n = 2m + 1 if n is odd. For n ≥ 5 we have that dim(A(1)) ≥
2m+1(n+1)n(n−1)+2m−1(n+1)(n−1)(n−3)

3 = 2m
(2n

3
)
− 2 · 2m(n− 1). Thus we have the

equality in the Cartan test and the tableau is involutive. Let us consider n = 4.
The module S3

0F � S+ is isomorphic to S3C2 ⊗ S3C2 � S+ ∼= S4C2 ⊗ S3C2. The
dimension is equal to 20. The dimension of the latter piece from Lemma 3 is clearly
40. Since dimS3E = 4 we get that dim(A(1)) ≥ 4 · 40 + 40 = 200. On the other
hand the sum of Cartan characters is equal to 4

(8
3
)
− 2 · 4 · 3 = 200 and this is again

an involutive tableau. This completes the proof for n even.
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The last remaining case is n = 3. Recall that sl(2,C) ∼= so(3,C) and S ∼= C2,F ∼=
sl(3,C). Then dim(S3E ⊗ S3

0F � S) = 32. The sum of the Cartan characters is
2(4 + 2 · 3 + 3 · 2) = 32. �

3.4. Initial conditions for the 2-Dirac operator. We now use the Cartan-Kähler
theorem to characterize the set of initial conditions for the 2-Dirac operator. Let
us first consider the case n = 3. Already on the lowest dimensional case we can
illustrate the power of the Cartan-Kähler theorem. The general case will be given
below.

Let us recall that we chose in the proof of Lemma 4 an ordered basis of M(3, 2,R)
with affine coordinates in (10). Let us now denote the natural coordinates on the
space J2S of 2-jets of spinors by {ti, sµ, uµj , p

µ
ij} so that the canonical contact

system is θµ = dsµ − uµj ωj , θ
µ
i = duµi − p

µ
ijωj where ωi = dti, pµij = pµji, µ = 1, 2,

i, j = 1, . . . , 6. Let Σ be the subset of J2S of 2-jets of monogenic spinors. Then
local solutions of ∂f = 0 are in 1− 1 correspondence with integral manifols in Σ of
the pullback of the canonical system satisfying the independence condition given by
ω1, . . . , ω6. On such manifold we can consider sµ, uµj , pµij as functions of t1, . . . , t6.

For µ = 1, 2, i = 1, 2, 3 and j = i, i+ 1, . . . , 4 let fµij be arbitrary real analytic
functions of variables t1, . . . , ti. Now the proof of the Cartan-Kähler theorem gives
that there is a unique integral manifold of the canonical system satisfying the
independence condition passing through the point t1 = · · · = t6 = sµ = uµ1 = · · · =
uµ6 = 0 such that the following set of equations

pµ1j(t1, 0, 0, 0, 0, 0) = fµ1j(t1); j = 1, 2, 3, 4(12)
pµ2j(t1, t2, 0, 0, 0, 0) = fµ2j(t1, t2); j = 2, 3, 4
pµ3j(t1, t2, t3, 0, 0, 0) = fµ3j(t1, t2, t3); j = 3, 4

holds on the integral manifold. Recall that this gives existence of a monogenic
spinor which satisfies the system of initial conditions (12) on an open neighbouhood
of the given point.

Since the k-Dirac operator is a constant coefficient system it suffices to unders-
tand homogeneous parts of monogenic spinors. The system of equations (12) is
equivalent to the following: given arbitrary homogeneous spinors f1, f2 of homo-
geneity r, resp. r − 1 where r ≥ 2 in variables t1, t2, t3 then there is a unique
monogenic spinor f1 + t4f2 + g where g is a homogeneous spinor of degree r such
that the sum of degrees of the variables t4, t5, t6 of each monomial appearing in a
component of g is at least equal to 2.

For example consider quadratic monogenic spinors. The space of quadratic
monogenic spinors is naturally isomorphic to the vector space {aµijtitj + bµl t4tl}
where aµij ∈ C, bµl ∈ C are arbitrary constants symmetric in i, j, l = 1, 2, 3. Note
that the dimension of this space is 2(

(4
2
)

+ 3) = 18 which agrees with the previous
computations. Cubic monogenic spinors are naturally isomorphic to the space
{aµijltitjtl+bµuvt4tutv} where aµijl ∈ C, bµuv ∈ C are arbitrary constants symmetric in
i, j, l, u, v = 1, 2, 3. The dimension of the space of these coefficients is 2(

(5
3
)

+
(4

2
)
) =

32.
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For general n we use the same coordinates as in (11). Let g1, g2 be homogeneous
spinors on M(n, 2,R) of homogeneity r, resp. r − 1 with r ≥ 2 in variables
t1, . . . , t2n−3. Then there is a unique monogenic spinor g1 + t2n−2g2 + g where g is
a homogeneous spinor of degree r such that the sum of degrees of the variables
t2n−2, t2n−1, t2n of each monomial appearing in a component of g is at least equal
to 2. We have proved the following theorem.

Theorem 2. The vector space of homogeneous monogenic spinors of degree r ≥ 2
for the 2-Dirac operator in dimension n ≥ 3 is naturally isomorphic to the direct
sum of vector spaces of homogeneous spinors of degree r and r − 1 in the variables
t1, t2, . . . , t2n−3 from (11).

4. The Cartan-Kähler theorem for the parabolic k-Dirac operator

4.1. The canonical linear Pfaffian system on J2S. Let us recall that we are
working on the affine set U from Section 1.2. We write coordinates on M(n, k,R)
as xαi and on A(k,R) as yrs. Then ∂αi and ∂rs = −∂sr stand for the coordinate
vector fields. We use convention dyrs(∂ij) = δirδjs − δjrδis. Then we can write
dyrs = −dysr. We set Lαi = ∂αi− 1

2xαj∂ij and call them left invariant vector fields.
As in the case of the Euclidean 2-Dirac operator we will need the first pro-

longation of the canonical linear Pfaffian system living on the space of 1-jets
of monogenis spinors, i.e. we will need to work on the space of 2-jets of mo-
nogenic spinors on U . We write coordinates on the space J2S of 2-jets of spi-
nors over U as {xαi, yrs, sµ, uµαi, vµrs, a

µ
αiβj , b

µ
αirs, c

µ
rsuv} with the relations vµrs =

vµsr, a
µ
αiβj = aµβjαi, b

µ
αirs = −bµαisr, cµrsuv = cµuvrs = −cµsruv = −cµrsvu. The canonical

Pfaffian system I is generated by 1-forms θµ = dsµ − uµαidxαi − 1
2v
µ
rsdyrs, θ

µ
αi =

duµαi − a
µ
αiβjdxβj −

1
2b
µ
αirsdyrs, θ

µ
uv = dvµuv − b

µ
αiuvdxαi − 1

2c
µ
uvrsdyrs. Here we are

summing over all r, s = 1, . . . , k and so the factor 1
2 appears there.

We will need to introduce new coordinates which are more adapted for the
operator D. In the first place we have to find the dual 1-forms to the vector fields
Lαi, ∂rs, i.e. we are looking for 1-forms such that ωαi(Lβj) = δαβδij , ωαi(∂rs) = ωrs
(Lαi) = 0, ωrs(∂ij) = δirδjs − δisδjr. These forms will give for each x ∈ U an
isomorpism T ∗xU ∼= E ⊗ F ⊕ Λ2E where Λ2E is isomorphic to the span of all
(ωrs)x and E ⊗ F is the span of all (ωαi)x. We will not distinguish between
complex and real representations as carefully as we did in the previous sections.
The meaning should be clear from the context. We find that ωαi = dxαi and
ωrs = dyrs − 1

2 (xβrdxβs − xβsdxβr). We have dωαi = 0, dωrs =
∑
α ωαs ∧ ωαr.

Substituting ωαi, ωrs into the formula for θµ we obtain θµ = dsµ − σµαiωαi −
1
2v
µ
rsωrs where σµαi = uµαi− 1

2xαjv
µ
ij . We set Aµαiβj = aµαiβj−

1
2 (xαsbµβjis+xβtbµαijt)+

1
4xαsxβtc

µ
risj − 1

2δαβv
µ
ij , B

µ
αijs = bµαijs − 1

2xαtc
µ
itjs, C

µ
rskl = cµrskl. Then Aµαiβj −

Aµβjαi = δαβv
µ
ij . This is compatible with (2). The forms θµαi, θµrs are then θµαi =

dσµαi + 1
2xαjθij −A

µ
αiβjωβj −B

µ
αirsωrs, θµrs = dvµrs −B

µ
βjrsωβj −

1
2C

µ
rsuvωuv.

4.2. Vanishing of torsion. In this section we argue that the torsion of the linear
Pfaffian system associated to the k-Dirac operator and to its prolongation vanishes.
We state a necessary lemma from [8] and set the notation. We define a grading
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on the space of polynomials C[xαi, yrs]. The weighted degree of linear polynomials
is degw(xαi) = 1, degw(yrs) = 2. We extend this to the space of monomials such
that degw is a morphism of (C[xαi, yrs], ·)→ (Z,+). Then degw(f) = r iff f is a
sum of monomials of the weighted degree r. We say that a spinor ψ on U is of the
weighted degree r if each component of ψ is a weighted polynomial of degree r in
the preferred trivialization.

Lemma 5. Let ψ be a homogeneous monogenic spinor (in the Euclidean setting)
of degree r on M(n, k,R), i.e. ∂ψ = 0. Let g ∈ C[yrs] be an arbitrary homogeneous
polynomial of degree l. Then there is a parabolic monogenic spinor Ψ homogeneous
of weighted degree r + 2l on U , i.e. DΨ = 0, which is of the form Ψ = gψ + l.o.t.
where l.o.t. stands for a spinor on U whose components are polynomials which are
of degree strictly smaller than l in y-variables.

Proof. This is Lemma 8.6.2 from [8]. �

Let us choose k ∈ {1, 2}. We denote the space of k-jets of monogenic spinors
by Σ. The lemma implies that there is an integral manifold passing through any
point in the fibre of the canonical projection Σ → U over the origin 0 ∈ U . The
tangent space of the integral manifold is an integral element and so by Lemma 1
the torsion [T ] = 0 vanishes identically in the fibre over 0 ∈ U .

The flow of (the projection of) a right invariant vector fieldX on the homogeneous
space is symmetry of the operator D. By flows of such vector fields we can move
any point x ∈ U to any given point x′ ∈ U . The induced action on Σ is compatible
with the canonical projection to U . The flow of the field X preserve the ideal I and
thus also the tableau and the torsion is invariant along the flow lines. Since the
torsion vanishes in the fibre over 0 ∈ U it has to vanish everywhere on Σ.

4.3. Non-involutivity of the tableau associated to k-Dirac operator D.
The space of 1-jets of spinors on U is the set J1S = {(xαi, yrs, sµ, σµαi, vµrs)} with
canonical linear Pfaffian system generated by the forms θµ and the indepence
condition ωαi, ωrs. The structure equations are dθµ = −dσµαi ∧ωαi− 1

2dv
µ
rs ∧ωrs−

1
2v
µ
rsdωrs. We use abstract index notation and the Einstein summation convention.

We can then write (εα·) : S→ S, (ε · s)µ = (ε·)µνsν for any spinor sν ∈ S and ε ∈ F.
Then a 1-jet from J1S is a 1-jet of monogenic spinor iff

∑
α(εα)νµσ

µ
αi = 0 for all

i = 1, . . . , k. We may take πε to be the forms dσµαi with α > 1 and dvµrs with r < s.
For each x ∈ U : V∗x ∼= E ⊗ F ⊕ Λ2E and Wx

∼= S. The tableau is at any point
isomorphic to E⊗T⊕Λ2E⊗S while the torsion is represented by [− 1

2v
µ
rsdωrs]. From

the discussion in the previous section follows that the torsion vanishes identically.
The Cartan characters with respect to the ordered basis e1 ⊗ ε1, . . . , e1 ⊗

εk, . . . , en−1 ⊗ ε1, en−1 ⊗ εk, e1 ∧ e2, . . . , ek−1 ∧ ek, en ⊗ ε1, . . . , en ⊗ εk of V∗ are
si = s, sj = 0 for i ≤ k(n− 1) +

(
k
2
)
< j and so the right hand side of (7) is equal

to s
(k(n−1)+(k2)+1

2

)
. The first prolongation is clearly isomorphic to

(13) A(1) ∼= M⊕ Λ2E⊗ E⊗ T⊕ S2(Λ2E)⊗ S



k-DIRAC OPERATOR AND THE CARTAN-KÄHLER THEOREM 345

where M is the space of the quadratic monogenic spinors (in the Euclidean setting)
described in the proof of Lemma 2. The dimension of the prolongation is dim(A(1)) =
s
(k(n−1)+(k2)+1

2

)
− s
(
k
2
)
.

We see that we do not have equality in the Cartan test (7) and thus the tableau
is not involutive. We have to prolong this system as we in the case of the 2-Dirac
operator ∂. The interpretation of the tableau and its prolongations is the following.
Let J ixM be the space of i-jets of monogenic spinors at a point x ∈ Σ. The
tableau is isomorphic to the kernel of the canonical projection J1

xM → J0
xM,

the first prolongation of the tableau is isomorphic to the kernel of J2
xM→ J1

xM,
the prolongation of the first prolongation is then isomorphic to the kernel of
J3
xM→ J2

xM and so on.

4.4. Involutivity of the first prolongation of the parabolic 2-Dirac opera-
tor D. The structure equations on J2S are dθµ = 0, dθµαi = 1

2xαjdθij − dA
µ
αiβj ∧

ωβj − 1
2dB

µ
αirs ∧ ωrs − 1

2B
µ
αirsdωrs, dθµrs = −dBµβjrs ∧ ωβj −

1
2dC

µ
rsuv ∧ ωuv −

1
2C

µ
rsuvdωuv all modulo I.
The space of 2-jets of monogenic spinors is the subset of J2S where the following

set of relations holds. In the first place:
∑
α(εα·)µνσναi = 0,

∑
α(εα·)µνBναirs = 0

holds for all i, r, s. From the variables Aµαiβj only those with α, β > 1 are free.
There is one more system of equations

∑
α,β>1[(εα·)µρ , (εβ ·)ρν ]Aναiβj = (−n+ 2)vµji.

We find that for any x ∈ U : V∗ ∼= E⊗ F, W ∼= E⊗ T⊕ Λ2E⊗ S and that the
tableau A is isomorphic to the first prolongation (13) from the previous section.
The torsion vanishes identically on Σ by the same argument as in the previous
section.

Lemma 6. The Cartan characters of the tableau A are (2n− 1)s, (2n− 2)s, (2n−
3)s, . . . , 3s , 2s , 0 , 0 , 0.

Proof. Let us choose the origin x = 0 ∈ Σ. Let us order basis of V∗ by putting the
vector e1 ∧ e2 ∈ Λ2E in the first place and then we put the basis of E⊗ F ordered
in the same way as in Lemma 4. Then the first Cartan character is equal to the
dimension of S2(Λ2E)⊗ S⊕ Λ2E⊗ E⊗ T. This number is equal to s(1 + 2(n− 1)).
The other Cartan characters clearly coincide with the Cartan characters from
Lemma 4. �

Lemma 7. The first prolongation A(1) is isomorphic to the direct sum of the
corresponding irreducible sl(2,C) ⊕ so(n)-modules from the table (3) and Λ2E ⊗
M⊕ S2(Λ2E)⊗ E⊗ T⊕ S3(Λ2E)⊗ S where M is the module isomorphic the space
of quadratic monogenic spinors (in the Euclidean setting) from Lemma 2.

Proof. This follows from the definition of A(1) := V∗ ⊗A ∩ S2V∗ ⊗W. �

Theorem 3. The tableau of the first prolongation of the parabolic 2-Dirac operator
is involutive.

Proof. The right hand side of the Cartan test (7) is s
∑2n−1
i=1 i(2n−i)−(2n−1)s =

s (2n−1)
6 (4n2 + 2n− 6). The left hand side is equal to dim(A(1)) = s

(2n
3
)
− 2s(n−
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1) + s(
(2(n−1)+1

2
)
− 1) + 2s(n − 1) + s = s(2n − 1) 4n2+2n−6

6 . Here we have used
that dim(M) = s(

(2(n−1)+1
2

)
− 1) proved in Lemma 1 and that the dimension of

the space of cubic monogenic spinors (in the Euclidean setting) is s
(2n

3
)
− 2s(n− 1)

which was shown in the proof of Theorem 1. �

Remark 1. Thus we conclude that the machinery of the Cartan-Kähler theorem
reproves that the set of initial condtitions for the 2-Dirac operator D is the one
stated in Lemma 5. This follows directly from Lemma 6. knowing that the tableau
is involutive. So we see that the set of initial conditions from Conjecture 1 cannot
be obtained from the machinery of the Cartan-Kähler theorem but a modification
of the Cartan-Kähler theorem for weighted differential operators is needed. See [6].
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