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Abstract

In most clinical studies, patients are observed for extended time peri-
ods to evaluate influences in treatment such as drug treatment, approaches
to surgery, etc. The primary event in these studies is death, relapse, ad-
verse drug reaction, or development of a new disease. The follow-up time
may range from few weeks to many years. Although these studies are long
term, the number of observed events is small. Longitudinal studies have
increased the importance of statistical methods for time-to event data
that can incorporate time-dependent covariates. The Cox proportional
regression model is a widely used method. It is a statistical technique
for exploring the relationship between the survival of a patient and sev-
eral explanatory variables. We apply Cox regression models when right
censoring and delayed entry survival data are considered. Su and Wang
(2012) stated that delayed entry produced biased sample. In the paper
we present how re-sampling together with effect of delayed entry affect
estimated parameters. The possibilities as well as limitations of this ap-
proach are demonstrated through the retrospective study of mitral valve
replacement in children under 18 years.
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1 Introduction

Non-parametric survival analysis techniques are often used in clinical and epi-
demiological research to model the time without a parametric assumption (Col-
lett, 1994). The Cox proportional regression model (Cox, 1972) is a widely used
method. It is a statistical method for exploring the relationship between the
survival of a patient and several explanatory variables. This approach is focused
directly on the hazard function which represents the failure rate of an individual
in the population. The Cox proportional hazards model assumes a continuous
hazard when ties are not possible. It means it is not allowed to consider two
or more events at the same time. It’s quite common for various data sets to
contain tied event times. Four modifications of likelihood function to adjust for
ties were proposed, namely the discrete method, the Peto—Breslow method, the
Efron method and the exact method. The exact method, the Breslow method
and the Efron method are designed for continuous time scale while the discrete
method is for discrete time scale. The exact method and the discrete method are
based on exact likelihood functions; the Breslow method and the Efron method
provide approximations. The Breslow method (Breslow, 1972) works well when
ties observed are few. The exact method calculates the exact probabilities of all
possible ordering of events. After the partial likelihood function is constructed,
the inference of covariate coefficients is exactly the same as in the case where
there is no tied survival time. The problem with the exact method is that
the maximization of likelihood function with large amount of ties can take an
enormous amount of computing time (SAS Institute, 2008).

The follow-up time may range from few weeks to many years. Although
these studies are long term, the number of observed events is small. Especially
in cases with small data sets, the models may be inaccurate due to violation of
assumptions, omission of important predictors, high frequency of missing data
and/or improper imputation methods, and also overfitting (Harrell, 1996). That
is why it is recommended to use proper univariate statistical analysis instead of
multivariate approach. For many reasons, the most important being that some
of the predictors must be in the model from a medical point of view, the multi-
ple regression is an excellent tool for making prognostic predictions. univariate
statistical analysis. In many situations, stepwise procedures to select a set of
predictors are used. Such procedures have a tendency to include spurious pre-
dictors or to miss influential predictors. Moreover, results are not transferable
to similar data sets, since the set of predictors is random. An external clinical
judgment is ideal for selection of predictors and results from the literature are
also worthwhile. There are various statistical strategies to assess model choice
and performance, where bootstrapping is a prominent example.

In this paper, we focus on analysis of the left-truncated and right censored
data under the Cox proportional hazards model. Left truncation (delayed entry)
is a common situation where individuals are only sampled if they satisfy some
response-dependent selection criterion usually represented by the entrance time
(Klein, 1997). In our analysis we use an interval (0.00274, co), which means we
consider only those patients who survive the first 24 hours. From the medical
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point of view these first 24 hours are the most critical ones for survival of
patients. Patients spend these hours in the intensive care unit (ICU) where
they are closely monitored. The right censored data occurs when the subject
leaves the study before the event occurs, or the study ends before the event
occurs (Collet, 1994). The Breslow partial likelihood method (Breslow, 1972) is
proposed to estimate the covariate coefficients in this case. The aim of this paper
is to present how re-sampling together with delayed entry affect the parameter
estimator.

The paper is motivated by the need to understand the influence of covariates
on survival time with delayed entry in the retrospective study. In this retro-
spective study we analyze the results of mitral valve replacement in children
under 18 years conducted by the University Hospital Motol. In this study, 71
patients were observed between 1991 and 2011. The length of expected survival
time after the mitral valve operation on the patient was studied.

2 Cox proportional regression model

Let T be a random variable denoting time of the event, e.g., the time from the
mitral valve prosthesis operation to death in our clinical study. The survival
function S is the probability that the time of the event is later than specified
time t, i.e., S(t) = P(T > t), t € (0,00). The hazard function is defined as the
event rate at the time ¢ conditional on the survival until the time ¢ or later, i.e.,

Pt<T<t+At|T>t)

ne = Lmg Al / 2
which can be rewritten as
_fy_f@)
h(t) = TF0 ~ S0 (2.2)

where f(t) denotes the density function of lifetime distribution and F'(t) means
the lifetime distribution function. The hazard function is nonnegative and rep-
resents the failure rate of an individual in the population. The Cox proportional
regression model specifies the hazard rate at the survival time ¢ for an individual
with covariates = (z1,...,zx) in the form

h(t, ) = ho(t) exp(B121 + - - - + Brx), (2.3)

where hg(t) is the baseline hazard function when all covariates are zero, x; is
the ith covariate in the model, and f; is the regression coefficient for the ith
covariate x;.

Cox (1972) suggested the estimation of regression coefficients 3 = (31, . .., Bx)’
based on the “partial” likelihood function

n 3;
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where R(t;) = {j : t; > t;} denotes the risk set at time ¢;. The risk set R(¢;) of
individuals whose event times exceed t; is a convenient mechanism for excluding
from denominator those individuals who already experienced the event and from
this point of view are not part of this risk set (Allison, 1995). The symbol §; is
an indicator for censoring, where 0 denotes censored and 1 event. The function
L is called a “partial” likelihood function because it considers only probabilities
for failed subjects.

The Cox regression model is a combination of the proportional hazard model
and the partial maximum likelihood estimation. Although the Cox model is
non-parametric to the extent that no assumptions are made about the form of
baseline hazard, there are still a number of important conditions which need to
be satisfied before the model results can be safely applied. A key assumption
of the Cox regression model is proportional hazards. The proportional hazards
assumption means that the hazard ratio is constant over time. In general, the
hazard ratio can be computed by the exponential function of difference of log-
hazard between any two population profiles. The proportional hazards can be
verified, e.g., using smoothed plots of a special type of residuals from the model
or using hazard ratio plots (Klein, 1997).

When times in the continuous time model are grouped, ties in failure times
can be observed. In the Cox partial likelihood function ties are not allowed,
because the formula (2.4) is valid only for data which are not grouped. If the
number of observations and of ties is tolerable with respect to computing time,
Breslow (1974) proposed the following approximation for estimating covariate
coefficients. Suppose the events occur at N distinct times t; < to < -+ < tx.
Let us denote d; the total number of failures at time ¢;, D; the set of all subjects
who fail at time ¢; and s; the sum of covariate values over all subjects in the set

D;, that is s; = > jep; Tj- The Breslow partial likelihood function is given as

IO . L — (2.5)
=1 (ZjeR(tj) exp(ﬁlwg‘))

=

The left truncation is a common situation where individuals are only sampled
if they satisfy some response-dependent selection criterion. The selection crite-
rion is given by the truncation variable K characterizing the entrance time of the
subject to the study. Hence, the left truncation appears if a continuous random
variable T is only observable when it is greater than a truncation variable K.
Risk sets for the left-truncated time are given as R(¢;) = {j : t; > t; A t; > K}.

3 Mitral valve replacement study

Let us consider the problem whether the mitral valve replacement affects the
survival time of small children after the operation. In this retrospective study 71
children were reviewed, in whom the mitral valve was replaced. Operations were
done in the Motol hospital in Prague between January 1991 to December 2011.
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The statistical software package SAS Version 9.3 (SAS Institute, NC, USA) and
R version 2.15.1 were used for all statistical analyzes.

Time to event is considered as the response variable, the event is time to
death of patients. The survival time is considered as time in years from the
surgery. In general, we observed Ny = 71 patients but 10 of them had incomplete
information about weight and mitral valve replacement (MVR) and thus were
omitted from the study. Tied data were observed at time t. = 0.0027 in count
of three, and at time ¢, = 0.0055 in count of two.

The Kaplan—Meier estimator, also known as the product limit estimator, is
a popular non-parametric method for estimating the survival function S(t) from
non- or right-censored lifetime data (Kaplan and Meier, 1958). The Kaplan—
Meier method is the most suitable for smaller data sets with precisely measured
event times. It is a step function with steps at the death times (Allison, 1995).
The Kaplan—Meier estimate of the survival function together with 95% confi-
dence interval is presented in Fig. 1.

Product-Limit Survival Estimate
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Figure 1: The Kaplan—Meier estimate of the survival function from the analyzed
data set (N = 61) together with 95% confidence interval. The variable TIME
is time of observations in years.

Estimates of the survival function for the first 25 patients are described in
detail in Table 1. We can see that from N = 61 survival times, 15 (25 %)
patients died and 46 (75 %) patients were right censored. The first patient
died during the operation (t. = 0) and other 3 patients died within 24 hours
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(0.00274 years). The last patient died at time ¢, = 3.0219, i.e., three years and
8 days after the operation. The first right censored patient occurred at time
t. = 0.1342 and the last censored patient left the study at time t. = 16.8301.

Time Survival | Failure Survival No. failed | No. left
stand. error
0.00000 1.0000 0 0 0 61
0.00000 0.9836 | 0.0164 0.0163 1 60
0.00274 - - - 2 59
0.00274 - - - 3 58
0.00274 0.9340 | 0.0656 0.0317 4 57
0.00548 - - - 5 56
0.00548 0.9016 | 0.0984 0.0381 6 55
0.03560 0.8852 | 0.1148 0.0408 7 54
0.03840 0.8689 | 0.1311 0.0432 8 53
0.12050 0.8525 | 0.1475 0.0454 9 52
0.13420* - - - 9 51
0.16160 0.8357 | 0.1643 0.0475 10 50
0.27400* - - - 10 49
1.01640* - - - 10 48
1.05480 0.8183 | 0.1817 0.0496 11 47
1.08770 0.8009 | 0.1991 0.0515 12 46
1.19180 0.7835 | 0.2165 0.0532 13 45
1.19450* - - - 13 44
1.20270* - - - 13 43
1.39730* - - - 13 42
1.77530 0.7649 | 0.2351 0.0551 14 41
1.86580* - - - 14 40
3.02190 0.7457 | 0.2543 0.0570 15 39
3.32600* - - - 15 38
3.35070* - - - 15 37
4.30960* - - - 15 36

Table 1: Estimates of the survival function for the first 25 patients from the
analyzed data set (N = 61). The marked survival times denote censored obser-
vations. The symbol “-” denotes the same values as in the following time.

The continuous covariates include weight of the patients at the surgery time
(the mean equals to 14 kg and the standard error is 15 kg) and differences
between the mitral valve and the mitral valve prosthesis (the mean equals to
1.13 mm and the standard error is 4.8 mm), named the mitral valve replacement
(MVR). These two covariates were chosen on experiences of doctors to verify
their influence on the survival time of patients after the operation.

As mentioned in Introduction, from the medical point of view the first
24 hours are the most critical for the survival time of the patient, and there-
fore it is common to use left truncation. For the analysis, we use only these
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patients (N7 = 57) who survive the first 24 hours, i.e., the survival interval
(0.00274,00). From these 57 patients, 11 (19 %) patients had the event and
46 (81 %) patients were right censored. Tied data were observed only at time
te = 0.0055 in count of two. The results of estimation of the Cox proportional
regression model without left truncation are presented in Table 2, for the model
with left truncation in Table 3. Between the tables we can see slight differences
in estimated parameters and their standard errors. The significance of covari-
ates is verified by the Wald chi-square statistics with one degree of freedom.
Values of the test statistics together with p-values are also presented in Tables
2 and 3. The significance was accepted at 0.05 level. Whereas the weight is not
statistically significant in both cases, the MVR is significant for data without
left truncation. Using the left truncation approach with the truncation variable
24 hours, the MVR is not significant. Based on these results, we focused on the
analysis by bootstrap.

| Coefficient || Estimate | Stand. error | Chi-Square | Pr > ChiSq |

Weight 0.036 0.019 3.356 0.067
MVR —0.284 0.096 8.809 0.003

Table 2: Estimation of covariate coefficients for the Cox proportional regression
model without left truncation (N = 61).

| Coefficient || Estimate | Stand. error | Chi-Square | Pr > ChiSq |

Weight 0.023 0.023 1.019 0.313
MVR —0.152 0.099 2.316 0.128

Table 3: Estimation of covariate coefficients for the Cox proportional regression
model with left truncation (N7 = 57).

4 Bootstrapping

Bootstrap (Efron, 1996) is one of the several ways how to do re-sampling. In
bootstrap we approximate the entire sampling distribution by re-sampling orig-
inal data sets. It is useful when the original sample is small and the assumption
of normality does not hold. Here we use bootstrap for the estimation of re-
gression parameters and their standard errors and for the determination of the
confidence interval.

In this section we present some results from the bootstrap study (1000 repli-
cations), using the procedure surveyselect in the SAS, for the Cox proportional
regression model with (N; = 57 patients) and without (N = 61) left truncation.
Each of covariates and response variable was generated separately by simple
random sample with replacement (method URS in the SAS) of the same size as
the original sample. Even when variables are generated randomly (the link be-
tween them is not maintained), there are reasons to do the analysis as if they are
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fixed (the link between them is maintained). Covariate coefficients have larger
standard errors when the covariates have smaller standard errors. However the
difference between covariates vector fixed and covariates vector random usually
does not affect standard error estimate very much (Efron, 1993).

As the method for dealing with ties, the Breslow approximation method was
used. Histograms of estimates of weight and MVR coefficients from all 1000
bootstrap samples are demonstrated in Fig. 2 and 3.
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Figure 2: Histogram of estimates of weight covariate coefficient for re-sampled
data based on 1000 replications. Left with truncation, right without truncation.
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Figure 3: Histogram of estimates of MVR covariate coeflicient for re-sampled
data based on 1000 replications. Left with truncation, right without truncation.

The bootstrap estimates of weight and MVR coefficients (i.e., mean of esti-
mates from 1000 bootstrap samples) and bootstrap estimates of standard errors
of covariate coefficients (i.e., the sample standard errors of coefficients estimates
from 1000 bootstrap samples) are presented in Tables 4 and 5. The bootstrap
95% confidence intervals (lower/upper confidence limit is equal to 2.5th/97.5th
percentile of values) for weight and MVR coefficients are also included. Figures 2
and 3 together with Tables 4 and 5 show that bootstrap provides similar results
as we obtained from the original data set (Tables 2 and 3). Although bootstrap
estimates are less precise, the decision about the significance of covariates is the



Study of bootstrap estimates in Cox regression model with delayed entry 29

same. Particularly, the weight covariate is not significant in any of the models
with and without left truncation and the MVR covariate is significant only in
the model without left truncation.

| Coefficient || Estimate ‘ Stand. error | Lower 95% CI | Upper 95% CI ‘

Weight 0.01161 0.05551 —0.13226 0.07301
MVR —0.28013 0.12983 —0.56894 —0.05388

Table 4: Bootstrap estimation for the Cox proportional regression model with-
out left truncation (N = 61) based on 1000 bootstrap replications.

| Coefficient || Estimate ‘ Stand. error | Lower 95% CI | Upper 95% CI ‘

Weight —0.04197 0.14856 —0.34373 0.05854
MVR —0.13576 0.15942 —0.39900 0.09389

Table 5: Bootstrap estimation for the Cox proportional regression model with
left truncation (N; = 57) based on 1000 bootstrap replications.

5 Conclusion

In this paper we analyzed the effect of mitral valve replacement and weight on
survival time of small children after the operation. We found out that weight
does not affect survival time of small children after the operation. On the
other hand, the results for MVR are questionable. In case when all patients are
considered, the MVR covariate is statistically significant (p-value equals 0.003).
Nevertheless, using the left truncation with the truncation variable 24 hours
(omitting 4 patients), MVR loses its significance (p-value is 0.128). Based on
these results we used the bootstrap study for the same truncation variable (with
relative frequency 5% of omitted patients) and we achieved the same conclusion.
These results on MVR are not in conflict with conviction of doctors that the first
24 hours after the operation are the most critical for survival time of patients.
However, the survival time is affected by many other factors during the first
24 hours, and thus from the obtained results it is not obvious whether MVR
affects survival time of patient in general.

6 Discussion

Truncation is a commonly used approach for modeling medical data. Specif-
ically, when we analyze the survival time of patients after surgery, the model
included patients who survived the first 24 hours. In this study, the mitral valve
prosthesis can cause several serious complications, the most common complica-
tion was a partial or complete thrombosis of the prosthesis and patients were
treated using the Warfarine. Here, we discuss the use of left truncation because
four patients died within the first 24 hours. In such situations we propose to use
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the bootstrap before the decision to use the left truncation and to check how
estimates change after the truncation. Our results indicate that the truncation
can change the whole meaning of model and therefore it might not contribute to
the decision on the effect of covariates on survival time. Other possible solutions
may be to choose different types of analysis data, e.g., via weighted Cox models
or mixed models.
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