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The conformal change of the metric of an almost

Hermitian manifold applied to the antiholomorphic
curvature tensor

Mileva Prvanović

Abstract. By using the technique of decomposition of a Hermitian vector
space under the action of a unitary group, Ganchev [2] obtained a tensor
which he named the Weyl component of the antiholomorphic curvature
tensor. We show that the same tensor can be obtained by direct application
of the conformal change of the metric to the antiholomorphic curvature
tensor. Also, we find some other conformally curvature tensors and examine
some relations between them.

1 Introduction
Let (M, g, J) be an almost Hermitian manifold, dimM = 2n ≥ 4, with the complex
structure J and the Hermitian metric g, i.e., J2 = − Id, g(JX, JY ) = g(X,Y ) for
all X,Y ∈ Tp(M), where Tp(M) is the tangent vector space of M at p ∈M . Then
the fundamental 2-form is F (X,Y ) = g(JX, Y ) = −F (Y,X).

We consider the tensors having the standard symmetries of the curvature ten-
sors of a Riemannian manifold. In [7] the linear space R(V ) of such tensors over
a 2n-dimensional Hermitian vector space V was decomposed into irreducible com-
ponents under the action of the unitary group. Furthermore, all conformally in-
variant subspaces of R(V ) were found.

In [1] and [2] the holomorphic and antiholomorphic curvature tensors for an
almost Hermitian manifold are introduced, and, using the same technique as in the
paper [7], the generalized Bochner curvature tensor and the Weyl component of
the antiholomorphic curvature tensor are obtained.

We ask the question: Is it possible to get these tensors in the classical way, i.e.,
by direct application of the conformal change of this metric?
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In [6], we examined conformally invariant tensors associated with holomorphic
curvature tensor, and we found, among others, the generalized Bochner curvature
tensor.

In the present paper, we deal with the antiholomorphic curvature tensor and,
in Section 3, we find the Weyl component of the antiholomorphic curvature tensor.
In Sections 2 and 4, we determine some other conformally invariant tensors. In
Section 5 we find some relations between obtained conformally invariant tensors,
and in Section 6 we discuss the case of Kähler manifold.

We denote by R the Riemannian curvature tensor. Then the first and the
second Ricci tensors are defined as follows: ρ(X,Y ) =

∑2n
i=1R(ei, X, Y, ei), and

∗
ρ(X,Y ) =

∑2n
i=1R(ei, X, JY, Jei), where {ei} is an orthonormal basis of Tp(M).

Finally, the first and the second scalar curvatures are

τ =

2n∑
i=1

ρ(ei, ei),
∗
τ =

2n∑
i=1

∗
ρ(ei, ei) .

In general, the second Ricci tensor is not symmetric, but it satisfies the condition

∗
ρ(JX, JY ) =

∗
ρ(Y,X) . (1)

To make some formulas clearer we use the following notations:

π1(X,Y, Z,W ) = g(X,W )g(Y,Z)− g(X,Z)g(Y,W ) ,

π2(X,Y, Z,W ) = F (X,W )F (Y,Z)− F (X,Z)F (Y,W )− 2F (X,Y )F (Z,W ) ,

ϕ(X,Y, Z,W ) = g(X,W )ρ(Y,Z) + g(Y,Z)ρ(X,W )

− g(X,Z)ρ(Y,W )− g(Y,W )ρ(X,Z),

(Jϕ)(X,Y, Z,W ) = ϕ(JX, JY, JZ, JW ) = g(X,W )ρ(JY, JZ) + g(Y,Z)ρ(JX, JW )

− g(X,Z)ρ(JY, JW )− g(Y,W )ρ(JX, JZ) ,

ψ(X,Y, Z,W ) = F (X,W )
[
ρ(Y, JZ)− ρ(JY, Z)

]
+ F (Y, Z)

[
ρ(X, JW )

− ρ(JX,W )
]
− F (X,Z)

[
ρ(Y, JW )− ρ(JY,W )

]
− F (Y,W )

[
ρ(X, JZ)− ρ(JX,Z)

]
− 2F (X,Y )

[
ρ(Z, JW )

− ρ(JZ,W )
]
− 2F (Z,W )

[
ρ(X, JY )− ρ(JX, Y )

]
,

∗
ϕ(X,Y, Z,W ) = g(X,W )

[ ∗
ρ(Y,Z) +

∗
ρ(Z, Y )

]
+ g(Y,Z)

[ ∗
ρ(X,W ) +

∗
ρ(W,X)

]
− g(X,Z)

[ ∗
ρ(Y,W ) +

∗
ρ(W,Y )

]
− g(Y,W )

[ ∗
ρ(X,Z) +

∗
ρ(Z,X)

]
,

∗
ψ(X,Y, Z,W ) = F (X,W )

[ ∗
ρ(Y, JZ)− ∗

ρ(JY, Z)
]

+ F (Y, Z)
[ ∗
ρ(X, JW )

− ∗
ρ(JX,W )

]
− F (X,Z)

[ ∗
ρ(Y, JW )− ∗

ρ(JY,W )
]

− F (Y,W )
[ ∗
ρ(X, JZ)− ∗

ρ(JX,Z)
]

− 2F (X,Y )
[ ∗
ρ(Z, JW )− ∗

ρ(JZ,W )
]

− 2F (Z,W )
[ ∗
ρ(X, JY )− ∗

ρ(JX, Y )
]
.

(2)
A (0, 4) tensor T (X,Y, Z,W ) is said to be generalized curvature tensor if it satisfies
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all algebraic properties of the Riemannian curvature tensor, i.e.,

T (X,Y, Z,W ) = −T (Y,X,Z,W ) = −T (X,Y,W,Z) = T (Z,W,X, Y ) ,

T (X,Y, Z,W ) + T (Y,Z,X,W ) + T (Z,X, Y,W ) = 0 .

All tensors in the relations (2) are generalized curvature tensors. Hence we can
consider the corresponding first Ricci tensor and the second Ricci tensor of each
of them, and denote them as ρ(T ) and

∗
ρ(T ), respectively. In particular, we have

ρ(R) = ρ and
∗
ρ(R) =

∗
ρ.

For the latter use, we note that

ρ(π1)(X,Y ) = (2n− 1)g(X,Y ), ρ(π2)(X,Y ) = 3g(X,Y ) ,

ρ(ϕ)(X,Y ) = 2(n− 1)ρ(X,Y ) + τg(X,Y ) ,

ρ(Jϕ)(X,Y ) = 2(n− 1)ρ(JX, JY ) + τg(X,Y ) ,

ρ(ψ)(X,Y ) = −6[ ρ(X,Y ) + ρ(JX, JY )] ,

ρ(
∗
ϕ)(X,Y ) = 2(n− 1)

[ ∗
ρ(X,Y ) +

∗
ρ(Y,X)

]
+ 2

∗
τg(X,Y ) ,

ρ
( ∗
ψ
)
(X,Y ) = −6

[ ∗
ρ(X,Y ) +

∗
ρ(Y,X)

]
,

∗
ρ(π1)(X,Y ) = g(X,Y ),

∗
ρ(π2)(X,Y ) = (2n+ 1)g(X,Y ) ,

∗
ρ(ϕ)(X,Y ) = ρ(X,Y ) + ρ(JX, JY ) ,

∗
ρ(Jϕ)(X,Y ) = ρ(X,Y ) + ρ(JX, JY ) ,

∗
ρ(ψ)(X,Y ) = −2(n− 1)[ ρ(X,Y ) + ρ(JX, JY )]− 2τg(X,Y ) ,
∗
ρ(

∗
ϕ)(X,Y ) = 2[

∗
ρ(X,Y ) +

∗
ρ(Y,X)] ,

∗
ρ(

∗
ψ)(X,Y ) = −2(n− 1)[

∗
ρ(X,Y ) +

∗
ρ(Y,X)]− 2

∗
τ(X,Y ) .

(3)

2 Some conformally invariant tensors
For an almost Hermitian manifold (M, g, J), we consider the conformal change of
metric ḡ = e2fg, where f is a scalar function. If ∇ and ∇̄ are the Levi-Civita
connections with respect to the metrics g and ḡ respectively, we have

(∇̄ − ∇)(X,Y ) = θ(X)(Y ) + θ(Y )(X)− g(X,Y )U ,

for any vector fields X,Y ∈ T (M), where θ = df , and U is the vector field such
that g(U,X) = θ(X).

From now on, all geometric objects in (M, ḡ, J) will be denoted by analogous
letters as in (M, g, J), but with “bar”.

It is well known (see e.g., [3]) that the Riemannian curvature tensors R̄ and R
are related as follows

e−2f R̄(X,Y, Z,W ) = R(X,Y, Z,W ) + g(X,W )σ(Y,Z) + g(Y,Z)σ(X,W )

− g(X,Z)σ(Y,W )− g(Y,W )σ(X,Z)
(4)

where

σ(X,Y ) = (∇Xθ)(Y )− θ(X)θ(Y ) +
1

2
g(X,Y )θ(U) .
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We note that σ(X,Y ) = σ(Y,X).
The relation (4) implies

ρ̄(Y,Z) = ρ(Y,Z) + 2(n− 1)σ(Y,Z) + g(Y,Z)σ ,

where σ =
∑2n

i=1 σ(ei, ei). Therefore

σ =
e2f τ̄ − τ
2(2n− 1)

, (5)

and

σ(Y, Z) =
1

2(n− 1)

[
ρ̄(Y, Z)− τ̄

2(2n− 1)
ḡ(Y,Z)

]
− 1

2(n− 1)

[
ρ(Y,Z)− τ

2(2n− 1)
g(Y, Z)

]
.

(6)

Thus

σ(Y, Z) + σ(JY, JZ) =
1

2(n− 1)

[
ρ̄(Y, Z) + ρ̄(JY, JZ)

]
− τ̄

2(n− 1)(2n− 1)
ḡ(Y, Z)

− 1

2(n− 1)

[
ρ(Y,Z) + ρ(JY, JZ)

]
+

τ

2(n− 1)(2n− 1)
g(Y, Z) . (7)

On the other hand, the relation (4) implies

e−2f R̄(X,Y, JZ, JW ) = R(X,Y, JZ, JW )− F (X,W )σ(Y, JZ)

− F (Y,Z)σ(X, JW ) + F (X,Z)σ(Y, JW )

+ F (Y,W )σ(X, JZ) ,

wherefrom it follows

σ(Y,Z) + σ(JY, JZ) =
∗̄
ρ(Y,Z)− ∗

ρ(Y, Z) , (8)

or

σ(Y,Z) + σ(JY, JZ) =
1

2

[ ∗̄
ρ(Y,Z) +

∗̄
ρ(Z, Y )

]
− 1

2

[ ∗
ρ(Y,Z) +

∗
ρ(Z, Y )

]
(9)

and

σ =
1

2

(
e2f

∗̄
τ − ∗

τ
)
. (10)

Comparing (7) and (9), as well as (5) and (10), we find

1

n− 1

[
ρ̄(Y,Z) + ρ̄(JY, JZ)

]
−
[ ∗
ρ(Y, Z) +

∗
ρ(Z, Y )

]
− τ̄

(n− 1)(2n− 1)
ḡ(Y,Z)

=
1

n− 1

[
ρ(Y,Z) + ρ(JY, JZ)

]
−
[ ∗
ρ(Y, Z) +

∗
ρ(Z, Y )

]
− τ

(n− 1)(2n− 1)
g(Y,Z),

(11)
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and

e2f
(

∗̄
τ − τ̄

2n− 1

)
=

∗
τ − τ

2n− 1
. (12)

The relation (11) shows that the tensor

V (Y, Z) =
1

n− 1
[ ρ(Y,Z) + ρ(JY, JZ)]− [

∗
ρ(Y,Z) +

∗
ρ(Z, Y )]

− τ

(n− 1)(2n− 1)
g(Y,Z)

(13)

is conformally invariant, i.e., V̄ (Y,Z) = V (Y,Z). Thus

e−2f ḡ(X,W )V̄ (Y, Z) = g(X,W )V (Y,Z)

and therefore

e−2f
{
ḡ(X,W )V̄ (Y,Z) + ḡ(Y, Z)V̄ (X,W )− ḡ(X,Z)V̄ (Y,W )− ḡ(Y,W )V̄ (X,Z)

}
= g(X,W )V (Y,Z) + g(Y,Z)V (X,W )− g(X,Z)V (Y,W )− g(Y,W )V (X,Z) .

This relation, in view of (13) and (2), can be rewritten in the form

e−2f

[
1

n− 1
(ϕ̄+ Jϕ̄)− ∗̄

ϕ− 2τ̄

(n− 1)(2n− 1)
π̄1

]
=

1

n− 1
(ϕ+ Jϕ)− ∗

ϕ− 2τ

(n− 1)(2n− 1)
π1 .

This means that the tensor

W3 =
1

n− 1
(ϕ+ Jϕ)− ∗

ϕ− 2τ

(n− 1)(2n− 1)
π1 (14)

satisfies the condition
e−2fW̄3 = W3 . (15)

Since all the tensors ϕ, Jϕ,
∗
ϕ and π1 are generalized curvature tensors, the tensor

(14) is also a generalized curvature tensor.
In a similar way, we find that the tensors

W4 =
1

n− 1
ψ −

∗
ψ +

2τ

(n− 1)(2n− 1)
π2

W5 =
( τ

2n− 1
− ∗
τ
)
π1 and W6 =

( τ

2n− 1
− ∗
τ
)
π2

(16)

satisfy the conditions

e−2fW̄4 = W4, e−2fW̄5 = W5 and e−2fW̄6 = W6 (17)

respectively.
Thus, we can state the following theorem.

Theorem 1. For an almost Hermitian manifold we have

1. the tensor (13) is conformally invariant;

2. the generalized curvature tensors (16) satisfy the conditions (17) respectively.
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3 The Weyl component of the antiholomorphic curvature tensor
A 2-plane α ∈ Tp(M) is said to be holomorphic if Jα = α and antiholomorphic
if Jα⊥α. The sectional curvatures with respect to such 2-planes are holomorphic
and antiholomorphic respectively. The holomorphic sectional curvatures can be
examined using the holomorphic curvature tensor (see e.g., [2], [4], [5]). In [6] we
found some conformally invariant tensors associated with holomorphic curvature
tensor.

To examine the antiholomorphic sectional curvatures, G. Ganchev [1], [2] intro-
duced antiholomorphic curvature tensor which is

(AR)(X,Y, Z,W ) = R(X,Y, Z,W )

+
1

2n+ 2

{
F (X,W )

∗
ρ(Y, JZ) + F (Y,Z)

∗
ρ(X, JW )

− F (X,Z)
∗
ρ(Y, JW )− F (Y,W )

∗
ρ(X, JZ)

− 2F (X,Y )
∗
ρ(Z, JW )− 2F (Z,W )

∗
ρ(X,JY )

}
+

∗
τ

(2n+ 2)(2n+ 1)
π2(X,Y, Z,W ) .

(18)

The corresponding Ricci tensor is

ρ(AR)(X,Y ) ≡
2n∑
i=1

(AR)(ei, X, Y, ei)

= ρ(X,Y )− 3

2n+ 2

[ ∗
ρ(X,Y ) +

∗
ρ(Y,X)

]
+

3
∗
τ

(2n+ 2)(2n+ 1)
g(X,Y ) , (19)

and therefore the corresponding scalar curvature is

τ(AR) =

2n∑
i=1

ρ(AR)(ei, ei) = τ − 3
∗
τ

2n+ 1
, (20)

while the second Ricci tensor vanishes.
In this section we apply the conformal change of the metric to the tensor (18).

Let AR̄ be the antiholomorphic curvature tensor with respect to the metric ḡ.
Then, using (4), (8), and (10), we get

e−2f (AR̄)(X,Y, Z,W ) = (AR)(X,Y, Z,W ) + g(X,W )σ(Y,Z)

+ g(Y,Z)σ(X,W )− g(X,Z)σ(Y,W )− g(Y,W )σ(X,Z)

+
1

2n+ 2

{
F (X,W )[σ(Y, JZ)− σ(JY, Z)]

+ F (Y, Z)[σ(X, JW )− σ(JX,W )]− F (X,Z)[σ(Y, JW )− σ(JY,W )]

− F (Y,W )[σ(X, JZ)− σ(JX,Z)]− 2F (X,Y )[σ(Z, JW )− σ(JZ,W )]

− 2F (Z,W )[σ(X, JY )− σ(JX, Y )]
}

+
σ

(n− 1)(2n+ 1)
π2(X,Y, Z,W ) .

(21)
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To determine σ(X,Y ), we put into (21) X = W = ei, sum up and obtain

ρ(AR̄)(Y,Z)− ρ(AR)(Y,Z) =
2n2 − 5

n+ 1
σ(Y,Z)− 3

n+ 1
σ(JY, JZ)

+
2n2 + 3n+ 4

(n+ 1)(2n+ 1)
g(Y,Z)σ .

(22)

It follows from (22) that

e2fτ(AR̄)− τ(AR) =
8(n2 − 1)

2n+ 1
σ ,

or, in view of (20),

σ =
2n+ 1

8(n2 − 1)

{
e2f
(
τ̄ − 3

∗̄
τ

2n+ 1

)
−
(
τ − 3

∗
τ

2n+ 1

)}
. (23)

On the other hand, the relation (22) yields

4(n− 1)(n2 − 4)σ(Y,Z) = (2n2 − 5)[ ρ(AR̄)(Y,Z)− ρ(AR)(Y,Z)]

+ 3[ ρ(AR̄)(JY, JZ)− ρ(AR)(JY, JZ)]

− 2(n2 − 1)(2n2 + 3n+ 4)

(n+ 1)(2n+ 1)
g(Y,Z)σ

wherefrom, using (19) and (23) and supposing n > 2, we find

σ(Y,Z) =
1

4(n− 1)(n2 − 4)

[
(2n2 − 5)ρ̄(Y, Z) + 3ρ̄(JY, JZ)

]
− 3

4(n2 − 4)

[
∗̄
ρ(Y, Z) +

∗̄
ρ(Z, Y )

]
− 1

16(n2 − 1)(n2 − 4)

[
(2n2 + 3n+ 4)τ̄ − 9n

∗̄
τ
]
ḡ(Y,Z)

−
{ 1

4(n− 1)(n2 − 4)

[
(2n2 − 5)ρ(Y,Z) + 3ρ(JY, JZ)

]
− 3

4(n2 − 4)

[ ∗
ρ(Y, Z) +

∗
ρ(Z, Y )

]
− 1

16(n2 − 1)(n2 − 4)

[
(2n2 + 3n+ 4)τ − 9n

∗
τ
]
g(Y, Z)

}
.

(24)

Finally, substituting (23) and (24) into (21) and using the notations (2), we get

e−2f

{
AR̄+

1

4(n2 − 4)

[
− 2n2 − 5

n− 1
ϕ̄− 3

n− 1
Jϕ̄− ψ̄ + 3

(
∗̄
ϕ+

1

n+ 1

∗̄
ψ
)

+
(2n2 + 3n+ 4)τ̄ − 9n

∗̄
τ

2(n2 − 1)
π̄1 −

3

2(n2 − 1)

(
nτ̄ − 7n− 4

2n+ 1
∗̄
τ
)
π̄2

]}
= AR+

1

4(n2 − 4)

[
− 2n2 − 5

n− 1
ϕ− 3

n− 1
Jϕ− ψ + 3

(
∗
ϕ+

1

n+ 1

∗
ψ
)

+
(2n2 + 3n+ 4)τ − 9n

∗
τ

2(n2 − 1)
π1 −

3

2(n2 − 1)

(
nτ − 7n− 4

2n+ 1
∗
τ
)
π2

]
.

(25)
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Thus, putting

W1 = AR+
1

4(n2 − 4)

[
− 2n2 − 5

n− 1
ϕ− 3

n− 1
Jϕ− ψ + 3

(
∗
ϕ+

1

n+ 1

∗
ψ

)
+

(2n2 + 3n+ 4)τ − 9n
∗
τ

2(n2 − 1)
π1 −

3

2(n2 − 1)

(
nτ − 7n− 4

2n+ 1
∗
τ
)
π2

] (26)

we have
e−2fW̄1 = W1 .

In [2] the tensor (26) is obtained applying the technique of a decomposition
of the Hermitian vector space under an action of a unitary group, is denoted by
(AR)W and is called the Weyl component of the antiholomorphic curvature tensor.
It is here obtained as a result of a direct application of the conformal change of the
metric to the antiholomorphic curvature tensor.

It can be proved, using the relation (3) that ρ(W1) =
∗
ρ(W1) = 0, and this

explains the name “Weyl component...” for the tensor (26)

4 The second conformally invariant tensor associated
with the antiholomorphic curvature tensor

Putting into (7) JZ instead of Z, we find

σ(Y, JZ)− σ(JY, Z) =
1

2(n− 1)

[
ρ̄(Y, JZ)− ρ̄(JY, Z)

]
+

τ̄

2(n− 1)(2n− 1)
F̄ (Y,Z)

− 1

2(n− 1)

[
ρ(Y, JZ)− ρ(JY, Z)

]
− τ

2(n− 1)(2n− 1)
F (Y,Z) .

Substituting this relation as well as the relations (5) and (6) into (21), and using
the notation (2), we obtain

e−2f

{
AR̄− 1

2(n− 1)
ϕ̄− 1

4(n2 − 1)
ψ̄

+
τ̄

2(n− 1)(2n− 1)

(
π̄1 −

3n

(n+ 1)(2n+ 1)
π̄2

)}
= AR− 1

2(n− 1)
ϕ− 1

4(n2 − 1)
ψ

+
τ

2(n− 1)(2n− 1)

(
π1 −

3n

(n+ 1)(2n+ 1)
π2

)
(27)

or
e−2fW̄2 = W2 , (28)

where

W2 = AR− 1

2(n− 1)
ϕ− 1

4(n2 − 1)
ψ

+
τ

2(n− 1)(2n− 1)

(
π1 −

3n

(n+ 1)(2n+ 1)
π2

)
.

(29)
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We say that (29) is the second conformally invariant (in the sense of (28)) cur-
vature tensor of an almost Hermitian manifold associated with the antiholomorphic
curvature tensor.

In the case n > 2, the relation (27) can also be obtained from (25), using (11)
and (12). Namely, we have, according to (11)

∗̄
ρ(Y,Z) +

∗̄
ρ(Z, Y ) =

1

(n− 1)

[
ρ̄(Y,Z) + ρ̄(JY, JZ)

]
− τ̄

(n− 1)(2n− 1)
ḡ(Y, Z)

+
∗
ρ(Y,Z) +

∗
ρ(Z, Y )− 1

(n− 1)

[
ρ(Y,Z) + ρ(JY, JZ)

]
+

τ

(n− 1)(2n− 1)
g(Y, Z) .

Thus

e−2f ḡ(X,W )
[

∗̄
ρ(Y, Z) +

∗̄
ρ(Z, Y )

]
= e−2f

{ 1

(n− 1)
ḡ(X,W )

[
ρ̄(Y, Z) + ρ̄(JY, JZ)

]
− τ̄

(n− 1)(2n− 1)
ḡ(X,W )ḡ(Y, Z)

}
+ g(X,W )[

∗
ρ(Y, Z) +

∗
ρ(Z, Y )]

− 1

(n− 1)
g(X,W )

[
ρ(Y,Z) + ρ(JY, JZ)

]
+

τ

(n−1)(2n−1)
g(X,W )g(Y,Z) ,

such that

e−2f ∗̄
ϕ = e−2f

{
1

n− 1
(ϕ̄+ Jϕ̄)− 2τ̄

(n− 1)(2n− 1)
π̄1

}
+

∗
ϕ− 1

n− 1
(ϕ+ Jϕ) +

2τ

(n− 1)(2n− 1)
π̄1.

We get, in a similar way,

e−2f
∗̄
ψ = e−2f

{
1

n− 1
ψ̄ +

2τ̄

(n− 1)(2n− 1)
π̄2

}
+

∗
ψ − 1

n− 1
ψ − 2τ

(n− 1)(2n− 1)
π2 .

Therefore

3e−2f
(

∗̄
ϕ+

∗̄
ψ

n+ 1

)
= e−2f

{
3

n− 1
(ϕ̄+ Jϕ̄) +

3ψ̄

n2 − 1

− 6τ̄

(n− 1)(2n− 1)

(
π1 −

1

n+ 1
π2

)}
+ 3
(

∗
ϕ+

∗
ψ

n+ 1

)
− 3

n− 1
(ϕ+ Jϕ)− 3ψ

n2 − 1

+
6τ

(n− 1)(2n− 1)

(
π1 −

1

n+ 1
π2

)
.
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Substituting this into (25), and using (12), we get just (27).
Thus we can state a theorem.

Theorem 2. For n > 2 the relation (27) is a consequence of (25), (11) and (12).

The first Ricci tensor of the tensor W2 is

ρ(W2)(Y,Z) =
3

2(n+ 1)

{ 1

n− 1
[ ρ(Y,Z) + ρ(JY, JZ)]− [

∗
ρ(Y, Z) +

∗
ρ(Z, Y )]

− 1

2n+ 1

[ 3n

(n− 1)(2n− 1)
τ − ∗

τ
]
g(Y, Z)

}
,

while for the second Ricci tensor we have
∗
ρ(W2) = 0.

5 The relations between some conformally invariant tensors
5.1

According to (14) and (16), we have

∗
ϕ = −W3 +

1

n− 1
(ϕ+ Jϕ)− 2τ

(n− 1)(2n− 1)
π1 ,

∗
ψ = −W4 +

1

n− 1
ψ +

2τ

(n− 1)(2n− 1)
π2 .

Substituting this into (26), we get

4(n2−4)W1 = 4(n2 − 4)
[
AR− ϕ

2(n− 1)
− ψ

4(n2 − 1)

]
− 3W3 −

3

n+ 1
W4

+
[(2n2 + 3n+ 4

2(n2 − 1)
− 6

(n− 1)(2n− 1)

)
τ − 9n

2(n2 − 1)
∗
τ
]
π1

+
[(
− 3n

2(n2 − 1)
+

6

(n2 − 1)(2n− 1)

)
τ +

3(7n− 4)

2(n2 − 1)(2n+ 1)
∗
τ
]
π2 .

But, in view of (29), we have

AR− 1

2(n− 1)
ϕ− 1

4(n2 − 1)
ψ = W2−

τ

2(n− 1)(2n− 1)
π1 +

3nτ

2(n2 − 1)(4n2 − 1)
π2,

because of which and using (16) the preceding relation can be rewritten in the form

W1 ≡ (AR)W = W2 −
3

4(n2 − 4)

(
W3 +

1

n+ 1
W4

)
+

3

8(n2 − 1)(n2 − 4)

[
3nW5 −

7n− 4

2n+ 1
W6

]
.

(30)

Thus, we can state the following theorem.

Theorem 3. The Weyl component of the antiholomorphic curvature tensor can
be expressed as a linear combination of the tensors W2,W3,W4,W5 and W6 such
that (30) holds. Each of the tensors W is a generalized curvature tensor and each
satisfies the condition of the type e−2fW̄ = W .



The conformal change of the metric of an almost Hermitian manifold 87

5.2

It is well known (see e.g., [3]) that the Weyl conformal curvature tensor for the
Riemannian manifold (M, g), dimM = 2n, is

C(X,Y, Z,W ) = R(X,Y, Z,W )− 1

2(n− 1)

[
g(X,W )ρ(Y,Z)

+ g(Y,Z)ρ(X,W )− g(X,Z)ρ(Y,W )− g(Y,W )ρ(X,Z)
]

+
τ

2(n− 1)(2n− 1)
π1(X,Y, Z,W )

(31)

and that satisfies the condition

e−2f C̄(X,Y, Z,W ) = C(X,Y, Z,W ) .

Now, let us apply (18) to the tensor (31), instead to the tensor R. In such a
way we obtain

(AC)(X,Y, Z,W ) = C(X,Y, Z,W ) +
1

2(n+ 1)

[
F (X,W )

∗
ρ(C)(Y, JZ)

+ F (Y,Z)
∗
ρ(C)(X, JW )− F (X,Z)

∗
ρ(C)(Y, JW )

− F (Y,W )
∗
ρ(C)(X,JZ)− 2F (X,Y )

∗
ρ(C)(Z, JW )

− 2F (Z,W )
∗
ρ(C)(X, JY )

]
+

∗
τ(C)

(2n+ 2)(2n+ 1)
π2(X,Y, Z,W ) .

(32)

The first Ricci tensor of the tensor (31) vanishes. But, for the second Ricci tensor
we have

∗
ρ(C)(Y, Z) =

2n∑
i=1

C(ei, Y, JZ, Jei)

=
∗
ρ(Y,Z)− 1

2(n− 1)
[ ρ(Y, Z) + ρ(JY, JZ)]

+
τ

2(n− 1)(2n− 1)
g(Y,Z) ,

wherefrom it follows
∗
τ(C) =

∗
τ − τ

2n− 1
.

Substituting this and (31) into (32) and using (18), we get

A(C) = AR− 1

2(n− 1)

[
ϕ+

ψ

2(n+ 1)
− τ

2n− 1

(
π1 −

3n

(n+ 1)(2n+ 1)
π2

)]
,

such that, and in view of (29), we can state the following theorem.

Theorem 4. The second conformally invariant curvature tensor, associated with
the antiholomorphic curvature tensor, satisfies the relation W2 = A(C), while (11)
can be expressed in the form

∗
ρ(C̄)(Y, Z) +

∗
ρ(C̄)(Z, Y ) =

∗
ρ(C)(Y, Z) +

∗
ρ(C)(Z, Y ) .
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5.3

We note that, starting from (14), and using (3), we have

∗
ρ(W3)(Y,Z) =

2n∑
i=1

W3(ei, Y, JZ, Jei)

= 2
{ 1

n− 1

[
ρ(Y,Z) + ρ(JY, JZ)

]
−
[ ∗
ρ(Y,Z) +

∗
ρ(Z, Y )

]
− τ

(n− 1)(2n− 1)
g(Y,Z)

}
= 2V (Y, Z) ,

wherefrom it follows
∗
τ(W3) = 4

( τ

2n− 1
− ∗
τ
)
.

Substituting this into

A(W3)(X,Y, Z,W ) = W3(X,Y, Z,W ) +
1

2(n+ 1)

{
F (X,W )

∗
ρ(W3)(Y, JZ)

+ F (Y,Z)
∗
ρ(W3)(X, JW )− F (X,Z)

∗
ρ(W3)(Y, JW )

− F (Y,W )
∗
ρ(W3)(Y, JZ)− 2F (X,Y )

∗
ρ(W3)(Z, JW )

− 2F (Z,W )
∗
ρ(W3)(X, JY )

}
+

∗
τ(W3)

2(n+ 1)(2n+ 1)
π2(X,Y, Z,W ) ,

we get

A(W3) = W3 +
1

n+ 1
W4 +

2

(n+ 1)(2n+ 1)
W6 . (33)

As for the tensor W4, we have

∗
ρ(W4)(Y, Z) = −2(n+ 1)

{ 1

n− 1
[ ρ(Y,Z) + ρ(JY, JZ)]− [

∗
ρ(Y,Z) +

∗
ρ(Z, Y )]

}
+ 2
[ 2τ

(n− 1)(2n− 1)
+

∗
τ
]
g(Y,Z) ,

wherefrom it follows

∗
τ(W4) = −4(2n+ 1)

[ τ

2n− 1
− ∗
τ
]
.

Thus

A(W4) = W4 −
1

n− 1
ψ +

∗
ψ − 2τ

(n− 1)(2n− 1)
π2 = 0 .

In a similar way we find

A(W5) =
( τ

2n− 1
− ∗
τ
)(
π1 −

π2
2n+ 1

)
, A(W6) = 0 .

Summing up the preceding results, we can state the following theorem.
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Theorem 5. Applying (18) to the tensors W , we get

A(W1) ≡ A(ARW ) = (AR)W , A(W2) = W2 ,

A(W3) = W3 +
1

n+ 1
W4 +

2

(n+ 1)(2n+ 1)
W6 , A(W4) = 0 ,

A(W5) = W5 −
1

2n+ 1
W6 , A(W6) = 0 .

6 Kähler spaces
In the case of Kähler spaces, we have

∗
ρ = ρ,

∗
τ = τ, ρ(JX, JY ) = ρ(X,Y ) , (34)

and therefore, the conformally invariant tensor (13) has the form

V (Y, Z) =
2(n− 2)

n− 1
ρ(Y,Z)− τ

(n− 1)(2n− 1)
g(Y, Z) .

Also, putting

ψ0(X,Y, Z,W ) = F (X,W )ρ(Y, JZ) + F (Y,Z)ρ(X, JW )

− F (X,Z)ρ(Y, JW )− F (Y,W )ρ(X, JZ)

− 2F (X,Y )ρ(Z, JW )− 2F (Z,W )ρ(X,JY ) ,

we get

ψ =
∗
ψ = 2ψ0 . (35)

Thus, for Kähler manifolds, the antiholomorphic curvature tensor is

AR = R+
1

2(n+ 1)
ψ0 +

τ

2(n+ 1)(2n+ 1)
π2 . (36)

Using (34), (35) and (36), we find that, for Kähler manifolds, the relation (26)
becomes

W1 ≡ (AR)W = R− 1

2(n+ 2)
(ϕ− ψ0) +

τ

4(n+ 1)(n+ 2)
(π1 + π2) ,

or, explicitly,

(W1)(X,Y, Z,W ) ≡ (AR)W (X,Y, Z,W ) = R(X,Y, Z,W )

− 1

2(n+ 1)

{
g(X,W )ρ(Y, Z) + g(Y, Z)ρ(X,W )− g(X,Z)ρ(Y,W )

− g(Y,W )ρ(X,Z)− F (X,W )ρ(Y, JZ)− F (Y, Z)ρ(X, JW ) + F (X,Z)ρ(Y, JW )

+ F (Y,W )ρ(X, JZ) + 2F (X,Y )ρ(Z, JW ) + 2F (Z,W )ρ(X, JY )
}

+
τ

4(n+ 1)(n+ 2)
[π1(X,Y, Z,W ) + π2(X,Y, Z,W )] .

But this is the Bochner curvature tensor of a Kähler manifold. Thus, we can
state the following theorem.



90 Mileva Prvanović

Theorem 6. For a Kähler manifold, the Weyl component of the antiholomorphic
curvature tensor, (AR)W , is Bochner curvature tensor.

In a similar way we find that, in the case of Kähler manifolds,

W2 = R− 1

2(n− 1)
ϕ+

n− 2

2(n2 − 1)
ψ0

+ τ
[ π1

2(n− 1)(2n− 1)
+

2n2 − 6n+ 1

2(n2 − 1)(4n2 − 1)
π2

]
,

W3 = −2(n− 2)

n− 1
ϕ− 2τ

(n− 1)(2n− 1)
π1 , W5 = −2(n− 1)

2n− 1
π1 ,

W4 = −2(n− 2)

n− 1
ψ0 +

2τ

(n− 1)(2n− 1)
π2 , W6 = −2(n− 1)

2n− 1
π2 .
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